1 /*
   2  * Copyright 2003-2009 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_templateTable_x86_64.cpp.incl"
  27 
  28 #ifndef CC_INTERP
  29 
  30 #define __ _masm->
  31 
  32 // Platform-dependent initialization
  33 
  34 void TemplateTable::pd_initialize() {
  35   // No amd64 specific initialization
  36 }
  37 
  38 // Address computation: local variables
  39 
  40 static inline Address iaddress(int n) {
  41   return Address(r14, Interpreter::local_offset_in_bytes(n));
  42 }
  43 
  44 static inline Address laddress(int n) {
  45   return iaddress(n + 1);
  46 }
  47 
  48 static inline Address faddress(int n) {
  49   return iaddress(n);
  50 }
  51 
  52 static inline Address daddress(int n) {
  53   return laddress(n);
  54 }
  55 
  56 static inline Address aaddress(int n) {
  57   return iaddress(n);
  58 }
  59 
  60 static inline Address iaddress(Register r) {
  61   return Address(r14, r, Address::times_8, Interpreter::value_offset_in_bytes());
  62 }
  63 
  64 static inline Address laddress(Register r) {
  65   return Address(r14, r, Address::times_8, Interpreter::local_offset_in_bytes(1));
  66 }
  67 
  68 static inline Address faddress(Register r) {
  69   return iaddress(r);
  70 }
  71 
  72 static inline Address daddress(Register r) {
  73   return laddress(r);
  74 }
  75 
  76 static inline Address aaddress(Register r) {
  77   return iaddress(r);
  78 }
  79 
  80 static inline Address at_rsp() {
  81   return Address(rsp, 0);
  82 }
  83 
  84 // At top of Java expression stack which may be different than esp().  It
  85 // isn't for category 1 objects.
  86 static inline Address at_tos   () {
  87   return Address(rsp,  Interpreter::expr_offset_in_bytes(0));
  88 }
  89 
  90 static inline Address at_tos_p1() {
  91   return Address(rsp,  Interpreter::expr_offset_in_bytes(1));
  92 }
  93 
  94 static inline Address at_tos_p2() {
  95   return Address(rsp,  Interpreter::expr_offset_in_bytes(2));
  96 }
  97 
  98 static inline Address at_tos_p3() {
  99   return Address(rsp,  Interpreter::expr_offset_in_bytes(3));
 100 }
 101 
 102 // Condition conversion
 103 static Assembler::Condition j_not(TemplateTable::Condition cc) {
 104   switch (cc) {
 105   case TemplateTable::equal        : return Assembler::notEqual;
 106   case TemplateTable::not_equal    : return Assembler::equal;
 107   case TemplateTable::less         : return Assembler::greaterEqual;
 108   case TemplateTable::less_equal   : return Assembler::greater;
 109   case TemplateTable::greater      : return Assembler::lessEqual;
 110   case TemplateTable::greater_equal: return Assembler::less;
 111   }
 112   ShouldNotReachHere();
 113   return Assembler::zero;
 114 }
 115 
 116 
 117 // Miscelaneous helper routines
 118 // Store an oop (or NULL) at the address described by obj.
 119 // If val == noreg this means store a NULL
 120 
 121 static void do_oop_store(InterpreterMacroAssembler* _masm,
 122                          Address obj,
 123                          Register val,
 124                          BarrierSet::Name barrier,
 125                          bool precise) {
 126   assert(val == noreg || val == rax, "parameter is just for looks");
 127   switch (barrier) {
 128 #ifndef SERIALGC
 129     case BarrierSet::G1SATBCT:
 130     case BarrierSet::G1SATBCTLogging:
 131       {
 132         // flatten object address if needed
 133         if (obj.index() == noreg && obj.disp() == 0) {
 134           if (obj.base() != rdx) {
 135             __ movq(rdx, obj.base());
 136           }
 137         } else {
 138           __ leaq(rdx, obj);
 139         }
 140         __ g1_write_barrier_pre(rdx, r8, rbx, val != noreg);
 141         if (val == noreg) {
 142           __ store_heap_oop_null(Address(rdx, 0));
 143         } else {
 144           __ store_heap_oop(Address(rdx, 0), val);
 145           __ g1_write_barrier_post(rdx, val, r8, rbx);
 146         }
 147 
 148       }
 149       break;
 150 #endif // SERIALGC
 151     case BarrierSet::CardTableModRef:
 152     case BarrierSet::CardTableExtension:
 153       {
 154         if (val == noreg) {
 155           __ store_heap_oop_null(obj);
 156         } else {
 157           __ store_heap_oop(obj, val);
 158           // flatten object address if needed
 159           if (!precise || (obj.index() == noreg && obj.disp() == 0)) {
 160             __ store_check(obj.base());
 161           } else {
 162             __ leaq(rdx, obj);
 163             __ store_check(rdx);
 164           }
 165         }
 166       }
 167       break;
 168     case BarrierSet::ModRef:
 169     case BarrierSet::Other:
 170       if (val == noreg) {
 171         __ store_heap_oop_null(obj);
 172       } else {
 173         __ store_heap_oop(obj, val);
 174       }
 175       break;
 176     default      :
 177       ShouldNotReachHere();
 178 
 179   }
 180 }
 181 
 182 Address TemplateTable::at_bcp(int offset) {
 183   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
 184   return Address(r13, offset);
 185 }
 186 
 187 void TemplateTable::patch_bytecode(Bytecodes::Code bytecode, Register bc,
 188                                    Register scratch,
 189                                    bool load_bc_into_scratch/*=true*/) {
 190   if (!RewriteBytecodes) {
 191     return;
 192   }
 193   // the pair bytecodes have already done the load.
 194   if (load_bc_into_scratch) {
 195     __ movl(bc, bytecode);
 196   }
 197   Label patch_done;
 198   if (JvmtiExport::can_post_breakpoint()) {
 199     Label fast_patch;
 200     // if a breakpoint is present we can't rewrite the stream directly
 201     __ movzbl(scratch, at_bcp(0));
 202     __ cmpl(scratch, Bytecodes::_breakpoint);
 203     __ jcc(Assembler::notEqual, fast_patch);
 204     __ get_method(scratch);
 205     // Let breakpoint table handling rewrite to quicker bytecode
 206     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), scratch, r13, bc);
 207 #ifndef ASSERT
 208     __ jmpb(patch_done);
 209 #else
 210     __ jmp(patch_done);
 211 #endif
 212     __ bind(fast_patch);
 213   }
 214 #ifdef ASSERT
 215   Label okay;
 216   __ load_unsigned_byte(scratch, at_bcp(0));
 217   __ cmpl(scratch, (int) Bytecodes::java_code(bytecode));
 218   __ jcc(Assembler::equal, okay);
 219   __ cmpl(scratch, bc);
 220   __ jcc(Assembler::equal, okay);
 221   __ stop("patching the wrong bytecode");
 222   __ bind(okay);
 223 #endif
 224   // patch bytecode
 225   __ movb(at_bcp(0), bc);
 226   __ bind(patch_done);
 227 }
 228 
 229 
 230 // Individual instructions
 231 
 232 void TemplateTable::nop() {
 233   transition(vtos, vtos);
 234   // nothing to do
 235 }
 236 
 237 void TemplateTable::shouldnotreachhere() {
 238   transition(vtos, vtos);
 239   __ stop("shouldnotreachhere bytecode");
 240 }
 241 
 242 void TemplateTable::aconst_null() {
 243   transition(vtos, atos);
 244   __ xorl(rax, rax);
 245 }
 246 
 247 void TemplateTable::iconst(int value) {
 248   transition(vtos, itos);
 249   if (value == 0) {
 250     __ xorl(rax, rax);
 251   } else {
 252     __ movl(rax, value);
 253   }
 254 }
 255 
 256 void TemplateTable::lconst(int value) {
 257   transition(vtos, ltos);
 258   if (value == 0) {
 259     __ xorl(rax, rax);
 260   } else {
 261     __ movl(rax, value);
 262   }
 263 }
 264 
 265 void TemplateTable::fconst(int value) {
 266   transition(vtos, ftos);
 267   static float one = 1.0f, two = 2.0f;
 268   switch (value) {
 269   case 0:
 270     __ xorps(xmm0, xmm0);
 271     break;
 272   case 1:
 273     __ movflt(xmm0, ExternalAddress((address) &one));
 274     break;
 275   case 2:
 276     __ movflt(xmm0, ExternalAddress((address) &two));
 277     break;
 278   default:
 279     ShouldNotReachHere();
 280     break;
 281   }
 282 }
 283 
 284 void TemplateTable::dconst(int value) {
 285   transition(vtos, dtos);
 286   static double one = 1.0;
 287   switch (value) {
 288   case 0:
 289     __ xorpd(xmm0, xmm0);
 290     break;
 291   case 1:
 292     __ movdbl(xmm0, ExternalAddress((address) &one));
 293     break;
 294   default:
 295     ShouldNotReachHere();
 296     break;
 297   }
 298 }
 299 
 300 void TemplateTable::bipush() {
 301   transition(vtos, itos);
 302   __ load_signed_byte(rax, at_bcp(1));
 303 }
 304 
 305 void TemplateTable::sipush() {
 306   transition(vtos, itos);
 307   __ load_unsigned_short(rax, at_bcp(1));
 308   __ bswapl(rax);
 309   __ sarl(rax, 16);
 310 }
 311 
 312 void TemplateTable::ldc(bool wide) {
 313   transition(vtos, vtos);
 314   Label call_ldc, notFloat, notClass, Done;
 315 
 316   if (wide) {
 317     __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
 318   } else {
 319     __ load_unsigned_byte(rbx, at_bcp(1));
 320   }
 321 
 322   __ get_cpool_and_tags(rcx, rax);
 323   const int base_offset = constantPoolOopDesc::header_size() * wordSize;
 324   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
 325 
 326   // get type
 327   __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset));
 328 
 329   // unresolved string - get the resolved string
 330   __ cmpl(rdx, JVM_CONSTANT_UnresolvedString);
 331   __ jccb(Assembler::equal, call_ldc);
 332 
 333   // unresolved class - get the resolved class
 334   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass);
 335   __ jccb(Assembler::equal, call_ldc);
 336 
 337   // unresolved class in error state - call into runtime to throw the error
 338   // from the first resolution attempt
 339   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError);
 340   __ jccb(Assembler::equal, call_ldc);
 341 
 342   // resolved class - need to call vm to get java mirror of the class
 343   __ cmpl(rdx, JVM_CONSTANT_Class);
 344   __ jcc(Assembler::notEqual, notClass);
 345 
 346   __ bind(call_ldc);
 347   __ movl(c_rarg1, wide);
 348   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), c_rarg1);
 349   __ push_ptr(rax);
 350   __ verify_oop(rax);
 351   __ jmp(Done);
 352 
 353   __ bind(notClass);
 354   __ cmpl(rdx, JVM_CONSTANT_Float);
 355   __ jccb(Assembler::notEqual, notFloat);
 356   // ftos
 357   __ movflt(xmm0, Address(rcx, rbx, Address::times_8, base_offset));
 358   __ push_f();
 359   __ jmp(Done);
 360 
 361   __ bind(notFloat);
 362 #ifdef ASSERT
 363   {
 364     Label L;
 365     __ cmpl(rdx, JVM_CONSTANT_Integer);
 366     __ jcc(Assembler::equal, L);
 367     __ cmpl(rdx, JVM_CONSTANT_String);
 368     __ jcc(Assembler::equal, L);
 369     __ stop("unexpected tag type in ldc");
 370     __ bind(L);
 371   }
 372 #endif
 373   // atos and itos
 374   Label isOop;
 375   __ cmpl(rdx, JVM_CONSTANT_Integer);
 376   __ jcc(Assembler::notEqual, isOop);
 377   __ movl(rax, Address(rcx, rbx, Address::times_8, base_offset));
 378   __ push_i(rax);
 379   __ jmp(Done);
 380 
 381   __ bind(isOop);
 382   __ movptr(rax, Address(rcx, rbx, Address::times_8, base_offset));
 383   __ push_ptr(rax);
 384 
 385   if (VerifyOops) {
 386     __ verify_oop(rax);
 387   }
 388 
 389   __ bind(Done);
 390 }
 391 
 392 void TemplateTable::ldc2_w() {
 393   transition(vtos, vtos);
 394   Label Long, Done;
 395   __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
 396 
 397   __ get_cpool_and_tags(rcx, rax);
 398   const int base_offset = constantPoolOopDesc::header_size() * wordSize;
 399   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
 400 
 401   // get type
 402   __ cmpb(Address(rax, rbx, Address::times_1, tags_offset),
 403           JVM_CONSTANT_Double);
 404   __ jccb(Assembler::notEqual, Long);
 405   // dtos
 406   __ movdbl(xmm0, Address(rcx, rbx, Address::times_8, base_offset));
 407   __ push_d();
 408   __ jmpb(Done);
 409 
 410   __ bind(Long);
 411   // ltos
 412   __ movq(rax, Address(rcx, rbx, Address::times_8, base_offset));
 413   __ push_l();
 414 
 415   __ bind(Done);
 416 }
 417 
 418 void TemplateTable::locals_index(Register reg, int offset) {
 419   __ load_unsigned_byte(reg, at_bcp(offset));
 420   __ negptr(reg);
 421   if (TaggedStackInterpreter) __ shlptr(reg, 1);  // index = index*2
 422 }
 423 
 424 void TemplateTable::iload() {
 425   transition(vtos, itos);
 426   if (RewriteFrequentPairs) {
 427     Label rewrite, done;
 428     const Register bc = c_rarg3;
 429     assert(rbx != bc, "register damaged");
 430 
 431     // get next byte
 432     __ load_unsigned_byte(rbx,
 433                           at_bcp(Bytecodes::length_for(Bytecodes::_iload)));
 434     // if _iload, wait to rewrite to iload2.  We only want to rewrite the
 435     // last two iloads in a pair.  Comparing against fast_iload means that
 436     // the next bytecode is neither an iload or a caload, and therefore
 437     // an iload pair.
 438     __ cmpl(rbx, Bytecodes::_iload);
 439     __ jcc(Assembler::equal, done);
 440 
 441     __ cmpl(rbx, Bytecodes::_fast_iload);
 442     __ movl(bc, Bytecodes::_fast_iload2);
 443     __ jccb(Assembler::equal, rewrite);
 444 
 445     // if _caload, rewrite to fast_icaload
 446     __ cmpl(rbx, Bytecodes::_caload);
 447     __ movl(bc, Bytecodes::_fast_icaload);
 448     __ jccb(Assembler::equal, rewrite);
 449 
 450     // rewrite so iload doesn't check again.
