1 /* 2 * Copyright (c) 2016, 2018, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_VM_GC_G1_G1POLICY_HPP 26 #define SHARE_VM_GC_G1_G1POLICY_HPP 27 28 #include "gc/g1/g1CollectorPolicy.hpp" 29 #include "gc/g1/g1CollectorState.hpp" 30 #include "gc/g1/g1GCPhaseTimes.hpp" 31 #include "gc/g1/g1InCSetState.hpp" 32 #include "gc/g1/g1InitialMarkToMixedTimeTracker.hpp" 33 #include "gc/g1/g1MMUTracker.hpp" 34 #include "gc/g1/g1RemSetTrackingPolicy.hpp" 35 #include "gc/g1/g1Predictions.hpp" 36 #include "gc/g1/g1YoungGenSizer.hpp" 37 #include "gc/shared/gcCause.hpp" 38 #include "utilities/pair.hpp" 39 40 // A G1Policy makes policy decisions that determine the 41 // characteristics of the collector. Examples include: 42 // * choice of collection set. 43 // * when to collect. 44 45 class HeapRegion; 46 class G1CollectionSet; 47 class CollectionSetChooser; 48 class G1IHOPControl; 49 class G1Analytics; 50 class G1SurvivorRegions; 51 class G1YoungGenSizer; 52 class GCPolicyCounters; 53 class STWGCTimer; 54 55 class G1Policy: public CHeapObj<mtGC> { 56 private: 57 58 static G1IHOPControl* create_ihop_control(const G1Predictions* predictor); 59 // Update the IHOP control with necessary statistics. 60 void update_ihop_prediction(double mutator_time_s, 61 size_t mutator_alloc_bytes, 62 size_t young_gen_size, 63 bool this_gc_was_young_only); 64 void report_ihop_statistics(); 65 66 G1Predictions _predictor; 67 G1Analytics* _analytics; 68 G1RemSetTrackingPolicy _remset_tracker; 69 G1MMUTracker* _mmu_tracker; 70 G1IHOPControl* _ihop_control; 71 72 GCPolicyCounters* _policy_counters; 73 74 double _full_collection_start_sec; 75 76 jlong _collection_pause_end_millis; 77 78 uint _young_list_target_length; 79 uint _young_list_fixed_length; 80 81 // The max number of regions we can extend the eden by while the GC 82 // locker is active. This should be >= _young_list_target_length; 83 uint _young_list_max_length; 84 85 // SurvRateGroups below must be initialized after the predictor because they 86 // indirectly use it through this object passed to their constructor. 87 SurvRateGroup* _short_lived_surv_rate_group; 88 SurvRateGroup* _survivor_surv_rate_group; 89 90 double _reserve_factor; 91 // This will be set when the heap is expanded 92 // for the first time during initialization. 93 uint _reserve_regions; 94 95 G1YoungGenSizer _young_gen_sizer; 96 97 uint _free_regions_at_end_of_collection; 98 99 size_t _max_rs_lengths; 100 101 size_t _rs_lengths_prediction; 102 103 size_t _pending_cards; 104 105 // The amount of allocated bytes in old gen during the last mutator and the following 106 // young GC phase. 107 size_t _bytes_allocated_in_old_since_last_gc; 108 109 G1InitialMarkToMixedTimeTracker _initial_mark_to_mixed; 110 111 bool should_update_surv_rate_group_predictors() { 112 return collector_state()->in_young_only_phase() && !collector_state()->mark_or_rebuild_in_progress(); 113 } 114 public: 115 const G1Predictions& predictor() const { return _predictor; } 116 const G1Analytics* analytics() const { return const_cast<const G1Analytics*>(_analytics); } 117 118 G1RemSetTrackingPolicy* remset_tracker() { return &_remset_tracker; } 119 120 // Add the given number of bytes to the total number of allocated bytes in the old gen. 121 void add_bytes_allocated_in_old_since_last_gc(size_t bytes) { _bytes_allocated_in_old_since_last_gc += bytes; } 122 123 void set_region_eden(HeapRegion* hr) { 124 hr->set_eden(); 125 hr->install_surv_rate_group(_short_lived_surv_rate_group); 126 } 127 128 void set_region_survivor(HeapRegion* hr) { 129 assert(hr->is_survivor(), "pre-condition"); 130 hr->install_surv_rate_group(_survivor_surv_rate_group); 131 } 132 133 void record_max_rs_lengths(size_t rs_lengths) { 134 _max_rs_lengths = rs_lengths; 135 } 136 137 double