1 /* 2 * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_VM_OPTO_NODE_HPP 26 #define SHARE_VM_OPTO_NODE_HPP 27 28 #include "libadt/port.hpp" 29 #include "libadt/vectset.hpp" 30 #include "opto/compile.hpp" 31 #include "opto/type.hpp" 32 33 // Portions of code courtesy of Clifford Click 34 35 // Optimization - Graph Style 36 37 38 class AbstractLockNode; 39 class AddNode; 40 class AddPNode; 41 class AliasInfo; 42 class AllocateArrayNode; 43 class AllocateNode; 44 class Block; 45 class Block_Array; 46 class BoolNode; 47 class BoxLockNode; 48 class CMoveNode; 49 class CallDynamicJavaNode; 50 class CallJavaNode; 51 class CallLeafNode; 52 class CallNode; 53 class CallRuntimeNode; 54 class CallStaticJavaNode; 55 class CatchNode; 56 class CatchProjNode; 57 class CheckCastPPNode; 58 class ClearArrayNode; 59 class CmpNode; 60 class CodeBuffer; 61 class ConstraintCastNode; 62 class ConNode; 63 class CountedLoopNode; 64 class CountedLoopEndNode; 65 class DecodeNNode; 66 class EncodePNode; 67 class FastLockNode; 68 class FastUnlockNode; 69 class IfNode; 70 class IfFalseNode; 71 class IfTrueNode; 72 class InitializeNode; 73 class JVMState; 74 class JumpNode; 75 class JumpProjNode; 76 class LoadNode; 77 class LoadStoreNode; 78 class LockNode; 79 class LoopNode; 80 class MachCallDynamicJavaNode; 81 class MachCallJavaNode; 82 class MachCallLeafNode; 83 class MachCallNode; 84 class MachCallRuntimeNode; 85 class MachCallStaticJavaNode; 86 class MachConstantBaseNode; 87 class MachConstantNode; 88 class MachGotoNode; 89 class MachIfNode; 90 class MachNode; 91 class MachNullCheckNode; 92 class MachProjNode; 93 class MachReturnNode; 94 class MachSafePointNode; 95 class MachSpillCopyNode; 96 class MachTempNode; 97 class Matcher; 98 class MemBarNode; 99 class MemNode; 100 class MergeMemNode; 101 class MultiNode; 102 class MultiBranchNode; 103 class NeverBranchNode; 104 class Node; 105 class Node_Array; 106 class Node_List; 107 class Node_Stack; 108 class NullCheckNode; 109 class OopMap; 110 class ParmNode; 111 class PCTableNode; 112 class PhaseCCP; 113 class PhaseGVN; 114 class PhaseIterGVN; 115 class PhaseRegAlloc; 116 class PhaseTransform; 117 class PhaseValues; 118 class PhiNode; 119 class Pipeline; 120 class ProjNode; 121 class RegMask; 122 class RegionNode; 123 class RootNode; 124 class SafePointNode; 125 class SafePointScalarObjectNode; 126 class StartNode; 127 class State; 128 class StoreNode; 129 class SubNode; 130 class Type; 131 class TypeNode; 132 class UnlockNode; 133 class VectorNode; 134 class VectorLoadNode; 135 class VectorStoreNode; 136 class VectorSet; 137 typedef void (*NFunc)(Node&,void*); 138 extern "C" { 139 typedef int (*C_sort_func_t)(const void *, const void *); 140 } 141 142 // The type of all node counts and indexes. 143 // It must hold at least 16 bits, but must also be fast to load and store. 144 // This type, if less than 32 bits, could limit the number of possible nodes. 145 // (To make this type platform-specific, move to globalDefinitions_xxx.hpp.) 146 typedef unsigned int node_idx_t; 147 148 149 #ifndef OPTO_DU_ITERATOR_ASSERT 150 #ifdef ASSERT 151 #define OPTO_DU_ITERATOR_ASSERT 1 152 #else 153 #define OPTO_DU_ITERATOR_ASSERT 0 154 #endif 155 #endif //OPTO_DU_ITERATOR_ASSERT 156 157 #if OPTO_DU_ITERATOR_ASSERT 158 class DUIterator; 159 class DUIterator_Fast; 160 class DUIterator_Last; 161 #else 162 typedef uint DUIterator; 163 typedef Node** DUIterator_Fast; 164 typedef Node** DUIterator_Last; 165 #endif 166 167 // Node Sentinel 168 #define NodeSentinel (Node*)-1 169 170 // Unknown count frequency 171 #define COUNT_UNKNOWN (-1.0f) 172 173 //------------------------------Node------------------------------------------- 174 // Nodes define actions in the program. They create values, which have types. 175 // They are both vertices in a directed graph and program primitives. Nodes 176 // are labeled; the label is the "opcode", the primitive function in the lambda 177 // calculus sense that gives meaning to the Node. Node inputs are ordered (so 178 // that "a-b" is different from "b-a"). The inputs to a Node are the inputs to 179 // the Node's function. These inputs also define a Type equation for the Node. 180 // Solving these Type equations amounts to doing dataflow analysis. 181 // Control and data are uniformly represented in the graph. Finally, Nodes 182 // have a unique dense integer index which is used to index into side arrays 183 // whenever I have phase-specific information. 184 185 class Node { 186 // Lots of restrictions on cloning Nodes 187 Node(const Node&); // not defined; linker error to use these 188 Node &operator=(const Node &rhs); 189 190 public: 191 friend class Compile; 192 #if OPTO_DU_ITERATOR_ASSERT 193 friend class DUIterator_Common; 194 friend class DUIterator; 195 friend class DUIterator_Fast; 196 friend class DUIterator_Last; 197 #endif 198 199 // Because Nodes come and go, I define an Arena of Node structures to pull 200 // from. This should allow fast access to node creation & deletion. This 201 // field is a local cache of a value defined in some "program fragment" for 202 // which these Nodes are just a part of. 203 204 // New Operator that takes a Compile pointer, this will eventually 205 // be the "new" New operator. 206 inline void* operator new( size_t x, Compile* C) { 207 Node* n = (Node*)C->node_arena()->Amalloc_D(x); 208 #ifdef ASSERT 209 n->_in = (Node**)n; // magic cookie for assertion check 210 #endif 211 n->_out = (Node**)C; 212 return (void*)n; 213 } 214 215 // New Operator that takes a Compile pointer, this will eventually 216 // be the "new" New operator. 217 inline void* operator new( size_t x, Compile* C, int y) { 218 Node* n = (Node*)C->node_arena()->Amalloc_D(x + y*sizeof(void*)); 219 n->_in = (Node**)(((char*)n) + x); 220 #ifdef ASSERT 221 n->_in[y-1] = n; // magic cookie for assertion check 222 #endif 223 n->_out = (Node**)C; 224 return (void*)n; 225 } 226 227 // Delete is a NOP 228 void operator delete( void *ptr ) {} 229 // Fancy destructor; eagerly attempt to reclaim Node numberings and storage 230 void destruct(); 231 232 // Create a new Node. Required is the number is of inputs required for 233 // semantic correctness. 234 Node( uint required ); 235 236 // Create a new Node with given input edges. 237 // This version requires use of the "edge-count" new. 238 // E.g. new (C,3) FooNode( C, NULL, left, right ); 239 Node( Node *n0 ); 240 Node( Node *n0, Node *n1 ); 241 Node( Node *n0, Node *n1, Node *n2 ); 242 Node( Node *n0, Node *n1, Node *n2, Node *n3 ); 243 Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4 ); 244 Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4, Node *n5 ); 245 Node( Node *n0, Node *n1, Node *n2, Node *n3, 246 Node *n4, Node *n5, Node *n6 ); 247 248 // Clone an inherited Node given only the base Node type. 249 Node* clone() const; 250 251 // Clone a Node, immediately supplying one or two new edges. 252 // The first and second arguments, if non-null, replace in(1) and in(2), 253 // respectively. 254 Node* clone_with_data_edge(Node* in1, Node* in2 = NULL) const { 255 Node* nn = clone(); 256 if (in1 != NULL) nn->set_req(1, in1); 257 if (in2 != NULL) nn->set_req(2, in2); 258 return nn; 259 } 260 261 private: 262 // Shared setup for the above constructors. 