1 /*
   2  * Copyright (c) 2000, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/symbolTable.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "gc_implementation/shared/collectorCounters.hpp"
  32 #include "gc_implementation/shared/gcTrace.hpp"
  33 #include "gc_implementation/shared/gcTraceTime.hpp"
  34 #include "gc_implementation/shared/vmGCOperations.hpp"
  35 #include "gc_interface/collectedHeap.inline.hpp"
  36 #include "memory/filemap.hpp"
  37 #include "memory/gcLocker.inline.hpp"
  38 #include "memory/genCollectedHeap.hpp"
  39 #include "memory/genOopClosures.inline.hpp"
  40 #include "memory/generationSpec.hpp"
  41 #include "memory/resourceArea.hpp"
  42 #include "memory/sharedHeap.hpp"
  43 #include "memory/space.hpp"
  44 #include "oops/oop.inline.hpp"
  45 #include "runtime/biasedLocking.hpp"
  46 #include "runtime/fprofiler.hpp"
  47 #include "runtime/handles.hpp"
  48 #include "runtime/handles.inline.hpp"
  49 #include "runtime/java.hpp"
  50 #include "runtime/vmThread.hpp"
  51 #include "services/management.hpp"
  52 #include "services/memoryService.hpp"
  53 #include "utilities/vmError.hpp"
  54 #include "utilities/workgroup.hpp"
  55 #include "utilities/macros.hpp"
  56 #if INCLUDE_ALL_GCS
  57 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
  58 #include "gc_implementation/concurrentMarkSweep/vmCMSOperations.hpp"
  59 #endif // INCLUDE_ALL_GCS
  60 
  61 GenCollectedHeap* GenCollectedHeap::_gch;
  62 NOT_PRODUCT(size_t GenCollectedHeap::_skip_header_HeapWords = 0;)
  63 
  64 // The set of potentially parallel tasks in root scanning.
  65 enum GCH_strong_roots_tasks {
  66   GCH_PS_Universe_oops_do,
  67   GCH_PS_JNIHandles_oops_do,
  68   GCH_PS_ObjectSynchronizer_oops_do,
  69   GCH_PS_FlatProfiler_oops_do,
  70   GCH_PS_Management_oops_do,
  71   GCH_PS_SystemDictionary_oops_do,
  72   GCH_PS_ClassLoaderDataGraph_oops_do,
  73   GCH_PS_jvmti_oops_do,
  74   GCH_PS_CodeCache_oops_do,
  75   GCH_PS_younger_gens,
  76   // Leave this one last.
  77   GCH_PS_NumElements
  78 };
  79 
  80 GenCollectedHeap::GenCollectedHeap(GenCollectorPolicy *policy) :
  81   SharedHeap(policy),
  82   _rem_set(NULL),
  83   _gen_policy(policy),
  84   _process_strong_tasks(new SubTasksDone(GCH_PS_NumElements)),
  85   _full_collections_completed(0)
  86 {
  87   assert(policy != NULL, "Sanity check");
  88 }
  89 
  90 jint GenCollectedHeap::initialize() {
  91   CollectedHeap::pre_initialize();
  92 
  93   // While there are no constraints in the GC code that HeapWordSize
  94   // be any particular value, there are multiple other areas in the
  95   // system which believe this to be true (e.g. oop->object_size in some
  96   // cases incorrectly returns the size in wordSize units rather than
  97   // HeapWordSize).
  98   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
  99 
 100   // Allocate space for the heap.
 101 
 102   char* heap_address;
 103   ReservedSpace heap_rs;
 104 
 105   size_t heap_alignment = collector_policy()->heap_alignment();
 106 
 107   heap_address = allocate(heap_alignment, &heap_rs);
 108 
 109   if (!heap_rs.is_reserved()) {
 110     vm_shutdown_during_initialization(
 111       "Could not reserve enough space for object heap");
 112     return JNI_ENOMEM;
 113   }
 114 
 115   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
 116 
 117   _rem_set = collector_policy()->create_rem_set(reserved_region());
 118   set_barrier_set(rem_set()->bs());
 119 
 120   _gch = this;
 121 
 122   ReservedSpace young_rs = heap_rs.first_part(gen_policy()->young_gen_spec()->max_size(), false, false);
 123   _young_gen = gen_policy()->young_gen_spec()->init(young_rs, 0, rem_set());
 124   heap_rs = heap_rs.last_part(gen_policy()->young_gen_spec()->max_size());
 125 
 126   ReservedSpace old_rs = heap_rs.first_part(gen_policy()->old_gen_spec()->max_size(), false, false);
 127   _old_gen = gen_policy()->old_gen_spec()->init(old_rs, 1, rem_set());
 128   clear_incremental_collection_failed();
 129 
 130 #if INCLUDE_ALL_GCS
 131   // If we are running CMS, create the collector responsible
 132   // for collecting the CMS generations.
 133   if (collector_policy()->is_concurrent_mark_sweep_policy()) {
 134     bool success = create_cms_collector();
 135     if (!success) return JNI_ENOMEM;
 136   }
 137 #endif // INCLUDE_ALL_GCS
 138 
 139   return JNI_OK;
 140 }
 141 
 142 char* GenCollectedHeap::allocate(size_t alignment,
 143                                  ReservedSpace* heap_rs){
 144   // Now figure out the total size.
 145   const size_t pageSize = UseLargePages ? os::large_page_size() : os::vm_page_size();
 146   assert(alignment % pageSize == 0, "Must be");
 147 
 148   GenerationSpec* young_spec = gen_policy()->young_gen_spec();
 149   GenerationSpec* old_spec = gen_policy()->old_gen_spec();
 150 
 151   // Check for overflow.
 152   size_t total_reserved = young_spec->max_size() + old_spec->max_size();
 153   if (total_reserved < young_spec->max_size()) {
 154     vm_exit_during_initialization("The size of the object heap + VM data exceeds "
 155                                   "the maximum representable size");
 156   }
 157   assert(total_reserved % alignment == 0,
 158          err_msg("Gen size; total_reserved=" SIZE_FORMAT ", alignment="
 159                  SIZE_FORMAT, total_reserved, alignment));
 160 
 161   *heap_rs = Universe::reserve_heap(total_reserved, alignment);
 162   return heap_rs->base();
 163 }
 164 
 165 void GenCollectedHeap::post_initialize() {
 166   SharedHeap::post_initialize();
 167   GenCollectorPolicy *policy = (GenCollectorPolicy *)collector_policy();
 168   guarantee(policy->is_generation_policy(), "Illegal policy type");
 169   assert((_young_gen->kind() == Generation::DefNew) ||
 170          (_young_gen->kind() == Generation::ParNew),
 171     "Wrong youngest generation type");
 172   DefNewGeneration* def_new_gen = (DefNewGeneration*)_young_gen;
 173 
 174   assert(_old_gen->kind() == Generation::ConcurrentMarkSweep ||
 175          _old_gen->kind() == Generation::MarkSweepCompact,
 176     "Wrong generation kind");
 177 
 178   policy->initialize_size_policy(def_new_gen->eden()->capacity(),
 179                                  _old_gen->capacity(),
 180                                  def_new_gen->from()->capacity());
 181   policy->initialize_gc_policy_counters();
 182 }
 183 
 184 void GenCollectedHeap::ref_processing_init() {
 185   SharedHeap::ref_processing_init();
 186   _young_gen->ref_processor_init();
 187   _old_gen->ref_processor_init();
 188 }
 189 
 190 size_t GenCollectedHeap::capacity() const {
 191   return _young_gen->capacity() + _old_gen->capacity();
 192 }
 193 
 194 size_t GenCollectedHeap::used() const {
 195   return _young_gen->used() + _old_gen->used();
 196 }
 197 
 198 // Save the "used_region" for generations level and lower.
