rev 7249 : 8061748: Remove check_ct_logs_at_safepoint() Summary: Remove unused function and related closure class Reviewed-by: Contributed-by: kim.barrett@oracle.com
1 /* 2 * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #if !defined(__clang_major__) && defined(__GNUC__) 26 // FIXME, formats have issues. Disable this macro definition, compile, and study warnings for more information. 27 #define ATTRIBUTE_PRINTF(x,y) 28 #endif 29 30 #include "precompiled.hpp" 31 #include "classfile/metadataOnStackMark.hpp" 32 #include "classfile/stringTable.hpp" 33 #include "code/codeCache.hpp" 34 #include "code/icBuffer.hpp" 35 #include "gc_implementation/g1/bufferingOopClosure.hpp" 36 #include "gc_implementation/g1/concurrentG1Refine.hpp" 37 #include "gc_implementation/g1/concurrentG1RefineThread.hpp" 38 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp" 39 #include "gc_implementation/g1/g1AllocRegion.inline.hpp" 40 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp" 41 #include "gc_implementation/g1/g1CollectorPolicy.hpp" 42 #include "gc_implementation/g1/g1ErgoVerbose.hpp" 43 #include "gc_implementation/g1/g1EvacFailure.hpp" 44 #include "gc_implementation/g1/g1GCPhaseTimes.hpp" 45 #include "gc_implementation/g1/g1Log.hpp" 46 #include "gc_implementation/g1/g1MarkSweep.hpp" 47 #include "gc_implementation/g1/g1OopClosures.inline.hpp" 48 #include "gc_implementation/g1/g1ParScanThreadState.inline.hpp" 49 #include "gc_implementation/g1/g1RegionToSpaceMapper.hpp" 50 #include "gc_implementation/g1/g1RemSet.inline.hpp" 51 #include "gc_implementation/g1/g1StringDedup.hpp" 52 #include "gc_implementation/g1/g1YCTypes.hpp" 53 #include "gc_implementation/g1/heapRegion.inline.hpp" 54 #include "gc_implementation/g1/heapRegionRemSet.hpp" 55 #include "gc_implementation/g1/heapRegionSet.inline.hpp" 56 #include "gc_implementation/g1/vm_operations_g1.hpp" 57 #include "gc_implementation/shared/gcHeapSummary.hpp" 58 #include "gc_implementation/shared/gcTimer.hpp" 59 #include "gc_implementation/shared/gcTrace.hpp" 60 #include "gc_implementation/shared/gcTraceTime.hpp" 61 #include "gc_implementation/shared/isGCActiveMark.hpp" 62 #include "memory/allocation.hpp" 63 #include "memory/gcLocker.inline.hpp" 64 #include "memory/generationSpec.hpp" 65 #include "memory/iterator.hpp" 66 #include "memory/referenceProcessor.hpp" 67 #include "oops/oop.inline.hpp" 68 #include "oops/oop.pcgc.inline.hpp" 69 #include "runtime/atomic.inline.hpp" 70 #include "runtime/orderAccess.inline.hpp" 71 #include "runtime/vmThread.hpp" 72 #include "utilities/globalDefinitions.hpp" 73 74 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0; 75 76 // turn it on so that the contents of the young list (scan-only / 77 // to-be-collected) are printed at "strategic" points before / during 78 // / after the collection --- this is useful for debugging 79 #define YOUNG_LIST_VERBOSE 0 80 // CURRENT STATUS 81 // This file is under construction. Search for "FIXME". 82 83 // INVARIANTS/NOTES 84 // 85 // All allocation activity covered by the G1CollectedHeap interface is 86 // serialized by acquiring the HeapLock. This happens in mem_allocate 87 // and allocate_new_tlab, which are the "entry" points to the 88 // allocation code from the rest of the JVM. (Note that this does not 89 // apply to TLAB allocation, which is not part of this interface: it 90 // is done by clients of this interface.) 91 92 // Notes on implementation of parallelism in different tasks. 93 // 94 // G1ParVerifyTask uses heap_region_par_iterate() for parallelism. 95 // The number of GC workers is passed to heap_region_par_iterate(). 96 // It does use run_task() which sets _n_workers in the task. 97 // G1ParTask executes g1_process_roots() -> 98 // SharedHeap::process_roots() which calls eventually to 99 // CardTableModRefBS::par_non_clean_card_iterate_work() which uses 100 // SequentialSubTasksDone. SharedHeap::process_roots() also 101 // directly uses SubTasksDone (_process_strong_tasks field in SharedHeap). 102 // 103 104 // Local to this file. 105 106 class RefineCardTableEntryClosure: public CardTableEntryClosure { 107 bool _concurrent; 108 public: 109 RefineCardTableEntryClosure() : _concurrent(true) { } 110 111 bool do_card_ptr(jbyte* card_ptr, uint worker_i) { 112 bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false); 113 // This path is executed by the concurrent refine or mutator threads, 114 // concurrently, and so we do not care if card_ptr contains references 115 // that point into the collection set. 116 assert(!oops_into_cset, "should be"); 117 118 if (_concurrent && SuspendibleThreadSet::should_yield()) { 119 // Caller will actually yield. 120 return false; 121 } 122 // Otherwise, we finished successfully; return true. 123 return true; 124 } 125 126 void set_concurrent(bool b) { _concurrent = b; } 127 }; 128 129 130 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure { 131 size_t _num_processed; 132 CardTableModRefBS* _ctbs; 133 int _histo[256]; 134 135 public: 136 ClearLoggedCardTableEntryClosure() : 137 _num_processed(0), _ctbs(G1CollectedHeap::heap()->g1_barrier_set()) 138 { 139 for (int i = 0; i < 256; i++) _histo[i] = 0; 140 } 141 142 bool do_card_ptr(jbyte* card_ptr, uint worker_i) { 143 unsigned char* ujb = (unsigned char*)card_ptr; 144 int ind = (int)(*ujb); 145 _histo[ind]++; 146 147 *card_ptr = (jbyte)CardTableModRefBS::clean_card_val(); 148 _num_processed++; 149 150 return true; 151 } 152 153 size_t num_processed() { return _num_processed; } 154 155 void print_histo() { 156 gclog_or_tty->print_cr("Card table value histogram:"); 157 for (int i = 0; i < 256; i++) { 158 if (_histo[i] != 0) { 159 gclog_or_tty->print_cr(" %d: %d", i, _histo[i]); 160 } 161 } 162 } 163 }; 164 165 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure { 166 private: 167 size_t _num_processed; 168 169 public: 170 RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { } 171 172 bool do_card_ptr(jbyte* card_ptr, uint worker_i) { 173 *card_ptr = CardTableModRefBS::dirty_card_val(); 174 _num_processed++; 175 return true; 176 } 177 178 size_t num_processed() const { return _num_processed; } 179 }; 180 181 YoungList::YoungList(G1CollectedHeap* g1h) : 182 _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0), 183 _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) { 184 guarantee(check_list_empty(false), "just making sure..."); 185 } 186 187 void YoungList::push_region(HeapRegion *hr) { 188 assert(!hr->is_young(), "should not already be young"); 189 assert(hr->get_next_young_region() == NULL, "cause it should!"); 190 191 hr->set_next_young_region(_head); 192 _head = hr; 193 194 _g1h->g1_policy()->set_region_eden(hr, (int) _length); 195 ++_length; 196 } 197 198 void YoungList::add_survivor_region(HeapRegion* hr) { 199 assert(hr->is_survivor(), "should be flagged as survivor region"); 200 assert(hr->get_next_young_region() == NULL, "cause it should!"); 201 202 hr->set_next_young_region(_survivor_head); 203 if (_survivor_head == NULL) { 204 _survivor_tail = hr; 205 } 206 _survivor_head = hr; 207 ++_survivor_length; 208 } 209 210 void YoungList::empty_list(HeapRegion* list) { 211 while (list != NULL) { 212 HeapRegion* next = list->get_next_young_region(); 213 list->set_next_young_region(NULL); 214 list->uninstall_surv_rate_group(); 215 // This is called before a Full GC and all the non-empty / 216 // non-humongous regions at the end of the Full GC will end up as 217 // old anyway. 218 list->set_old(); 219 list = next; 220 } 221 } 222 223 void YoungList::empty_list() { 224 assert(check_list_well_formed(), "young list should be well formed"); 225 226 empty_list(_head); 227 _head = NULL; 228 _length = 0; 229 230 empty_list(_survivor_head); 231 _survivor_head = NULL; 232 _survivor_tail = NULL; 233 _survivor_length = 0; 234 235 _last_sampled_rs_lengths = 0; 236 237 assert(check_list_empty(false), "just making sure..."); 238 } 239 240 bool YoungList::check_list_well_formed() { 241 bool ret = true; 242 243 uint length = 0; 244 HeapRegion* curr = _head; 245 HeapRegion* last = NULL; 246 while (curr != NULL) { 247 if (!curr->is_young()) { 248 gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" " 249 "incorrectly tagged (y: %d, surv: %d)", 250 curr->bottom(), curr->end(), 251 curr->is_young(), curr->is_survivor()); 252 ret = false; 253 } 254 ++length; 255 last = curr; 256 curr = curr->get_next_young_region(); 257 } 258 ret = ret && (length == _length); 259 260 if (!ret) { 261 gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!"); 262 gclog_or_tty->print_cr("### list has %u entries, _length is %u", 263 length, _length); 264 } 265 266 return ret; 267 } 268 269 bool YoungList::check_list_empty(bool check_sample) { 270 bool ret = true; 271 272 if (_length != 0) { 273 gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u", 274 _length); 275 ret = false; 276 } 277 if (check_sample && _last_sampled_rs_lengths != 0) { 278 gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths"); 279 ret = false; 280 } 281 if (_head != NULL) { 282 gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head"); 283 ret = false; 284 } 285 if (!ret) { 286 gclog_or_tty->print_cr("### YOUNG LIST does not seem empty"); 287 } 288 289 return ret; 290 } 291 292 void 293 YoungList::rs_length_sampling_init() { 294 _sampled_rs_lengths = 0; 295 _curr = _head; 296 } 297 298 bool 299 YoungList::rs_length_sampling_more() { 300 return _curr != NULL; 301 } 302 303 void 304 YoungList::rs_length_sampling_next() { 305 assert( _curr != NULL, "invariant" ); 306 size_t rs_length = _curr->rem_set()->occupied(); 307 308 _sampled_rs_lengths += rs_length; 309 310 // The current region may not yet have been added to the 311 // incremental collection set (it gets added when it is 312 // retired as the current allocation region). 313 if (_curr->in_collection_set()) { 314 // Update the collection set policy information for this region 315 _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length); 316 } 317 318 _curr = _curr->get_next_young_region(); 319 if (_curr == NULL) { 320 _last_sampled_rs_lengths = _sampled_rs_lengths; 321 // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths); 322 } 323 } 324 325 void 326 YoungList::reset_auxilary_lists() { 327 guarantee( is_empty(), "young list should be empty" ); 328 assert(check_list_well_formed(), "young list should be well formed"); 329 330 // Add survivor regions to SurvRateGroup. 331 _g1h->g1_policy()->note_start_adding_survivor_regions(); 332 _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */); 333 334 int young_index_in_cset = 0; 335 for (HeapRegion* curr = _survivor_head; 336 curr != NULL; 337 curr = curr->get_next_young_region()) { 338 _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset); 339 340 // The region is a non-empty survivor so let's add it to 341 // the incremental collection set for the next evacuation 342 // pause. 343 _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr); 344 young_index_in_cset += 1; 345 } 346 assert((uint) young_index_in_cset == _survivor_length, "post-condition"); 347 _g1h->g1_policy()->note_stop_adding_survivor_regions(); 348 349 _head = _survivor_head; 350 _length = _survivor_length; 351 if (_survivor_head != NULL) { 352 assert(_survivor_tail != NULL, "cause it shouldn't be"); 353 assert(_survivor_length > 0, "invariant"); 354 _survivor_tail->set_next_young_region(NULL); 355 } 356 357 // Don't clear the survivor list handles until the start of 358 // the next evacuation pause - we need it in order to re-tag 359 // the survivor regions from this evacuation pause as 'young' 360 // at the start of the next. 361 362 _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */); 363 364 assert(check_list_well_formed(), "young list should be well formed"); 365 } 366 367 void YoungList::print() { 368 HeapRegion* lists[] = {_head, _survivor_head}; 369 const char* names[] = {"YOUNG", "SURVIVOR"}; 370 371 for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) { 372 gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]); 373 HeapRegion *curr = lists[list]; 374 if (curr == NULL) 375 gclog_or_tty->print_cr(" empty"); 376 while (curr != NULL) { 377 gclog_or_tty->print_cr(" "HR_FORMAT", P: "PTR_FORMAT ", N: "PTR_FORMAT", age: %4d", 378 HR_FORMAT_PARAMS(curr), 379 curr->prev_top_at_mark_start(), 380 curr->next_top_at_mark_start(), 381 curr->age_in_surv_rate_group_cond()); 382 curr = curr->get_next_young_region(); 383 } 384 } 385 386 gclog_or_tty->cr(); 387 } 388 389 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) { 390 OtherRegionsTable::invalidate(start_idx, num_regions); 391 } 392 393 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) { 394 // The from card cache is not the memory that is actually committed. So we cannot 395 // take advantage of the zero_filled parameter. 396 reset_from_card_cache(start_idx, num_regions); 397 } 398 399 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr) 400 { 401 // Claim the right to put the region on the dirty cards region list 402 // by installing a self pointer. 403 HeapRegion* next = hr->get_next_dirty_cards_region(); 404 if (next == NULL) { 405 HeapRegion* res = (HeapRegion*) 406 Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(), 407 NULL); 408 if (res == NULL) { 409 HeapRegion* head; 410 do { 411 // Put the region to the dirty cards region list. 412 head = _dirty_cards_region_list; 413 next = (HeapRegion*) 414 Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head); 415 if (next == head) { 416 assert(hr->get_next_dirty_cards_region() == hr, 417 "hr->get_next_dirty_cards_region() != hr"); 418 if (next == NULL) { 419 // The last region in the list points to itself. 420 hr->set_next_dirty_cards_region(hr); 421 } else { 422 hr->set_next_dirty_cards_region(next); 423 } 424 } 425 } while (next != head); 426 } 427 } 428 } 429 430 HeapRegion* G1CollectedHeap::pop_dirty_cards_region() 431 { 432 HeapRegion* head; 433 HeapRegion* hr; 434 do { 435 head = _dirty_cards_region_list; 436 if (head == NULL) { 437 return NULL; 438 } 439 HeapRegion* new_head = head->get_next_dirty_cards_region(); 440 if (head == new_head) { 441 // The last region. 442 new_head = NULL; 443 } 444 hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list, 445 head); 446 } while (hr != head); 447 assert(hr != NULL, "invariant"); 448 hr->set_next_dirty_cards_region(NULL); 449 return hr; 450 } 451 452 #ifdef ASSERT 453 // A region is added to the collection set as it is retired 454 // so an address p can point to a region which will be in the 455 // collection set but has not yet been retired. This method 456 // therefore is only accurate during a GC pause after all 457 // regions have been retired. It is used for debugging 458 // to check if an nmethod has references to objects that can 459 // be move during a partial collection. Though it can be 460 // inaccurate, it is sufficient for G1 because the conservative 461 // implementation of is_scavengable() for G1 will indicate that 462 // all nmethods must be scanned during a partial collection. 463 bool G1CollectedHeap::is_in_partial_collection(const void* p) { 464 if (p == NULL) { 465 return false; 466 } 467 return heap_region_containing(p)->in_collection_set(); 468 } 469 #endif 470 471 // Returns true if the reference points to an object that 472 // can move in an incremental collection. 473 bool G1CollectedHeap::is_scavengable(const void* p) { 474 HeapRegion* hr = heap_region_containing(p); 475 return !hr->is_humongous(); 476 } 477 478 void G1CollectedHeap::check_ct_logs_at_safepoint() { 479 DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set(); 480 CardTableModRefBS* ct_bs = g1_barrier_set(); 481 482 // Count the dirty cards at the start. 483 CountNonCleanMemRegionClosure count1(this); 484 ct_bs->mod_card_iterate(&count1); 485 int orig_count = count1.n(); 486 487 // First clear the logged cards. 488 ClearLoggedCardTableEntryClosure clear; 489 dcqs.apply_closure_to_all_completed_buffers(&clear); 490 dcqs.iterate_closure_all_threads(&clear, false); 491 clear.print_histo(); 492 493 // Now ensure that there's no dirty cards. 494 CountNonCleanMemRegionClosure count2(this); 495 ct_bs->mod_card_iterate(&count2); 496 if (count2.n() != 0) { 497 gclog_or_tty->print_cr("Card table has %d entries; %d originally", 498 count2.n(), orig_count); 499 } 500 guarantee(count2.n() == 0, "Card table should be clean."); 501 502 RedirtyLoggedCardTableEntryClosure redirty; 503 dcqs.apply_closure_to_all_completed_buffers(&redirty); 504 dcqs.iterate_closure_all_threads(&redirty, false); 505 gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.", 506 clear.num_processed(), orig_count); 507 guarantee(redirty.num_processed() == clear.num_processed(), 508 err_msg("Redirtied "SIZE_FORMAT" cards, bug cleared "SIZE_FORMAT, 509 redirty.num_processed(), clear.num_processed())); 510 511 CountNonCleanMemRegionClosure count3(this); 512 ct_bs->mod_card_iterate(&count3); 513 if (count3.n() != orig_count) { 514 gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.", 515 orig_count, count3.n()); 516 guarantee(count3.n() >= orig_count, "Should have restored them all."); 517 } 518 } 519 520 // Private class members. 521 522 G1CollectedHeap* G1CollectedHeap::_g1h; 523 524 // Private methods. 525 526 HeapRegion* 527 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) { 528 MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag); 529 while (!_secondary_free_list.is_empty() || free_regions_coming()) { 530 if (!_secondary_free_list.is_empty()) { 531 if (G1ConcRegionFreeingVerbose) { 532 gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : " 533 "secondary_free_list has %u entries", 534 _secondary_free_list.length()); 535 } 536 // It looks as if there are free regions available on the 537 // secondary_free_list. Let's move them to the free_list and try 538 // again to allocate from it. 539 append_secondary_free_list(); 540 541 assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not " 542 "empty we should have moved at least one entry to the free_list"); 543 HeapRegion* res = _hrm.allocate_free_region(is_old); 544 if (G1ConcRegionFreeingVerbose) { 545 gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : " 546 "allocated "HR_FORMAT" from secondary_free_list", 547 HR_FORMAT_PARAMS(res)); 548 } 549 return res; 550 } 551 552 // Wait here until we get notified either when (a) there are no 553 // more free regions coming or (b) some regions have been moved on 554 // the secondary_free_list. 555 SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag); 556 } 557 558 if (G1ConcRegionFreeingVerbose) { 559 gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : " 560 "could not allocate from secondary_free_list"); 561 } 562 return NULL; 563 } 564 565 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) { 566 assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords, 567 "the only time we use this to allocate a humongous region is " 568 "when we are allocating a single humongous region"); 569 570 HeapRegion* res; 571 if (G1StressConcRegionFreeing) { 572 if (!_secondary_free_list.is_empty()) { 573 if (G1ConcRegionFreeingVerbose) { 574 gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : " 575 "forced to look at the secondary_free_list"); 576 } 577 res = new_region_try_secondary_free_list(is_old); 578 if (res != NULL) { 579 return res; 580 } 581 } 582 } 583 584 res = _hrm.allocate_free_region(is_old); 585 586 if (res == NULL) { 587 if (G1ConcRegionFreeingVerbose) { 588 gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : " 589 "res == NULL, trying the secondary_free_list"); 590 } 591 res = new_region_try_secondary_free_list(is_old); 592 } 593 if (res == NULL && do_expand && _expand_heap_after_alloc_failure) { 594 // Currently, only attempts to allocate GC alloc regions set 595 // do_expand to true. So, we should only reach here during a 596 // safepoint. If this assumption changes we might have to 597 // reconsider the use of _expand_heap_after_alloc_failure. 598 assert(SafepointSynchronize::is_at_safepoint(), "invariant"); 599 600 ergo_verbose1(ErgoHeapSizing, 601 "attempt heap expansion", 602 ergo_format_reason("region allocation request failed") 603 ergo_format_byte("allocation request"), 604 word_size * HeapWordSize); 605 if (expand(word_size * HeapWordSize)) { 606 // Given that expand() succeeded in expanding the heap, and we 607 // always expand the heap by an amount aligned to the heap 608 // region size, the free list should in theory not be empty. 609 // In either case allocate_free_region() will check for NULL. 610 res = _hrm.allocate_free_region(is_old); 611 } else { 612 _expand_heap_after_alloc_failure = false; 613 } 614 } 615 return res; 616 } 617 618 HeapWord* 619 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first, 620 uint num_regions, 621 size_t word_size, 622 AllocationContext_t context) { 623 assert(first != G1_NO_HRM_INDEX, "pre-condition"); 624 assert(is_humongous(word_size), "word_size should be humongous"); 625 assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition"); 626 627 // Index of last region in the series + 1. 628 uint last = first + num_regions; 629 630 // We need to initialize the region(s) we just discovered. This is 631 // a bit tricky given that it can happen concurrently with 632 // refinement threads refining cards on these regions and 633 // potentially wanting to refine the BOT as they are scanning 634 // those cards (this can happen shortly after a cleanup; see CR 635 // 6991377). So we have to set up the region(s) carefully and in 636 // a specific order. 637 638 // The word size sum of all the regions we will allocate. 639 size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords; 640 assert(word_size <= word_size_sum, "sanity"); 641 642 // This will be the "starts humongous" region. 643 HeapRegion* first_hr = region_at(first); 644 // The header of the new object will be placed at the bottom of 645 // the first region. 646 HeapWord* new_obj = first_hr->bottom(); 647 // This will be the new end of the first region in the series that 648 // should also match the end of the last region in the series. 649 HeapWord* new_end = new_obj + word_size_sum; 650 // This will be the new top of the first region that will reflect 651 // this allocation. 652 HeapWord* new_top = new_obj + word_size; 653 654 // First, we need to zero the header of the space that we will be 655 // allocating. When we update top further down, some refinement 656 // threads might try to scan the region. By zeroing the header we 657 // ensure that any thread that will try to scan the region will 658 // come across the zero klass word and bail out. 659 // 660 // NOTE: It would not have been correct to have used 661 // CollectedHeap::fill_with_object() and make the space look like 662 // an int array. The thread that is doing the allocation will 663 // later update the object header to a potentially different array 664 // type and, for a very short period of time, the klass and length 665 // fields will be inconsistent. This could cause a refinement 666 // thread to calculate the object size incorrectly. 667 Copy::fill_to_words(new_obj, oopDesc::header_size(), 0); 668 669 // We will set up the first region as "starts humongous". This 670 // will also update the BOT covering all the regions to reflect 671 // that there is a single object that starts at the bottom of the 672 // first region. 673 first_hr->set_starts_humongous(new_top, new_end); 674 first_hr->set_allocation_context(context); 675 // Then, if there are any, we will set up the "continues 676 // humongous" regions. 677 HeapRegion* hr = NULL; 678 for (uint i = first + 1; i < last; ++i) { 679 hr = region_at(i); 680 hr->set_continues_humongous(first_hr); 681 hr->set_allocation_context(context); 682 } 683 // If we have "continues humongous" regions (hr != NULL), then the 684 // end of the last one should match new_end. 685 assert(hr == NULL || hr->end() == new_end, "sanity"); 686 687 // Up to this point no concurrent thread would have been able to 688 // do any scanning on any region in this series. All the top 689 // fields still point to bottom, so the intersection between 690 // [bottom,top] and [card_start,card_end] will be empty. Before we 691 // update the top fields, we'll do a storestore to make sure that 692 // no thread sees the update to top before the zeroing of the 693 // object header and the BOT initialization. 694 OrderAccess::storestore(); 695 696 // Now that the BOT and the object header have been initialized, 697 // we can update top of the "starts humongous" region. 698 assert(first_hr->bottom() < new_top && new_top <= first_hr->end(), 699 "new_top should be in this region"); 700 first_hr->set_top(new_top); 701 if (_hr_printer.is_active()) { 702 HeapWord* bottom = first_hr->bottom(); 703 HeapWord* end = first_hr->orig_end(); 704 if ((first + 1) == last) { 705 // the series has a single humongous region 706 _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top); 707 } else { 708 // the series has more than one humongous regions 709 _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end); 710 } 711 } 712 713 // Now, we will update the top fields of the "continues humongous" 714 // regions. The reason we need to do this is that, otherwise, 715 // these regions would look empty and this will confuse parts of 716 // G1. For example, the code that looks for a consecutive number 717 // of empty regions will consider them empty and try to 718 // re-allocate them. We can extend is_empty() to also include 719 // !is_continues_humongous(), but it is easier to just update the top 720 // fields here. The way we set top for all regions (i.e., top == 721 // end for all regions but the last one, top == new_top for the 722 // last one) is actually used when we will free up the humongous 723 // region in free_humongous_region(). 724 hr = NULL; 725 for (uint i = first + 1; i < last; ++i) { 726 hr = region_at(i); 727 if ((i + 1) == last) { 728 // last continues humongous region 729 assert(hr->bottom() < new_top && new_top <= hr->end(), 730 "new_top should fall on this region"); 731 hr->set_top(new_top); 732 _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top); 733 } else { 734 // not last one 735 assert(new_top > hr->end(), "new_top should be above this region"); 736 hr->set_top(hr->end()); 737 _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end()); 738 } 739 } 740 // If we have continues humongous regions (hr != NULL), then the 741 // end of the last one should match new_end and its top should 742 // match new_top. 743 assert(hr == NULL || 744 (hr->end() == new_end && hr->top() == new_top), "sanity"); 745 check_bitmaps("Humongous Region Allocation", first_hr); 746 747 assert(first_hr->used() == word_size * HeapWordSize, "invariant"); 748 _allocator->increase_used(first_hr->used()); 749 _humongous_set.add(first_hr); 750 751 return new_obj; 752 } 753 754 // If could fit into free regions w/o expansion, try. 755 // Otherwise, if can expand, do so. 756 // Otherwise, if using ex regions might help, try with ex given back. 757 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) { 758 assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */); 759 760 verify_region_sets_optional(); 761 762 uint first = G1_NO_HRM_INDEX; 763 uint obj_regions = (uint)(align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords); 764 765 if (obj_regions == 1) { 766 // Only one region to allocate, try to use a fast path by directly allocating 767 // from the free lists. Do not try to expand here, we will potentially do that 768 // later. 769 HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */); 770 if (hr != NULL) { 771 first = hr->hrm_index(); 772 } 773 } else { 774 // We can't allocate humongous regions spanning more than one region while 775 // cleanupComplete() is running, since some of the regions we find to be 776 // empty might not yet be added to the free list. It is not straightforward 777 // to know in which list they are on so that we can remove them. We only 778 // need to do this if we need to allocate more than one region to satisfy the 779 // current humongous allocation request. If we are only allocating one region 780 // we use the one-region region allocation code (see above), that already 781 // potentially waits for regions from the secondary free list. 782 wait_while_free_regions_coming(); 783 append_secondary_free_list_if_not_empty_with_lock(); 784 785 // Policy: Try only empty regions (i.e. already committed first). Maybe we 786 // are lucky enough to find some. 787 first = _hrm.find_contiguous_only_empty(obj_regions); 788 if (first != G1_NO_HRM_INDEX) { 789 _hrm.allocate_free_regions_starting_at(first, obj_regions); 790 } 791 } 792 793 if (first == G1_NO_HRM_INDEX) { 794 // Policy: We could not find enough regions for the humongous object in the 795 // free list. Look through the heap to find a mix of free and uncommitted regions. 796 // If so, try expansion. 797 first = _hrm.find_contiguous_empty_or_unavailable(obj_regions); 798 if (first != G1_NO_HRM_INDEX) { 799 // We found something. Make sure these regions are committed, i.e. expand 800 // the heap. Alternatively we could do a defragmentation GC. 801 ergo_verbose1(ErgoHeapSizing, 802 "attempt heap expansion", 803 ergo_format_reason("humongous allocation request failed") 804 ergo_format_byte("allocation request"), 805 word_size * HeapWordSize); 806 807 _hrm.expand_at(first, obj_regions); 808 g1_policy()->record_new_heap_size(num_regions()); 809 810 #ifdef ASSERT 811 for (uint i = first; i < first + obj_regions; ++i) { 812 HeapRegion* hr = region_at(i); 813 assert(hr->is_free(), "sanity"); 814 assert(hr->is_empty(), "sanity"); 815 assert(is_on_master_free_list(hr), "sanity"); 816 } 817 #endif 818 _hrm.allocate_free_regions_starting_at(first, obj_regions); 819 } else { 820 // Policy: Potentially trigger a defragmentation GC. 821 } 822 } 823 824 HeapWord* result = NULL; 825 if (first != G1_NO_HRM_INDEX) { 826 result = humongous_obj_allocate_initialize_regions(first, obj_regions, 827 word_size, context); 828 assert(result != NULL, "it should always return a valid result"); 829 830 // A successful humongous object allocation changes the used space 831 // information of the old generation so we need to recalculate the 832 // sizes and update the jstat counters here. 833 g1mm()->update_sizes(); 834 } 835 836 verify_region_sets_optional(); 837 838 return result; 839 } 840 841 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) { 842 assert_heap_not_locked_and_not_at_safepoint(); 843 assert(!is_humongous(word_size), "we do not allow humongous TLABs"); 844 845 unsigned int dummy_gc_count_before; 846 int dummy_gclocker_retry_count = 0; 847 return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count); 848 } 849 850 HeapWord* 851 G1CollectedHeap::mem_allocate(size_t word_size, 852 bool* gc_overhead_limit_was_exceeded) { 853 assert_heap_not_locked_and_not_at_safepoint(); 854 855 // Loop until the allocation is satisfied, or unsatisfied after GC. 856 for (int try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) { 857 unsigned int gc_count_before; 858 859 HeapWord* result = NULL; 860 if (!is_humongous(word_size)) { 861 result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count); 862 } else { 863 result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count); 864 } 865 if (result != NULL) { 866 return result; 867 } 868 869 // Create the garbage collection operation... 