263 // Handles all interactions with Compile::current. 264 // Puts initial values in all Node fields except _idx. 265 // Returns the initial value for _idx, which cannot 266 // be initialized by assignment. 267 inline int Init(int req, Compile* C); 268 269 //----------------- input edge handling 270 protected: 271 friend class PhaseCFG; // Access to address of _in array elements 272 Node **_in; // Array of use-def references to Nodes 273 Node **_out; // Array of def-use references to Nodes 274 275 // Input edges are split into two categories. Required edges are required 276 // for semantic correctness; order is important and NULLs are allowed. 277 // Precedence edges are used to help determine execution order and are 278 // added, e.g., for scheduling purposes. They are unordered and not 279 // duplicated; they have no embedded NULLs. Edges from 0 to _cnt-1 280 // are required, from _cnt to _max-1 are precedence edges. 281 node_idx_t _cnt; // Total number of required Node inputs. 282 283 node_idx_t _max; // Actual length of input array. 284 285 // Output edges are an unordered list of def-use edges which exactly 286 // correspond to required input edges which point from other nodes 287 // to this one. Thus the count of the output edges is the number of 288 // users of this node. 289 node_idx_t _outcnt; // Total number of Node outputs. 290 291 node_idx_t _outmax; // Actual length of output array. 292 293 // Grow the actual input array to the next larger power-of-2 bigger than len. 294 void grow( uint len ); 295 // Grow the output array to the next larger power-of-2 bigger than len. 296 void out_grow( uint len ); 297 298 public: 299 // Each Node is assigned a unique small/dense number. This number is used 300 // to index into auxiliary arrays of data and bitvectors. 301 // It is declared const to defend against inadvertant assignment, 302 // since it is used by clients as a naked field. 303 const node_idx_t _idx; 304 305 // Get the (read-only) number of input edges 306 uint req() const { return _cnt; } 307 uint len() const { return _max; } 308 // Get the (read-only) number of output edges 309 uint outcnt() const { return _outcnt; } 310 311 #if OPTO_DU_ITERATOR_ASSERT 312 // Iterate over the out-edges of this node. Deletions are illegal. 313 inline DUIterator outs() const; 314 // Use this when the out array might have changed to suppress asserts. 315 inline DUIterator& refresh_out_pos(DUIterator& i) const; 316 // Does the node have an out at this position? (Used for iteration.) 317 inline bool has_out(DUIterator& i) const; 318 inline Node* out(DUIterator& i) const; 319 // Iterate over the out-edges of this node. All changes are illegal. 320 inline DUIterator_Fast fast_outs(DUIterator_Fast& max) const; 321 inline Node* fast_out(DUIterator_Fast& i) const; 322 // Iterate over the out-edges of this node, deleting one at a time. 323 inline DUIterator_Last last_outs(DUIterator_Last& min) const; 324 inline Node* last_out(DUIterator_Last& i) const; 325 // The inline bodies of all these methods are after the iterator definitions. 326 #else 327 // Iterate over the out-edges of this node. Deletions are illegal. 328 // This iteration uses integral indexes, to decouple from array reallocations. 329 DUIterator outs() const { return 0; } 330 // Use this when the out array might have changed to suppress asserts. 331 DUIterator refresh_out_pos(DUIterator i) const { return i; } 332 333 // Reference to the i'th output Node. Error if out of bounds. 334 Node* out(DUIterator i) const { assert(i < _outcnt, "oob"); return _out[i]; } 335 // Does the node have an out at this position? (Used for iteration.) 336 bool has_out(DUIterator i) const { return i < _outcnt; } 337 338 // Iterate over the out-edges of this node. All changes are illegal. 339 // This iteration uses a pointer internal to the out array. 340 DUIterator_Fast fast_outs(DUIterator_Fast& max) const { 341 Node** out = _out; 342 // Assign a limit pointer to the reference argument: 343 max = out + (ptrdiff_t)_outcnt; 344 // Return the base pointer: 345 return out; 346 } 347 Node* fast_out(DUIterator_Fast i) const { return *i; } 348 // Iterate over the out-edges of this node, deleting one at a time. 349 // This iteration uses a pointer internal to the out array. 350 DUIterator_Last last_outs(DUIterator_Last& min) const { 351 Node** out = _out; 352 // Assign a limit pointer to the reference argument: 353 min = out; 354 // Return the pointer to the start of the iteration: 355 return out + (ptrdiff_t)_outcnt - 1; 356 } 357 Node* last_out(DUIterator_Last i) const { return *i; } 358 #endif 359 360 // Reference to the i'th input Node. Error if out of bounds. 361 Node* in(uint i) const { assert(i < _max,"oob"); return _in[i]; } 362 // Reference to the i'th output Node. Error if out of bounds. 363 // Use this accessor sparingly. We are going trying to use iterators instead. 364 Node* raw_out(uint i) const { assert(i < _outcnt,"oob"); return _out[i]; } 365 // Return the unique out edge. 366 Node* unique_out() const { assert(_outcnt==1,"not unique"); return _out[0]; } 367 // Delete out edge at position 'i' by moving last out edge to position 'i' 368 void raw_del_out(uint i) { 369 assert(i < _outcnt,"oob"); 370 assert(_outcnt > 0,"oob"); 371 #if OPTO_DU_ITERATOR_ASSERT 372 // Record that a change happened here. 373 debug_only(_last_del = _out[i]; ++_del_tick); 374 #endif 375 _out[i] = _out[--_outcnt]; 376 // Smash the old edge so it can't be used accidentally. 377 debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef); 378 } 379 380 #ifdef ASSERT 381 bool is_dead() const; 382 #define is_not_dead(n) ((n) == NULL || !VerifyIterativeGVN || !((n)->is_dead())) 383 #endif 384 385 // Set a required input edge, also updates corresponding output edge 386 void add_req( Node *n ); // Append a NEW required input 387 void add_req_batch( Node* n, uint m ); // Append m NEW required inputs (all n). 388 void del_req( uint idx ); // Delete required edge & compact 389 void ins_req( uint i, Node *n ); // Insert a NEW required input 390 void set_req( uint i, Node *n ) { 391 assert( is_not_dead(n), "can not use dead node"); 392 assert( i < _cnt, "oob"); 393 assert( !VerifyHashTableKeys || _hash_lock == 0, 394 "remove node from hash table before modifying it"); 395 Node** p = &_in[i]; // cache this._in, across the del_out call 396 if (*p != NULL) (*p)->del_out((Node *)this); 397 (*p) = n; 398 if (n != NULL) n->add_out((Node *)this); 399 } 400 // Light version of set_req() to init inputs after node creation. 401 void init_req( uint i, Node *n ) { 402 assert( i == 0 && this == n || 403 is_not_dead(n), "can not use dead node"); 404 assert( i < _cnt, "oob"); 405 assert( !VerifyHashTableKeys || _hash_lock == 0, 406 "remove node from hash table before modifying it"); 407 assert( _in[i] == NULL, "sanity"); 408 _in[i] = n; 409 if (n != NULL) n->add_out((Node *)this); 410 } 411 // Find first occurrence of n among my edges: 412 int find_edge(Node* n); 413 int replace_edge(Node* old, Node* neww); 414 // NULL out all inputs to eliminate incoming Def-Use edges. 