1 /*
   2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderData.hpp"
  27 #include "gc/g1/concurrentMarkThread.inline.hpp"
  28 #include "gc/g1/g1Analytics.hpp"
  29 #include "gc/g1/g1CollectedHeap.inline.hpp"
  30 #include "gc/g1/g1ConcurrentMark.inline.hpp"
  31 #include "gc/g1/g1MMUTracker.hpp"
  32 #include "gc/g1/g1Policy.hpp"
  33 #include "gc/g1/suspendibleThreadSet.hpp"
  34 #include "gc/g1/vm_operations_g1.hpp"
  35 #include "gc/shared/concurrentGCPhaseManager.hpp"
  36 #include "gc/shared/gcId.hpp"
  37 #include "gc/shared/gcTrace.hpp"
  38 #include "gc/shared/gcTraceTime.inline.hpp"
  39 #include "logging/log.hpp"
  40 #include "memory/resourceArea.hpp"
  41 #include "runtime/vmThread.hpp"
  42 #include "utilities/debug.hpp"
  43 
  44 // ======= Concurrent Mark Thread ========
  45 
  46 // Check order in EXPAND_CURRENT_PHASES
  47 STATIC_ASSERT(ConcurrentGCPhaseManager::UNCONSTRAINED_PHASE <
  48               ConcurrentGCPhaseManager::IDLE_PHASE);
  49 
  50 #define EXPAND_CONCURRENT_PHASES(expander)                              \
  51   expander(ANY, = ConcurrentGCPhaseManager::UNCONSTRAINED_PHASE, NULL)  \
  52   expander(IDLE, = ConcurrentGCPhaseManager::IDLE_PHASE, NULL)          \
  53   expander(CONCURRENT_CYCLE,, "Concurrent Cycle")                       \
  54   expander(CLEAR_CLAIMED_MARKS,, "Concurrent Clear Claimed Marks")      \
  55   expander(SCAN_ROOT_REGIONS,, "Concurrent Scan Root Regions")          \
  56   expander(CONCURRENT_MARK,, "Concurrent Mark")                         \
  57   expander(MARK_FROM_ROOTS,, "Concurrent Mark From Roots")              \
  58   expander(BEFORE_REMARK,, NULL)                                        \
  59   expander(REMARK,, NULL)                                               \
  60   expander(CREATE_LIVE_DATA,, "Concurrent Create Live Data")            \
  61   expander(COMPLETE_CLEANUP,, "Concurrent Complete Cleanup")            \
  62   expander(CLEANUP_FOR_NEXT_MARK,, "Concurrent Cleanup for Next Mark")  \
  63   /* */
  64 
  65 class G1ConcurrentPhase : public AllStatic {
  66 public:
  67   enum {
  68 #define CONCURRENT_PHASE_ENUM(tag, value, ignore_title) tag value,
  69     EXPAND_CONCURRENT_PHASES(CONCURRENT_PHASE_ENUM)
  70 #undef CONCURRENT_PHASE_ENUM
  71     PHASE_ID_LIMIT
  72   };
  73 };
  74 
  75 // The CM thread is created when the G1 garbage collector is used
  76 
  77 ConcurrentMarkThread::ConcurrentMarkThread(G1ConcurrentMark* cm) :
  78   ConcurrentGCThread(),
  79   _cm(cm),
  80   _state(Idle),
  81   _phase_manager_stack(),
  82   _vtime_accum(0.0),
  83   _vtime_mark_accum(0.0) {
  84 
  85   set_name("G1 Main Marker");
  86   create_and_start();
  87 }
  88 
  89 class CMCheckpointRootsFinalClosure: public VoidClosure {
  90 
  91   G1ConcurrentMark* _cm;
  92 public:
  93 
  94   CMCheckpointRootsFinalClosure(G1ConcurrentMark* cm) :
  95     _cm(cm) {}
  96 
  97   void do_void(){
  98     _cm->checkpointRootsFinal(false); // !clear_all_soft_refs
  99   }
 100 };
 101 
 102 class CMCleanUp: public VoidClosure {
 103   G1ConcurrentMark* _cm;
 104 public:
 105 
 106   CMCleanUp(G1ConcurrentMark* cm) :
 107     _cm(cm) {}
 108 
 109   void do_void(){
 110     _cm->cleanup();
 111   }
 112 };
 113 
 114 // Marking pauses can be scheduled flexibly, so we might delay marking to meet MMU.