 451     __ movl(bc, Bytecodes::_fast_iload);
 452 
 453     // rewrite
 454     // bc: fast bytecode
 455     __ bind(rewrite);
 456     patch_bytecode(Bytecodes::_iload, bc, rbx, false);
 457     __ bind(done);
 458   }
 459 
 460   // Get the local value into tos
 461   locals_index(rbx);
 462   __ movl(rax, iaddress(rbx));
 463   debug_only(__ verify_local_tag(frame::TagValue, rbx));
 464 }
 465 
 466 void TemplateTable::fast_iload2() {
 467   transition(vtos, itos);
 468   locals_index(rbx);
 469   __ movl(rax, iaddress(rbx));
 470   debug_only(__ verify_local_tag(frame::TagValue, rbx));
 471   __ push(itos);
 472   locals_index(rbx, 3);
 473   __ movl(rax, iaddress(rbx));
 474   debug_only(__ verify_local_tag(frame::TagValue, rbx));
 475 }
 476 
 477 void TemplateTable::fast_iload() {
 478   transition(vtos, itos);
 479   locals_index(rbx);
 480   __ movl(rax, iaddress(rbx));
 481   debug_only(__ verify_local_tag(frame::TagValue, rbx));
 482 }
 483 
 484 void TemplateTable::lload() {
 485   transition(vtos, ltos);
 486   locals_index(rbx);
 487   __ movq(rax, laddress(rbx));
 488   debug_only(__ verify_local_tag(frame::TagCategory2, rbx));
 489 }
 490 
 491 void TemplateTable::fload() {
 492   transition(vtos, ftos);
 493   locals_index(rbx);
 494   __ movflt(xmm0, faddress(rbx));
 495   debug_only(__ verify_local_tag(frame::TagValue, rbx));
 496 }
 497 
 498 void TemplateTable::dload() {
 499   transition(vtos, dtos);
 500   locals_index(rbx);
 501   __ movdbl(xmm0, daddress(rbx));
 502   debug_only(__ verify_local_tag(frame::TagCategory2, rbx));
 503 }
 504 
 505 void TemplateTable::aload() {
 506   transition(vtos, atos);
 507   locals_index(rbx);
 508   __ movptr(rax, aaddress(rbx));
 509   debug_only(__ verify_local_tag(frame::TagReference, rbx));
 510 }
 511 
 512 void TemplateTable::locals_index_wide(Register reg) {
 513   __ movl(reg, at_bcp(2));
 514   __ bswapl(reg);
 515   __ shrl(reg, 16);
 516   __ negptr(reg);
 517   if (TaggedStackInterpreter) __ shlptr(reg, 1);  // index = index*2
 518 }
 519 
 520 void TemplateTable::wide_iload() {
 521   transition(vtos, itos);
 522   locals_index_wide(rbx);
 523   __ movl(rax, iaddress(rbx));
 524   debug_only(__ verify_local_tag(frame::TagValue, rbx));
 525 }
 526 
 527 void TemplateTable::wide_lload() {
 528   transition(vtos, ltos);
 529   locals_index_wide(rbx);
 530   __ movq(rax, laddress(rbx));
 531   debug_only(__ verify_local_tag(frame::TagCategory2, rbx));
 532 }
 533 
 534 void TemplateTable::wide_fload() {
 535   transition(vtos, ftos);
 536   locals_index_wide(rbx);
 537   __ movflt(xmm0, faddress(rbx));
 538   debug_only(__ verify_local_tag(frame::TagValue, rbx));
 539 }
 540 
 541 void TemplateTable::wide_dload() {
 542   transition(vtos, dtos);
 543   locals_index_wide(rbx);
 544   __ movdbl(xmm0, daddress(rbx));
 545   debug_only(__ verify_local_tag(frame::TagCategory2, rbx));
 546 }
 547 
 548 void TemplateTable::wide_aload() {
 549   transition(vtos, atos);
 550   locals_index_wide(rbx);
 551   __ movptr(rax, aaddress(rbx));
 552   debug_only(__ verify_local_tag(frame::TagReference, rbx));
 553 }
 554 
 555 void TemplateTable::index_check(Register array, Register index) {
 556   // destroys rbx
 557   // check array
 558   __ null_check(array, arrayOopDesc::length_offset_in_bytes());
 559   // sign extend index for use by indexed load
 560   __ movl2ptr(index, index);
 561   // check index
 562   __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes()));
 563   if (index != rbx) {
 564     // ??? convention: move aberrant index into ebx for exception message
 565     assert(rbx != array, "different registers");
 566     __ movl(rbx, index);
 567   }
 568   __ jump_cc(Assembler::aboveEqual,
 569              ExternalAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry));
 570 }
 571 
 572 void TemplateTable::iaload() {
 573   transition(itos, itos);
 574   __ pop_ptr(rdx);
 575   // eax: index
 576   // rdx: array
 577   index_check(rdx, rax); // kills rbx
 578   __ movl(rax, Address(rdx, rax,
 579                        Address::times_4,
 580                        arrayOopDesc::base_offset_in_bytes(T_INT)));
 581 }
 582 
 583 void TemplateTable::laload() {
 584   transition(itos, ltos);
 585   __ pop_ptr(rdx);
 586   // eax: index
 587   // rdx: array
 588   index_check(rdx, rax); // kills rbx
 589   __ movq(rax, Address(rdx, rbx,
 590                        Address::times_8,
 591                        arrayOopDesc::base_offset_in_bytes(T_LONG)));
 592 }
 593 
 594 void TemplateTable::faload() {
 595   transition(itos, ftos);
 596   __ pop_ptr(rdx);
 597   // eax: index
 598   // rdx: array
 599   index_check(rdx, rax); // kills rbx
 600   __ movflt(xmm0, Address(rdx, rax,
 601                          Address::times_4,
 602                          arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
 603 }
 604 
 605 void TemplateTable::daload() {
 606   transition(itos, dtos);
 607   __ pop_ptr(rdx);
 608   // eax: index
 609   // rdx: array
 610   index_check(rdx, rax); // kills rbx
 611   __ movdbl(xmm0, Address(rdx, rax,
 612                           Address::times_8,
 613                           arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
 614 }
 615 
 616 void TemplateTable::aaload() {
 617   transition(itos, atos);
 618   __ pop_ptr(rdx);
 619   // eax: index
 620   // rdx: array
 621   index_check(rdx, rax); // kills rbx
 622   __ load_heap_oop(rax, Address(rdx, rax,
 623                                 UseCompressedOops ? Address::times_4 : Address::times_8,
 624                                 arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
 625 }
 626 
 627 void TemplateTable::baload() {
 628   transition(itos, itos);
 629   __ pop_ptr(rdx);
 630   // eax: index
 631   // rdx: array
 632   index_check(rdx, rax); // kills rbx
 633   __ load_signed_byte(rax,
 634                       Address(rdx, rax,
 635                               Address::times_1,
 636                               arrayOopDesc::base_offset_in_bytes(T_BYTE)));
 637 }
 638 
 639 void TemplateTable::caload() {
 640   transition(itos, itos);
 641   __ pop_ptr(rdx);
 642   // eax: index
 643   // rdx: array
 644   index_check(rdx, rax); // kills rbx
 645   __ load_unsigned_short(rax,
 646                          Address(rdx, rax,
 647                                  Address::times_2,
 648                                  arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 649 }
 650 
 651 // iload followed by caload frequent pair
 652 void TemplateTable::fast_icaload() {
 653   transition(vtos, itos);
 654   // load index out of locals
 655   locals_index(rbx);
 656   __ movl(rax, iaddress(rbx));
 657   debug_only(__ verify_local_tag(frame::TagValue, rbx));
 658 
 659   // eax: index
 660   // rdx: array
 661   __ pop_ptr(rdx);
 662   index_check(rdx, rax); // kills rbx
 663   __ load_unsigned_short(rax,
 664                          Address(rdx, rax,
 665                                  Address::times_2,
 666                                  arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 667 }
 668 
 669 void TemplateTable::saload() {
 670   transition(itos, itos);
 671   __ pop_ptr(rdx);
 672   // eax: index
 673   // rdx: array
 674   index_check(rdx, rax); // kills rbx
 675   __ load_signed_short(rax,
 676                        Address(rdx, rax,
 677                                Address::times_2,
 678                                arrayOopDesc::base_offset_in_bytes(T_SHORT)));
 679 }
 680 
 681 void TemplateTable::iload(int n) {
 682   transition(vtos, itos);
 683   __ movl(rax, iaddress(n));
 684   debug_only(__ verify_local_tag(frame::TagValue, n));
 685 }
 686 
 687 void TemplateTable::lload(int n) {
 688   transition(vtos, ltos);
 689   __ movq(rax, laddress(n));
 690   debug_only(__ verify_local_tag(frame::TagCategory2, n));
 691 }
 692 
 693 void TemplateTable::fload(int n) {
 694   transition(vtos, ftos);
 695   __ movflt(xmm0, faddress(n));
 696   debug_only(__ verify_local_tag(frame::TagValue, n));
 697 }
 698 
 699 void TemplateTable::dload(int n) {
 700   transition(vtos, dtos);
 701   __ movdbl(xmm0, daddress(n));
 702   debug_only(__ verify_local_tag(frame::TagCategory2, n));
 703 }
 704 
 705 void TemplateTable::aload(int n) {
 706   transition(vtos, atos);
 707   __ movptr(rax, aaddress(n));
 708   debug_only(__ verify_local_tag(frame::TagReference, n));
 709 }
 710 
 711 void TemplateTable::aload_0() {
 712   transition(vtos, atos);
 713   // According to bytecode histograms, the pairs:
 714   //
 715   // _aload_0, _fast_igetfield
 716   // _aload_0, _fast_agetfield
 717   // _aload_0, _fast_fgetfield
 718   //
 719   // occur frequently. If RewriteFrequentPairs is set, the (slow)
 720   // _aload_0 bytecode checks if the next bytecode is either
 721   // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then
 722   // rewrites the current bytecode into a pair bytecode; otherwise it
 723   // rewrites the current bytecode into _fast_aload_0 that doesn't do
 724   // the pair check anymore.
 725   //
 726   // Note: If the next bytecode is _getfield, the rewrite must be
 727   //       delayed, otherwise we may miss an opportunity for a pair.
 728   //
 729   // Also rewrite frequent pairs
 730   //   aload_0, aload_1
 731   //   aload_0, iload_1
 732   // These bytecodes with a small amount of code are most profitable
 733   // to rewrite
 734   if (RewriteFrequentPairs) {
 735     Label rewrite, done;
 736     const Register bc = c_rarg3;
 737     assert(rbx != bc, "register damaged");
 738     // get next byte
 739     __ load_unsigned_byte(rbx,
 740                           at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)));
 741 
 742     // do actual aload_0
 743     aload(0);
 744 
 745     // if _getfield then wait with rewrite
 746     __ cmpl(rbx, Bytecodes::_getfield);
 747     __ jcc(Assembler::equal, done);
 748 
 749     // if _igetfield then reqrite to _fast_iaccess_0
 750     assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) ==
 751            Bytecodes::_aload_0,
 752            "fix bytecode definition");
 753     __ cmpl(rbx, Bytecodes::_fast_igetfield);
 754     __ movl(bc, Bytecodes::_fast_iaccess_0);
 755     __ jccb(Assembler::equal, rewrite);
 756 
 757     // if _agetfield then reqrite to _fast_aaccess_0
 758     assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) ==
 759            Bytecodes::_aload_0,
 760            "fix bytecode definition");
 761     __ cmpl(rbx, Bytecodes::_fast_agetfield);
 762     __ movl(bc, Bytecodes::_fast_aaccess_0);
 763     __ jccb(Assembler::equal, rewrite);
 764 
 765     // if _fgetfield then reqrite to _fast_faccess_0
 766     assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) ==
 767            Bytecodes::_aload_0,
 768            "fix bytecode definition");
 769     __ cmpl(rbx, Bytecodes::_fast_fgetfield);
 770     __ movl(bc, Bytecodes::_fast_faccess_0);
 771     __ jccb(Assembler::equal, rewrite);
 772 
 773     // else rewrite to _fast_aload0
 774     assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) ==
 775            Bytecodes::_aload_0,
 776            "fix bytecode definition");
 777     __ movl(bc, Bytecodes::_fast_aload_0);
 778 
 779     // rewrite
 780     // bc: fast bytecode
 781     __ bind(rewrite);
 782     patch_bytecode(Bytecodes::_aload_0, bc, rbx, false);
 783 
 784     __ bind(done);
 785   } else {
 786     aload(0);
 787   }
 788 }
 789 
 790 void TemplateTable::istore() {
 791   transition(itos, vtos);
 792   locals_index(rbx);
 793   __ movl(iaddress(rbx), rax);
 794   __ tag_local(frame::TagValue, rbx);
 795 }
 796 
 797 void TemplateTable::lstore() {
 798   transition(ltos, vtos);
 799   locals_index(rbx);
 800   __ movq(laddress(rbx), rax);
 801   __ tag_local(frame::TagCategory2, rbx);
 802 }
 803 
 804 void TemplateTable::fstore() {
 805   transition(ftos, vtos);
 806   locals_index(rbx);
 807   __ movflt(faddress(rbx), xmm0);
 808   __ tag_local(frame::TagValue, rbx);
 809 }
 810 
 811 void TemplateTable::dstore() {
 812   transition(dtos, vtos);
 813   locals_index(rbx);
 814   __ movdbl(daddress(rbx), xmm0);
 815   __ tag_local(frame::TagCategory2, rbx);
 816 }
 817 
 818 void TemplateTable::astore() {
 819   transition(vtos, vtos);
 820   __ pop_ptr(rax, rdx);    // will need to pop tag too
 821   locals_index(rbx);
 822   __ movptr(aaddress(rbx), rax);
 823   __ tag_local(rdx, rbx);  // store tag from stack, might be returnAddr
 824 }
 825 
 826 void TemplateTable::wide_istore() {
 827   transition(vtos, vtos);
 828   __ pop_i();
 829   locals_index_wide(rbx);
 830   __ movl(iaddress(rbx), rax);
 831   __ tag_local(frame::TagValue, rbx);
 832 }
 833 
 834 void TemplateTable::wide_lstore() {
 835   transition(vtos, vtos);
 836   __ pop_l();
 837   locals_index_wide(rbx);
 838   __ movq(laddress(rbx), rax);
 839   __ tag_local(frame::TagCategory2, rbx);
 840 }
 841 
 842 void TemplateTable::wide_fstore() {
 843   transition(vtos, vtos);
 844   __ pop_f();
 845   locals_index_wide(rbx);
 846   __ movflt(faddress(rbx), xmm0);
 847   __ tag_local(frame::TagValue, rbx);
 848 }
 849 
 850 void TemplateTable::wide_dstore() {
 851   transition(vtos, vtos);
 852   __ pop_d();
 853   locals_index_wide(rbx);
 854   __ movdbl(daddress(rbx), xmm0);
 855   __ tag_local(frame::TagCategory2, rbx);
 856 }
 857 
 858 void TemplateTable::wide_astore() {
 859   transition(vtos, vtos);
 860   __ pop_ptr(rax, rdx);    // will need to pop tag too
 861   locals_index_wide(rbx);
 862   __ movptr(aaddress(rbx), rax);
 863   __ tag_local(rdx, rbx);  // store tag from stack, might be returnAddr
 864 }
 865 
 866 void TemplateTable::iastore() {
 867   transition(itos, vtos);
 868   __ pop_i(rbx);
 869   __ pop_ptr(rdx);
 870   // eax: value
 871   // ebx: index
 872   // rdx: array
 873   index_check(rdx, rbx); // prefer index in ebx
 874   __ movl(Address(rdx, rbx,
 875                   Address::times_4,
 876                   arrayOopDesc::base_offset_in_bytes(T_INT)),
 877           rax);
 878 }
 879 
 880 void TemplateTable::lastore() {
 881   transition(ltos, vtos);
 882   __ pop_i(rbx);
 883   __ pop_ptr(rdx);
 884   // rax: value
 885   // ebx: index
 886   // rdx: array
 887   index_check(rdx, rbx); // prefer index in ebx
 888   __ movq(Address(rdx, rbx,
 889                   Address::times_8,
 890                   arrayOopDesc::base_offset_in_bytes(T_LONG)),
 891           rax);
 892 }
 893 
 894 void TemplateTable::fastore() {
 895   transition(ftos, vtos);
 896   __ pop_i(rbx);
 897   __ pop_ptr(rdx);
 898   // xmm0: value
 899   // ebx:  index
 900   // rdx:  array
 901   index_check(rdx, rbx); // prefer index in ebx
 902   __ movflt(Address(rdx, rbx,
 903                    Address::times_4,
 904                    arrayOopDesc::base_offset_in_bytes(T_FLOAT)),
 905            xmm0);
 906 }
 907 
 908 void TemplateTable::dastore() {
 909   transition(dtos, vtos);
 910   __ pop_i(rbx);
 911   __ pop_ptr(rdx);
 912   // xmm0: value
 913   // ebx:  index
 914   // rdx:  array
 915   index_check(rdx, rbx); // prefer index in ebx
 916   __ movdbl(Address(rdx, rbx,
 917                    Address::times_8,
 918                    arrayOopDesc::base_offset_in_bytes(T_DOUBLE)),
 919            xmm0);
 920 }
 921 
 922 void TemplateTable::aastore() {
 923   Label is_null, ok_is_subtype, done;
 924   transition(vtos, vtos);
 925   // stack: ..., array, index, value
 926   __ movptr(rax, at_tos());    // value
 927   __ movl(rcx, at_tos_p1()); // index
 928   __ movptr(rdx, at_tos_p2()); // array
 929 
 930   Address element_address(rdx, rcx,
 931                           UseCompressedOops? Address::times_4 : Address::times_8,
 932                           arrayOopDesc::base_offset_in_bytes(T_OBJECT));
 933 
 934   index_check(rdx, rcx);     // kills rbx
 935   // do array store check - check for NULL value first
 936   __ testptr(rax, rax);
 937   __ jcc(Assembler::zero, is_null);
 938 
 939   // Move subklass into rbx
 940   __ load_klass(rbx, rax);
 941   // Move superklass into rax
 942   __ load_klass(rax, rdx);
 943   __ movptr(rax, Address(rax,
 944                          sizeof(oopDesc) +
 945                          objArrayKlass::element_klass_offset_in_bytes()));
 946   // Compress array + index*oopSize + 12 into a single register.  Frees rcx.
 947   __ lea(rdx, element_address);
 948 
 949   // Generate subtype check.  Blows rcx, rdi
 950   // Superklass in rax.  Subklass in rbx.