 199 void GenCollectedHeap::save_used_regions(int level) {
 200   assert(level == 0 || level == 1, "Illegal level parameter");
 201   if (level == 1) {
 202     _old_gen->save_used_region();
 203   }
 204   _young_gen->save_used_region();
 205 }
 206 
 207 size_t GenCollectedHeap::max_capacity() const {
 208   return _young_gen->max_capacity() + _old_gen->max_capacity();
 209 }
 210 
 211 // Update the _full_collections_completed counter
 212 // at the end of a stop-world full GC.
 213 unsigned int GenCollectedHeap::update_full_collections_completed() {
 214   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 215   assert(_full_collections_completed <= _total_full_collections,
 216          "Can't complete more collections than were started");
 217   _full_collections_completed = _total_full_collections;
 218   ml.notify_all();
 219   return _full_collections_completed;
 220 }
 221 
 222 // Update the _full_collections_completed counter, as appropriate,
 223 // at the end of a concurrent GC cycle. Note the conditional update
 224 // below to allow this method to be called by a concurrent collector
 225 // without synchronizing in any manner with the VM thread (which
 226 // may already have initiated a STW full collection "concurrently").
 227 unsigned int GenCollectedHeap::update_full_collections_completed(unsigned int count) {
 228   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 229   assert((_full_collections_completed <= _total_full_collections) &&
 230          (count <= _total_full_collections),
 231          "Can't complete more collections than were started");
 232   if (count > _full_collections_completed) {
 233     _full_collections_completed = count;
 234     ml.notify_all();
 235   }
 236   return _full_collections_completed;
 237 }
 238 
 239 
 240 #ifndef PRODUCT
 241 // Override of memory state checking method in CollectedHeap:
 242 // Some collectors (CMS for example) can't have badHeapWordVal written
 243 // in the first two words of an object. (For instance , in the case of
 244 // CMS these words hold state used to synchronize between certain
 245 // (concurrent) GC steps and direct allocating mutators.)
 246 // The skip_header_HeapWords() method below, allows us to skip
 247 // over the requisite number of HeapWord's. Note that (for
 248 // generational collectors) this means that those many words are
 249 // skipped in each object, irrespective of the generation in which
 250 // that object lives. The resultant loss of precision seems to be
 251 // harmless and the pain of avoiding that imprecision appears somewhat
 252 // higher than we are prepared to pay for such rudimentary debugging
 253 // support.
 254 void GenCollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr,
 255                                                          size_t size) {
 256   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
 257     // We are asked to check a size in HeapWords,
 258     // but the memory is mangled in juint words.
 259     juint* start = (juint*) (addr + skip_header_HeapWords());
 260     juint* end   = (juint*) (addr + size);
 261     for (juint* slot = start; slot < end; slot += 1) {
 262       assert(*slot == badHeapWordVal,
 263              "Found non badHeapWordValue in pre-allocation check");
 264     }
 265   }
 266 }
 267 #endif
 268 
 269 HeapWord* GenCollectedHeap::attempt_allocation(size_t size,
 270                                                bool is_tlab,
 271                                                bool first_only) {
 272   HeapWord* res = NULL;
 273 
 274   if (_young_gen->should_allocate(size, is_tlab)) {
 275     res = _young_gen->allocate(size, is_tlab);
 276     if (res != NULL || first_only) {
 277       return res;
 278     }
 279   }
 280 
 281   if (_old_gen->should_allocate(size, is_tlab)) {
 282     res = _old_gen->allocate(size, is_tlab);
 283   }
 284 
 285   return res;
 286 }
 287 
 288 HeapWord* GenCollectedHeap::mem_allocate(size_t size,
 289                                          bool* gc_overhead_limit_was_exceeded) {
 290   return collector_policy()->mem_allocate_work(size,
 291                                                false /* is_tlab */,
 292                                                gc_overhead_limit_was_exceeded);
 293 }
 294 
 295 bool GenCollectedHeap::must_clear_all_soft_refs() {
 296   return _gc_cause == GCCause::_last_ditch_collection;
 297 }
 298 
 299 bool GenCollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
 300   return UseConcMarkSweepGC &&
 301          ((cause == GCCause::_gc_locker && GCLockerInvokesConcurrent) ||
 302           (cause == GCCause::_java_lang_system_gc && ExplicitGCInvokesConcurrent));
 303 }
 304 
 305 void GenCollectedHeap::collect_generation(Generation* gen, bool full, size_t size,
 306                                           bool is_tlab, bool run_verification, bool clear_soft_refs,
 307                                           bool restore_marks_for_biased_locking) {
 308   // Timer for individual generations. Last argument is false: no CR
 309   // FIXME: We should try to start the timing earlier to cover more of the GC pause
 310   // The PrintGCDetails logging starts before we have incremented the GC id. We will do that later
 311   // so we can assume here that the next GC id is what we want.
 312   GCTraceTime t1(gen->short_name(), PrintGCDetails, false, NULL, GCId::peek());
 313   TraceCollectorStats tcs(gen->counters());
 314   TraceMemoryManagerStats tmms(gen->kind(),gc_cause());
 315 
 316   size_t prev_used = gen->used();
 317   gen->stat_record()->invocations++;
 318   gen->stat_record()->accumulated_time.start();
 319 
 320   // Must be done anew before each collection because
 321   // a previous collection will do mangling and will
 322   // change top of some spaces.
