1 /* 2 * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_VM_OPTO_NODE_HPP 26 #define SHARE_VM_OPTO_NODE_HPP 27 28 #include "libadt/port.hpp" 29 #include "libadt/vectset.hpp" 30 #include "opto/compile.hpp" 31 #include "opto/type.hpp" 32 33 // Portions of code courtesy of Clifford Click 34 35 // Optimization - Graph Style 36 37 38 class AbstractLockNode; 39 class AddNode; 40 class AddPNode; 41 class AliasInfo; 42 class AllocateArrayNode; 43 class AllocateNode; 44 class Block; 45 class Block_Array; 46 class BoolNode; 47 class BoxLockNode; 48 class CMoveNode; 49 class CallDynamicJavaNode; 50 class CallJavaNode; 51 class CallLeafNode; 52 class CallNode; 53 class CallRuntimeNode; 54 class CallStaticJavaNode; 55 class CatchNode; 56 class CatchProjNode; 57 class CheckCastPPNode; 58 class ClearArrayNode; 59 class CmpNode; 60 class CodeBuffer; 61 class ConstraintCastNode; 62 class ConNode; 63 class CountedLoopNode; 64 class CountedLoopEndNode; 65 class DecodeNNode; 66 class EncodePNode; 67 class FastLockNode; 68 class FastUnlockNode; 69 class IfNode; 70 class IfFalseNode; 71 class IfTrueNode; 72 class InitializeNode; 73 class JVMState; 74 class JumpNode; 75 class JumpProjNode; 76 class LoadNode; 77 class LoadStoreNode; 78 class LockNode; 79 class LoopNode; 80 class MachBranchNode; 81 class MachCallDynamicJavaNode; 82 class MachCallJavaNode; 83 class MachCallLeafNode; 84 class MachCallNode; 85 class MachCallRuntimeNode; 86 class MachCallStaticJavaNode; 87 class MachConstantBaseNode; 88 class MachConstantNode; 89 class MachGotoNode; 90 class MachIfNode; 91 class MachNode; 92 class MachNullCheckNode; 93 class MachProjNode; 94 class MachReturnNode; 95 class MachSafePointNode; 96 class MachSpillCopyNode; 97 class MachTempNode; 98 class Matcher; 99 class MemBarNode; 100 class MemNode; 101 class MergeMemNode; 102 class MultiNode; 103 class MultiBranchNode; 104 class NeverBranchNode; 105 class Node; 106 class Node_Array; 107 class Node_List; 108 class Node_Stack; 109 class NullCheckNode; 110 class OopMap; 111 class ParmNode; 112 class PCTableNode; 113 class PhaseCCP; 114 class PhaseGVN; 115 class PhaseIterGVN; 116 class PhaseRegAlloc; 117 class PhaseTransform; 118 class PhaseValues; 119 class PhiNode; 120 class Pipeline; 121 class ProjNode; 122 class RegMask; 123 class RegionNode; 124 class RootNode; 125 class SafePointNode; 126 class SafePointScalarObjectNode; 127 class StartNode; 128 class State; 129 class StoreNode; 130 class SubNode; 131 class Type; 132 class TypeNode; 133 class UnlockNode; 134 class VectorNode; 135 class VectorLoadNode; 136 class VectorStoreNode; 137 class VectorSet; 138 typedef void (*NFunc)(Node&,void*); 139 extern "C" { 140 typedef int (*C_sort_func_t)(const void *, const void *); 141 } 142 143 // The type of all node counts and indexes. 144 // It must hold at least 16 bits, but must also be fast to load and store. 145 // This type, if less than 32 bits, could limit the number of possible nodes. 146 // (To make this type platform-specific, move to globalDefinitions_xxx.hpp.) 147 typedef unsigned int node_idx_t; 148 149 150 #ifndef OPTO_DU_ITERATOR_ASSERT 151 #ifdef ASSERT 152 #define OPTO_DU_ITERATOR_ASSERT 1 153 #else 154 #define OPTO_DU_ITERATOR_ASSERT 0 155 #endif 156 #endif //OPTO_DU_ITERATOR_ASSERT 157 158 #if OPTO_DU_ITERATOR_ASSERT 159 class DUIterator; 160 class DUIterator_Fast; 161 class DUIterator_Last; 162 #else 163 typedef uint DUIterator; 164 typedef Node** DUIterator_Fast; 165 typedef Node** DUIterator_Last; 166 #endif 167 168 // Node Sentinel 169 #define NodeSentinel (Node*)-1 170 171 // Unknown count frequency 172 #define COUNT_UNKNOWN (-1.0f) 173 174 //------------------------------Node------------------------------------------- 175 // Nodes define actions in the program. They create values, which have types. 176 // They are both vertices in a directed graph and program primitives. Nodes 177 // are labeled; the label is the "opcode", the primitive function in the lambda 178 // calculus sense that gives meaning to the Node. Node inputs are ordered (so 179 // that "a-b" is different from "b-a"). The inputs to a Node are the inputs to 180 // the Node's function. These inputs also define a Type equation for the Node. 181 // Solving these Type equations amounts to doing dataflow analysis. 182 // Control and data are uniformly represented in the graph. Finally, Nodes 183 // have a unique dense integer index which is used to index into side arrays 184 // whenever I have phase-specific information. 185 186 class Node { 187 // Lots of restrictions on cloning Nodes 188 Node(const Node&); // not defined; linker error to use these 189 Node &operator=(const Node &rhs); 190 191 public: 192 friend class Compile; 193 #if OPTO_DU_ITERATOR_ASSERT 194 friend class DUIterator_Common; 195 friend class DUIterator; 196 friend class DUIterator_Fast; 197 friend class DUIterator_Last; 198 #endif 199 200 // Because Nodes come and go, I define an Arena of Node structures to pull 201 // from. This should allow fast access to node creation & deletion. This 202 // field is a local cache of a value defined in some "program fragment" for 203 // which these Nodes are just a part of. 204 205 // New Operator that takes a Compile pointer, this will eventually 206 // be the "new" New operator. 207 inline void* operator new( size_t x, Compile* C) { 208 Node* n = (Node*)C->node_arena()->Amalloc_D(x); 209 #ifdef ASSERT 210 n->_in = (Node**)n; // magic cookie for assertion check 211 #endif 212 n->_out = (Node**)C; 213 return (void*)n; 214 } 215 216 // New Operator that takes a Compile pointer, this will eventually 217 // be the "new" New operator. 218 inline void* operator new( size_t x, Compile* C, int y) { 219 Node* n = (Node*)C->node_arena()->Amalloc_D(x + y*sizeof(void*)); 220 n->_in = (Node**)(((char*)n) + x); 221 #ifdef ASSERT 222 n->_in[y-1] = n; // magic cookie for assertion check 223 #endif 224 n->_out = (Node**)C; 225 return (void*)n; 226 } 227 228 // Delete is a NOP 229 void operator delete( void *ptr ) {} 230 // Fancy destructor; eagerly attempt to reclaim Node numberings and storage 231 void destruct(); 232 233 // Create a new Node. Required is the number is of inputs required for 234 // semantic correctness. 235 Node( uint required ); 236 237 // Create a new Node with given input edges. 238 // This version requires use of the "edge-count" new. 239 // E.g. new (C,3) FooNode( C, NULL, left, right ); 240 Node( Node *n0 ); 241 Node( Node *n0, Node *n1 ); 242 Node( Node *n0, Node *n1, Node *n2 ); 243 Node( Node *n0, Node *n1, Node *n2, Node *n3 ); 244 Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4 ); 245 Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4, Node *n5 ); 246 Node( Node *n0, Node *n1, Node *n2, Node *n3, 247 Node *n4, Node *n5, Node *n6 ); 248 249 // Clone an inherited Node given only the base Node type. 250 Node* clone() const; 251 252 // Clone a Node, immediately supplying one or two new edges. 253 // The first and second arguments, if non-null, replace in(1) and in(2), 254 // respectively. 