415 // Return the number of edges between 'n' and 'this' 416 int disconnect_inputs(Node *n); 417 418 // Quickly, return true if and only if I am Compile::current()->top(). 419 bool is_top() const { 420 assert((this == (Node*) Compile::current()->top()) == (_out == NULL), ""); 421 return (_out == NULL); 422 } 423 // Reaffirm invariants for is_top. (Only from Compile::set_cached_top_node.) 424 void setup_is_top(); 425 426 // Strip away casting. (It is depth-limited.) 427 Node* uncast() const; 428 429 private: 430 static Node* uncast_helper(const Node* n); 431 432 // Add an output edge to the end of the list 433 void add_out( Node *n ) { 434 if (is_top()) return; 435 if( _outcnt == _outmax ) out_grow(_outcnt); 436 _out[_outcnt++] = n; 437 } 438 // Delete an output edge 439 void del_out( Node *n ) { 440 if (is_top()) return; 441 Node** outp = &_out[_outcnt]; 442 // Find and remove n 443 do { 444 assert(outp > _out, "Missing Def-Use edge"); 445 } while (*--outp != n); 446 *outp = _out[--_outcnt]; 447 // Smash the old edge so it can't be used accidentally. 448 debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef); 449 // Record that a change happened here. 450 #if OPTO_DU_ITERATOR_ASSERT 451 debug_only(_last_del = n; ++_del_tick); 452 #endif 453 } 454 455 public: 456 // Globally replace this node by a given new node, updating all uses. 457 void replace_by(Node* new_node); 458 // Globally replace this node by a given new node, updating all uses 459 // and cutting input edges of old node. 460 void subsume_by(Node* new_node) { 461 replace_by(new_node); 462 disconnect_inputs(NULL); 463 } 464 void set_req_X( uint i, Node *n, PhaseIterGVN *igvn ); 465 // Find the one non-null required input. RegionNode only 466 Node *nonnull_req() const; 467 // Add or remove precedence edges 468 void add_prec( Node *n ); 469 void rm_prec( uint i ); 470 void set_prec( uint i, Node *n ) { 471 assert( is_not_dead(n), "can not use dead node"); 472 assert( i >= _cnt, "not a precedence edge"); 473 if (_in[i] != NULL) _in[i]->del_out((Node *)this); 474 _in[i] = n; 475 if (n != NULL) n->add_out((Node *)this); 476 } 477 // Set this node's index, used by cisc_version to replace current node 478 void set_idx(uint new_idx) { 479 const node_idx_t* ref = &_idx; 480 *(node_idx_t*)ref = new_idx; 481 } 482 // Swap input edge order. (Edge indexes i1 and i2 are usually 1 and 2.) 483 void swap_edges(uint i1, uint i2) { 484 debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH); 485 // Def-Use info is unchanged 486 Node* n1 = in(i1); 487 Node* n2 = in(i2); 488 _in[i1] = n2; 489 _in[i2] = n1; 490 // If this node is in the hash table, make sure it doesn't need a rehash. 491 assert(check_hash == NO_HASH || check_hash == hash(), "edge swap must preserve hash code"); 492 } 493 494 // Iterators over input Nodes for a Node X are written as: 495 // for( i = 0; i < X.req(); i++ ) ... X[i] ... 496 // NOTE: Required edges can contain embedded NULL pointers. 497 498 //----------------- Other Node Properties 499 500 // Generate class id for some ideal nodes to avoid virtual query 501 // methods is_<Node>(). 502 // Class id is the set of bits corresponded to the node class and all its 503 // super classes so that queries for super classes are also valid. 504 // Subclasses of the same super class have different assigned bit 505 // (the third parameter in the macro DEFINE_CLASS_ID). 506 // Classes with deeper hierarchy are declared first. 507 // Classes with the same hierarchy depth are sorted by usage frequency. 508 // 509 // The query method masks the bits to cut off bits of subclasses 510 // and then compare the result with the class id 511 // (see the macro DEFINE_CLASS_QUERY below). 512 // 513 // Class_MachCall=30, ClassMask_MachCall=31 514 // 12 8 4 0 515 // 0 0 0 0 0 0 0 0 1 1 1 1 0 516 // | | | | 517 // | | | Bit_Mach=2 518 // | | Bit_MachReturn=4 519 // | Bit_MachSafePoint=8 520 // Bit_MachCall=16 521 // 522 // Class_CountedLoop=56, ClassMask_CountedLoop=63 523 // 12 8 4 0 524 // 0 0 0 0 0 0 0 1 1 1 0 0 0 525 // | | | 526 // | | Bit_Region=8 527 // | Bit_Loop=16 528 // Bit_CountedLoop=32 529 530 #define DEFINE_CLASS_ID(cl, supcl, subn) \ 531 Bit_##cl = (Class_##supcl == 0) ? 1 << subn : (Bit_##supcl) << (1 + subn) , \ 532 Class_##cl = Class_##supcl + Bit_##cl , \ 533 ClassMask_##cl = ((Bit_##cl << 1) - 1) , 534 535 // This enum is used only for C2 ideal and mach nodes with is_<node>() methods 536 // so that it's values fits into 16 bits. 537 enum NodeClasses { 538 Bit_Node = 0x0000, 539 Class_Node = 0x0000, 540 ClassMask_Node = 0xFFFF, 541 542 DEFINE_CLASS_ID(Multi, Node, 0) 543 DEFINE_CLASS_ID(SafePoint, Multi, 0) 544 DEFINE_CLASS_ID(Call, SafePoint, 0) 545 DEFINE_CLASS_ID(CallJava, Call, 0) 546 DEFINE_CLASS_ID(CallStaticJava, CallJava, 0) 547 DEFINE_CLASS_ID(CallDynamicJava, CallJava, 1) 548 DEFINE_CLASS_ID(CallRuntime, Call, 1) 549 DEFINE_CLASS_ID(CallLeaf, CallRuntime, 0) 550 DEFINE_CLASS_ID(Allocate, Call, 2) 551 DEFINE_CLASS_ID(AllocateArray, Allocate, 0) 552 DEFINE_CLASS_ID(AbstractLock, Call, 3) 553 DEFINE_CLASS_ID(Lock, AbstractLock, 0) 554 DEFINE_CLASS_ID(Unlock, AbstractLock, 1) 555 DEFINE_CLASS_ID(MultiBranch, Multi, 1) 556 DEFINE_CLASS_ID(PCTable, MultiBranch, 0) 557 DEFINE_CLASS_ID(Catch, PCTable, 0) 558 DEFINE_CLASS_ID(Jump, PCTable, 1) 559 DEFINE_CLASS_ID(If, MultiBranch, 1) 560 DEFINE_CLASS_ID(CountedLoopEnd, If, 0) 561 DEFINE_CLASS_ID(NeverBranch, MultiBranch, 2) 562 DEFINE_CLASS_ID(Start, Multi, 2) 563 DEFINE_CLASS_ID(MemBar, Multi, 3) 564 DEFINE_CLASS_ID(Initialize, MemBar, 0) 565 566 DEFINE_CLASS_ID(Mach, Node, 1) 567 DEFINE_CLASS_ID(MachReturn, Mach, 0) 568 DEFINE_CLASS_ID(MachSafePoint, MachReturn, 0) 569 DEFINE_CLASS_ID(MachCall, MachSafePoint, 0) 570 DEFINE_CLASS_ID(MachCallJava, MachCall, 0) 571 DEFINE_CLASS_ID(MachCallStaticJava, MachCallJava, 0) 572 DEFINE_CLASS_ID(MachCallDynamicJava, MachCallJava, 1) 573 DEFINE_CLASS_ID(MachCallRuntime, MachCall, 1) 574 DEFINE_CLASS_ID(MachCallLeaf, MachCallRuntime, 0) 575 DEFINE_CLASS_ID(MachSpillCopy, Mach, 1) 576 DEFINE_CLASS_ID(MachNullCheck, Mach, 2) 577 DEFINE_CLASS_ID(MachIf, Mach, 3) 578 DEFINE_CLASS_ID(MachTemp, Mach, 4) 579 DEFINE_CLASS_ID(MachConstantBase, Mach, 5) 580 DEFINE_CLASS_ID(MachConstant, Mach, 6) 581 DEFINE_CLASS_ID(MachGoto, Mach, 7) 582 583 DEFINE_CLASS_ID(Type, Node, 2) 584 DEFINE_CLASS_ID(Phi, Type, 0) 585 DEFINE_CLASS_ID(ConstraintCast, Type, 1) 586 DEFINE_CLASS_ID(CheckCastPP, Type, 2) 587 DEFINE_CLASS_ID(CMove, Type, 3) 588 DEFINE_CLASS_ID(SafePointScalarObject, Type, 4) 589 DEFINE_CLASS_ID(DecodeN, Type, 5) 590 DEFINE_CLASS_ID(EncodeP, Type, 6) 591 592 DEFINE_CLASS_ID(Proj, Node, 3) 593 DEFINE_CLASS_ID(CatchProj, Proj, 0) 594 DEFINE_CLASS_ID(JumpProj, Proj, 1) 595 DEFINE_CLASS_ID(IfTrue, Proj, 2) 596 DEFINE_CLASS_ID(IfFalse, Proj, 3) 597 DEFINE_CLASS_ID(Parm, Proj, 4) 598 DEFINE_CLASS_ID(MachProj, Proj, 5) 599 600 DEFINE_CLASS_ID(Mem, Node, 4) 601 DEFINE_CLASS_ID(Load, Mem, 0) 602 DEFINE_CLASS_ID(VectorLoad, Load, 0) 603 DEFINE_CLASS_ID(Store, Mem, 1) 604 DEFINE_CLASS_ID(VectorStore, Store, 0) 605 DEFINE_CLASS_ID(LoadStore, Mem, 2) 606 607 DEFINE_CLASS_ID(Region, Node, 5) 608 DEFINE_CLASS_ID(Loop, Region, 0) 609 DEFINE_CLASS_ID(Root, Loop, 0) 610 DEFINE_CLASS_ID(CountedLoop, Loop, 1) 611 612 DEFINE_CLASS_ID(Sub, Node, 6) 613 DEFINE_CLASS_ID(Cmp, Sub, 0) 614 DEFINE_CLASS_ID(FastLock, Cmp, 0) 615 DEFINE_CLASS_ID(FastUnlock, Cmp, 1) 616 617 DEFINE_CLASS_ID(MergeMem, Node, 7) 618 DEFINE_CLASS_ID(Bool, Node, 8) 619 DEFINE_CLASS_ID(AddP, Node, 9) 620 DEFINE_CLASS_ID(BoxLock, Node, 10) 621 DEFINE_CLASS_ID(Add, Node, 11) 622 DEFINE_CLASS_ID(Vector, Node, 12) 623 DEFINE_CLASS_ID(ClearArray, Node, 13) 624 625 _max_classes = ClassMask_ClearArray 626 }; 627 #undef DEFINE_CLASS_ID 628 629 // Flags are sorted by usage frequency. 