870 VM_G1CollectForAllocation op(gc_count_before, word_size); 871 op.set_allocation_context(AllocationContext::current()); 872 873 // ...and get the VM thread to execute it. 874 VMThread::execute(&op); 875 876 if (op.prologue_succeeded() && op.pause_succeeded()) { 877 // If the operation was successful we'll return the result even 878 // if it is NULL. If the allocation attempt failed immediately 879 // after a Full GC, it's unlikely we'll be able to allocate now. 880 HeapWord* result = op.result(); 881 if (result != NULL && !is_humongous(word_size)) { 882 // Allocations that take place on VM operations do not do any 883 // card dirtying and we have to do it here. We only have to do 884 // this for non-humongous allocations, though. 885 dirty_young_block(result, word_size); 886 } 887 return result; 888 } else { 889 if (gclocker_retry_count > GCLockerRetryAllocationCount) { 890 return NULL; 891 } 892 assert(op.result() == NULL, 893 "the result should be NULL if the VM op did not succeed"); 894 } 895 896 // Give a warning if we seem to be looping forever. 897 if ((QueuedAllocationWarningCount > 0) && 898 (try_count % QueuedAllocationWarningCount == 0)) { 899 warning("G1CollectedHeap::mem_allocate retries %d times", try_count); 900 } 901 } 902 903 ShouldNotReachHere(); 904 return NULL; 905 } 906 907 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size, 908 AllocationContext_t context, 909 unsigned int *gc_count_before_ret, 910 int* gclocker_retry_count_ret) { 911 // Make sure you read the note in attempt_allocation_humongous(). 912 913 assert_heap_not_locked_and_not_at_safepoint(); 914 assert(!is_humongous(word_size), "attempt_allocation_slow() should not " 915 "be called for humongous allocation requests"); 916 917 // We should only get here after the first-level allocation attempt 918 // (attempt_allocation()) failed to allocate. 919 920 // We will loop until a) we manage to successfully perform the 921 // allocation or b) we successfully schedule a collection which 922 // fails to perform the allocation. b) is the only case when we'll 923 // return NULL. 924 HeapWord* result = NULL; 925 for (int try_count = 1; /* we'll return */; try_count += 1) { 926 bool should_try_gc; 927 unsigned int gc_count_before; 928 929 { 930 MutexLockerEx x(Heap_lock); 931 result = _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size, 932 false /* bot_updates */); 933 if (result != NULL) { 934 return result; 935 } 936 937 // If we reach here, attempt_allocation_locked() above failed to 938 // allocate a new region. So the mutator alloc region should be NULL. 939 assert(_allocator->mutator_alloc_region(context)->get() == NULL, "only way to get here"); 940 941 if (GC_locker::is_active_and_needs_gc()) { 942 if (g1_policy()->can_expand_young_list()) { 943 // No need for an ergo verbose message here, 944 // can_expand_young_list() does this when it returns true. 945 result = _allocator->mutator_alloc_region(context)->attempt_allocation_force(word_size, 946 false /* bot_updates */); 947 if (result != NULL) { 948 return result; 949 } 950 } 951 should_try_gc = false; 952 } else { 953 // The GCLocker may not be active but the GCLocker initiated 954 // GC may not yet have been performed (GCLocker::needs_gc() 955 // returns true). In this case we do not try this GC and 956 // wait until the GCLocker initiated GC is performed, and 957 // then retry the allocation. 958 if (GC_locker::needs_gc()) { 959 should_try_gc = false; 960 } else { 961 // Read the GC count while still holding the Heap_lock. 962 gc_count_before = total_collections(); 963 should_try_gc = true; 964 } 965 } 966 } 967 968 if (should_try_gc) { 969 bool succeeded; 970 result = do_collection_pause(word_size, gc_count_before, &succeeded, 971 GCCause::_g1_inc_collection_pause); 972 if (result != NULL) { 973 assert(succeeded, "only way to get back a non-NULL result"); 974 return result; 975 } 976 977 if (succeeded) { 978 // If we get here we successfully scheduled a collection which 979 // failed to allocate. No point in trying to allocate 980 // further. We'll just return NULL. 981 MutexLockerEx x(Heap_lock); 982 *gc_count_before_ret = total_collections(); 983 return NULL; 984 } 985 } else { 986 if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) { 987 MutexLockerEx x(Heap_lock); 988 *gc_count_before_ret = total_collections(); 989 return NULL; 990 } 991 // The GCLocker is either active or the GCLocker initiated 992 // GC has not yet been performed. Stall until it is and 993 // then retry the allocation. 994 GC_locker::stall_until_clear(); 995 (*gclocker_retry_count_ret) += 1; 996 } 997 998 // We can reach here if we were unsuccessful in scheduling a 999 // collection (because another thread beat us to it) or if we were 1000 // stalled due to the GC locker. In either can we should retry the 1001 // allocation attempt in case another thread successfully 1002 // performed a collection and reclaimed enough space. We do the 1003 // first attempt (without holding the Heap_lock) here and the 1004 // follow-on attempt will be at the start of the next loop 1005 // iteration (after taking the Heap_lock). 1006 result = _allocator->mutator_alloc_region(context)->attempt_allocation(word_size, 1007 false /* bot_updates */); 1008 if (result != NULL) { 1009 return result; 1010 } 1011 1012 // Give a warning if we seem to be looping forever. 1013 if ((QueuedAllocationWarningCount > 0) && 1014 (try_count % QueuedAllocationWarningCount == 0)) { 1015 warning("G1CollectedHeap::attempt_allocation_slow() " 1016 "retries %d times", try_count); 1017 } 1018 } 1019 1020 ShouldNotReachHere(); 1021 return NULL; 1022 } 1023 1024 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size, 1025 unsigned int * gc_count_before_ret, 1026 int* gclocker_retry_count_ret) { 1027 // The structure of this method has a lot of similarities to 1028 // attempt_allocation_slow(). The reason these two were not merged 1029 // into a single one is that such a method would require several "if 1030 // allocation is not humongous do this, otherwise do that" 1031 // conditional paths which would obscure its flow. In fact, an early 1032 // version of this code did use a unified method which was harder to 1033 // follow and, as a result, it had subtle bugs that were hard to 1034 // track down. So keeping these two methods separate allows each to 1035 // be more readable. It will be good to keep these two in sync as 1036 // much as possible. 1037 1038 assert_heap_not_locked_and_not_at_safepoint(); 1039 assert(is_humongous(word_size), "attempt_allocation_humongous() " 1040 "should only be called for humongous allocations"); 1041 1042 // Humongous objects can exhaust the heap quickly, so we should check if we 1043 // need to start a marking cycle at each humongous object allocation. We do 1044 // the check before we do the actual allocation. The reason for doing it 1045 // before the allocation is that we avoid having to keep track of the newly 1046 // allocated memory while we do a GC. 1047 if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation", 1048 word_size)) { 1049 collect(GCCause::_g1_humongous_allocation); 1050 } 1051 1052 // We will loop until a) we manage to successfully perform the 1053 // allocation or b) we successfully schedule a collection which 1054 // fails to perform the allocation. b) is the only case when we'll 1055 // return NULL. 1056 HeapWord* result = NULL; 1057 for (int try_count = 1; /* we'll return */; try_count += 1) { 1058 bool should_try_gc; 1059 unsigned int gc_count_before; 1060 1061 { 1062 MutexLockerEx x(Heap_lock); 1063 1064 // Given that humongous objects are not allocated in young 1065 // regions, we'll first try to do the allocation without doing a 1066 // collection hoping that there's enough space in the heap. 1067 result = humongous_obj_allocate(word_size, AllocationContext::current()); 1068 if (result != NULL) { 1069 return result; 1070 } 1071 1072 if (GC_locker::is_active_and_needs_gc()) { 1073 should_try_gc = false; 1074 } else { 1075 // The GCLocker may not be active but the GCLocker initiated 1076 // GC may not yet have been performed (GCLocker::needs_gc() 1077 // returns true). In this case we do not try this GC and 1078 // wait until the GCLocker initiated GC is performed, and 1079 // then retry the allocation. 1080 if (GC_locker::needs_gc()) { 1081 should_try_gc = false; 1082 } else { 1083 // Read the GC count while still holding the Heap_lock. 1084 gc_count_before = total_collections(); 1085 should_try_gc = true; 1086 } 1087 } 1088 } 1089 1090 if (should_try_gc) { 1091 // If we failed to allocate the humongous object, we should try to 1092 // do a collection pause (if we're allowed) in case it reclaims 1093 // enough space for the allocation to succeed after the pause. 1094 1095 bool succeeded; 1096 result = do_collection_pause(word_size, gc_count_before, &succeeded, 1097 GCCause::_g1_humongous_allocation); 1098 if (result != NULL) { 1099 assert(succeeded, "only way to get back a non-NULL result"); 1100 return result; 1101 } 1102 1103 if (succeeded) { 1104 // If we get here we successfully scheduled a collection which 1105 // failed to allocate. No point in trying to allocate 1106 // further. We'll just return NULL. 1107 MutexLockerEx x(Heap_lock); 1108 *gc_count_before_ret = total_collections(); 1109 return NULL; 1110 } 1111 } else { 1112 if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) { 1113 MutexLockerEx x(Heap_lock); 1114 *gc_count_before_ret = total_collections(); 1115 return NULL; 1116 } 1117 // The GCLocker is either active or the GCLocker initiated 1118 // GC has not yet been performed. Stall until it is and 1119 // then retry the allocation. 1120 GC_locker::stall_until_clear(); 1121 (*gclocker_retry_count_ret) += 1; 1122 } 1123 1124 // We can reach here if we were unsuccessful in scheduling a 1125 // collection (because another thread beat us to it) or if we were 1126 // stalled due to the GC locker. In either can we should retry the 1127 // allocation attempt in case another thread successfully 1128 // performed a collection and reclaimed enough space. Give a 1129 // warning if we seem to be looping forever. 1130 1131 if ((QueuedAllocationWarningCount > 0) && 1132 (try_count % QueuedAllocationWarningCount == 0)) { 1133 warning("G1CollectedHeap::attempt_allocation_humongous() " 1134 "retries %d times", try_count); 1135 } 1136 } 1137 1138 ShouldNotReachHere(); 1139 return NULL; 1140 } 1141 1142 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size, 1143 AllocationContext_t context, 1144 bool expect_null_mutator_alloc_region) { 1145 assert_at_safepoint(true /* should_be_vm_thread */); 1146 assert(_allocator->mutator_alloc_region(context)->get() == NULL || 1147 !expect_null_mutator_alloc_region, 1148 "the current alloc region was unexpectedly found to be non-NULL"); 1149 1150 if (!is_humongous(word_size)) { 1151 return _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size, 1152 false /* bot_updates */); 1153 } else { 1154 HeapWord* result = humongous_obj_allocate(word_size, context); 1155 if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) { 1156 g1_policy()->set_initiate_conc_mark_if_possible(); 1157 } 1158 return result; 1159 } 1160 1161 ShouldNotReachHere(); 1162 } 1163 1164 class PostMCRemSetClearClosure: public HeapRegionClosure { 1165 G1CollectedHeap* _g1h; 1166 ModRefBarrierSet* _mr_bs; 1167 public: 1168 PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) : 1169 _g1h(g1h), _mr_bs(mr_bs) {} 1170 1171 bool doHeapRegion(HeapRegion* r) { 1172 HeapRegionRemSet* hrrs = r->rem_set(); 1173 1174 if (r->is_continues_humongous()) { 1175 // We'll assert that the strong code root list and RSet is empty 1176 assert(hrrs->strong_code_roots_list_length() == 0, "sanity"); 1177 assert(hrrs->occupied() == 0, "RSet should be empty"); 1178 return false; 1179 } 1180 1181 _g1h->reset_gc_time_stamps(r); 1182 hrrs->clear(); 1183 // You might think here that we could clear just the cards 1184 // corresponding to the used region. But no: if we leave a dirty card 1185 // in a region we might allocate into, then it would prevent that card 1186 // from being enqueued, and cause it to be missed. 1187 // Re: the performance cost: we shouldn't be doing full GC anyway! 1188 _mr_bs->clear(MemRegion(r->bottom(), r->end())); 1189 1190 return false; 1191 } 1192 }; 1193 1194 void G1CollectedHeap::clear_rsets_post_compaction() { 1195 PostMCRemSetClearClosure rs_clear(this, g1_barrier_set()); 1196 heap_region_iterate(&rs_clear); 1197 } 1198 1199 class RebuildRSOutOfRegionClosure: public HeapRegionClosure { 1200 G1CollectedHeap* _g1h; 1201 UpdateRSOopClosure _cl; 1202 int _worker_i; 1203 public: 1204 RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) : 1205 _cl(g1->g1_rem_set(), worker_i), 1206 _worker_i(worker_i), 1207 _g1h(g1) 1208 { } 1209 1210 bool doHeapRegion(HeapRegion* r) { 1211 if (!r->is_continues_humongous()) { 1212 _cl.set_from(r); 1213 r->oop_iterate(&_cl); 1214 } 1215 return false; 1216 } 1217 }; 1218 1219 class ParRebuildRSTask: public AbstractGangTask { 1220 G1CollectedHeap* _g1; 1221 HeapRegionClaimer _hrclaimer; 1222 1223 public: 1224 ParRebuildRSTask(G1CollectedHeap* g1) : 1225 AbstractGangTask("ParRebuildRSTask"), _g1(g1), _hrclaimer(g1->workers()->active_workers()) {} 1226 1227 void work(uint worker_id) { 1228 RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id); 1229 _g1->heap_region_par_iterate(&rebuild_rs, worker_id, &_hrclaimer); 1230 } 1231 }; 1232 1233 class PostCompactionPrinterClosure: public HeapRegionClosure { 1234 private: 1235 G1HRPrinter* _hr_printer; 1236 public: 1237 bool doHeapRegion(HeapRegion* hr) { 1238 assert(!hr->is_young(), "not expecting to find young regions"); 1239 if (hr->is_free()) { 1240 // We only generate output for non-empty regions. 1241 } else if (hr->is_starts_humongous()) { 1242 if (hr->region_num() == 1) { 1243 // single humongous region 1244 _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous); 1245 } else { 1246 _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous); 1247 } 1248 } else if (hr->is_continues_humongous()) { 1249 _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous); 1250 } else if (hr->is_old()) { 1251 _hr_printer->post_compaction(hr, G1HRPrinter::Old); 1252 } else { 1253 ShouldNotReachHere(); 1254 } 1255 return false; 1256 } 1257 1258 PostCompactionPrinterClosure(G1HRPrinter* hr_printer) 1259 : _hr_printer(hr_printer) { } 1260 }; 1261 1262 void G1CollectedHeap::print_hrm_post_compaction() { 1263 PostCompactionPrinterClosure cl(hr_printer()); 1264 heap_region_iterate(&cl); 1265 } 1266 1267 bool G1CollectedHeap::do_collection(bool explicit_gc, 1268 bool clear_all_soft_refs, 1269 size_t word_size) { 1270 assert_at_safepoint(true /* should_be_vm_thread */); 1271 1272 if (GC_locker::check_active_before_gc()) { 1273 return false; 1274 } 1275 1276 STWGCTimer* gc_timer = G1MarkSweep::gc_timer(); 1277 gc_timer->register_gc_start(); 1278 1279 SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer(); 1280 gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start()); 1281 1282 SvcGCMarker sgcm(SvcGCMarker::FULL); 1283 ResourceMark rm; 1284 1285 print_heap_before_gc(); 1286 trace_heap_before_gc(gc_tracer); 1287 1288 size_t metadata_prev_used = MetaspaceAux::used_bytes(); 1289 1290 verify_region_sets_optional(); 1291 1292 const bool do_clear_all_soft_refs = clear_all_soft_refs || 1293 collector_policy()->should_clear_all_soft_refs(); 1294 1295 ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy()); 1296 1297 { 1298 IsGCActiveMark x; 1299 1300 // Timing 1301 assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant"); 1302 gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps); 1303 TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty); 1304 1305 { 1306 GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL, gc_tracer->gc_id()); 1307 TraceCollectorStats tcs(g1mm()->full_collection_counters()); 1308 TraceMemoryManagerStats tms(true /* fullGC */, gc_cause()); 1309 1310 double start = os::elapsedTime(); 1311 g1_policy()->record_full_collection_start(); 1312 1313 // Note: When we have a more flexible GC logging framework that 1314 // allows us to add optional attributes to a GC log record we 1315 // could consider timing and reporting how long we wait in the 1316 // following two methods. 1317 wait_while_free_regions_coming(); 1318 // If we start the compaction before the CM threads finish 1319 // scanning the root regions we might trip them over as we'll 1320 // be moving objects / updating references. So let's wait until 1321 // they are done. By telling them to abort, they should complete 1322 // early. 1323 _cm->root_regions()->abort(); 1324 _cm->root_regions()->wait_until_scan_finished(); 1325 append_secondary_free_list_if_not_empty_with_lock(); 1326 1327 gc_prologue(true); 1328 increment_total_collections(true /* full gc */); 1329 increment_old_marking_cycles_started(); 1330 1331 assert(used() == recalculate_used(), "Should be equal"); 1332 1333 verify_before_gc(); 1334 1335 check_bitmaps("Full GC Start"); 1336 pre_full_gc_dump(gc_timer); 1337 1338 COMPILER2_PRESENT(DerivedPointerTable::clear()); 1339 1340 // Disable discovery and empty the discovered lists 1341 // for the CM ref processor. 1342 ref_processor_cm()->disable_discovery(); 1343 ref_processor_cm()->abandon_partial_discovery(); 1344 ref_processor_cm()->verify_no_references_recorded(); 1345 1346 // Abandon current iterations of concurrent marking and concurrent 1347 // refinement, if any are in progress. We have to do this before 1348 // wait_until_scan_finished() below. 1349 concurrent_mark()->abort(); 1350 1351 // Make sure we'll choose a new allocation region afterwards. 1352 _allocator->release_mutator_alloc_region(); 1353 _allocator->abandon_gc_alloc_regions(); 1354 g1_rem_set()->cleanupHRRS(); 1355 1356 // We should call this after we retire any currently active alloc 1357 // regions so that all the ALLOC / RETIRE events are generated 1358 // before the start GC event. 1359 _hr_printer.start_gc(true /* full */, (size_t) total_collections()); 1360 1361 // We may have added regions to the current incremental collection 1362 // set between the last GC or pause and now. We need to clear the 1363 // incremental collection set and then start rebuilding it afresh 1364 // after this full GC. 1365 abandon_collection_set(g1_policy()->inc_cset_head()); 1366 g1_policy()->clear_incremental_cset(); 1367 g1_policy()->stop_incremental_cset_building(); 1368 1369 tear_down_region_sets(false /* free_list_only */); 1370 g1_policy()->set_gcs_are_young(true); 1371 1372 // See the comments in g1CollectedHeap.hpp and 1373 // G1CollectedHeap::ref_processing_init() about 1374 // how reference processing currently works in G1. 1375 1376 // Temporarily make discovery by the STW ref processor single threaded (non-MT). 1377 ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false); 1378 1379 // Temporarily clear the STW ref processor's _is_alive_non_header field. 1380 ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL); 1381 1382 ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/); 1383 ref_processor_stw()->setup_policy(do_clear_all_soft_refs); 1384 1385 // Do collection work 1386 { 1387 HandleMark hm; // Discard invalid handles created during gc 1388 G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs); 1389 } 1390 1391 assert(num_free_regions() == 0, "we should not have added any free regions"); 1392 rebuild_region_sets(false /* free_list_only */); 1393 1394 // Enqueue any discovered reference objects that have 1395 // not been removed from the discovered lists. 1396 ref_processor_stw()->enqueue_discovered_references(); 1397 1398 COMPILER2_PRESENT(DerivedPointerTable::update_pointers()); 1399 1400 MemoryService::track_memory_usage(); 1401 1402 assert(!ref_processor_stw()->discovery_enabled(), "Postcondition"); 1403 ref_processor_stw()->verify_no_references_recorded(); 1404 1405 // Delete metaspaces for unloaded class loaders and clean up loader_data graph 1406 ClassLoaderDataGraph::purge(); 1407 MetaspaceAux::verify_metrics(); 1408 1409 // Note: since we've just done a full GC, concurrent 1410 // marking is no longer active. Therefore we need not 1411 // re-enable reference discovery for the CM ref processor. 1412 // That will be done at the start of the next marking cycle. 1413 assert(!ref_processor_cm()->discovery_enabled(), "Postcondition"); 1414 ref_processor_cm()->verify_no_references_recorded(); 1415 1416 reset_gc_time_stamp(); 1417 // Since everything potentially moved, we will clear all remembered 1418 // sets, and clear all cards. Later we will rebuild remembered 1419 // sets. We will also reset the GC time stamps of the regions. 1420 clear_rsets_post_compaction(); 1421 check_gc_time_stamps(); 1422 1423 // Resize the heap if necessary. 1424 resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size); 1425 1426 if (_hr_printer.is_active()) { 1427 // We should do this after we potentially resize the heap so 1428 // that all the COMMIT / UNCOMMIT events are generated before 1429 // the end GC event. 1430 1431 print_hrm_post_compaction(); 1432 _hr_printer.end_gc(true /* full */, (size_t) total_collections()); 1433 } 1434 1435 G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache(); 1436 if (hot_card_cache->use_cache()) { 1437 hot_card_cache->reset_card_counts(); 1438 hot_card_cache->reset_hot_cache(); 1439 } 1440 1441 // Rebuild remembered sets of all regions. 1442 uint n_workers = 1443 AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(), 1444 workers()->active_workers(), 1445 Threads::number_of_non_daemon_threads()); 1446 assert(UseDynamicNumberOfGCThreads || 1447 n_workers == workers()->total_workers(), 1448 "If not dynamic should be using all the workers"); 1449 workers()->set_active_workers(n_workers); 1450 // Set parallel threads in the heap (_n_par_threads) only 1451 // before a parallel phase and always reset it to 0 after 1452 // the phase so that the number of parallel threads does 1453 // no get carried forward to a serial phase where there 1454 // may be code that is "possibly_parallel". 1455 set_par_threads(n_workers); 1456 1457 ParRebuildRSTask rebuild_rs_task(this); 1458 assert(UseDynamicNumberOfGCThreads || 1459 workers()->active_workers() == workers()->total_workers(), 1460 "Unless dynamic should use total workers"); 1461 // Use the most recent number of active workers 1462 assert(workers()->active_workers() > 0, 1463 "Active workers not properly set"); 1464 set_par_threads(workers()->active_workers()); 1465 workers()->run_task(&rebuild_rs_task); 1466 set_par_threads(0); 1467 1468 // Rebuild the strong code root lists for each region 1469 rebuild_strong_code_roots(); 1470 1471 if (true) { // FIXME 1472 MetaspaceGC::compute_new_size(); 1473 } 1474 1475 #ifdef TRACESPINNING 1476 ParallelTaskTerminator::print_termination_counts(); 1477 #endif 1478 1479 // Discard all rset updates 1480 JavaThread::dirty_card_queue_set().abandon_logs(); 1481 assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty"); 1482 1483 _young_list->reset_sampled_info(); 1484 // At this point there should be no regions in the 1485 // entire heap tagged as young. 1486 assert(check_young_list_empty(true /* check_heap */), 1487 "young list should be empty at this point"); 1488 1489 // Update the number of full collections that have been completed. 1490 increment_old_marking_cycles_completed(false /* concurrent */); 1491 1492 _hrm.verify_optional(); 1493 verify_region_sets_optional(); 1494 1495 verify_after_gc(); 1496 1497 // Clear the previous marking bitmap, if needed for bitmap verification. 1498 // Note we cannot do this when we clear the next marking bitmap in 1499 // ConcurrentMark::abort() above since VerifyDuringGC verifies the 1500 // objects marked during a full GC against the previous bitmap. 1501 // But we need to clear it before calling check_bitmaps below since 1502 // the full GC has compacted objects and updated TAMS but not updated 1503 // the prev bitmap. 1504 if (G1VerifyBitmaps) { 1505 ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll(); 1506 } 1507 check_bitmaps("Full GC End"); 1508 1509 // Start a new incremental collection set for the next pause 1510 assert(g1_policy()->collection_set() == NULL, "must be"); 1511 g1_policy()->start_incremental_cset_building(); 1512 1513 clear_cset_fast_test(); 1514 1515 _allocator->init_mutator_alloc_region(); 1516 1517 double end = os::elapsedTime(); 1518 g1_policy()->record_full_collection_end(); 1519 1520 if (G1Log::fine()) { 1521 g1_policy()->print_heap_transition(); 1522 } 1523 1524 // We must call G1MonitoringSupport::update_sizes() in the same scoping level 1525 // as an active TraceMemoryManagerStats object (i.e. before the destructor for the 1526 // TraceMemoryManagerStats is called) so that the G1 memory pools are updated 1527 // before any GC notifications are raised. 1528 g1mm()->update_sizes(); 1529 1530 gc_epilogue(true); 1531 } 1532 1533 if (G1Log::finer()) { 1534 g1_policy()->print_detailed_heap_transition(true /* full */); 1535 } 1536 1537 print_heap_after_gc(); 1538 trace_heap_after_gc(gc_tracer); 1539 1540 post_full_gc_dump(gc_timer); 1541 1542 gc_timer->register_gc_end(); 1543 gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions()); 1544 } 1545 1546 return true; 1547 } 1548 1549 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) { 1550 // do_collection() will return whether it succeeded in performing 1551 // the GC. Currently, there is no facility on the 1552 // do_full_collection() API to notify the caller than the collection 1553 // did not succeed (e.g., because it was locked out by the GC 1554 // locker). So, right now, we'll ignore the return value. 1555 bool dummy = do_collection(true, /* explicit_gc */ 1556 clear_all_soft_refs, 1557 0 /* word_size */); 1558 } 1559 1560 // This code is mostly copied from TenuredGeneration. 1561 void 1562 G1CollectedHeap:: 1563 resize_if_necessary_after_full_collection(size_t word_size) { 1564 // Include the current allocation, if any, and bytes that will be 1565 // pre-allocated to support collections, as "used". 1566 const size_t used_after_gc = used(); 1567 const size_t capacity_after_gc = capacity(); 1568 const size_t free_after_gc = capacity_after_gc - used_after_gc; 1569 1570 // This is enforced in arguments.cpp. 1571 assert(MinHeapFreeRatio <= MaxHeapFreeRatio, 1572 "otherwise the code below doesn't make sense"); 1573 1574 // We don't have floating point command-line arguments 1575 const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0; 1576 const double maximum_used_percentage = 1.0 - minimum_free_percentage; 1577 const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0; 1578 const double minimum_used_percentage = 1.0 - maximum_free_percentage; 1579 1580 const size_t min_heap_size = collector_policy()->min_heap_byte_size(); 1581 const size_t max_heap_size = collector_policy()->max_heap_byte_size(); 1582 1583 // We have to be careful here as these two calculations can overflow 1584 // 32-bit size_t's. 1585 double used_after_gc_d = (double) used_after_gc; 1586 double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage; 1587 double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage; 1588 1589 // Let's make sure that they are both under the max heap size, which 1590 // by default will make them fit into a size_t. 1591 double desired_capacity_upper_bound = (double) max_heap_size; 1592 minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d, 1593 desired_capacity_upper_bound); 1594 maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d, 1595 desired_capacity_upper_bound); 1596 1597 // We can now safely turn them into size_t's. 1598 size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d; 1599 size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d; 1600 1601 // This assert only makes sense here, before we adjust them 1602 // with respect to the min and max heap size. 1603 assert(minimum_desired_capacity <= maximum_desired_capacity, 1604 err_msg("minimum_desired_capacity = "SIZE_FORMAT", " 1605 "maximum_desired_capacity = "SIZE_FORMAT, 1606 minimum_desired_capacity, maximum_desired_capacity)); 1607 1608 // Should not be greater than the heap max size. No need to adjust 1609 // it with respect to the heap min size as it's a lower bound (i.e., 1610 // we'll try to make the capacity larger than it, not smaller). 1611 minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size); 1612 // Should not be less than the heap min size. No need to adjust it 1613 // with respect to the heap max size as it's an upper bound (i.e., 1614 // we'll try to make the capacity smaller than it, not greater). 1615 maximum_desired_capacity = MAX2(maximum_desired_capacity, min_heap_size); 1616 1617 if (capacity_after_gc < minimum_desired_capacity) { 1618 // Don't expand unless it's significant 1619 size_t expand_bytes = minimum_desired_capacity - capacity_after_gc; 1620 ergo_verbose4(ErgoHeapSizing, 1621 "attempt heap expansion", 1622 ergo_format_reason("capacity lower than " 1623 "min desired capacity after Full GC") 1624 ergo_format_byte("capacity") 1625 ergo_format_byte("occupancy") 1626 ergo_format_byte_perc("min desired capacity"), 1627 capacity_after_gc, used_after_gc, 1628 minimum_desired_capacity, (double) MinHeapFreeRatio); 1629 expand(expand_bytes); 1630 1631 // No expansion, now see if we want to shrink 1632 } else if (capacity_after_gc > maximum_desired_capacity) { 1633 // Capacity too large, compute shrinking size 1634 size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity; 1635 ergo_verbose4(ErgoHeapSizing, 1636 "attempt heap shrinking", 1637 ergo_format_reason("capacity higher than " 1638 "max desired capacity after Full GC") 1639 ergo_format_byte("capacity") 1640 ergo_format_byte("occupancy") 1641 ergo_format_byte_perc("max desired capacity"), 1642 capacity_after_gc, used_after_gc, 1643 maximum_desired_capacity, (double) MaxHeapFreeRatio); 1644 shrink(shrink_bytes); 1645 } 1646 } 1647 1648 1649 HeapWord* 1650 G1CollectedHeap::satisfy_failed_allocation(size_t word_size, 1651 AllocationContext_t context, 1652 bool* succeeded) { 1653 assert_at_safepoint(true /* should_be_vm_thread */); 1654 1655 *succeeded = true; 1656 // Let's attempt the allocation first. 