 951   __ gen_subtype_check(rbx, ok_is_subtype);
 952 
 953   // Come here on failure
 954   // object is at TOS
 955   __ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry));
 956 
 957   // Come here on success
 958   __ bind(ok_is_subtype);
 959 
 960   // Get the value we will store
 961   __ movptr(rax, at_tos());
 962   // Now store using the appropriate barrier
 963   do_oop_store(_masm, Address(rdx, 0), rax, _bs->kind(), true);
 964   __ jmp(done);
 965 
 966   // Have a NULL in rax, rdx=array, ecx=index.  Store NULL at ary[idx]
 967   __ bind(is_null);
 968   __ profile_null_seen(rbx);
 969 
 970   // Store a NULL
 971   do_oop_store(_masm, element_address, noreg, _bs->kind(), true);
 972 
 973   // Pop stack arguments
 974   __ bind(done);
 975   __ addptr(rsp, 3 * Interpreter::stackElementSize());
 976 }
 977 
 978 void TemplateTable::bastore() {
 979   transition(itos, vtos);
 980   __ pop_i(rbx);
 981   __ pop_ptr(rdx);
 982   // eax: value
 983   // ebx: index
 984   // rdx: array
 985   index_check(rdx, rbx); // prefer index in ebx
 986   __ movb(Address(rdx, rbx,
 987                   Address::times_1,
 988                   arrayOopDesc::base_offset_in_bytes(T_BYTE)),
 989           rax);
 990 }
 991 
 992 void TemplateTable::castore() {
 993   transition(itos, vtos);
 994   __ pop_i(rbx);
 995   __ pop_ptr(rdx);
 996   // eax: value
 997   // ebx: index
 998   // rdx: array
 999   index_check(rdx, rbx);  // prefer index in ebx
1000   __ movw(Address(rdx, rbx,
1001                   Address::times_2,
1002                   arrayOopDesc::base_offset_in_bytes(T_CHAR)),
1003           rax);
1004 }
1005 
1006 void TemplateTable::sastore() {
1007   castore();
1008 }
1009 
1010 void TemplateTable::istore(int n) {
1011   transition(itos, vtos);
1012   __ movl(iaddress(n), rax);
1013   __ tag_local(frame::TagValue, n);
1014 }
1015 
1016 void TemplateTable::lstore(int n) {
1017   transition(ltos, vtos);
1018   __ movq(laddress(n), rax);
1019   __ tag_local(frame::TagCategory2, n);
1020 }
1021 
1022 void TemplateTable::fstore(int n) {
1023   transition(ftos, vtos);
1024   __ movflt(faddress(n), xmm0);
1025   __ tag_local(frame::TagValue, n);
1026 }
1027 
1028 void TemplateTable::dstore(int n) {
1029   transition(dtos, vtos);
1030   __ movdbl(daddress(n), xmm0);
1031   __ tag_local(frame::TagCategory2, n);
1032 }
1033 
1034 void TemplateTable::astore(int n) {
1035   transition(vtos, vtos);
1036   __ pop_ptr(rax, rdx);
1037   __ movptr(aaddress(n), rax);
1038   __ tag_local(rdx, n);
1039 }
1040 
1041 void TemplateTable::pop() {
1042   transition(vtos, vtos);
1043   __ addptr(rsp, Interpreter::stackElementSize());
1044 }
1045 
1046 void TemplateTable::pop2() {
1047   transition(vtos, vtos);
1048   __ addptr(rsp, 2 * Interpreter::stackElementSize());
1049 }
1050 
1051 void TemplateTable::dup() {
1052   transition(vtos, vtos);
1053   __ load_ptr_and_tag(0, rax, rdx);
1054   __ push_ptr(rax, rdx);
1055   // stack: ..., a, a
1056 }
1057 
1058 void TemplateTable::dup_x1() {
1059   transition(vtos, vtos);
1060   // stack: ..., a, b
1061   __ load_ptr_and_tag(0, rax, rdx);  // load b
1062   __ load_ptr_and_tag(1, rcx, rbx);  // load a
1063   __ store_ptr_and_tag(1, rax, rdx); // store b
1064   __ store_ptr_and_tag(0, rcx, rbx); // store a
1065   __ push_ptr(rax, rdx);             // push b
1066   // stack: ..., b, a, b
1067 }
1068 
1069 void TemplateTable::dup_x2() {
1070   transition(vtos, vtos);
1071   // stack: ..., a, b, c
1072   __ load_ptr_and_tag(0, rax, rdx);  // load c
1073   __ load_ptr_and_tag(2, rcx, rbx);  // load a
1074   __ store_ptr_and_tag(2, rax, rdx); // store c in a
1075   __ push_ptr(rax, rdx);             // push c
1076   // stack: ..., c, b, c, c
1077   __ load_ptr_and_tag(2, rax, rdx);  // load b
1078   __ store_ptr_and_tag(2, rcx, rbx); // store a in b
1079   // stack: ..., c, a, c, c
1080   __ store_ptr_and_tag(1, rax, rdx); // store b in c
1081   // stack: ..., c, a, b, c
1082 }
1083 
1084 void TemplateTable::dup2() {
1085   transition(vtos, vtos);
1086   // stack: ..., a, b
1087   __ load_ptr_and_tag(1, rax, rdx);  // load a
1088   __ push_ptr(rax, rdx);             // push a
1089   __ load_ptr_and_tag(1, rax, rdx);  // load b
1090   __ push_ptr(rax, rdx);             // push b
1091   // stack: ..., a, b, a, b
1092 }
1093 
1094 void TemplateTable::dup2_x1() {
1095   transition(vtos, vtos);
1096   // stack: ..., a, b, c
1097   __ load_ptr_and_tag(0, rcx, rbx);  // load c
1098   __ load_ptr_and_tag(1, rax, rdx);  // load b
1099   __ push_ptr(rax, rdx);             // push b
1100   __ push_ptr(rcx, rbx);             // push c
1101   // stack: ..., a, b, c, b, c
1102   __ store_ptr_and_tag(3, rcx, rbx); // store c in b
1103   // stack: ..., a, c, c, b, c
1104   __ load_ptr_and_tag(4, rcx, rbx);  // load a
1105   __ store_ptr_and_tag(2, rcx, rbx); // store a in 2nd c
1106   // stack: ..., a, c, a, b, c
1107   __ store_ptr_and_tag(4, rax, rdx); // store b in a
1108   // stack: ..., b, c, a, b, c
1109 }
1110 
1111 void TemplateTable::dup2_x2() {
1112   transition(vtos, vtos);
1113   // stack: ..., a, b, c, d
1114   __ load_ptr_and_tag(0, rcx, rbx);  // load d
1115   __ load_ptr_and_tag(1, rax, rdx);  // load c
1116   __ push_ptr(rax, rdx);             // push c
1117   __ push_ptr(rcx, rbx);             // push d
1118   // stack: ..., a, b, c, d, c, d
1119   __ load_ptr_and_tag(4, rax, rdx);  // load b
1120   __ store_ptr_and_tag(2, rax, rdx); // store b in d
1121   __ store_ptr_and_tag(4, rcx, rbx); // store d in b
1122   // stack: ..., a, d, c, b, c, d
1123   __ load_ptr_and_tag(5, rcx, rbx);  // load a
1124   __ load_ptr_and_tag(3, rax, rdx);  // load c
1125   __ store_ptr_and_tag(3, rcx, rbx); // store a in c
1126   __ store_ptr_and_tag(5, rax, rdx); // store c in a
1127   // stack: ..., c, d, a, b, c, d
1128 }
1129 
1130 void TemplateTable::swap() {
1131   transition(vtos, vtos);
1132   // stack: ..., a, b
1133   __ load_ptr_and_tag(1, rcx, rbx);  // load a
1134   __ load_ptr_and_tag(0, rax, rdx);  // load b
1135   __ store_ptr_and_tag(0, rcx, rbx); // store a in b
1136   __ store_ptr_and_tag(1, rax, rdx); // store b in a
1137   // stack: ..., b, a
1138 }
1139 
1140 void TemplateTable::iop2(Operation op) {
1141   transition(itos, itos);
1142   switch (op) {
1143   case add  :                    __ pop_i(rdx); __ addl (rax, rdx); break;
1144   case sub  : __ movl(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break;
1145   case mul  :                    __ pop_i(rdx); __ imull(rax, rdx); break;
1146   case _and :                    __ pop_i(rdx); __ andl (rax, rdx); break;
1147   case _or  :                    __ pop_i(rdx); __ orl  (rax, rdx); break;
1148   case _xor :                    __ pop_i(rdx); __ xorl (rax, rdx); break;
1149   case shl  : __ movl(rcx, rax); __ pop_i(rax); __ shll (rax);      break;
1150   case shr  : __ movl(rcx, rax); __ pop_i(rax); __ sarl (rax);      break;
1151   case ushr : __ movl(rcx, rax); __ pop_i(rax); __ shrl (rax);      break;
1152   default   : ShouldNotReachHere();
1153   }
1154 }
1155 
1156 void TemplateTable::lop2(Operation op) {
1157   transition(ltos, ltos);
1158   switch (op) {
1159   case add  :                    __ pop_l(rdx); __ addptr (rax, rdx); break;
1160   case sub  : __ mov(rdx, rax);  __ pop_l(rax); __ subptr (rax, rdx); break;
1161   case _and :                    __ pop_l(rdx); __ andptr (rax, rdx); break;
1162   case _or  :                    __ pop_l(rdx); __ orptr  (rax, rdx); break;
1163   case _xor :                    __ pop_l(rdx); __ xorptr (rax, rdx); break;
1164   default : ShouldNotReachHere();
1165   }
1166 }
1167 
1168 void TemplateTable::idiv() {
1169   transition(itos, itos);
1170   __ movl(rcx, rax);
1171   __ pop_i(rax);
1172   // Note: could xor eax and ecx and compare with (-1 ^ min_int). If
1173   //       they are not equal, one could do a normal division (no correction
1174   //       needed), which may speed up this implementation for the common case.
1175   //       (see also JVM spec., p.243 & p.271)
1176   __ corrected_idivl(rcx);
1177 }
1178 
1179 void TemplateTable::irem() {
1180   transition(itos, itos);
1181   __ movl(rcx, rax);
1182   __ pop_i(rax);
1183   // Note: could xor eax and ecx and compare with (-1 ^ min_int). If
1184   //       they are not equal, one could do a normal division (no correction
1185   //       needed), which may speed up this implementation for the common case.
1186   //       (see also JVM spec., p.243 & p.271)
1187   __ corrected_idivl(rcx);
1188   __ movl(rax, rdx);
1189 }
1190 
1191 void TemplateTable::lmul() {
1192   transition(ltos, ltos);
1193   __ pop_l(rdx);
1194   __ imulq(rax, rdx);
1195 }
1196 
1197 void TemplateTable::ldiv() {
1198   transition(ltos, ltos);
1199   __ mov(rcx, rax);
1200   __ pop_l(rax);
1201   // generate explicit div0 check
1202   __ testq(rcx, rcx);
1203   __ jump_cc(Assembler::zero,
1204              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
1205   // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
1206   //       they are not equal, one could do a normal division (no correction
1207   //       needed), which may speed up this implementation for the common case.
1208   //       (see also JVM spec., p.243 & p.271)
1209   __ corrected_idivq(rcx); // kills rbx
1210 }
1211 
1212 void TemplateTable::lrem() {
1213   transition(ltos, ltos);
1214   __ mov(rcx, rax);
1215   __ pop_l(rax);
1216   __ testq(rcx, rcx);
1217   __ jump_cc(Assembler::zero,
1218              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
1219   // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
1220   //       they are not equal, one could do a normal division (no correction
1221   //       needed), which may speed up this implementation for the common case.
1222   //       (see also JVM spec., p.243 & p.271)
1223   __ corrected_idivq(rcx); // kills rbx
1224   __ mov(rax, rdx);
1225 }
1226 
1227 void TemplateTable::lshl() {
1228   transition(itos, ltos);
1229   __ movl(rcx, rax);                             // get shift count
1230   __ pop_l(rax);                                 // get shift value
1231   __ shlq(rax);
1232 }
1233 
1234 void TemplateTable::lshr() {
1235   transition(itos, ltos);
1236   __ movl(rcx, rax);                             // get shift count
1237   __ pop_l(rax);                                 // get shift value
1238   __ sarq(rax);
1239 }
1240 
1241 void TemplateTable::lushr() {
1242   transition(itos, ltos);
1243   __ movl(rcx, rax);                             // get shift count
1244   __ pop_l(rax);                                 // get shift value
1245   __ shrq(rax);
1246 }
1247 
1248 void TemplateTable::fop2(Operation op) {
1249   transition(ftos, ftos);
1250   switch (op) {
1251   case add:
1252     __ addss(xmm0, at_rsp());
1253     __ addptr(rsp, Interpreter::stackElementSize());
1254     break;
1255   case sub:
1256     __ movflt(xmm1, xmm0);
1257     __ pop_f(xmm0);
1258     __ subss(xmm0, xmm1);
1259     break;
1260   case mul:
1261     __ mulss(xmm0, at_rsp());
1262     __ addptr(rsp, Interpreter::stackElementSize());
1263     break;
1264   case div:
1265     __ movflt(xmm1, xmm0);
1266     __ pop_f(xmm0);
1267     __ divss(xmm0, xmm1);
1268     break;
1269   case rem:
1270     __ movflt(xmm1, xmm0);
1271     __ pop_f(xmm0);
1272     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem), 2);
1273     break;
1274   default:
1275     ShouldNotReachHere();
1276     break;
1277   }
1278 }
1279 
1280 void TemplateTable::dop2(Operation op) {
1281   transition(dtos, dtos);
1282   switch (op) {
1283   case add:
1284     __ addsd(xmm0, at_rsp());
1285     __ addptr(rsp, 2 * Interpreter::stackElementSize());
1286     break;
1287   case sub:
1288     __ movdbl(xmm1, xmm0);
1289     __ pop_d(xmm0);
1290     __ subsd(xmm0, xmm1);
1291     break;
1292   case mul:
1293     __ mulsd(xmm0, at_rsp());
1294     __ addptr(rsp, 2 * Interpreter::stackElementSize());
1295     break;
1296   case div:
1297     __ movdbl(xmm1, xmm0);
1298     __ pop_d(xmm0);
1299     __ divsd(xmm0, xmm1);
1300     break;
1301   case rem:
1302     __ movdbl(xmm1, xmm0);
1303     __ pop_d(xmm0);
1304     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem), 2);
1305     break;
1306   default:
1307     ShouldNotReachHere();
1308     break;
1309   }
1310 }
1311 
1312 void TemplateTable::ineg() {
1313   transition(itos, itos);
1314   __ negl(rax);
1315 }
1316 
1317 void TemplateTable::lneg() {
1318   transition(ltos, ltos);
1319   __ negq(rax);
1320 }
1321 
1322 // Note: 'double' and 'long long' have 32-bits alignment on x86.
1323 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
1324   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
1325   // of 128-bits operands for SSE instructions.
1326   jlong *operand = (jlong*)(((intptr_t)adr)&((intptr_t)(~0xF)));
1327   // Store the value to a 128-bits operand.
1328   operand[0] = lo;
1329   operand[1] = hi;
1330   return operand;
1331 }
1332 
1333 // Buffer for 128-bits masks used by SSE instructions.