 115 void ConcurrentMarkThread::delay_to_keep_mmu(G1Policy* g1_policy, bool remark) {
 116   const G1Analytics* analytics = g1_policy->analytics();
 117   if (g1_policy->adaptive_young_list_length()) {
 118     double now = os::elapsedTime();
 119     double prediction_ms = remark ? analytics->predict_remark_time_ms()
 120                                   : analytics->predict_cleanup_time_ms();
 121     G1MMUTracker *mmu_tracker = g1_policy->mmu_tracker();
 122     jlong sleep_time_ms = mmu_tracker->when_ms(now, prediction_ms);
 123     os::sleep(this, sleep_time_ms, false);
 124   }
 125 }
 126 
 127 class G1ConcPhaseTimer : public GCTraceConcTimeImpl<LogLevel::Info, LOG_TAGS(gc, marking)> {
 128   G1ConcurrentMark* _cm;
 129 
 130  public:
 131   G1ConcPhaseTimer(G1ConcurrentMark* cm, const char* title) :
 132     GCTraceConcTimeImpl<LogLevel::Info,  LogTag::_gc, LogTag::_marking>(title),
 133     _cm(cm)
 134   {
 135     _cm->gc_timer_cm()->register_gc_concurrent_start(title);
 136   }
 137 
 138   ~G1ConcPhaseTimer() {
 139     _cm->gc_timer_cm()->register_gc_concurrent_end();
 140   }
 141 };
 142 
 143 static const char* const concurrent_phase_names[] = {
 144 #define CONCURRENT_PHASE_NAME(tag, ignore_value, ignore_title) XSTR(tag),
 145   EXPAND_CONCURRENT_PHASES(CONCURRENT_PHASE_NAME)
 146 #undef CONCURRENT_PHASE_NAME
 147   NULL                          // terminator
 148 };
 149 // Verify dense enum assumption.  +1 for terminator.
 150 STATIC_ASSERT(G1ConcurrentPhase::PHASE_ID_LIMIT + 1 ==
 151               ARRAY_SIZE(concurrent_phase_names));
 152 
 153 // Returns the phase number for name, or a negative value if unknown.
 154 static int lookup_concurrent_phase(const char* name) {
 155   const char* const* names = concurrent_phase_names;
 156   for (uint i = 0; names[i] != NULL; ++i) {
 157     if (strcmp(name, names[i]) == 0) {
 158       return static_cast<int>(i);
 159     }
 160   }
 161   return -1;
 162 }
 163 
 164 // The phase must be valid and must have a title.
 165 static const char* lookup_concurrent_phase_title(int phase) {
 166   static const char* const titles[] = {
 167 #define CONCURRENT_PHASE_TITLE(ignore_tag, ignore_value, title) title,
 168     EXPAND_CONCURRENT_PHASES(CONCURRENT_PHASE_TITLE)
 169 #undef CONCURRENT_PHASE_TITLE
 170   };
 171   // Verify dense enum assumption.
 172   STATIC_ASSERT(G1ConcurrentPhase::PHASE_ID_LIMIT == ARRAY_SIZE(titles));
 173 
 174   assert(0 <= phase, "precondition");
 175   assert((uint)phase < ARRAY_SIZE(titles), "precondition");
 176   const char* title = titles[phase];
 177   assert(title != NULL, "precondition");
 178   return title;
 179 }
 180 
 181 class G1ConcPhaseManager : public StackObj {
 182   G1ConcurrentMark* _cm;
 183   ConcurrentGCPhaseManager _manager;
 184 
 185 public:
 186   G1ConcPhaseManager(int phase, ConcurrentMarkThread* thread) :
 187     _cm(thread->cm()),
 188     _manager(phase, thread->phase_manager_stack())
 189   { }
 190 
 191   ~G1ConcPhaseManager() {
 192     // Deactivate the manager if marking aborted, to avoid blocking on
 193     // phase exit when the phase has been requested.