1657 HeapWord* result = 1658 attempt_allocation_at_safepoint(word_size, 1659 context, 1660 false /* expect_null_mutator_alloc_region */); 1661 if (result != NULL) { 1662 assert(*succeeded, "sanity"); 1663 return result; 1664 } 1665 1666 // In a G1 heap, we're supposed to keep allocation from failing by 1667 // incremental pauses. Therefore, at least for now, we'll favor 1668 // expansion over collection. (This might change in the future if we can 1669 // do something smarter than full collection to satisfy a failed alloc.) 1670 result = expand_and_allocate(word_size, context); 1671 if (result != NULL) { 1672 assert(*succeeded, "sanity"); 1673 return result; 1674 } 1675 1676 // Expansion didn't work, we'll try to do a Full GC. 1677 bool gc_succeeded = do_collection(false, /* explicit_gc */ 1678 false, /* clear_all_soft_refs */ 1679 word_size); 1680 if (!gc_succeeded) { 1681 *succeeded = false; 1682 return NULL; 1683 } 1684 1685 // Retry the allocation 1686 result = attempt_allocation_at_safepoint(word_size, 1687 context, 1688 true /* expect_null_mutator_alloc_region */); 1689 if (result != NULL) { 1690 assert(*succeeded, "sanity"); 1691 return result; 1692 } 1693 1694 // Then, try a Full GC that will collect all soft references. 1695 gc_succeeded = do_collection(false, /* explicit_gc */ 1696 true, /* clear_all_soft_refs */ 1697 word_size); 1698 if (!gc_succeeded) { 1699 *succeeded = false; 1700 return NULL; 1701 } 1702 1703 // Retry the allocation once more 1704 result = attempt_allocation_at_safepoint(word_size, 1705 context, 1706 true /* expect_null_mutator_alloc_region */); 1707 if (result != NULL) { 1708 assert(*succeeded, "sanity"); 1709 return result; 1710 } 1711 1712 assert(!collector_policy()->should_clear_all_soft_refs(), 1713 "Flag should have been handled and cleared prior to this point"); 1714 1715 // What else? We might try synchronous finalization later. If the total 1716 // space available is large enough for the allocation, then a more 1717 // complete compaction phase than we've tried so far might be 1718 // appropriate. 1719 assert(*succeeded, "sanity"); 1720 return NULL; 1721 } 1722 1723 // Attempting to expand the heap sufficiently 1724 // to support an allocation of the given "word_size". If 1725 // successful, perform the allocation and return the address of the 1726 // allocated block, or else "NULL". 1727 1728 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) { 1729 assert_at_safepoint(true /* should_be_vm_thread */); 1730 1731 verify_region_sets_optional(); 1732 1733 size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes); 1734 ergo_verbose1(ErgoHeapSizing, 1735 "attempt heap expansion", 1736 ergo_format_reason("allocation request failed") 1737 ergo_format_byte("allocation request"), 1738 word_size * HeapWordSize); 1739 if (expand(expand_bytes)) { 1740 _hrm.verify_optional(); 1741 verify_region_sets_optional(); 1742 return attempt_allocation_at_safepoint(word_size, 1743 context, 1744 false /* expect_null_mutator_alloc_region */); 1745 } 1746 return NULL; 1747 } 1748 1749 bool G1CollectedHeap::expand(size_t expand_bytes) { 1750 size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes); 1751 aligned_expand_bytes = align_size_up(aligned_expand_bytes, 1752 HeapRegion::GrainBytes); 1753 ergo_verbose2(ErgoHeapSizing, 1754 "expand the heap", 1755 ergo_format_byte("requested expansion amount") 1756 ergo_format_byte("attempted expansion amount"), 1757 expand_bytes, aligned_expand_bytes); 1758 1759 if (is_maximal_no_gc()) { 1760 ergo_verbose0(ErgoHeapSizing, 1761 "did not expand the heap", 1762 ergo_format_reason("heap already fully expanded")); 1763 return false; 1764 } 1765 1766 uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes); 1767 assert(regions_to_expand > 0, "Must expand by at least one region"); 1768 1769 uint expanded_by = _hrm.expand_by(regions_to_expand); 1770 1771 if (expanded_by > 0) { 1772 size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes; 1773 assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition"); 1774 g1_policy()->record_new_heap_size(num_regions()); 1775 } else { 1776 ergo_verbose0(ErgoHeapSizing, 1777 "did not expand the heap", 1778 ergo_format_reason("heap expansion operation failed")); 1779 // The expansion of the virtual storage space was unsuccessful. 1780 // Let's see if it was because we ran out of swap. 1781 if (G1ExitOnExpansionFailure && 1782 _hrm.available() >= regions_to_expand) { 1783 // We had head room... 1784 vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion"); 1785 } 1786 } 1787 return regions_to_expand > 0; 1788 } 1789 1790 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) { 1791 size_t aligned_shrink_bytes = 1792 ReservedSpace::page_align_size_down(shrink_bytes); 1793 aligned_shrink_bytes = align_size_down(aligned_shrink_bytes, 1794 HeapRegion::GrainBytes); 1795 uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes); 1796 1797 uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove); 1798 size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes; 1799 1800 ergo_verbose3(ErgoHeapSizing, 1801 "shrink the heap", 1802 ergo_format_byte("requested shrinking amount") 1803 ergo_format_byte("aligned shrinking amount") 1804 ergo_format_byte("attempted shrinking amount"), 1805 shrink_bytes, aligned_shrink_bytes, shrunk_bytes); 1806 if (num_regions_removed > 0) { 1807 g1_policy()->record_new_heap_size(num_regions()); 1808 } else { 1809 ergo_verbose0(ErgoHeapSizing, 1810 "did not shrink the heap", 1811 ergo_format_reason("heap shrinking operation failed")); 1812 } 1813 } 1814 1815 void G1CollectedHeap::shrink(size_t shrink_bytes) { 1816 verify_region_sets_optional(); 1817 1818 // We should only reach here at the end of a Full GC which means we 1819 // should not not be holding to any GC alloc regions. The method 1820 // below will make sure of that and do any remaining clean up. 1821 _allocator->abandon_gc_alloc_regions(); 1822 1823 // Instead of tearing down / rebuilding the free lists here, we 1824 // could instead use the remove_all_pending() method on free_list to 1825 // remove only the ones that we need to remove. 1826 tear_down_region_sets(true /* free_list_only */); 1827 shrink_helper(shrink_bytes); 1828 rebuild_region_sets(true /* free_list_only */); 1829 1830 _hrm.verify_optional(); 1831 verify_region_sets_optional(); 1832 } 1833 1834 // Public methods. 1835 1836 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away 1837 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list 1838 #endif // _MSC_VER 1839 1840 1841 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) : 1842 SharedHeap(policy_), 1843 _g1_policy(policy_), 1844 _dirty_card_queue_set(false), 1845 _into_cset_dirty_card_queue_set(false), 1846 _is_alive_closure_cm(this), 1847 _is_alive_closure_stw(this), 1848 _ref_processor_cm(NULL), 1849 _ref_processor_stw(NULL), 1850 _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)), 1851 _bot_shared(NULL), 1852 _evac_failure_scan_stack(NULL), 1853 _mark_in_progress(false), 1854 _cg1r(NULL), 1855 _g1mm(NULL), 1856 _refine_cte_cl(NULL), 1857 _full_collection(false), 1858 _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()), 1859 _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()), 1860 _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()), 1861 _humongous_is_live(), 1862 _has_humongous_reclaim_candidates(false), 1863 _free_regions_coming(false), 1864 _young_list(new YoungList(this)), 1865 _gc_time_stamp(0), 1866 _survivor_plab_stats(YoungPLABSize, PLABWeight), 1867 _old_plab_stats(OldPLABSize, PLABWeight), 1868 _expand_heap_after_alloc_failure(true), 1869 _surviving_young_words(NULL), 1870 _old_marking_cycles_started(0), 1871 _old_marking_cycles_completed(0), 1872 _concurrent_cycle_started(false), 1873 _heap_summary_sent(false), 1874 _in_cset_fast_test(), 1875 _dirty_cards_region_list(NULL), 1876 _worker_cset_start_region(NULL), 1877 _worker_cset_start_region_time_stamp(NULL), 1878 _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()), 1879 _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()), 1880 _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()), 1881 _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) { 1882 1883 _g1h = this; 1884 if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) { 1885 vm_exit_during_initialization("Failed necessary allocation."); 1886 } 1887 1888 _allocator = G1Allocator::create_allocator(_g1h); 1889 _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2; 1890 1891 int n_queues = MAX2((int)ParallelGCThreads, 1); 1892 _task_queues = new RefToScanQueueSet(n_queues); 1893 1894 uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets(); 1895 assert(n_rem_sets > 0, "Invariant."); 1896 1897 _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC); 1898 _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues, mtGC); 1899 _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC); 1900 1901 for (int i = 0; i < n_queues; i++) { 1902 RefToScanQueue* q = new RefToScanQueue(); 1903 q->initialize(); 1904 _task_queues->register_queue(i, q); 1905 ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo(); 1906 } 1907 clear_cset_start_regions(); 1908 1909 // Initialize the G1EvacuationFailureALot counters and flags. 1910 NOT_PRODUCT(reset_evacuation_should_fail();) 1911 1912 guarantee(_task_queues != NULL, "task_queues allocation failure."); 1913 } 1914 1915 jint G1CollectedHeap::initialize() { 1916 CollectedHeap::pre_initialize(); 1917 os::enable_vtime(); 1918 1919 G1Log::init(); 1920 1921 // Necessary to satisfy locking discipline assertions. 1922 1923 MutexLocker x(Heap_lock); 1924 1925 // We have to initialize the printer before committing the heap, as 1926 // it will be used then. 1927 _hr_printer.set_active(G1PrintHeapRegions); 1928 1929 // While there are no constraints in the GC code that HeapWordSize 1930 // be any particular value, there are multiple other areas in the 1931 // system which believe this to be true (e.g. oop->object_size in some 1932 // cases incorrectly returns the size in wordSize units rather than 1933 // HeapWordSize). 1934 guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize"); 1935 1936 size_t init_byte_size = collector_policy()->initial_heap_byte_size(); 1937 size_t max_byte_size = collector_policy()->max_heap_byte_size(); 1938 size_t heap_alignment = collector_policy()->heap_alignment(); 1939 1940 // Ensure that the sizes are properly aligned. 1941 Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap"); 1942 Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap"); 1943 Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap"); 1944 1945 _refine_cte_cl = new RefineCardTableEntryClosure(); 1946 1947 _cg1r = new ConcurrentG1Refine(this, _refine_cte_cl); 1948 1949 // Reserve the maximum. 1950 1951 // When compressed oops are enabled, the preferred heap base 1952 // is calculated by subtracting the requested size from the 1953 // 32Gb boundary and using the result as the base address for 1954 // heap reservation. If the requested size is not aligned to 1955 // HeapRegion::GrainBytes (i.e. the alignment that is passed 1956 // into the ReservedHeapSpace constructor) then the actual 1957 // base of the reserved heap may end up differing from the 1958 // address that was requested (i.e. the preferred heap base). 1959 // If this happens then we could end up using a non-optimal 1960 // compressed oops mode. 1961 1962 ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size, 1963 heap_alignment); 1964 1965 initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size())); 1966 1967 // Create the gen rem set (and barrier set) for the entire reserved region. 1968 _rem_set = collector_policy()->create_rem_set(reserved_region(), 2); 1969 set_barrier_set(rem_set()->bs()); 1970 if (!barrier_set()->is_a(BarrierSet::G1SATBCTLogging)) { 1971 vm_exit_during_initialization("G1 requires a G1SATBLoggingCardTableModRefBS"); 1972 return JNI_ENOMEM; 1973 } 1974 1975 // Also create a G1 rem set. 1976 _g1_rem_set = new G1RemSet(this, g1_barrier_set()); 1977 1978 // Carve out the G1 part of the heap. 1979 1980 ReservedSpace g1_rs = heap_rs.first_part(max_byte_size); 1981 G1RegionToSpaceMapper* heap_storage = 1982 G1RegionToSpaceMapper::create_mapper(g1_rs, 1983 UseLargePages ? os::large_page_size() : os::vm_page_size(), 1984 HeapRegion::GrainBytes, 1985 1, 1986 mtJavaHeap); 1987 heap_storage->set_mapping_changed_listener(&_listener); 1988 1989 // Reserve space for the block offset table. We do not support automatic uncommit 1990 // for the card table at this time. BOT only. 1991 ReservedSpace bot_rs(G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize)); 1992 G1RegionToSpaceMapper* bot_storage = 1993 G1RegionToSpaceMapper::create_mapper(bot_rs, 1994 os::vm_page_size(), 1995 HeapRegion::GrainBytes, 1996 G1BlockOffsetSharedArray::N_bytes, 1997 mtGC); 1998 1999 ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize)); 2000 G1RegionToSpaceMapper* cardtable_storage = 2001 G1RegionToSpaceMapper::create_mapper(cardtable_rs, 2002 os::vm_page_size(), 2003 HeapRegion::GrainBytes, 2004 G1BlockOffsetSharedArray::N_bytes, 2005 mtGC); 2006 2007 // Reserve space for the card counts table. 2008 ReservedSpace card_counts_rs(G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize)); 2009 G1RegionToSpaceMapper* card_counts_storage = 2010 G1RegionToSpaceMapper::create_mapper(card_counts_rs, 2011 os::vm_page_size(), 2012 HeapRegion::GrainBytes, 2013 G1BlockOffsetSharedArray::N_bytes, 2014 mtGC); 2015 2016 // Reserve space for prev and next bitmap. 2017 size_t bitmap_size = CMBitMap::compute_size(g1_rs.size()); 2018 2019 ReservedSpace prev_bitmap_rs(ReservedSpace::allocation_align_size_up(bitmap_size)); 2020 G1RegionToSpaceMapper* prev_bitmap_storage = 2021 G1RegionToSpaceMapper::create_mapper(prev_bitmap_rs, 2022 os::vm_page_size(), 2023 HeapRegion::GrainBytes, 2024 CMBitMap::mark_distance(), 2025 mtGC); 2026 2027 ReservedSpace next_bitmap_rs(ReservedSpace::allocation_align_size_up(bitmap_size)); 2028 G1RegionToSpaceMapper* next_bitmap_storage = 2029 G1RegionToSpaceMapper::create_mapper(next_bitmap_rs, 2030 os::vm_page_size(), 2031 HeapRegion::GrainBytes, 2032 CMBitMap::mark_distance(), 2033 mtGC); 2034 2035 _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage); 2036 g1_barrier_set()->initialize(cardtable_storage); 2037 // Do later initialization work for concurrent refinement. 2038 _cg1r->init(card_counts_storage); 2039 2040 // 6843694 - ensure that the maximum region index can fit 2041 // in the remembered set structures. 2042 const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1; 2043 guarantee((max_regions() - 1) <= max_region_idx, "too many regions"); 2044 2045 size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1; 2046 guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized"); 2047 guarantee(HeapRegion::CardsPerRegion < max_cards_per_region, 2048 "too many cards per region"); 2049 2050 FreeRegionList::set_unrealistically_long_length(max_regions() + 1); 2051 2052 _bot_shared = new G1BlockOffsetSharedArray(reserved_region(), bot_storage); 2053 2054 _g1h = this; 2055 2056 _in_cset_fast_test.initialize(_hrm.reserved().start(), _hrm.reserved().end(), HeapRegion::GrainBytes); 2057 _humongous_is_live.initialize(_hrm.reserved().start(), _hrm.reserved().end(), HeapRegion::GrainBytes); 2058 2059 // Create the ConcurrentMark data structure and thread. 2060 // (Must do this late, so that "max_regions" is defined.) 2061 _cm = new ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage); 2062 if (_cm == NULL || !_cm->completed_initialization()) { 2063 vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark"); 2064 return JNI_ENOMEM; 2065 } 2066 _cmThread = _cm->cmThread(); 2067 2068 // Initialize the from_card cache structure of HeapRegionRemSet. 2069 HeapRegionRemSet::init_heap(max_regions()); 2070 2071 // Now expand into the initial heap size. 2072 if (!expand(init_byte_size)) { 2073 vm_shutdown_during_initialization("Failed to allocate initial heap."); 2074 return JNI_ENOMEM; 2075 } 2076 2077 // Perform any initialization actions delegated to the policy. 2078 g1_policy()->init(); 2079 2080 JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon, 2081 SATB_Q_FL_lock, 2082 G1SATBProcessCompletedThreshold, 2083 Shared_SATB_Q_lock); 2084 2085 JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl, 2086 DirtyCardQ_CBL_mon, 2087 DirtyCardQ_FL_lock, 2088 concurrent_g1_refine()->yellow_zone(), 2089 concurrent_g1_refine()->red_zone(), 2090 Shared_DirtyCardQ_lock); 2091 2092 dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code 2093 DirtyCardQ_CBL_mon, 2094 DirtyCardQ_FL_lock, 2095 -1, // never trigger processing 2096 -1, // no limit on length 2097 Shared_DirtyCardQ_lock, 2098 &JavaThread::dirty_card_queue_set()); 2099 2100 // Initialize the card queue set used to hold cards containing 2101 // references into the collection set. 2102 _into_cset_dirty_card_queue_set.initialize(NULL, // Should never be called by the Java code 2103 DirtyCardQ_CBL_mon, 2104 DirtyCardQ_FL_lock, 2105 -1, // never trigger processing 2106 -1, // no limit on length 2107 Shared_DirtyCardQ_lock, 2108 &JavaThread::dirty_card_queue_set()); 2109 2110 // In case we're keeping closure specialization stats, initialize those 2111 // counts and that mechanism. 2112 SpecializationStats::clear(); 2113 2114 // Here we allocate the dummy HeapRegion that is required by the 2115 // G1AllocRegion class. 2116 HeapRegion* dummy_region = _hrm.get_dummy_region(); 2117 2118 // We'll re-use the same region whether the alloc region will 2119 // require BOT updates or not and, if it doesn't, then a non-young 2120 // region will complain that it cannot support allocations without 2121 // BOT updates. So we'll tag the dummy region as eden to avoid that. 2122 dummy_region->set_eden(); 2123 // Make sure it's full. 2124 dummy_region->set_top(dummy_region->end()); 2125 G1AllocRegion::setup(this, dummy_region); 2126 2127 _allocator->init_mutator_alloc_region(); 2128 2129 // Do create of the monitoring and management support so that 2130 // values in the heap have been properly initialized. 2131 _g1mm = new G1MonitoringSupport(this); 2132 2133 G1StringDedup::initialize(); 2134 2135 return JNI_OK; 2136 } 2137 2138 void G1CollectedHeap::stop() { 2139 // Stop all concurrent threads. We do this to make sure these threads 2140 // do not continue to execute and access resources (e.g. gclog_or_tty) 2141 // that are destroyed during shutdown. 2142 _cg1r->stop(); 2143 _cmThread->stop(); 2144 if (G1StringDedup::is_enabled()) { 2145 G1StringDedup::stop(); 2146 } 2147 } 2148 2149 void G1CollectedHeap::clear_humongous_is_live_table() { 2150 guarantee(G1ReclaimDeadHumongousObjectsAtYoungGC, "Should only be called if true"); 2151 _humongous_is_live.clear(); 2152 } 2153 2154 size_t G1CollectedHeap::conservative_max_heap_alignment() { 2155 return HeapRegion::max_region_size(); 2156 } 2157 2158 void G1CollectedHeap::ref_processing_init() { 2159 // Reference processing in G1 currently works as follows: 2160 // 2161 // * There are two reference processor instances. One is 2162 // used to record and process discovered references 2163 // during concurrent marking; the other is used to 2164 // record and process references during STW pauses 2165 // (both full and incremental). 2166 // * Both ref processors need to 'span' the entire heap as 2167 // the regions in the collection set may be dotted around. 2168 // 2169 // * For the concurrent marking ref processor: 2170 // * Reference discovery is enabled at initial marking. 2171 // * Reference discovery is disabled and the discovered 2172 // references processed etc during remarking. 2173 // * Reference discovery is MT (see below). 2174 // * Reference discovery requires a barrier (see below). 2175 // * Reference processing may or may not be MT 2176 // (depending on the value of ParallelRefProcEnabled 2177 // and ParallelGCThreads). 2178 // * A full GC disables reference discovery by the CM 2179 // ref processor and abandons any entries on it's 2180 // discovered lists. 2181 // 2182 // * For the STW processor: 2183 // * Non MT discovery is enabled at the start of a full GC. 2184 // * Processing and enqueueing during a full GC is non-MT. 2185 // * During a full GC, references are processed after marking. 2186 // 2187 // * Discovery (may or may not be MT) is enabled at the start 2188 // of an incremental evacuation pause. 2189 // * References are processed near the end of a STW evacuation pause. 2190 // * For both types of GC: 2191 // * Discovery is atomic - i.e. not concurrent. 2192 // * Reference discovery will not need a barrier. 2193 2194 SharedHeap::ref_processing_init(); 2195 MemRegion mr = reserved_region(); 2196 2197 // Concurrent Mark ref processor 2198 _ref_processor_cm = 2199 new ReferenceProcessor(mr, // span 2200 ParallelRefProcEnabled && (ParallelGCThreads > 1), 2201 // mt processing 2202 (int) ParallelGCThreads, 2203 // degree of mt processing 2204 (ParallelGCThreads > 1) || (ConcGCThreads > 1), 2205 // mt discovery 2206 (int) MAX2(ParallelGCThreads, ConcGCThreads), 2207 // degree of mt discovery 2208 false, 2209 // Reference discovery is not atomic 2210 &_is_alive_closure_cm); 2211 // is alive closure 2212 // (for efficiency/performance) 2213 2214 // STW ref processor 2215 _ref_processor_stw = 2216 new ReferenceProcessor(mr, // span 2217 ParallelRefProcEnabled && (ParallelGCThreads > 1), 2218 // mt processing 2219 MAX2((int)ParallelGCThreads, 1), 2220 // degree of mt processing 2221 (ParallelGCThreads > 1), 2222 // mt discovery 2223 MAX2((int)ParallelGCThreads, 1), 2224 // degree of mt discovery 2225 true, 2226 // Reference discovery is atomic 2227 &_is_alive_closure_stw); 2228 // is alive closure 2229 // (for efficiency/performance) 2230 } 2231 2232 size_t G1CollectedHeap::capacity() const { 2233 return _hrm.length() * HeapRegion::GrainBytes; 2234 } 2235 2236 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) { 2237 assert(!hr->is_continues_humongous(), "pre-condition"); 2238 hr->reset_gc_time_stamp(); 2239 if (hr->is_starts_humongous()) { 2240 uint first_index = hr->hrm_index() + 1; 2241 uint last_index = hr->last_hc_index(); 2242 for (uint i = first_index; i < last_index; i += 1) { 2243 HeapRegion* chr = region_at(i); 2244 assert(chr->is_continues_humongous(), "sanity"); 2245 chr->reset_gc_time_stamp(); 2246 } 2247 } 2248 } 2249 2250 #ifndef PRODUCT 2251 class CheckGCTimeStampsHRClosure : public HeapRegionClosure { 2252 private: 2253 unsigned _gc_time_stamp; 2254 bool _failures; 2255 2256 public: 2257 CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) : 2258 _gc_time_stamp(gc_time_stamp), _failures(false) { } 2259 2260 virtual bool doHeapRegion(HeapRegion* hr) { 2261 unsigned region_gc_time_stamp = hr->get_gc_time_stamp(); 2262 if (_gc_time_stamp != region_gc_time_stamp) { 2263 gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, " 2264 "expected %d", HR_FORMAT_PARAMS(hr), 2265 region_gc_time_stamp, _gc_time_stamp); 2266 _failures = true; 2267 } 2268 return false; 2269 } 2270 2271 bool failures() { return _failures; } 2272 }; 2273 2274 void G1CollectedHeap::check_gc_time_stamps() { 2275 CheckGCTimeStampsHRClosure cl(_gc_time_stamp); 2276 heap_region_iterate(&cl); 2277 guarantee(!cl.failures(), "all GC time stamps should have been reset"); 2278 } 2279 #endif // PRODUCT 2280 2281 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, 2282 DirtyCardQueue* into_cset_dcq, 2283 bool concurrent, 2284 uint worker_i) { 2285 // Clean cards in the hot card cache 2286 G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache(); 2287 hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq); 2288 2289 DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set(); 2290 int n_completed_buffers = 0; 2291 while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) { 2292 n_completed_buffers++; 2293 } 2294 g1_policy()->phase_times()->record_update_rs_processed_buffers(worker_i, n_completed_buffers); 2295 dcqs.clear_n_completed_buffers(); 2296 assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!"); 2297 } 2298 2299 2300 // Computes the sum of the storage used by the various regions. 2301 size_t G1CollectedHeap::used() const { 2302 return _allocator->used(); 2303 } 2304 2305 size_t G1CollectedHeap::used_unlocked() const { 2306 return _allocator->used_unlocked(); 2307 } 2308 2309 class SumUsedClosure: public HeapRegionClosure { 2310 size_t _used; 2311 public: 2312 SumUsedClosure() : _used(0) {} 2313 bool doHeapRegion(HeapRegion* r) { 2314 if (!r->is_continues_humongous()) { 2315 _used += r->used(); 2316 } 2317 return false; 2318 } 2319 size_t result() { return _used; } 2320 }; 2321 2322 size_t G1CollectedHeap::recalculate_used() const { 2323 double recalculate_used_start = os::elapsedTime(); 2324 2325 SumUsedClosure blk; 2326 heap_region_iterate(&blk); 2327 2328 g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0); 2329 return blk.result(); 2330 } 2331 2332 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) { 2333 switch (cause) { 2334 case GCCause::_gc_locker: return GCLockerInvokesConcurrent; 2335 case GCCause::_java_lang_system_gc: return ExplicitGCInvokesConcurrent; 2336 case GCCause::_g1_humongous_allocation: return true; 2337 case GCCause::_update_allocation_context_stats_inc: return true; 2338 default: return false; 2339 } 2340 } 2341 2342 #ifndef PRODUCT 2343 void G1CollectedHeap::allocate_dummy_regions() { 2344 // Let's fill up most of the region 2345 size_t word_size = HeapRegion::GrainWords - 1024; 2346 // And as a result the region we'll allocate will be humongous. 2347 guarantee(is_humongous(word_size), "sanity"); 2348 2349 for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) { 2350 // Let's use the existing mechanism for the allocation 2351 HeapWord* dummy_obj = humongous_obj_allocate(word_size, 2352 AllocationContext::system()); 2353 if (dummy_obj != NULL) { 2354 MemRegion mr(dummy_obj, word_size); 2355 CollectedHeap::fill_with_object(mr); 2356 } else { 2357 // If we can't allocate once, we probably cannot allocate 2358 // again. Let's get out of the loop. 2359 break; 2360 } 2361 } 2362 } 2363 #endif // !PRODUCT 2364 2365 void G1CollectedHeap::increment_old_marking_cycles_started() { 2366 assert(_old_marking_cycles_started == _old_marking_cycles_completed || 2367 _old_marking_cycles_started == _old_marking_cycles_completed + 1, 2368 err_msg("Wrong marking cycle count (started: %d, completed: %d)", 2369 _old_marking_cycles_started, _old_marking_cycles_completed)); 2370 2371 _old_marking_cycles_started++; 2372 } 2373 2374 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) { 2375 MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag); 2376 2377 // We assume that if concurrent == true, then the caller is a 2378 // concurrent thread that was joined the Suspendible Thread 2379 // Set. If there's ever a cheap way to check this, we should add an 2380 // assert here. 2381 2382 // Given that this method is called at the end of a Full GC or of a 2383 // concurrent cycle, and those can be nested (i.e., a Full GC can 2384 // interrupt a concurrent cycle), the number of full collections 2385 // completed should be either one (in the case where there was no 2386 // nesting) or two (when a Full GC interrupted a concurrent cycle) 2387 // behind the number of full collections started. 2388 2389 // This is the case for the inner caller, i.e. a Full GC. 2390 assert(concurrent || 2391 (_old_marking_cycles_started == _old_marking_cycles_completed + 1) || 2392 (_old_marking_cycles_started == _old_marking_cycles_completed + 2), 2393 err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u " 2394 "is inconsistent with _old_marking_cycles_completed = %u", 2395 _old_marking_cycles_started, _old_marking_cycles_completed)); 2396 2397 // This is the case for the outer caller, i.e. the concurrent cycle. 2398 assert(!concurrent || 2399 (_old_marking_cycles_started == _old_marking_cycles_completed + 1), 2400 err_msg("for outer caller (concurrent cycle): " 2401 "_old_marking_cycles_started = %u " 2402 "is inconsistent with _old_marking_cycles_completed = %u", 2403 _old_marking_cycles_started, _old_marking_cycles_completed)); 2404 2405 _old_marking_cycles_completed += 1; 2406 2407 // We need to clear the "in_progress" flag in the CM thread before 2408 // we wake up any waiters (especially when ExplicitInvokesConcurrent 2409 // is set) so that if a waiter requests another System.gc() it doesn't 2410 // incorrectly see that a marking cycle is still in progress. 2411 if (concurrent) { 2412 _cmThread->clear_in_progress(); 2413 } 2414 2415 // This notify_all() will ensure that a thread that called 2416 // System.gc() with (with ExplicitGCInvokesConcurrent set or not) 2417 // and it's waiting for a full GC to finish will be woken up. It is 2418 // waiting in VM_G1IncCollectionPause::doit_epilogue(). 2419 FullGCCount_lock->notify_all(); 2420 } 2421 2422 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) { 2423 _concurrent_cycle_started = true; 2424 _gc_timer_cm->register_gc_start(start_time); 2425 2426 _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start()); 2427 trace_heap_before_gc(_gc_tracer_cm); 2428 } 2429 2430 void G1CollectedHeap::register_concurrent_cycle_end() { 2431 if (_concurrent_cycle_started) { 2432 if (_cm->has_aborted()) { 2433 _gc_tracer_cm->report_concurrent_mode_failure(); 2434 } 2435 2436 _gc_timer_cm->register_gc_end(); 2437 _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions()); 2438 2439 // Clear state variables to prepare for the next concurrent cycle. 2440 _concurrent_cycle_started = false; 2441 _heap_summary_sent = false; 2442 } 2443 } 2444 2445 void G1CollectedHeap::trace_heap_after_concurrent_cycle() { 2446 if (_concurrent_cycle_started) { 2447 // This function can be called when: 2448 // the cleanup pause is run 2449 // the concurrent cycle is aborted before the cleanup pause. 