1 /* 2 * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_INLINE_HPP 26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_INLINE_HPP 27 28 #include "gc_implementation/g1/concurrentMark.hpp" 29 #include "gc_implementation/g1/g1CollectedHeap.hpp" 30 #include "gc_implementation/g1/g1AllocRegion.inline.hpp" 31 #include "gc_implementation/g1/g1CollectorPolicy.hpp" 32 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp" 33 #include "gc_implementation/g1/heapRegionManager.inline.hpp" 34 #include "gc_implementation/g1/heapRegionSet.inline.hpp" 35 #include "runtime/orderAccess.inline.hpp" 36 #include "utilities/taskqueue.hpp" 37 38 PLABStats* G1CollectedHeap::alloc_buffer_stats(InCSetState dest) { 39 switch (dest.value()) { 40 case InCSetState::Young: 41 return &_survivor_plab_stats; 42 case InCSetState::Old: 43 return &_old_plab_stats; 44 default: 45 ShouldNotReachHere(); 46 return NULL; // Keep some compilers happy 47 } 48 } 49 50 size_t G1CollectedHeap::desired_plab_sz(InCSetState dest) { 51 size_t gclab_word_size = alloc_buffer_stats(dest)->desired_plab_sz(); 52 // Prevent humongous PLAB sizes for two reasons: 53 // * PLABs are allocated using a similar paths as oops, but should 54 // never be in a humongous region 55 // * Allowing humongous PLABs needlessly churns the region free lists 56 return MIN2(_humongous_object_threshold_in_words, gclab_word_size); 57 } 58 59 HeapWord* G1CollectedHeap::par_allocate_during_gc(InCSetState dest, 60 size_t word_size, 61 AllocationContext_t context) { 62 switch (dest.value()) { 63 case InCSetState::Young: 64 return survivor_attempt_allocation(word_size, context); 65 case InCSetState::Old: 66 return old_attempt_allocation(word_size, context); 67 default: 68 ShouldNotReachHere(); 69 return NULL; // Keep some compilers happy 70 } 71 } 72 73 // Inline functions for G1CollectedHeap 74 75 inline AllocationContextStats& G1CollectedHeap::allocation_context_stats() { 76 return _allocation_context_stats; 77 } 78 79 // Return the region with the given index. It assumes the index is valid. 80 inline HeapRegion* G1CollectedHeap::region_at(uint index) const { return _hrm.at(index); } 81 82 inline uint G1CollectedHeap::addr_to_region(HeapWord* addr) const { 83 assert(is_in_reserved(addr), 84 err_msg("Cannot calculate region index for address "PTR_FORMAT" that is outside of the heap ["PTR_FORMAT", "PTR_FORMAT")", 85 p2i(addr), p2i(reserved_region().start()), p2i(reserved_region().end()))); 86 return (uint)(pointer_delta(addr, reserved_region().start(), sizeof(uint8_t)) >> HeapRegion::LogOfHRGrainBytes); 87 } 88 89 inline HeapWord* G1CollectedHeap::bottom_addr_for_region(uint index) const { 90 return _hrm.reserved().start() + index * HeapRegion::GrainWords; 91 } 92 93 template <class T> 94 inline HeapRegion* G1CollectedHeap::heap_region_containing_raw(const T addr) const { 95 assert(addr != NULL, "invariant"); 96 assert(is_in_g1_reserved((const void*) addr), 97 err_msg("Address "PTR_FORMAT" is outside of the heap ranging from ["PTR_FORMAT" to "PTR_FORMAT")", 98 p2i((void*)addr), p2i(g1_reserved().start()), p2i(g1_reserved().end()))); 99 return _hrm.addr_to_region((HeapWord*) addr); 100 } 101 102 template <class T> 103 inline HeapRegion* G1CollectedHeap::heap_region_containing(const T addr) const { 104 HeapRegion* hr = heap_region_containing_raw(addr); 105 if (hr->is_continues_humongous()) { 106 return hr->humongous_start_region(); 107 } 108 return hr; 109 } 110 111 inline void G1CollectedHeap::reset_gc_time_stamp() { 112 _gc_time_stamp = 0; 113 OrderAccess::fence(); 114 // Clear the cached CSet starting regions and time stamps. 115 // Their validity is dependent on the GC timestamp. 116 clear_cset_start_regions(); 117 } 118 119 inline void G1CollectedHeap::increment_gc_time_stamp() { 120 ++_gc_time_stamp; 121 OrderAccess::fence(); 122 } 123 124 inline void G1CollectedHeap::old_set_remove(HeapRegion* hr) { 125 _old_set.remove(hr); 126 } 127 128 inline bool G1CollectedHeap::obj_in_cs(oop obj) { 129 HeapRegion* r = _hrm.addr_to_region((HeapWord*) obj); 130 return r != NULL && r->in_collection_set(); 131 } 132 133 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t word_size, 134 uint* gc_count_before_ret, 135 uint* gclocker_retry_count_ret) { 136 assert_heap_not_locked_and_not_at_safepoint(); 137 assert(!is_humongous(word_size), "attempt_allocation() should not " 138 "be called for humongous allocation requests"); 139 140 AllocationContext_t context = AllocationContext::current(); 141 HeapWord* result = _allocator->mutator_alloc_region(context)->attempt_allocation(word_size, 142 false /* bot_updates */); 143 if (result == NULL) { 144 result = attempt_allocation_slow(word_size, 145 context, 146 gc_count_before_ret, 147 gclocker_retry_count_ret); 148 } 149 assert_heap_not_locked(); 150 if (result != NULL) { 151 dirty_young_block(result, word_size); 152 } 153 return result; 154 } 155 156 inline HeapWord* G1CollectedHeap::survivor_attempt_allocation(size_t word_size, 157 AllocationContext_t context) { 158 assert(!is_humongous(word_size), 159 "we should not be seeing humongous-size allocations in this path"); 160 161 HeapWord* result = _allocator->survivor_gc_alloc_region(context)->attempt_allocation(word_size, 162 false /* bot_updates */); 163 if (result == NULL) { 164 MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag); 165 result = _allocator->survivor_gc_alloc_region(context)->attempt_allocation_locked(word_size, 166 false /* bot_updates */); 167 } 168 if (result != NULL) { 169 dirty_young_block(result, word_size); 170 } 171 return result; 172 } 173 174 inline HeapWord* G1CollectedHeap::old_attempt_allocation(size_t word_size, 175 AllocationContext_t context) { 176 assert(!is_humongous(word_size), 177 "we should not be seeing humongous-size allocations in this path"); 178 179 HeapWord* result = _allocator->old_gc_alloc_region(context)->attempt_allocation(word_size, 180 true /* bot_updates */); 181 if (result == NULL) { 182 MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag); 183 result = _allocator->old_gc_alloc_region(context)->attempt_allocation_locked(word_size, 184 true /* bot_updates */); 185 } 186 return result; 187 } 188 189 // It dirties the cards that cover the block so that so that the post 190 // write barrier never queues anything when updating objects on this 191 // block. It is assumed (and in fact we assert) that the block 192 // belongs to a young region. 193 inline void 194 G1CollectedHeap::dirty_young_block(HeapWord* start, size_t word_size) { 195 assert_heap_not_locked(); 196 197 // Assign the containing region to containing_hr so that we don't 198 // have to keep calling heap_region_containing_raw() in the 199 // asserts below. 200 DEBUG_ONLY(HeapRegion* containing_hr = heap_region_containing_raw(start);) 201 assert(word_size > 0, "pre-condition"); 202 assert(containing_hr->is_in(start), "it should contain start"); 203 assert(containing_hr->is_young(), "it should be young"); 204 assert(!containing_hr->is_humongous(), "it should not be humongous"); 205 206 HeapWord* end = start + word_size; 207 assert(containing_hr->is_in(end - 1), "it should also contain end - 1"); 208 209 MemRegion mr(start, end); 210 g1_barrier_set()->g1_mark_as_young(mr); 211 } 212 213 inline RefToScanQueue* G1CollectedHeap::task_queue(int i) const { 214 return _task_queues->queue(i); 215 } 216 217 inline bool G1CollectedHeap::isMarkedPrev(oop obj) const { 218 return _cm->prevMarkBitMap()->isMarked((HeapWord *)obj); 219 } 220 221 inline bool G1CollectedHeap::isMarkedNext(oop obj) const { 222 return _cm->nextMarkBitMap()->isMarked((HeapWord *)obj); 223 } 224 225 // This is a fast test on whether a reference points into the 226 // collection set or not. Assume that the reference 227 // points into the heap. 228 inline bool G1CollectedHeap::is_in_cset(oop obj) { 229 bool ret = _in_cset_fast_test.is_in_cset((HeapWord*)obj); 230 // let's make sure the result is consistent with what the slower 231 // test returns 232 assert( ret || !obj_in_cs(obj), "sanity"); 233 assert(!ret || obj_in_cs(obj), "sanity"); 234 return ret; 235 } 236 237 bool G1CollectedHeap::is_in_cset(const HeapRegion* hr) { 238 return _in_cset_fast_test.is_in_cset(hr); 239 } 240 241 bool G1CollectedHeap::is_in_cset_or_humongous(const oop obj) { 242 return _in_cset_fast_test.is_in_cset_or_humongous((HeapWord*)obj); 243 } 244 245 InCSetState G1CollectedHeap::in_cset_state(const oop obj) { 246 return _in_cset_fast_test.at((HeapWord*)obj); 247 } 248 249 void G1CollectedHeap::register_humongous_region_with_cset(uint index) { 250 _in_cset_fast_test.set_humongous(index); 251 } 252 253 #ifndef PRODUCT 254 // Support for G1EvacuationFailureALot 255 256 inline bool 257 G1CollectedHeap::evacuation_failure_alot_for_gc_type(bool