1334 static jlong float_signflip_pool[2*2];
1335 static jlong double_signflip_pool[2*2];
1336 
1337 void TemplateTable::fneg() {
1338   transition(ftos, ftos);
1339   static jlong *float_signflip  = double_quadword(&float_signflip_pool[1], 0x8000000080000000, 0x8000000080000000);
1340   __ xorps(xmm0, ExternalAddress((address) float_signflip));
1341 }
1342 
1343 void TemplateTable::dneg() {
1344   transition(dtos, dtos);
1345   static jlong *double_signflip  = double_quadword(&double_signflip_pool[1], 0x8000000000000000, 0x8000000000000000);
1346   __ xorpd(xmm0, ExternalAddress((address) double_signflip));
1347 }
1348 
1349 void TemplateTable::iinc() {
1350   transition(vtos, vtos);
1351   __ load_signed_byte(rdx, at_bcp(2)); // get constant
1352   locals_index(rbx);
1353   __ addl(iaddress(rbx), rdx);
1354 }
1355 
1356 void TemplateTable::wide_iinc() {
1357   transition(vtos, vtos);
1358   __ movl(rdx, at_bcp(4)); // get constant
1359   locals_index_wide(rbx);
1360   __ bswapl(rdx); // swap bytes & sign-extend constant
1361   __ sarl(rdx, 16);
1362   __ addl(iaddress(rbx), rdx);
1363   // Note: should probably use only one movl to get both
1364   //       the index and the constant -> fix this
1365 }
1366 
1367 void TemplateTable::convert() {
1368   // Checking
1369 #ifdef ASSERT
1370   {
1371     TosState tos_in  = ilgl;
1372     TosState tos_out = ilgl;
1373     switch (bytecode()) {
1374     case Bytecodes::_i2l: // fall through
1375     case Bytecodes::_i2f: // fall through
1376     case Bytecodes::_i2d: // fall through
1377     case Bytecodes::_i2b: // fall through
1378     case Bytecodes::_i2c: // fall through
1379     case Bytecodes::_i2s: tos_in = itos; break;
1380     case Bytecodes::_l2i: // fall through
1381     case Bytecodes::_l2f: // fall through
1382     case Bytecodes::_l2d: tos_in = ltos; break;
1383     case Bytecodes::_f2i: // fall through
1384     case Bytecodes::_f2l: // fall through
1385     case Bytecodes::_f2d: tos_in = ftos; break;
1386     case Bytecodes::_d2i: // fall through
1387     case Bytecodes::_d2l: // fall through
1388     case Bytecodes::_d2f: tos_in = dtos; break;
1389     default             : ShouldNotReachHere();
1390     }
1391     switch (bytecode()) {
1392     case Bytecodes::_l2i: // fall through
1393     case Bytecodes::_f2i: // fall through
1394     case Bytecodes::_d2i: // fall through
1395     case Bytecodes::_i2b: // fall through
1396     case Bytecodes::_i2c: // fall through
1397     case Bytecodes::_i2s: tos_out = itos; break;
1398     case Bytecodes::_i2l: // fall through
1399     case Bytecodes::_f2l: // fall through
1400     case Bytecodes::_d2l: tos_out = ltos; break;
1401     case Bytecodes::_i2f: // fall through
1402     case Bytecodes::_l2f: // fall through
1403     case Bytecodes::_d2f: tos_out = ftos; break;
1404     case Bytecodes::_i2d: // fall through
1405     case Bytecodes::_l2d: // fall through
1406     case Bytecodes::_f2d: tos_out = dtos; break;
1407     default             : ShouldNotReachHere();
1408     }
1409     transition(tos_in, tos_out);
1410   }
1411 #endif // ASSERT
1412 
1413   static const int64_t is_nan = 0x8000000000000000L;
1414 
1415   // Conversion
1416   switch (bytecode()) {
1417   case Bytecodes::_i2l:
1418     __ movslq(rax, rax);
1419     break;
1420   case Bytecodes::_i2f:
1421     __ cvtsi2ssl(xmm0, rax);
1422     break;
1423   case Bytecodes::_i2d:
1424     __ cvtsi2sdl(xmm0, rax);
1425     break;
1426   case Bytecodes::_i2b:
1427     __ movsbl(rax, rax);
1428     break;
1429   case Bytecodes::_i2c:
1430     __ movzwl(rax, rax);
1431     break;
1432   case Bytecodes::_i2s:
1433     __ movswl(rax, rax);
1434     break;
1435   case Bytecodes::_l2i:
1436     __ movl(rax, rax);
1437     break;
1438   case Bytecodes::_l2f:
1439     __ cvtsi2ssq(xmm0, rax);
1440     break;
1441   case Bytecodes::_l2d:
1442     __ cvtsi2sdq(xmm0, rax);
1443     break;
1444   case Bytecodes::_f2i:
1445   {
1446     Label L;
1447     __ cvttss2sil(rax, xmm0);
1448     __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
1449     __ jcc(Assembler::notEqual, L);
1450     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1);
1451     __ bind(L);
1452   }
1453     break;
1454   case Bytecodes::_f2l:
1455   {
1456     Label L;
1457     __ cvttss2siq(rax, xmm0);
1458     // NaN or overflow/underflow?
1459     __ cmp64(rax, ExternalAddress((address) &is_nan));
1460     __ jcc(Assembler::notEqual, L);
1461     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1);
1462     __ bind(L);
1463   }
1464     break;
1465   case Bytecodes::_f2d:
1466     __ cvtss2sd(xmm0, xmm0);
1467     break;
1468   case Bytecodes::_d2i:
1469   {
1470     Label L;
1471     __ cvttsd2sil(rax, xmm0);
1472     __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
1473     __ jcc(Assembler::notEqual, L);
1474     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 1);
1475     __ bind(L);
1476   }
1477     break;
1478   case Bytecodes::_d2l:
1479   {
1480     Label L;
1481     __ cvttsd2siq(rax, xmm0);
1482     // NaN or overflow/underflow?
1483     __ cmp64(rax, ExternalAddress((address) &is_nan));
1484     __ jcc(Assembler::notEqual, L);
1485     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 1);
1486     __ bind(L);
1487   }
1488     break;
1489   case Bytecodes::_d2f:
1490     __ cvtsd2ss(xmm0, xmm0);
1491     break;
1492   default:
1493     ShouldNotReachHere();
1494   }
1495 }
1496 
1497 void TemplateTable::lcmp() {
1498   transition(ltos, itos);
1499   Label done;
1500   __ pop_l(rdx);
1501   __ cmpq(rdx, rax);
1502   __ movl(rax, -1);
1503   __ jccb(Assembler::less, done);
1504   __ setb(Assembler::notEqual, rax);
1505   __ movzbl(rax, rax);
1506   __ bind(done);
1507 }
1508 
1509 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
1510   Label done;
1511   if (is_float) {
1512     // XXX get rid of pop here, use ... reg, mem32
1513     __ pop_f(xmm1);
1514     __ ucomiss(xmm1, xmm0);
1515   } else {
1516     // XXX get rid of pop here, use ... reg, mem64
1517     __ pop_d(xmm1);
1518     __ ucomisd(xmm1, xmm0);
1519   }
1520   if (unordered_result < 0) {
1521     __ movl(rax, -1);
1522     __ jccb(Assembler::parity, done);
1523     __ jccb(Assembler::below, done);
1524     __ setb(Assembler::notEqual, rdx);
1525     __ movzbl(rax, rdx);
1526   } else {
1527     __ movl(rax, 1);
1528     __ jccb(Assembler::parity, done);
1529     __ jccb(Assembler::above, done);
1530     __ movl(rax, 0);
1531     __ jccb(Assembler::equal, done);
1532     __ decrementl(rax);
1533   }
1534   __ bind(done);
1535 }
1536 
1537 void TemplateTable::branch(bool is_jsr, bool is_wide) {
1538   __ get_method(rcx); // rcx holds method
1539   __ profile_taken_branch(rax, rbx); // rax holds updated MDP, rbx
1540                                      // holds bumped taken count
1541 
1542   const ByteSize be_offset = methodOopDesc::backedge_counter_offset() +
1543                              InvocationCounter::counter_offset();
1544   const ByteSize inv_offset = methodOopDesc::invocation_counter_offset() +
1545                               InvocationCounter::counter_offset();
1546   const int method_offset = frame::interpreter_frame_method_offset * wordSize;
1547 
1548   // Load up edx with the branch displacement
1549   __ movl(rdx, at_bcp(1));
1550   __ bswapl(rdx);
1551 
1552   if (!is_wide) {
1553     __ sarl(rdx, 16);
1554   }
1555   __ movl2ptr(rdx, rdx);
1556 
1557   // Handle all the JSR stuff here, then exit.
1558   // It's much shorter and cleaner than intermingling with the non-JSR
1559   // normal-branch stuff occurring below.
1560   if (is_jsr) {
1561     // Pre-load the next target bytecode into rbx
1562     __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1, 0));
1563 
1564     // compute return address as bci in rax
1565     __ lea(rax, at_bcp((is_wide ? 5 : 3) -
1566                         in_bytes(constMethodOopDesc::codes_offset())));
1567     __ subptr(rax, Address(rcx, methodOopDesc::const_offset()));
1568     // Adjust the bcp in r13 by the displacement in rdx
1569     __ addptr(r13, rdx);
1570     // jsr returns atos that is not an oop
1571     __ push_i(rax);
1572     __ dispatch_only(vtos);
1573     return;
1574   }
1575 
1576   // Normal (non-jsr) branch handling
1577 
1578   // Adjust the bcp in r13 by the displacement in rdx
1579   __ addptr(r13, rdx);
1580 
1581   assert(UseLoopCounter || !UseOnStackReplacement,
1582          "on-stack-replacement requires loop counters");
1583   Label backedge_counter_overflow;
1584   Label profile_method;
1585   Label dispatch;
1586   if (UseLoopCounter) {
1587     // increment backedge counter for backward branches
1588     // rax: MDO
1589     // ebx: MDO bumped taken-count
1590     // rcx: method
1591     // rdx: target offset
1592     // r13: target bcp
1593     // r14: locals pointer
1594     __ testl(rdx, rdx);             // check if forward or backward branch
1595     __ jcc(Assembler::positive, dispatch); // count only if backward branch
1596 
1597     // increment counter
1598     __ movl(rax, Address(rcx, be_offset));        // load backedge counter
1599     __ incrementl(rax, InvocationCounter::count_increment); // increment
1600                                                             // counter
1601     __ movl(Address(rcx, be_offset), rax);        // store counter
1602 
1603     __ movl(rax, Address(rcx, inv_offset));    // load invocation counter
1604     __ andl(rax, InvocationCounter::count_mask_value); // and the status bits
1605     __ addl(rax, Address(rcx, be_offset));        // add both counters
1606 
1607     if (ProfileInterpreter) {
1608       // Test to see if we should create a method data oop
1609       __ cmp32(rax,
1610                ExternalAddress((address) &InvocationCounter::InterpreterProfileLimit));
1611       __ jcc(Assembler::less, dispatch);
1612 
1613       // if no method data exists, go to profile method
1614       __ test_method_data_pointer(rax, profile_method);
1615 
1616       if (UseOnStackReplacement) {
1617         // check for overflow against ebx which is the MDO taken count
1618         __ cmp32(rbx,
1619                  ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
1620         __ jcc(Assembler::below, dispatch);
1621 
1622         // When ProfileInterpreter is on, the backedge_count comes
1623         // from the methodDataOop, which value does not get reset on
1624         // the call to frequency_counter_overflow().  To avoid
1625         // excessive calls to the overflow routine while the method is
1626         // being compiled, add a second test to make sure the overflow
1627         // function is called only once every overflow_frequency.
1628         const int overflow_frequency = 1024;
1629         __ andl(rbx, overflow_frequency - 1);
1630         __ jcc(Assembler::zero, backedge_counter_overflow);
1631 
1632       }
1633     } else {
1634       if (UseOnStackReplacement) {
1635         // check for overflow against eax, which is the sum of the
1636         // counters
1637         __ cmp32(rax,
1638                  ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
1639         __ jcc(Assembler::aboveEqual, backedge_counter_overflow);
1640 
1641       }
1642     }
1643     __ bind(dispatch);
1644   }
1645 
1646   // Pre-load the next target bytecode into rbx
1647   __ load_unsigned_byte(rbx, Address(r13, 0));
1648 
1649   // continue with the bytecode @ target
1650   // eax: return bci for jsr's, unused otherwise
1651   // ebx: target bytecode
1652   // r13: target bcp
1653   __ dispatch_only(vtos);
1654 
1655   if (UseLoopCounter) {
1656     if (ProfileInterpreter) {
1657       // Out-of-line code to allocate method data oop.
1658       __ bind(profile_method);
1659       __ call_VM(noreg,
1660                  CAST_FROM_FN_PTR(address,
1661                                   InterpreterRuntime::profile_method), r13);
1662       __ load_unsigned_byte(rbx, Address(r13, 0));  // restore target bytecode
1663       __ movptr(rcx, Address(rbp, method_offset));
1664       __ movptr(rcx, Address(rcx,
1665                              in_bytes(methodOopDesc::method_data_offset())));
1666       __ movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize),
1667                 rcx);
1668       __ test_method_data_pointer(rcx, dispatch);
1669       // offset non-null mdp by MDO::data_offset() + IR::profile_method()
1670       __ addptr(rcx, in_bytes(methodDataOopDesc::data_offset()));
1671       __ addptr(rcx, rax);
1672       __ movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize),
1673                 rcx);
1674       __ jmp(dispatch);
1675     }
1676 
1677     if (UseOnStackReplacement) {
1678       // invocation counter overflow
1679       __ bind(backedge_counter_overflow);
1680       __ negptr(rdx);
1681       __ addptr(rdx, r13); // branch bcp
1682       // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp)
1683       __ call_VM(noreg,
1684                  CAST_FROM_FN_PTR(address,
1685                                   InterpreterRuntime::frequency_counter_overflow),
1686                  rdx);
1687       __ load_unsigned_byte(rbx, Address(r13, 0));  // restore target bytecode
1688 
1689       // rax: osr nmethod (osr ok) or NULL (osr not possible)
1690       // ebx: target bytecode
1691       // rdx: scratch
1692       // r14: locals pointer
1693       // r13: bcp
1694       __ testptr(rax, rax);                        // test result
1695       __ jcc(Assembler::zero, dispatch);         // no osr if null
1696       // nmethod may have been invalidated (VM may block upon call_VM return)
1697       __ movl(rcx, Address(rax, nmethod::entry_bci_offset()));
1698       __ cmpl(rcx, InvalidOSREntryBci);
1699       __ jcc(Assembler::equal, dispatch);
1700 
1701       // We have the address of an on stack replacement routine in eax
1702       // We need to prepare to execute the OSR method. First we must
1703       // migrate the locals and monitors off of the stack.
1704 
1705       __ mov(r13, rax);                             // save the nmethod
1706 
1707       call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
1708 
1709       // eax is OSR buffer, move it to expected parameter location
1710       __ mov(j_rarg0, rax);
1711 
1712       // We use j_rarg definitions here so that registers don't conflict as parameter
1713       // registers change across platforms as we are in the midst of a calling
1714       // sequence to the OSR nmethod and we don't want collision. These are NOT parameters.
1715 
1716       const Register retaddr = j_rarg2;
1717       const Register sender_sp = j_rarg1;
1718 
1719       // pop the interpreter frame
1720       __ movptr(sender_sp, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
1721       __ leave();                                // remove frame anchor
1722       __ pop(retaddr);                           // get return address
1723       __ mov(rsp, sender_sp);                   // set sp to sender sp
1724       // Ensure compiled code always sees stack at proper alignment
1725       __ andptr(rsp, -(StackAlignmentInBytes));
1726 
1727       // unlike x86 we need no specialized return from compiled code
1728       // to the interpreter or the call stub.
1729 
1730       // push the return address
1731       __ push(retaddr);
1732 
1733       // and begin the OSR nmethod
1734       __ jmp(Address(r13, nmethod::osr_entry_point_offset()));
1735     }
1736   }
1737 }
1738 
1739 
1740 void TemplateTable::if_0cmp(Condition cc) {
1741   transition(itos, vtos);
1742   // assume branch is more often taken than not (loops use backward branches)
1743   Label not_taken;
1744   __ testl(rax, rax);
1745   __ jcc(j_not(cc), not_taken);
1746   branch(false, false);
1747   __ bind(not_taken);
1748   __ profile_not_taken_branch(rax);
1749 }
1750 
1751 void TemplateTable::if_icmp(Condition cc) {
1752   transition(itos, vtos);
1753   // assume branch is more often taken than not (loops use backward branches)
1754   Label not_taken;
1755   __ pop_i(rdx);
1756   __ cmpl(rdx, rax);
1757   __ jcc(j_not(cc), not_taken);
1758   branch(false, false);
1759   __ bind(not_taken);
1760   __ profile_not_taken_branch(rax);
1761 }
1762 
1763 void TemplateTable::if_nullcmp(Condition cc) {
1764   transition(atos, vtos);
1765   // assume branch is more often taken than not (loops use backward branches)
1766   Label not_taken;
1767   __ testptr(rax, rax);
1768   __ jcc(j_not(cc), not_taken);
1769   branch(false, false);
1770   __ bind(not_taken);
1771   __ profile_not_taken_branch(rax);
1772 }
1773 
1774 void TemplateTable::if_acmp(Condition cc) {
1775   transition(atos, vtos);
1776   // assume branch is more often taken than not (loops use backward branches)
1777   Label not_taken;
1778   __ pop_ptr(rdx);
1779   __ cmpptr(rdx, rax);
1780   __ jcc(j_not(cc), not_taken);
1781   branch(false, false);
1782   __ bind(not_taken);
1783   __ profile_not_taken_branch(rax);
1784 }
1785 
1786 void TemplateTable::ret() {
1787   transition(vtos, vtos);
1788   locals_index(rbx);
1789   __ movslq(rbx, iaddress(rbx)); // get return bci, compute return bcp
1790   __ profile_ret(rbx, rcx);
1791   __ get_method(rax);
1792   __ movptr(r13, Address(rax, methodOopDesc::const_offset()));
1793   __ lea(r13, Address(r13, rbx, Address::times_1,
1794                       constMethodOopDesc::codes_offset()));
1795   __ dispatch_next(vtos);
1796 }
1797 
1798 void TemplateTable::wide_ret() {
1799   transition(vtos, vtos);
1800   locals_index_wide(rbx);
1801   __ movptr(rbx, aaddress(rbx)); // get return bci, compute return bcp
1802   __ profile_ret(rbx, rcx);
1803   __ get_method(rax);
1804   __ movptr(r13, Address(rax, methodOopDesc::const_offset()));
1805   __ lea(r13, Address(r13, rbx, Address::times_1, constMethodOopDesc::codes_offset()));
1806   __ dispatch_next(vtos);
1807 }
1808 
1809 void TemplateTable::tableswitch() {
1810   Label default_case, continue_execution;
1811   transition(itos, vtos);
1812   // align r13
1813   __ lea(rbx, at_bcp(BytesPerInt));
1814   __ andptr(rbx, -BytesPerInt);
1815   // load lo & hi
1816   __ movl(rcx, Address(rbx, BytesPerInt));
1817   __ movl(rdx, Address(rbx, 2 * BytesPerInt));
1818   __ bswapl(rcx);
1819   __ bswapl(rdx);
1820   // check against lo & hi
1821   __ cmpl(rax, rcx);
1822   __ jcc(Assembler::less, default_case);
1823   __ cmpl(rax, rdx);
1824   __ jcc(Assembler::greater, default_case);
1825   // lookup dispatch offset
1826   __ subl(rax, rcx);
1827   __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt));
1828   __ profile_switch_case(rax, rbx, rcx);
1829   // continue execution
1830   __ bind(continue_execution);
1831   __ bswapl(rdx);
1832   __ movl2ptr(rdx, rdx);
1833   __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1));
1834   __ addptr(r13, rdx);
1835   __ dispatch_only(vtos);
1836   // handle default
1837   __ bind(default_case);
1838   __ profile_switch_default(rax);
1839   __ movl(rdx, Address(rbx, 0));
1840   __ jmp(continue_execution);
1841 }
1842 
1843 void TemplateTable::lookupswitch() {
1844   transition(itos, itos);
1845   __ stop("lookupswitch bytecode should have been rewritten");
1846 }
1847 
1848 void TemplateTable::fast_linearswitch() {
1849   transition(itos, vtos);
1850   Label loop_entry, loop, found, continue_execution;
1851   // bswap rax so we can avoid bswapping the table entries
1852   __ bswapl(rax);
1853   // align r13
1854   __ lea(rbx, at_bcp(BytesPerInt)); // btw: should be able to get rid of
1855                                     // this instruction (change offsets
1856                                     // below)
1857   __ andptr(rbx, -BytesPerInt);
1858   // set counter
1859   __ movl(rcx, Address(rbx, BytesPerInt));
1860   __ bswapl(rcx);
1861   __ jmpb(loop_entry);
1862   // table search
1863   __ bind(loop);
1864   __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * BytesPerInt));
1865   __ jcc(Assembler::equal, found);
1866   __ bind(loop_entry);
1867   __ decrementl(rcx);
1868   __ jcc(Assembler::greaterEqual, loop);
1869   // default case
1870   __ profile_switch_default(rax);
1871   __ movl(rdx, Address(rbx, 0));
1872   __ jmp(continue_execution);
1873   // entry found -> get offset
1874   __ bind(found);
1875   __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * BytesPerInt));
1876   __ profile_switch_case(rcx, rax, rbx);
1877   // continue execution
1878   __ bind(continue_execution);
1879   __ bswapl(rdx);
1880   __ movl2ptr(rdx, rdx);
1881   __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1));
1882   __ addptr(r13, rdx);
1883   __ dispatch_only(vtos);
1884 }
1885 
1886 void TemplateTable::fast_binaryswitch() {
1887   transition(itos, vtos);
1888   // Implementation using the following core algorithm:
1889   //
1890   // int binary_search(int key, LookupswitchPair* array, int n) {
1891   //   // Binary search according to "Methodik des Programmierens" by
1892   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
1893   //   int i = 0;
1894   //   int j = n;
1895   //   while (i+1 < j) {
1896   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
1897   //     // with      Q: for all i: 0 <= i < n: key < a[i]
1898   //     // where a stands for the array and assuming that the (inexisting)
1899   //     // element a[n] is infinitely big.