2450 // the concurrent cycle is aborted after the cleanup pause, 2451 // but before the concurrent cycle end has been registered. 2452 // Make sure that we only send the heap information once. 2453 if (!_heap_summary_sent) { 2454 trace_heap_after_gc(_gc_tracer_cm); 2455 _heap_summary_sent = true; 2456 } 2457 } 2458 } 2459 2460 G1YCType G1CollectedHeap::yc_type() { 2461 bool is_young = g1_policy()->gcs_are_young(); 2462 bool is_initial_mark = g1_policy()->during_initial_mark_pause(); 2463 bool is_during_mark = mark_in_progress(); 2464 2465 if (is_initial_mark) { 2466 return InitialMark; 2467 } else if (is_during_mark) { 2468 return DuringMark; 2469 } else if (is_young) { 2470 return Normal; 2471 } else { 2472 return Mixed; 2473 } 2474 } 2475 2476 void G1CollectedHeap::collect(GCCause::Cause cause) { 2477 assert_heap_not_locked(); 2478 2479 unsigned int gc_count_before; 2480 unsigned int old_marking_count_before; 2481 unsigned int full_gc_count_before; 2482 bool retry_gc; 2483 2484 do { 2485 retry_gc = false; 2486 2487 { 2488 MutexLocker ml(Heap_lock); 2489 2490 // Read the GC count while holding the Heap_lock 2491 gc_count_before = total_collections(); 2492 full_gc_count_before = total_full_collections(); 2493 old_marking_count_before = _old_marking_cycles_started; 2494 } 2495 2496 if (should_do_concurrent_full_gc(cause)) { 2497 // Schedule an initial-mark evacuation pause that will start a 2498 // concurrent cycle. We're setting word_size to 0 which means that 2499 // we are not requesting a post-GC allocation. 2500 VM_G1IncCollectionPause op(gc_count_before, 2501 0, /* word_size */ 2502 true, /* should_initiate_conc_mark */ 2503 g1_policy()->max_pause_time_ms(), 2504 cause); 2505 op.set_allocation_context(AllocationContext::current()); 2506 2507 VMThread::execute(&op); 2508 if (!op.pause_succeeded()) { 2509 if (old_marking_count_before == _old_marking_cycles_started) { 2510 retry_gc = op.should_retry_gc(); 2511 } else { 2512 // A Full GC happened while we were trying to schedule the 2513 // initial-mark GC. No point in starting a new cycle given 2514 // that the whole heap was collected anyway. 2515 } 2516 2517 if (retry_gc) { 2518 if (GC_locker::is_active_and_needs_gc()) { 2519 GC_locker::stall_until_clear(); 2520 } 2521 } 2522 } 2523 } else { 2524 if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc 2525 DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) { 2526 2527 // Schedule a standard evacuation pause. We're setting word_size 2528 // to 0 which means that we are not requesting a post-GC allocation. 2529 VM_G1IncCollectionPause op(gc_count_before, 2530 0, /* word_size */ 2531 false, /* should_initiate_conc_mark */ 2532 g1_policy()->max_pause_time_ms(), 2533 cause); 2534 VMThread::execute(&op); 2535 } else { 2536 // Schedule a Full GC. 2537 VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause); 2538 VMThread::execute(&op); 2539 } 2540 } 2541 } while (retry_gc); 2542 } 2543 2544 bool G1CollectedHeap::is_in(const void* p) const { 2545 if (_hrm.reserved().contains(p)) { 2546 // Given that we know that p is in the reserved space, 2547 // heap_region_containing_raw() should successfully 2548 // return the containing region. 2549 HeapRegion* hr = heap_region_containing_raw(p); 2550 return hr->is_in(p); 2551 } else { 2552 return false; 2553 } 2554 } 2555 2556 #ifdef ASSERT 2557 bool G1CollectedHeap::is_in_exact(const void* p) const { 2558 bool contains = reserved_region().contains(p); 2559 bool available = _hrm.is_available(addr_to_region((HeapWord*)p)); 2560 if (contains && available) { 2561 return true; 2562 } else { 2563 return false; 2564 } 2565 } 2566 #endif 2567 2568 // Iteration functions. 2569 2570 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion. 2571 2572 class IterateOopClosureRegionClosure: public HeapRegionClosure { 2573 ExtendedOopClosure* _cl; 2574 public: 2575 IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {} 2576 bool doHeapRegion(HeapRegion* r) { 2577 if (!r->is_continues_humongous()) { 2578 r->oop_iterate(_cl); 2579 } 2580 return false; 2581 } 2582 }; 2583 2584 void G1CollectedHeap::oop_iterate(ExtendedOopClosure* cl) { 2585 IterateOopClosureRegionClosure blk(cl); 2586 heap_region_iterate(&blk); 2587 } 2588 2589 // Iterates an ObjectClosure over all objects within a HeapRegion. 2590 2591 class IterateObjectClosureRegionClosure: public HeapRegionClosure { 2592 ObjectClosure* _cl; 2593 public: 2594 IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {} 2595 bool doHeapRegion(HeapRegion* r) { 2596 if (!r->is_continues_humongous()) { 2597 r->object_iterate(_cl); 2598 } 2599 return false; 2600 } 2601 }; 2602 2603 void G1CollectedHeap::object_iterate(ObjectClosure* cl) { 2604 IterateObjectClosureRegionClosure blk(cl); 2605 heap_region_iterate(&blk); 2606 } 2607 2608 // Calls a SpaceClosure on a HeapRegion. 2609 2610 class SpaceClosureRegionClosure: public HeapRegionClosure { 2611 SpaceClosure* _cl; 2612 public: 2613 SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {} 2614 bool doHeapRegion(HeapRegion* r) { 2615 _cl->do_space(r); 2616 return false; 2617 } 2618 }; 2619 2620 void G1CollectedHeap::space_iterate(SpaceClosure* cl) { 2621 SpaceClosureRegionClosure blk(cl); 2622 heap_region_iterate(&blk); 2623 } 2624 2625 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const { 2626 _hrm.iterate(cl); 2627 } 2628 2629 void 2630 G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl, 2631 uint worker_id, 2632 HeapRegionClaimer *hrclaimer) const { 2633 _hrm.par_iterate(cl, worker_id, hrclaimer); 2634 } 2635 2636 // Clear the cached CSet starting regions and (more importantly) 2637 // the time stamps. Called when we reset the GC time stamp. 2638 void G1CollectedHeap::clear_cset_start_regions() { 2639 assert(_worker_cset_start_region != NULL, "sanity"); 2640 assert(_worker_cset_start_region_time_stamp != NULL, "sanity"); 2641 2642 int n_queues = MAX2((int)ParallelGCThreads, 1); 2643 for (int i = 0; i < n_queues; i++) { 2644 _worker_cset_start_region[i] = NULL; 2645 _worker_cset_start_region_time_stamp[i] = 0; 2646 } 2647 } 2648 2649 // Given the id of a worker, obtain or calculate a suitable 2650 // starting region for iterating over the current collection set. 2651 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) { 2652 assert(get_gc_time_stamp() > 0, "should have been updated by now"); 2653 2654 HeapRegion* result = NULL; 2655 unsigned gc_time_stamp = get_gc_time_stamp(); 2656 2657 if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) { 2658 // Cached starting region for current worker was set 2659 // during the current pause - so it's valid. 2660 // Note: the cached starting heap region may be NULL 2661 // (when the collection set is empty). 2662 result = _worker_cset_start_region[worker_i]; 2663 assert(result == NULL || result->in_collection_set(), "sanity"); 2664 return result; 2665 } 2666 2667 // The cached entry was not valid so let's calculate 2668 // a suitable starting heap region for this worker. 2669 2670 // We want the parallel threads to start their collection 2671 // set iteration at different collection set regions to 2672 // avoid contention. 2673 // If we have: 2674 // n collection set regions 2675 // p threads 2676 // Then thread t will start at region floor ((t * n) / p) 2677 2678 result = g1_policy()->collection_set(); 2679 uint cs_size = g1_policy()->cset_region_length(); 2680 uint active_workers = workers()->active_workers(); 2681 assert(UseDynamicNumberOfGCThreads || 2682 active_workers == workers()->total_workers(), 2683 "Unless dynamic should use total workers"); 2684 2685 uint end_ind = (cs_size * worker_i) / active_workers; 2686 uint start_ind = 0; 2687 2688 if (worker_i > 0 && 2689 _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) { 2690 // Previous workers starting region is valid 2691 // so let's iterate from there 2692 start_ind = (cs_size * (worker_i - 1)) / active_workers; 2693 result = _worker_cset_start_region[worker_i - 1]; 2694 } 2695 2696 for (uint i = start_ind; i < end_ind; i++) { 2697 result = result->next_in_collection_set(); 2698 } 2699 2700 // Note: the calculated starting heap region may be NULL 2701 // (when the collection set is empty). 2702 assert(result == NULL || result->in_collection_set(), "sanity"); 2703 assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp, 2704 "should be updated only once per pause"); 2705 _worker_cset_start_region[worker_i] = result; 2706 OrderAccess::storestore(); 2707 _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp; 2708 return result; 2709 } 2710 2711 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) { 2712 HeapRegion* r = g1_policy()->collection_set(); 2713 while (r != NULL) { 2714 HeapRegion* next = r->next_in_collection_set(); 2715 if (cl->doHeapRegion(r)) { 2716 cl->incomplete(); 2717 return; 2718 } 2719 r = next; 2720 } 2721 } 2722 2723 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r, 2724 HeapRegionClosure *cl) { 2725 if (r == NULL) { 2726 // The CSet is empty so there's nothing to do. 2727 return; 2728 } 2729 2730 assert(r->in_collection_set(), 2731 "Start region must be a member of the collection set."); 2732 HeapRegion* cur = r; 2733 while (cur != NULL) { 2734 HeapRegion* next = cur->next_in_collection_set(); 2735 if (cl->doHeapRegion(cur) && false) { 2736 cl->incomplete(); 2737 return; 2738 } 2739 cur = next; 2740 } 2741 cur = g1_policy()->collection_set(); 2742 while (cur != r) { 2743 HeapRegion* next = cur->next_in_collection_set(); 2744 if (cl->doHeapRegion(cur) && false) { 2745 cl->incomplete(); 2746 return; 2747 } 2748 cur = next; 2749 } 2750 } 2751 2752 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const { 2753 HeapRegion* result = _hrm.next_region_in_heap(from); 2754 while (result != NULL && result->is_humongous()) { 2755 result = _hrm.next_region_in_heap(result); 2756 } 2757 return result; 2758 } 2759 2760 Space* G1CollectedHeap::space_containing(const void* addr) const { 2761 return heap_region_containing(addr); 2762 } 2763 2764 HeapWord* G1CollectedHeap::block_start(const void* addr) const { 2765 Space* sp = space_containing(addr); 2766 return sp->block_start(addr); 2767 } 2768 2769 size_t G1CollectedHeap::block_size(const HeapWord* addr) const { 2770 Space* sp = space_containing(addr); 2771 return sp->block_size(addr); 2772 } 2773 2774 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const { 2775 Space* sp = space_containing(addr); 2776 return sp->block_is_obj(addr); 2777 } 2778 2779 bool G1CollectedHeap::supports_tlab_allocation() const { 2780 return true; 2781 } 2782 2783 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const { 2784 return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes; 2785 } 2786 2787 size_t G1CollectedHeap::tlab_used(Thread* ignored) const { 2788 return young_list()->eden_used_bytes(); 2789 } 2790 2791 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size 2792 // must be smaller than the humongous object limit. 2793 size_t G1CollectedHeap::max_tlab_size() const { 2794 return align_size_down(_humongous_object_threshold_in_words - 1, MinObjAlignment); 2795 } 2796 2797 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const { 2798 // Return the remaining space in the cur alloc region, but not less than 2799 // the min TLAB size. 2800 2801 // Also, this value can be at most the humongous object threshold, 2802 // since we can't allow tlabs to grow big enough to accommodate 2803 // humongous objects. 2804 2805 HeapRegion* hr = _allocator->mutator_alloc_region(AllocationContext::current())->get(); 2806 size_t max_tlab = max_tlab_size() * wordSize; 2807 if (hr == NULL) { 2808 return max_tlab; 2809 } else { 2810 return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab); 2811 } 2812 } 2813 2814 size_t G1CollectedHeap::max_capacity() const { 2815 return _hrm.reserved().byte_size(); 2816 } 2817 2818 jlong G1CollectedHeap::millis_since_last_gc() { 2819 // assert(false, "NYI"); 2820 return 0; 2821 } 2822 2823 void G1CollectedHeap::prepare_for_verify() { 2824 if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) { 2825 ensure_parsability(false); 2826 } 2827 g1_rem_set()->prepare_for_verify(); 2828 } 2829 2830 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr, 2831 VerifyOption vo) { 2832 switch (vo) { 2833 case VerifyOption_G1UsePrevMarking: 2834 return hr->obj_allocated_since_prev_marking(obj); 2835 case VerifyOption_G1UseNextMarking: 2836 return hr->obj_allocated_since_next_marking(obj); 2837 case VerifyOption_G1UseMarkWord: 2838 return false; 2839 default: 2840 ShouldNotReachHere(); 2841 } 2842 return false; // keep some compilers happy 2843 } 2844 2845 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) { 2846 switch (vo) { 2847 case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start(); 2848 case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start(); 2849 case VerifyOption_G1UseMarkWord: return NULL; 2850 default: ShouldNotReachHere(); 2851 } 2852 return NULL; // keep some compilers happy 2853 } 2854 2855 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) { 2856 switch (vo) { 2857 case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj); 2858 case VerifyOption_G1UseNextMarking: return isMarkedNext(obj); 2859 case VerifyOption_G1UseMarkWord: return obj->is_gc_marked(); 2860 default: ShouldNotReachHere(); 2861 } 2862 return false; // keep some compilers happy 2863 } 2864 2865 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) { 2866 switch (vo) { 2867 case VerifyOption_G1UsePrevMarking: return "PTAMS"; 2868 case VerifyOption_G1UseNextMarking: return "NTAMS"; 2869 case VerifyOption_G1UseMarkWord: return "NONE"; 2870 default: ShouldNotReachHere(); 2871 } 2872 return NULL; // keep some compilers happy 2873 } 2874 2875 class VerifyRootsClosure: public OopClosure { 2876 private: 2877 G1CollectedHeap* _g1h; 2878 VerifyOption _vo; 2879 bool _failures; 2880 public: 2881 // _vo == UsePrevMarking -> use "prev" marking information, 2882 // _vo == UseNextMarking -> use "next" marking information, 2883 // _vo == UseMarkWord -> use mark word from object header. 2884 VerifyRootsClosure(VerifyOption vo) : 2885 _g1h(G1CollectedHeap::heap()), 2886 _vo(vo), 2887 _failures(false) { } 2888 2889 bool failures() { return _failures; } 2890 2891 template <class T> void do_oop_nv(T* p) { 2892 T heap_oop = oopDesc::load_heap_oop(p); 2893 if (!oopDesc::is_null(heap_oop)) { 2894 oop obj = oopDesc::decode_heap_oop_not_null(heap_oop); 2895 if (_g1h->is_obj_dead_cond(obj, _vo)) { 2896 gclog_or_tty->print_cr("Root location "PTR_FORMAT" " 2897 "points to dead obj "PTR_FORMAT, p, (void*) obj); 2898 if (_vo == VerifyOption_G1UseMarkWord) { 2899 gclog_or_tty->print_cr(" Mark word: "PTR_FORMAT, (void*)(obj->mark())); 2900 } 2901 obj->print_on(gclog_or_tty); 2902 _failures = true; 2903 } 2904 } 2905 } 2906 2907 void do_oop(oop* p) { do_oop_nv(p); } 2908 void do_oop(narrowOop* p) { do_oop_nv(p); } 2909 }; 2910 2911 class G1VerifyCodeRootOopClosure: public OopClosure { 2912 G1CollectedHeap* _g1h; 2913 OopClosure* _root_cl; 2914 nmethod* _nm; 2915 VerifyOption _vo; 2916 bool _failures; 2917 2918 template <class T> void do_oop_work(T* p) { 2919 // First verify that this root is live 2920 _root_cl->do_oop(p); 2921 2922 if (!G1VerifyHeapRegionCodeRoots) { 2923 // We're not verifying the code roots attached to heap region. 2924 return; 2925 } 2926 2927 // Don't check the code roots during marking verification in a full GC 2928 if (_vo == VerifyOption_G1UseMarkWord) { 2929 return; 2930 } 2931 2932 // Now verify that the current nmethod (which contains p) is 2933 // in the code root list of the heap region containing the 2934 // object referenced by p. 2935 2936 T heap_oop = oopDesc::load_heap_oop(p); 2937 if (!oopDesc::is_null(heap_oop)) { 2938 oop obj = oopDesc::decode_heap_oop_not_null(heap_oop); 2939 2940 // Now fetch the region containing the object 2941 HeapRegion* hr = _g1h->heap_region_containing(obj); 2942 HeapRegionRemSet* hrrs = hr->rem_set(); 2943 // Verify that the strong code root list for this region 2944 // contains the nmethod 2945 if (!hrrs->strong_code_roots_list_contains(_nm)) { 2946 gclog_or_tty->print_cr("Code root location "PTR_FORMAT" " 2947 "from nmethod "PTR_FORMAT" not in strong " 2948 "code roots for region ["PTR_FORMAT","PTR_FORMAT")", 2949 p, _nm, hr->bottom(), hr->end()); 2950 _failures = true; 2951 } 2952 } 2953 } 2954 2955 public: 2956 G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo): 2957 _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {} 2958 2959 void do_oop(oop* p) { do_oop_work(p); } 2960 void do_oop(narrowOop* p) { do_oop_work(p); } 2961 2962 void set_nmethod(nmethod* nm) { _nm = nm; } 2963 bool failures() { return _failures; } 2964 }; 2965 2966 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure { 2967 G1VerifyCodeRootOopClosure* _oop_cl; 2968 2969 public: 2970 G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl): 2971 _oop_cl(oop_cl) {} 2972 2973 void do_code_blob(CodeBlob* cb) { 2974 nmethod* nm = cb->as_nmethod_or_null(); 2975 if (nm != NULL) { 2976 _oop_cl->set_nmethod(nm); 2977 nm->oops_do(_oop_cl); 2978 } 2979 } 2980 }; 2981 2982 class YoungRefCounterClosure : public OopClosure { 2983 G1CollectedHeap* _g1h; 2984 int _count; 2985 public: 2986 YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {} 2987 void do_oop(oop* p) { if (_g1h->is_in_young(*p)) { _count++; } } 2988 void do_oop(narrowOop* p) { ShouldNotReachHere(); } 2989 2990 int count() { return _count; } 2991 void reset_count() { _count = 0; }; 2992 }; 2993 2994 class VerifyKlassClosure: public KlassClosure { 2995 YoungRefCounterClosure _young_ref_counter_closure; 2996 OopClosure *_oop_closure; 2997 public: 2998 VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {} 2999 void do_klass(Klass* k) { 3000 k->oops_do(_oop_closure); 3001 3002 _young_ref_counter_closure.reset_count(); 3003 k->oops_do(&_young_ref_counter_closure); 3004 if (_young_ref_counter_closure.count() > 0) { 3005 guarantee(k->has_modified_oops(), err_msg("Klass " PTR_FORMAT ", has young refs but is not dirty.", k)); 3006 } 3007 } 3008 }; 3009 3010 class VerifyLivenessOopClosure: public OopClosure { 3011 G1CollectedHeap* _g1h; 3012 VerifyOption _vo; 3013 public: 3014 VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo): 3015 _g1h(g1h), _vo(vo) 3016 { } 3017 void do_oop(narrowOop *p) { do_oop_work(p); } 3018 void do_oop( oop *p) { do_oop_work(p); } 3019 3020 template <class T> void do_oop_work(T *p) { 3021 oop obj = oopDesc::load_decode_heap_oop(p); 3022 guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo), 3023 "Dead object referenced by a not dead object"); 3024 } 3025 }; 3026 3027 class VerifyObjsInRegionClosure: public ObjectClosure { 3028 private: 3029 G1CollectedHeap* _g1h; 3030 size_t _live_bytes; 3031 HeapRegion *_hr; 3032 VerifyOption _vo; 3033 public: 3034 // _vo == UsePrevMarking -> use "prev" marking information, 3035 // _vo == UseNextMarking -> use "next" marking information, 3036 // _vo == UseMarkWord -> use mark word from object header. 3037 VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo) 3038 : _live_bytes(0), _hr(hr), _vo(vo) { 3039 _g1h = G1CollectedHeap::heap(); 3040 } 3041 void do_object(oop o) { 3042 VerifyLivenessOopClosure isLive(_g1h, _vo); 3043 assert(o != NULL, "Huh?"); 3044 if (!_g1h->is_obj_dead_cond(o, _vo)) { 3045 // If the object is alive according to the mark word, 3046 // then verify that the marking information agrees. 3047 // Note we can't verify the contra-positive of the 3048 // above: if the object is dead (according to the mark 3049 // word), it may not be marked, or may have been marked 3050 // but has since became dead, or may have been allocated 3051 // since the last marking. 3052 if (_vo == VerifyOption_G1UseMarkWord) { 3053 guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch"); 3054 } 3055 3056 o->oop_iterate_no_header(&isLive); 3057 if (!_hr->obj_allocated_since_prev_marking(o)) { 3058 size_t obj_size = o->size(); // Make sure we don't overflow 3059 _live_bytes += (obj_size * HeapWordSize); 3060 } 3061 } 3062 } 3063 size_t live_bytes() { return _live_bytes; } 3064 }; 3065 3066 class PrintObjsInRegionClosure : public ObjectClosure { 3067 HeapRegion *_hr; 3068 G1CollectedHeap *_g1; 3069 public: 3070 PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) { 3071 _g1 = G1CollectedHeap::heap(); 3072 }; 3073 3074 void do_object(oop o) { 3075 if (o != NULL) { 3076 HeapWord *start = (HeapWord *) o; 3077 size_t word_sz = o->size(); 3078 gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT 3079 " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n", 3080 (void*) o, word_sz, 3081 _g1->isMarkedPrev(o), 3082 _g1->isMarkedNext(o), 3083 _hr->obj_allocated_since_prev_marking(o)); 3084 HeapWord *end = start + word_sz; 3085 HeapWord *cur; 3086 int *val; 3087 for (cur = start; cur < end; cur++) { 3088 val = (int *) cur; 3089 gclog_or_tty->print("\t "PTR_FORMAT":%d\n", val, *val); 3090 } 3091 } 3092 } 3093 }; 3094 3095 class VerifyRegionClosure: public HeapRegionClosure { 3096 private: 3097 bool _par; 3098 VerifyOption _vo; 3099 bool _failures; 3100 public: 3101 // _vo == UsePrevMarking -> use "prev" marking information, 3102 // _vo == UseNextMarking -> use "next" marking information, 3103 // _vo == UseMarkWord -> use mark word from object header. 3104 VerifyRegionClosure(bool par, VerifyOption vo) 3105 : _par(par), 3106 _vo(vo), 3107 _failures(false) {} 3108 3109 bool failures() { 3110 return _failures; 3111 } 3112 3113 bool doHeapRegion(HeapRegion* r) { 3114 if (!r->is_continues_humongous()) { 3115 bool failures = false; 3116 r->verify(_vo, &failures); 3117 if (failures) { 3118 _failures = true; 3119 } else { 3120 VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo); 3121 r->object_iterate(¬_dead_yet_cl); 3122 if (_vo != VerifyOption_G1UseNextMarking) { 3123 if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) { 3124 gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] " 3125 "max_live_bytes "SIZE_FORMAT" " 3126 "< calculated "SIZE_FORMAT, 3127 r->bottom(), r->end(), 3128 r->max_live_bytes(), 3129 not_dead_yet_cl.live_bytes()); 3130 _failures = true; 3131 } 3132 } else { 3133 // When vo == UseNextMarking we cannot currently do a sanity 3134 // check on the live bytes as the calculation has not been 3135 // finalized yet. 3136 } 3137 } 3138 } 3139 return false; // stop the region iteration if we hit a failure 3140 } 3141 }; 3142 3143 // This is the task used for parallel verification of the heap regions 3144 3145 class G1ParVerifyTask: public AbstractGangTask { 3146 private: 3147 G1CollectedHeap* _g1h; 3148 VerifyOption _vo; 3149 bool _failures; 3150 HeapRegionClaimer _hrclaimer; 3151 3152 public: 3153 // _vo == UsePrevMarking -> use "prev" marking information, 3154 // _vo == UseNextMarking -> use "next" marking information, 3155 // _vo == UseMarkWord -> use mark word from object header. 3156 G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) : 3157 AbstractGangTask("Parallel verify task"), 3158 _g1h(g1h), 3159 _vo(vo), 3160 _failures(false), 3161 _hrclaimer(g1h->workers()->active_workers()) {} 3162 3163 bool failures() { 3164 return _failures; 3165 } 3166 3167 void work(uint worker_id) { 3168 HandleMark hm; 3169 VerifyRegionClosure blk(true, _vo); 3170 _g1h->heap_region_par_iterate(&blk, worker_id, &_hrclaimer); 3171 if (blk.failures()) { 3172 _failures = true; 3173 } 3174 } 3175 }; 3176 3177 void G1CollectedHeap::verify(bool silent, VerifyOption vo) { 3178 if (SafepointSynchronize::is_at_safepoint()) { 3179 assert(Thread::current()->is_VM_thread(), 3180 "Expected to be executed serially by the VM thread at this point"); 3181 3182 if (!silent) { gclog_or_tty->print("Roots "); } 3183 VerifyRootsClosure rootsCl(vo); 3184 VerifyKlassClosure klassCl(this, &rootsCl); 3185 CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false); 3186 3187 // We apply the relevant closures to all the oops in the 3188 // system dictionary, class loader data graph, the string table 3189 // and the nmethods in the code cache. 3190 G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo); 3191 G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl); 3192 3193 process_all_roots(true, // activate StrongRootsScope 3194 SO_AllCodeCache, // roots scanning options 3195 &rootsCl, 3196 &cldCl, 3197 &blobsCl); 3198 3199 bool failures = rootsCl.failures() || codeRootsCl.failures(); 3200 3201 if (vo != VerifyOption_G1UseMarkWord) { 3202 // If we're verifying during a full GC then the region sets 3203 // will have been torn down at the start of the GC. Therefore 3204 // verifying the region sets will fail. So we only verify 3205 // the region sets when not in a full GC. 3206 if (!silent) { gclog_or_tty->print("HeapRegionSets "); } 3207 verify_region_sets(); 3208 } 3209 3210 if (!silent) { gclog_or_tty->print("HeapRegions "); } 3211 if (GCParallelVerificationEnabled && ParallelGCThreads > 1) { 3212 3213 G1ParVerifyTask task(this, vo); 3214 assert(UseDynamicNumberOfGCThreads || 3215 workers()->active_workers() == workers()->total_workers(), 3216 "If not dynamic should be using all the workers"); 3217 int n_workers = workers()->active_workers(); 3218 set_par_threads(n_workers); 3219 workers()->run_task(&task); 3220 set_par_threads(0); 3221 if (task.failures()) { 3222 failures = true; 3223 } 3224 3225 } else { 3226 VerifyRegionClosure blk(false, vo); 3227 heap_region_iterate(&blk); 3228 if (blk.failures()) { 3229 failures = true; 3230 } 3231 } 3232 if (!silent) gclog_or_tty->print("RemSet "); 3233 rem_set()->verify(); 3234 3235 if (G1StringDedup::is_enabled()) { 3236 if (!silent) gclog_or_tty->print("StrDedup "); 3237 G1StringDedup::verify(); 3238 } 3239 3240 if (failures) { 3241 gclog_or_tty->print_cr("Heap:"); 3242 // It helps to have the per-region information in the output to 3243 // help us track down what went wrong. This is why we call 3244 // print_extended_on() instead of print_on(). 3245 print_extended_on(gclog_or_tty); 3246 gclog_or_tty->cr(); 3247 #ifndef PRODUCT 3248 if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) { 3249 concurrent_mark()->print_reachable("at-verification-failure", 3250 vo, false /* all */); 3251 } 3252 #endif 3253 gclog_or_tty->flush(); 3254 } 3255 guarantee(!failures, "there should not have been any failures"); 3256 } else { 3257 if (!silent) { 3258 gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet"); 3259 if (G1StringDedup::is_enabled()) { 3260 gclog_or_tty->print(", StrDedup"); 3261 } 3262 gclog_or_tty->print(") "); 3263 } 3264 } 3265 } 3266 3267 void G1CollectedHeap::verify(bool silent) { 3268 verify(silent, VerifyOption_G1UsePrevMarking); 3269 } 3270 3271 double G1CollectedHeap::verify(bool guard, const char* msg) { 3272 double verify_time_ms = 0.0; 3273 3274 if (guard && total_collections() >= VerifyGCStartAt) { 3275 double verify_start = os::elapsedTime(); 3276 HandleMark hm; // Discard invalid handles created during verification 3277 prepare_for_verify(); 3278 Universe::verify(VerifyOption_G1UsePrevMarking, msg); 3279 verify_time_ms = (os::elapsedTime() - verify_start) * 1000; 3280 } 3281 3282 return verify_time_ms; 3283 } 3284 3285 void G1CollectedHeap::verify_before_gc() { 3286 double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:"); 3287 g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms); 3288 } 3289 3290 void G1CollectedHeap::verify_after_gc() { 3291 double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:"); 3292 g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms); 3293 } 3294 3295 class PrintRegionClosure: public HeapRegionClosure { 3296 outputStream* _st; 3297 public: 3298 PrintRegionClosure(outputStream* st) : _st(st) {} 3299 bool doHeapRegion(HeapRegion* r) { 3300 r->print_on(_st); 3301 return false; 3302 } 3303 }; 3304 3305 bool G1CollectedHeap::is_obj_dead_cond(const oop obj, 3306 const HeapRegion* hr, 3307 const VerifyOption vo) const { 3308 switch (vo) { 3309 case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr); 3310 case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr); 3311 case VerifyOption_G1UseMarkWord: return !obj->is_gc_marked(); 3312 default: ShouldNotReachHere(); 3313 } 3314 return false; // keep some compilers happy 3315 } 3316 3317 bool G1CollectedHeap::is_obj_dead_cond(const oop obj, 3318 const VerifyOption vo) const { 3319 switch (vo) { 3320 case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj); 3321 case VerifyOption_G1UseNextMarking: return is_obj_ill(obj); 3322 case VerifyOption_G1UseMarkWord: return !obj->is_gc_marked(); 3323 default: ShouldNotReachHere(); 3324 } 3325 return false; // keep some compilers happy 3326 } 3327 3328 void G1CollectedHeap::print_on(outputStream* st) const { 3329 st->print(" %-20s", "garbage-first heap"); 3330 st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K", 3331 capacity()/K, used_unlocked()/K); 3332 st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")", 3333 _hrm.reserved().start(), 3334 _hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords, 3335 _hrm.reserved().end()); 3336 st->cr(); 3337 st->print(" region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K); 3338 uint young_regions = _young_list->length(); 3339 st->print("%u young (" SIZE_FORMAT "K), ", young_regions, 3340 (size_t) young_regions * HeapRegion::GrainBytes / K); 3341 uint survivor_regions = g1_policy()->recorded_survivor_regions(); 3342 st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions, 3343 (size_t) survivor_regions * HeapRegion::GrainBytes / K); 3344 st->cr(); 3345 MetaspaceAux::print_on(st); 3346 } 3347 3348 void G1CollectedHeap::print_extended_on(outputStream* st) const { 3349 print_on(st); 3350 3351 // Print the per-region information. 3352 st->cr(); 3353 st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), " 3354 "HS=humongous(starts), HC=humongous(continues), " 3355 "CS=collection set, F=free, TS=gc time stamp, " 3356 "PTAMS=previous top-at-mark-start, " 3357 "NTAMS=next top-at-mark-start)"); 3358 PrintRegionClosure blk(st); 3359 heap_region_iterate(&blk); 3360 } 3361 3362 void G1CollectedHeap::print_on_error(outputStream* st) const { 3363 this->CollectedHeap::print_on_error(st); 3364 3365 if (_cm != NULL) { 3366 st->cr(); 3367 _cm->print_on_error(st); 3368 } 3369 } 3370 3371 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const { 3372 workers()->print_worker_threads_on(st); 3373 _cmThread->print_on(st); 3374 st->cr(); 3375 _cm->print_worker_threads_on(st); 3376 _cg1r->print_worker_threads_on(st); 3377 if (G1StringDedup::is_enabled()) { 3378 G1StringDedup::print_worker_threads_on(st); 3379 } 3380 } 3381 3382 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const { 3383 workers()->threads_do(tc); 3384 tc->do_thread(_cmThread); 3385 _cg1r->threads_do(tc); 3386 if (G1StringDedup::is_enabled()) { 3387 G1StringDedup::threads_do(tc); 3388 } 3389 } 3390 3391 void G1CollectedHeap::print_tracing_info() const { 3392 // We'll overload this to mean "trace GC pause statistics." 