255 Node* clone_with_data_edge(Node* in1, Node* in2 = NULL) const { 256 Node* nn = clone(); 257 if (in1 != NULL) nn->set_req(1, in1); 258 if (in2 != NULL) nn->set_req(2, in2); 259 return nn; 260 } 261 262 private: 263 // Shared setup for the above constructors. 264 // Handles all interactions with Compile::current. 265 // Puts initial values in all Node fields except _idx. 266 // Returns the initial value for _idx, which cannot 267 // be initialized by assignment. 268 inline int Init(int req, Compile* C); 269 270 //----------------- input edge handling 271 protected: 272 friend class PhaseCFG; // Access to address of _in array elements 273 Node **_in; // Array of use-def references to Nodes 274 Node **_out; // Array of def-use references to Nodes 275 276 // Input edges are split into two categories. Required edges are required 277 // for semantic correctness; order is important and NULLs are allowed. 278 // Precedence edges are used to help determine execution order and are 279 // added, e.g., for scheduling purposes. They are unordered and not 280 // duplicated; they have no embedded NULLs. Edges from 0 to _cnt-1 281 // are required, from _cnt to _max-1 are precedence edges. 282 node_idx_t _cnt; // Total number of required Node inputs. 283 284 node_idx_t _max; // Actual length of input array. 285 286 // Output edges are an unordered list of def-use edges which exactly 287 // correspond to required input edges which point from other nodes 288 // to this one. Thus the count of the output edges is the number of 289 // users of this node. 290 node_idx_t _outcnt; // Total number of Node outputs. 291 292 node_idx_t _outmax; // Actual length of output array. 293 294 // Grow the actual input array to the next larger power-of-2 bigger than len. 295 void grow( uint len ); 296 // Grow the output array to the next larger power-of-2 bigger than len. 297 void out_grow( uint len ); 298 299 public: 300 // Each Node is assigned a unique small/dense number. This number is used 301 // to index into auxiliary arrays of data and bitvectors. 302 // It is declared const to defend against inadvertant assignment, 303 // since it is used by clients as a naked field. 304 const node_idx_t _idx; 305 306 // Get the (read-only) number of input edges 307 uint req() const { return _cnt; } 308 uint len() const { return _max; } 309 // Get the (read-only) number of output edges 310 uint outcnt() const { return _outcnt; } 311 312 #if OPTO_DU_ITERATOR_ASSERT 313 // Iterate over the out-edges of this node. Deletions are illegal. 314 inline DUIterator outs() const; 315 // Use this when the out array might have changed to suppress asserts. 316 inline DUIterator& refresh_out_pos(DUIterator& i) const; 317 // Does the node have an out at this position? (Used for iteration.) 318 inline bool has_out(DUIterator& i) const; 319 inline Node* out(DUIterator& i) const; 320 // Iterate over the out-edges of this node. All changes are illegal. 321 inline DUIterator_Fast fast_outs(DUIterator_Fast& max) const; 322 inline Node* fast_out(DUIterator_Fast& i) const; 323 // Iterate over the out-edges of this node, deleting one at a time. 324 inline DUIterator_Last last_outs(DUIterator_Last& min) const; 325 inline Node* last_out(DUIterator_Last& i) const; 326 // The inline bodies of all these methods are after the iterator definitions. 327 #else 328 // Iterate over the out-edges of this node. Deletions are illegal. 329 // This iteration uses integral indexes, to decouple from array reallocations. 330 DUIterator outs() const { return 0; } 331 // Use this when the out array might have changed to suppress asserts. 332 DUIterator refresh_out_pos(DUIterator i) const { return i; } 333 334 // Reference to the i'th output Node. Error if out of bounds. 335 Node* out(DUIterator i) const { assert(i < _outcnt, "oob"); return _out[i]; } 336 // Does the node have an out at this position? (Used for iteration.) 337 bool has_out(DUIterator i) const { return i < _outcnt; } 338 339 // Iterate over the out-edges of this node. All changes are illegal. 340 // This iteration uses a pointer internal to the out array. 341 DUIterator_Fast fast_outs(DUIterator_Fast& max) const { 342 Node** out = _out; 343 // Assign a limit pointer to the reference argument: 344 max = out + (ptrdiff_t)_outcnt; 345 // Return the base pointer: 346 return out; 347 } 348 Node* fast_out(DUIterator_Fast i) const { return *i; } 349 // Iterate over the out-edges of this node, deleting one at a time. 350 // This iteration uses a pointer internal to the out array. 351 DUIterator_Last last_outs(DUIterator_Last& min) const { 352 Node** out = _out; 353 // Assign a limit pointer to the reference argument: 354 min = out; 355 // Return the pointer to the start of the iteration: 356 return out + (ptrdiff_t)_outcnt - 1; 357 } 358 Node* last_out(DUIterator_Last i) const { return *i; } 359 #endif 360 361 // Reference to the i'th input Node. Error if out of bounds. 362 Node* in(uint i) const { assert(i < _max,"oob"); return _in[i]; } 363 // Reference to the i'th output Node. Error if out of bounds. 364 // Use this accessor sparingly. We are going trying to use iterators instead. 365 Node* raw_out(uint i) const { assert(i < _outcnt,"oob"); return _out[i]; } 366 // Return the unique out edge. 367 Node* unique_out() const { assert(_outcnt==1,"not unique"); return _out[0]; } 368 // Delete out edge at position 'i' by moving last out edge to position 'i' 369 void raw_del_out(uint i) { 370 assert(i < _outcnt,"oob"); 371 assert(_outcnt > 0,"oob"); 372 #if OPTO_DU_ITERATOR_ASSERT 373 // Record that a change happened here. 374 debug_only(_last_del = _out[i]; ++_del_tick); 375 #endif 376 _out[i] = _out[--_outcnt]; 377 // Smash the old edge so it can't be used accidentally. 378 debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef); 379 } 380 381 #ifdef ASSERT 382 bool is_dead() const; 383 #define is_not_dead(n) ((n) == NULL || !VerifyIterativeGVN || !((n)->is_dead())) 384 #endif 385 386 // Set a required input edge, also updates corresponding output edge 387 void add_req( Node *n ); // Append a NEW required input 388 void add_req_batch( Node* n, uint m ); // Append m NEW required inputs (all n). 389 void del_req( uint idx ); // Delete required edge & compact 390 void ins_req( uint i, Node *n ); // Insert a NEW required input 391 void set_req( uint i, Node *n ) { 392 assert( is_not_dead(n), "can not use dead node"); 393 assert( i < _cnt, "oob"); 394 assert( !VerifyHashTableKeys || _hash_lock == 0, 395 "remove node from hash table before modifying it"); 396 Node** p = &_in[i]; // cache this._in, across the del_out call 397 if (*p != NULL) (*p)->del_out((Node *)this); 398 (*p) = n; 399 if (n != NULL) n->add_out((Node *)this); 400 } 401 // Light version of set_req() to init inputs after node creation. 402 void init_req( uint i, Node *n ) { 403 assert( i == 0 && this == n || 404 is_not_dead(n), "can not use dead node"); 405 assert( i < _cnt, "oob"); 406 assert( !VerifyHashTableKeys || _hash_lock == 0, 407 "remove node from hash table before modifying it"); 408 assert( _in[i] == NULL, "sanity"); 409 _in[i] = n; 410 if (n != NULL) n->add_out((Node *)this); 411 } 412 // Find first occurrence of n among my edges: 413 int find_edge(Node* n); 414 int replace_edge(Node* old, Node* neww); 415 // NULL out all inputs to eliminate incoming Def-Use edges. 