1900   //     int h = (i + j) >> 1;
1901   //     // i < h < j
1902   //     if (key < array[h].fast_match()) {
1903   //       j = h;
1904   //     } else {
1905   //       i = h;
1906   //     }
1907   //   }
1908   //   // R: a[i] <= key < a[i+1] or Q
1909   //   // (i.e., if key is within array, i is the correct index)
1910   //   return i;
1911   // }
1912 
1913   // Register allocation
1914   const Register key   = rax; // already set (tosca)
1915   const Register array = rbx;
1916   const Register i     = rcx;
1917   const Register j     = rdx;
1918   const Register h     = rdi;
1919   const Register temp  = rsi;
1920 
1921   // Find array start
1922   __ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to
1923                                           // get rid of this
1924                                           // instruction (change
1925                                           // offsets below)
1926   __ andptr(array, -BytesPerInt);
1927 
1928   // Initialize i & j
1929   __ xorl(i, i);                            // i = 0;
1930   __ movl(j, Address(array, -BytesPerInt)); // j = length(array);
1931 
1932   // Convert j into native byteordering
1933   __ bswapl(j);
1934 
1935   // And start
1936   Label entry;
1937   __ jmp(entry);
1938 
1939   // binary search loop
1940   {
1941     Label loop;
1942     __ bind(loop);
1943     // int h = (i + j) >> 1;
1944     __ leal(h, Address(i, j, Address::times_1)); // h = i + j;
1945     __ sarl(h, 1);                               // h = (i + j) >> 1;
1946     // if (key < array[h].fast_match()) {
1947     //   j = h;
1948     // } else {
1949     //   i = h;
1950     // }
1951     // Convert array[h].match to native byte-ordering before compare
1952     __ movl(temp, Address(array, h, Address::times_8));
1953     __ bswapl(temp);
1954     __ cmpl(key, temp);
1955     // j = h if (key <  array[h].fast_match())
1956     __ cmovl(Assembler::less, j, h);
1957     // i = h if (key >= array[h].fast_match())
1958     __ cmovl(Assembler::greaterEqual, i, h);
1959     // while (i+1 < j)
1960     __ bind(entry);
1961     __ leal(h, Address(i, 1)); // i+1
1962     __ cmpl(h, j);             // i+1 < j
1963     __ jcc(Assembler::less, loop);
1964   }
1965 
1966   // end of binary search, result index is i (must check again!)
1967   Label default_case;
1968   // Convert array[i].match to native byte-ordering before compare
1969   __ movl(temp, Address(array, i, Address::times_8));
1970   __ bswapl(temp);
1971   __ cmpl(key, temp);
1972   __ jcc(Assembler::notEqual, default_case);
1973 
1974   // entry found -> j = offset
1975   __ movl(j , Address(array, i, Address::times_8, BytesPerInt));
1976   __ profile_switch_case(i, key, array);
1977   __ bswapl(j);
1978   __ movl2ptr(j, j);
1979   __ load_unsigned_byte(rbx, Address(r13, j, Address::times_1));
1980   __ addptr(r13, j);
1981   __ dispatch_only(vtos);
1982 
1983   // default case -> j = default offset
1984   __ bind(default_case);
1985   __ profile_switch_default(i);
1986   __ movl(j, Address(array, -2 * BytesPerInt));
1987   __ bswapl(j);
1988   __ movl2ptr(j, j);
1989   __ load_unsigned_byte(rbx, Address(r13, j, Address::times_1));
1990   __ addptr(r13, j);
1991   __ dispatch_only(vtos);
1992 }
1993 
1994 
1995 void TemplateTable::_return(TosState state) {
1996   transition(state, state);
1997   assert(_desc->calls_vm(),
1998          "inconsistent calls_vm information"); // call in remove_activation
1999 
2000   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
2001     assert(state == vtos, "only valid state");
2002     __ movptr(c_rarg1, aaddress(0));
2003     __ load_klass(rdi, c_rarg1);
2004     __ movl(rdi, Address(rdi, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc)));
2005     __ testl(rdi, JVM_ACC_HAS_FINALIZER);
2006     Label skip_register_finalizer;
2007     __ jcc(Assembler::zero, skip_register_finalizer);
2008 
2009     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), c_rarg1);
2010 
2011     __ bind(skip_register_finalizer);
2012   }
2013 
2014   __ remove_activation(state, r13);
2015   __ jmp(r13);
2016 }
2017 
2018 // ----------------------------------------------------------------------------
2019 // Volatile variables demand their effects be made known to all CPU's
2020 // in order.  Store buffers on most chips allow reads & writes to
2021 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode
2022 // without some kind of memory barrier (i.e., it's not sufficient that
2023 // the interpreter does not reorder volatile references, the hardware
2024 // also must not reorder them).
2025 //
2026 // According to the new Java Memory Model (JMM):
2027 // (1) All volatiles are serialized wrt to each other.  ALSO reads &
2028 //     writes act as aquire & release, so:
2029 // (2) A read cannot let unrelated NON-volatile memory refs that
2030 //     happen after the read float up to before the read.  It's OK for
2031 //     non-volatile memory refs that happen before the volatile read to
2032 //     float down below it.
2033 // (3) Similar a volatile write cannot let unrelated NON-volatile
2034 //     memory refs that happen BEFORE the write float down to after the
2035 //     write.  It's OK for non-volatile memory refs that happen after the
2036 //     volatile write to float up before it.
2037 //
2038 // We only put in barriers around volatile refs (they are expensive),
2039 // not _between_ memory refs (that would require us to track the
2040 // flavor of the previous memory refs).  Requirements (2) and (3)
2041 // require some barriers before volatile stores and after volatile
2042 // loads.  These nearly cover requirement (1) but miss the
2043 // volatile-store-volatile-load case.  This final case is placed after
2044 // volatile-stores although it could just as well go before
2045 // volatile-loads.
2046 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits
2047                                      order_constraint) {
2048   // Helper function to insert a is-volatile test and memory barrier
2049   if (os::is_MP()) { // Not needed on single CPU
2050     __ membar(order_constraint);
2051   }
2052 }
2053 
2054 void TemplateTable::resolve_cache_and_index(int byte_no, Register Rcache, Register index) {
2055   assert(byte_no == 1 || byte_no == 2, "byte_no out of range");
2056   bool is_invokedynamic = (bytecode() == Bytecodes::_invokedynamic);
2057 
2058   const Register temp = rbx;
2059   assert_different_registers(Rcache, index, temp);
2060 
2061   const int shift_count = (1 + byte_no) * BitsPerByte;
2062   Label resolved;
2063   __ get_cache_and_index_at_bcp(Rcache, index, 1, is_invokedynamic);
2064   if (is_invokedynamic) {
2065     // we are resolved if the f1 field contains a non-null CallSite object
2066     __ cmpptr(Address(Rcache, index, Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f1_offset()), (int32_t) NULL_WORD);
2067     __ jcc(Assembler::notEqual, resolved);
2068   } else {
2069     __ movl(temp, Address(Rcache, index, Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::indices_offset()));
2070     __ shrl(temp, shift_count);
2071     // have we resolved this bytecode?
2072     __ andl(temp, 0xFF);
2073     __ cmpl(temp, (int) bytecode());
2074     __ jcc(Assembler::equal, resolved);
2075   }
2076 
2077   // resolve first time through
2078   address entry;
2079   switch (bytecode()) {
2080   case Bytecodes::_getstatic:
2081   case Bytecodes::_putstatic:
2082   case Bytecodes::_getfield:
2083   case Bytecodes::_putfield:
2084     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put);
2085     break;
2086   case Bytecodes::_invokevirtual:
2087   case Bytecodes::_invokespecial:
2088   case Bytecodes::_invokestatic:
2089   case Bytecodes::_invokeinterface:
2090     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke);
2091     break;
2092   case Bytecodes::_invokedynamic:
2093     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic);
2094     break;
2095   default:
2096     ShouldNotReachHere();
2097     break;
2098   }
2099   __ movl(temp, (int) bytecode());
2100   __ call_VM(noreg, entry, temp);
2101 
2102   // Update registers with resolved info
2103   __ get_cache_and_index_at_bcp(Rcache, index, 1, is_invokedynamic);
2104   __ bind(resolved);
2105 }
2106 
2107 // The Rcache and index registers must be set before call
2108 void TemplateTable::load_field_cp_cache_entry(Register obj,
2109                                               Register cache,
2110                                               Register index,
2111                                               Register off,
2112                                               Register flags,
2113                                               bool is_static = false) {
2114   assert_different_registers(cache, index, flags, off);
2115 
2116   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
2117   // Field offset
2118   __ movptr(off, Address(cache, index, Address::times_8,
2119                          in_bytes(cp_base_offset +
2120                                   ConstantPoolCacheEntry::f2_offset())));
2121   // Flags
2122   __ movl(flags, Address(cache, index, Address::times_8,
2123                          in_bytes(cp_base_offset +
2124                                   ConstantPoolCacheEntry::flags_offset())));
2125 
2126   // klass overwrite register
2127   if (is_static) {
2128     __ movptr(obj, Address(cache, index, Address::times_8,
2129                            in_bytes(cp_base_offset +
2130                                     ConstantPoolCacheEntry::f1_offset())));
2131   }
2132 }
2133 
2134 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
2135                                                Register method,
2136                                                Register itable_index,
2137                                                Register flags,
2138                                                bool is_invokevirtual,
2139                                                bool is_invokevfinal /*unused*/) {
2140   // setup registers
2141   const Register cache = rcx;
2142   const Register index = rdx;
2143   assert_different_registers(method, flags);
2144   assert_different_registers(method, cache, index);
2145   assert_different_registers(itable_index, flags);
2146   assert_different_registers(itable_index, cache, index);
2147   // determine constant pool cache field offsets
2148   const int method_offset = in_bytes(
2149     constantPoolCacheOopDesc::base_offset() +
2150       (is_invokevirtual
2151        ? ConstantPoolCacheEntry::f2_offset()
2152        : ConstantPoolCacheEntry::f1_offset()));
2153   const int flags_offset = in_bytes(constantPoolCacheOopDesc::base_offset() +
2154                                     ConstantPoolCacheEntry::flags_offset());
2155   // access constant pool cache fields
2156   const int index_offset = in_bytes(constantPoolCacheOopDesc::base_offset() +
2157                                     ConstantPoolCacheEntry::f2_offset());
2158 
2159   resolve_cache_and_index(byte_no, cache, index);
2160 
2161   assert(wordSize == 8, "adjust code below");
2162   __ movptr(method, Address(cache, index, Address::times_8, method_offset));
2163   if (itable_index != noreg) {
2164     __ movptr(itable_index,
2165             Address(cache, index, Address::times_8, index_offset));
2166   }
2167   __ movl(flags , Address(cache, index, Address::times_8, flags_offset));
2168 }
2169 
2170 
2171 // The registers cache and index expected to be set before call.
2172 // Correct values of the cache and index registers are preserved.
2173 void TemplateTable::jvmti_post_field_access(Register cache, Register index,
2174                                             bool is_static, bool has_tos) {
2175   // do the JVMTI work here to avoid disturbing the register state below
2176   // We use c_rarg registers here because we want to use the register used in
2177   // the call to the VM
2178   if (JvmtiExport::can_post_field_access()) {
2179     // Check to see if a field access watch has been set before we
2180     // take the time to call into the VM.
2181     Label L1;
2182     assert_different_registers(cache, index, rax);
2183     __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
2184     __ testl(rax, rax);
2185     __ jcc(Assembler::zero, L1);
2186 
2187     __ get_cache_and_index_at_bcp(c_rarg2, c_rarg3, 1);
2188 
2189     // cache entry pointer
2190     __ addptr(c_rarg2, in_bytes(constantPoolCacheOopDesc::base_offset()));
2191     __ shll(c_rarg3, LogBytesPerWord);
2192     __ addptr(c_rarg2, c_rarg3);
2193     if (is_static) {
2194       __ xorl(c_rarg1, c_rarg1); // NULL object reference
2195     } else {
2196       __ movptr(c_rarg1, at_tos()); // get object pointer without popping it
2197       __ verify_oop(c_rarg1);
2198     }
2199     // c_rarg1: object pointer or NULL
2200     // c_rarg2: cache entry pointer
2201     // c_rarg3: jvalue object on the stack
2202     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
2203                                        InterpreterRuntime::post_field_access),
2204                c_rarg1, c_rarg2, c_rarg3);
2205     __ get_cache_and_index_at_bcp(cache, index, 1);
2206     __ bind(L1);
2207   }
2208 }
2209 
2210 void TemplateTable::pop_and_check_object(Register r) {
2211   __ pop_ptr(r);
2212   __ null_check(r);  // for field access must check obj.