3393 if (TraceYoungGenTime || TraceOldGenTime) { 3394 // The "G1CollectorPolicy" is keeping track of these stats, so delegate 3395 // to that. 3396 g1_policy()->print_tracing_info(); 3397 } 3398 if (G1SummarizeRSetStats) { 3399 g1_rem_set()->print_summary_info(); 3400 } 3401 if (G1SummarizeConcMark) { 3402 concurrent_mark()->print_summary_info(); 3403 } 3404 g1_policy()->print_yg_surv_rate_info(); 3405 SpecializationStats::print(); 3406 } 3407 3408 #ifndef PRODUCT 3409 // Helpful for debugging RSet issues. 3410 3411 class PrintRSetsClosure : public HeapRegionClosure { 3412 private: 3413 const char* _msg; 3414 size_t _occupied_sum; 3415 3416 public: 3417 bool doHeapRegion(HeapRegion* r) { 3418 HeapRegionRemSet* hrrs = r->rem_set(); 3419 size_t occupied = hrrs->occupied(); 3420 _occupied_sum += occupied; 3421 3422 gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT, 3423 HR_FORMAT_PARAMS(r)); 3424 if (occupied == 0) { 3425 gclog_or_tty->print_cr(" RSet is empty"); 3426 } else { 3427 hrrs->print(); 3428 } 3429 gclog_or_tty->print_cr("----------"); 3430 return false; 3431 } 3432 3433 PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) { 3434 gclog_or_tty->cr(); 3435 gclog_or_tty->print_cr("========================================"); 3436 gclog_or_tty->print_cr("%s", msg); 3437 gclog_or_tty->cr(); 3438 } 3439 3440 ~PrintRSetsClosure() { 3441 gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum); 3442 gclog_or_tty->print_cr("========================================"); 3443 gclog_or_tty->cr(); 3444 } 3445 }; 3446 3447 void G1CollectedHeap::print_cset_rsets() { 3448 PrintRSetsClosure cl("Printing CSet RSets"); 3449 collection_set_iterate(&cl); 3450 } 3451 3452 void G1CollectedHeap::print_all_rsets() { 3453 PrintRSetsClosure cl("Printing All RSets");; 3454 heap_region_iterate(&cl); 3455 } 3456 #endif // PRODUCT 3457 3458 G1CollectedHeap* G1CollectedHeap::heap() { 3459 assert(_sh->kind() == CollectedHeap::G1CollectedHeap, 3460 "not a garbage-first heap"); 3461 return _g1h; 3462 } 3463 3464 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) { 3465 // always_do_update_barrier = false; 3466 assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer"); 3467 // Fill TLAB's and such 3468 accumulate_statistics_all_tlabs(); 3469 ensure_parsability(true); 3470 3471 if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) && 3472 (total_collections() % G1SummarizeRSetStatsPeriod == 0)) { 3473 g1_rem_set()->print_periodic_summary_info("Before GC RS summary"); 3474 } 3475 } 3476 3477 void G1CollectedHeap::gc_epilogue(bool full) { 3478 3479 if (G1SummarizeRSetStats && 3480 (G1SummarizeRSetStatsPeriod > 0) && 3481 // we are at the end of the GC. Total collections has already been increased. 3482 ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) { 3483 g1_rem_set()->print_periodic_summary_info("After GC RS summary"); 3484 } 3485 3486 // FIXME: what is this about? 3487 // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled" 3488 // is set. 3489 COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(), 3490 "derived pointer present")); 3491 // always_do_update_barrier = true; 3492 3493 resize_all_tlabs(); 3494 allocation_context_stats().update(full); 3495 3496 // We have just completed a GC. Update the soft reference 3497 // policy with the new heap occupancy 3498 Universe::update_heap_info_at_gc(); 3499 } 3500 3501 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size, 3502 unsigned int gc_count_before, 3503 bool* succeeded, 3504 GCCause::Cause gc_cause) { 3505 assert_heap_not_locked_and_not_at_safepoint(); 3506 g1_policy()->record_stop_world_start(); 3507 VM_G1IncCollectionPause op(gc_count_before, 3508 word_size, 3509 false, /* should_initiate_conc_mark */ 3510 g1_policy()->max_pause_time_ms(), 3511 gc_cause); 3512 3513 op.set_allocation_context(AllocationContext::current()); 3514 VMThread::execute(&op); 3515 3516 HeapWord* result = op.result(); 3517 bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded(); 3518 assert(result == NULL || ret_succeeded, 3519 "the result should be NULL if the VM did not succeed"); 3520 *succeeded = ret_succeeded; 3521 3522 assert_heap_not_locked(); 3523 return result; 3524 } 3525 3526 void 3527 G1CollectedHeap::doConcurrentMark() { 3528 MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag); 3529 if (!_cmThread->in_progress()) { 3530 _cmThread->set_started(); 3531 CGC_lock->notify(); 3532 } 3533 } 3534 3535 size_t G1CollectedHeap::pending_card_num() { 3536 size_t extra_cards = 0; 3537 JavaThread *curr = Threads::first(); 3538 while (curr != NULL) { 3539 DirtyCardQueue& dcq = curr->dirty_card_queue(); 3540 extra_cards += dcq.size(); 3541 curr = curr->next(); 3542 } 3543 DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set(); 3544 size_t buffer_size = dcqs.buffer_size(); 3545 size_t buffer_num = dcqs.completed_buffers_num(); 3546 3547 // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes 3548 // in bytes - not the number of 'entries'. We need to convert 3549 // into a number of cards. 3550 return (buffer_size * buffer_num + extra_cards) / oopSize; 3551 } 3552 3553 size_t G1CollectedHeap::cards_scanned() { 3554 return g1_rem_set()->cardsScanned(); 3555 } 3556 3557 bool G1CollectedHeap::humongous_region_is_always_live(uint index) { 3558 HeapRegion* region = region_at(index); 3559 assert(region->is_starts_humongous(), "Must start a humongous object"); 3560 return oop(region->bottom())->is_objArray() || !region->rem_set()->is_empty(); 3561 } 3562 3563 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure { 3564 private: 3565 size_t _total_humongous; 3566 size_t _candidate_humongous; 3567 public: 3568 RegisterHumongousWithInCSetFastTestClosure() : _total_humongous(0), _candidate_humongous(0) { 3569 } 3570 3571 virtual bool doHeapRegion(HeapRegion* r) { 3572 if (!r->is_starts_humongous()) { 3573 return false; 3574 } 3575 G1CollectedHeap* g1h = G1CollectedHeap::heap(); 3576 3577 uint region_idx = r->hrm_index(); 3578 bool is_candidate = !g1h->humongous_region_is_always_live(region_idx); 3579 // Is_candidate already filters out humongous regions with some remembered set. 3580 // This will not lead to humongous object that we mistakenly keep alive because 3581 // during young collection the remembered sets will only be added to. 3582 if (is_candidate) { 3583 g1h->register_humongous_region_with_in_cset_fast_test(region_idx); 3584 _candidate_humongous++; 3585 } 3586 _total_humongous++; 3587 3588 return false; 3589 } 3590 3591 size_t total_humongous() const { return _total_humongous; } 3592 size_t candidate_humongous() const { return _candidate_humongous; } 3593 }; 3594 3595 void G1CollectedHeap::register_humongous_regions_with_in_cset_fast_test() { 3596 if (!G1ReclaimDeadHumongousObjectsAtYoungGC) { 3597 g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0, 0); 3598 return; 3599 } 3600 3601 RegisterHumongousWithInCSetFastTestClosure cl; 3602 heap_region_iterate(&cl); 3603 g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(cl.total_humongous(), 3604 cl.candidate_humongous()); 3605 _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0; 3606 3607 if (_has_humongous_reclaim_candidates || G1TraceReclaimDeadHumongousObjectsAtYoungGC) { 3608 clear_humongous_is_live_table(); 3609 } 3610 } 3611 3612 void 3613 G1CollectedHeap::setup_surviving_young_words() { 3614 assert(_surviving_young_words == NULL, "pre-condition"); 3615 uint array_length = g1_policy()->young_cset_region_length(); 3616 _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC); 3617 if (_surviving_young_words == NULL) { 3618 vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR, 3619 "Not enough space for young surv words summary."); 3620 } 3621 memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t)); 3622 #ifdef ASSERT 3623 for (uint i = 0; i < array_length; ++i) { 3624 assert( _surviving_young_words[i] == 0, "memset above" ); 3625 } 3626 #endif // !ASSERT 3627 } 3628 3629 void 3630 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) { 3631 MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag); 3632 uint array_length = g1_policy()->young_cset_region_length(); 3633 for (uint i = 0; i < array_length; ++i) { 3634 _surviving_young_words[i] += surv_young_words[i]; 3635 } 3636 } 3637 3638 void 3639 G1CollectedHeap::cleanup_surviving_young_words() { 3640 guarantee( _surviving_young_words != NULL, "pre-condition" ); 3641 FREE_C_HEAP_ARRAY(size_t, _surviving_young_words, mtGC); 3642 _surviving_young_words = NULL; 3643 } 3644 3645 #ifdef ASSERT 3646 class VerifyCSetClosure: public HeapRegionClosure { 3647 public: 3648 bool doHeapRegion(HeapRegion* hr) { 3649 // Here we check that the CSet region's RSet is ready for parallel 3650 // iteration. The fields that we'll verify are only manipulated 3651 // when the region is part of a CSet and is collected. Afterwards, 3652 // we reset these fields when we clear the region's RSet (when the 3653 // region is freed) so they are ready when the region is 3654 // re-allocated. The only exception to this is if there's an 3655 // evacuation failure and instead of freeing the region we leave 3656 // it in the heap. In that case, we reset these fields during 3657 // evacuation failure handling. 3658 guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification"); 3659 3660 // Here's a good place to add any other checks we'd like to 3661 // perform on CSet regions. 3662 return false; 3663 } 3664 }; 3665 #endif // ASSERT 3666 3667 #if TASKQUEUE_STATS 3668 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) { 3669 st->print_raw_cr("GC Task Stats"); 3670 st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr(); 3671 st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr(); 3672 } 3673 3674 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const { 3675 print_taskqueue_stats_hdr(st); 3676 3677 TaskQueueStats totals; 3678 const int n = workers()->total_workers(); 3679 for (int i = 0; i < n; ++i) { 3680 st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr(); 3681 totals += task_queue(i)->stats; 3682 } 3683 st->print_raw("tot "); totals.print(st); st->cr(); 3684 3685 DEBUG_ONLY(totals.verify()); 3686 } 3687 3688 void G1CollectedHeap::reset_taskqueue_stats() { 3689 const int n = workers()->total_workers(); 3690 for (int i = 0; i < n; ++i) { 3691 task_queue(i)->stats.reset(); 3692 } 3693 } 3694 #endif // TASKQUEUE_STATS 3695 3696 void G1CollectedHeap::log_gc_header() { 3697 if (!G1Log::fine()) { 3698 return; 3699 } 3700 3701 gclog_or_tty->gclog_stamp(_gc_tracer_stw->gc_id()); 3702 3703 GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause()) 3704 .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)") 3705 .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : ""); 3706 3707 gclog_or_tty->print("[%s", (const char*)gc_cause_str); 3708 } 3709 3710 void G1CollectedHeap::log_gc_footer(double pause_time_sec) { 3711 if (!G1Log::fine()) { 3712 return; 3713 } 3714 3715 if (G1Log::finer()) { 3716 if (evacuation_failed()) { 3717 gclog_or_tty->print(" (to-space exhausted)"); 3718 } 3719 gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec); 3720 g1_policy()->phase_times()->note_gc_end(); 3721 g1_policy()->phase_times()->print(pause_time_sec); 3722 g1_policy()->print_detailed_heap_transition(); 3723 } else { 3724 if (evacuation_failed()) { 3725 gclog_or_tty->print("--"); 3726 } 3727 g1_policy()->print_heap_transition(); 3728 gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec); 3729 } 3730 gclog_or_tty->flush(); 3731 } 3732 3733 bool 3734 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) { 3735 assert_at_safepoint(true /* should_be_vm_thread */); 3736 guarantee(!is_gc_active(), "collection is not reentrant"); 3737 3738 if (GC_locker::check_active_before_gc()) { 3739 return false; 3740 } 3741 3742 _gc_timer_stw->register_gc_start(); 3743 3744 _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start()); 3745 3746 SvcGCMarker sgcm(SvcGCMarker::MINOR); 3747 ResourceMark rm; 3748 3749 print_heap_before_gc(); 3750 trace_heap_before_gc(_gc_tracer_stw); 3751 3752 verify_region_sets_optional(); 3753 verify_dirty_young_regions(); 3754 3755 // This call will decide whether this pause is an initial-mark 3756 // pause. If it is, during_initial_mark_pause() will return true 3757 // for the duration of this pause. 3758 g1_policy()->decide_on_conc_mark_initiation(); 3759 3760 // We do not allow initial-mark to be piggy-backed on a mixed GC. 3761 assert(!g1_policy()->during_initial_mark_pause() || 3762 g1_policy()->gcs_are_young(), "sanity"); 3763 3764 // We also do not allow mixed GCs during marking. 3765 assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity"); 3766 3767 // Record whether this pause is an initial mark. When the current 3768 // thread has completed its logging output and it's safe to signal 3769 // the CM thread, the flag's value in the policy has been reset. 3770 bool should_start_conc_mark = g1_policy()->during_initial_mark_pause(); 3771 3772 // Inner scope for scope based logging, timers, and stats collection 3773 { 3774 EvacuationInfo evacuation_info; 3775 3776 if (g1_policy()->during_initial_mark_pause()) { 3777 // We are about to start a marking cycle, so we increment the 3778 // full collection counter. 3779 increment_old_marking_cycles_started(); 3780 register_concurrent_cycle_start(_gc_timer_stw->gc_start()); 3781 } 3782 3783 _gc_tracer_stw->report_yc_type(yc_type()); 3784 3785 TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty); 3786 3787 int active_workers = workers()->active_workers(); 3788 double pause_start_sec = os::elapsedTime(); 3789 g1_policy()->phase_times()->note_gc_start(active_workers); 3790 log_gc_header(); 3791 3792 TraceCollectorStats tcs(g1mm()->incremental_collection_counters()); 3793 TraceMemoryManagerStats tms(false /* fullGC */, gc_cause()); 3794 3795 // If the secondary_free_list is not empty, append it to the 3796 // free_list. No need to wait for the cleanup operation to finish; 3797 // the region allocation code will check the secondary_free_list 3798 // and wait if necessary. If the G1StressConcRegionFreeing flag is 3799 // set, skip this step so that the region allocation code has to 3800 // get entries from the secondary_free_list. 3801 if (!G1StressConcRegionFreeing) { 3802 append_secondary_free_list_if_not_empty_with_lock(); 3803 } 3804 3805 assert(check_young_list_well_formed(), "young list should be well formed"); 3806 3807 // Don't dynamically change the number of GC threads this early. A value of 3808 // 0 is used to indicate serial work. When parallel work is done, 3809 // it will be set. 3810 3811 { // Call to jvmpi::post_class_unload_events must occur outside of active GC 3812 IsGCActiveMark x; 3813 3814 gc_prologue(false); 3815 increment_total_collections(false /* full gc */); 3816 increment_gc_time_stamp(); 3817 3818 verify_before_gc(); 3819 3820 check_bitmaps("GC Start"); 3821 3822 COMPILER2_PRESENT(DerivedPointerTable::clear()); 3823 3824 // Please see comment in g1CollectedHeap.hpp and 3825 // G1CollectedHeap::ref_processing_init() to see how 3826 // reference processing currently works in G1. 3827 3828 // Enable discovery in the STW reference processor 3829 ref_processor_stw()->enable_discovery(true /*verify_disabled*/, 3830 true /*verify_no_refs*/); 3831 3832 { 3833 // We want to temporarily turn off discovery by the 3834 // CM ref processor, if necessary, and turn it back on 3835 // on again later if we do. Using a scoped 3836 // NoRefDiscovery object will do this. 3837 NoRefDiscovery no_cm_discovery(ref_processor_cm()); 3838 3839 // Forget the current alloc region (we might even choose it to be part 3840 // of the collection set!). 3841 _allocator->release_mutator_alloc_region(); 3842 3843 // We should call this after we retire the mutator alloc 3844 // region(s) so that all the ALLOC / RETIRE events are generated 3845 // before the start GC event. 3846 _hr_printer.start_gc(false /* full */, (size_t) total_collections()); 3847 3848 // This timing is only used by the ergonomics to handle our pause target. 3849 // It is unclear why this should not include the full pause. We will 3850 // investigate this in CR 7178365. 3851 // 3852 // Preserving the old comment here if that helps the investigation: 3853 // 3854 // The elapsed time induced by the start time below deliberately elides 3855 // the possible verification above. 3856 double sample_start_time_sec = os::elapsedTime(); 3857 3858 #if YOUNG_LIST_VERBOSE 3859 gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:"); 3860 _young_list->print(); 3861 g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty); 3862 #endif // YOUNG_LIST_VERBOSE 3863 3864 g1_policy()->record_collection_pause_start(sample_start_time_sec); 3865 3866 double scan_wait_start = os::elapsedTime(); 3867 // We have to wait until the CM threads finish scanning the 3868 // root regions as it's the only way to ensure that all the 3869 // objects on them have been correctly scanned before we start 3870 // moving them during the GC. 3871 bool waited = _cm->root_regions()->wait_until_scan_finished(); 3872 double wait_time_ms = 0.0; 3873 if (waited) { 3874 double scan_wait_end = os::elapsedTime(); 3875 wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0; 3876 } 3877 g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms); 3878 3879 #if YOUNG_LIST_VERBOSE 3880 gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:"); 3881 _young_list->print(); 3882 #endif // YOUNG_LIST_VERBOSE 3883 3884 if (g1_policy()->during_initial_mark_pause()) { 3885 concurrent_mark()->checkpointRootsInitialPre(); 3886 } 3887 3888 #if YOUNG_LIST_VERBOSE 3889 gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:"); 3890 _young_list->print(); 3891 g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty); 3892 #endif // YOUNG_LIST_VERBOSE 3893 3894 g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info); 3895 3896 register_humongous_regions_with_in_cset_fast_test(); 3897 3898 _cm->note_start_of_gc(); 3899 // We should not verify the per-thread SATB buffers given that 3900 // we have not filtered them yet (we'll do so during the 3901 // GC). We also call this after finalize_cset() to 3902 // ensure that the CSet has been finalized. 3903 _cm->verify_no_cset_oops(true /* verify_stacks */, 3904 true /* verify_enqueued_buffers */, 3905 false /* verify_thread_buffers */, 3906 true /* verify_fingers */); 3907 3908 if (_hr_printer.is_active()) { 3909 HeapRegion* hr = g1_policy()->collection_set(); 3910 while (hr != NULL) { 3911 _hr_printer.cset(hr); 3912 hr = hr->next_in_collection_set(); 3913 } 3914 } 3915 3916 #ifdef ASSERT 3917 VerifyCSetClosure cl; 3918 collection_set_iterate(&cl); 3919 #endif // ASSERT 3920 3921 setup_surviving_young_words(); 3922 3923 // Initialize the GC alloc regions. 3924 _allocator->init_gc_alloc_regions(evacuation_info); 3925 3926 // Actually do the work... 3927 evacuate_collection_set(evacuation_info); 3928 3929 // We do this to mainly verify the per-thread SATB buffers 3930 // (which have been filtered by now) since we didn't verify 3931 // them earlier. No point in re-checking the stacks / enqueued 3932 // buffers given that the CSet has not changed since last time 3933 // we checked. 3934 _cm->verify_no_cset_oops(false /* verify_stacks */, 3935 false /* verify_enqueued_buffers */, 3936 true /* verify_thread_buffers */, 3937 true /* verify_fingers */); 3938 3939 free_collection_set(g1_policy()->collection_set(), evacuation_info); 3940 3941 eagerly_reclaim_humongous_regions(); 3942 3943 g1_policy()->clear_collection_set(); 3944 3945 cleanup_surviving_young_words(); 3946 3947 // Start a new incremental collection set for the next pause. 3948 g1_policy()->start_incremental_cset_building(); 3949 3950 clear_cset_fast_test(); 3951 3952 _young_list->reset_sampled_info(); 3953 3954 // Don't check the whole heap at this point as the 3955 // GC alloc regions from this pause have been tagged 3956 // as survivors and moved on to the survivor list. 3957 // Survivor regions will fail the !is_young() check. 3958 assert(check_young_list_empty(false /* check_heap */), 3959 "young list should be empty"); 3960 3961 #if YOUNG_LIST_VERBOSE 3962 gclog_or_tty->print_cr("Before recording survivors.\nYoung List:"); 3963 _young_list->print(); 3964 #endif // YOUNG_LIST_VERBOSE 3965 3966 g1_policy()->record_survivor_regions(_young_list->survivor_length(), 3967 _young_list->first_survivor_region(), 3968 _young_list->last_survivor_region()); 3969 3970 _young_list->reset_auxilary_lists(); 3971 3972 if (evacuation_failed()) { 3973 _allocator->set_used(recalculate_used()); 3974 uint n_queues = MAX2((int)ParallelGCThreads, 1); 3975 for (uint i = 0; i < n_queues; i++) { 3976 if (_evacuation_failed_info_array[i].has_failed()) { 3977 _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]); 3978 } 3979 } 3980 } else { 3981 // The "used" of the the collection set have already been subtracted 3982 // when they were freed. Add in the bytes evacuated. 3983 _allocator->increase_used(g1_policy()->bytes_copied_during_gc()); 3984 } 3985 3986 if (g1_policy()->during_initial_mark_pause()) { 3987 // We have to do this before we notify the CM threads that 3988 // they can start working to make sure that all the 3989 // appropriate initialization is done on the CM object. 3990 concurrent_mark()->checkpointRootsInitialPost(); 3991 set_marking_started(); 3992 // Note that we don't actually trigger the CM thread at 3993 // this point. We do that later when we're sure that 3994 // the current thread has completed its logging output. 3995 } 3996 3997 allocate_dummy_regions(); 3998 3999 #if YOUNG_LIST_VERBOSE 4000 gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:"); 4001 _young_list->print(); 4002 g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty); 4003 #endif // YOUNG_LIST_VERBOSE 4004 4005 _allocator->init_mutator_alloc_region(); 4006 4007 { 4008 size_t expand_bytes = g1_policy()->expansion_amount(); 4009 if (expand_bytes > 0) { 4010 size_t bytes_before = capacity(); 4011 // No need for an ergo verbose message here, 4012 // expansion_amount() does this when it returns a value > 0. 4013 if (!expand(expand_bytes)) { 4014 // We failed to expand the heap. Cannot do anything about it. 4015 } 4016 } 4017 } 4018 4019 // We redo the verification but now wrt to the new CSet which 4020 // has just got initialized after the previous CSet was freed. 4021 _cm->verify_no_cset_oops(true /* verify_stacks */, 4022 true /* verify_enqueued_buffers */, 4023 true /* verify_thread_buffers */, 4024 true /* verify_fingers */); 4025 _cm->note_end_of_gc(); 4026 4027 // This timing is only used by the ergonomics to handle our pause target. 4028 // It is unclear why this should not include the full pause. We will 4029 // investigate this in CR 7178365. 4030 double sample_end_time_sec = os::elapsedTime(); 4031 double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS; 4032 g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info); 4033 4034 MemoryService::track_memory_usage(); 4035 4036 // In prepare_for_verify() below we'll need to scan the deferred 4037 // update buffers to bring the RSets up-to-date if 4038 // G1HRRSFlushLogBuffersOnVerify has been set. While scanning 4039 // the update buffers we'll probably need to scan cards on the 4040 // regions we just allocated to (i.e., the GC alloc 4041 // regions). However, during the last GC we called 4042 // set_saved_mark() on all the GC alloc regions, so card 4043 // scanning might skip the [saved_mark_word()...top()] area of 4044 // those regions (i.e., the area we allocated objects into 4045 // during the last GC). But it shouldn't. Given that 4046 // saved_mark_word() is conditional on whether the GC time stamp 4047 // on the region is current or not, by incrementing the GC time 4048 // stamp here we invalidate all the GC time stamps on all the 4049 // regions and saved_mark_word() will simply return top() for 4050 // all the regions. This is a nicer way of ensuring this rather 4051 // than iterating over the regions and fixing them. In fact, the 4052 // GC time stamp increment here also ensures that 4053 // saved_mark_word() will return top() between pauses, i.e., 4054 // during concurrent refinement. So we don't need the 4055 // is_gc_active() check to decided which top to use when 4056 // scanning cards (see CR 7039627). 4057 increment_gc_time_stamp(); 4058 4059 verify_after_gc(); 4060 check_bitmaps("GC End"); 4061 4062 assert(!ref_processor_stw()->discovery_enabled(), "Postcondition"); 4063 ref_processor_stw()->verify_no_references_recorded(); 4064 4065 // CM reference discovery will be re-enabled if necessary. 4066 } 4067 4068 // We should do this after we potentially expand the heap so 4069 // that all the COMMIT events are generated before the end GC 4070 // event, and after we retire the GC alloc regions so that all 4071 // RETIRE events are generated before the end GC event. 4072 _hr_printer.end_gc(false /* full */, (size_t) total_collections()); 4073 4074 #ifdef TRACESPINNING 4075 ParallelTaskTerminator::print_termination_counts(); 4076 #endif 4077 4078 gc_epilogue(false); 4079 } 4080 4081 // Print the remainder of the GC log output. 4082 log_gc_footer(os::elapsedTime() - pause_start_sec); 4083 4084 // It is not yet to safe to tell the concurrent mark to 4085 // start as we have some optional output below. We don't want the 4086 // output from the concurrent mark thread interfering with this 4087 // logging output either. 4088 4089 _hrm.verify_optional(); 4090 verify_region_sets_optional(); 4091 4092 TASKQUEUE_STATS_ONLY(if (PrintTaskqueue) print_taskqueue_stats()); 4093 TASKQUEUE_STATS_ONLY(reset_taskqueue_stats()); 4094 4095 print_heap_after_gc(); 4096 trace_heap_after_gc(_gc_tracer_stw); 4097 4098 // We must call G1MonitoringSupport::update_sizes() in the same scoping level 4099 // as an active TraceMemoryManagerStats object (i.e. before the destructor for the 4100 // TraceMemoryManagerStats is called) so that the G1 memory pools are updated 4101 // before any GC notifications are raised. 4102 g1mm()->update_sizes(); 4103 4104 _gc_tracer_stw->report_evacuation_info(&evacuation_info); 4105 _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold()); 4106 _gc_timer_stw->register_gc_end(); 4107 _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions()); 4108 } 4109 // It should now be safe to tell the concurrent mark thread to start 4110 // without its logging output interfering with the logging output 4111 // that came from the pause. 4112 4113 if (should_start_conc_mark) { 4114 // CAUTION: after the doConcurrentMark() call below, 4115 // the concurrent marking thread(s) could be running 4116 // concurrently with us. Make sure that anything after 4117 // this point does not assume that we are the only GC thread 4118 // running. Note: of course, the actual marking work will 4119 // not start until the safepoint itself is released in 4120 // SuspendibleThreadSet::desynchronize(). 4121 doConcurrentMark(); 4122 } 4123 4124 return true; 4125 } 4126 4127 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose) 4128 { 4129 size_t gclab_word_size; 4130 switch (purpose) { 4131 case GCAllocForSurvived: 4132 gclab_word_size = _survivor_plab_stats.desired_plab_sz(); 4133 break; 4134 case GCAllocForTenured: 4135 gclab_word_size = _old_plab_stats.desired_plab_sz(); 4136 break; 4137 default: 4138 assert(false, "unknown GCAllocPurpose"); 4139 gclab_word_size = _old_plab_stats.desired_plab_sz(); 4140 break; 4141 } 4142 4143 // Prevent humongous PLAB sizes for two reasons: 4144 // * PLABs are allocated using a similar paths as oops, but should 4145 // never be in a humongous region 4146 // * Allowing humongous PLABs needlessly churns the region free lists 4147 return MIN2(_humongous_object_threshold_in_words, gclab_word_size); 4148 } 4149 4150 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) { 4151 _drain_in_progress = false; 4152 set_evac_failure_closure(cl); 4153 _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true); 4154 } 4155 4156 void G1CollectedHeap::finalize_for_evac_failure() { 4157 assert(_evac_failure_scan_stack != NULL && 4158 _evac_failure_scan_stack->length() == 0, 4159 "Postcondition"); 4160 assert(!_drain_in_progress, "Postcondition"); 4161 delete _evac_failure_scan_stack; 4162 _evac_failure_scan_stack = NULL; 4163 } 4164 4165 void G1CollectedHeap::remove_self_forwarding_pointers() { 4166 double remove_self_forwards_start = os::elapsedTime(); 4167 4168 set_par_threads(); 4169 G1ParRemoveSelfForwardPtrsTask rsfp_task(this); 4170 workers()->run_task(&rsfp_task); 4171 set_par_threads(0); 4172 4173 // Now restore saved marks, if any. 4174 assert(_objs_with_preserved_marks.size() == 4175 _preserved_marks_of_objs.size(), "Both or none."); 4176 while (!_objs_with_preserved_marks.is_empty()) { 4177 oop obj = _objs_with_preserved_marks.pop(); 4178 markOop m = _preserved_marks_of_objs.pop(); 4179 obj->set_mark(m); 4180 } 4181 _objs_with_preserved_marks.clear(true); 4182 _preserved_marks_of_objs.clear(true); 4183 4184 g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0); 4185 } 4186 4187 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) { 4188 _evac_failure_scan_stack->push(obj); 4189 } 4190 4191 void G1CollectedHeap::drain_evac_failure_scan_stack() { 4192 assert(_evac_failure_scan_stack != NULL, "precondition"); 4193 4194 while (_evac_failure_scan_stack->length() > 0) { 4195 oop obj = _evac_failure_scan_stack->pop(); 4196 _evac_failure_closure->set_region(heap_region_containing(obj)); 4197 obj->oop_iterate_backwards(_evac_failure_closure); 4198 } 4199 } 4200 4201 oop 4202 G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state, 4203 oop old) { 4204 assert(obj_in_cs(old), 4205 err_msg("obj: "PTR_FORMAT" should still be in the CSet", 4206 (HeapWord*) old)); 4207 markOop m = old->mark(); 4208 oop forward_ptr = old->forward_to_atomic(old); 4209 if (forward_ptr == NULL) { 4210 // Forward-to-self succeeded. 