 194     if (_cm->has_aborted()) {
 195       _manager.deactivate();
 196     }
 197   }
 198 
 199   void set_phase(int phase, bool force) {
 200     _manager.set_phase(phase, force);
 201   }
 202 };
 203 
 204 // Combine phase management and timing into one convenient utility.
 205 class G1ConcPhase : public StackObj {
 206   G1ConcPhaseTimer _timer;
 207   G1ConcPhaseManager _manager;
 208 
 209 public:
 210   G1ConcPhase(int phase, ConcurrentMarkThread* thread) :
 211     _timer(thread->cm(), lookup_concurrent_phase_title(phase)),
 212     _manager(phase, thread)
 213   { }
 214 };
 215 
 216 const char* const* ConcurrentMarkThread::concurrent_phases() const {
 217   return concurrent_phase_names;
 218 }
 219 
 220 bool ConcurrentMarkThread::request_concurrent_phase(const char* phase_name) {
 221   int phase = lookup_concurrent_phase(phase_name);
 222   if (phase < 0) return false;
 223 
 224   while (!ConcurrentGCPhaseManager::wait_for_phase(phase,
 225                                                    phase_manager_stack())) {
 226     assert(phase != G1ConcurrentPhase::ANY, "Wait for ANY phase must succeed");
 227     if ((phase != G1ConcurrentPhase::IDLE) && !during_cycle()) {
 228       // If idle and the goal is !idle, start a collection.
 229       G1CollectedHeap::heap()->collect(GCCause::_wb_conc_mark);
 230     }
 231   }
 232   return true;
 233 }
 234 
 235 void ConcurrentMarkThread::run_service() {
 236   _vtime_start = os::elapsedVTime();
 237 
 238   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 239   G1Policy* g1_policy = g1h->g1_policy();
 240 
 241   G1ConcPhaseManager cpmanager(G1ConcurrentPhase::IDLE, this);
 242 
 243   while (!should_terminate()) {
 244     // wait until started is set.
 245     sleepBeforeNextCycle();
 246     if (should_terminate()) {
 247       break;
 248     }
 249 
 250     cpmanager.set_phase(G1ConcurrentPhase::CONCURRENT_CYCLE, false /* force */);
 251 
 252     GCIdMark gc_id_mark;
 253 
 254     cm()->concurrent_cycle_start();
 255 
 256     assert(GCId::current() != GCId::undefined(), "GC id should have been set up by the initial mark GC.");
 257 
 258     GCTraceConcTime(Info, gc) tt("Concurrent Cycle");
 259     {
 260       ResourceMark rm;
 261       HandleMark   hm;
 262       double cycle_start = os::elapsedVTime();
 263 
 264       {
 265         G1ConcPhase p(G1ConcurrentPhase::CLEAR_CLAIMED_MARKS, this);
 266         ClassLoaderDataGraph::clear_claimed_marks();
 267       }
 268 
 269       // We have to ensure that we finish scanning the root regions
 270       // before the next GC takes place. To ensure this we have to
 271       // make sure that we do not join the STS until the root regions
 272       // have been scanned. If we did then it's possible that a
 273       // subsequent GC could block us from joining the STS and proceed
 274       // without the root regions have been scanned which would be a
 275       // correctness issue.
 276 
 277       {
 278         G1ConcPhase p(G1ConcurrentPhase::SCAN_ROOT_REGIONS, this);
 279         _cm->scan_root_regions();
 280       }
 281 
 282       // It would be nice to use the G1ConcPhase class here but
 283       // the "end" logging is inside the loop and not at the end of
 284       // a scope. Also, the timer doesn't support nesting.
 285       // Mimicking the same log output instead.
 286       {
 287         G1ConcPhaseManager mark_manager(G1ConcurrentPhase::CONCURRENT_MARK, this);
 288         jlong mark_start = os::elapsed_counter();
 289         const char* cm_title =
 290           lookup_concurrent_phase_title(G1ConcurrentPhase::CONCURRENT_MARK);
 291         log_info(gc, marking)("%s (%.3fs)",
 292                               cm_title,
 293                               TimeHelper::counter_to_seconds(mark_start));
 294         for (uint iter = 1; !cm()->has_aborted(); ++iter) {
 295           // Concurrent marking.