 323   record_gen_tops_before_GC();
 324 
 325   if (PrintGC && Verbose) {
 326     gclog_or_tty->print("level=%d invoke=%d size=" SIZE_FORMAT,
 327                         gen->level(),
 328                         gen->stat_record()->invocations,
 329                         size * HeapWordSize);
 330   }
 331 
 332   if (run_verification && VerifyBeforeGC) {
 333     HandleMark hm;  // Discard invalid handles created during verification
 334     Universe::verify(" VerifyBeforeGC:");
 335   }
 336   COMPILER2_PRESENT(DerivedPointerTable::clear());
 337 
 338   if (restore_marks_for_biased_locking) {
 339     // We perform this mark word preservation work lazily
 340     // because it's only at this point that we know whether we
 341     // absolutely have to do it; we want to avoid doing it for
 342     // scavenge-only collections where it's unnecessary
 343     BiasedLocking::preserve_marks();
 344   }
 345 
 346   // Do collection work
 347   {
 348     // Note on ref discovery: For what appear to be historical reasons,
 349     // GCH enables and disabled (by enqueing) refs discovery.
 350     // In the future this should be moved into the generation's
 351     // collect method so that ref discovery and enqueueing concerns
 352     // are local to a generation. The collect method could return
 353     // an appropriate indication in the case that notification on
 354     // the ref lock was needed. This will make the treatment of
 355     // weak refs more uniform (and indeed remove such concerns
 356     // from GCH). XXX
 357 
 358     HandleMark hm;  // Discard invalid handles created during gc
 359     save_marks();   // save marks for all gens
 360     // We want to discover references, but not process them yet.
 361     // This mode is disabled in process_discovered_references if the
 362     // generation does some collection work, or in
 363     // enqueue_discovered_references if the generation returns
 364     // without doing any work.
 365     ReferenceProcessor* rp = gen->ref_processor();
 366     // If the discovery of ("weak") refs in this generation is
 367     // atomic wrt other collectors in this configuration, we
 368     // are guaranteed to have empty discovered ref lists.
 369     if (rp->discovery_is_atomic()) {
 370       rp->enable_discovery();
 371       rp->setup_policy(clear_soft_refs);
 372     } else {
 373       // collect() below will enable discovery as appropriate
 374     }
 375     gen->collect(full, clear_soft_refs, size, is_tlab);
 376     if (!rp->enqueuing_is_done()) {
 377       rp->enqueue_discovered_references();
 378     } else {
 379       rp->set_enqueuing_is_done(false);
 380     }
 381     rp->verify_no_references_recorded();
 382   }
 383 
 384   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
 385 
 386   gen->stat_record()->accumulated_time.stop();
 387 
 388   update_gc_stats(gen->level(), full);
 389 
 390   if (run_verification && VerifyAfterGC) {
 391     HandleMark hm;  // Discard invalid handles created during verification
 392     Universe::verify(" VerifyAfterGC:");
 393   }
 394 
 395   if (PrintGCDetails) {
 396     gclog_or_tty->print(":");
 397     gen->print_heap_change(prev_used);
 398   }
 399 }
 400 
 401 void GenCollectedHeap::do_collection(bool   full,
 402                                      bool   clear_all_soft_refs,
 403                                      size_t size,
 404                                      bool   is_tlab,
 405                                      int    max_level) {
 406   ResourceMark rm;
 407   DEBUG_ONLY(Thread* my_thread = Thread::current();)
 408 
 409   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
 410   assert(my_thread->is_VM_thread() ||
 411          my_thread->is_ConcurrentGC_thread(),
 412          "incorrect thread type capability");
 413   assert(Heap_lock->is_locked(),
 414          "the requesting thread should have the Heap_lock");
 415   guarantee(!is_gc_active(), "collection is not reentrant");
 416 
 417   if (GC_locker::check_active_before_gc()) {
 418     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
 419   }
 420 
 421   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
 422                           collector_policy()->should_clear_all_soft_refs();
 423 
 424   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
 425 
 426   const size_t metadata_prev_used = MetaspaceAux::used_bytes();
 427 
 428   print_heap_before_gc();
 429 
 430   {
 431     FlagSetting fl(_is_gc_active, true);
 432 
 433     bool complete = full && (max_level == 1 /* old */);
 434     const char* gc_cause_prefix = complete ? "Full GC" : "GC";
 435     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
 436     // The PrintGCDetails logging starts before we have incremented the GC id. We will do that later
 437     // so we can assume here that the next GC id is what we want.
 438     GCTraceTime t(GCCauseString(gc_cause_prefix, gc_cause()), PrintGCDetails, false, NULL, GCId::peek());
 439 
 440     gc_prologue(complete);
 441     increment_total_collections(complete);
 442 
 443     size_t gch_prev_used = used();
 444     bool run_verification = total_collections() >= VerifyGCStartAt;
 445 
 446     bool prepared_for_verification = false;
 447     int max_level_collected = 0;
 448     bool old_collects_young = (max_level == 1) &&
 449                               full &&
 450                               _old_gen->full_collects_younger_generations();
 451     if (!old_collects_young &&
 452         _young_gen->should_collect(full, size, is_tlab)) {
 453       if (run_verification && VerifyGCLevel <= 0 && VerifyBeforeGC) {
 454         prepare_for_verify();
 455         prepared_for_verification = true;
 456       }
 457 
 458       assert(!_young_gen->performs_in_place_marking(), "No young generation do in place marking");
 459       collect_generation(_young_gen,
 460                          full,
 461                          size,
 462                          is_tlab,
 463                          run_verification && VerifyGCLevel <= 0,
 464                          do_clear_all_soft_refs,
 465                          false);
 466 
 467       if (size > 0 && (!is_tlab || _young_gen->supports_tlab_allocation()) &&
 468           size * HeapWordSize <= _young_gen->unsafe_max_alloc_nogc()) {
 469         // Allocation request was met by young GC.
 470         size = 0;
 471       }
 472     }
 473 
 474     bool must_restore_marks_for_biased_locking = false;
 475 
 476     if (max_level == 1 && _old_gen->should_collect(full, size, is_tlab)) {
 477       if (!complete) {
 478         // The full_collections increment was missed above.
 479         increment_total_full_collections();
 480       }
 481 
 482       pre_full_gc_dump(NULL);    // do any pre full gc dumps
 483 
 484       if (!prepared_for_verification && run_verification &&
 485           VerifyGCLevel <= 1 && VerifyBeforeGC) {
 486         prepare_for_verify();
 487       }
 488 
 489       assert(_old_gen->performs_in_place_marking(), "All old generations do in place marking");
 490       collect_generation(_old_gen,
 491                          full,
 492                          size,
 493                          is_tlab,
 494                          run_verification && VerifyGCLevel <= 1,
 495                          do_clear_all_soft_refs,
 496                          true);
 497 
 498       must_restore_marks_for_biased_locking = true;
 499       max_level_collected = 1;
 500     }
 501 
 502     // Update "complete" boolean wrt what actually transpired --
 503     // for instance, a promotion failure could have led to
 504     // a whole heap collection.