630 enum NodeFlags { 631 Flag_is_Copy = 0x01, // should be first bit to avoid shift 632 Flag_rematerialize = Flag_is_Copy << 1, 633 Flag_needs_anti_dependence_check = Flag_rematerialize << 1, 634 Flag_is_macro = Flag_needs_anti_dependence_check << 1, 635 Flag_is_Con = Flag_is_macro << 1, 636 Flag_is_cisc_alternate = Flag_is_Con << 1, 637 Flag_is_Branch = Flag_is_cisc_alternate << 1, 638 Flag_is_dead_loop_safe = Flag_is_Branch << 1, 639 Flag_may_be_short_branch = Flag_is_dead_loop_safe << 1, 640 Flag_avoid_back_to_back = Flag_may_be_short_branch << 1, 641 _max_flags = (Flag_avoid_back_to_back << 1) - 1 // allow flags combination 642 }; 643 644 private: 645 jushort _class_id; 646 jushort _flags; 647 648 protected: 649 // These methods should be called from constructors only. 650 void init_class_id(jushort c) { 651 assert(c <= _max_classes, "invalid node class"); 652 _class_id = c; // cast out const 653 } 654 void init_flags(jushort fl) { 655 assert(fl <= _max_flags, "invalid node flag"); 656 _flags |= fl; 657 } 658 void clear_flag(jushort fl) { 659 assert(fl <= _max_flags, "invalid node flag"); 660 _flags &= ~fl; 661 } 662 663 public: 664 const jushort class_id() const { return _class_id; } 665 666 const jushort flags() const { return _flags; } 667 668 // Return a dense integer opcode number 669 virtual int Opcode() const; 670 671 // Virtual inherited Node size 672 virtual uint size_of() const; 673 674 // Other interesting Node properties 675 #define DEFINE_CLASS_QUERY(type) \ 676 bool is_##type() const { \ 677 return ((_class_id & ClassMask_##type) == Class_##type); \ 678 } \ 679 type##Node *as_##type() const { \ 680 assert(is_##type(), "invalid node class"); \ 681 return (type##Node*)this; \ 682 } \ 683 type##Node* isa_##type() const { \ 684 return (is_##type()) ? as_##type() : NULL; \ 685 } 686 687 DEFINE_CLASS_QUERY(AbstractLock) 688 DEFINE_CLASS_QUERY(Add) 689 DEFINE_CLASS_QUERY(AddP) 690 DEFINE_CLASS_QUERY(Allocate) 691 DEFINE_CLASS_QUERY(AllocateArray) 692 DEFINE_CLASS_QUERY(Bool) 693 DEFINE_CLASS_QUERY(BoxLock) 694 DEFINE_CLASS_QUERY(Call) 695 DEFINE_CLASS_QUERY(CallDynamicJava) 696 DEFINE_CLASS_QUERY(CallJava) 697 DEFINE_CLASS_QUERY(CallLeaf) 698 DEFINE_CLASS_QUERY(CallRuntime) 699 DEFINE_CLASS_QUERY(CallStaticJava) 700 DEFINE_CLASS_QUERY(Catch) 701 DEFINE_CLASS_QUERY(CatchProj) 702 DEFINE_CLASS_QUERY(CheckCastPP) 703 DEFINE_CLASS_QUERY(ConstraintCast) 704 DEFINE_CLASS_QUERY(ClearArray) 705 DEFINE_CLASS_QUERY(CMove) 706 DEFINE_CLASS_QUERY(Cmp) 707 DEFINE_CLASS_QUERY(CountedLoop) 708 DEFINE_CLASS_QUERY(CountedLoopEnd) 709 DEFINE_CLASS_QUERY(DecodeN) 710 DEFINE_CLASS_QUERY(EncodeP) 711 DEFINE_CLASS_QUERY(FastLock) 712 DEFINE_CLASS_QUERY(FastUnlock) 713 DEFINE_CLASS_QUERY(If) 714 DEFINE_CLASS_QUERY(IfFalse) 715 DEFINE_CLASS_QUERY(IfTrue) 716 DEFINE_CLASS_QUERY(Initialize) 717 DEFINE_CLASS_QUERY(Jump) 718 DEFINE_CLASS_QUERY(JumpProj) 719 DEFINE_CLASS_QUERY(Load) 720 DEFINE_CLASS_QUERY(LoadStore) 721 DEFINE_CLASS_QUERY(Lock) 722 DEFINE_CLASS_QUERY(Loop) 723 DEFINE_CLASS_QUERY(Mach) 724 DEFINE_CLASS_QUERY(MachCall) 725 DEFINE_CLASS_QUERY(MachCallDynamicJava) 726 DEFINE_CLASS_QUERY(MachCallJava) 727 DEFINE_CLASS_QUERY(MachCallLeaf) 728 DEFINE_CLASS_QUERY(MachCallRuntime) 729 DEFINE_CLASS_QUERY(MachCallStaticJava) 730 DEFINE_CLASS_QUERY(MachConstantBase) 731 DEFINE_CLASS_QUERY(MachConstant) 732 DEFINE_CLASS_QUERY(MachGoto) 733 DEFINE_CLASS_QUERY(MachIf) 734 DEFINE_CLASS_QUERY(MachNullCheck) 735 DEFINE_CLASS_QUERY(MachProj) 736 DEFINE_CLASS_QUERY(MachReturn) 737 DEFINE_CLASS_QUERY(MachSafePoint) 738 DEFINE_CLASS_QUERY(MachSpillCopy) 739 DEFINE_CLASS_QUERY(MachTemp) 740 DEFINE_CLASS_QUERY(Mem) 741 DEFINE_CLASS_QUERY(MemBar) 742 DEFINE_CLASS_QUERY(MergeMem) 743 DEFINE_CLASS_QUERY(Multi) 744 DEFINE_CLASS_QUERY(MultiBranch) 745 DEFINE_CLASS_QUERY(Parm) 746 DEFINE_CLASS_QUERY(PCTable) 747 DEFINE_CLASS_QUERY(Phi) 748 DEFINE_CLASS_QUERY(Proj) 749 DEFINE_CLASS_QUERY(Region) 750 DEFINE_CLASS_QUERY(Root) 751 DEFINE_CLASS_QUERY(SafePoint) 752 DEFINE_CLASS_QUERY(SafePointScalarObject) 753 DEFINE_CLASS_QUERY(Start) 754 DEFINE_CLASS_QUERY(Store) 755 DEFINE_CLASS_QUERY(Sub) 756 DEFINE_CLASS_QUERY(Type) 757 DEFINE_CLASS_QUERY(Vector) 758 DEFINE_CLASS_QUERY(VectorLoad) 759 DEFINE_CLASS_QUERY(VectorStore) 760 DEFINE_CLASS_QUERY(Unlock) 761 762 #undef DEFINE_CLASS_QUERY 763 764 // duplicate of is_MachSpillCopy() 765 bool is_SpillCopy () const { 766 return ((_class_id & ClassMask_MachSpillCopy) == Class_MachSpillCopy); 767 } 768 769 bool is_Con () const { return (_flags & Flag_is_Con) != 0; } 770 // The data node which is safe to leave in dead loop during IGVN optimization. 771 bool is_dead_loop_safe() const { 772 return is_Phi() || (is_Proj() && in(0) == NULL) || 773 ((_flags & (Flag_is_dead_loop_safe | Flag_is_Con)) != 0 && 774 (!is_Proj() || !in(0)->is_Allocate())); 775 } 776 777 // is_Copy() returns copied edge index (0 or 1) 778 uint is_Copy() const { return (_flags & Flag_is_Copy); } 779 780 virtual bool is_CFG() const { return false; } 781 782 // If this node is control-dependent on a test, can it be 783 // rerouted to a dominating equivalent test? This is usually 784 // true of non-CFG nodes, but can be false for operations which 785 // depend for their correct sequencing on more than one test. 786 // (In that case, hoisting to a dominating test may silently 787 // skip some other important test.) 788 virtual bool depends_only_on_test() const { assert(!is_CFG(), ""); return true; }; 789 790 // defined for MachNodes that match 'If' | 'Goto' | 'CountedLoopEnd' | 'Jump' 791 bool is_Branch() const { return (_flags & Flag_is_Branch) != 0; } 792 793 // When building basic blocks, I need to have a notion of block beginning 794 // Nodes, next block selector Nodes (block enders), and next block 795 // projections. These calls need to work on their machine equivalents. The 796 // Ideal beginning Nodes are RootNode, RegionNode and StartNode. 797 bool is_block_start() const { 798 if ( is_Region() ) 799 return this == (const Node*)in(0); 800 else 801 return is_Start(); 802 } 803 804 // The Ideal control projection Nodes are IfTrue/IfFalse, JumpProjNode, Root, 805 // Goto and Return. This call also returns the block ending Node. 806 virtual const Node *is_block_proj() const; 807 808 // The node is a "macro" node which needs to be expanded before matching 809 bool is_macro() const { return (_flags & Flag_is_macro) != 0; } 810 811 //----------------- Optimization 812 813 // Get the worst-case Type output for this Node. 814 virtual const class Type *bottom_type() const; 815 816 // If we find a better type for a node, try to record it permanently. 