predict_base_elapsed_time_ms(size_t pending_cards) const; 138 double predict_base_elapsed_time_ms(size_t pending_cards, 139 size_t scanned_cards) const; 140 size_t predict_bytes_to_copy(HeapRegion* hr) const; 141 double predict_region_elapsed_time_ms(HeapRegion* hr, bool for_young_gc) const; 142 143 double predict_survivor_regions_evac_time() const; 144 145 void cset_regions_freed() { 146 bool update = should_update_surv_rate_group_predictors(); 147 148 _short_lived_surv_rate_group->all_surviving_words_recorded(predictor(), update); 149 _survivor_surv_rate_group->all_surviving_words_recorded(predictor(), update); 150 } 151 152 G1MMUTracker* mmu_tracker() { 153 return _mmu_tracker; 154 } 155 156 const G1MMUTracker* mmu_tracker() const { 157 return _mmu_tracker; 158 } 159 160 double max_pause_time_ms() const { 161 return _mmu_tracker->max_gc_time() * 1000.0; 162 } 163 164 double predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) const; 165 166 double predict_yg_surv_rate(int age) const; 167 168 double accum_yg_surv_rate_pred(int age) const; 169 170 private: 171 G1CollectionSet* _collection_set; 172 double average_time_ms(G1GCPhaseTimes::GCParPhases phase) const; 173 double other_time_ms(double pause_time_ms) const; 174 175 double young_other_time_ms() const; 176 double non_young_other_time_ms() const; 177 double constant_other_time_ms(double pause_time_ms) const; 178 179 CollectionSetChooser* cset_chooser() const; 180 181 // The number of bytes copied during the GC. 182 size_t _bytes_copied_during_gc; 183 184 // Stash a pointer to the g1 heap. 185 G1CollectedHeap* _g1h; 186 187 G1GCPhaseTimes* _phase_times; 188 189 // This set of variables tracks the collector efficiency, in order to 190 // determine whether we should initiate a new marking. 191 double _mark_remark_start_sec; 192 double _mark_cleanup_start_sec; 193 194 // Updates the internal young list maximum and target lengths. Returns the 195 // unbounded young list target length. 196 uint update_young_list_max_and_target_length(); 197 uint update_young_list_max_and_target_length(size_t rs_lengths); 198 199 // Update the young list target length either by setting it to the 200 // desired fixed value or by calculating it using G1's pause 201 // prediction model. If no rs_lengths parameter is passed, predict 202 // the RS lengths using the prediction model, otherwise use the 203 // given rs_lengths as the prediction. 204 // Returns the unbounded young list target length. 205 uint update_young_list_target_length(size_t rs_lengths); 206 207 // Calculate and return the minimum desired young list target 208 // length. This is the minimum desired young list length according 209 // to the user's inputs. 210 uint calculate_young_list_desired_min_length(uint base_min_length) const; 211 212 // Calculate and return the maximum desired young list target 213 // length. This is the maximum desired young list length according 214 // to the user's inputs. 215 uint calculate_young_list_desired_max_length() const; 216 217 // Calculate and return the maximum young list target length that 218 // can fit into the pause time goal. The parameters are: rs_lengths 219 // represent the prediction of how large the young RSet lengths will 220 // be, base_min_length is the already existing number of regions in 221 // the young list, min_length and max_length are the desired min and 222 // max young list length according to the user's inputs. 223 uint calculate_young_list_target_length(size_t rs_lengths, 224 uint base_min_length, 225 uint desired_min_length, 226 uint desired_max_length) const; 227 228 // Result of the bounded_young_list_target_length() method, containing both the 229 // bounded as well as the unbounded young list target lengths in this order. 