 505     complete = complete || (max_level_collected == 1 /* old */);
 506 
 507     if (complete) { // We did a "major" collection
 508       // FIXME: See comment at pre_full_gc_dump call
 509       post_full_gc_dump(NULL);   // do any post full gc dumps
 510     }
 511 
 512     if (PrintGCDetails) {
 513       print_heap_change(gch_prev_used);
 514 
 515       // Print metaspace info for full GC with PrintGCDetails flag.
 516       if (complete) {
 517         MetaspaceAux::print_metaspace_change(metadata_prev_used);
 518       }
 519     }
 520 
 521     // Adjust generation sizes.
 522     if (max_level_collected == 1 /* old */) {
 523       _old_gen->compute_new_size();
 524     }
 525     _young_gen->compute_new_size();
 526 
 527     if (complete) {
 528       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
 529       ClassLoaderDataGraph::purge();
 530       MetaspaceAux::verify_metrics();
 531       // Resize the metaspace capacity after full collections
 532       MetaspaceGC::compute_new_size();
 533       update_full_collections_completed();
 534     }
 535 
 536     // Track memory usage and detect low memory after GC finishes
 537     MemoryService::track_memory_usage();
 538 
 539     gc_epilogue(complete);
 540 
 541     if (must_restore_marks_for_biased_locking) {
 542       BiasedLocking::restore_marks();
 543     }
 544   }
 545 
 546   print_heap_after_gc();
 547 
 548 #ifdef TRACESPINNING
 549   ParallelTaskTerminator::print_termination_counts();
 550 #endif
 551 }
 552 
 553 HeapWord* GenCollectedHeap::satisfy_failed_allocation(size_t size, bool is_tlab) {
 554   return collector_policy()->satisfy_failed_allocation(size, is_tlab);
 555 }
 556 
 557 void GenCollectedHeap::set_par_threads(uint t) {
 558   SharedHeap::set_par_threads(t);
 559   set_n_termination(t);
 560 }
 561 
 562 void GenCollectedHeap::set_n_termination(uint t) {
 563   _process_strong_tasks->set_n_threads(t);
 564 }
 565 
 566 #ifdef ASSERT
 567 class AssertNonScavengableClosure: public OopClosure {
 568 public:
 569   virtual void do_oop(oop* p) {
 570     assert(!Universe::heap()->is_in_partial_collection(*p),
 571       "Referent should not be scavengable.");  }
 572   virtual void do_oop(narrowOop* p) { ShouldNotReachHere(); }
 573 };
 574 static AssertNonScavengableClosure assert_is_non_scavengable_closure;
 575 #endif
 576 
 577 void GenCollectedHeap::process_roots(bool activate_scope,
 578                                      ScanningOption so,
 579                                      OopClosure* strong_roots,
 580                                      OopClosure* weak_roots,
 581                                      CLDClosure* strong_cld_closure,
 582                                      CLDClosure* weak_cld_closure,
 583                                      CodeBlobClosure* code_roots) {
 584   StrongRootsScope srs(this, activate_scope);
 585 
 586   // General roots.
 587   assert(_strong_roots_parity != 0, "must have called prologue code");
 588   assert(code_roots != NULL, "code root closure should always be set");
 589   // _n_termination for _process_strong_tasks should be set up stream
 590   // in a method not running in a GC worker.  Otherwise the GC worker
 591   // could be trying to change the termination condition while the task
 592   // is executing in another GC worker.
 593 
 594   if (!_process_strong_tasks->is_task_claimed(GCH_PS_ClassLoaderDataGraph_oops_do)) {
 595     ClassLoaderDataGraph::roots_cld_do(strong_cld_closure, weak_cld_closure);
 596   }
 597 
 598   // Some CLDs contained in the thread frames should be considered strong.
 599   // Don't process them if they will be processed during the ClassLoaderDataGraph phase.
 600   CLDClosure* roots_from_clds_p = (strong_cld_closure != weak_cld_closure) ? strong_cld_closure : NULL;
 601   // Only process code roots from thread stacks if we aren't visiting the entire CodeCache anyway
 602   CodeBlobClosure* roots_from_code_p = (so & SO_AllCodeCache) ? NULL : code_roots;
 603 
 604   Threads::possibly_parallel_oops_do(strong_roots, roots_from_clds_p, roots_from_code_p);
 605 
 606   if (!_process_strong_tasks->is_task_claimed(GCH_PS_Universe_oops_do)) {
 607     Universe::oops_do(strong_roots);
 608   }
 609   // Global (strong) JNI handles
 610   if (!_process_strong_tasks->is_task_claimed(GCH_PS_JNIHandles_oops_do)) {
 611     JNIHandles::oops_do(strong_roots);
 612   }
 613 
 614   if (!_process_strong_tasks->is_task_claimed(GCH_PS_ObjectSynchronizer_oops_do)) {
 615     ObjectSynchronizer::oops_do(strong_roots);
 616   }
 617   if (!_process_strong_tasks->is_task_claimed(GCH_PS_FlatProfiler_oops_do)) {
 618     FlatProfiler::oops_do(strong_roots);
 619   }
 620   if (!_process_strong_tasks->is_task_claimed(GCH_PS_Management_oops_do)) {
 621     Management::oops_do(strong_roots);
 622   }
 623   if (!_process_strong_tasks->is_task_claimed(GCH_PS_jvmti_oops_do)) {
 624     JvmtiExport::oops_do(strong_roots);
 625   }
 626 
 627   if (!_process_strong_tasks->is_task_claimed(GCH_PS_SystemDictionary_oops_do)) {
 628     SystemDictionary::roots_oops_do(strong_roots, weak_roots);
 629   }
 630 
 631   // All threads execute the following. A specific chunk of buckets
 632   // from the StringTable are the individual tasks.
 633   if (weak_roots != NULL) {
 634     if (CollectedHeap::use_parallel_gc_threads()) {
 635       StringTable::possibly_parallel_oops_do(weak_roots);
 636     } else {
 637       StringTable::oops_do(weak_roots);
 638     }
 639   }
 640 
 641   if (!_process_strong_tasks->is_task_claimed(GCH_PS_CodeCache_oops_do)) {
 642     if (so & SO_ScavengeCodeCache) {
 643       assert(code_roots != NULL, "must supply closure for code cache");
 644 
 645       // We only visit parts of the CodeCache when scavenging.
 646       CodeCache::scavenge_root_nmethods_do(code_roots);
 647     }
 648     if (so & SO_AllCodeCache) {
 649       assert(code_roots != NULL, "must supply closure for code cache");
 650 
 651       // CMSCollector uses this to do intermediate-strength collections.
 652       // We scan the entire code cache, since CodeCache::do_unloading is not called.
 653       CodeCache::blobs_do(code_roots);
 654     }
 655     // Verify that the code cache contents are not subject to
 656     // movement by a scavenging collection.