416 // Return the number of edges between 'n' and 'this' 417 int disconnect_inputs(Node *n); 418 419 // Quickly, return true if and only if I am Compile::current()->top(). 420 bool is_top() const { 421 assert((this == (Node*) Compile::current()->top()) == (_out == NULL), ""); 422 return (_out == NULL); 423 } 424 // Reaffirm invariants for is_top. (Only from Compile::set_cached_top_node.) 425 void setup_is_top(); 426 427 // Strip away casting. (It is depth-limited.) 428 Node* uncast() const; 429 430 private: 431 static Node* uncast_helper(const Node* n); 432 433 // Add an output edge to the end of the list 434 void add_out( Node *n ) { 435 if (is_top()) return; 436 if( _outcnt == _outmax ) out_grow(_outcnt); 437 _out[_outcnt++] = n; 438 } 439 // Delete an output edge 440 void del_out( Node *n ) { 441 if (is_top()) return; 442 Node** outp = &_out[_outcnt]; 443 // Find and remove n 444 do { 445 assert(outp > _out, "Missing Def-Use edge"); 446 } while (*--outp != n); 447 *outp = _out[--_outcnt]; 448 // Smash the old edge so it can't be used accidentally. 449 debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef); 450 // Record that a change happened here. 451 #if OPTO_DU_ITERATOR_ASSERT 452 debug_only(_last_del = n; ++_del_tick); 453 #endif 454 } 455 456 public: 457 // Globally replace this node by a given new node, updating all uses. 458 void replace_by(Node* new_node); 459 // Globally replace this node by a given new node, updating all uses 460 // and cutting input edges of old node. 461 void subsume_by(Node* new_node) { 462 replace_by(new_node); 463 disconnect_inputs(NULL); 464 } 465 void set_req_X( uint i, Node *n, PhaseIterGVN *igvn ); 466 // Find the one non-null required input. RegionNode only 467 Node *nonnull_req() const; 468 // Add or remove precedence edges 469 void add_prec( Node *n ); 470 void rm_prec( uint i ); 471 void set_prec( uint i, Node *n ) { 472 assert( is_not_dead(n), "can not use dead node"); 473 assert( i >= _cnt, "not a precedence edge"); 474 if (_in[i] != NULL) _in[i]->del_out((Node *)this); 475 _in[i] = n; 476 if (n != NULL) n->add_out((Node *)this); 477 } 478 // Set this node's index, used by cisc_version to replace current node 479 void set_idx(uint new_idx) { 480 const node_idx_t* ref = &_idx; 481 *(node_idx_t*)ref = new_idx; 482 } 483 // Swap input edge order. (Edge indexes i1 and i2 are usually 1 and 2.) 484 void swap_edges(uint i1, uint i2) { 485 debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH); 486 // Def-Use info is unchanged 487 Node* n1 = in(i1); 488 Node* n2 = in(i2); 489 _in[i1] = n2; 490 _in[i2] = n1; 491 // If this node is in the hash table, make sure it doesn't need a rehash. 492 assert(check_hash == NO_HASH || check_hash == hash(), "edge swap must preserve hash code"); 493 } 494 495 // Iterators over input Nodes for a Node X are written as: 496 // for( i = 0; i < X.req(); i++ ) ... X[i] ... 497 // NOTE: Required edges can contain embedded NULL pointers. 498 499 //----------------- Other Node Properties 500 501 // Generate class id for some ideal nodes to avoid virtual query 502 // methods is_<Node>(). 503 // Class id is the set of bits corresponded to the node class and all its 504 // super classes so that queries for super classes are also valid. 505 // Subclasses of the same super class have different assigned bit 506 // (the third parameter in the macro DEFINE_CLASS_ID). 507 // Classes with deeper hierarchy are declared first. 508 // Classes with the same hierarchy depth are sorted by usage frequency. 509 // 510 // The query method masks the bits to cut off bits of subclasses 511 // and then compare the result with the class id 512 // (see the macro DEFINE_CLASS_QUERY below). 513 // 514 // Class_MachCall=30, ClassMask_MachCall=31 515 // 12 8 4 0 516 // 0 0 0 0 0 0 0 0 1 1 1 1 0 517 // | | | | 518 // | | | Bit_Mach=2 519 // | | Bit_MachReturn=4 520 // | Bit_MachSafePoint=8 521 // Bit_MachCall=16 522 // 523 // Class_CountedLoop=56, ClassMask_CountedLoop=63 524 // 12 8 4 0 525 // 0 0 0 0 0 0 0 1 1 1 0 0 0 526 // | | | 527 // | | Bit_Region=8 528 // | Bit_Loop=16 529 // Bit_CountedLoop=32 530 531 #define DEFINE_CLASS_ID(cl, supcl, subn) \ 532 Bit_##cl = (Class_##supcl == 0) ? 1 << subn : (Bit_##supcl) << (1 + subn) , \ 533 Class_##cl = Class_##supcl + Bit_##cl , \ 534 ClassMask_##cl = ((Bit_##cl << 1) - 1) , 535 536 // This enum is used only for C2 ideal and mach nodes with is_<node>() methods 537 // so that it's values fits into 16 bits. 538 enum NodeClasses { 539 Bit_Node = 0x0000, 540 Class_Node = 0x0000, 541 ClassMask_Node = 0xFFFF, 542 543 DEFINE_CLASS_ID(Multi, Node, 0) 544 DEFINE_CLASS_ID(SafePoint, Multi, 0) 545 DEFINE_CLASS_ID(Call, SafePoint, 0) 546 DEFINE_CLASS_ID(CallJava, Call, 0) 547 DEFINE_CLASS_ID(CallStaticJava, CallJava, 0) 548 DEFINE_CLASS_ID(CallDynamicJava, CallJava, 1) 549 DEFINE_CLASS_ID(CallRuntime, Call, 1) 550 DEFINE_CLASS_ID(CallLeaf, CallRuntime, 0) 551 DEFINE_CLASS_ID(Allocate, Call, 2) 552 DEFINE_CLASS_ID(AllocateArray, Allocate, 0) 553 DEFINE_CLASS_ID(AbstractLock, Call, 3) 554 DEFINE_CLASS_ID(Lock, AbstractLock, 0) 555 DEFINE_CLASS_ID(Unlock, AbstractLock, 1) 556 DEFINE_CLASS_ID(MultiBranch, Multi, 1) 557 DEFINE_CLASS_ID(PCTable, MultiBranch, 0) 558 DEFINE_CLASS_ID(Catch, PCTable, 0) 559 DEFINE_CLASS_ID(Jump, PCTable, 1) 560 DEFINE_CLASS_ID(If, MultiBranch, 1) 561 DEFINE_CLASS_ID(CountedLoopEnd, If, 0) 562 DEFINE_CLASS_ID(NeverBranch, MultiBranch, 2) 563 DEFINE_CLASS_ID(Start, Multi, 2) 564 DEFINE_CLASS_ID(MemBar, Multi, 3) 565 DEFINE_CLASS_ID(Initialize, MemBar, 0) 566 567 DEFINE_CLASS_ID(Mach, Node, 1) 568 DEFINE_CLASS_ID(MachReturn, Mach, 0) 569 DEFINE_CLASS_ID(MachSafePoint, MachReturn, 0) 570 DEFINE_CLASS_ID(MachCall, MachSafePoint, 0) 571 DEFINE_CLASS_ID(MachCallJava, MachCall, 0) 572 DEFINE_CLASS_ID(MachCallStaticJava, MachCallJava, 0) 573 DEFINE_CLASS_ID(MachCallDynamicJava, MachCallJava, 1) 574 DEFINE_CLASS_ID(MachCallRuntime, MachCall, 1) 575 DEFINE_CLASS_ID(MachCallLeaf, MachCallRuntime, 0) 576 DEFINE_CLASS_ID(MachBranch, Mach, 1) 577 DEFINE_CLASS_ID(MachIf, MachBranch, 0) 578 DEFINE_CLASS_ID(MachGoto, MachBranch, 1) 579 DEFINE_CLASS_ID(MachNullCheck, MachBranch, 2) 580 DEFINE_CLASS_ID(MachSpillCopy, Mach, 2) 581 DEFINE_CLASS_ID(MachTemp, Mach, 3) 582 DEFINE_CLASS_ID(MachConstantBase, Mach, 4) 583 DEFINE_CLASS_ID(MachConstant, Mach, 5) 584 585 DEFINE_CLASS_ID(Type, Node, 2) 586 DEFINE_CLASS_ID(Phi, Type, 0) 587 DEFINE_CLASS_ID(ConstraintCast, Type, 1) 588 DEFINE_CLASS_ID(CheckCastPP, Type, 2) 589 DEFINE_CLASS_ID(CMove, Type, 3) 590 DEFINE_CLASS_ID(SafePointScalarObject, Type, 4) 591 DEFINE_CLASS_ID(DecodeN, Type, 5) 592 DEFINE_CLASS_ID(EncodeP, Type, 6) 593 594 DEFINE_CLASS_ID(Proj, Node, 3) 595 DEFINE_CLASS_ID(CatchProj, Proj, 0) 596 DEFINE_CLASS_ID(JumpProj, Proj, 1) 597 DEFINE_CLASS_ID(IfTrue, Proj, 2) 598 DEFINE_CLASS_ID(IfFalse, Proj, 3) 599 DEFINE_CLASS_ID(Parm, Proj, 4) 600 DEFINE_CLASS_ID(MachProj, Proj, 5) 601 602 DEFINE_CLASS_ID(Mem, Node, 4) 603 DEFINE_CLASS_ID(Load, Mem, 0) 604 DEFINE_CLASS_ID(VectorLoad, Load, 0) 605 DEFINE_CLASS_ID(Store, Mem, 1) 606 DEFINE_CLASS_ID(VectorStore, Store, 0) 607 DEFINE_CLASS_ID(LoadStore, Mem, 2) 608 609 DEFINE_CLASS_ID(Region, Node, 5) 610 DEFINE_CLASS_ID(Loop, Region, 0) 611 DEFINE_CLASS_ID(Root, Loop, 0) 612 DEFINE_CLASS_ID(CountedLoop, Loop, 1) 613 614 DEFINE_CLASS_ID(Sub, Node, 6) 615 DEFINE_CLASS_ID(Cmp, Sub, 0) 616 DEFINE_CLASS_ID(FastLock, Cmp, 0) 617 DEFINE_CLASS_ID(FastUnlock, Cmp, 1) 618 619 DEFINE_CLASS_ID(MergeMem, Node, 7) 620 DEFINE_CLASS_ID(Bool, Node, 8) 621 DEFINE_CLASS_ID(AddP, Node, 9) 622 DEFINE_CLASS_ID(BoxLock, Node, 10) 623 DEFINE_CLASS_ID(Add, Node, 11) 624 DEFINE_CLASS_ID(Vector, Node, 12) 625 DEFINE_CLASS_ID(ClearArray, Node, 13) 626 627 _max_classes = ClassMask_ClearArray 628 }; 629 #undef DEFINE_CLASS_ID 630 631 // Flags are sorted by usage frequency. 