230 typedef Pair<uint, uint, StackObj> YoungTargetLengths; 231 YoungTargetLengths young_list_target_lengths(size_t rs_lengths) const; 232 233 void update_rs_lengths_prediction(); 234 void update_rs_lengths_prediction(size_t prediction); 235 236 // Check whether a given young length (young_length) fits into the 237 // given target pause time and whether the prediction for the amount 238 // of objects to be copied for the given length will fit into the 239 // given free space (expressed by base_free_regions). It is used by 240 // calculate_young_list_target_length(). 241 bool predict_will_fit(uint young_length, double base_time_ms, 242 uint base_free_regions, double target_pause_time_ms) const; 243 244 public: 245 size_t pending_cards() const { return _pending_cards; } 246 247 // Calculate the minimum number of old regions we'll add to the CSet 248 // during a mixed GC. 249 uint calc_min_old_cset_length() const; 250 251 // Calculate the maximum number of old regions we'll add to the CSet 252 // during a mixed GC. 253 uint calc_max_old_cset_length() const; 254 255 // Returns the given amount of reclaimable bytes (that represents 256 // the amount of reclaimable space still to be collected) as a 257 // percentage of the current heap capacity. 258 double reclaimable_bytes_percent(size_t reclaimable_bytes) const; 259 260 jlong collection_pause_end_millis() { return _collection_pause_end_millis; } 261 262 private: 263 void clear_collection_set_candidates(); 264 // Sets up marking if proper conditions are met. 265 void maybe_start_marking(); 266 267 // The kind of STW pause. 268 enum PauseKind { 269 FullGC, 270 YoungOnlyGC, 271 MixedGC, 272 LastYoungGC, 273 InitialMarkGC, 274 Cleanup, 275 Remark 276 }; 277 278 // Calculate PauseKind from internal state. 279 PauseKind young_gc_pause_kind() const; 280 // Record the given STW pause with the given start and end times (in s). 281 void record_pause(PauseKind kind, double start, double end); 282 // Indicate that we aborted marking before doing any mixed GCs. 283 void abort_time_to_mixed_tracking(); 284 public: 285 286 G1Policy(STWGCTimer* gc_timer); 287 288 virtual ~G1Policy(); 289 290 static G1Policy* create_policy(G1CollectorPolicy* policy, STWGCTimer* gc_timer_stw); 291 292 G1CollectorState* collector_state() const; 293 294 G1GCPhaseTimes* phase_times() const { return _phase_times; } 295 296 // Check the current value of the young list RSet lengths and 297 // compare it against the last prediction. If the current value is 298 // higher, recalculate the young list target length prediction. 299 void revise_young_list_target_length_if_necessary(size_t rs_lengths); 300 301 // This should be called after the heap is resized. 302 void record_new_heap_size(uint new_number_of_regions); 303 304 virtual void init(G1CollectedHeap* g1h, G1CollectionSet* collection_set); 305 306 void note_gc_start(); 307 308 bool need_to_start_conc_mark(const char* source, size_t alloc_word_size = 0); 309 310 bool about_to_start_mixed_phase() const; 311 312 // Record the start and end of an evacuation pause. 313 void record_collection_pause_start(double start_time_sec); 314 virtual void record_collection_pause_end(double pause_time_ms, size_t cards_scanned, size_t heap_used_bytes_before_gc); 315 316 // Record the start and end of a full collection. 317 void record_full_collection_start(); 318 virtual void record_full_collection_end(); 319 320 // Must currently be called while the world is stopped. 321 void record_concurrent_mark_init_end(double mark_init_elapsed_time_ms); 322 323 // Record start and end of remark. 324 void record_concurrent_mark_remark_start(); 325 void record_concurrent_mark_remark_end(); 326 327 // Record start, end, and completion of cleanup. 