 657     DEBUG_ONLY(CodeBlobToOopClosure assert_code_is_non_scavengable(&assert_is_non_scavengable_closure, !CodeBlobToOopClosure::FixRelocations));
 658     DEBUG_ONLY(CodeCache::asserted_non_scavengable_nmethods_do(&assert_code_is_non_scavengable));
 659   }
 660 
 661 }
 662 
 663 void GenCollectedHeap::gen_process_roots(int level,
 664                                          bool younger_gens_as_roots,
 665                                          bool activate_scope,
 666                                          ScanningOption so,
 667                                          bool only_strong_roots,
 668                                          OopsInGenClosure* not_older_gens,
 669                                          OopsInGenClosure* older_gens,
 670                                          CLDClosure* cld_closure) {
 671   const bool is_adjust_phase = !only_strong_roots && !younger_gens_as_roots;
 672 
 673   bool is_moving_collection = false;
 674   if (level == 0 || is_adjust_phase) {
 675     // young collections are always moving
 676     is_moving_collection = true;
 677   }
 678 
 679   MarkingCodeBlobClosure mark_code_closure(not_older_gens, is_moving_collection);
 680   OopsInGenClosure* weak_roots = only_strong_roots ? NULL : not_older_gens;
 681   CLDClosure* weak_cld_closure = only_strong_roots ? NULL : cld_closure;
 682 
 683   process_roots(activate_scope, so,
 684                 not_older_gens, weak_roots,
 685                 cld_closure, weak_cld_closure,
 686                 &mark_code_closure);
 687 
 688   if (younger_gens_as_roots) {
 689     if (!_process_strong_tasks->is_task_claimed(GCH_PS_younger_gens)) {
 690       if (level == 1) {
 691         not_older_gens->set_generation(_young_gen);
 692         _young_gen->oop_iterate(not_older_gens);
 693       }
 694       not_older_gens->reset_generation();
 695     }
 696   }
 697   // When collection is parallel, all threads get to cooperate to do
 698   // older-gen scanning.
 699   if (level == 0) {
 700     older_gens->set_generation(_old_gen);
 701     rem_set()->younger_refs_iterate(_old_gen, older_gens);
 702     older_gens->reset_generation();
 703   }
 704 
 705   _process_strong_tasks->all_tasks_completed();
 706 }
 707 
 708 
 709 class AlwaysTrueClosure: public BoolObjectClosure {
 710 public:
 711   bool do_object_b(oop p) { return true; }
 712 };
 713 static AlwaysTrueClosure always_true;
 714 
 715 void GenCollectedHeap::gen_process_weak_roots(OopClosure* root_closure) {
 716   JNIHandles::weak_oops_do(&always_true, root_closure);
 717   _young_gen->ref_processor()->weak_oops_do(root_closure);
 718   _old_gen->ref_processor()->weak_oops_do(root_closure);
 719 }
 720 
 721 #define GCH_SINCE_SAVE_MARKS_ITERATE_DEFN(OopClosureType, nv_suffix)    \
 722 void GenCollectedHeap::                                                 \
 723 oop_since_save_marks_iterate(int level,                                 \
 724                              OopClosureType* cur,                       \
 725                              OopClosureType* older) {                   \
 726   if (level == 0) {                                                     \
 727     _young_gen->oop_since_save_marks_iterate##nv_suffix(cur);           \
 728     _old_gen->oop_since_save_marks_iterate##nv_suffix(older);           \
 729   } else {                                                              \
 730     _old_gen->oop_since_save_marks_iterate##nv_suffix(cur);             \
 731   }                                                                     \
 732 }
 733 
 734 ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DEFN)
 735 
 736 #undef GCH_SINCE_SAVE_MARKS_ITERATE_DEFN
 737 
 738 bool GenCollectedHeap::no_allocs_since_save_marks(int level) {
 739   if (level == 0 && !_young_gen->no_allocs_since_save_marks()) {
 740     return false;
 741   }
 742   return _old_gen->no_allocs_since_save_marks();
 743 }
 744 
 745 bool GenCollectedHeap::supports_inline_contig_alloc() const {
 746   return _young_gen->supports_inline_contig_alloc();
 747 }
 748 
 749 HeapWord** GenCollectedHeap::top_addr() const {
 750   return _young_gen->top_addr();
 751 }
 752 
 753 HeapWord** GenCollectedHeap::end_addr() const {
 754   return _young_gen->end_addr();
 755 }
 756 
 757 // public collection interfaces
 758 
 759 void GenCollectedHeap::collect(GCCause::Cause cause) {
 760   if (should_do_concurrent_full_gc(cause)) {
 761 #if INCLUDE_ALL_GCS
 762     // mostly concurrent full collection
 763     collect_mostly_concurrent(cause);
 764 #else  // INCLUDE_ALL_GCS
 765     ShouldNotReachHere();
 766 #endif // INCLUDE_ALL_GCS
 767   } else if (cause == GCCause::_wb_young_gc) {
 768     // minor collection for WhiteBox API
 769     collect(cause, 0 /* young */);
 770   } else {
 771 #ifdef ASSERT
 772   if (cause == GCCause::_scavenge_alot) {
 773     // minor collection only
 774     collect(cause, 0 /* young */);
 775   } else {
 776     // Stop-the-world full collection
 777     collect(cause, 1 /* old */);
 778   }
 779 #else
 780     // Stop-the-world full collection
 781     collect(cause, 1 /* old */);
 782 #endif
 783   }
 784 }
 785 
 786 void GenCollectedHeap::collect(GCCause::Cause cause, int max_level) {
 787   // The caller doesn't have the Heap_lock
 788   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 789   MutexLocker ml(Heap_lock);
 790   collect_locked(cause, max_level);
 791 }
 792 
 793 void GenCollectedHeap::collect_locked(GCCause::Cause cause) {
 794   // The caller has the Heap_lock
 795   assert(Heap_lock->owned_by_self(), "this thread should own the Heap_lock");
 796   collect_locked(cause, 1 /* old */);
 797 }
 798 
 799 // this is the private collection interface
 800 // The Heap_lock is expected to be held on entry.