632 enum NodeFlags { 633 Flag_is_Copy = 0x01, // should be first bit to avoid shift 634 Flag_rematerialize = Flag_is_Copy << 1, 635 Flag_needs_anti_dependence_check = Flag_rematerialize << 1, 636 Flag_is_macro = Flag_needs_anti_dependence_check << 1, 637 Flag_is_Con = Flag_is_macro << 1, 638 Flag_is_cisc_alternate = Flag_is_Con << 1, 639 Flag_is_dead_loop_safe = Flag_is_cisc_alternate << 1, 640 Flag_may_be_short_branch = Flag_is_dead_loop_safe << 1, 641 Flag_avoid_back_to_back = Flag_may_be_short_branch << 1, 642 _max_flags = (Flag_avoid_back_to_back << 1) - 1 // allow flags combination 643 }; 644 645 private: 646 jushort _class_id; 647 jushort _flags; 648 649 protected: 650 // These methods should be called from constructors only. 651 void init_class_id(jushort c) { 652 assert(c <= _max_classes, "invalid node class"); 653 _class_id = c; // cast out const 654 } 655 void init_flags(jushort fl) { 656 assert(fl <= _max_flags, "invalid node flag"); 657 _flags |= fl; 658 } 659 void clear_flag(jushort fl) { 660 assert(fl <= _max_flags, "invalid node flag"); 661 _flags &= ~fl; 662 } 663 664 public: 665 const jushort class_id() const { return _class_id; } 666 667 const jushort flags() const { return _flags; } 668 669 // Return a dense integer opcode number 670 virtual int Opcode() const; 671 672 // Virtual inherited Node size 673 virtual uint size_of() const; 674 675 // Other interesting Node properties 676 #define DEFINE_CLASS_QUERY(type) \ 677 bool is_##type() const { \ 678 return ((_class_id & ClassMask_##type) == Class_##type); \ 679 } \ 680 type##Node *as_##type() const { \ 681 assert(is_##type(), "invalid node class"); \ 682 return (type##Node*)this; \ 683 } \ 684 type##Node* isa_##type() const { \ 685 return (is_##type()) ? as_##type() : NULL; \ 686 } 687 688 DEFINE_CLASS_QUERY(AbstractLock) 689 DEFINE_CLASS_QUERY(Add) 690 DEFINE_CLASS_QUERY(AddP) 691 DEFINE_CLASS_QUERY(Allocate) 692 DEFINE_CLASS_QUERY(AllocateArray) 693 DEFINE_CLASS_QUERY(Bool) 694 DEFINE_CLASS_QUERY(BoxLock) 695 DEFINE_CLASS_QUERY(Call) 696 DEFINE_CLASS_QUERY(CallDynamicJava) 697 DEFINE_CLASS_QUERY(CallJava) 698 DEFINE_CLASS_QUERY(CallLeaf) 699 DEFINE_CLASS_QUERY(CallRuntime) 700 DEFINE_CLASS_QUERY(CallStaticJava) 701 DEFINE_CLASS_QUERY(Catch) 702 DEFINE_CLASS_QUERY(CatchProj) 703 DEFINE_CLASS_QUERY(CheckCastPP) 704 DEFINE_CLASS_QUERY(ConstraintCast) 705 DEFINE_CLASS_QUERY(ClearArray) 706 DEFINE_CLASS_QUERY(CMove) 707 DEFINE_CLASS_QUERY(Cmp) 708 DEFINE_CLASS_QUERY(CountedLoop) 709 DEFINE_CLASS_QUERY(CountedLoopEnd) 710 DEFINE_CLASS_QUERY(DecodeN) 711 DEFINE_CLASS_QUERY(EncodeP) 712 DEFINE_CLASS_QUERY(FastLock) 713 DEFINE_CLASS_QUERY(FastUnlock) 714 DEFINE_CLASS_QUERY(If) 715 DEFINE_CLASS_QUERY(IfFalse) 716 DEFINE_CLASS_QUERY(IfTrue) 717 DEFINE_CLASS_QUERY(Initialize) 718 DEFINE_CLASS_QUERY(Jump) 719 DEFINE_CLASS_QUERY(JumpProj) 720 DEFINE_CLASS_QUERY(Load) 721 DEFINE_CLASS_QUERY(LoadStore) 722 DEFINE_CLASS_QUERY(Lock) 723 DEFINE_CLASS_QUERY(Loop) 724 DEFINE_CLASS_QUERY(Mach) 725 DEFINE_CLASS_QUERY(MachBranch) 726 DEFINE_CLASS_QUERY(MachCall) 727 DEFINE_CLASS_QUERY(MachCallDynamicJava) 728 DEFINE_CLASS_QUERY(MachCallJava) 729 DEFINE_CLASS_QUERY(MachCallLeaf) 730 DEFINE_CLASS_QUERY(MachCallRuntime) 731 DEFINE_CLASS_QUERY(MachCallStaticJava) 732 DEFINE_CLASS_QUERY(MachConstantBase) 733 DEFINE_CLASS_QUERY(MachConstant) 734 DEFINE_CLASS_QUERY(MachGoto) 735 DEFINE_CLASS_QUERY(MachIf) 736 DEFINE_CLASS_QUERY(MachNullCheck) 737 DEFINE_CLASS_QUERY(MachProj) 738 DEFINE_CLASS_QUERY(MachReturn) 739 DEFINE_CLASS_QUERY(MachSafePoint) 740 DEFINE_CLASS_QUERY(MachSpillCopy) 741 DEFINE_CLASS_QUERY(MachTemp) 742 DEFINE_CLASS_QUERY(Mem) 743 DEFINE_CLASS_QUERY(MemBar) 744 DEFINE_CLASS_QUERY(MergeMem) 745 DEFINE_CLASS_QUERY(Multi) 746 DEFINE_CLASS_QUERY(MultiBranch) 747 DEFINE_CLASS_QUERY(Parm) 748 DEFINE_CLASS_QUERY(PCTable) 749 DEFINE_CLASS_QUERY(Phi) 750 DEFINE_CLASS_QUERY(Proj) 751 DEFINE_CLASS_QUERY(Region) 752 DEFINE_CLASS_QUERY(Root) 753 DEFINE_CLASS_QUERY(SafePoint) 754 DEFINE_CLASS_QUERY(SafePointScalarObject) 755 DEFINE_CLASS_QUERY(Start) 756 DEFINE_CLASS_QUERY(Store) 757 DEFINE_CLASS_QUERY(Sub) 758 DEFINE_CLASS_QUERY(Type) 759 DEFINE_CLASS_QUERY(Vector) 760 DEFINE_CLASS_QUERY(VectorLoad) 761 DEFINE_CLASS_QUERY(VectorStore) 762 DEFINE_CLASS_QUERY(Unlock) 763 764 #undef DEFINE_CLASS_QUERY 765 766 // duplicate of is_MachSpillCopy() 767 bool is_SpillCopy () const { 768 return ((_class_id & ClassMask_MachSpillCopy) == Class_MachSpillCopy); 769 } 770 771 bool is_Con () const { return (_flags & Flag_is_Con) != 0; } 772 // The data node which is safe to leave in dead loop during IGVN optimization. 773 bool is_dead_loop_safe() const { 774 return is_Phi() || (is_Proj() && in(0) == NULL) || 775 ((_flags & (Flag_is_dead_loop_safe | Flag_is_Con)) != 0 && 776 (!is_Proj() || !in(0)->is_Allocate())); 777 } 778 779 // is_Copy() returns copied edge index (0 or 1) 780 uint is_Copy() const { return (_flags & Flag_is_Copy); } 781 782 virtual bool is_CFG() const { return false; } 783 784 // If this node is control-dependent on a test, can it be 785 // rerouted to a dominating equivalent test? This is usually 786 // true of non-CFG nodes, but can be false for operations which 787 // depend for their correct sequencing on more than one test. 788 // (In that case, hoisting to a dominating test may silently 789 // skip some other important test.) 790 virtual bool depends_only_on_test() const { assert(!is_CFG(), ""); return true; }; 791 792 // When building basic blocks, I need to have a notion of block beginning 793 // Nodes, next block selector Nodes (block enders), and next block 794 // projections. These calls need to work on their machine equivalents. The 795 // Ideal beginning Nodes are RootNode, RegionNode and StartNode. 796 bool is_block_start() const { 797 if ( is_Region() ) 798 return this == (const Node*)in(0); 799 else 800 return is_Start(); 801 } 802 803 // The Ideal control projection Nodes are IfTrue/IfFalse, JumpProjNode, Root, 804 // Goto and Return. This call also returns the block ending Node. 805 virtual const Node *is_block_proj() const; 806 807 // The node is a "macro" node which needs to be expanded before matching 808 bool is_macro() const { return (_flags & Flag_is_macro) != 0; } 809 810 //----------------- Optimization 811 812 // Get the worst-case Type output for this Node. 813 virtual const class Type *bottom_type() const; 814 815 // If we find a better type for a node, try to record it permanently. 