gcs_are_young, 258 bool during_initial_mark, 259 bool during_marking) { 260 bool res = false; 261 if (during_marking) { 262 res |= G1EvacuationFailureALotDuringConcMark; 263 } 264 if (during_initial_mark) { 265 res |= G1EvacuationFailureALotDuringInitialMark; 266 } 267 if (gcs_are_young) { 268 res |= G1EvacuationFailureALotDuringYoungGC; 269 } else { 270 // GCs are mixed 271 res |= G1EvacuationFailureALotDuringMixedGC; 272 } 273 return res; 274 } 275 276 inline void 277 G1CollectedHeap::set_evacuation_failure_alot_for_current_gc() { 278 if (G1EvacuationFailureALot) { 279 // Note we can't assert that _evacuation_failure_alot_for_current_gc 280 // is clear here. It may have been set during a previous GC but that GC 281 // did not copy enough objects (i.e. G1EvacuationFailureALotCount) to 282 // trigger an evacuation failure and clear the flags and and counts. 283 284 // Check if we have gone over the interval. 285 const size_t gc_num = total_collections(); 286 const size_t elapsed_gcs = gc_num - _evacuation_failure_alot_gc_number; 287 288 _evacuation_failure_alot_for_current_gc = (elapsed_gcs >= G1EvacuationFailureALotInterval); 289 290 // Now check if G1EvacuationFailureALot is enabled for the current GC type. 291 const bool gcs_are_young = g1_policy()->gcs_are_young(); 292 const bool during_im = g1_policy()->during_initial_mark_pause(); 293 const bool during_marking = mark_in_progress(); 294 295 _evacuation_failure_alot_for_current_gc &= 296 evacuation_failure_alot_for_gc_type(gcs_are_young, 297 during_im, 298 during_marking); 299 } 300 } 301 302 inline bool G1CollectedHeap::evacuation_should_fail() { 303 if (!G1EvacuationFailureALot || !_evacuation_failure_alot_for_current_gc) { 304 return false; 305 } 306 // G1EvacuationFailureALot is in effect for current GC 307 // Access to _evacuation_failure_alot_count is not atomic; 308 // the value does not have to be exact. 309 if (++_evacuation_failure_alot_count < G1EvacuationFailureALotCount) { 310 return false; 311 } 312 _evacuation_failure_alot_count = 0; 313 return true; 314 } 315 316 inline void G1CollectedHeap::reset_evacuation_should_fail() { 317 if (G1EvacuationFailureALot) { 318 _evacuation_failure_alot_gc_number = total_collections(); 319 _evacuation_failure_alot_count = 0; 320 _evacuation_failure_alot_for_current_gc = false; 321 } 322 } 323 #endif // #ifndef PRODUCT 324 325 inline bool G1CollectedHeap::is_in_young(const oop obj) { 326 if (obj == NULL) { 327 return false; 328 } 329 return heap_region_containing(obj)->is_young(); 330 } 331 332 // We don't need barriers for initializing stores to objects 333 // in the young gen: for the SATB pre-barrier, there is no 334 // pre-value that needs to be remembered; for the remembered-set 335 // update logging post-barrier, we don't maintain remembered set 336 // information for young gen objects. 337 inline bool G1CollectedHeap::can_elide_initializing_store_barrier(oop new_obj) { 338 return is_in_young(new_obj); 339 } 340 341 inline bool G1CollectedHeap::is_obj_dead(const oop obj) const { 342 if (obj == NULL) { 343 return false; 344 } 345 return is_obj_dead(obj, heap_region_containing(obj)); 346 } 347 348 inline bool G1CollectedHeap::is_obj_ill(const oop obj) const { 349 if (obj == NULL) { 350 return false; 351 } 352 return is_obj_ill(obj, heap_region_containing(obj)); 353 } 354 355 inline void G1CollectedHeap::set_humongous_is_live(oop obj) { 356 uint region = addr_to_region((HeapWord*)obj); 357 // Clear the flag in the humongous_reclaim_candidates table. Also 358 // reset the entry in the _in_cset_fast_test table so that subsequent references 359 // to the same humongous object do not go into the slow path again. 360 // This is racy, as multiple threads may at the same time enter here, but this 361 // is benign. 362 // During collection we only ever clear the "candidate" flag, and only ever clear the 363 // entry in the in_cset_fast_table. 364 // We only ever evaluate the contents of these tables (in the VM thread) after 365 // having synchronized the worker threads with the VM thread, or in the same 366 // thread (i.e. within the VM thread). 367 if (is_humongous_reclaim_candidate(region)) { 368 remove_humongous_reclaim_candidate(region); 369 _in_cset_fast_test.clear_humongous(region); 370 } 371 } 372 373 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_INLINE_HPP