4211 assert(_par_scan_state != NULL, "par scan state"); 4212 OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure(); 4213 uint queue_num = _par_scan_state->queue_num(); 4214 4215 _evacuation_failed = true; 4216 _evacuation_failed_info_array[queue_num].register_copy_failure(old->size()); 4217 if (_evac_failure_closure != cl) { 4218 MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag); 4219 assert(!_drain_in_progress, 4220 "Should only be true while someone holds the lock."); 4221 // Set the global evac-failure closure to the current thread's. 4222 assert(_evac_failure_closure == NULL, "Or locking has failed."); 4223 set_evac_failure_closure(cl); 4224 // Now do the common part. 4225 handle_evacuation_failure_common(old, m); 4226 // Reset to NULL. 4227 set_evac_failure_closure(NULL); 4228 } else { 4229 // The lock is already held, and this is recursive. 4230 assert(_drain_in_progress, "This should only be the recursive case."); 4231 handle_evacuation_failure_common(old, m); 4232 } 4233 return old; 4234 } else { 4235 // Forward-to-self failed. Either someone else managed to allocate 4236 // space for this object (old != forward_ptr) or they beat us in 4237 // self-forwarding it (old == forward_ptr). 4238 assert(old == forward_ptr || !obj_in_cs(forward_ptr), 4239 err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" " 4240 "should not be in the CSet", 4241 (HeapWord*) old, (HeapWord*) forward_ptr)); 4242 return forward_ptr; 4243 } 4244 } 4245 4246 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) { 4247 preserve_mark_if_necessary(old, m); 4248 4249 HeapRegion* r = heap_region_containing(old); 4250 if (!r->evacuation_failed()) { 4251 r->set_evacuation_failed(true); 4252 _hr_printer.evac_failure(r); 4253 } 4254 4255 push_on_evac_failure_scan_stack(old); 4256 4257 if (!_drain_in_progress) { 4258 // prevent recursion in copy_to_survivor_space() 4259 _drain_in_progress = true; 4260 drain_evac_failure_scan_stack(); 4261 _drain_in_progress = false; 4262 } 4263 } 4264 4265 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) { 4266 assert(evacuation_failed(), "Oversaving!"); 4267 // We want to call the "for_promotion_failure" version only in the 4268 // case of a promotion failure. 4269 if (m->must_be_preserved_for_promotion_failure(obj)) { 4270 _objs_with_preserved_marks.push(obj); 4271 _preserved_marks_of_objs.push(m); 4272 } 4273 } 4274 4275 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose, 4276 size_t word_size, 4277 AllocationContext_t context) { 4278 if (purpose == GCAllocForSurvived) { 4279 HeapWord* result = survivor_attempt_allocation(word_size, context); 4280 if (result != NULL) { 4281 return result; 4282 } else { 4283 // Let's try to allocate in the old gen in case we can fit the 4284 // object there. 4285 return old_attempt_allocation(word_size, context); 4286 } 4287 } else { 4288 assert(purpose == GCAllocForTenured, "sanity"); 4289 HeapWord* result = old_attempt_allocation(word_size, context); 4290 if (result != NULL) { 4291 return result; 4292 } else { 4293 // Let's try to allocate in the survivors in case we can fit the 4294 // object there. 4295 return survivor_attempt_allocation(word_size, context); 4296 } 4297 } 4298 4299 ShouldNotReachHere(); 4300 // Trying to keep some compilers happy. 4301 return NULL; 4302 } 4303 4304 void G1ParCopyHelper::mark_object(oop obj) { 4305 assert(!_g1->heap_region_containing(obj)->in_collection_set(), "should not mark objects in the CSet"); 4306 4307 // We know that the object is not moving so it's safe to read its size. 4308 _cm->grayRoot(obj, (size_t) obj->size(), _worker_id); 4309 } 4310 4311 void G1ParCopyHelper::mark_forwarded_object(oop from_obj, oop to_obj) { 4312 assert(from_obj->is_forwarded(), "from obj should be forwarded"); 4313 assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee"); 4314 assert(from_obj != to_obj, "should not be self-forwarded"); 4315 4316 assert(_g1->heap_region_containing(from_obj)->in_collection_set(), "from obj should be in the CSet"); 4317 assert(!_g1->heap_region_containing(to_obj)->in_collection_set(), "should not mark objects in the CSet"); 4318 4319 // The object might be in the process of being copied by another 4320 // worker so we cannot trust that its to-space image is 4321 // well-formed. So we have to read its size from its from-space 4322 // image which we know should not be changing. 4323 _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id); 4324 } 4325 4326 template <class T> 4327 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) { 4328 if (_g1->heap_region_containing_raw(new_obj)->is_young()) { 4329 _scanned_klass->record_modified_oops(); 4330 } 4331 } 4332 4333 template <G1Barrier barrier, G1Mark do_mark_object> 4334 template <class T> 4335 void G1ParCopyClosure<barrier, do_mark_object>::do_oop_work(T* p) { 4336 T heap_oop = oopDesc::load_heap_oop(p); 4337 4338 if (oopDesc::is_null(heap_oop)) { 4339 return; 4340 } 4341 4342 oop obj = oopDesc::decode_heap_oop_not_null(heap_oop); 4343 4344 assert(_worker_id == _par_scan_state->queue_num(), "sanity"); 4345 4346 G1CollectedHeap::in_cset_state_t state = _g1->in_cset_state(obj); 4347 4348 if (state == G1CollectedHeap::InCSet) { 4349 oop forwardee; 4350 if (obj->is_forwarded()) { 4351 forwardee = obj->forwardee(); 4352 } else { 4353 forwardee = _par_scan_state->copy_to_survivor_space(obj); 4354 } 4355 assert(forwardee != NULL, "forwardee should not be NULL"); 4356 oopDesc::encode_store_heap_oop(p, forwardee); 4357 if (do_mark_object != G1MarkNone && forwardee != obj) { 4358 // If the object is self-forwarded we don't need to explicitly 4359 // mark it, the evacuation failure protocol will do so. 4360 mark_forwarded_object(obj, forwardee); 4361 } 4362 4363 if (barrier == G1BarrierKlass) { 4364 do_klass_barrier(p, forwardee); 4365 } 4366 } else { 4367 if (state == G1CollectedHeap::IsHumongous) { 4368 _g1->set_humongous_is_live(obj); 4369 } 4370 // The object is not in collection set. If we're a root scanning 4371 // closure during an initial mark pause then attempt to mark the object. 4372 if (do_mark_object == G1MarkFromRoot) { 4373 mark_object(obj); 4374 } 4375 } 4376 4377 if (barrier == G1BarrierEvac) { 4378 _par_scan_state->update_rs(_from, p, _worker_id); 4379 } 4380 } 4381 4382 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(oop* p); 4383 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(narrowOop* p); 4384 4385 class G1ParEvacuateFollowersClosure : public VoidClosure { 4386 protected: 4387 G1CollectedHeap* _g1h; 4388 G1ParScanThreadState* _par_scan_state; 4389 RefToScanQueueSet* _queues; 4390 ParallelTaskTerminator* _terminator; 4391 4392 G1ParScanThreadState* par_scan_state() { return _par_scan_state; } 4393 RefToScanQueueSet* queues() { return _queues; } 4394 ParallelTaskTerminator* terminator() { return _terminator; } 4395 4396 public: 4397 G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h, 4398 G1ParScanThreadState* par_scan_state, 4399 RefToScanQueueSet* queues, 4400 ParallelTaskTerminator* terminator) 4401 : _g1h(g1h), _par_scan_state(par_scan_state), 4402 _queues(queues), _terminator(terminator) {} 4403 4404 void do_void(); 4405 4406 private: 4407 inline bool offer_termination(); 4408 }; 4409 4410 bool G1ParEvacuateFollowersClosure::offer_termination() { 4411 G1ParScanThreadState* const pss = par_scan_state(); 4412 pss->start_term_time(); 4413 const bool res = terminator()->offer_termination(); 4414 pss->end_term_time(); 4415 return res; 4416 } 4417 4418 void G1ParEvacuateFollowersClosure::do_void() { 4419 G1ParScanThreadState* const pss = par_scan_state(); 4420 pss->trim_queue(); 4421 do { 4422 pss->steal_and_trim_queue(queues()); 4423 } while (!offer_termination()); 4424 } 4425 4426 class G1KlassScanClosure : public KlassClosure { 4427 G1ParCopyHelper* _closure; 4428 bool _process_only_dirty; 4429 int _count; 4430 public: 4431 G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty) 4432 : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {} 4433 void do_klass(Klass* klass) { 4434 // If the klass has not been dirtied we know that there's 4435 // no references into the young gen and we can skip it. 4436 if (!_process_only_dirty || klass->has_modified_oops()) { 4437 // Clean the klass since we're going to scavenge all the metadata. 4438 klass->clear_modified_oops(); 4439 4440 // Tell the closure that this klass is the Klass to scavenge 4441 // and is the one to dirty if oops are left pointing into the young gen. 4442 _closure->set_scanned_klass(klass); 4443 4444 klass->oops_do(_closure); 4445 4446 _closure->set_scanned_klass(NULL); 4447 } 4448 _count++; 4449 } 4450 }; 4451 4452 class G1CodeBlobClosure : public CodeBlobClosure { 4453 class HeapRegionGatheringOopClosure : public OopClosure { 4454 G1CollectedHeap* _g1h; 4455 OopClosure* _work; 4456 nmethod* _nm; 4457 4458 template <typename T> 4459 void do_oop_work(T* p) { 4460 _work->do_oop(p); 4461 T oop_or_narrowoop = oopDesc::load_heap_oop(p); 4462 if (!oopDesc::is_null(oop_or_narrowoop)) { 4463 oop o = oopDesc::decode_heap_oop_not_null(oop_or_narrowoop); 4464 HeapRegion* hr = _g1h->heap_region_containing_raw(o); 4465 assert(!_g1h->obj_in_cs(o) || hr->rem_set()->strong_code_roots_list_contains(_nm), "if o still in CS then evacuation failed and nm must already be in the remset"); 4466 hr->add_strong_code_root(_nm); 4467 } 4468 } 4469 4470 public: 4471 HeapRegionGatheringOopClosure(OopClosure* oc) : _g1h(G1CollectedHeap::heap()), _work(oc), _nm(NULL) {} 4472 4473 void do_oop(oop* o) { 4474 do_oop_work(o); 4475 } 4476 4477 void do_oop(narrowOop* o) { 4478 do_oop_work(o); 4479 } 4480 4481 void set_nm(nmethod* nm) { 4482 _nm = nm; 4483 } 4484 }; 4485 4486 HeapRegionGatheringOopClosure _oc; 4487 public: 4488 G1CodeBlobClosure(OopClosure* oc) : _oc(oc) {} 4489 4490 void do_code_blob(CodeBlob* cb) { 4491 nmethod* nm = cb->as_nmethod_or_null(); 4492 if (nm != NULL) { 4493 if (!nm->test_set_oops_do_mark()) { 4494 _oc.set_nm(nm); 4495 nm->oops_do(&_oc); 4496 nm->fix_oop_relocations(); 4497 } 4498 } 4499 } 4500 }; 4501 4502 class G1ParTask : public AbstractGangTask { 4503 protected: 4504 G1CollectedHeap* _g1h; 4505 RefToScanQueueSet *_queues; 4506 ParallelTaskTerminator _terminator; 4507 uint _n_workers; 4508 4509 Mutex _stats_lock; 4510 Mutex* stats_lock() { return &_stats_lock; } 4511 4512 public: 4513 G1ParTask(G1CollectedHeap* g1h, RefToScanQueueSet *task_queues) 4514 : AbstractGangTask("G1 collection"), 4515 _g1h(g1h), 4516 _queues(task_queues), 4517 _terminator(0, _queues), 4518 _stats_lock(Mutex::leaf, "parallel G1 stats lock", true) 4519 {} 4520 4521 RefToScanQueueSet* queues() { return _queues; } 4522 4523 RefToScanQueue *work_queue(int i) { 4524 return queues()->queue(i); 4525 } 4526 4527 ParallelTaskTerminator* terminator() { return &_terminator; } 4528 4529 virtual void set_for_termination(int active_workers) { 4530 // This task calls set_n_termination() in par_non_clean_card_iterate_work() 4531 // in the young space (_par_seq_tasks) in the G1 heap 4532 // for SequentialSubTasksDone. 4533 // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap 4534 // both of which need setting by set_n_termination(). 4535 _g1h->SharedHeap::set_n_termination(active_workers); 4536 _g1h->set_n_termination(active_workers); 4537 terminator()->reset_for_reuse(active_workers); 4538 _n_workers = active_workers; 4539 } 4540 4541 // Helps out with CLD processing. 4542 // 4543 // During InitialMark we need to: 4544 // 1) Scavenge all CLDs for the young GC. 4545 // 2) Mark all objects directly reachable from strong CLDs. 4546 template <G1Mark do_mark_object> 4547 class G1CLDClosure : public CLDClosure { 4548 G1ParCopyClosure<G1BarrierNone, do_mark_object>* _oop_closure; 4549 G1ParCopyClosure<G1BarrierKlass, do_mark_object> _oop_in_klass_closure; 4550 G1KlassScanClosure _klass_in_cld_closure; 4551 bool _claim; 4552 4553 public: 4554 G1CLDClosure(G1ParCopyClosure<G1BarrierNone, do_mark_object>* oop_closure, 4555 bool only_young, bool claim) 4556 : _oop_closure(oop_closure), 4557 _oop_in_klass_closure(oop_closure->g1(), 4558 oop_closure->pss(), 4559 oop_closure->rp()), 4560 _klass_in_cld_closure(&_oop_in_klass_closure, only_young), 4561 _claim(claim) { 4562 4563 } 4564 4565 void do_cld(ClassLoaderData* cld) { 4566 cld->oops_do(_oop_closure, &_klass_in_cld_closure, _claim); 4567 } 4568 }; 4569 4570 void work(uint worker_id) { 4571 if (worker_id >= _n_workers) return; // no work needed this round 4572 4573 double start_time_ms = os::elapsedTime() * 1000.0; 4574 _g1h->g1_policy()->phase_times()->record_gc_worker_start_time(worker_id, start_time_ms); 4575 4576 { 4577 ResourceMark rm; 4578 HandleMark hm; 4579 4580 ReferenceProcessor* rp = _g1h->ref_processor_stw(); 4581 4582 G1ParScanThreadState pss(_g1h, worker_id, rp); 4583 G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp); 4584 4585 pss.set_evac_failure_closure(&evac_failure_cl); 4586 4587 bool only_young = _g1h->g1_policy()->gcs_are_young(); 4588 4589 // Non-IM young GC. 4590 G1ParCopyClosure<G1BarrierNone, G1MarkNone> scan_only_root_cl(_g1h, &pss, rp); 4591 G1CLDClosure<G1MarkNone> scan_only_cld_cl(&scan_only_root_cl, 4592 only_young, // Only process dirty klasses. 4593 false); // No need to claim CLDs. 4594 // IM young GC. 4595 // Strong roots closures. 4596 G1ParCopyClosure<G1BarrierNone, G1MarkFromRoot> scan_mark_root_cl(_g1h, &pss, rp); 4597 G1CLDClosure<G1MarkFromRoot> scan_mark_cld_cl(&scan_mark_root_cl, 4598 false, // Process all klasses. 4599 true); // Need to claim CLDs. 4600 // Weak roots closures. 4601 G1ParCopyClosure<G1BarrierNone, G1MarkPromotedFromRoot> scan_mark_weak_root_cl(_g1h, &pss, rp); 4602 G1CLDClosure<G1MarkPromotedFromRoot> scan_mark_weak_cld_cl(&scan_mark_weak_root_cl, 4603 false, // Process all klasses. 4604 true); // Need to claim CLDs. 4605 4606 G1CodeBlobClosure scan_only_code_cl(&scan_only_root_cl); 4607 G1CodeBlobClosure scan_mark_code_cl(&scan_mark_root_cl); 4608 // IM Weak code roots are handled later. 4609 4610 OopClosure* strong_root_cl; 4611 OopClosure* weak_root_cl; 4612 CLDClosure* strong_cld_cl; 4613 CLDClosure* weak_cld_cl; 4614 CodeBlobClosure* strong_code_cl; 4615 4616 if (_g1h->g1_policy()->during_initial_mark_pause()) { 4617 // We also need to mark copied objects. 4618 strong_root_cl = &scan_mark_root_cl; 4619 strong_cld_cl = &scan_mark_cld_cl; 4620 strong_code_cl = &scan_mark_code_cl; 4621 if (ClassUnloadingWithConcurrentMark) { 4622 weak_root_cl = &scan_mark_weak_root_cl; 4623 weak_cld_cl = &scan_mark_weak_cld_cl; 4624 } else { 4625 weak_root_cl = &scan_mark_root_cl; 4626 weak_cld_cl = &scan_mark_cld_cl; 4627 } 4628 } else { 4629 strong_root_cl = &scan_only_root_cl; 4630 weak_root_cl = &scan_only_root_cl; 4631 strong_cld_cl = &scan_only_cld_cl; 4632 weak_cld_cl = &scan_only_cld_cl; 4633 strong_code_cl = &scan_only_code_cl; 4634 } 4635 4636 4637 G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, &pss); 4638 4639 pss.start_strong_roots(); 4640 _g1h->g1_process_roots(strong_root_cl, 4641 weak_root_cl, 4642 &push_heap_rs_cl, 4643 strong_cld_cl, 4644 weak_cld_cl, 4645 strong_code_cl, 4646 worker_id); 4647 4648 pss.end_strong_roots(); 4649 4650 { 4651 double start = os::elapsedTime(); 4652 G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator); 4653 evac.do_void(); 4654 double elapsed_ms = (os::elapsedTime()-start)*1000.0; 4655 double term_ms = pss.term_time()*1000.0; 4656 _g1h->g1_policy()->phase_times()->add_obj_copy_time(worker_id, elapsed_ms-term_ms); 4657 _g1h->g1_policy()->phase_times()->record_termination(worker_id, term_ms, pss.term_attempts()); 4658 } 4659 _g1h->g1_policy()->record_thread_age_table(pss.age_table()); 4660 _g1h->update_surviving_young_words(pss.surviving_young_words()+1); 4661 4662 if (PrintTerminationStats) { 4663 MutexLocker x(stats_lock()); 4664 pss.print_termination_stats(worker_id); 4665 } 4666 4667 assert(pss.queue_is_empty(), "should be empty"); 4668 4669 // Close the inner scope so that the ResourceMark and HandleMark 4670 // destructors are executed here and are included as part of the 4671 // "GC Worker Time". 4672 } 4673 4674 double end_time_ms = os::elapsedTime() * 1000.0; 4675 _g1h->g1_policy()->phase_times()->record_gc_worker_end_time(worker_id, end_time_ms); 4676 } 4677 }; 4678 4679 // *** Common G1 Evacuation Stuff 4680 4681 // This method is run in a GC worker. 4682 4683 void 4684 G1CollectedHeap:: 4685 g1_process_roots(OopClosure* scan_non_heap_roots, 4686 OopClosure* scan_non_heap_weak_roots, 4687 OopsInHeapRegionClosure* scan_rs, 4688 CLDClosure* scan_strong_clds, 4689 CLDClosure* scan_weak_clds, 4690 CodeBlobClosure* scan_strong_code, 4691 uint worker_i) { 4692 4693 // First scan the shared roots. 4694 double ext_roots_start = os::elapsedTime(); 4695 double closure_app_time_sec = 0.0; 4696 4697 bool during_im = _g1h->g1_policy()->during_initial_mark_pause(); 4698 bool trace_metadata = during_im && ClassUnloadingWithConcurrentMark; 4699 4700 BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots); 4701 BufferingOopClosure buf_scan_non_heap_weak_roots(scan_non_heap_weak_roots); 4702 4703 process_roots(false, // no scoping; this is parallel code 4704 SharedHeap::SO_None, 4705 &buf_scan_non_heap_roots, 4706 &buf_scan_non_heap_weak_roots, 4707 scan_strong_clds, 4708 // Unloading Initial Marks handle the weak CLDs separately. 4709 (trace_metadata ? NULL : scan_weak_clds), 4710 scan_strong_code); 4711 4712 // Now the CM ref_processor roots. 4713 if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) { 4714 // We need to treat the discovered reference lists of the 4715 // concurrent mark ref processor as roots and keep entries 4716 // (which are added by the marking threads) on them live 4717 // until they can be processed at the end of marking. 4718 ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots); 4719 } 4720 4721 if (trace_metadata) { 4722 // Barrier to make sure all workers passed 4723 // the strong CLD and strong nmethods phases. 4724 active_strong_roots_scope()->wait_until_all_workers_done_with_threads(n_par_threads()); 4725 4726 // Now take the complement of the strong CLDs. 4727 ClassLoaderDataGraph::roots_cld_do(NULL, scan_weak_clds); 4728 } 4729 4730 // Finish up any enqueued closure apps (attributed as object copy time). 4731 buf_scan_non_heap_roots.done(); 4732 buf_scan_non_heap_weak_roots.done(); 4733 4734 double obj_copy_time_sec = buf_scan_non_heap_roots.closure_app_seconds() 4735 + buf_scan_non_heap_weak_roots.closure_app_seconds(); 4736 4737 g1_policy()->phase_times()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0); 4738 4739 double ext_root_time_ms = 4740 ((os::elapsedTime() - ext_roots_start) - obj_copy_time_sec) * 1000.0; 4741 4742 g1_policy()->phase_times()->record_ext_root_scan_time(worker_i, ext_root_time_ms); 4743 4744 // During conc marking we have to filter the per-thread SATB buffers 4745 // to make sure we remove any oops into the CSet (which will show up 4746 // as implicitly live). 4747 double satb_filtering_ms = 0.0; 4748 if (!_process_strong_tasks->is_task_claimed(G1H_PS_filter_satb_buffers)) { 4749 if (mark_in_progress()) { 4750 double satb_filter_start = os::elapsedTime(); 4751 4752 JavaThread::satb_mark_queue_set().filter_thread_buffers(); 4753 4754 satb_filtering_ms = (os::elapsedTime() - satb_filter_start) * 1000.0; 4755 } 4756 } 4757 g1_policy()->phase_times()->record_satb_filtering_time(worker_i, satb_filtering_ms); 4758 4759 // Now scan the complement of the collection set. 4760 G1CodeBlobClosure scavenge_cs_nmethods(scan_non_heap_weak_roots); 4761 4762 g1_rem_set()->oops_into_collection_set_do(scan_rs, &scavenge_cs_nmethods, worker_i); 4763 4764 _process_strong_tasks->all_tasks_completed(); 4765 } 4766 4767 class G1StringSymbolTableUnlinkTask : public AbstractGangTask { 4768 private: 4769 BoolObjectClosure* _is_alive; 4770 int _initial_string_table_size; 4771 int _initial_symbol_table_size; 4772 4773 bool _process_strings; 4774 int _strings_processed; 4775 int _strings_removed; 4776 4777 bool _process_symbols; 4778 int _symbols_processed; 4779 int _symbols_removed; 4780 4781 public: 4782 G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) : 4783 AbstractGangTask("String/Symbol Unlinking"), 4784 _is_alive(is_alive), 4785 _process_strings(process_strings), _strings_processed(0), _strings_removed(0), 4786 _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) { 4787 4788 _initial_string_table_size = StringTable::the_table()->table_size(); 4789 _initial_symbol_table_size = SymbolTable::the_table()->table_size(); 4790 if (process_strings) { 4791 StringTable::clear_parallel_claimed_index(); 4792 } 4793 if (process_symbols) { 4794 SymbolTable::clear_parallel_claimed_index(); 4795 } 4796 } 4797 4798 ~G1StringSymbolTableUnlinkTask() { 4799 guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size, 4800 err_msg("claim value %d after unlink less than initial string table size %d", 4801 StringTable::parallel_claimed_index(), _initial_string_table_size)); 4802 guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size, 4803 err_msg("claim value %d after unlink less than initial symbol table size %d", 4804 SymbolTable::parallel_claimed_index(), _initial_symbol_table_size)); 4805 4806 if (G1TraceStringSymbolTableScrubbing) { 4807 gclog_or_tty->print_cr("Cleaned string and symbol table, " 4808 "strings: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed, " 4809 "symbols: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed", 4810 strings_processed(), strings_removed(), 4811 symbols_processed(), symbols_removed()); 4812 } 4813 } 4814 4815 void work(uint worker_id) { 4816 int strings_processed = 0; 4817 int strings_removed = 0; 4818 int symbols_processed = 0; 4819 int symbols_removed = 0; 4820 if (_process_strings) { 4821 StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed); 4822 Atomic::add(strings_processed, &_strings_processed); 4823 Atomic::add(strings_removed, &_strings_removed); 4824 } 4825 if (_process_symbols) { 4826 SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed); 4827 Atomic::add(symbols_processed, &_symbols_processed); 4828 Atomic::add(symbols_removed, &_symbols_removed); 4829 } 4830 } 4831 4832 size_t strings_processed() const { return (size_t)_strings_processed; } 4833 size_t strings_removed() const { return (size_t)_strings_removed; } 4834 4835 size_t symbols_processed() const { return (size_t)_symbols_processed; } 4836 size_t symbols_removed() const { return (size_t)_symbols_removed; } 4837 }; 4838 4839 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC { 4840 private: 4841 static Monitor* _lock; 4842 4843 BoolObjectClosure* const _is_alive; 4844 const bool _unloading_occurred; 4845 const uint _num_workers; 4846 4847 // Variables used to claim nmethods. 4848 nmethod* _first_nmethod; 4849 volatile nmethod* _claimed_nmethod; 4850 4851 // The list of nmethods that need to be processed by the second pass. 4852 volatile nmethod* _postponed_list; 4853 volatile uint _num_entered_barrier; 4854 4855 public: 4856 G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) : 4857 _is_alive(is_alive), 4858 _unloading_occurred(unloading_occurred), 4859 _num_workers(num_workers), 4860 _first_nmethod(NULL), 4861 _claimed_nmethod(NULL), 4862 _postponed_list(NULL), 4863 _num_entered_barrier(0) 4864 { 4865 nmethod::increase_unloading_clock(); 4866 // Get first alive nmethod 4867 NMethodIterator iter = NMethodIterator(); 4868 if(iter.next_alive()) { 4869 _first_nmethod = iter.method(); 4870 } 4871 _claimed_nmethod = (volatile nmethod*)_first_nmethod; 4872 } 4873 4874 ~G1CodeCacheUnloadingTask() { 4875 CodeCache::verify_clean_inline_caches(); 4876 4877 CodeCache::set_needs_cache_clean(false); 4878 guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be"); 4879 4880 CodeCache::verify_icholder_relocations(); 4881 } 4882 4883 private: 4884 void add_to_postponed_list(nmethod* nm) { 4885 nmethod* old; 4886 do { 4887 old = (nmethod*)_postponed_list; 4888 nm->set_unloading_next(old); 4889 } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old); 4890 } 4891 4892 void clean_nmethod(nmethod* nm) { 4893 bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred); 4894 4895 if (postponed) { 4896 // This nmethod referred to an nmethod that has not been cleaned/unloaded yet. 4897 add_to_postponed_list(nm); 4898 } 4899 4900 // Mark that this thread has been cleaned/unloaded. 4901 // After this call, it will be safe to ask if this nmethod was unloaded or not. 4902 nm->set_unloading_clock(nmethod::global_unloading_clock()); 4903 } 4904 4905 void clean_nmethod_postponed(nmethod* nm) { 4906 nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred); 4907 } 4908 4909 static const int MaxClaimNmethods = 16; 4910 4911 void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) { 4912 nmethod* first; 4913 NMethodIterator last; 4914 4915 do { 4916 *num_claimed_nmethods = 0; 4917 4918 first = (nmethod*)_claimed_nmethod; 4919 last = NMethodIterator(first); 4920 4921 if (first != NULL) { 4922 4923 for (int i = 0; i < MaxClaimNmethods; i++) { 4924 if (!last.next_alive()) { 4925 break; 4926 } 4927 claimed_nmethods[i] = last.method(); 4928 (*num_claimed_nmethods)++; 4929 } 4930 } 4931 4932 } while ((nmethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first); 4933 } 4934 4935 nmethod* claim_postponed_nmethod() { 4936 nmethod* claim; 4937 nmethod* next; 4938 4939 do { 4940 claim = (nmethod*)_postponed_list; 4941 if (claim == NULL) { 4942 return NULL; 4943 } 4944 4945 next = claim->unloading_next(); 4946 4947 } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim); 4948 4949 return claim; 4950 } 4951 4952 public: 4953 // Mark that we're done with the first pass of nmethod cleaning. 4954 void barrier_mark(uint worker_id) { 4955 MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag); 4956 _num_entered_barrier++; 4957 if (_num_entered_barrier == _num_workers) { 4958 ml.notify_all(); 4959 } 4960 } 4961 4962 // See if we have to wait for the other workers to 4963 // finish their first-pass nmethod cleaning work. 4964 void barrier_wait(uint worker_id) { 4965 if (_num_entered_barrier < _num_workers) { 4966 MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag); 4967 while (_num_entered_barrier < _num_workers) { 4968 ml.wait(Mutex::_no_safepoint_check_flag, 0, false); 4969 } 4970 } 4971 } 4972 4973 // Cleaning and unloading of nmethods. Some work has to be postponed 4974 // to the second pass, when we know which nmethods survive. 4975 void work_first_pass(uint worker_id) { 4976 // The first nmethods is claimed by the first worker. 4977 if (worker_id == 0 && _first_nmethod != NULL) { 4978 clean_nmethod(_first_nmethod); 4979 _first_nmethod = NULL; 4980 } 4981 4982 int num_claimed_nmethods; 4983 nmethod* claimed_nmethods[MaxClaimNmethods]; 4984 4985 while (true) { 4986 claim_nmethods(claimed_nmethods, &num_claimed_nmethods); 4987 4988 if (num_claimed_nmethods == 0) { 4989 break; 4990 } 4991 4992 for (int i = 0; i < num_claimed_nmethods; i++) { 4993 clean_nmethod(claimed_nmethods[i]); 4994 } 4995 } 4996 4997 // The nmethod cleaning helps out and does the CodeCache part of MetadataOnStackMark. 4998 // Need to retire the buffers now that this thread has stopped cleaning nmethods. 4999 MetadataOnStackMark::retire_buffer_for_thread(Thread::current()); 5000 } 5001 5002 void work_second_pass(uint worker_id) { 5003 nmethod* nm; 5004 // Take care of postponed nmethods. 5005 while ((nm = claim_postponed_nmethod()) != NULL) { 5006 clean_nmethod_postponed(nm); 5007 } 5008 } 5009 }; 5010 5011 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock"); 5012 5013 class G1KlassCleaningTask : public StackObj { 5014 BoolObjectClosure* _is_alive; 5015 volatile jint _clean_klass_tree_claimed; 5016 ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator; 5017 5018 public: 5019 G1KlassCleaningTask(BoolObjectClosure* is_alive) : 5020 _is_alive(is_alive), 5021 _clean_klass_tree_claimed(0), 5022 _klass_iterator() { 5023 } 5024 5025 private: 5026 bool claim_clean_klass_tree_task() { 5027 if (_clean_klass_tree_claimed) { 5028 return false; 5029 } 5030 5031 return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0; 5032 } 5033 5034 InstanceKlass* claim_next_klass() { 5035 Klass* klass; 5036 do { 5037 klass =_klass_iterator.next_klass(); 5038 } while (klass != NULL && !klass->oop_is_instance()); 5039 5040 return (InstanceKlass*)klass; 5041 } 5042 5043 public: 5044 5045 void clean_klass(InstanceKlass* ik) { 5046 ik->clean_implementors_list(_is_alive); 5047 ik->clean_method_data(_is_alive); 5048 5049 // G1 specific cleanup work that has 5050 // been moved here to be done in parallel. 5051 ik->clean_dependent_nmethods(); 5052 if (JvmtiExport::has_redefined_a_class()) { 5053 InstanceKlass::purge_previous_versions(ik); 5054 } 5055 } 5056 5057 void work() { 5058 ResourceMark rm; 5059 5060 // One worker will clean the subklass/sibling klass tree. 5061 if (claim_clean_klass_tree_task()) { 5062 Klass::clean_subklass_tree(_is_alive); 5063 } 5064 5065 // All workers will help cleaning the classes, 5066 InstanceKlass* klass; 5067 while ((klass = claim_next_klass()) != NULL) { 5068 clean_klass(klass); 5069 } 5070 } 5071 }; 5072 5073 // To minimize the remark pause times, the tasks below are done in parallel. 5074 class G1ParallelCleaningTask : public AbstractGangTask { 5075 private: 5076 G1StringSymbolTableUnlinkTask _string_symbol_task; 5077 G1CodeCacheUnloadingTask _code_cache_task; 5078 G1KlassCleaningTask _klass_cleaning_task; 5079 5080 public: 5081 // The constructor is run in the VMThread. 5082 G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) : 5083 AbstractGangTask("Parallel Cleaning"), 5084 _string_symbol_task(is_alive, process_strings, process_symbols), 5085 _code_cache_task(num_workers, is_alive, unloading_occurred), 5086 _klass_cleaning_task(is_alive) { 5087 } 5088 5089 void pre_work_verification() { 5090 assert(!MetadataOnStackMark::has_buffer_for_thread(Thread::current()), "Should be empty"); 5091 } 5092 5093 void post_work_verification() { 5094 assert(!MetadataOnStackMark::has_buffer_for_thread(Thread::current()), "Should be empty"); 5095 } 5096 5097 // The parallel work done by all worker threads. 5098 void work(uint worker_id) { 5099 pre_work_verification(); 5100 5101 // Do first pass of code cache cleaning. 5102 _code_cache_task.work_first_pass(worker_id); 5103 5104 // Let the threads mark that the first pass is done. 5105 _code_cache_task.barrier_mark(worker_id); 5106 5107 // Clean the Strings and Symbols. 