 296           {
 297             G1ConcPhase p(G1ConcurrentPhase::MARK_FROM_ROOTS, this);
 298             _cm->mark_from_roots();
 299           }
 300           if (cm()->has_aborted()) break;
 301 
 302           // Provide a control point after mark_from_roots.
 303           {
 304             G1ConcPhaseManager p(G1ConcurrentPhase::BEFORE_REMARK, this);
 305           }
 306           if (cm()->has_aborted()) break;
 307 
 308           // Delay remark pause for MMU.
 309           double mark_end_time = os::elapsedVTime();
 310           jlong mark_end = os::elapsed_counter();
 311           _vtime_mark_accum += (mark_end_time - cycle_start);
 312           delay_to_keep_mmu(g1_policy, true /* remark */);
 313           if (cm()->has_aborted()) break;
 314 
 315           // Pause Remark.
 316           log_info(gc, marking)("%s (%.3fs, %.3fs) %.3fms",
 317                                 cm_title,
 318                                 TimeHelper::counter_to_seconds(mark_start),
 319                                 TimeHelper::counter_to_seconds(mark_end),
 320                                 TimeHelper::counter_to_millis(mark_end - mark_start));
 321           mark_manager.set_phase(G1ConcurrentPhase::REMARK, false);
 322           CMCheckpointRootsFinalClosure final_cl(_cm);
 323           VM_CGC_Operation op(&final_cl, "Pause Remark");
 324           VMThread::execute(&op);
 325           if (cm()->has_aborted()) {
 326             break;
 327           } else if (!cm()->restart_for_overflow()) {
 328             break;              // Exit loop if no restart requested.
 329           } else {
 330             // Loop to restart for overflow.
 331             mark_manager.set_phase(G1ConcurrentPhase::CONCURRENT_MARK, false);
 332             log_info(gc, marking)("%s Restart for Mark Stack Overflow (iteration #%u)",
 333                                   cm_title, iter);
 334           }
 335         }
 336       }
 337 
 338       if (!cm()->has_aborted()) {
 339         G1ConcPhase p(G1ConcurrentPhase::CREATE_LIVE_DATA, this);
 340         cm()->create_live_data();
 341       }
 342 
 343       double end_time = os::elapsedVTime();
 344       // Update the total virtual time before doing this, since it will try
 345       // to measure it to get the vtime for this marking.  We purposely
 346       // neglect the presumably-short "completeCleanup" phase here.
 347       _vtime_accum = (end_time - _vtime_start);
 348 
 349       if (!cm()->has_aborted()) {
 350         delay_to_keep_mmu(g1_policy, false /* cleanup */);
 351 
 352         CMCleanUp cl_cl(_cm);
 353         VM_CGC_Operation op(&cl_cl, "Pause Cleanup");
 354         VMThread::execute(&op);
 355       } else {
 356         // We don't want to update the marking status if a GC pause
 357         // is already underway.
 358         SuspendibleThreadSetJoiner sts_join;
 359         g1h->collector_state()->set_mark_in_progress(false);
 360       }
 361 
 362       // Check if cleanup set the free_regions_coming flag. If it
 363       // hasn't, we can just skip the next step.
 364       if (g1h->free_regions_coming()) {
 365         // The following will finish freeing up any regions that we
 366         // found to be empty during cleanup. We'll do this part
 367         // without joining the suspendible set. If an evacuation pause
 368         // takes place, then we would carry on freeing regions in
 369         // case they are needed by the pause. If a Full GC takes
 370         // place, it would wait for us to process the regions
 371         // reclaimed by cleanup.
 372 
 373         // Now do the concurrent cleanup operation.