817 // Return true if this node actually changed. 818 // Be sure to do the hash_delete game in the "rehash" variant. 819 void raise_bottom_type(const Type* new_type); 820 821 // Get the address type with which this node uses and/or defs memory, 822 // or NULL if none. The address type is conservatively wide. 823 // Returns non-null for calls, membars, loads, stores, etc. 824 // Returns TypePtr::BOTTOM if the node touches memory "broadly". 825 virtual const class TypePtr *adr_type() const { return NULL; } 826 827 // Return an existing node which computes the same function as this node. 828 // The optimistic combined algorithm requires this to return a Node which 829 // is a small number of steps away (e.g., one of my inputs). 830 virtual Node *Identity( PhaseTransform *phase ); 831 832 // Return the set of values this Node can take on at runtime. 833 virtual const Type *Value( PhaseTransform *phase ) const; 834 835 // Return a node which is more "ideal" than the current node. 836 // The invariants on this call are subtle. If in doubt, read the 837 // treatise in node.cpp above the default implemention AND TEST WITH 838 // +VerifyIterativeGVN! 839 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 840 841 // Some nodes have specific Ideal subgraph transformations only if they are 842 // unique users of specific nodes. Such nodes should be put on IGVN worklist 843 // for the transformations to happen. 844 bool has_special_unique_user() const; 845 846 // Skip Proj and CatchProj nodes chains. Check for Null and Top. 847 Node* find_exact_control(Node* ctrl); 848 849 // Check if 'this' node dominates or equal to 'sub'. 850 bool dominates(Node* sub, Node_List &nlist); 851 852 protected: 853 bool remove_dead_region(PhaseGVN *phase, bool can_reshape); 854 public: 855 856 // Idealize graph, using DU info. Done after constant propagation 857 virtual Node *Ideal_DU_postCCP( PhaseCCP *ccp ); 858 859 // See if there is valid pipeline info 860 static const Pipeline *pipeline_class(); 861 virtual const Pipeline *pipeline() const; 862 863 // Compute the latency from the def to this instruction of the ith input node 864 uint latency(uint i); 865 866 // Hash & compare functions, for pessimistic value numbering 867 868 // If the hash function returns the special sentinel value NO_HASH, 869 // the node is guaranteed never to compare equal to any other node. 870 // If we accidentally generate a hash with value NO_HASH the node 871 // won't go into the table and we'll lose a little optimization. 872 enum { NO_HASH = 0 }; 873 virtual uint hash() const; 874 virtual uint cmp( const Node &n ) const; 875 876 // Operation appears to be iteratively computed (such as an induction variable) 877 // It is possible for this operation to return false for a loop-varying 878 // value, if it appears (by local graph inspection) to be computed by a simple conditional. 879 bool is_iteratively_computed(); 880 881 // Determine if a node is Counted loop induction variable. 882 // The method is defined in loopnode.cpp. 883 const Node* is_loop_iv() const; 884 885 // Return a node with opcode "opc" and same inputs as "this" if one can 886 // be found; Otherwise return NULL; 887 Node* find_similar(int opc); 888 889 // Return the unique control out if only one. Null if none or more than one. 890 Node* unique_ctrl_out(); 891 892 //----------------- Code Generation 893 894 // Ideal register class for Matching. Zero means unmatched instruction 895 // (these are cloned instead of converted to machine nodes). 896 virtual uint ideal_reg() const; 897 898 static const uint NotAMachineReg; // must be > max. machine register 899 900 // Do we Match on this edge index or not? Generally false for Control 901 // and true for everything else. Weird for calls & returns. 902 virtual uint match_edge(uint idx) const; 903 904 // Register class output is returned in 905 virtual const RegMask &out_RegMask() const; 906 // Register class input is expected in 907 virtual const RegMask &in_RegMask(uint) const; 908 // Should we clone rather than spill this instruction? 909 bool rematerialize() const; 910 911 // Return JVM State Object if this Node carries debug info, or NULL otherwise 912 virtual JVMState* jvms() const; 913 914 // Print as assembly 915 virtual void format( PhaseRegAlloc *, outputStream* st = tty ) const; 916 // Emit bytes starting at parameter 'ptr' 917 // Bump 'ptr' by the number of output bytes 918 virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const; 919 // Size of instruction in bytes 920 virtual uint size(PhaseRegAlloc *ra_) const; 921 922 // Convenience function to extract an integer constant from a node. 923 // If it is not an integer constant (either Con, CastII, or Mach), 924 // return value_if_unknown. 925 jint find_int_con(jint value_if_unknown) const { 926 const TypeInt* t = find_int_type(); 927 return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown; 928 } 929 // Return the constant, knowing it is an integer constant already 930 jint get_int() const { 931 const TypeInt* t = find_int_type(); 932 guarantee(t != NULL, "must be con"); 933 return t->get_con(); 934 } 935 // Here's where the work is done. Can produce non-constant int types too. 936 const TypeInt* find_int_type() const; 937 938 // Same thing for long (and intptr_t, via type.hpp): 939 jlong get_long() const { 940 const TypeLong* t = find_long_type(); 941 guarantee(t != NULL, "must be con"); 942 return t->get_con(); 943 } 944 jlong find_long_con(jint value_if_unknown) const { 945 const TypeLong* t = find_long_type(); 946 return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown; 947 } 948 const TypeLong* find_long_type() const; 949 950 // These guys are called by code generated by ADLC: 951 intptr_t get_ptr() const; 952 intptr_t get_narrowcon() const; 953 jdouble getd() const; 954 jfloat getf() const; 955 956 // Nodes which are pinned into basic blocks 957 virtual bool pinned() const { return false; } 958 959 // Nodes which use memory without consuming it, hence need antidependences 960 // More specifically, needs_anti_dependence_check returns true iff the node 961 // (a) does a load, and (b) does not perform a store (except perhaps to a 962 // stack slot or some other unaliased location). 963 bool needs_anti_dependence_check() const; 964 965 // Return which operand this instruction may cisc-spill. In other words, 966 // return operand position that can convert from reg to memory access 967 virtual int cisc_operand() const { return AdlcVMDeps::Not_cisc_spillable; } 968 bool is_cisc_alternate() const { return (_flags & Flag_is_cisc_alternate) != 0; } 969 970 //----------------- Graph walking 971 public: 972 // Walk and apply member functions recursively. 