 801 
 802 void GenCollectedHeap::collect_locked(GCCause::Cause cause, int max_level) {
 803   // Read the GC count while holding the Heap_lock
 804   unsigned int gc_count_before      = total_collections();
 805   unsigned int full_gc_count_before = total_full_collections();
 806   {
 807     MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
 808     VM_GenCollectFull op(gc_count_before, full_gc_count_before,
 809                          cause, max_level);
 810     VMThread::execute(&op);
 811   }
 812 }
 813 
 814 #if INCLUDE_ALL_GCS
 815 bool GenCollectedHeap::create_cms_collector() {
 816 
 817   assert(_old_gen->kind() == Generation::ConcurrentMarkSweep,
 818          "Unexpected generation kinds");
 819   // Skip two header words in the block content verification
 820   NOT_PRODUCT(_skip_header_HeapWords = CMSCollector::skip_header_HeapWords();)
 821   CMSCollector* collector = new CMSCollector(
 822     (ConcurrentMarkSweepGeneration*)_old_gen,
 823     _rem_set->as_CardTableRS(),
 824     (ConcurrentMarkSweepPolicy*) collector_policy());
 825 
 826   if (collector == NULL || !collector->completed_initialization()) {
 827     if (collector) {
 828       delete collector;  // Be nice in embedded situation
 829     }
 830     vm_shutdown_during_initialization("Could not create CMS collector");
 831     return false;
 832   }
 833   return true;  // success
 834 }
 835 
 836 void GenCollectedHeap::collect_mostly_concurrent(GCCause::Cause cause) {
 837   assert(!Heap_lock->owned_by_self(), "Should not own Heap_lock");
 838 
 839   MutexLocker ml(Heap_lock);
 840   // Read the GC counts while holding the Heap_lock
 841   unsigned int full_gc_count_before = total_full_collections();
 842   unsigned int gc_count_before      = total_collections();
 843   {
 844     MutexUnlocker mu(Heap_lock);
 845     VM_GenCollectFullConcurrent op(gc_count_before, full_gc_count_before, cause);
 846     VMThread::execute(&op);
 847   }
 848 }
 849 #endif // INCLUDE_ALL_GCS
 850 
 851 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs) {
 852    do_full_collection(clear_all_soft_refs, 1 /* old */);
 853 }
 854 
 855 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs,
 856                                           int max_level) {
 857   int local_max_level;
 858   if (!incremental_collection_will_fail(false /* don't consult_young */) &&
 859       gc_cause() == GCCause::_gc_locker) {
 860     local_max_level = 0;
 861   } else {
 862     local_max_level = max_level;
 863   }
 864 
 865   do_collection(true                 /* full */,
 866                 clear_all_soft_refs  /* clear_all_soft_refs */,
 867                 0                    /* size */,
 868                 false                /* is_tlab */,
 869                 local_max_level      /* max_level */);
 870   // Hack XXX FIX ME !!!
 871   // A scavenge may not have been attempted, or may have
 872   // been attempted and failed, because the old gen was too full
 873   if (local_max_level == 0 && gc_cause() == GCCause::_gc_locker &&
 874       incremental_collection_will_fail(false /* don't consult_young */)) {
 875     if (PrintGCDetails) {
 876       gclog_or_tty->print_cr("GC locker: Trying a full collection "
 877                              "because scavenge failed");
 878     }
 879     // This time allow the old gen to be collected as well
 880     do_collection(true                 /* full */,
 881                   clear_all_soft_refs  /* clear_all_soft_refs */,
 882                   0                    /* size */,
 883                   false                /* is_tlab */,
 884                   1  /* old */         /* max_level */);
 885   }
 886 }
 887 
 888 bool GenCollectedHeap::is_in_young(oop p) {
 889   bool result = ((HeapWord*)p) < _old_gen->reserved().start();
 890   assert(result == _young_gen->is_in_reserved(p),
 891          err_msg("incorrect test - result=%d, p=" INTPTR_FORMAT, result, p2i((void*)p)));
 892   return result;
 893 }
 894 
 895 // Returns "TRUE" iff "p" points into the committed areas of the heap.
 896 bool GenCollectedHeap::is_in(const void* p) const {
 897   #ifndef ASSERT
 898   guarantee(VerifyBeforeGC      ||
 899             VerifyDuringGC      ||
 900             VerifyBeforeExit    ||
 901             VerifyDuringStartup ||
 902             PrintAssembly       ||
 903             tty->count() != 0   ||   // already printing
 904             VerifyAfterGC       ||
 905     VMError::fatal_error_in_progress(), "too expensive");
 906 
 907   #endif
 908   return _young_gen->is_in(p) || _old_gen->is_in(p);
 909 }
 910 
 911 #ifdef ASSERT
 912 // Don't implement this by using is_in_young().  This method is used
 913 // in some cases to check that is_in_young() is correct.
 914 bool GenCollectedHeap::is_in_partial_collection(const void* p) {
 915   assert(is_in_reserved(p) || p == NULL,
 916     "Does not work if address is non-null and outside of the heap");
 917   return p < _young_gen->reserved().end() && p != NULL;
 918 }
 919 #endif
 920 
 921 void GenCollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
 922   _young_gen->oop_iterate(cl);
 923   _old_gen->oop_iterate(cl);
 924 }
 925 
 926 void GenCollectedHeap::object_iterate(ObjectClosure* cl) {
 927   _young_gen->object_iterate(cl);
 928   _old_gen->object_iterate(cl);
 929 }
 930 
 931 void GenCollectedHeap::safe_object_iterate(ObjectClosure* cl) {
 932   _young_gen->safe_object_iterate(cl);
 933   _old_gen->safe_object_iterate(cl);
 934 }
 935 
 936 Space* GenCollectedHeap::space_containing(const void* addr) const {
 937   Space* res = _young_gen->space_containing(addr);
 938   if (res != NULL) {
 939     return res;
 940   }
 941   res = _old_gen->space_containing(addr);
 942   assert(res != NULL, "Could not find containing space");
 943   return res;
 944 }
 945 
 946 HeapWord* GenCollectedHeap::block_start(const void* addr) const {
 947   assert(is_in_reserved(addr), "block_start of address outside of heap");
 948   if (_young_gen->is_in_reserved(addr)) {
 949     assert(_young_gen->is_in(addr), "addr should be in allocated part of generation");
 950     return _young_gen->block_start(addr);
 951   }
 952 
 953   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
 954   assert(_old_gen->is_in(addr), "addr should be in allocated part of generation");
 955   return _old_gen->block_start(addr);
 956 }
 957 
 958 size_t GenCollectedHeap::block_size(const HeapWord* addr) const {
 959   assert(is_in_reserved(addr), "block_size of address outside of heap");
 960   if (_young_gen->is_in_reserved(addr)) {
 961     assert(_young_gen->is_in(addr), "addr should be in allocated part of generation");
 962     return _young_gen->block_size(addr);
 963   }
 964 
 965   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
 966   assert(_old_gen->is_in(addr), "addr should be in allocated part of generation");
 967   return _old_gen->block_size(addr);
 968 }
 969 
 970 bool GenCollectedHeap::block_is_obj(const HeapWord* addr) const {
 971   assert(is_in_reserved(addr), "block_is_obj of address outside of heap");
 972   assert(block_start(addr) == addr, "addr must be a block start");
 973   if (_young_gen->is_in_reserved(addr)) {
 974     return _young_gen->block_is_obj(addr);
 975   }
 976 
 977   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
 978   return _old_gen->block_is_obj(addr);
 979 }
 980 
 981 bool GenCollectedHeap::supports_tlab_allocation() const {
 982   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
 983   return _young_gen->supports_tlab_allocation();
 984 }
 985 
 986 size_t GenCollectedHeap::tlab_capacity(Thread* thr) const {
 987   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
 988   if (_young_gen->supports_tlab_allocation()) {
 989     return _young_gen->tlab_capacity();
 990   }
 991   return 0;
 992 }
 993 
 994 size_t GenCollectedHeap::tlab_used(Thread* thr) const {
 995   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
 996   if (_young_gen->supports_tlab_allocation()) {
 997     return _young_gen->tlab_used();
 998   }
 999   return 0;
1000 }
1001 
1002 size_t GenCollectedHeap::unsafe_max_tlab_alloc(Thread* thr) const {
1003   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
1004   if (_young_gen->supports_tlab_allocation()) {
1005     return _young_gen->unsafe_max_tlab_alloc();
1006   }
1007   return 0;
1008 }
1009 
1010 HeapWord* GenCollectedHeap::allocate_new_tlab(size_t size) {
1011   bool gc_overhead_limit_was_exceeded;
1012   return collector_policy()->mem_allocate_work(size /* size */,
1013                                                true /* is_tlab */,
1014                                                &gc_overhead_limit_was_exceeded);
1015 }
1016 
1017 // Requires "*prev_ptr" to be non-NULL.  Deletes and a block of minimal size
1018 // from the list headed by "*prev_ptr".