2213   __ verify_oop(r);
2214 }
2215 
2216 void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
2217   transition(vtos, vtos);
2218 
2219   const Register cache = rcx;
2220   const Register index = rdx;
2221   const Register obj   = c_rarg3;
2222   const Register off   = rbx;
2223   const Register flags = rax;
2224   const Register bc = c_rarg3; // uses same reg as obj, so don't mix them
2225 
2226   resolve_cache_and_index(byte_no, cache, index);
2227   jvmti_post_field_access(cache, index, is_static, false);
2228   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
2229 
2230   if (!is_static) {
2231     // obj is on the stack
2232     pop_and_check_object(obj);
2233   }
2234 
2235   const Address field(obj, off, Address::times_1);
2236 
2237   Label Done, notByte, notInt, notShort, notChar,
2238               notLong, notFloat, notObj, notDouble;
2239 
2240   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
2241   assert(btos == 0, "change code, btos != 0");
2242 
2243   __ andl(flags, 0x0F);
2244   __ jcc(Assembler::notZero, notByte);
2245   // btos
2246   __ load_signed_byte(rax, field);
2247   __ push(btos);
2248   // Rewrite bytecode to be faster
2249   if (!is_static) {
2250     patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx);
2251   }
2252   __ jmp(Done);
2253 
2254   __ bind(notByte);
2255   __ cmpl(flags, atos);
2256   __ jcc(Assembler::notEqual, notObj);
2257   // atos
2258   __ load_heap_oop(rax, field);
2259   __ push(atos);
2260   if (!is_static) {
2261     patch_bytecode(Bytecodes::_fast_agetfield, bc, rbx);
2262   }
2263   __ jmp(Done);
2264 
2265   __ bind(notObj);
2266   __ cmpl(flags, itos);
2267   __ jcc(Assembler::notEqual, notInt);
2268   // itos
2269   __ movl(rax, field);
2270   __ push(itos);
2271   // Rewrite bytecode to be faster
2272   if (!is_static) {
2273     patch_bytecode(Bytecodes::_fast_igetfield, bc, rbx);
2274   }
2275   __ jmp(Done);
2276 
2277   __ bind(notInt);
2278   __ cmpl(flags, ctos);
2279   __ jcc(Assembler::notEqual, notChar);
2280   // ctos
2281   __ load_unsigned_short(rax, field);
2282   __ push(ctos);
2283   // Rewrite bytecode to be faster
2284   if (!is_static) {
2285     patch_bytecode(Bytecodes::_fast_cgetfield, bc, rbx);
2286   }
2287   __ jmp(Done);
2288 
2289   __ bind(notChar);
2290   __ cmpl(flags, stos);
2291   __ jcc(Assembler::notEqual, notShort);
2292   // stos
2293   __ load_signed_short(rax, field);
2294   __ push(stos);
2295   // Rewrite bytecode to be faster
2296   if (!is_static) {
2297     patch_bytecode(Bytecodes::_fast_sgetfield, bc, rbx);
2298   }
2299   __ jmp(Done);
2300 
2301   __ bind(notShort);
2302   __ cmpl(flags, ltos);
2303   __ jcc(Assembler::notEqual, notLong);
2304   // ltos
2305   __ movq(rax, field);
2306   __ push(ltos);
2307   // Rewrite bytecode to be faster
2308   if (!is_static) {
2309     patch_bytecode(Bytecodes::_fast_lgetfield, bc, rbx);
2310   }
2311   __ jmp(Done);
2312 
2313   __ bind(notLong);
2314   __ cmpl(flags, ftos);
2315   __ jcc(Assembler::notEqual, notFloat);
2316   // ftos
2317   __ movflt(xmm0, field);
2318   __ push(ftos);
2319   // Rewrite bytecode to be faster
2320   if (!is_static) {
2321     patch_bytecode(Bytecodes::_fast_fgetfield, bc, rbx);
2322   }
2323   __ jmp(Done);
2324 
2325   __ bind(notFloat);
2326 #ifdef ASSERT
2327   __ cmpl(flags, dtos);
2328   __ jcc(Assembler::notEqual, notDouble);
2329 #endif
2330   // dtos
2331   __ movdbl(xmm0, field);
2332   __ push(dtos);
2333   // Rewrite bytecode to be faster
2334   if (!is_static) {
2335     patch_bytecode(Bytecodes::_fast_dgetfield, bc, rbx);
2336   }
2337 #ifdef ASSERT
2338   __ jmp(Done);
2339 
2340   __ bind(notDouble);
2341   __ stop("Bad state");
2342 #endif
2343 
2344   __ bind(Done);
2345   // [jk] not needed currently
2346   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadLoad |
2347   //                                              Assembler::LoadStore));
2348 }
2349 
2350 
2351 void TemplateTable::getfield(int byte_no) {
2352   getfield_or_static(byte_no, false);
2353 }
2354 
2355 void TemplateTable::getstatic(int byte_no) {
2356   getfield_or_static(byte_no, true);
2357 }
2358 
2359 // The registers cache and index expected to be set before call.
2360 // The function may destroy various registers, just not the cache and index registers.
2361 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) {
2362   transition(vtos, vtos);
2363 
2364   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
2365 
2366   if (JvmtiExport::can_post_field_modification()) {
2367     // Check to see if a field modification watch has been set before
2368     // we take the time to call into the VM.
2369     Label L1;
2370     assert_different_registers(cache, index, rax);
2371     __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
2372     __ testl(rax, rax);
2373     __ jcc(Assembler::zero, L1);
2374 
2375     __ get_cache_and_index_at_bcp(c_rarg2, rscratch1, 1);
2376 
2377     if (is_static) {
2378       // Life is simple.  Null out the object pointer.
2379       __ xorl(c_rarg1, c_rarg1);
2380     } else {
2381       // Life is harder. The stack holds the value on top, followed by
2382       // the object.  We don't know the size of the value, though; it
2383       // could be one or two words depending on its type. As a result,
2384       // we must find the type to determine where the object is.
2385       __ movl(c_rarg3, Address(c_rarg2, rscratch1,
2386                            Address::times_8,
2387                            in_bytes(cp_base_offset +
2388                                      ConstantPoolCacheEntry::flags_offset())));
2389       __ shrl(c_rarg3, ConstantPoolCacheEntry::tosBits);
2390       // Make sure we don't need to mask rcx for tosBits after the
2391       // above shift
2392       ConstantPoolCacheEntry::verify_tosBits();
2393       __ movptr(c_rarg1, at_tos_p1());  // initially assume a one word jvalue
2394       __ cmpl(c_rarg3, ltos);
2395       __ cmovptr(Assembler::equal,
2396                  c_rarg1, at_tos_p2()); // ltos (two word jvalue)
2397       __ cmpl(c_rarg3, dtos);
2398       __ cmovptr(Assembler::equal,
2399                  c_rarg1, at_tos_p2()); // dtos (two word jvalue)
2400     }
2401     // cache entry pointer
2402     __ addptr(c_rarg2, in_bytes(cp_base_offset));
2403     __ shll(rscratch1, LogBytesPerWord);
2404     __ addptr(c_rarg2, rscratch1);
2405     // object (tos)
2406     __ mov(c_rarg3, rsp);
2407     // c_rarg1: object pointer set up above (NULL if static)
2408     // c_rarg2: cache entry pointer
2409     // c_rarg3: jvalue object on the stack
2410     __ call_VM(noreg,
2411                CAST_FROM_FN_PTR(address,
2412                                 InterpreterRuntime::post_field_modification),
2413                c_rarg1, c_rarg2, c_rarg3);
2414     __ get_cache_and_index_at_bcp(cache, index, 1);
2415     __ bind(L1);
2416   }
2417 }
2418 
2419 void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
2420   transition(vtos, vtos);
2421 
2422   const Register cache = rcx;
2423   const Register index = rdx;
2424   const Register obj   = rcx;
2425   const Register off   = rbx;
2426   const Register flags = rax;
2427   const Register bc    = c_rarg3;
2428 
2429   resolve_cache_and_index(byte_no, cache, index);
2430   jvmti_post_field_mod(cache, index, is_static);
2431   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
2432 
2433   // [jk] not needed currently
2434   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
2435   //                                              Assembler::StoreStore));
2436 
2437   Label notVolatile, Done;
2438   __ movl(rdx, flags);
2439   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
2440   __ andl(rdx, 0x1);
2441 
2442   // field address
2443   const Address field(obj, off, Address::times_1);
2444 
2445   Label notByte, notInt, notShort, notChar,
2446         notLong, notFloat, notObj, notDouble;
2447 
2448   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
2449 
2450   assert(btos == 0, "change code, btos != 0");
2451   __ andl(flags, 0x0f);
2452   __ jcc(Assembler::notZero, notByte);
2453   // btos
2454   __ pop(btos);
2455   if (!is_static) pop_and_check_object(obj);
2456   __ movb(field, rax);
2457   if (!is_static) {
2458     patch_bytecode(Bytecodes::_fast_bputfield, bc, rbx);
2459   }
2460   __ jmp(Done);
2461 
2462   __ bind(notByte);
2463   __ cmpl(flags, atos);
2464   __ jcc(Assembler::notEqual, notObj);
2465   // atos
2466   __ pop(atos);
2467   if (!is_static) pop_and_check_object(obj);
2468 
2469   // Store into the field
2470   do_oop_store(_masm, field, rax, _bs->kind(), false);
2471 
2472   if (!is_static) {
2473     patch_bytecode(Bytecodes::_fast_aputfield, bc, rbx);
2474   }
2475   __ jmp(Done);
2476 
2477   __ bind(notObj);
2478   __ cmpl(flags, itos);
2479   __ jcc(Assembler::notEqual, notInt);
2480   // itos
2481   __ pop(itos);
2482   if (!is_static) pop_and_check_object(obj);
2483   __ movl(field, rax);
2484   if (!is_static) {
2485     patch_bytecode(Bytecodes::_fast_iputfield, bc, rbx);
2486   }
2487   __ jmp(Done);
2488 
2489   __ bind(notInt);
2490   __ cmpl(flags, ctos);
2491   __ jcc(Assembler::notEqual, notChar);
2492   // ctos
2493   __ pop(ctos);
2494   if (!is_static) pop_and_check_object(obj);
2495   __ movw(field, rax);
2496   if (!is_static) {
2497     patch_bytecode(Bytecodes::_fast_cputfield, bc, rbx);
2498   }
2499   __ jmp(Done);
2500 
2501   __ bind(notChar);
2502   __ cmpl(flags, stos);
2503   __ jcc(Assembler::notEqual, notShort);
2504   // stos
2505   __ pop(stos);
2506   if (!is_static) pop_and_check_object(obj);
2507   __ movw(field, rax);
2508   if (!is_static) {
2509     patch_bytecode(Bytecodes::_fast_sputfield, bc, rbx);
2510   }
2511   __ jmp(Done);
2512 
2513   __ bind(notShort);
2514   __ cmpl(flags, ltos);
2515   __ jcc(Assembler::notEqual, notLong);
2516   // ltos
2517   __ pop(ltos);
2518   if (!is_static) pop_and_check_object(obj);
2519   __ movq(field, rax);
2520   if (!is_static) {
2521     patch_bytecode(Bytecodes::_fast_lputfield, bc, rbx);
2522   }
2523   __ jmp(Done);
2524 
2525   __ bind(notLong);
2526   __ cmpl(flags, ftos);
2527   __ jcc(Assembler::notEqual, notFloat);
2528   // ftos
2529   __ pop(ftos);
2530   if (!is_static) pop_and_check_object(obj);
2531   __ movflt(field, xmm0);
2532   if (!is_static) {
2533     patch_bytecode(Bytecodes::_fast_fputfield, bc, rbx);
2534   }
2535   __ jmp(Done);
2536 
2537   __ bind(notFloat);
2538 #ifdef ASSERT
2539   __ cmpl(flags, dtos);
2540   __ jcc(Assembler::notEqual, notDouble);
2541 #endif
2542   // dtos
2543   __ pop(dtos);
2544   if (!is_static) pop_and_check_object(obj);
2545   __ movdbl(field, xmm0);
2546   if (!is_static) {
2547     patch_bytecode(Bytecodes::_fast_dputfield, bc, rbx);
2548   }
2549 
2550 #ifdef ASSERT
2551   __ jmp(Done);
2552 
2553   __ bind(notDouble);
2554   __ stop("Bad state");
2555 #endif
2556 
2557   __ bind(Done);
2558   // Check for volatile store
2559   __ testl(rdx, rdx);
2560   __ jcc(Assembler::zero, notVolatile);
2561   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
2562                                                Assembler::StoreStore));
2563 
2564   __ bind(notVolatile);
2565 }
2566 
2567 void TemplateTable::putfield(int byte_no) {
2568   putfield_or_static(byte_no, false);
2569 }
2570 
2571 void TemplateTable::putstatic(int byte_no) {
2572   putfield_or_static(byte_no, true);
2573 }
2574 
2575 void TemplateTable::jvmti_post_fast_field_mod() {
2576   if (JvmtiExport::can_post_field_modification()) {
2577     // Check to see if a field modification watch has been set before
2578     // we take the time to call into the VM.
2579     Label L2;
2580     __ mov32(c_rarg3, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
2581     __ testl(c_rarg3, c_rarg3);
2582     __ jcc(Assembler::zero, L2);
2583     __ pop_ptr(rbx);                  // copy the object pointer from tos
2584     __ verify_oop(rbx);
2585     __ push_ptr(rbx);                 // put the object pointer back on tos
2586     __ subptr(rsp, sizeof(jvalue));  // add space for a jvalue object
2587     __ mov(c_rarg3, rsp);
2588     const Address field(c_rarg3, 0);
2589 
2590     switch (bytecode()) {          // load values into the jvalue object
2591     case Bytecodes::_fast_aputfield: __ movq(field, rax); break;
2592     case Bytecodes::_fast_lputfield: __ movq(field, rax); break;
2593     case Bytecodes::_fast_iputfield: __ movl(field, rax); break;
2594     case Bytecodes::_fast_bputfield: __ movb(field, rax); break;
2595     case Bytecodes::_fast_sputfield: // fall through
2596     case Bytecodes::_fast_cputfield: __ movw(field, rax); break;
2597     case Bytecodes::_fast_fputfield: __ movflt(field, xmm0); break;
2598     case Bytecodes::_fast_dputfield: __ movdbl(field, xmm0); break;
2599     default:
2600       ShouldNotReachHere();
2601     }
2602 
2603     // Save rax because call_VM() will clobber it, then use it for
2604     // JVMTI purposes
2605     __ push(rax);
2606     // access constant pool cache entry
2607     __ get_cache_entry_pointer_at_bcp(c_rarg2, rax, 1);
2608     __ verify_oop(rbx);
2609     // rbx: object pointer copied above
2610     // c_rarg2: cache entry pointer
2611     // c_rarg3: jvalue object on the stack
2612     __ call_VM(noreg,
2613                CAST_FROM_FN_PTR(address,
2614                                 InterpreterRuntime::post_field_modification),
2615                rbx, c_rarg2, c_rarg3);
2616     __ pop(rax);     // restore lower value
2617     __ addptr(rsp, sizeof(jvalue));  // release jvalue object space
2618     __ bind(L2);
2619   }
2620 }
2621 
2622 void TemplateTable::fast_storefield(TosState state) {
2623   transition(state, vtos);
2624 
2625   ByteSize base = constantPoolCacheOopDesc::base_offset();
2626 
2627   jvmti_post_fast_field_mod();
2628 
2629   // access constant pool cache
2630   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
2631 
2632   // test for volatile with rdx
2633   __ movl(rdx, Address(rcx, rbx, Address::times_8,
2634                        in_bytes(base +
2635                                 ConstantPoolCacheEntry::flags_offset())));
2636 
2637   // replace index with field offset from cache entry
2638   __ movptr(rbx, Address(rcx, rbx, Address::times_8,
2639                          in_bytes(base + ConstantPoolCacheEntry::f2_offset())));
2640 
2641   // [jk] not needed currently
2642   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
2643   //                                              Assembler::StoreStore));
2644 
2645   Label notVolatile;
2646   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
2647   __ andl(rdx, 0x1);
2648 
2649   // Get object from stack
2650   pop_and_check_object(rcx);
2651 
2652   // field address
2653   const Address field(rcx, rbx, Address::times_1);
2654 
2655   // access field
2656   switch (bytecode()) {
2657   case Bytecodes::_fast_aputfield:
2658     do_oop_store(_masm, field, rax, _bs->kind(), false);
2659     break;
2660   case Bytecodes::_fast_lputfield:
2661     __ movq(field, rax);
2662     break;
2663   case Bytecodes::_fast_iputfield:
2664     __ movl(field, rax);
2665     break;
2666   case Bytecodes::_fast_bputfield:
2667     __ movb(field, rax);
2668     break;
2669   case Bytecodes::_fast_sputfield:
2670     // fall through
2671   case Bytecodes::_fast_cputfield:
2672     __ movw(field, rax);
2673     break;
2674   case Bytecodes::_fast_fputfield:
2675     __ movflt(field, xmm0);
2676     break;
2677   case Bytecodes::_fast_dputfield:
2678     __ movdbl(field, xmm0);
2679     break;
2680   default:
2681     ShouldNotReachHere();
2682   }
2683 
2684   // Check for volatile store
2685   __ testl(rdx, rdx);
2686   __ jcc(Assembler::zero, notVolatile);
2687   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
2688                                                Assembler::StoreStore));
2689   __ bind(notVolatile);
2690 }
2691 
2692 
2693 void TemplateTable::fast_accessfield(TosState state) {
2694   transition(atos, state);
2695 
2696   // Do the JVMTI work here to avoid disturbing the register state below
2697   if (JvmtiExport::can_post_field_access()) {
2698     // Check to see if a field access watch has been set before we
2699     // take the time to call into the VM.