5108 _string_symbol_task.work(worker_id); 5109 5110 // Wait for all workers to finish the first code cache cleaning pass. 5111 _code_cache_task.barrier_wait(worker_id); 5112 5113 // Do the second code cache cleaning work, which realize on 5114 // the liveness information gathered during the first pass. 5115 _code_cache_task.work_second_pass(worker_id); 5116 5117 // Clean all klasses that were not unloaded. 5118 _klass_cleaning_task.work(); 5119 5120 post_work_verification(); 5121 } 5122 }; 5123 5124 5125 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive, 5126 bool process_strings, 5127 bool process_symbols, 5128 bool class_unloading_occurred) { 5129 uint n_workers = workers()->active_workers(); 5130 5131 G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols, 5132 n_workers, class_unloading_occurred); 5133 set_par_threads(n_workers); 5134 workers()->run_task(&g1_unlink_task); 5135 set_par_threads(0); 5136 } 5137 5138 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive, 5139 bool process_strings, bool process_symbols) { 5140 { 5141 uint n_workers = _g1h->workers()->active_workers(); 5142 G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols); 5143 set_par_threads(n_workers); 5144 workers()->run_task(&g1_unlink_task); 5145 set_par_threads(0); 5146 } 5147 5148 if (G1StringDedup::is_enabled()) { 5149 G1StringDedup::unlink(is_alive); 5150 } 5151 } 5152 5153 class G1RedirtyLoggedCardsTask : public AbstractGangTask { 5154 private: 5155 DirtyCardQueueSet* _queue; 5156 public: 5157 G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { } 5158 5159 virtual void work(uint worker_id) { 5160 double start_time = os::elapsedTime(); 5161 5162 RedirtyLoggedCardTableEntryClosure cl; 5163 _queue->par_apply_closure_to_all_completed_buffers(&cl); 5164 5165 G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times(); 5166 timer->record_redirty_logged_cards_time_ms(worker_id, (os::elapsedTime() - start_time) * 1000.0); 5167 timer->record_redirty_logged_cards_processed_cards(worker_id, cl.num_processed()); 5168 } 5169 }; 5170 5171 void G1CollectedHeap::redirty_logged_cards() { 5172 double redirty_logged_cards_start = os::elapsedTime(); 5173 5174 uint n_workers = _g1h->workers()->active_workers(); 5175 5176 G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set()); 5177 dirty_card_queue_set().reset_for_par_iteration(); 5178 set_par_threads(n_workers); 5179 workers()->run_task(&redirty_task); 5180 set_par_threads(0); 5181 5182 DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set(); 5183 dcq.merge_bufferlists(&dirty_card_queue_set()); 5184 assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed"); 5185 5186 g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0); 5187 } 5188 5189 // Weak Reference Processing support 5190 5191 // An always "is_alive" closure that is used to preserve referents. 5192 // If the object is non-null then it's alive. Used in the preservation 5193 // of referent objects that are pointed to by reference objects 5194 // discovered by the CM ref processor. 5195 class G1AlwaysAliveClosure: public BoolObjectClosure { 5196 G1CollectedHeap* _g1; 5197 public: 5198 G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {} 5199 bool do_object_b(oop p) { 5200 if (p != NULL) { 5201 return true; 5202 } 5203 return false; 5204 } 5205 }; 5206 5207 bool G1STWIsAliveClosure::do_object_b(oop p) { 5208 // An object is reachable if it is outside the collection set, 5209 // or is inside and copied. 5210 return !_g1->obj_in_cs(p) || p->is_forwarded(); 5211 } 5212 5213 // Non Copying Keep Alive closure 5214 class G1KeepAliveClosure: public OopClosure { 5215 G1CollectedHeap* _g1; 5216 public: 5217 G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {} 5218 void do_oop(narrowOop* p) { guarantee(false, "Not needed"); } 5219 void do_oop(oop* p) { 5220 oop obj = *p; 5221 assert(obj != NULL, "the caller should have filtered out NULL values"); 5222 5223 G1CollectedHeap::in_cset_state_t cset_state = _g1->in_cset_state(obj); 5224 if (cset_state == G1CollectedHeap::InNeither) { 5225 return; 5226 } 5227 if (cset_state == G1CollectedHeap::InCSet) { 5228 assert( obj->is_forwarded(), "invariant" ); 5229 *p = obj->forwardee(); 5230 } else { 5231 assert(!obj->is_forwarded(), "invariant" ); 5232 assert(cset_state == G1CollectedHeap::IsHumongous, 5233 err_msg("Only allowed InCSet state is IsHumongous, but is %d", cset_state)); 5234 _g1->set_humongous_is_live(obj); 5235 } 5236 } 5237 }; 5238 5239 // Copying Keep Alive closure - can be called from both 5240 // serial and parallel code as long as different worker 5241 // threads utilize different G1ParScanThreadState instances 5242 // and different queues. 5243 5244 class G1CopyingKeepAliveClosure: public OopClosure { 5245 G1CollectedHeap* _g1h; 5246 OopClosure* _copy_non_heap_obj_cl; 5247 G1ParScanThreadState* _par_scan_state; 5248 5249 public: 5250 G1CopyingKeepAliveClosure(G1CollectedHeap* g1h, 5251 OopClosure* non_heap_obj_cl, 5252 G1ParScanThreadState* pss): 5253 _g1h(g1h), 5254 _copy_non_heap_obj_cl(non_heap_obj_cl), 5255 _par_scan_state(pss) 5256 {} 5257 5258 virtual void do_oop(narrowOop* p) { do_oop_work(p); } 5259 virtual void do_oop( oop* p) { do_oop_work(p); } 5260 5261 template <class T> void do_oop_work(T* p) { 5262 oop obj = oopDesc::load_decode_heap_oop(p); 5263 5264 if (_g1h->is_in_cset_or_humongous(obj)) { 5265 // If the referent object has been forwarded (either copied 5266 // to a new location or to itself in the event of an 5267 // evacuation failure) then we need to update the reference 5268 // field and, if both reference and referent are in the G1 5269 // heap, update the RSet for the referent. 5270 // 5271 // If the referent has not been forwarded then we have to keep 5272 // it alive by policy. Therefore we have copy the referent. 5273 // 5274 // If the reference field is in the G1 heap then we can push 5275 // on the PSS queue. When the queue is drained (after each 5276 // phase of reference processing) the object and it's followers 5277 // will be copied, the reference field set to point to the 5278 // new location, and the RSet updated. Otherwise we need to 5279 // use the the non-heap or metadata closures directly to copy 5280 // the referent object and update the pointer, while avoiding 5281 // updating the RSet. 5282 5283 if (_g1h->is_in_g1_reserved(p)) { 5284 _par_scan_state->push_on_queue(p); 5285 } else { 5286 assert(!Metaspace::contains((const void*)p), 5287 err_msg("Unexpectedly found a pointer from metadata: " 5288 PTR_FORMAT, p)); 5289 _copy_non_heap_obj_cl->do_oop(p); 5290 } 5291 } 5292 } 5293 }; 5294 5295 // Serial drain queue closure. Called as the 'complete_gc' 5296 // closure for each discovered list in some of the 5297 // reference processing phases. 5298 5299 class G1STWDrainQueueClosure: public VoidClosure { 5300 protected: 5301 G1CollectedHeap* _g1h; 5302 G1ParScanThreadState* _par_scan_state; 5303 5304 G1ParScanThreadState* par_scan_state() { return _par_scan_state; } 5305 5306 public: 5307 G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) : 5308 _g1h(g1h), 5309 _par_scan_state(pss) 5310 { } 5311 5312 void do_void() { 5313 G1ParScanThreadState* const pss = par_scan_state(); 5314 pss->trim_queue(); 5315 } 5316 }; 5317 5318 // Parallel Reference Processing closures 5319 5320 // Implementation of AbstractRefProcTaskExecutor for parallel reference 5321 // processing during G1 evacuation pauses. 5322 5323 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor { 5324 private: 5325 G1CollectedHeap* _g1h; 5326 RefToScanQueueSet* _queues; 5327 FlexibleWorkGang* _workers; 5328 int _active_workers; 5329 5330 public: 5331 G1STWRefProcTaskExecutor(G1CollectedHeap* g1h, 5332 FlexibleWorkGang* workers, 5333 RefToScanQueueSet *task_queues, 5334 int n_workers) : 5335 _g1h(g1h), 5336 _queues(task_queues), 5337 _workers(workers), 5338 _active_workers(n_workers) 5339 { 5340 assert(n_workers > 0, "shouldn't call this otherwise"); 5341 } 5342 5343 // Executes the given task using concurrent marking worker threads. 5344 virtual void execute(ProcessTask& task); 5345 virtual void execute(EnqueueTask& task); 5346 }; 5347 5348 // Gang task for possibly parallel reference processing 5349 5350 class G1STWRefProcTaskProxy: public AbstractGangTask { 5351 typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask; 5352 ProcessTask& _proc_task; 5353 G1CollectedHeap* _g1h; 5354 RefToScanQueueSet *_task_queues; 5355 ParallelTaskTerminator* _terminator; 5356 5357 public: 5358 G1STWRefProcTaskProxy(ProcessTask& proc_task, 5359 G1CollectedHeap* g1h, 5360 RefToScanQueueSet *task_queues, 5361 ParallelTaskTerminator* terminator) : 5362 AbstractGangTask("Process reference objects in parallel"), 5363 _proc_task(proc_task), 5364 _g1h(g1h), 5365 _task_queues(task_queues), 5366 _terminator(terminator) 5367 {} 5368 5369 virtual void work(uint worker_id) { 5370 // The reference processing task executed by a single worker. 5371 ResourceMark rm; 5372 HandleMark hm; 5373 5374 G1STWIsAliveClosure is_alive(_g1h); 5375 5376 G1ParScanThreadState pss(_g1h, worker_id, NULL); 5377 G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL); 5378 5379 pss.set_evac_failure_closure(&evac_failure_cl); 5380 5381 G1ParScanExtRootClosure only_copy_non_heap_cl(_g1h, &pss, NULL); 5382 5383 G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL); 5384 5385 OopClosure* copy_non_heap_cl = &only_copy_non_heap_cl; 5386 5387 if (_g1h->g1_policy()->during_initial_mark_pause()) { 5388 // We also need to mark copied objects. 5389 copy_non_heap_cl = ©_mark_non_heap_cl; 5390 } 5391 5392 // Keep alive closure. 5393 G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss); 5394 5395 // Complete GC closure 5396 G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator); 5397 5398 // Call the reference processing task's work routine. 5399 _proc_task.work(worker_id, is_alive, keep_alive, drain_queue); 5400 5401 // Note we cannot assert that the refs array is empty here as not all 5402 // of the processing tasks (specifically phase2 - pp2_work) execute 5403 // the complete_gc closure (which ordinarily would drain the queue) so 5404 // the queue may not be empty. 5405 } 5406 }; 5407 5408 // Driver routine for parallel reference processing. 5409 // Creates an instance of the ref processing gang 5410 // task and has the worker threads execute it. 5411 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) { 5412 assert(_workers != NULL, "Need parallel worker threads."); 5413 5414 ParallelTaskTerminator terminator(_active_workers, _queues); 5415 G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator); 5416 5417 _g1h->set_par_threads(_active_workers); 5418 _workers->run_task(&proc_task_proxy); 5419 _g1h->set_par_threads(0); 5420 } 5421 5422 // Gang task for parallel reference enqueueing. 5423 5424 class G1STWRefEnqueueTaskProxy: public AbstractGangTask { 5425 typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask; 5426 EnqueueTask& _enq_task; 5427 5428 public: 5429 G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) : 5430 AbstractGangTask("Enqueue reference objects in parallel"), 5431 _enq_task(enq_task) 5432 { } 5433 5434 virtual void work(uint worker_id) { 5435 _enq_task.work(worker_id); 5436 } 5437 }; 5438 5439 // Driver routine for parallel reference enqueueing. 5440 // Creates an instance of the ref enqueueing gang 5441 // task and has the worker threads execute it. 5442 5443 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) { 5444 assert(_workers != NULL, "Need parallel worker threads."); 5445 5446 G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task); 5447 5448 _g1h->set_par_threads(_active_workers); 5449 _workers->run_task(&enq_task_proxy); 5450 _g1h->set_par_threads(0); 5451 } 5452 5453 // End of weak reference support closures 5454 5455 // Abstract task used to preserve (i.e. copy) any referent objects 5456 // that are in the collection set and are pointed to by reference 5457 // objects discovered by the CM ref processor. 5458 5459 class G1ParPreserveCMReferentsTask: public AbstractGangTask { 5460 protected: 5461 G1CollectedHeap* _g1h; 5462 RefToScanQueueSet *_queues; 5463 ParallelTaskTerminator _terminator; 5464 uint _n_workers; 5465 5466 public: 5467 G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) : 5468 AbstractGangTask("ParPreserveCMReferents"), 5469 _g1h(g1h), 5470 _queues(task_queues), 5471 _terminator(workers, _queues), 5472 _n_workers(workers) 5473 { } 5474 5475 void work(uint worker_id) { 5476 ResourceMark rm; 5477 HandleMark hm; 5478 5479 G1ParScanThreadState pss(_g1h, worker_id, NULL); 5480 G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL); 5481 5482 pss.set_evac_failure_closure(&evac_failure_cl); 5483 5484 assert(pss.queue_is_empty(), "both queue and overflow should be empty"); 5485 5486 G1ParScanExtRootClosure only_copy_non_heap_cl(_g1h, &pss, NULL); 5487 5488 G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL); 5489 5490 OopClosure* copy_non_heap_cl = &only_copy_non_heap_cl; 5491 5492 if (_g1h->g1_policy()->during_initial_mark_pause()) { 5493 // We also need to mark copied objects. 5494 copy_non_heap_cl = ©_mark_non_heap_cl; 5495 } 5496 5497 // Is alive closure 5498 G1AlwaysAliveClosure always_alive(_g1h); 5499 5500 // Copying keep alive closure. Applied to referent objects that need 5501 // to be copied. 5502 G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss); 5503 5504 ReferenceProcessor* rp = _g1h->ref_processor_cm(); 5505 5506 uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q(); 5507 uint stride = MIN2(MAX2(_n_workers, 1U), limit); 5508 5509 // limit is set using max_num_q() - which was set using ParallelGCThreads. 5510 // So this must be true - but assert just in case someone decides to 5511 // change the worker ids. 5512 assert(0 <= worker_id && worker_id < limit, "sanity"); 5513 assert(!rp->discovery_is_atomic(), "check this code"); 5514 5515 // Select discovered lists [i, i+stride, i+2*stride,...,limit) 5516 for (uint idx = worker_id; idx < limit; idx += stride) { 5517 DiscoveredList& ref_list = rp->discovered_refs()[idx]; 5518 5519 DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive); 5520 while (iter.has_next()) { 5521 // Since discovery is not atomic for the CM ref processor, we 5522 // can see some null referent objects. 5523 iter.load_ptrs(DEBUG_ONLY(true)); 5524 oop ref = iter.obj(); 5525 5526 // This will filter nulls. 5527 if (iter.is_referent_alive()) { 5528 iter.make_referent_alive(); 5529 } 5530 iter.move_to_next(); 5531 } 5532 } 5533 5534 // Drain the queue - which may cause stealing 5535 G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator); 5536 drain_queue.do_void(); 5537 // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure 5538 assert(pss.queue_is_empty(), "should be"); 5539 } 5540 }; 5541 5542 // Weak Reference processing during an evacuation pause (part 1). 5543 void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) { 5544 double ref_proc_start = os::elapsedTime(); 5545 5546 ReferenceProcessor* rp = _ref_processor_stw; 5547 assert(rp->discovery_enabled(), "should have been enabled"); 5548 5549 // Any reference objects, in the collection set, that were 'discovered' 5550 // by the CM ref processor should have already been copied (either by 5551 // applying the external root copy closure to the discovered lists, or 5552 // by following an RSet entry). 5553 // 5554 // But some of the referents, that are in the collection set, that these 5555 // reference objects point to may not have been copied: the STW ref 5556 // processor would have seen that the reference object had already 5557 // been 'discovered' and would have skipped discovering the reference, 5558 // but would not have treated the reference object as a regular oop. 5559 // As a result the copy closure would not have been applied to the 5560 // referent object. 5561 // 5562 // We need to explicitly copy these referent objects - the references 5563 // will be processed at the end of remarking. 5564 // 5565 // We also need to do this copying before we process the reference 5566 // objects discovered by the STW ref processor in case one of these 5567 // referents points to another object which is also referenced by an 5568 // object discovered by the STW ref processor. 5569 5570 assert(no_of_gc_workers == workers()->active_workers(), "Need to reset active GC workers"); 5571 5572 set_par_threads(no_of_gc_workers); 5573 G1ParPreserveCMReferentsTask keep_cm_referents(this, 5574 no_of_gc_workers, 5575 _task_queues); 5576 5577 workers()->run_task(&keep_cm_referents); 5578 5579 set_par_threads(0); 5580 5581 // Closure to test whether a referent is alive. 5582 G1STWIsAliveClosure is_alive(this); 5583 5584 // Even when parallel reference processing is enabled, the processing 5585 // of JNI refs is serial and performed serially by the current thread 5586 // rather than by a worker. The following PSS will be used for processing 5587 // JNI refs. 5588 5589 // Use only a single queue for this PSS. 5590 G1ParScanThreadState pss(this, 0, NULL); 5591 5592 // We do not embed a reference processor in the copying/scanning 5593 // closures while we're actually processing the discovered 5594 // reference objects. 5595 G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL); 5596 5597 pss.set_evac_failure_closure(&evac_failure_cl); 5598 5599 assert(pss.queue_is_empty(), "pre-condition"); 5600 5601 G1ParScanExtRootClosure only_copy_non_heap_cl(this, &pss, NULL); 5602 5603 G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL); 5604 5605 OopClosure* copy_non_heap_cl = &only_copy_non_heap_cl; 5606 5607 if (_g1h->g1_policy()->during_initial_mark_pause()) { 5608 // We also need to mark copied objects. 5609 copy_non_heap_cl = ©_mark_non_heap_cl; 5610 } 5611 5612 // Keep alive closure. 5613 G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, &pss); 5614 5615 // Serial Complete GC closure 5616 G1STWDrainQueueClosure drain_queue(this, &pss); 5617 5618 // Setup the soft refs policy... 5619 rp->setup_policy(false); 5620 5621 ReferenceProcessorStats stats; 5622 if (!rp->processing_is_mt()) { 5623 // Serial reference processing... 5624 stats = rp->process_discovered_references(&is_alive, 5625 &keep_alive, 5626 &drain_queue, 5627 NULL, 5628 _gc_timer_stw, 5629 _gc_tracer_stw->gc_id()); 5630 } else { 5631 // Parallel reference processing 5632 assert(rp->num_q() == no_of_gc_workers, "sanity"); 5633 assert(no_of_gc_workers <= rp->max_num_q(), "sanity"); 5634 5635 G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers); 5636 stats = rp->process_discovered_references(&is_alive, 5637 &keep_alive, 5638 &drain_queue, 5639 &par_task_executor, 5640 _gc_timer_stw, 5641 _gc_tracer_stw->gc_id()); 5642 } 5643 5644 _gc_tracer_stw->report_gc_reference_stats(stats); 5645 5646 // We have completed copying any necessary live referent objects. 5647 assert(pss.queue_is_empty(), "both queue and overflow should be empty"); 5648 5649 double ref_proc_time = os::elapsedTime() - ref_proc_start; 5650 g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0); 5651 } 5652 5653 // Weak Reference processing during an evacuation pause (part 2). 5654 void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) { 5655 double ref_enq_start = os::elapsedTime(); 5656 5657 ReferenceProcessor* rp = _ref_processor_stw; 5658 assert(!rp->discovery_enabled(), "should have been disabled as part of processing"); 5659 5660 // Now enqueue any remaining on the discovered lists on to 5661 // the pending list. 5662 if (!rp->processing_is_mt()) { 5663 // Serial reference processing... 5664 rp->enqueue_discovered_references(); 5665 } else { 5666 // Parallel reference enqueueing 5667 5668 assert(no_of_gc_workers == workers()->active_workers(), 5669 "Need to reset active workers"); 5670 assert(rp->num_q() == no_of_gc_workers, "sanity"); 5671 assert(no_of_gc_workers <= rp->max_num_q(), "sanity"); 5672 5673 G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers); 5674 rp->enqueue_discovered_references(&par_task_executor); 5675 } 5676 5677 rp->verify_no_references_recorded(); 5678 assert(!rp->discovery_enabled(), "should have been disabled"); 5679 5680 // FIXME 5681 // CM's reference processing also cleans up the string and symbol tables. 5682 // Should we do that here also? We could, but it is a serial operation 5683 // and could significantly increase the pause time. 5684 5685 double ref_enq_time = os::elapsedTime() - ref_enq_start; 5686 g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0); 5687 } 5688 5689 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) { 5690 _expand_heap_after_alloc_failure = true; 5691 _evacuation_failed = false; 5692 5693 // Should G1EvacuationFailureALot be in effect for this GC? 5694 NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();) 5695 5696 g1_rem_set()->prepare_for_oops_into_collection_set_do(); 5697 5698 // Disable the hot card cache. 5699 G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache(); 5700 hot_card_cache->reset_hot_cache_claimed_index(); 5701 hot_card_cache->set_use_cache(false); 5702 5703 uint n_workers; 5704 n_workers = 5705 AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(), 5706 workers()->active_workers(), 5707 Threads::number_of_non_daemon_threads()); 5708 assert(UseDynamicNumberOfGCThreads || 5709 n_workers == workers()->total_workers(), 5710 "If not dynamic should be using all the workers"); 5711 workers()->set_active_workers(n_workers); 5712 set_par_threads(n_workers); 5713 5714 G1ParTask g1_par_task(this, _task_queues); 5715 5716 init_for_evac_failure(NULL); 5717 5718 rem_set()->prepare_for_younger_refs_iterate(true); 5719 5720 assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty"); 5721 double start_par_time_sec = os::elapsedTime(); 5722 double end_par_time_sec; 5723 5724 { 5725 StrongRootsScope srs(this); 5726 // InitialMark needs claim bits to keep track of the marked-through CLDs. 5727 if (g1_policy()->during_initial_mark_pause()) { 5728 ClassLoaderDataGraph::clear_claimed_marks(); 5729 } 5730 5731 // The individual threads will set their evac-failure closures. 5732 if (PrintTerminationStats) G1ParScanThreadState::print_termination_stats_hdr(); 5733 // These tasks use ShareHeap::_process_strong_tasks 5734 assert(UseDynamicNumberOfGCThreads || 5735 workers()->active_workers() == workers()->total_workers(), 5736 "If not dynamic should be using all the workers"); 5737 workers()->run_task(&g1_par_task); 5738 end_par_time_sec = os::elapsedTime(); 5739 5740 // Closing the inner scope will execute the destructor 5741 // for the StrongRootsScope object. We record the current 5742 // elapsed time before closing the scope so that time 5743 // taken for the SRS destructor is NOT included in the 5744 // reported parallel time. 5745 } 5746 5747 double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0; 5748 g1_policy()->phase_times()->record_par_time(par_time_ms); 5749 5750 double code_root_fixup_time_ms = 5751 (os::elapsedTime() - end_par_time_sec) * 1000.0; 5752 g1_policy()->phase_times()->record_code_root_fixup_time(code_root_fixup_time_ms); 5753 5754 set_par_threads(0); 5755 5756 // Process any discovered reference objects - we have 5757 // to do this _before_ we retire the GC alloc regions 5758 // as we may have to copy some 'reachable' referent 5759 // objects (and their reachable sub-graphs) that were 5760 // not copied during the pause. 5761 process_discovered_references(n_workers); 5762 5763 if (G1StringDedup::is_enabled()) { 5764 G1STWIsAliveClosure is_alive(this); 5765 G1KeepAliveClosure keep_alive(this); 5766 G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive); 5767 } 5768 5769 _allocator->release_gc_alloc_regions(n_workers, evacuation_info); 5770 g1_rem_set()->cleanup_after_oops_into_collection_set_do(); 5771 5772 // Reset and re-enable the hot card cache. 5773 // Note the counts for the cards in the regions in the 5774 // collection set are reset when the collection set is freed. 5775 hot_card_cache->reset_hot_cache(); 5776 hot_card_cache->set_use_cache(true); 5777 5778 purge_code_root_memory(); 5779 5780 finalize_for_evac_failure(); 5781 5782 if (evacuation_failed()) { 5783 remove_self_forwarding_pointers(); 5784 5785 // Reset the G1EvacuationFailureALot counters and flags 5786 // Note: the values are reset only when an actual 5787 // evacuation failure occurs. 5788 NOT_PRODUCT(reset_evacuation_should_fail();) 5789 } 5790 5791 // Enqueue any remaining references remaining on the STW 5792 // reference processor's discovered lists. We need to do 5793 // this after the card table is cleaned (and verified) as 5794 // the act of enqueueing entries on to the pending list 5795 // will log these updates (and dirty their associated 5796 // cards). We need these updates logged to update any 5797 // RSets. 5798 enqueue_discovered_references(n_workers); 5799 5800 redirty_logged_cards(); 5801 COMPILER2_PRESENT(DerivedPointerTable::update_pointers()); 5802 } 5803 5804 void G1CollectedHeap::free_region(HeapRegion* hr, 5805 FreeRegionList* free_list, 5806 bool par, 5807 bool locked) { 5808 assert(!hr->is_free(), "the region should not be free"); 5809 assert(!hr->is_empty(), "the region should not be empty"); 5810 assert(_hrm.is_available(hr->hrm_index()), "region should be committed"); 5811 assert(free_list != NULL, "pre-condition"); 5812 5813 if (G1VerifyBitmaps) { 5814 MemRegion mr(hr->bottom(), hr->end()); 5815 concurrent_mark()->clearRangePrevBitmap(mr); 5816 } 5817 5818 // Clear the card counts for this region. 5819 // Note: we only need to do this if the region is not young 5820 // (since we don't refine cards in young regions). 5821 if (!hr->is_young()) { 5822 _cg1r->hot_card_cache()->reset_card_counts(hr); 5823 } 5824 hr->hr_clear(par, true /* clear_space */, locked /* locked */); 5825 free_list->add_ordered(hr); 5826 } 5827 5828 void G1CollectedHeap::free_humongous_region(HeapRegion* hr, 5829 FreeRegionList* free_list, 5830 bool par) { 5831 assert(hr->is_starts_humongous(), "this is only for starts humongous regions"); 5832 assert(free_list != NULL, "pre-condition"); 5833 5834 size_t hr_capacity = hr->capacity(); 5835 // We need to read this before we make the region non-humongous, 5836 // otherwise the information will be gone. 5837 uint last_index = hr->last_hc_index(); 5838 hr->clear_humongous(); 5839 free_region(hr, free_list, par); 5840 5841 uint i = hr->hrm_index() + 1; 5842 while (i < last_index) { 5843 HeapRegion* curr_hr = region_at(i); 5844 assert(curr_hr->is_continues_humongous(), "invariant"); 5845 curr_hr->clear_humongous(); 5846 free_region(curr_hr, free_list, par); 5847 i += 1; 5848 } 5849 } 5850 5851 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed, 5852 const HeapRegionSetCount& humongous_regions_removed) { 5853 if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) { 5854 MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag); 5855 _old_set.bulk_remove(old_regions_removed); 5856 _humongous_set.bulk_remove(humongous_regions_removed); 5857 } 5858 5859 } 5860 5861 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) { 5862 assert(list != NULL, "list can't be null"); 5863 if (!list->is_empty()) { 5864 MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag); 5865 _hrm.insert_list_into_free_list(list); 5866 } 5867 } 5868 5869 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) { 5870 _allocator->decrease_used(bytes); 5871 } 5872 5873 class G1ParCleanupCTTask : public AbstractGangTask { 5874 G1SATBCardTableModRefBS* _ct_bs; 5875 G1CollectedHeap* _g1h; 5876 HeapRegion* volatile _su_head; 5877 public: 5878 G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs, 5879 G1CollectedHeap* g1h) : 5880 AbstractGangTask("G1 Par Cleanup CT Task"), 5881 _ct_bs(ct_bs), _g1h(g1h) { } 5882 5883 void work(uint worker_id) { 5884 HeapRegion* r; 5885 while (r = _g1h->pop_dirty_cards_region()) { 5886 clear_cards(r); 5887 } 5888 } 5889 5890 void clear_cards(HeapRegion* r) { 5891 // Cards of the survivors should have already been dirtied. 5892 if (!r->is_survivor()) { 5893 _ct_bs->clear(MemRegion(r->bottom(), r->end())); 5894 } 5895 } 5896 }; 5897 5898 #ifndef PRODUCT 5899 class G1VerifyCardTableCleanup: public HeapRegionClosure { 5900 G1CollectedHeap* _g1h; 5901 G1SATBCardTableModRefBS* _ct_bs; 5902 public: 5903 G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs) 5904 : _g1h(g1h), _ct_bs(ct_bs) { } 5905 virtual bool doHeapRegion(HeapRegion* r) { 5906 if (r->is_survivor()) { 5907 _g1h->verify_dirty_region(r); 5908 } else { 5909 _g1h->verify_not_dirty_region(r); 5910 } 5911 return false; 5912 } 5913 }; 5914 5915 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) { 5916 // All of the region should be clean. 5917 G1SATBCardTableModRefBS* ct_bs = g1_barrier_set(); 5918 MemRegion mr(hr->bottom(), hr->end()); 5919 ct_bs->verify_not_dirty_region(mr); 5920 } 5921 5922 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) { 5923 // We cannot guarantee that [bottom(),end()] is dirty. Threads 5924 // dirty allocated blocks as they allocate them. The thread that 5925 // retires each region and replaces it with a new one will do a 5926 // maximal allocation to fill in [pre_dummy_top(),end()] but will 5927 // not dirty that area (one less thing to have to do while holding 5928 // a lock). So we can only verify that [bottom(),pre_dummy_top()] 5929 // is dirty. 5930 G1SATBCardTableModRefBS* ct_bs = g1_barrier_set(); 5931 MemRegion mr(hr->bottom(), hr->pre_dummy_top()); 5932 if (hr->is_young()) { 5933 ct_bs->verify_g1_young_region(mr); 5934 } else { 5935 ct_bs->verify_dirty_region(mr); 5936 } 5937 } 5938 5939 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) { 5940 G1SATBCardTableModRefBS* ct_bs = g1_barrier_set(); 5941 for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) { 5942 verify_dirty_region(hr); 5943 } 5944 } 5945 5946 void G1CollectedHeap::verify_dirty_young_regions() { 5947 verify_dirty_young_list(_young_list->first_region()); 5948 } 5949 5950 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap, 5951 HeapWord* tams, HeapWord* end) { 5952 guarantee(tams <= end, 5953 err_msg("tams: "PTR_FORMAT" end: "PTR_FORMAT, tams, end)); 5954 HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end); 5955 if (result < end) { 5956 gclog_or_tty->cr(); 5957 gclog_or_tty->print_cr("## wrong marked address on %s bitmap: "PTR_FORMAT, 5958 bitmap_name, result); 5959 gclog_or_tty->print_cr("## %s tams: "PTR_FORMAT" end: "PTR_FORMAT, 5960 bitmap_name, tams, end); 5961 return false; 5962 } 5963 return true; 5964 } 5965 5966 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) { 5967 CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap(); 5968 CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap(); 5969 5970 HeapWord* bottom = hr->bottom(); 5971 HeapWord* ptams = hr->prev_top_at_mark_start(); 5972 HeapWord* ntams = hr->next_top_at_mark_start(); 5973 HeapWord* end = hr->end(); 5974 5975 bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end); 5976 5977 bool res_n = true; 5978 // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window 5979 // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap 5980 // if we happen to be in that state. 