816 // Return true if this node actually changed. 817 // Be sure to do the hash_delete game in the "rehash" variant. 818 void raise_bottom_type(const Type* new_type); 819 820 // Get the address type with which this node uses and/or defs memory, 821 // or NULL if none. The address type is conservatively wide. 822 // Returns non-null for calls, membars, loads, stores, etc. 823 // Returns TypePtr::BOTTOM if the node touches memory "broadly". 824 virtual const class TypePtr *adr_type() const { return NULL; } 825 826 // Return an existing node which computes the same function as this node. 827 // The optimistic combined algorithm requires this to return a Node which 828 // is a small number of steps away (e.g., one of my inputs). 829 virtual Node *Identity( PhaseTransform *phase ); 830 831 // Return the set of values this Node can take on at runtime. 832 virtual const Type *Value( PhaseTransform *phase ) const; 833 834 // Return a node which is more "ideal" than the current node. 835 // The invariants on this call are subtle. If in doubt, read the 836 // treatise in node.cpp above the default implemention AND TEST WITH 837 // +VerifyIterativeGVN! 838 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 839 840 // Some nodes have specific Ideal subgraph transformations only if they are 841 // unique users of specific nodes. Such nodes should be put on IGVN worklist 842 // for the transformations to happen. 843 bool has_special_unique_user() const; 844 845 // Skip Proj and CatchProj nodes chains. Check for Null and Top. 846 Node* find_exact_control(Node* ctrl); 847 848 // Check if 'this' node dominates or equal to 'sub'. 849 bool dominates(Node* sub, Node_List &nlist); 850 851 protected: 852 bool remove_dead_region(PhaseGVN *phase, bool can_reshape); 853 public: 854 855 // Idealize graph, using DU info. Done after constant propagation 856 virtual Node *Ideal_DU_postCCP( PhaseCCP *ccp ); 857 858 // See if there is valid pipeline info 859 static const Pipeline *pipeline_class(); 860 virtual const Pipeline *pipeline() const; 861 862 // Compute the latency from the def to this instruction of the ith input node 863 uint latency(uint i); 864 865 // Hash & compare functions, for pessimistic value numbering 866 867 // If the hash function returns the special sentinel value NO_HASH, 868 // the node is guaranteed never to compare equal to any other node. 869 // If we accidentally generate a hash with value NO_HASH the node 870 // won't go into the table and we'll lose a little optimization. 871 enum { NO_HASH = 0 }; 872 virtual uint hash() const; 873 virtual uint cmp( const Node &n ) const; 874 875 // Operation appears to be iteratively computed (such as an induction variable) 876 // It is possible for this operation to return false for a loop-varying 877 // value, if it appears (by local graph inspection) to be computed by a simple conditional. 878 bool is_iteratively_computed(); 879 880 // Determine if a node is Counted loop induction variable. 881 // The method is defined in loopnode.cpp. 882 const Node* is_loop_iv() const; 883 884 // Return a node with opcode "opc" and same inputs as "this" if one can 885 // be found; Otherwise return NULL; 886 Node* find_similar(int opc); 887 888 // Return the unique control out if only one. Null if none or more than one. 889 Node* unique_ctrl_out(); 890 891 //----------------- Code Generation 892 893 // Ideal register class for Matching. Zero means unmatched instruction 894 // (these are cloned instead of converted to machine nodes). 895 virtual uint ideal_reg() const; 896 897 static const uint NotAMachineReg; // must be > max. machine register 898 899 // Do we Match on this edge index or not? Generally false for Control 900 // and true for everything else. Weird for calls & returns. 901 virtual uint match_edge(uint idx) const; 902 903 // Register class output is returned in 904 virtual const RegMask &out_RegMask() const; 905 // Register class input is expected in 906 virtual const RegMask &in_RegMask(uint) const; 907 // Should we clone rather than spill this instruction? 908 bool rematerialize() const; 909 910 // Return JVM State Object if this Node carries debug info, or NULL otherwise 911 virtual JVMState* jvms() const; 912 913 // Print as assembly 914 virtual void format( PhaseRegAlloc *, outputStream* st = tty ) const; 915 // Emit bytes starting at parameter 'ptr' 916 // Bump 'ptr' by the number of output bytes 917 virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const; 918 // Size of instruction in bytes 919 virtual uint size(PhaseRegAlloc *ra_) const; 920 921 // Convenience function to extract an integer constant from a node. 922 // If it is not an integer constant (either Con, CastII, or Mach), 923 // return value_if_unknown. 924 jint find_int_con(jint value_if_unknown) const { 925 const TypeInt* t = find_int_type(); 926 return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown; 927 } 928 // Return the constant, knowing it is an integer constant already 929 jint get_int() const { 930 const TypeInt* t = find_int_type(); 931 guarantee(t != NULL, "must be con"); 932 return t->get_con(); 933 } 934 // Here's where the work is done. Can produce non-constant int types too. 935 const TypeInt* find_int_type() const; 936 937 // Same thing for long (and intptr_t, via type.hpp): 938 jlong get_long() const { 939 const TypeLong* t = find_long_type(); 940 guarantee(t != NULL, "must be con"); 941 return t->get_con(); 942 } 943 jlong find_long_con(jint value_if_unknown) const { 944 const TypeLong* t = find_long_type(); 945 return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown; 946 } 947 const TypeLong* find_long_type() const; 948 949 // These guys are called by code generated by ADLC: 950 intptr_t get_ptr() const; 951 intptr_t get_narrowcon() const; 952 jdouble getd() const; 953 jfloat getf() const; 954 955 // Nodes which are pinned into basic blocks 956 virtual bool pinned() const { return false; } 957 958 // Nodes which use memory without consuming it, hence need antidependences 959 // More specifically, needs_anti_dependence_check returns true iff the node 960 // (a) does a load, and (b) does not perform a store (except perhaps to a 961 // stack slot or some other unaliased location). 962 bool needs_anti_dependence_check() const; 963 964 // Return which operand this instruction may cisc-spill. In other words, 965 // return operand position that can convert from reg to memory access 966 virtual int cisc_operand() const { return AdlcVMDeps::Not_cisc_spillable; } 967 bool is_cisc_alternate() const { return (_flags & Flag_is_cisc_alternate) != 0; } 968 969 //----------------- Graph walking 970 public: 971 // Walk and apply member functions recursively. 