2700     Label L1;
2701     __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
2702     __ testl(rcx, rcx);
2703     __ jcc(Assembler::zero, L1);
2704     // access constant pool cache entry
2705     __ get_cache_entry_pointer_at_bcp(c_rarg2, rcx, 1);
2706     __ verify_oop(rax);
2707     __ mov(r12, rax);  // save object pointer before call_VM() clobbers it
2708     __ mov(c_rarg1, rax);
2709     // c_rarg1: object pointer copied above
2710     // c_rarg2: cache entry pointer
2711     __ call_VM(noreg,
2712                CAST_FROM_FN_PTR(address,
2713                                 InterpreterRuntime::post_field_access),
2714                c_rarg1, c_rarg2);
2715     __ mov(rax, r12); // restore object pointer
2716     __ reinit_heapbase();
2717     __ bind(L1);
2718   }
2719 
2720   // access constant pool cache
2721   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
2722   // replace index with field offset from cache entry
2723   // [jk] not needed currently
2724   // if (os::is_MP()) {
2725   //   __ movl(rdx, Address(rcx, rbx, Address::times_8,
2726   //                        in_bytes(constantPoolCacheOopDesc::base_offset() +
2727   //                                 ConstantPoolCacheEntry::flags_offset())));
2728   //   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
2729   //   __ andl(rdx, 0x1);
2730   // }
2731   __ movptr(rbx, Address(rcx, rbx, Address::times_8,
2732                          in_bytes(constantPoolCacheOopDesc::base_offset() +
2733                                   ConstantPoolCacheEntry::f2_offset())));
2734 
2735   // rax: object
2736   __ verify_oop(rax);
2737   __ null_check(rax);
2738   Address field(rax, rbx, Address::times_1);
2739 
2740   // access field
2741   switch (bytecode()) {
2742   case Bytecodes::_fast_agetfield:
2743     __ load_heap_oop(rax, field);
2744     __ verify_oop(rax);
2745     break;
2746   case Bytecodes::_fast_lgetfield:
2747     __ movq(rax, field);
2748     break;
2749   case Bytecodes::_fast_igetfield:
2750     __ movl(rax, field);
2751     break;
2752   case Bytecodes::_fast_bgetfield:
2753     __ movsbl(rax, field);
2754     break;
2755   case Bytecodes::_fast_sgetfield:
2756     __ load_signed_short(rax, field);
2757     break;
2758   case Bytecodes::_fast_cgetfield:
2759     __ load_unsigned_short(rax, field);
2760     break;
2761   case Bytecodes::_fast_fgetfield:
2762     __ movflt(xmm0, field);
2763     break;
2764   case Bytecodes::_fast_dgetfield:
2765     __ movdbl(xmm0, field);
2766     break;
2767   default:
2768     ShouldNotReachHere();
2769   }
2770   // [jk] not needed currently
2771   // if (os::is_MP()) {
2772   //   Label notVolatile;
2773   //   __ testl(rdx, rdx);
2774   //   __ jcc(Assembler::zero, notVolatile);
2775   //   __ membar(Assembler::LoadLoad);
2776   //   __ bind(notVolatile);
2777   //};
2778 }
2779 
2780 void TemplateTable::fast_xaccess(TosState state) {
2781   transition(vtos, state);
2782 
2783   // get receiver
2784   __ movptr(rax, aaddress(0));
2785   debug_only(__ verify_local_tag(frame::TagReference, 0));
2786   // access constant pool cache
2787   __ get_cache_and_index_at_bcp(rcx, rdx, 2);
2788   __ movptr(rbx,
2789             Address(rcx, rdx, Address::times_8,
2790                     in_bytes(constantPoolCacheOopDesc::base_offset() +
2791                              ConstantPoolCacheEntry::f2_offset())));
2792   // make sure exception is reported in correct bcp range (getfield is
2793   // next instruction)
2794   __ increment(r13);
2795   __ null_check(rax);
2796   switch (state) {
2797   case itos:
2798     __ movl(rax, Address(rax, rbx, Address::times_1));
2799     break;
2800   case atos:
2801     __ load_heap_oop(rax, Address(rax, rbx, Address::times_1));
2802     __ verify_oop(rax);
2803     break;
2804   case ftos:
2805     __ movflt(xmm0, Address(rax, rbx, Address::times_1));
2806     break;
2807   default:
2808     ShouldNotReachHere();
2809   }
2810 
2811   // [jk] not needed currently
2812   // if (os::is_MP()) {
2813   //   Label notVolatile;
2814   //   __ movl(rdx, Address(rcx, rdx, Address::times_8,
2815   //                        in_bytes(constantPoolCacheOopDesc::base_offset() +
2816   //                                 ConstantPoolCacheEntry::flags_offset())));
2817   //   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
2818   //   __ testl(rdx, 0x1);
2819   //   __ jcc(Assembler::zero, notVolatile);
2820   //   __ membar(Assembler::LoadLoad);
2821   //   __ bind(notVolatile);
2822   // }
2823 
2824   __ decrement(r13);
2825 }
2826 
2827 
2828 
2829 //-----------------------------------------------------------------------------
2830 // Calls
2831 
2832 void TemplateTable::count_calls(Register method, Register temp) {
2833   // implemented elsewhere
2834   ShouldNotReachHere();
2835 }
2836 
2837 void TemplateTable::prepare_invoke(Register method, Register index, int byte_no) {
2838   // determine flags
2839   Bytecodes::Code code = bytecode();
2840   const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
2841   const bool is_invokedynamic    = code == Bytecodes::_invokedynamic;
2842   const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
2843   const bool is_invokespecial    = code == Bytecodes::_invokespecial;
2844   const bool load_receiver      = (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic);
2845   const bool receiver_null_check = is_invokespecial;
2846   const bool save_flags = is_invokeinterface || is_invokevirtual;
2847   // setup registers & access constant pool cache
2848   const Register recv   = rcx;
2849   const Register flags  = rdx;
2850   assert_different_registers(method, index, recv, flags);
2851 
2852   // save 'interpreter return address'
2853   __ save_bcp();
2854 
2855   load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual);
2856 
2857   // load receiver if needed (note: no return address pushed yet)
2858   if (load_receiver) {
2859     __ movl(recv, flags);
2860     __ andl(recv, 0xFF);
2861     if (TaggedStackInterpreter) __ shll(recv, 1);  // index*2
2862     Address recv_addr(rsp, recv, Address::times_8, -Interpreter::expr_offset_in_bytes(1));
2863     if (is_invokedynamic) {
2864       __ lea(recv, recv_addr);
2865     } else {
2866       __ movptr(recv, recv_addr);
2867       __ verify_oop(recv);
2868     }
2869   }
2870 
2871   // do null check if needed
2872   if (receiver_null_check) {
2873     __ null_check(recv);
2874   }
2875 
2876   if (save_flags) {
2877     __ movl(r13, flags);
2878   }
2879 
2880   // compute return type
2881   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
2882   // Make sure we don't need to mask flags for tosBits after the above shift
2883   ConstantPoolCacheEntry::verify_tosBits();
2884   // load return address
2885   {
2886     address table_addr;
2887     if (is_invokeinterface || is_invokedynamic)
2888       table_addr = (address)Interpreter::return_5_addrs_by_index_table();
2889     else
2890       table_addr = (address)Interpreter::return_3_addrs_by_index_table();
2891     ExternalAddress table(table_addr);
2892     __ lea(rscratch1, table);
2893     __ movptr(flags, Address(rscratch1, flags, Address::times_ptr));
2894   }
2895 
2896   // push return address
2897   __ push(flags);
2898 
2899   // Restore flag field from the constant pool cache, and restore esi
2900   // for later null checks.  r13 is the bytecode pointer
2901   if (save_flags) {
2902     __ movl(flags, r13);
2903     __ restore_bcp();
2904   }
2905 }
2906 
2907 
2908 void TemplateTable::invokevirtual_helper(Register index,
2909                                          Register recv,
2910                                          Register flags) {
2911   // Uses temporary registers rax, rdx  assert_different_registers(index, recv, rax, rdx);
2912 
2913   // Test for an invoke of a final method
2914   Label notFinal;
2915   __ movl(rax, flags);
2916   __ andl(rax, (1 << ConstantPoolCacheEntry::vfinalMethod));
2917   __ jcc(Assembler::zero, notFinal);
2918 
2919   const Register method = index;  // method must be rbx
2920   assert(method == rbx,
2921          "methodOop must be rbx for interpreter calling convention");
2922 
2923   // do the call - the index is actually the method to call
2924   __ verify_oop(method);
2925 
2926   // It's final, need a null check here!
2927   __ null_check(recv);
2928 
2929   // profile this call
2930   __ profile_final_call(rax);
2931 
2932   __ jump_from_interpreted(method, rax);
2933 
2934   __ bind(notFinal);
2935 
2936   // get receiver klass
2937   __ null_check(recv, oopDesc::klass_offset_in_bytes());
2938   __ load_klass(rax, recv);
2939 
2940   __ verify_oop(rax);
2941 
2942   // profile this call
2943   __ profile_virtual_call(rax, r14, rdx);
2944 
2945   // get target methodOop & entry point
2946   const int base = instanceKlass::vtable_start_offset() * wordSize;
2947   assert(vtableEntry::size() * wordSize == 8,
2948          "adjust the scaling in the code below");
2949   __ movptr(method, Address(rax, index,
2950                                  Address::times_8,
2951                                  base + vtableEntry::method_offset_in_bytes()));
2952   __ movptr(rdx, Address(method, methodOopDesc::interpreter_entry_offset()));
2953   __ jump_from_interpreted(method, rdx);
2954 }
2955 
2956 
2957 void TemplateTable::invokevirtual(int byte_no) {
2958   transition(vtos, vtos);
2959   prepare_invoke(rbx, noreg, byte_no);
2960 
2961   // rbx: index
2962   // rcx: receiver
2963   // rdx: flags
2964 
2965   invokevirtual_helper(rbx, rcx, rdx);
2966 }
2967 
2968 
2969 void TemplateTable::invokespecial(int byte_no) {
2970   transition(vtos, vtos);
2971   prepare_invoke(rbx, noreg, byte_no);
2972   // do the call
2973   __ verify_oop(rbx);
2974   __ profile_call(rax);
2975   __ jump_from_interpreted(rbx, rax);
2976 }
2977 
2978 
2979 void TemplateTable::invokestatic(int byte_no) {
2980   transition(vtos, vtos);
2981   prepare_invoke(rbx, noreg, byte_no);
2982   // do the call
2983   __ verify_oop(rbx);
2984   __ profile_call(rax);
2985   __ jump_from_interpreted(rbx, rax);
2986 }
2987 
2988 void TemplateTable::fast_invokevfinal(int byte_no) {
2989   transition(vtos, vtos);
2990   __ stop("fast_invokevfinal not used on amd64");
2991 }
2992 
2993 void TemplateTable::invokeinterface(int byte_no) {
2994   transition(vtos, vtos);
2995   prepare_invoke(rax, rbx, byte_no);
2996 
2997   // rax: Interface
2998   // rbx: index
2999   // rcx: receiver
3000   // rdx: flags
3001 
3002   // Special case of invokeinterface called for virtual method of
3003   // java.lang.Object.  See cpCacheOop.cpp for details.
3004   // This code isn't produced by javac, but could be produced by
3005   // another compliant java compiler.
3006   Label notMethod;
3007   __ movl(r14, rdx);
3008   __ andl(r14, (1 << ConstantPoolCacheEntry::methodInterface));
3009   __ jcc(Assembler::zero, notMethod);
3010 
3011   invokevirtual_helper(rbx, rcx, rdx);
3012   __ bind(notMethod);
3013 
3014   // Get receiver klass into rdx - also a null check
3015   __ restore_locals(); // restore r14
3016   __ load_klass(rdx, rcx);
3017   __ verify_oop(rdx);
3018 
3019   // profile this call
3020   __ profile_virtual_call(rdx, r13, r14);
3021 
3022   Label no_such_interface, no_such_method;
3023 
3024   __ lookup_interface_method(// inputs: rec. class, interface, itable index
3025                              rdx, rax, rbx,
3026                              // outputs: method, scan temp. reg
3027                              rbx, r13,
3028                              no_such_interface);
3029 
3030   // rbx,: methodOop to call
3031   // rcx: receiver
3032   // Check for abstract method error
3033   // Note: This should be done more efficiently via a throw_abstract_method_error
3034   //       interpreter entry point and a conditional jump to it in case of a null
3035   //       method.
3036   __ testptr(rbx, rbx);
3037   __ jcc(Assembler::zero, no_such_method);
3038 
3039   // do the call
3040   // rcx: receiver
3041   // rbx,: methodOop
3042   __ jump_from_interpreted(rbx, rdx);
3043   __ should_not_reach_here();
3044 
3045   // exception handling code follows...
3046   // note: must restore interpreter registers to canonical
3047   //       state for exception handling to work correctly!
3048 
3049   __ bind(no_such_method);
3050   // throw exception
3051   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
3052   __ restore_bcp();      // r13 must be correct for exception handler   (was destroyed)
3053   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
3054   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
3055   // the call_VM checks for exception, so we should never return here.
3056   __ should_not_reach_here();
3057 
3058   __ bind(no_such_interface);
3059   // throw exception
3060   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
3061   __ restore_bcp();      // r13 must be correct for exception handler   (was destroyed)
3062   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
3063   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
3064                    InterpreterRuntime::throw_IncompatibleClassChangeError));
3065   // the call_VM checks for exception, so we should never return here.
3066   __ should_not_reach_here();
3067   return;
3068 }
3069 
3070 void TemplateTable::invokedynamic(int byte_no) {
3071   transition(vtos, vtos);
3072 
3073   if (!EnableInvokeDynamic) {
3074     // We should not encounter this bytecode if !EnableInvokeDynamic.
3075     // The verifier will stop it.  However, if we get past the verifier,
3076     // this will stop the thread in a reasonable way, without crashing the JVM.
3077     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
3078                      InterpreterRuntime::throw_IncompatibleClassChangeError));
3079     // the call_VM checks for exception, so we should never return here.
3080     __ should_not_reach_here();
3081     return;
3082   }
3083 
3084   prepare_invoke(rax, rbx, byte_no);
3085 
3086   // rax: CallSite object (f1)
3087   // rbx: unused (f2)
3088   // rcx: receiver address
3089   // rdx: flags (unused)
3090 
3091   if (ProfileInterpreter) {
3092     Label L;
3093     // %%% should make a type profile for any invokedynamic that takes a ref argument
3094     // profile this call
3095     __ profile_call(r13);
3096   }
3097 
3098   __ movptr(rcx, Address(rax, __ delayed_value(java_dyn_CallSite::target_offset_in_bytes, rcx)));
3099   __ null_check(rcx);
3100   __ prepare_to_jump_from_interpreted();
3101   __ jump_to_method_handle_entry(rcx, rdx);
3102 }
3103 
3104 
3105 //-----------------------------------------------------------------------------
3106 // Allocation
3107 
3108 void TemplateTable::_new() {
3109   transition(vtos, atos);
3110   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
3111   Label slow_case;
3112   Label done;
3113   Label initialize_header;
3114   Label initialize_object; // including clearing the fields
3115   Label allocate_shared;
3116 
3117   __ get_cpool_and_tags(rsi, rax);
3118   // get instanceKlass
3119   __ movptr(rsi, Address(rsi, rdx,
3120                          Address::times_8, sizeof(constantPoolOopDesc)));
3121 
3122   // make sure the class we're about to instantiate has been
3123   // resolved. Note: slow_case does a pop of stack, which is why we
3124   // loaded class/pushed above
3125   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
3126   __ cmpb(Address(rax, rdx, Address::times_1, tags_offset),
3127           JVM_CONSTANT_Class);
3128   __ jcc(Assembler::notEqual, slow_case);
3129 
3130   // make sure klass is initialized & doesn't have finalizer
3131   // make sure klass is fully initialized
3132   __ cmpl(Address(rsi,
3133                   instanceKlass::init_state_offset_in_bytes() +
3134                   sizeof(oopDesc)),
3135           instanceKlass::fully_initialized);
3136   __ jcc(Assembler::notEqual, slow_case);
3137 
3138   // get instance_size in instanceKlass (scaled to a count of bytes)
3139   __ movl(rdx,
3140           Address(rsi,
3141                   Klass::layout_helper_offset_in_bytes() + sizeof(oopDesc)));
3142   // test to see if it has a finalizer or is malformed in some way
3143   __ testl(rdx, Klass::_lh_instance_slow_path_bit);
3144   __ jcc(Assembler::notZero, slow_case);
3145 
3146   // Allocate the instance
3147   // 1) Try to allocate in the TLAB
3148   // 2) if fail and the object is large allocate in the shared Eden
3149   // 3) if the above fails (or is not applicable), go to a slow case
3150   // (creates a new TLAB, etc.)
3151 
3152   const bool allow_shared_alloc =
3153     Universe::heap()->supports_inline_contig_alloc() && !CMSIncrementalMode;
3154 
3155   if (UseTLAB) {
3156     __ movptr(rax, Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())));
3157     __ lea(rbx, Address(rax, rdx, Address::times_1));
3158     __ cmpptr(rbx, Address(r15_thread, in_bytes(JavaThread::tlab_end_offset())));
3159     __ jcc(Assembler::above, allow_shared_alloc ? allocate_shared : slow_case);
3160     __ movptr(Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())), rbx);
3161     if (ZeroTLAB) {
3162       // the fields have been already cleared
3163       __ jmp(initialize_header);
3164     } else {
3165       // initialize both the header and fields
3166       __ jmp(initialize_object);
3167     }
3168   }
3169 
3170   // Allocation in the shared Eden, if allowed.