973 // Supplied (this) pointer is root. 974 void walk(NFunc pre, NFunc post, void *env); 975 static void nop(Node &, void*); // Dummy empty function 976 static void packregion( Node &n, void* ); 977 private: 978 void walk_(NFunc pre, NFunc post, void *env, VectorSet &visited); 979 980 //----------------- Printing, etc 981 public: 982 #ifndef PRODUCT 983 Node* find(int idx) const; // Search the graph for the given idx. 984 Node* find_ctrl(int idx) const; // Search control ancestors for the given idx. 985 void dump() const; // Print this node, 986 void dump(int depth) const; // Print this node, recursively to depth d 987 void dump_ctrl(int depth) const; // Print control nodes, to depth d 988 virtual void dump_req() const; // Print required-edge info 989 virtual void dump_prec() const; // Print precedence-edge info 990 virtual void dump_out() const; // Print the output edge info 991 virtual void dump_spec(outputStream *st) const {}; // Print per-node info 992 void verify_edges(Unique_Node_List &visited); // Verify bi-directional edges 993 void verify() const; // Check Def-Use info for my subgraph 994 static void verify_recur(const Node *n, int verify_depth, VectorSet &old_space, VectorSet &new_space); 995 996 // This call defines a class-unique string used to identify class instances 997 virtual const char *Name() const; 998 999 void dump_format(PhaseRegAlloc *ra) const; // debug access to MachNode::format(...) 1000 // RegMask Print Functions 1001 void dump_in_regmask(int idx) { in_RegMask(idx).dump(); } 1002 void dump_out_regmask() { out_RegMask().dump(); } 1003 static int _in_dump_cnt; 1004 static bool in_dump() { return _in_dump_cnt > 0; } 1005 void fast_dump() const { 1006 tty->print("%4d: %-17s", _idx, Name()); 1007 for (uint i = 0; i < len(); i++) 1008 if (in(i)) 1009 tty->print(" %4d", in(i)->_idx); 1010 else 1011 tty->print(" NULL"); 1012 tty->print("\n"); 1013 } 1014 #endif 1015 #ifdef ASSERT 1016 void verify_construction(); 1017 bool verify_jvms(const JVMState* jvms) const; 1018 int _debug_idx; // Unique value assigned to every node. 1019 int debug_idx() const { return _debug_idx; } 1020 void set_debug_idx( int debug_idx ) { _debug_idx = debug_idx; } 1021 1022 Node* _debug_orig; // Original version of this, if any. 1023 Node* debug_orig() const { return _debug_orig; } 1024 void set_debug_orig(Node* orig); // _debug_orig = orig 1025 1026 int _hash_lock; // Barrier to modifications of nodes in the hash table 1027 void enter_hash_lock() { ++_hash_lock; assert(_hash_lock < 99, "in too many hash tables?"); } 1028 void exit_hash_lock() { --_hash_lock; assert(_hash_lock >= 0, "mispaired hash locks"); } 1029 1030 static void init_NodeProperty(); 1031 1032 #if OPTO_DU_ITERATOR_ASSERT 1033 const Node* _last_del; // The last deleted node. 1034 uint _del_tick; // Bumped when a deletion happens.. 1035 #endif 1036 #endif 1037 }; 1038 1039 //----------------------------------------------------------------------------- 1040 // Iterators over DU info, and associated Node functions. 1041 1042 #if OPTO_DU_ITERATOR_ASSERT 1043 1044 // Common code for assertion checking on DU iterators. 1045 class DUIterator_Common VALUE_OBJ_CLASS_SPEC { 1046 #ifdef ASSERT 1047 protected: 1048 bool _vdui; // cached value of VerifyDUIterators 1049 const Node* _node; // the node containing the _out array 1050 uint _outcnt; // cached node->_outcnt 1051 uint _del_tick; // cached node->_del_tick 1052 Node* _last; // last value produced by the iterator 1053 1054 void sample(const Node* node); // used by c'tor to set up for verifies 1055 void verify(const Node* node, bool at_end_ok = false); 1056 void verify_resync(); 1057 void reset(const DUIterator_Common& that); 1058 1059 // The VDUI_ONLY macro protects code conditionalized on VerifyDUIterators 1060 #define I_VDUI_ONLY(i,x) { if ((i)._vdui) { x; } } 1061 #else 1062 #define I_VDUI_ONLY(i,x) { } 1063 #endif //ASSERT 1064 }; 1065 1066 #define VDUI_ONLY(x) I_VDUI_ONLY(*this, x) 1067 1068 // Default DU iterator. Allows appends onto the out array. 1069 // Allows deletion from the out array only at the current point. 1070 // Usage: 1071 // for (DUIterator i = x->outs(); x->has_out(i); i++) { 1072 // Node* y = x->out(i); 1073 // ... 1074 // } 1075 // Compiles in product mode to a unsigned integer index, which indexes 1076 // onto a repeatedly reloaded base pointer of x->_out. The loop predicate 1077 // also reloads x->_outcnt. If you delete, you must perform "--i" just 1078 // before continuing the loop. You must delete only the last-produced 1079 // edge. You must delete only a single copy of the last-produced edge, 1080 // or else you must delete all copies at once (the first time the edge 1081 // is produced by the iterator). 1082 class DUIterator : public DUIterator_Common { 1083 friend class Node; 1084 1085 // This is the index which provides the product-mode behavior. 1086 // Whatever the product-mode version of the system does to the 1087 // DUI index is done to this index. All other fields in 1088 // this class are used only for assertion checking. 1089 uint _idx; 1090 1091 #ifdef ASSERT 1092 uint _refresh_tick; // Records the refresh activity. 1093 1094 void sample(const Node* node); // Initialize _refresh_tick etc. 1095 void verify(const Node* node, bool at_end_ok = false); 1096 void verify_increment(); // Verify an increment operation. 1097 void verify_resync(); // Verify that we can back up over a deletion. 1098 void verify_finish(); // Verify that the loop terminated properly. 1099 void refresh(); // Resample verification info. 1100 void reset(const DUIterator& that); // Resample after assignment. 1101 #endif 1102 1103 DUIterator(const Node* node, int dummy_to_avoid_conversion) 1104 { _idx = 0; debug_only(sample(node)); } 1105 1106 public: 1107 // initialize to garbage; clear _vdui to disable asserts 1108 DUIterator() 1109 { /*initialize to garbage*/ debug_only(_vdui = false); } 1110 1111 void operator++(int dummy_to_specify_postfix_op) 1112 { _idx++; VDUI_ONLY(verify_increment()); } 1113 1114 void operator--() 1115 { VDUI_ONLY(verify_resync()); --_idx; } 1116 1117 ~DUIterator() 1118 { VDUI_ONLY(verify_finish()); } 1119 1120 void operator=(const DUIterator& that) 1121 { _idx = that._idx; debug_only(reset(that)); } 1122 }; 1123 1124 DUIterator Node::outs() const 1125 { return DUIterator(this, 0); } 1126 DUIterator& Node::refresh_out_pos(DUIterator& i) const 1127 { I_VDUI_ONLY(i, i.refresh()); return i; } 1128 bool Node::has_out(DUIterator& i) const 1129 { I_VDUI_ONLY(i, i.verify(this,true));return i._idx < _outcnt; } 1130 Node* Node::out(DUIterator& i) const 1131 { I_VDUI_ONLY(i, i.verify(this)); return debug_only(i._last=) _out[i._idx]; } 1132 1133 1134 // Faster DU iterator. Disallows insertions into the out array. 1135 // Allows deletion from the out array only at the current point. 1136 // Usage: 1137 // for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) { 1138 // Node* y = x->fast_out(i); 1139 // ... 1140 // } 1141 // Compiles in product mode to raw Node** pointer arithmetic, with 1142 // no reloading of pointers from the original node x. If you delete, 1143 // you must perform "--i; --imax" just before continuing the loop. 1144 // If you delete multiple copies of the same edge, you must decrement 1145 // imax, but not i, multiple times: "--i, imax -= num_edges". 1146 class DUIterator_Fast : public DUIterator_Common { 1147 friend class Node; 1148 friend class DUIterator_Last; 1149 1150 // This is the pointer which provides the product-mode behavior. 