972 // Supplied (this) pointer is root. 973 void walk(NFunc pre, NFunc post, void *env); 974 static void nop(Node &, void*); // Dummy empty function 975 static void packregion( Node &n, void* ); 976 private: 977 void walk_(NFunc pre, NFunc post, void *env, VectorSet &visited); 978 979 //----------------- Printing, etc 980 public: 981 #ifndef PRODUCT 982 Node* find(int idx) const; // Search the graph for the given idx. 983 Node* find_ctrl(int idx) const; // Search control ancestors for the given idx. 984 void dump() const; // Print this node, 985 void dump(int depth) const; // Print this node, recursively to depth d 986 void dump_ctrl(int depth) const; // Print control nodes, to depth d 987 virtual void dump_req() const; // Print required-edge info 988 virtual void dump_prec() const; // Print precedence-edge info 989 virtual void dump_out() const; // Print the output edge info 990 virtual void dump_spec(outputStream *st) const {}; // Print per-node info 991 void verify_edges(Unique_Node_List &visited); // Verify bi-directional edges 992 void verify() const; // Check Def-Use info for my subgraph 993 static void verify_recur(const Node *n, int verify_depth, VectorSet &old_space, VectorSet &new_space); 994 995 // This call defines a class-unique string used to identify class instances 996 virtual const char *Name() const; 997 998 void dump_format(PhaseRegAlloc *ra) const; // debug access to MachNode::format(...) 999 // RegMask Print Functions 1000 void dump_in_regmask(int idx) { in_RegMask(idx).dump(); } 1001 void dump_out_regmask() { out_RegMask().dump(); } 1002 static int _in_dump_cnt; 1003 static bool in_dump() { return _in_dump_cnt > 0; } 1004 void fast_dump() const { 1005 tty->print("%4d: %-17s", _idx, Name()); 1006 for (uint i = 0; i < len(); i++) 1007 if (in(i)) 1008 tty->print(" %4d", in(i)->_idx); 1009 else 1010 tty->print(" NULL"); 1011 tty->print("\n"); 1012 } 1013 #endif 1014 #ifdef ASSERT 1015 void verify_construction(); 1016 bool verify_jvms(const JVMState* jvms) const; 1017 int _debug_idx; // Unique value assigned to every node. 1018 int debug_idx() const { return _debug_idx; } 1019 void set_debug_idx( int debug_idx ) { _debug_idx = debug_idx; } 1020 1021 Node* _debug_orig; // Original version of this, if any. 1022 Node* debug_orig() const { return _debug_orig; } 1023 void set_debug_orig(Node* orig); // _debug_orig = orig 1024 1025 int _hash_lock; // Barrier to modifications of nodes in the hash table 1026 void enter_hash_lock() { ++_hash_lock; assert(_hash_lock < 99, "in too many hash tables?"); } 1027 void exit_hash_lock() { --_hash_lock; assert(_hash_lock >= 0, "mispaired hash locks"); } 1028 1029 static void init_NodeProperty(); 1030 1031 #if OPTO_DU_ITERATOR_ASSERT 1032 const Node* _last_del; // The last deleted node. 1033 uint _del_tick; // Bumped when a deletion happens.. 1034 #endif 1035 #endif 1036 }; 1037 1038 //----------------------------------------------------------------------------- 1039 // Iterators over DU info, and associated Node functions. 1040 1041 #if OPTO_DU_ITERATOR_ASSERT 1042 1043 // Common code for assertion checking on DU iterators. 1044 class DUIterator_Common VALUE_OBJ_CLASS_SPEC { 1045 #ifdef ASSERT 1046 protected: 1047 bool _vdui; // cached value of VerifyDUIterators 1048 const Node* _node; // the node containing the _out array 1049 uint _outcnt; // cached node->_outcnt 1050 uint _del_tick; // cached node->_del_tick 1051 Node* _last; // last value produced by the iterator 1052 1053 void sample(const Node* node); // used by c'tor to set up for verifies 1054 void verify(const Node* node, bool at_end_ok = false); 1055 void verify_resync(); 1056 void reset(const DUIterator_Common& that); 1057 1058 // The VDUI_ONLY macro protects code conditionalized on VerifyDUIterators 1059 #define I_VDUI_ONLY(i,x) { if ((i)._vdui) { x; } } 1060 #else 1061 #define I_VDUI_ONLY(i,x) { } 1062 #endif //ASSERT 1063 }; 1064 1065 #define VDUI_ONLY(x) I_VDUI_ONLY(*this, x) 1066 1067 // Default DU iterator. Allows appends onto the out array. 1068 // Allows deletion from the out array only at the current point. 1069 // Usage: 1070 // for (DUIterator i = x->outs(); x->has_out(i); i++) { 1071 // Node* y = x->out(i); 1072 // ... 1073 // } 1074 // Compiles in product mode to a unsigned integer index, which indexes 1075 // onto a repeatedly reloaded base pointer of x->_out. The loop predicate 1076 // also reloads x->_outcnt. If you delete, you must perform "--i" just 1077 // before continuing the loop. You must delete only the last-produced 1078 // edge. You must delete only a single copy of the last-produced edge, 1079 // or else you must delete all copies at once (the first time the edge 1080 // is produced by the iterator). 1081 class DUIterator : public DUIterator_Common { 1082 friend class Node; 1083 1084 // This is the index which provides the product-mode behavior. 1085 // Whatever the product-mode version of the system does to the 1086 // DUI index is done to this index. All other fields in 1087 // this class are used only for assertion checking. 1088 uint _idx; 1089 1090 #ifdef ASSERT 1091 uint _refresh_tick; // Records the refresh activity. 1092 1093 void sample(const Node* node); // Initialize _refresh_tick etc. 1094 void verify(const Node* node, bool at_end_ok = false); 1095 void verify_increment(); // Verify an increment operation. 1096 void verify_resync(); // Verify that we can back up over a deletion. 1097 void verify_finish(); // Verify that the loop terminated properly. 1098 void refresh(); // Resample verification info. 1099 void reset(const DUIterator& that); // Resample after assignment. 1100 #endif 1101 1102 DUIterator(const Node* node, int dummy_to_avoid_conversion) 1103 { _idx = 0; debug_only(sample(node)); } 1104 1105 public: 1106 // initialize to garbage; clear _vdui to disable asserts 1107 DUIterator() 1108 { /*initialize to garbage*/ debug_only(_vdui = false); } 1109 1110 void operator++(int dummy_to_specify_postfix_op) 1111 { _idx++; VDUI_ONLY(verify_increment()); } 1112 1113 void operator--() 1114 { VDUI_ONLY(verify_resync()); --_idx; } 1115 1116 ~DUIterator() 1117 { VDUI_ONLY(verify_finish()); } 1118 1119 void operator=(const DUIterator& that) 1120 { _idx = that._idx; debug_only(reset(that)); } 1121 }; 1122 1123 DUIterator Node::outs() const 1124 { return DUIterator(this, 0); } 1125 DUIterator& Node::refresh_out_pos(DUIterator& i) const 1126 { I_VDUI_ONLY(i, i.refresh()); return i; } 1127 bool Node::has_out(DUIterator& i) const 1128 { I_VDUI_ONLY(i, i.verify(this,true));return i._idx < _outcnt; } 1129 Node* Node::out(DUIterator& i) const 1130 { I_VDUI_ONLY(i, i.verify(this)); return debug_only(i._last=) _out[i._idx]; } 1131 1132 1133 // Faster DU iterator. Disallows insertions into the out array. 1134 // Allows deletion from the out array only at the current point. 1135 // Usage: 1136 // for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) { 1137 // Node* y = x->fast_out(i); 1138 // ... 1139 // } 1140 // Compiles in product mode to raw Node** pointer arithmetic, with 1141 // no reloading of pointers from the original node x. If you delete, 1142 // you must perform "--i; --imax" just before continuing the loop. 1143 // If you delete multiple copies of the same edge, you must decrement 1144 // imax, but not i, multiple times: "--i, imax -= num_edges". 1145 class DUIterator_Fast : public DUIterator_Common { 1146 friend class Node; 1147 friend class DUIterator_Last; 1148 1149 // This is the pointer which provides the product-mode behavior. 