3171   //
3172   // rdx: instance size in bytes
3173   if (allow_shared_alloc) {
3174     __ bind(allocate_shared);
3175 
3176     ExternalAddress top((address)Universe::heap()->top_addr());
3177     ExternalAddress end((address)Universe::heap()->end_addr());
3178 
3179     const Register RtopAddr = rscratch1;
3180     const Register RendAddr = rscratch2;
3181 
3182     __ lea(RtopAddr, top);
3183     __ lea(RendAddr, end);
3184     __ movptr(rax, Address(RtopAddr, 0));
3185 
3186     // For retries rax gets set by cmpxchgq
3187     Label retry;
3188     __ bind(retry);
3189     __ lea(rbx, Address(rax, rdx, Address::times_1));
3190     __ cmpptr(rbx, Address(RendAddr, 0));
3191     __ jcc(Assembler::above, slow_case);
3192 
3193     // Compare rax with the top addr, and if still equal, store the new
3194     // top addr in rbx at the address of the top addr pointer. Sets ZF if was
3195     // equal, and clears it otherwise. Use lock prefix for atomicity on MPs.
3196     //
3197     // rax: object begin
3198     // rbx: object end
3199     // rdx: instance size in bytes
3200     if (os::is_MP()) {
3201       __ lock();
3202     }
3203     __ cmpxchgptr(rbx, Address(RtopAddr, 0));
3204 
3205     // if someone beat us on the allocation, try again, otherwise continue
3206     __ jcc(Assembler::notEqual, retry);
3207   }
3208 
3209   if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) {
3210     // The object is initialized before the header.  If the object size is
3211     // zero, go directly to the header initialization.
3212     __ bind(initialize_object);
3213     __ decrementl(rdx, sizeof(oopDesc));
3214     __ jcc(Assembler::zero, initialize_header);
3215 
3216     // Initialize object fields
3217     __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code)
3218     __ shrl(rdx, LogBytesPerLong);  // divide by oopSize to simplify the loop
3219     {
3220       Label loop;
3221       __ bind(loop);
3222       __ movq(Address(rax, rdx, Address::times_8,
3223                       sizeof(oopDesc) - oopSize),
3224               rcx);
3225       __ decrementl(rdx);
3226       __ jcc(Assembler::notZero, loop);
3227     }
3228 
3229     // initialize object header only.
3230     __ bind(initialize_header);
3231     if (UseBiasedLocking) {
3232       __ movptr(rscratch1, Address(rsi, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
3233       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes()), rscratch1);
3234     } else {
3235       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes()),
3236                (intptr_t) markOopDesc::prototype()); // header (address 0x1)
3237     }
3238     __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code)
3239     __ store_klass_gap(rax, rcx);  // zero klass gap for compressed oops
3240     __ store_klass(rax, rsi);      // store klass last
3241     __ jmp(done);
3242   }
3243 
3244   {
3245     SkipIfEqual skip(_masm, &DTraceAllocProbes, false);
3246     // Trigger dtrace event for fastpath
3247     __ push(atos); // save the return value
3248     __ call_VM_leaf(
3249          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), rax);
3250     __ pop(atos); // restore the return value
3251   }
3252 
3253   // slow case
3254   __ bind(slow_case);
3255   __ get_constant_pool(c_rarg1);
3256   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
3257   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2);
3258   __ verify_oop(rax);
3259 
3260   // continue
3261   __ bind(done);
3262 }
3263 
3264 void TemplateTable::newarray() {
3265   transition(itos, atos);
3266   __ load_unsigned_byte(c_rarg1, at_bcp(1));
3267   __ movl(c_rarg2, rax);
3268   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray),
3269           c_rarg1, c_rarg2);
3270 }
3271 
3272 void TemplateTable::anewarray() {
3273   transition(itos, atos);
3274   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
3275   __ get_constant_pool(c_rarg1);
3276   __ movl(c_rarg3, rax);
3277   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray),
3278           c_rarg1, c_rarg2, c_rarg3);
3279 }
3280 
3281 void TemplateTable::arraylength() {
3282   transition(atos, itos);
3283   __ null_check(rax, arrayOopDesc::length_offset_in_bytes());
3284   __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes()));
3285 }
3286 
3287 void TemplateTable::checkcast() {
3288   transition(atos, atos);
3289   Label done, is_null, ok_is_subtype, quicked, resolved;
3290   __ testptr(rax, rax); // object is in rax
3291   __ jcc(Assembler::zero, is_null);
3292 
3293   // Get cpool & tags index
3294   __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
3295   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
3296   // See if bytecode has already been quicked
3297   __ cmpb(Address(rdx, rbx,
3298                   Address::times_1,
3299                   typeArrayOopDesc::header_size(T_BYTE) * wordSize),
3300           JVM_CONSTANT_Class);
3301   __ jcc(Assembler::equal, quicked);
3302   __ push(atos); // save receiver for result, and for GC
3303   __ mov(r12, rcx); // save rcx XXX
3304   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
3305   __ movq(rcx, r12); // restore rcx XXX
3306   __ reinit_heapbase();
3307   __ pop_ptr(rdx); // restore receiver
3308   __ jmpb(resolved);
3309 
3310   // Get superklass in rax and subklass in rbx
3311   __ bind(quicked);
3312   __ mov(rdx, rax); // Save object in rdx; rax needed for subtype check
3313   __ movptr(rax, Address(rcx, rbx,
3314                        Address::times_8, sizeof(constantPoolOopDesc)));
3315 
3316   __ bind(resolved);
3317   __ load_klass(rbx, rdx);
3318 
3319   // Generate subtype check.  Blows rcx, rdi.  Object in rdx.
3320   // Superklass in rax.  Subklass in rbx.
3321   __ gen_subtype_check(rbx, ok_is_subtype);
3322 
3323   // Come here on failure
3324   __ push_ptr(rdx);
3325   // object is at TOS
3326   __ jump(ExternalAddress(Interpreter::_throw_ClassCastException_entry));
3327 
3328   // Come here on success
3329   __ bind(ok_is_subtype);
3330   __ mov(rax, rdx); // Restore object in rdx
3331 
3332   // Collect counts on whether this check-cast sees NULLs a lot or not.
3333   if (ProfileInterpreter) {
3334     __ jmp(done);
3335     __ bind(is_null);
3336     __ profile_null_seen(rcx);
3337   } else {
3338     __ bind(is_null);   // same as 'done'
3339   }
3340   __ bind(done);
3341 }
3342 
3343 void TemplateTable::instanceof() {
3344   transition(atos, itos);
3345   Label done, is_null, ok_is_subtype, quicked, resolved;
3346   __ testptr(rax, rax);
3347   __ jcc(Assembler::zero, is_null);
3348 
3349   // Get cpool & tags index
3350   __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
3351   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
3352   // See if bytecode has already been quicked
3353   __ cmpb(Address(rdx, rbx,
3354                   Address::times_1,
3355                   typeArrayOopDesc::header_size(T_BYTE) * wordSize),
3356           JVM_CONSTANT_Class);
3357   __ jcc(Assembler::equal, quicked);
3358 
3359   __ push(atos); // save receiver for result, and for GC
3360   __ mov(r12, rcx); // save rcx
3361   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
3362   __ movq(rcx, r12); // restore rcx
3363   __ reinit_heapbase();
3364   __ pop_ptr(rdx); // restore receiver
3365   __ load_klass(rdx, rdx);
3366   __ jmpb(resolved);
3367 
3368   // Get superklass in rax and subklass in rdx
3369   __ bind(quicked);
3370   __ load_klass(rdx, rax);
3371   __ movptr(rax, Address(rcx, rbx,
3372                          Address::times_8, sizeof(constantPoolOopDesc)));
3373 
3374   __ bind(resolved);
3375 
3376   // Generate subtype check.  Blows rcx, rdi
3377   // Superklass in rax.  Subklass in rdx.
3378   __ gen_subtype_check(rdx, ok_is_subtype);
3379 
3380   // Come here on failure
3381   __ xorl(rax, rax);
3382   __ jmpb(done);
3383   // Come here on success
3384   __ bind(ok_is_subtype);
3385   __ movl(rax, 1);
3386 
3387   // Collect counts on whether this test sees NULLs a lot or not.
3388   if (ProfileInterpreter) {
3389     __ jmp(done);
3390     __ bind(is_null);
3391     __ profile_null_seen(rcx);
3392   } else {
3393     __ bind(is_null);   // same as 'done'
3394   }
3395   __ bind(done);
3396   // rax = 0: obj == NULL or  obj is not an instanceof the specified klass
3397   // rax = 1: obj != NULL and obj is     an instanceof the specified klass
3398 }
3399 
3400 //-----------------------------------------------------------------------------
3401 // Breakpoints
3402 void TemplateTable::_breakpoint() {
3403   // Note: We get here even if we are single stepping..
3404   // jbug inists on setting breakpoints at every bytecode
3405   // even if we are in single step mode.
3406 
3407   transition(vtos, vtos);
3408 
3409   // get the unpatched byte code
3410   __ get_method(c_rarg1);
3411   __ call_VM(noreg,
3412              CAST_FROM_FN_PTR(address,
3413                               InterpreterRuntime::get_original_bytecode_at),
3414              c_rarg1, r13);
3415   __ mov(rbx, rax);
3416 
3417   // post the breakpoint event
3418   __ get_method(c_rarg1);
3419   __ call_VM(noreg,
3420              CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint),
3421              c_rarg1, r13);
3422 
3423   // complete the execution of original bytecode
3424   __ dispatch_only_normal(vtos);
3425 }
3426 
3427 //-----------------------------------------------------------------------------
3428 // Exceptions
3429 
3430 void TemplateTable::athrow() {
3431   transition(atos, vtos);
3432   __ null_check(rax);
3433   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
3434 }
3435 
3436 //-----------------------------------------------------------------------------
3437 // Synchronization
3438 //
3439 // Note: monitorenter & exit are symmetric routines; which is reflected
3440 //       in the assembly code structure as well
3441 //
3442 // Stack layout:
3443 //
3444 // [expressions  ] <--- rsp               = expression stack top
3445 // ..
3446 // [expressions  ]
3447 // [monitor entry] <--- monitor block top = expression stack bot
3448 // ..
3449 // [monitor entry]
3450 // [frame data   ] <--- monitor block bot
3451 // ...
3452 // [saved rbp    ] <--- rbp
3453 void TemplateTable::monitorenter() {
3454   transition(atos, vtos);
3455 
3456   // check for NULL object
3457   __ null_check(rax);
3458 
3459   const Address monitor_block_top(
3460         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
3461   const Address monitor_block_bot(
3462         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
3463   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
3464 
3465   Label allocated;
3466 
3467   // initialize entry pointer
3468   __ xorl(c_rarg1, c_rarg1); // points to free slot or NULL
3469 
3470   // find a free slot in the monitor block (result in c_rarg1)
3471   {
3472     Label entry, loop, exit;
3473     __ movptr(c_rarg3, monitor_block_top); // points to current entry,
3474                                      // starting with top-most entry
3475     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
3476                                      // of monitor block
3477     __ jmpb(entry);
3478 
3479     __ bind(loop);
3480     // check if current entry is used
3481     __ cmpptr(Address(c_rarg3, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL_WORD);
3482     // if not used then remember entry in c_rarg1
3483     __ cmov(Assembler::equal, c_rarg1, c_rarg3);
3484     // check if current entry is for same object
3485     __ cmpptr(rax, Address(c_rarg3, BasicObjectLock::obj_offset_in_bytes()));
3486     // if same object then stop searching
3487     __ jccb(Assembler::equal, exit);
3488     // otherwise advance to next entry
3489     __ addptr(c_rarg3, entry_size);
3490     __ bind(entry);
3491     // check if bottom reached
3492     __ cmpptr(c_rarg3, c_rarg2);
3493     // if not at bottom then check this entry
3494     __ jcc(Assembler::notEqual, loop);
3495     __ bind(exit);
3496   }
3497 
3498   __ testptr(c_rarg1, c_rarg1); // check if a slot has been found
3499   __ jcc(Assembler::notZero, allocated); // if found, continue with that one
3500 
3501   // allocate one if there's no free slot
3502   {
3503     Label entry, loop;
3504     // 1. compute new pointers             // rsp: old expression stack top
3505     __ movptr(c_rarg1, monitor_block_bot); // c_rarg1: old expression stack bottom
3506     __ subptr(rsp, entry_size);            // move expression stack top
3507     __ subptr(c_rarg1, entry_size);        // move expression stack bottom
3508     __ mov(c_rarg3, rsp);                  // set start value for copy loop
3509     __ movptr(monitor_block_bot, c_rarg1); // set new monitor block bottom
3510     __ jmp(entry);
3511     // 2. move expression stack contents
3512     __ bind(loop);
3513     __ movptr(c_rarg2, Address(c_rarg3, entry_size)); // load expression stack
3514                                                       // word from old location
3515     __ movptr(Address(c_rarg3, 0), c_rarg2);          // and store it at new location
3516     __ addptr(c_rarg3, wordSize);                     // advance to next word
3517     __ bind(entry);
3518     __ cmpptr(c_rarg3, c_rarg1);            // check if bottom reached
3519     __ jcc(Assembler::notEqual, loop);      // if not at bottom then
3520                                             // copy next word
3521   }
3522 
3523   // call run-time routine
3524   // c_rarg1: points to monitor entry
3525   __ bind(allocated);
3526 
3527   // Increment bcp to point to the next bytecode, so exception
3528   // handling for async. exceptions work correctly.
3529   // The object has already been poped from the stack, so the
3530   // expression stack looks correct.
3531   __ increment(r13);
3532 
3533   // store object
3534   __ movptr(Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()), rax);
3535   __ lock_object(c_rarg1);
3536 
3537   // check to make sure this monitor doesn't cause stack overflow after locking
3538   __ save_bcp();  // in case of exception
3539   __ generate_stack_overflow_check(0);
3540 
3541   // The bcp has already been incremented. Just need to dispatch to
3542   // next instruction.
3543   __ dispatch_next(vtos);
3544 }
3545 
3546 
3547 void TemplateTable::monitorexit() {
3548   transition(atos, vtos);
3549 
3550   // check for NULL object
3551   __ null_check(rax);
3552 
3553   const Address monitor_block_top(
3554         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
3555   const Address monitor_block_bot(
3556         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
3557   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
3558 
3559   Label found;
3560 
3561   // find matching slot
3562   {
3563     Label entry, loop;
3564     __ movptr(c_rarg1, monitor_block_top); // points to current entry,
3565                                      // starting with top-most entry
3566     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
3567                                      // of monitor block
3568     __ jmpb(entry);
3569 
3570     __ bind(loop);
3571     // check if current entry is for same object
3572     __ cmpptr(rax, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
3573     // if same object then stop searching
3574     __ jcc(Assembler::equal, found);
3575     // otherwise advance to next entry
3576     __ addptr(c_rarg1, entry_size);
3577     __ bind(entry);
3578     // check if bottom reached
3579     __ cmpptr(c_rarg1, c_rarg2);
3580     // if not at bottom then check this entry
3581     __ jcc(Assembler::notEqual, loop);
3582   }
3583 
3584   // error handling. Unlocking was not block-structured
3585   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
3586                    InterpreterRuntime::throw_illegal_monitor_state_exception));
3587   __ should_not_reach_here();
3588 
3589   // call run-time routine
3590   // rsi: points to monitor entry
3591   __ bind(found);
3592   __ push_ptr(rax); // make sure object is on stack (contract with oopMaps)
3593   __ unlock_object(c_rarg1);
3594   __ pop_ptr(rax); // discard object
3595 }
3596 
3597 
3598 // Wide instructions
3599 void TemplateTable::wide() {
3600   transition(vtos, vtos);
3601   __ load_unsigned_byte(rbx, at_bcp(1));
3602   __ lea(rscratch1, ExternalAddress((address)Interpreter::_wentry_point));
3603   __ jmp(Address(rscratch1, rbx, Address::times_8));
3604   // Note: the r13 increment step is part of the individual wide
3605   // bytecode implementations
3606 }
3607 
3608 
3609 // Multi arrays
3610 void TemplateTable::multianewarray() {
3611   transition(vtos, atos);
3612   __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions
3613   // last dim is on top of stack; we want address of first one:
3614   // first_addr = last_addr + (ndims - 1) * wordSize
3615   if (TaggedStackInterpreter) __ shll(rax, 1);  // index*2
3616   __ lea(c_rarg1, Address(rsp, rax, Address::times_8, -wordSize));
3617   call_VM(rax,
3618           CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray),
3619           c_rarg1);
3620   __ load_unsigned_byte(rbx, at_bcp(3));
3621   if (TaggedStackInterpreter) __ shll(rbx, 1);  // index*2
3622   __ lea(rsp, Address(rsp, rbx, Address::times_8));
3623 }
3624 #endif // !CC_INTERP