5981 if (mark_in_progress() || !_cmThread->in_progress()) { 5982 res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end); 5983 } 5984 if (!res_p || !res_n) { 5985 gclog_or_tty->print_cr("#### Bitmap verification failed for "HR_FORMAT, 5986 HR_FORMAT_PARAMS(hr)); 5987 gclog_or_tty->print_cr("#### Caller: %s", caller); 5988 return false; 5989 } 5990 return true; 5991 } 5992 5993 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) { 5994 if (!G1VerifyBitmaps) return; 5995 5996 guarantee(verify_bitmaps(caller, hr), "bitmap verification"); 5997 } 5998 5999 class G1VerifyBitmapClosure : public HeapRegionClosure { 6000 private: 6001 const char* _caller; 6002 G1CollectedHeap* _g1h; 6003 bool _failures; 6004 6005 public: 6006 G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) : 6007 _caller(caller), _g1h(g1h), _failures(false) { } 6008 6009 bool failures() { return _failures; } 6010 6011 virtual bool doHeapRegion(HeapRegion* hr) { 6012 if (hr->is_continues_humongous()) return false; 6013 6014 bool result = _g1h->verify_bitmaps(_caller, hr); 6015 if (!result) { 6016 _failures = true; 6017 } 6018 return false; 6019 } 6020 }; 6021 6022 void G1CollectedHeap::check_bitmaps(const char* caller) { 6023 if (!G1VerifyBitmaps) return; 6024 6025 G1VerifyBitmapClosure cl(caller, this); 6026 heap_region_iterate(&cl); 6027 guarantee(!cl.failures(), "bitmap verification"); 6028 } 6029 #endif // PRODUCT 6030 6031 void G1CollectedHeap::cleanUpCardTable() { 6032 G1SATBCardTableModRefBS* ct_bs = g1_barrier_set(); 6033 double start = os::elapsedTime(); 6034 6035 { 6036 // Iterate over the dirty cards region list. 6037 G1ParCleanupCTTask cleanup_task(ct_bs, this); 6038 6039 set_par_threads(); 6040 workers()->run_task(&cleanup_task); 6041 set_par_threads(0); 6042 #ifndef PRODUCT 6043 if (G1VerifyCTCleanup || VerifyAfterGC) { 6044 G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs); 6045 heap_region_iterate(&cleanup_verifier); 6046 } 6047 #endif 6048 } 6049 6050 double elapsed = os::elapsedTime() - start; 6051 g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0); 6052 } 6053 6054 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) { 6055 size_t pre_used = 0; 6056 FreeRegionList local_free_list("Local List for CSet Freeing"); 6057 6058 double young_time_ms = 0.0; 6059 double non_young_time_ms = 0.0; 6060 6061 // Since the collection set is a superset of the the young list, 6062 // all we need to do to clear the young list is clear its 6063 // head and length, and unlink any young regions in the code below 6064 _young_list->clear(); 6065 6066 G1CollectorPolicy* policy = g1_policy(); 6067 6068 double start_sec = os::elapsedTime(); 6069 bool non_young = true; 6070 6071 HeapRegion* cur = cs_head; 6072 int age_bound = -1; 6073 size_t rs_lengths = 0; 6074 6075 while (cur != NULL) { 6076 assert(!is_on_master_free_list(cur), "sanity"); 6077 if (non_young) { 6078 if (cur->is_young()) { 6079 double end_sec = os::elapsedTime(); 6080 double elapsed_ms = (end_sec - start_sec) * 1000.0; 6081 non_young_time_ms += elapsed_ms; 6082 6083 start_sec = os::elapsedTime(); 6084 non_young = false; 6085 } 6086 } else { 6087 if (!cur->is_young()) { 6088 double end_sec = os::elapsedTime(); 6089 double elapsed_ms = (end_sec - start_sec) * 1000.0; 6090 young_time_ms += elapsed_ms; 6091 6092 start_sec = os::elapsedTime(); 6093 non_young = true; 6094 } 6095 } 6096 6097 rs_lengths += cur->rem_set()->occupied_locked(); 6098 6099 HeapRegion* next = cur->next_in_collection_set(); 6100 assert(cur->in_collection_set(), "bad CS"); 6101 cur->set_next_in_collection_set(NULL); 6102 cur->set_in_collection_set(false); 6103 6104 if (cur->is_young()) { 6105 int index = cur->young_index_in_cset(); 6106 assert(index != -1, "invariant"); 6107 assert((uint) index < policy->young_cset_region_length(), "invariant"); 6108 size_t words_survived = _surviving_young_words[index]; 6109 cur->record_surv_words_in_group(words_survived); 6110 6111 // At this point the we have 'popped' cur from the collection set 6112 // (linked via next_in_collection_set()) but it is still in the 6113 // young list (linked via next_young_region()). Clear the 6114 // _next_young_region field. 6115 cur->set_next_young_region(NULL); 6116 } else { 6117 int index = cur->young_index_in_cset(); 6118 assert(index == -1, "invariant"); 6119 } 6120 6121 assert( (cur->is_young() && cur->young_index_in_cset() > -1) || 6122 (!cur->is_young() && cur->young_index_in_cset() == -1), 6123 "invariant" ); 6124 6125 if (!cur->evacuation_failed()) { 6126 MemRegion used_mr = cur->used_region(); 6127 6128 // And the region is empty. 6129 assert(!used_mr.is_empty(), "Should not have empty regions in a CS."); 6130 pre_used += cur->used(); 6131 free_region(cur, &local_free_list, false /* par */, true /* locked */); 6132 } else { 6133 cur->uninstall_surv_rate_group(); 6134 if (cur->is_young()) { 6135 cur->set_young_index_in_cset(-1); 6136 } 6137 cur->set_evacuation_failed(false); 6138 // The region is now considered to be old. 6139 cur->set_old(); 6140 _old_set.add(cur); 6141 evacuation_info.increment_collectionset_used_after(cur->used()); 6142 } 6143 cur = next; 6144 } 6145 6146 evacuation_info.set_regions_freed(local_free_list.length()); 6147 policy->record_max_rs_lengths(rs_lengths); 6148 policy->cset_regions_freed(); 6149 6150 double end_sec = os::elapsedTime(); 6151 double elapsed_ms = (end_sec - start_sec) * 1000.0; 6152 6153 if (non_young) { 6154 non_young_time_ms += elapsed_ms; 6155 } else { 6156 young_time_ms += elapsed_ms; 6157 } 6158 6159 prepend_to_freelist(&local_free_list); 6160 decrement_summary_bytes(pre_used); 6161 policy->phase_times()->record_young_free_cset_time_ms(young_time_ms); 6162 policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms); 6163 } 6164 6165 class G1FreeHumongousRegionClosure : public HeapRegionClosure { 6166 private: 6167 FreeRegionList* _free_region_list; 6168 HeapRegionSet* _proxy_set; 6169 HeapRegionSetCount _humongous_regions_removed; 6170 size_t _freed_bytes; 6171 public: 6172 6173 G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) : 6174 _free_region_list(free_region_list), _humongous_regions_removed(), _freed_bytes(0) { 6175 } 6176 6177 virtual bool doHeapRegion(HeapRegion* r) { 6178 if (!r->is_starts_humongous()) { 6179 return false; 6180 } 6181 6182 G1CollectedHeap* g1h = G1CollectedHeap::heap(); 6183 6184 oop obj = (oop)r->bottom(); 6185 CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap(); 6186 6187 // The following checks whether the humongous object is live are sufficient. 6188 // The main additional check (in addition to having a reference from the roots 6189 // or the young gen) is whether the humongous object has a remembered set entry. 6190 // 6191 // A humongous object cannot be live if there is no remembered set for it 6192 // because: 6193 // - there can be no references from within humongous starts regions referencing 6194 // the object because we never allocate other objects into them. 6195 // (I.e. there are no intra-region references that may be missed by the 6196 // remembered set) 6197 // - as soon there is a remembered set entry to the humongous starts region 6198 // (i.e. it has "escaped" to an old object) this remembered set entry will stay 6199 // until the end of a concurrent mark. 6200 // 6201 // It is not required to check whether the object has been found dead by marking 6202 // or not, in fact it would prevent reclamation within a concurrent cycle, as 6203 // all objects allocated during that time are considered live. 6204 // SATB marking is even more conservative than the remembered set. 6205 // So if at this point in the collection there is no remembered set entry, 6206 // nobody has a reference to it. 6207 // At the start of collection we flush all refinement logs, and remembered sets 6208 // are completely up-to-date wrt to references to the humongous object. 6209 // 6210 // Other implementation considerations: 6211 // - never consider object arrays: while they are a valid target, they have not 6212 // been observed to be used as temporary objects. 6213 // - they would also pose considerable effort for cleaning up the the remembered 6214 // sets. 6215 // While this cleanup is not strictly necessary to be done (or done instantly), 6216 // given that their occurrence is very low, this saves us this additional 6217 // complexity. 6218 uint region_idx = r->hrm_index(); 6219 if (g1h->humongous_is_live(region_idx) || 6220 g1h->humongous_region_is_always_live(region_idx)) { 6221 6222 if (G1TraceReclaimDeadHumongousObjectsAtYoungGC) { 6223 gclog_or_tty->print_cr("Live humongous %d region %d size "SIZE_FORMAT" with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d live-other %d obj array %d", 6224 r->is_humongous(), 6225 region_idx, 6226 obj->size()*HeapWordSize, 6227 r->rem_set()->occupied(), 6228 r->rem_set()->strong_code_roots_list_length(), 6229 next_bitmap->isMarked(r->bottom()), 6230 g1h->humongous_is_live(region_idx), 6231 obj->is_objArray() 6232 ); 6233 } 6234 6235 return false; 6236 } 6237 6238 guarantee(!obj->is_objArray(), 6239 err_msg("Eagerly reclaiming object arrays is not supported, but the object "PTR_FORMAT" is.", 6240 r->bottom())); 6241 6242 if (G1TraceReclaimDeadHumongousObjectsAtYoungGC) { 6243 gclog_or_tty->print_cr("Reclaim humongous region %d size "SIZE_FORMAT" start "PTR_FORMAT" region %d length "UINT32_FORMAT" with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d live-other %d obj array %d", 6244 r->is_humongous(), 6245 obj->size()*HeapWordSize, 6246 r->bottom(), 6247 region_idx, 6248 r->region_num(), 6249 r->rem_set()->occupied(), 6250 r->rem_set()->strong_code_roots_list_length(), 6251 next_bitmap->isMarked(r->bottom()), 6252 g1h->humongous_is_live(region_idx), 6253 obj->is_objArray() 6254 ); 6255 } 6256 // Need to clear mark bit of the humongous object if already set. 6257 if (next_bitmap->isMarked(r->bottom())) { 6258 next_bitmap->clear(r->bottom()); 6259 } 6260 _freed_bytes += r->used(); 6261 r->set_containing_set(NULL); 6262 _humongous_regions_removed.increment(1u, r->capacity()); 6263 g1h->free_humongous_region(r, _free_region_list, false); 6264 6265 return false; 6266 } 6267 6268 HeapRegionSetCount& humongous_free_count() { 6269 return _humongous_regions_removed; 6270 } 6271 6272 size_t bytes_freed() const { 6273 return _freed_bytes; 6274 } 6275 6276 size_t humongous_reclaimed() const { 6277 return _humongous_regions_removed.length(); 6278 } 6279 }; 6280 6281 void G1CollectedHeap::eagerly_reclaim_humongous_regions() { 6282 assert_at_safepoint(true); 6283 6284 if (!G1ReclaimDeadHumongousObjectsAtYoungGC || 6285 (!_has_humongous_reclaim_candidates && !G1TraceReclaimDeadHumongousObjectsAtYoungGC)) { 6286 g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0); 6287 return; 6288 } 6289 6290 double start_time = os::elapsedTime(); 6291 6292 FreeRegionList local_cleanup_list("Local Humongous Cleanup List"); 6293 6294 G1FreeHumongousRegionClosure cl(&local_cleanup_list); 6295 heap_region_iterate(&cl); 6296 6297 HeapRegionSetCount empty_set; 6298 remove_from_old_sets(empty_set, cl.humongous_free_count()); 6299 6300 G1HRPrinter* hr_printer = _g1h->hr_printer(); 6301 if (hr_printer->is_active()) { 6302 FreeRegionListIterator iter(&local_cleanup_list); 6303 while (iter.more_available()) { 6304 HeapRegion* hr = iter.get_next(); 6305 hr_printer->cleanup(hr); 6306 } 6307 } 6308 6309 prepend_to_freelist(&local_cleanup_list); 6310 decrement_summary_bytes(cl.bytes_freed()); 6311 6312 g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0, 6313 cl.humongous_reclaimed()); 6314 } 6315 6316 // This routine is similar to the above but does not record 6317 // any policy statistics or update free lists; we are abandoning 6318 // the current incremental collection set in preparation of a 6319 // full collection. After the full GC we will start to build up 6320 // the incremental collection set again. 6321 // This is only called when we're doing a full collection 6322 // and is immediately followed by the tearing down of the young list. 6323 6324 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) { 6325 HeapRegion* cur = cs_head; 6326 6327 while (cur != NULL) { 6328 HeapRegion* next = cur->next_in_collection_set(); 6329 assert(cur->in_collection_set(), "bad CS"); 6330 cur->set_next_in_collection_set(NULL); 6331 cur->set_in_collection_set(false); 6332 cur->set_young_index_in_cset(-1); 6333 cur = next; 6334 } 6335 } 6336 6337 void G1CollectedHeap::set_free_regions_coming() { 6338 if (G1ConcRegionFreeingVerbose) { 6339 gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : " 6340 "setting free regions coming"); 6341 } 6342 6343 assert(!free_regions_coming(), "pre-condition"); 6344 _free_regions_coming = true; 6345 } 6346 6347 void G1CollectedHeap::reset_free_regions_coming() { 6348 assert(free_regions_coming(), "pre-condition"); 6349 6350 { 6351 MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag); 6352 _free_regions_coming = false; 6353 SecondaryFreeList_lock->notify_all(); 6354 } 6355 6356 if (G1ConcRegionFreeingVerbose) { 6357 gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : " 6358 "reset free regions coming"); 6359 } 6360 } 6361 6362 void G1CollectedHeap::wait_while_free_regions_coming() { 6363 // Most of the time we won't have to wait, so let's do a quick test 6364 // first before we take the lock. 6365 if (!free_regions_coming()) { 6366 return; 6367 } 6368 6369 if (G1ConcRegionFreeingVerbose) { 6370 gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : " 6371 "waiting for free regions"); 6372 } 6373 6374 { 6375 MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag); 6376 while (free_regions_coming()) { 6377 SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag); 6378 } 6379 } 6380 6381 if (G1ConcRegionFreeingVerbose) { 6382 gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : " 6383 "done waiting for free regions"); 6384 } 6385 } 6386 6387 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) { 6388 assert(heap_lock_held_for_gc(), 6389 "the heap lock should already be held by or for this thread"); 6390 _young_list->push_region(hr); 6391 } 6392 6393 class NoYoungRegionsClosure: public HeapRegionClosure { 6394 private: 6395 bool _success; 6396 public: 6397 NoYoungRegionsClosure() : _success(true) { } 6398 bool doHeapRegion(HeapRegion* r) { 6399 if (r->is_young()) { 6400 gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young", 6401 r->bottom(), r->end()); 6402 _success = false; 6403 } 6404 return false; 6405 } 6406 bool success() { return _success; } 6407 }; 6408 6409 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) { 6410 bool ret = _young_list->check_list_empty(check_sample); 6411 6412 if (check_heap) { 6413 NoYoungRegionsClosure closure; 6414 heap_region_iterate(&closure); 6415 ret = ret && closure.success(); 6416 } 6417 6418 return ret; 6419 } 6420 6421 class TearDownRegionSetsClosure : public HeapRegionClosure { 6422 private: 6423 HeapRegionSet *_old_set; 6424 6425 public: 6426 TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { } 6427 6428 bool doHeapRegion(HeapRegion* r) { 6429 if (r->is_old()) { 6430 _old_set->remove(r); 6431 } else { 6432 // We ignore free regions, we'll empty the free list afterwards. 6433 // We ignore young regions, we'll empty the young list afterwards. 6434 // We ignore humongous regions, we're not tearing down the 6435 // humongous regions set. 6436 assert(r->is_free() || r->is_young() || r->is_humongous(), 6437 "it cannot be another type"); 6438 } 6439 return false; 6440 } 6441 6442 ~TearDownRegionSetsClosure() { 6443 assert(_old_set->is_empty(), "post-condition"); 6444 } 6445 }; 6446 6447 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) { 6448 assert_at_safepoint(true /* should_be_vm_thread */); 6449 6450 if (!free_list_only) { 6451 TearDownRegionSetsClosure cl(&_old_set); 6452 heap_region_iterate(&cl); 6453 6454 // Note that emptying the _young_list is postponed and instead done as 6455 // the first step when rebuilding the regions sets again. The reason for 6456 // this is that during a full GC string deduplication needs to know if 6457 // a collected region was young or old when the full GC was initiated. 6458 } 6459 _hrm.remove_all_free_regions(); 6460 } 6461 6462 class RebuildRegionSetsClosure : public HeapRegionClosure { 6463 private: 6464 bool _free_list_only; 6465 HeapRegionSet* _old_set; 6466 HeapRegionManager* _hrm; 6467 size_t _total_used; 6468 6469 public: 6470 RebuildRegionSetsClosure(bool free_list_only, 6471 HeapRegionSet* old_set, HeapRegionManager* hrm) : 6472 _free_list_only(free_list_only), 6473 _old_set(old_set), _hrm(hrm), _total_used(0) { 6474 assert(_hrm->num_free_regions() == 0, "pre-condition"); 6475 if (!free_list_only) { 6476 assert(_old_set->is_empty(), "pre-condition"); 6477 } 6478 } 6479 6480 bool doHeapRegion(HeapRegion* r) { 6481 if (r->is_continues_humongous()) { 6482 return false; 6483 } 6484 6485 if (r->is_empty()) { 6486 // Add free regions to the free list 6487 r->set_free(); 6488 r->set_allocation_context(AllocationContext::system()); 6489 _hrm->insert_into_free_list(r); 6490 } else if (!_free_list_only) { 6491 assert(!r->is_young(), "we should not come across young regions"); 6492 6493 if (r->is_humongous()) { 6494 // We ignore humongous regions, we left the humongous set unchanged 6495 } else { 6496 // Objects that were compacted would have ended up on regions 6497 // that were previously old or free. 6498 assert(r->is_free() || r->is_old(), "invariant"); 6499 // We now consider them old, so register as such. 6500 r->set_old(); 6501 _old_set->add(r); 6502 } 6503 _total_used += r->used(); 6504 } 6505 6506 return false; 6507 } 6508 6509 size_t total_used() { 6510 return _total_used; 6511 } 6512 }; 6513 6514 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) { 6515 assert_at_safepoint(true /* should_be_vm_thread */); 6516 6517 if (!free_list_only) { 6518 _young_list->empty_list(); 6519 } 6520 6521 RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm); 6522 heap_region_iterate(&cl); 6523 6524 if (!free_list_only) { 6525 _allocator->set_used(cl.total_used()); 6526 } 6527 assert(_allocator->used_unlocked() == recalculate_used(), 6528 err_msg("inconsistent _allocator->used_unlocked(), " 6529 "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT, 6530 _allocator->used_unlocked(), recalculate_used())); 6531 } 6532 6533 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) { 6534 _refine_cte_cl->set_concurrent(concurrent); 6535 } 6536 6537 bool G1CollectedHeap::is_in_closed_subset(const void* p) const { 6538 HeapRegion* hr = heap_region_containing(p); 6539 return hr->is_in(p); 6540 } 6541 6542 // Methods for the mutator alloc region 6543 6544 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size, 6545 bool force) { 6546 assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */); 6547 assert(!force || g1_policy()->can_expand_young_list(), 6548 "if force is true we should be able to expand the young list"); 6549 bool young_list_full = g1_policy()->is_young_list_full(); 6550 if (force || !young_list_full) { 6551 HeapRegion* new_alloc_region = new_region(word_size, 6552 false /* is_old */, 6553 false /* do_expand */); 6554 if (new_alloc_region != NULL) { 6555 set_region_short_lived_locked(new_alloc_region); 6556 _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full); 6557 check_bitmaps("Mutator Region Allocation", new_alloc_region); 6558 return new_alloc_region; 6559 } 6560 } 6561 return NULL; 6562 } 6563 6564 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region, 6565 size_t allocated_bytes) { 6566 assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */); 6567 assert(alloc_region->is_eden(), "all mutator alloc regions should be eden"); 6568 6569 g1_policy()->add_region_to_incremental_cset_lhs(alloc_region); 6570 _allocator->increase_used(allocated_bytes); 6571 _hr_printer.retire(alloc_region); 6572 // We update the eden sizes here, when the region is retired, 6573 // instead of when it's allocated, since this is the point that its 6574 // used space has been recored in _summary_bytes_used. 6575 g1mm()->update_eden_size(); 6576 } 6577 6578 void G1CollectedHeap::set_par_threads() { 6579 // Don't change the number of workers. Use the value previously set 6580 // in the workgroup. 6581 uint n_workers = workers()->active_workers(); 6582 assert(UseDynamicNumberOfGCThreads || 6583 n_workers == workers()->total_workers(), 6584 "Otherwise should be using the total number of workers"); 6585 if (n_workers == 0) { 6586 assert(false, "Should have been set in prior evacuation pause."); 6587 n_workers = ParallelGCThreads; 6588 workers()->set_active_workers(n_workers); 6589 } 6590 set_par_threads(n_workers); 6591 } 6592 6593 // Methods for the GC alloc regions 6594 6595 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, 6596 uint count, 6597 GCAllocPurpose ap) { 6598 assert(FreeList_lock->owned_by_self(), "pre-condition"); 6599 6600 if (count < g1_policy()->max_regions(ap)) { 6601 bool survivor = (ap == GCAllocForSurvived); 6602 HeapRegion* new_alloc_region = new_region(word_size, 6603 !survivor, 6604 true /* do_expand */); 6605 if (new_alloc_region != NULL) { 6606 // We really only need to do this for old regions given that we 6607 // should never scan survivors. But it doesn't hurt to do it 6608 // for survivors too. 6609 new_alloc_region->record_top_and_timestamp(); 6610 if (survivor) { 6611 new_alloc_region->set_survivor(); 6612 _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor); 6613 check_bitmaps("Survivor Region Allocation", new_alloc_region); 6614 } else { 6615 new_alloc_region->set_old(); 6616 _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old); 6617 check_bitmaps("Old Region Allocation", new_alloc_region); 6618 } 6619 bool during_im = g1_policy()->during_initial_mark_pause(); 6620 new_alloc_region->note_start_of_copying(during_im); 6621 return new_alloc_region; 6622 } else { 6623 g1_policy()->note_alloc_region_limit_reached(ap); 6624 } 6625 } 6626 return NULL; 6627 } 6628 6629 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region, 6630 size_t allocated_bytes, 6631 GCAllocPurpose ap) { 6632 bool during_im = g1_policy()->during_initial_mark_pause(); 6633 alloc_region->note_end_of_copying(during_im); 6634 g1_policy()->record_bytes_copied_during_gc(allocated_bytes); 6635 if (ap == GCAllocForSurvived) { 6636 young_list()->add_survivor_region(alloc_region); 6637 } else { 6638 _old_set.add(alloc_region); 6639 } 6640 _hr_printer.retire(alloc_region); 6641 } 6642 6643 // Heap region set verification 6644 6645 class VerifyRegionListsClosure : public HeapRegionClosure { 6646 private: 6647 HeapRegionSet* _old_set; 6648 HeapRegionSet* _humongous_set; 6649 HeapRegionManager* _hrm; 6650 6651 public: 6652 HeapRegionSetCount _old_count; 6653 HeapRegionSetCount _humongous_count; 6654 HeapRegionSetCount _free_count; 6655 6656 VerifyRegionListsClosure(HeapRegionSet* old_set, 6657 HeapRegionSet* humongous_set, 6658 HeapRegionManager* hrm) : 6659 _old_set(old_set), _humongous_set(humongous_set), _hrm(hrm), 6660 _old_count(), _humongous_count(), _free_count(){ } 6661 6662 bool doHeapRegion(HeapRegion* hr) { 6663 if (hr->is_continues_humongous()) { 6664 return false; 6665 } 6666 6667 if (hr->is_young()) { 6668 // TODO 6669 } else if (hr->is_starts_humongous()) { 6670 assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->hrm_index())); 6671 _humongous_count.increment(1u, hr->capacity()); 6672 } else if (hr->is_empty()) { 6673 assert(_hrm->is_free(hr), err_msg("Heap region %u is empty but not on the free list.", hr->hrm_index())); 6674 _free_count.increment(1u, hr->capacity()); 6675 } else if (hr->is_old()) { 6676 assert(hr->containing_set() == _old_set, err_msg("Heap region %u is old but not in the old set.", hr->hrm_index())); 6677 _old_count.increment(1u, hr->capacity()); 6678 } else { 6679 ShouldNotReachHere(); 6680 } 6681 return false; 6682 } 6683 6684 void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) { 6685 guarantee(old_set->length() == _old_count.length(), err_msg("Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length())); 6686 guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), err_msg("Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT, 6687 old_set->total_capacity_bytes(), _old_count.capacity())); 6688 6689 guarantee(humongous_set->length() == _humongous_count.length(), err_msg("Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length())); 6690 guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), err_msg("Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT, 6691 humongous_set->total_capacity_bytes(), _humongous_count.capacity())); 6692 6693 guarantee(free_list->num_free_regions() == _free_count.length(), err_msg("Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count.length())); 6694 guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), err_msg("Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT, 6695 free_list->total_capacity_bytes(), _free_count.capacity())); 6696 } 6697 }; 6698 6699 void G1CollectedHeap::verify_region_sets() { 6700 assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */); 6701 6702 // First, check the explicit lists. 6703 _hrm.verify(); 6704 { 6705 // Given that a concurrent operation might be adding regions to 6706 // the secondary free list we have to take the lock before 6707 // verifying it. 6708 MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag); 6709 _secondary_free_list.verify_list(); 6710 } 6711 6712 // If a concurrent region freeing operation is in progress it will 6713 // be difficult to correctly attributed any free regions we come 6714 // across to the correct free list given that they might belong to 6715 // one of several (free_list, secondary_free_list, any local lists, 6716 // etc.). So, if that's the case we will skip the rest of the 6717 // verification operation. Alternatively, waiting for the concurrent 6718 // operation to complete will have a non-trivial effect on the GC's 6719 // operation (no concurrent operation will last longer than the 6720 // interval between two calls to verification) and it might hide 6721 // any issues that we would like to catch during testing. 6722 if (free_regions_coming()) { 6723 return; 6724 } 6725 6726 // Make sure we append the secondary_free_list on the free_list so 6727 // that all free regions we will come across can be safely 6728 // attributed to the free_list. 6729 append_secondary_free_list_if_not_empty_with_lock(); 6730 6731 // Finally, make sure that the region accounting in the lists is 6732 // consistent with what we see in the heap. 6733 6734 VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_hrm); 6735 heap_region_iterate(&cl); 6736 cl.verify_counts(&_old_set, &_humongous_set, &_hrm); 6737 } 6738 6739 // Optimized nmethod scanning 6740 6741 class RegisterNMethodOopClosure: public OopClosure { 6742 G1CollectedHeap* _g1h; 6743 nmethod* _nm; 6744 6745 template <class T> void do_oop_work(T* p) { 6746 T heap_oop = oopDesc::load_heap_oop(p); 6747 if (!oopDesc::is_null(heap_oop)) { 6748 oop obj = oopDesc::decode_heap_oop_not_null(heap_oop); 6749 HeapRegion* hr = _g1h->heap_region_containing(obj); 6750 assert(!hr->is_continues_humongous(), 6751 err_msg("trying to add code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT 6752 " starting at "HR_FORMAT, 6753 _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()))); 6754 6755 // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries. 6756 hr->add_strong_code_root_locked(_nm); 6757 } 6758 } 6759 6760 public: 6761 RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) : 6762 _g1h(g1h), _nm(nm) {} 6763 6764 void do_oop(oop* p) { do_oop_work(p); } 6765 void do_oop(narrowOop* p) { do_oop_work(p); } 6766 }; 6767 6768 class UnregisterNMethodOopClosure: public OopClosure { 6769 G1CollectedHeap* _g1h; 6770 nmethod* _nm; 6771 6772 template <class T> void do_oop_work(T* p) { 6773 T heap_oop = oopDesc::load_heap_oop(p); 6774 if (!oopDesc::is_null(heap_oop)) { 6775 oop obj = oopDesc::decode_heap_oop_not_null(heap_oop); 6776 HeapRegion* hr = _g1h->heap_region_containing(obj); 6777 assert(!hr->is_continues_humongous(), 6778 err_msg("trying to remove code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT 6779 " starting at "HR_FORMAT, 6780 _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()))); 6781 6782 hr->remove_strong_code_root(_nm); 6783 } 6784 } 6785 6786 public: 6787 UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) : 6788 _g1h(g1h), _nm(nm) {} 6789 6790 void do_oop(oop* p) { do_oop_work(p); } 6791 void do_oop(narrowOop* p) { do_oop_work(p); } 6792 }; 6793 6794 void G1CollectedHeap::register_nmethod(nmethod* nm) { 6795 CollectedHeap::register_nmethod(nm); 6796 6797 guarantee(nm != NULL, "sanity"); 6798 RegisterNMethodOopClosure reg_cl(this, nm); 6799 nm->oops_do(®_cl); 6800 } 6801 6802 void G1CollectedHeap::unregister_nmethod(nmethod* nm) { 6803 CollectedHeap::unregister_nmethod(nm); 6804 6805 guarantee(nm != NULL, "sanity"); 6806 UnregisterNMethodOopClosure reg_cl(this, nm); 6807 nm->oops_do(®_cl, true); 6808 } 6809 6810 void G1CollectedHeap::purge_code_root_memory() { 6811 double purge_start = os::elapsedTime(); 6812 G1CodeRootSet::purge(); 6813 double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0; 6814 g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms); 6815 } 6816 6817 class RebuildStrongCodeRootClosure: public CodeBlobClosure { 6818 G1CollectedHeap* _g1h; 6819 6820 public: 6821 RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) : 6822 _g1h(g1h) {} 6823 6824 void do_code_blob(CodeBlob* cb) { 6825 nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL; 6826 if (nm == NULL) { 6827 return; 6828 } 6829 6830 if (ScavengeRootsInCode) { 6831 _g1h->register_nmethod(nm); 6832 } 6833 } 6834 }; 6835 6836 void G1CollectedHeap::rebuild_strong_code_roots() { 6837 RebuildStrongCodeRootClosure blob_cl(this); 6838 CodeCache::blobs_do(&blob_cl); 6839 } --- EOF ---