1150 // Whatever the product-mode version of the system does to the 1151 // DUI pointer is done to this pointer. All other fields in 1152 // this class are used only for assertion checking. 1153 Node** _outp; 1154 1155 #ifdef ASSERT 1156 void verify(const Node* node, bool at_end_ok = false); 1157 void verify_limit(); 1158 void verify_resync(); 1159 void verify_relimit(uint n); 1160 void reset(const DUIterator_Fast& that); 1161 #endif 1162 1163 // Note: offset must be signed, since -1 is sometimes passed 1164 DUIterator_Fast(const Node* node, ptrdiff_t offset) 1165 { _outp = node->_out + offset; debug_only(sample(node)); } 1166 1167 public: 1168 // initialize to garbage; clear _vdui to disable asserts 1169 DUIterator_Fast() 1170 { /*initialize to garbage*/ debug_only(_vdui = false); } 1171 1172 void operator++(int dummy_to_specify_postfix_op) 1173 { _outp++; VDUI_ONLY(verify(_node, true)); } 1174 1175 void operator--() 1176 { VDUI_ONLY(verify_resync()); --_outp; } 1177 1178 void operator-=(uint n) // applied to the limit only 1179 { _outp -= n; VDUI_ONLY(verify_relimit(n)); } 1180 1181 bool operator<(DUIterator_Fast& limit) { 1182 I_VDUI_ONLY(*this, this->verify(_node, true)); 1183 I_VDUI_ONLY(limit, limit.verify_limit()); 1184 return _outp < limit._outp; 1185 } 1186 1187 void operator=(const DUIterator_Fast& that) 1188 { _outp = that._outp; debug_only(reset(that)); } 1189 }; 1190 1191 DUIterator_Fast Node::fast_outs(DUIterator_Fast& imax) const { 1192 // Assign a limit pointer to the reference argument: 1193 imax = DUIterator_Fast(this, (ptrdiff_t)_outcnt); 1194 // Return the base pointer: 1195 return DUIterator_Fast(this, 0); 1196 } 1197 Node* Node::fast_out(DUIterator_Fast& i) const { 1198 I_VDUI_ONLY(i, i.verify(this)); 1199 return debug_only(i._last=) *i._outp; 1200 } 1201 1202 1203 // Faster DU iterator. Requires each successive edge to be removed. 1204 // Does not allow insertion of any edges. 1205 // Usage: 1206 // for (DUIterator_Last imin, i = x->last_outs(imin); i >= imin; i -= num_edges) { 1207 // Node* y = x->last_out(i); 1208 // ... 1209 // } 1210 // Compiles in product mode to raw Node** pointer arithmetic, with 1211 // no reloading of pointers from the original node x. 1212 class DUIterator_Last : private DUIterator_Fast { 1213 friend class Node; 1214 1215 #ifdef ASSERT 1216 void verify(const Node* node, bool at_end_ok = false); 1217 void verify_limit(); 1218 void verify_step(uint num_edges); 1219 #endif 1220 1221 // Note: offset must be signed, since -1 is sometimes passed 1222 DUIterator_Last(const Node* node, ptrdiff_t offset) 1223 : DUIterator_Fast(node, offset) { } 1224 1225 void operator++(int dummy_to_specify_postfix_op) {} // do not use 1226 void operator<(int) {} // do not use 1227 1228 public: 1229 DUIterator_Last() { } 1230 // initialize to garbage 1231 1232 void operator--() 1233 { _outp--; VDUI_ONLY(verify_step(1)); } 1234 1235 void operator-=(uint n) 1236 { _outp -= n; VDUI_ONLY(verify_step(n)); } 1237 1238 bool operator>=(DUIterator_Last& limit) { 1239 I_VDUI_ONLY(*this, this->verify(_node, true)); 1240 I_VDUI_ONLY(limit, limit.verify_limit()); 1241 return _outp >= limit._outp; 1242 } 1243 1244 void operator=(const DUIterator_Last& that) 1245 { DUIterator_Fast::operator=(that); } 1246 }; 1247 1248 DUIterator_Last Node::last_outs(DUIterator_Last& imin) const { 1249 // Assign a limit pointer to the reference argument: 1250 imin = DUIterator_Last(this, 0); 1251 // Return the initial pointer: 1252 return DUIterator_Last(this, (ptrdiff_t)_outcnt - 1); 1253 } 1254 Node* Node::last_out(DUIterator_Last& i) const { 1255 I_VDUI_ONLY(i, i.verify(this)); 1256 return debug_only(i._last=) *i._outp; 1257 } 1258 1259 #endif //OPTO_DU_ITERATOR_ASSERT 1260 1261 #undef I_VDUI_ONLY 1262 #undef VDUI_ONLY 1263 1264 // An Iterator that truly follows the iterator pattern. Doesn't 1265 // support deletion but could be made to. 1266 // 1267 // for (SimpleDUIterator i(n); i.has_next(); i.next()) { 1268 // Node* m = i.get(); 1269 // 1270 class SimpleDUIterator : public StackObj { 1271 private: 1272 Node* node; 1273 DUIterator_Fast i; 1274 DUIterator_Fast imax; 1275 public: 1276 SimpleDUIterator(Node* n): node(n), i(n->fast_outs(imax)) {} 1277 bool has_next() { return i < imax; } 1278 void next() { i++; } 1279 Node* get() { return node->fast_out(i); } 1280 }; 1281 1282 1283 //----------------------------------------------------------------------------- 1284 // Map dense integer indices to Nodes. Uses classic doubling-array trick. 1285 // Abstractly provides an infinite array of Node*'s, initialized to NULL. 1286 // Note that the constructor just zeros things, and since I use Arena 1287 // allocation I do not need a destructor to reclaim storage. 1288 class Node_Array : public ResourceObj { 1289 protected: 1290 Arena *_a; // Arena to allocate in 1291 uint _max; 1292 Node **_nodes; 1293 void grow( uint i ); // Grow array node to fit 1294 public: 1295 Node_Array(Arena *a) : _a(a), _max(OptoNodeListSize) { 1296 _nodes = NEW_ARENA_ARRAY( a, Node *, OptoNodeListSize ); 1297 for( int i = 0; i < OptoNodeListSize; i++ ) { 1298 _nodes[i] = NULL; 1299 } 1300 } 1301 1302 Node_Array(Node_Array *na) : _a(na->_a), _max(na->_max), _nodes(na->_nodes) {} 1303 Node *operator[] ( uint i ) const // Lookup, or NULL for not mapped 1304 { return (i<_max) ? _nodes[i] : (Node*)NULL; } 1305 Node *at( uint i ) const { assert(i<_max,"oob"); return _nodes[i]; } 1306 Node **adr() { return _nodes; } 1307 // Extend the mapping: index i maps to Node *n. 1308 void map( uint i, Node *n ) { if( i>=_max ) grow(i); _nodes[i] = n; } 1309 void insert( uint i, Node *n ); 1310 void remove( uint i ); // Remove, preserving order 1311 void sort( C_sort_func_t func); 1312 void reset( Arena *new_a ); // Zap mapping to empty; reclaim storage 1313 void clear(); // Set all entries to NULL, keep storage 1314 uint Size() const { return _max; } 1315 void dump() const; 1316 }; 1317 1318 class Node_List : public Node_Array { 1319 uint _cnt; 1320 public: 1321 Node_List() : Node_Array(Thread::current()->resource_area()), _cnt(0) {} 1322 Node_List(Arena *a) : Node_Array(a), _cnt(0) {} 1323 bool contains(Node* n) { 1324 for (uint e = 0; e < size(); e++) { 1325 if (at(e) == n) return true; 1326 } 1327 return false; 1328 } 1329 void insert( uint i, Node *n ) { Node_Array::insert(i,n); _cnt++; } 1330 void remove( uint i ) { Node_Array::remove(i); _cnt--; } 1331 void push( Node *b ) { map(_cnt++,b); } 1332 void yank( Node *n ); // Find and remove 1333 Node *pop() { return _nodes[--_cnt]; } 1334 Node *rpop() { Node *b = _nodes[0]; _nodes[0]=_nodes[--_cnt]; return b;} 1335 void clear() { _cnt = 0; Node_Array::clear(); } // retain storage 1336 uint size() const { return _cnt; } 1337 void dump() const; 1338 }; 1339 1340 //------------------------------Unique_Node_List------------------------------- 1341 class Unique_Node_List : public Node_List { 1342 VectorSet _in_worklist; 1343 uint _clock_index; // Index in list where to pop from next 1344 public: 1345 Unique_Node_List() : Node_List(), _in_worklist(Thread::current()->resource_area()), _clock_index(0) {} 1346 Unique_Node_List(Arena *a) : Node_List(a), _in_worklist(a), _clock_index(0) {} 1347 1348 void remove( Node *n ); 1349 bool member( Node *n ) { return _in_worklist.test(n->_idx) != 0; } 1350 VectorSet &member_set(){ return _in_worklist; } 1351 1352 void push( Node *b ) { 1353 if( !