1019 static ScratchBlock *removeSmallestScratch(ScratchBlock **prev_ptr) {
1020   bool first = true;
1021   size_t min_size = 0;   // "first" makes this conceptually infinite.
1022   ScratchBlock **smallest_ptr, *smallest;
1023   ScratchBlock  *cur = *prev_ptr;
1024   while (cur) {
1025     assert(*prev_ptr == cur, "just checking");
1026     if (first || cur->num_words < min_size) {
1027       smallest_ptr = prev_ptr;
1028       smallest     = cur;
1029       min_size     = smallest->num_words;
1030       first        = false;
1031     }
1032     prev_ptr = &cur->next;
1033     cur     =  cur->next;
1034   }
1035   smallest      = *smallest_ptr;
1036   *smallest_ptr = smallest->next;
1037   return smallest;
1038 }
1039 
1040 // Sort the scratch block list headed by res into decreasing size order,
1041 // and set "res" to the result.
1042 static void sort_scratch_list(ScratchBlock*& list) {
1043   ScratchBlock* sorted = NULL;
1044   ScratchBlock* unsorted = list;
1045   while (unsorted) {
1046     ScratchBlock *smallest = removeSmallestScratch(&unsorted);
1047     smallest->next  = sorted;
1048     sorted          = smallest;
1049   }
1050   list = sorted;
1051 }
1052 
1053 ScratchBlock* GenCollectedHeap::gather_scratch(Generation* requestor,
1054                                                size_t max_alloc_words) {
1055   ScratchBlock* res = NULL;
1056   _young_gen->contribute_scratch(res, requestor, max_alloc_words);
1057   _old_gen->contribute_scratch(res, requestor, max_alloc_words);
1058   sort_scratch_list(res);
1059   return res;
1060 }
1061 
1062 void GenCollectedHeap::release_scratch() {
1063   _young_gen->reset_scratch();
1064   _old_gen->reset_scratch();
1065 }
1066 
1067 class GenPrepareForVerifyClosure: public GenCollectedHeap::GenClosure {
1068   void do_generation(Generation* gen) {
1069     gen->prepare_for_verify();
1070   }
1071 };
1072 
1073 void GenCollectedHeap::prepare_for_verify() {
1074   ensure_parsability(false);        // no need to retire TLABs
1075   GenPrepareForVerifyClosure blk;
1076   generation_iterate(&blk, false);
1077 }
1078 
1079 void GenCollectedHeap::generation_iterate(GenClosure* cl,
1080                                           bool old_to_young) {
1081   if (old_to_young) {
1082     cl->do_generation(_old_gen);
1083     cl->do_generation(_young_gen);
1084   } else {
1085     cl->do_generation(_young_gen);
1086     cl->do_generation(_old_gen);
1087   }
1088 }
1089 
1090 void GenCollectedHeap::space_iterate(SpaceClosure* cl) {
1091   _young_gen->space_iterate(cl, true);
1092   _old_gen->space_iterate(cl, true);
1093 }
1094 
1095 bool GenCollectedHeap::is_maximal_no_gc() const {
1096   return _young_gen->is_maximal_no_gc() && _old_gen->is_maximal_no_gc();
1097 }
1098 
1099 void GenCollectedHeap::save_marks() {
1100   _young_gen->save_marks();
1101   _old_gen->save_marks();
1102 }
1103 
1104 GenCollectedHeap* GenCollectedHeap::heap() {
1105   assert(_gch != NULL, "Uninitialized access to GenCollectedHeap::heap()");
1106   assert(_gch->kind() == CollectedHeap::GenCollectedHeap, "not a generational heap");
1107   return _gch;
1108 }
1109 
1110 void GenCollectedHeap::prepare_for_compaction() {
1111   // Start by compacting into same gen.