328 void record_concurrent_mark_cleanup_start(); 329 void record_concurrent_mark_cleanup_end(); 330 331 void print_phases(); 332 333 // Record how much space we copied during a GC. This is typically 334 // called when a GC alloc region is being retired. 335 void record_bytes_copied_during_gc(size_t bytes) { 336 _bytes_copied_during_gc += bytes; 337 } 338 339 // The amount of space we copied during a GC. 340 size_t bytes_copied_during_gc() const { 341 return _bytes_copied_during_gc; 342 } 343 344 bool next_gc_should_be_mixed(const char* true_action_str, 345 const char* false_action_str) const; 346 347 void finalize_collection_set(double target_pause_time_ms, G1SurvivorRegions* survivor); 348 private: 349 // Set the state to start a concurrent marking cycle and clear 350 // _initiate_conc_mark_if_possible because it has now been 351 // acted on. 352 void initiate_conc_mark(); 353 354 public: 355 // This sets the initiate_conc_mark_if_possible() flag to start a 356 // new cycle, as long as we are not already in one. It's best if it 357 // is called during a safepoint when the test whether a cycle is in 358 // progress or not is stable. 359 bool force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause); 360 361 // This is called at the very beginning of an evacuation pause (it 362 // has to be the first thing that the pause does). If 363 // initiate_conc_mark_if_possible() is true, and the concurrent 364 // marking thread has completed its work during the previous cycle, 365 // it will set in_initial_mark_gc() to so that the pause does 366 // the initial-mark work and start a marking cycle. 367 void decide_on_conc_mark_initiation(); 368 369 void finished_recalculating_age_indexes(bool is_survivors) { 370 if (is_survivors) { 371 _survivor_surv_rate_group->finished_recalculating_age_indexes(); 372 } else { 373 _short_lived_surv_rate_group->finished_recalculating_age_indexes(); 374 } 375 } 376 377 size_t young_list_target_length() const { return _young_list_target_length; } 378 379 bool should_allocate_mutator_region() const; 380 381 bool can_expand_young_list() const; 382 383 uint young_list_max_length() const { 384 return _young_list_max_length; 385 } 386 387 bool adaptive_young_list_length() const; 388 389 void transfer_survivors_to_cset(const G1SurvivorRegions* survivors); 390 391 private: 392 // 393 // Survivor regions policy. 394 // 395 396 // Current tenuring threshold, set to 0 if the collector reaches the 397 // maximum amount of survivors regions. 398 uint _tenuring_threshold; 399 400 // The limit on the number of regions allocated for survivors. 401 uint _max_survivor_regions; 402 403 AgeTable _survivors_age_table; 404 405 size_t desired_survivor_size() const; 406 public: 407 // Fraction used when predicting how many optional regions to include in 408 // the CSet. This fraction of the available time is used for optional regions, 409 // the rest is used to add old regions to the normal CSet. 410 double optional_prediction_fraction() { return 0.2; } 411 // Fraction used when evacuating the optional regions. This fraction of the 412 // remaining time is used to choose what regions to include in the evacuation. 413 double optional_evacuation_fraction() { return 0.75; } 414 415 uint tenuring_threshold() const { return _tenuring_threshold; } 416 417 uint max_survivor_regions() { 418 return _max_survivor_regions; 419 } 420 421 void note_start_adding_survivor_regions() { 422 _survivor_surv_rate_group->start_adding_regions(); 423 } 424 425 void note_stop_adding_survivor_regions() { 426 _survivor_surv_rate_group->stop_adding_regions(); 427 } 428 429 void record_age_table(AgeTable* age_table) { 430 _survivors_age_table.merge(age_table); 431 } 432 433 void print_age_table(); 434 435 void update_max_gc_locker_expansion(); 436 437 void update_survivors_policy(); 438 }; 439 440 #endif // SHARE_VM_GC_G1_G1POLICY_HPP