 374         G1ConcPhase p(G1ConcurrentPhase::COMPLETE_CLEANUP, this);
 375         _cm->complete_cleanup();
 376 
 377         // Notify anyone who's waiting that there are no more free
 378         // regions coming. We have to do this before we join the STS
 379         // (in fact, we should not attempt to join the STS in the
 380         // interval between finishing the cleanup pause and clearing
 381         // the free_regions_coming flag) otherwise we might deadlock:
 382         // a GC worker could be blocked waiting for the notification
 383         // whereas this thread will be blocked for the pause to finish
 384         // while it's trying to join the STS, which is conditional on
 385         // the GC workers finishing.
 386         g1h->reset_free_regions_coming();
 387       }
 388       guarantee(cm()->cleanup_list_is_empty(),
 389                 "at this point there should be no regions on the cleanup list");
 390 
 391       // There is a tricky race before recording that the concurrent
 392       // cleanup has completed and a potential Full GC starting around
 393       // the same time. We want to make sure that the Full GC calls
 394       // abort() on concurrent mark after
 395       // record_concurrent_mark_cleanup_completed(), since abort() is
 396       // the method that will reset the concurrent mark state. If we
 397       // end up calling record_concurrent_mark_cleanup_completed()
 398       // after abort() then we might incorrectly undo some of the work
 399       // abort() did. Checking the has_aborted() flag after joining
 400       // the STS allows the correct ordering of the two methods. There
 401       // are two scenarios:
 402       //
 403       // a) If we reach here before the Full GC, the fact that we have
 404       // joined the STS means that the Full GC cannot start until we
 405       // leave the STS, so record_concurrent_mark_cleanup_completed()
 406       // will complete before abort() is called.
 407       //
 408       // b) If we reach here during the Full GC, we'll be held up from
 409       // joining the STS until the Full GC is done, which means that
 410       // abort() will have completed and has_aborted() will return
 411       // true to prevent us from calling
 412       // record_concurrent_mark_cleanup_completed() (and, in fact, it's
 413       // not needed any more as the concurrent mark state has been
 414       // already reset).
 415       {
 416         SuspendibleThreadSetJoiner sts_join;
 417         if (!cm()->has_aborted()) {
 418           g1_policy->record_concurrent_mark_cleanup_completed();
 419         } else {
 420           log_info(gc, marking)("Concurrent Mark Abort");
 421         }
 422       }
 423 
 424       // We now want to allow clearing of the marking bitmap to be
 425       // suspended by a collection pause.
 426       // We may have aborted just before the remark. Do not bother clearing the
 427       // bitmap then, as it has been done during mark abort.
 428       if (!cm()->has_aborted()) {
 429         G1ConcPhase p(G1ConcurrentPhase::CLEANUP_FOR_NEXT_MARK, this);
 430         _cm->cleanup_for_next_mark();
 431       } else {
 432         assert(!G1VerifyBitmaps || _cm->nextMarkBitmapIsClear(), "Next mark bitmap must be clear");
 433       }
 434     }
 435 
 436     // Update the number of full collections that have been
 437     // completed. This will also notify the FullGCCount_lock in case a
 438     // Java thread is waiting for a full GC to happen (e.g., it
 439     // called System.gc() with +ExplicitGCInvokesConcurrent).
 440     {
 441       SuspendibleThreadSetJoiner sts_join;
 442       g1h->increment_old_marking_cycles_completed(true /* concurrent */);
 443 
 444       cm()->concurrent_cycle_end();
 445     }
 446 
 447     cpmanager.set_phase(G1ConcurrentPhase::IDLE, cm()->has_aborted() /* force */);
 448   }
 449   _cm->root_regions()->cancel_scan();
 450 }
 451 
 452 void ConcurrentMarkThread::stop_service() {
 453   MutexLockerEx ml(CGC_lock, Mutex::_no_safepoint_check_flag);
 454   CGC_lock->notify_all();
 455 }
 456 
 457 void ConcurrentMarkThread::sleepBeforeNextCycle() {
 458   // We join here because we don't want to do the "shouldConcurrentMark()"
 459   // below while the world is otherwise stopped.
 460   assert(!in_progress(), "should have been cleared");
 461 
 462   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
 463   while (!started() && !should_terminate()) {
 464     CGC_lock->wait(Mutex::_no_safepoint_check_flag);
 465   }
 466 
 467   if (started()) {
 468     set_in_progress();
 469   }
 470 }