_in_worklist.test_set(b->_idx) ) 1354 Node_List::push(b); 1355 } 1356 Node *pop() { 1357 if( _clock_index >= size() ) _clock_index = 0; 1358 Node *b = at(_clock_index); 1359 map( _clock_index, Node_List::pop()); 1360 if (size() != 0) _clock_index++; // Always start from 0 1361 _in_worklist >>= b->_idx; 1362 return b; 1363 } 1364 Node *remove( uint i ) { 1365 Node *b = Node_List::at(i); 1366 _in_worklist >>= b->_idx; 1367 map(i,Node_List::pop()); 1368 return b; 1369 } 1370 void yank( Node *n ) { _in_worklist >>= n->_idx; Node_List::yank(n); } 1371 void clear() { 1372 _in_worklist.Clear(); // Discards storage but grows automatically 1373 Node_List::clear(); 1374 _clock_index = 0; 1375 } 1376 1377 // Used after parsing to remove useless nodes before Iterative GVN 1378 void remove_useless_nodes(VectorSet &useful); 1379 1380 #ifndef PRODUCT 1381 void print_set() const { _in_worklist.print(); } 1382 #endif 1383 }; 1384 1385 // Inline definition of Compile::record_for_igvn must be deferred to this point. 1386 inline void Compile::record_for_igvn(Node* n) { 1387 _for_igvn->push(n); 1388 } 1389 1390 //------------------------------Node_Stack------------------------------------- 1391 class Node_Stack { 1392 protected: 1393 struct INode { 1394 Node *node; // Processed node 1395 uint indx; // Index of next node's child 1396 }; 1397 INode *_inode_top; // tos, stack grows up 1398 INode *_inode_max; // End of _inodes == _inodes + _max 1399 INode *_inodes; // Array storage for the stack 1400 Arena *_a; // Arena to allocate in 1401 void grow(); 1402 public: 1403 Node_Stack(int size) { 1404 size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize; 1405 _a = Thread::current()->resource_area(); 1406 _inodes = NEW_ARENA_ARRAY( _a, INode, max ); 1407 _inode_max = _inodes + max; 1408 _inode_top = _inodes - 1; // stack is empty 1409 } 1410 1411 Node_Stack(Arena *a, int size) : _a(a) { 1412 size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize; 1413 _inodes = NEW_ARENA_ARRAY( _a, INode, max ); 1414 _inode_max = _inodes + max; 1415 _inode_top = _inodes - 1; // stack is empty 1416 } 1417 1418 void pop() { 1419 assert(_inode_top >= _inodes, "node stack underflow"); 1420 --_inode_top; 1421 } 1422 void push(Node *n, uint i) { 1423 ++_inode_top; 1424 if (_inode_top >= _inode_max) grow(); 1425 INode *top = _inode_top; // optimization 1426 top->node = n; 1427 top->indx = i; 1428 } 1429 Node *node() const { 1430 return _inode_top->node; 1431 } 1432 Node* node_at(uint i) const { 1433 assert(_inodes + i <= _inode_top, "in range"); 1434 return _inodes[i].node; 1435 } 1436 uint index() const { 1437 return _inode_top->indx; 1438 } 1439 uint index_at(uint i) const { 1440 assert(_inodes + i <= _inode_top, "in range"); 1441 return _inodes[i].indx; 1442 } 1443 void set_node(Node *n) { 1444 _inode_top->node = n; 1445 } 1446 void set_index(uint i) { 1447 _inode_top->indx = i; 1448 } 1449 uint size_max() const { return (uint)pointer_delta(_inode_max, _inodes, sizeof(INode)); } // Max size 1450 uint size() const { return (uint)pointer_delta((_inode_top+1), _inodes, sizeof(INode)); } // Current size 1451 bool is_nonempty() const { return (_inode_top >= _inodes); } 1452 bool is_empty() const { return (_inode_top < _inodes); } 1453 void clear() { _inode_top = _inodes - 1; } // retain storage 1454 1455 // Node_Stack is used to map nodes. 1456 Node* find(uint idx) const; 1457 }; 1458 1459 1460 //-----------------------------Node_Notes-------------------------------------- 1461 // Debugging or profiling annotations loosely and sparsely associated 1462 // with some nodes. See Compile::node_notes_at for the accessor. 1463 class Node_Notes VALUE_OBJ_CLASS_SPEC { 1464 JVMState* _jvms; 1465 1466 public: 1467 Node_Notes(JVMState* jvms = NULL) { 1468 _jvms = jvms; 1469 } 1470 1471 JVMState* jvms() { return _jvms; } 1472 void set_jvms(JVMState* x) { _jvms = x; } 1473 1474 // True if there is nothing here. 1475 bool is_clear() { 1476 return (_jvms == NULL); 1477 } 1478 1479 // Make there be nothing here. 1480 void clear() { 1481 _jvms = NULL; 1482 } 1483 1484 // Make a new, clean node notes. 1485 static Node_Notes* make(Compile* C) { 1486 Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1); 1487 nn->clear(); 1488 return nn; 1489 } 1490 1491 Node_Notes* clone(Compile* C) { 1492 Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1); 1493 (*nn) = (*this); 1494 return nn; 1495 } 1496 1497 // Absorb any information from source. 1498 bool update_from(Node_Notes* source) { 1499 bool changed = false; 1500 if (source != NULL) { 1501 if (source->jvms() != NULL) { 1502 set_jvms(source->jvms()); 1503 changed = true; 1504 } 1505 } 1506 return changed; 1507 } 1508 }; 1509 1510 // Inlined accessors for Compile::node_nodes that require the preceding class: 1511 inline Node_Notes* 1512 Compile::locate_node_notes(GrowableArray<Node_Notes*>* arr, 1513 int idx, bool can_grow) { 1514 assert(idx >= 0, "oob"); 1515 int block_idx = (idx >> _log2_node_notes_block_size); 1516 int grow_by = (block_idx - (arr == NULL? 0: arr->length())); 1517 if (grow_by >= 0) { 1518 if (!can_grow) return NULL; 1519 grow_node_notes(arr, grow_by + 1); 1520 } 1521 // (Every element of arr is a sub-array of length _node_notes_block_size.) 1522 return arr->at(block_idx) + (idx & (_node_notes_block_size-1)); 1523 } 1524 1525 inline bool 1526 Compile::set_node_notes_at(int idx, Node_Notes* value) { 1527 if (value == NULL || value->is_clear()) 1528 return false; // nothing to write => write nothing 1529 Node_Notes* loc = locate_node_notes(_node_note_array, idx, true); 1530 assert(loc != NULL, ""); 1531 return loc->update_from(value); 1532 } 1533 1534 1535 //------------------------------TypeNode--------------------------------------- 1536 // Node with a Type constant. 1537 class TypeNode : public Node { 1538 protected: 1539 virtual uint hash() const; // Check the type 1540 virtual uint cmp( const Node &n ) const; 1541 virtual uint size_of() const; // Size is bigger 1542 const Type* const _type; 1543 public: 1544 void set_type(const Type* t) { 1545 assert(t != NULL, "sanity"); 1546 debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH); 1547 *(const Type**)&_type = t; // cast away const-ness 1548 // If this node is in the hash table, make sure it doesn't need a rehash. 1549 assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code"); 1550 } 1551 const Type* type() const { assert(_type != NULL, "sanity"); return _type; }; 1552 TypeNode( const Type *t, uint required ) : Node(required), _type(t) { 1553 init_class_id(Class_Type); 1554 } 1555 virtual const Type *Value( PhaseTransform *phase ) const; 1556 virtual const Type *bottom_type() const; 1557 virtual uint ideal_reg() const; 1558 #ifndef PRODUCT 1559 virtual void dump_spec(outputStream *st) const; 1560 #endif 1561 }; 1562 1563 #endif // SHARE_VM_OPTO_NODE_HPP