1151 // Whatever the product-mode version of the system does to the 1152 // DUI pointer is done to this pointer. All other fields in 1153 // this class are used only for assertion checking. 1154 Node** _outp; 1155 1156 #ifdef ASSERT 1157 void verify(const Node* node, bool at_end_ok = false); 1158 void verify_limit(); 1159 void verify_resync(); 1160 void verify_relimit(uint n); 1161 void reset(const DUIterator_Fast& that); 1162 #endif 1163 1164 // Note: offset must be signed, since -1 is sometimes passed 1165 DUIterator_Fast(const Node* node, ptrdiff_t offset) 1166 { _outp = node->_out + offset; debug_only(sample(node)); } 1167 1168 public: 1169 // initialize to garbage; clear _vdui to disable asserts 1170 DUIterator_Fast() 1171 { /*initialize to garbage*/ debug_only(_vdui = false); } 1172 1173 void operator++(int dummy_to_specify_postfix_op) 1174 { _outp++; VDUI_ONLY(verify(_node, true)); } 1175 1176 void operator--() 1177 { VDUI_ONLY(verify_resync()); --_outp; } 1178 1179 void operator-=(uint n) // applied to the limit only 1180 { _outp -= n; VDUI_ONLY(verify_relimit(n)); } 1181 1182 bool operator<(DUIterator_Fast& limit) { 1183 I_VDUI_ONLY(*this, this->verify(_node, true)); 1184 I_VDUI_ONLY(limit, limit.verify_limit()); 1185 return _outp < limit._outp; 1186 } 1187 1188 void operator=(const DUIterator_Fast& that) 1189 { _outp = that._outp; debug_only(reset(that)); } 1190 }; 1191 1192 DUIterator_Fast Node::fast_outs(DUIterator_Fast& imax) const { 1193 // Assign a limit pointer to the reference argument: 1194 imax = DUIterator_Fast(this, (ptrdiff_t)_outcnt); 1195 // Return the base pointer: 1196 return DUIterator_Fast(this, 0); 1197 } 1198 Node* Node::fast_out(DUIterator_Fast& i) const { 1199 I_VDUI_ONLY(i, i.verify(this)); 1200 return debug_only(i._last=) *i._outp; 1201 } 1202 1203 1204 // Faster DU iterator. Requires each successive edge to be removed. 1205 // Does not allow insertion of any edges. 1206 // Usage: 1207 // for (DUIterator_Last imin, i = x->last_outs(imin); i >= imin; i -= num_edges) { 1208 // Node* y = x->last_out(i); 1209 // ... 1210 // } 1211 // Compiles in product mode to raw Node** pointer arithmetic, with 1212 // no reloading of pointers from the original node x. 1213 class DUIterator_Last : private DUIterator_Fast { 1214 friend class Node; 1215 1216 #ifdef ASSERT 1217 void verify(const Node* node, bool at_end_ok = false); 1218 void verify_limit(); 1219 void verify_step(uint num_edges); 1220 #endif 1221 1222 // Note: offset must be signed, since -1 is sometimes passed 1223 DUIterator_Last(const Node* node, ptrdiff_t offset) 1224 : DUIterator_Fast(node, offset) { } 1225 1226 void operator++(int dummy_to_specify_postfix_op) {} // do not use 1227 void operator<(int) {} // do not use 1228 1229 public: 1230 DUIterator_Last() { } 1231 // initialize to garbage 1232 1233 void operator--() 1234 { _outp--; VDUI_ONLY(verify_step(1)); } 1235 1236 void operator-=(uint n) 1237 { _outp -= n; VDUI_ONLY(verify_step(n)); } 1238 1239 bool operator>=(DUIterator_Last& limit) { 1240 I_VDUI_ONLY(*this, this->verify(_node, true)); 1241 I_VDUI_ONLY(limit, limit.verify_limit()); 1242 return _outp >= limit._outp; 1243 } 1244 1245 void operator=(const DUIterator_Last& that) 1246 { DUIterator_Fast::operator=(that); } 1247 }; 1248 1249 DUIterator_Last Node::last_outs(DUIterator_Last& imin) const { 1250 // Assign a limit pointer to the reference argument: 1251 imin = DUIterator_Last(this, 0); 1252 // Return the initial pointer: 1253 return DUIterator_Last(this, (ptrdiff_t)_outcnt - 1); 1254 } 1255 Node* Node::last_out(DUIterator_Last& i) const { 1256 I_VDUI_ONLY(i, i.verify(this)); 1257 return debug_only(i._last=) *i._outp; 1258 } 1259 1260 #endif //OPTO_DU_ITERATOR_ASSERT 1261 1262 #undef I_VDUI_ONLY 1263 #undef VDUI_ONLY 1264 1265 // An Iterator that truly follows the iterator pattern. Doesn't 1266 // support deletion but could be made to. 1267 // 1268 // for (SimpleDUIterator i(n); i.has_next(); i.next()) { 1269 // Node* m = i.get(); 1270 // 1271 class SimpleDUIterator : public StackObj { 1272 private: 1273 Node* node; 1274 DUIterator_Fast i; 1275 DUIterator_Fast imax; 1276 public: 1277 SimpleDUIterator(Node* n): node(n), i(n->fast_outs(imax)) {} 1278 bool has_next() { return i < imax; } 1279 void next() { i++; } 1280 Node* get() { return node->fast_out(i); } 1281 }; 1282 1283 1284 //----------------------------------------------------------------------------- 1285 // Map dense integer indices to Nodes. Uses classic doubling-array trick. 1286 // Abstractly provides an infinite array of Node*'s, initialized to NULL. 1287 // Note that the constructor just zeros things, and since I use Arena 1288 // allocation I do not need a destructor to reclaim storage. 1289 class Node_Array : public ResourceObj { 1290 protected: 1291 Arena *_a; // Arena to allocate in 1292 uint _max; 1293 Node **_nodes; 1294 void grow( uint i ); // Grow array node to fit 1295 public: 1296 Node_Array(Arena *a) : _a(a), _max(OptoNodeListSize) { 1297 _nodes = NEW_ARENA_ARRAY( a, Node *, OptoNodeListSize ); 1298 for( int i = 0; i < OptoNodeListSize; i++ ) { 1299 _nodes[i] = NULL; 1300 } 1301 } 1302 1303 Node_Array(Node_Array *na) : _a(na->_a), _max(na->_max), _nodes(na->_nodes) {} 1304 Node *operator[] ( uint i ) const // Lookup, or NULL for not mapped 1305 { return (i<_max) ? _nodes[i] : (Node*)NULL; } 1306 Node *at( uint i ) const { assert(i<_max,"oob"); return _nodes[i]; } 1307 Node **adr() { return _nodes; } 1308 // Extend the mapping: index i maps to Node *n. 1309 void map( uint i, Node *n ) { if( i>=_max ) grow(i); _nodes[i] = n; } 1310 void insert( uint i, Node *n ); 1311 void remove( uint i ); // Remove, preserving order 1312 void sort( C_sort_func_t func); 1313 void reset( Arena *new_a ); // Zap mapping to empty; reclaim storage 1314 void clear(); // Set all entries to NULL, keep storage 1315 uint Size() const { return _max; } 1316 void dump() const; 1317 }; 1318 1319 class Node_List : public Node_Array { 1320 uint _cnt; 1321 public: 1322 Node_List() : Node_Array(Thread::current()->resource_area()), _cnt(0) {} 1323 Node_List(Arena *a) : Node_Array(a), _cnt(0) {} 1324 bool contains(Node* n) { 1325 for (uint e = 0; e < size(); e++) { 1326 if (at(e) == n) return true; 1327 } 1328 return false; 1329 } 1330 void insert( uint i, Node *n ) { Node_Array::insert(i,n); _cnt++; } 1331 void remove( uint i ) { Node_Array::remove(i); _cnt--; } 1332 void push( Node *b ) { map(_cnt++,b); } 1333 void yank( Node *n ); // Find and remove 1334 Node *pop() { return _nodes[--_cnt]; } 1335 Node *rpop() { Node *b = _nodes[0]; _nodes[0]=_nodes[--_cnt]; return b;} 1336 void clear() { _cnt = 0; Node_Array::clear(); } // retain storage 1337 uint size() const { return _cnt; } 1338 void dump() const; 1339 }; 1340 1341 //------------------------------Unique_Node_List------------------------------- 1342 class Unique_Node_List : public Node_List { 1343 VectorSet _in_worklist; 1344 uint _clock_index; // Index in list where to pop from next 1345 public: 1346 Unique_Node_List() : Node_List(), _in_worklist(Thread::current()->resource_area()), _clock_index(0) {} 1347 Unique_Node_List(Arena *a) : Node_List(a), _in_worklist(a), _clock_index(0) {} 1348 1349 void remove( Node *n ); 1350 bool member( Node *n ) { return _in_worklist.test(n->_idx) != 0; } 1351 VectorSet &member_set(){ return _in_worklist; } 1352 1353 void push( Node *b ) { 1354 if( !