1112   CompactPoint cp(_old_gen);
1113   _old_gen->prepare_for_compaction(&cp);
1114   _young_gen->prepare_for_compaction(&cp);
1115 }
1116 
1117 GCStats* GenCollectedHeap::gc_stats(int level) const {
1118   if (level == 0) {
1119     return _young_gen->gc_stats();
1120   } else {
1121     return _old_gen->gc_stats();
1122   }
1123 }
1124 
1125 void GenCollectedHeap::verify(bool silent, VerifyOption option /* ignored */) {
1126   if (!silent) {
1127     gclog_or_tty->print("%s", _old_gen->name());
1128     gclog_or_tty->print(" ");
1129   }
1130   _old_gen->verify();
1131 
1132   if (!silent) {
1133     gclog_or_tty->print("%s", _young_gen->name());
1134     gclog_or_tty->print(" ");
1135   }
1136   _young_gen->verify();
1137 
1138   if (!silent) {
1139     gclog_or_tty->print("remset ");
1140   }
1141   rem_set()->verify();
1142 }
1143 
1144 void GenCollectedHeap::print_on(outputStream* st) const {
1145   _young_gen->print_on(st);
1146   _old_gen->print_on(st);
1147   MetaspaceAux::print_on(st);
1148 }
1149 
1150 void GenCollectedHeap::gc_threads_do(ThreadClosure* tc) const {
1151   if (workers() != NULL) {
1152     workers()->threads_do(tc);
1153   }
1154 #if INCLUDE_ALL_GCS
1155   if (UseConcMarkSweepGC) {
1156     ConcurrentMarkSweepThread::threads_do(tc);
1157   }
1158 #endif // INCLUDE_ALL_GCS
1159 }
1160 
1161 void GenCollectedHeap::print_gc_threads_on(outputStream* st) const {
1162 #if INCLUDE_ALL_GCS
1163   if (UseConcMarkSweepGC) {
1164     workers()->print_worker_threads_on(st);
1165     ConcurrentMarkSweepThread::print_all_on(st);
1166   }
1167 #endif // INCLUDE_ALL_GCS
1168 }
1169 
1170 void GenCollectedHeap::print_on_error(outputStream* st) const {
1171   this->CollectedHeap::print_on_error(st);
1172 
1173 #if INCLUDE_ALL_GCS
1174   if (UseConcMarkSweepGC) {
1175     st->cr();
1176     CMSCollector::print_on_error(st);
1177   }
1178 #endif // INCLUDE_ALL_GCS
1179 }
1180 
1181 void GenCollectedHeap::print_tracing_info() const {
1182   if (TraceYoungGenTime) {
1183     _young_gen->print_summary_info();
1184   }
1185   if (TraceOldGenTime) {
1186     _old_gen->print_summary_info();
1187   }
1188 }
1189 
1190 void GenCollectedHeap::print_heap_change(size_t prev_used) const {
1191   if (PrintGCDetails && Verbose) {
1192     gclog_or_tty->print(" "  SIZE_FORMAT
1193                         "->" SIZE_FORMAT
1194                         "("  SIZE_FORMAT ")",
1195                         prev_used, used(), capacity());
1196   } else {
1197     gclog_or_tty->print(" "  SIZE_FORMAT "K"
1198                         "->" SIZE_FORMAT "K"
1199                         "("  SIZE_FORMAT "K)",
1200                         prev_used / K, used() / K, capacity() / K);
1201   }
1202 }
1203 
1204 class GenGCPrologueClosure: public GenCollectedHeap::GenClosure {
1205  private:
1206   bool _full;
1207  public:
1208   void do_generation(Generation* gen) {
1209     gen->gc_prologue(_full);
1210   }
1211   GenGCPrologueClosure(bool full) : _full(full) {};
1212 };
1213 
1214 void GenCollectedHeap::gc_prologue(bool full) {
1215   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
1216 
1217   always_do_update_barrier = false;
1218   // Fill TLAB's and such
1219   CollectedHeap::accumulate_statistics_all_tlabs();
1220   ensure_parsability(true);   // retire TLABs
1221 
1222   // Walk generations
1223   GenGCPrologueClosure blk(full);
1224   generation_iterate(&blk, false);  // not old-to-young.
1225 };
1226 
1227 class GenGCEpilogueClosure: public GenCollectedHeap::GenClosure {
1228  private:
1229   bool _full;
1230  public:
1231   void do_generation(Generation* gen) {
1232     gen->gc_epilogue(_full);
1233   }
1234   GenGCEpilogueClosure(bool full) : _full(full) {};
1235 };
1236 
1237 void GenCollectedHeap::gc_epilogue(bool full) {
1238 #ifdef COMPILER2
1239   assert(DerivedPointerTable::is_empty(), "derived pointer present");
1240   size_t actual_gap = pointer_delta((HeapWord*) (max_uintx-3), *(end_addr()));
1241   guarantee(actual_gap > (size_t)FastAllocateSizeLimit, "inline allocation wraps");
1242 #endif /* COMPILER2 */
1243 
1244   resize_all_tlabs();
1245 
1246   GenGCEpilogueClosure blk(full);
1247   generation_iterate(&blk, false);  // not old-to-young.
1248 
1249   if (!CleanChunkPoolAsync) {
1250     Chunk::clean_chunk_pool();
1251   }
1252 
1253   MetaspaceCounters::update_performance_counters();
1254   CompressedClassSpaceCounters::update_performance_counters();
1255 
1256   always_do_update_barrier = UseConcMarkSweepGC;
1257 };
1258 
1259 #ifndef PRODUCT
1260 class GenGCSaveTopsBeforeGCClosure: public GenCollectedHeap::GenClosure {
1261  private:
1262  public:
1263   void do_generation(Generation* gen) {
1264     gen->record_spaces_top();
1265   }
1266 };
1267 
1268 void GenCollectedHeap::record_gen_tops_before_GC() {
1269   if (ZapUnusedHeapArea) {
1270     GenGCSaveTopsBeforeGCClosure blk;
1271     generation_iterate(&blk, false);  // not old-to-young.
1272   }
1273 }
1274 #endif  // not PRODUCT
1275 
1276 class GenEnsureParsabilityClosure: public GenCollectedHeap::GenClosure {
1277  public:
1278   void do_generation(Generation* gen) {
1279     gen->ensure_parsability();
1280   }
1281 };
1282 
1283 void GenCollectedHeap::ensure_parsability(bool retire_tlabs) {
1284   CollectedHeap::ensure_parsability(retire_tlabs);
1285   GenEnsureParsabilityClosure ep_cl;
1286   generation_iterate(&ep_cl, false);
1287 }
1288 
1289 oop GenCollectedHeap::handle_failed_promotion(Generation* old_gen,
1290                                               oop obj,
1291                                               size_t obj_size) {
1292   guarantee(old_gen->level() == 1, "We only get here with an old generation");
1293   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
1294   HeapWord* result = NULL;
1295 
1296   result = old_gen->expand_and_allocate(obj_size, false);
1297 
1298   if (result != NULL) {
1299     Copy::aligned_disjoint_words((HeapWord*)obj, result, obj_size);
1300   }
1301   return oop(result);
1302 }
1303 
1304 class GenTimeOfLastGCClosure: public GenCollectedHeap::GenClosure {
1305   jlong _time;   // in ms
1306   jlong _now;    // in ms
1307 
1308  public:
1309   GenTimeOfLastGCClosure(jlong now) : _time(now), _now(now) { }
1310 
1311   jlong time() { return _time; }
1312 
1313   void do_generation(Generation* gen) {
1314     _time = MIN2(_time, gen->time_of_last_gc(_now));
1315   }
1316 };
1317 
1318 jlong GenCollectedHeap::millis_since_last_gc() {
1319   // We need a monotonically non-decreasing time in ms but
1320   // os::javaTimeMillis() does not guarantee monotonicity.
1321   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
1322   GenTimeOfLastGCClosure tolgc_cl(now);
1323   // iterate over generations getting the oldest
1324   // time that a generation was collected
1325   generation_iterate(&tolgc_cl, false);
1326 
1327   // javaTimeNanos() is guaranteed to be monotonically non-decreasing
1328   // provided the underlying platform provides such a time source
1329   // (and it is bug free). So we still have to guard against getting
1330   // back a time later than 'now'.
1331   jlong retVal = now - tolgc_cl.time();
1332   if (retVal < 0) {
1333     NOT_PRODUCT(warning("time warp: " JLONG_FORMAT, retVal);)
1334     return 0;
1335   }
1336   return retVal;
1337 }