_in_worklist.test_set(b->_idx) ) 1355 Node_List::push(b); 1356 } 1357 Node *pop() { 1358 if( _clock_index >= size() ) _clock_index = 0; 1359 Node *b = at(_clock_index); 1360 map( _clock_index, Node_List::pop()); 1361 if (size() != 0) _clock_index++; // Always start from 0 1362 _in_worklist >>= b->_idx; 1363 return b; 1364 } 1365 Node *remove( uint i ) { 1366 Node *b = Node_List::at(i); 1367 _in_worklist >>= b->_idx; 1368 map(i,Node_List::pop()); 1369 return b; 1370 } 1371 void yank( Node *n ) { _in_worklist >>= n->_idx; Node_List::yank(n); } 1372 void clear() { 1373 _in_worklist.Clear(); // Discards storage but grows automatically 1374 Node_List::clear(); 1375 _clock_index = 0; 1376 } 1377 1378 // Used after parsing to remove useless nodes before Iterative GVN 1379 void remove_useless_nodes(VectorSet &useful); 1380 1381 #ifndef PRODUCT 1382 void print_set() const { _in_worklist.print(); } 1383 #endif 1384 }; 1385 1386 // Inline definition of Compile::record_for_igvn must be deferred to this point. 1387 inline void Compile::record_for_igvn(Node* n) { 1388 _for_igvn->push(n); 1389 } 1390 1391 //------------------------------Node_Stack------------------------------------- 1392 class Node_Stack { 1393 protected: 1394 struct INode { 1395 Node *node; // Processed node 1396 uint indx; // Index of next node's child 1397 }; 1398 INode *_inode_top; // tos, stack grows up 1399 INode *_inode_max; // End of _inodes == _inodes + _max 1400 INode *_inodes; // Array storage for the stack 1401 Arena *_a; // Arena to allocate in 1402 void grow(); 1403 public: 1404 Node_Stack(int size) { 1405 size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize; 1406 _a = Thread::current()->resource_area(); 1407 _inodes = NEW_ARENA_ARRAY( _a, INode, max ); 1408 _inode_max = _inodes + max; 1409 _inode_top = _inodes - 1; // stack is empty 1410 } 1411 1412 Node_Stack(Arena *a, int size) : _a(a) { 1413 size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize; 1414 _inodes = NEW_ARENA_ARRAY( _a, INode, max ); 1415 _inode_max = _inodes + max; 1416 _inode_top = _inodes - 1; // stack is empty 1417 } 1418 1419 void pop() { 1420 assert(_inode_top >= _inodes, "node stack underflow"); 1421 --_inode_top; 1422 } 1423 void push(Node *n, uint i) { 1424 ++_inode_top; 1425 if (_inode_top >= _inode_max) grow(); 1426 INode *top = _inode_top; // optimization 1427 top->node = n; 1428 top->indx = i; 1429 } 1430 Node *node() const { 1431 return _inode_top->node; 1432 } 1433 Node* node_at(uint i) const { 1434 assert(_inodes + i <= _inode_top, "in range"); 1435 return _inodes[i].node; 1436 } 1437 uint index() const { 1438 return _inode_top->indx; 1439 } 1440 uint index_at(uint i) const { 1441 assert(_inodes + i <= _inode_top, "in range"); 1442 return _inodes[i].indx; 1443 } 1444 void set_node(Node *n) { 1445 _inode_top->node = n; 1446 } 1447 void set_index(uint i) { 1448 _inode_top->indx = i; 1449 } 1450 uint size_max() const { return (uint)pointer_delta(_inode_max, _inodes, sizeof(INode)); } // Max size 1451 uint size() const { return (uint)pointer_delta((_inode_top+1), _inodes, sizeof(INode)); } // Current size 1452 bool is_nonempty() const { return (_inode_top >= _inodes); } 1453 bool is_empty() const { return (_inode_top < _inodes); } 1454 void clear() { _inode_top = _inodes - 1; } // retain storage 1455 1456 // Node_Stack is used to map nodes. 1457 Node* find(uint idx) const; 1458 }; 1459 1460 1461 //-----------------------------Node_Notes-------------------------------------- 1462 // Debugging or profiling annotations loosely and sparsely associated 1463 // with some nodes. See Compile::node_notes_at for the accessor. 1464 class Node_Notes VALUE_OBJ_CLASS_SPEC { 1465 JVMState* _jvms; 1466 1467 public: 1468 Node_Notes(JVMState* jvms = NULL) { 1469 _jvms = jvms; 1470 } 1471 1472 JVMState* jvms() { return _jvms; } 1473 void set_jvms(JVMState* x) { _jvms = x; } 1474 1475 // True if there is nothing here. 1476 bool is_clear() { 1477 return (_jvms == NULL); 1478 } 1479 1480 // Make there be nothing here. 1481 void clear() { 1482 _jvms = NULL; 1483 } 1484 1485 // Make a new, clean node notes. 1486 static Node_Notes* make(Compile* C) { 1487 Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1); 1488 nn->clear(); 1489 return nn; 1490 } 1491 1492 Node_Notes* clone(Compile* C) { 1493 Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1); 1494 (*nn) = (*this); 1495 return nn; 1496 } 1497 1498 // Absorb any information from source. 1499 bool update_from(Node_Notes* source) { 1500 bool changed = false; 1501 if (source != NULL) { 1502 if (source->jvms() != NULL) { 1503 set_jvms(source->jvms()); 1504 changed = true; 1505 } 1506 } 1507 return changed; 1508 } 1509 }; 1510 1511 // Inlined accessors for Compile::node_nodes that require the preceding class: 1512 inline Node_Notes* 1513 Compile::locate_node_notes(GrowableArray<Node_Notes*>* arr, 1514 int idx, bool can_grow) { 1515 assert(idx >= 0, "oob"); 1516 int block_idx = (idx >> _log2_node_notes_block_size); 1517 int grow_by = (block_idx - (arr == NULL? 0: arr->length())); 1518 if (grow_by >= 0) { 1519 if (!can_grow) return NULL; 1520 grow_node_notes(arr, grow_by + 1); 1521 } 1522 // (Every element of arr is a sub-array of length _node_notes_block_size.) 1523 return arr->at(block_idx) + (idx & (_node_notes_block_size-1)); 1524 } 1525 1526 inline bool 1527 Compile::set_node_notes_at(int idx, Node_Notes* value) { 1528 if (value == NULL || value->is_clear()) 1529 return false; // nothing to write => write nothing 1530 Node_Notes* loc = locate_node_notes(_node_note_array, idx, true); 1531 assert(loc != NULL, ""); 1532 return loc->update_from(value); 1533 } 1534 1535 1536 //------------------------------TypeNode--------------------------------------- 1537 // Node with a Type constant. 1538 class TypeNode : public Node { 1539 protected: 1540 virtual uint hash() const; // Check the type 1541 virtual uint cmp( const Node &n ) const; 1542 virtual uint size_of() const; // Size is bigger 1543 const Type* const _type; 1544 public: 1545 void set_type(const Type* t) { 1546 assert(t != NULL, "sanity"); 1547 debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH); 1548 *(const Type**)&_type = t; // cast away const-ness 1549 // If this node is in the hash table, make sure it doesn't need a rehash. 1550 assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code"); 1551 } 1552 const Type* type() const { assert(_type != NULL, "sanity"); return _type; }; 1553 TypeNode( const Type *t, uint required ) : Node(required), _type(t) { 1554 init_class_id(Class_Type); 1555 } 1556 virtual const Type *Value( PhaseTransform *phase ) const; 1557 virtual const Type *bottom_type() const; 1558 virtual uint ideal_reg() const; 1559 #ifndef PRODUCT 1560 virtual void dump_spec(outputStream *st) const; 1561 #endif 1562 }; 1563 1564 #endif // SHARE_VM_OPTO_NODE_HPP