1 /* 2 * Copyright (c) 2005, 2016, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/stringTable.hpp" 27 #include "classfile/symbolTable.hpp" 28 #include "classfile/systemDictionary.hpp" 29 #include "code/codeCache.hpp" 30 #include "gc/parallel/gcTaskManager.hpp" 31 #include "gc/parallel/parallelScavengeHeap.inline.hpp" 32 #include "gc/parallel/pcTasks.hpp" 33 #include "gc/parallel/psAdaptiveSizePolicy.hpp" 34 #include "gc/parallel/psCompactionManager.inline.hpp" 35 #include "gc/parallel/psMarkSweep.hpp" 36 #include "gc/parallel/psMarkSweepDecorator.hpp" 37 #include "gc/parallel/psOldGen.hpp" 38 #include "gc/parallel/psParallelCompact.inline.hpp" 39 #include "gc/parallel/psPromotionManager.inline.hpp" 40 #include "gc/parallel/psScavenge.hpp" 41 #include "gc/parallel/psYoungGen.hpp" 42 #include "gc/shared/gcCause.hpp" 43 #include "gc/shared/gcHeapSummary.hpp" 44 #include "gc/shared/gcId.hpp" 45 #include "gc/shared/gcLocker.inline.hpp" 46 #include "gc/shared/gcTimer.hpp" 47 #include "gc/shared/gcTrace.hpp" 48 #include "gc/shared/gcTraceTime.inline.hpp" 49 #include "gc/shared/isGCActiveMark.hpp" 50 #include "gc/shared/referencePolicy.hpp" 51 #include "gc/shared/referenceProcessor.hpp" 52 #include "gc/shared/spaceDecorator.hpp" 53 #include "logging/log.hpp" 54 #include "oops/instanceKlass.inline.hpp" 55 #include "oops/instanceMirrorKlass.inline.hpp" 56 #include "oops/methodData.hpp" 57 #include "oops/objArrayKlass.inline.hpp" 58 #include "oops/oop.inline.hpp" 59 #include "runtime/atomic.inline.hpp" 60 #include "runtime/fprofiler.hpp" 61 #include "runtime/safepoint.hpp" 62 #include "runtime/vmThread.hpp" 63 #include "services/management.hpp" 64 #include "services/memTracker.hpp" 65 #include "services/memoryService.hpp" 66 #include "utilities/events.hpp" 67 #include "utilities/stack.inline.hpp" 68 69 #include <math.h> 70 71 // All sizes are in HeapWords. 72 const size_t ParallelCompactData::Log2RegionSize = 16; // 64K words 73 const size_t ParallelCompactData::RegionSize = (size_t)1 << Log2RegionSize; 74 const size_t ParallelCompactData::RegionSizeBytes = 75 RegionSize << LogHeapWordSize; 76 const size_t ParallelCompactData::RegionSizeOffsetMask = RegionSize - 1; 77 const size_t ParallelCompactData::RegionAddrOffsetMask = RegionSizeBytes - 1; 78 const size_t ParallelCompactData::RegionAddrMask = ~RegionAddrOffsetMask; 79 80 const size_t ParallelCompactData::Log2BlockSize = 7; // 128 words 81 const size_t ParallelCompactData::BlockSize = (size_t)1 << Log2BlockSize; 82 const size_t ParallelCompactData::BlockSizeBytes = 83 BlockSize << LogHeapWordSize; 84 const size_t ParallelCompactData::BlockSizeOffsetMask = BlockSize - 1; 85 const size_t ParallelCompactData::BlockAddrOffsetMask = BlockSizeBytes - 1; 86 const size_t ParallelCompactData::BlockAddrMask = ~BlockAddrOffsetMask; 87 88 const size_t ParallelCompactData::BlocksPerRegion = RegionSize / BlockSize; 89 const size_t ParallelCompactData::Log2BlocksPerRegion = 90 Log2RegionSize - Log2BlockSize; 91 92 const ParallelCompactData::RegionData::region_sz_t 93 ParallelCompactData::RegionData::dc_shift = 27; 94 95 const ParallelCompactData::RegionData::region_sz_t 96 ParallelCompactData::RegionData::dc_mask = ~0U << dc_shift; 97 98 const ParallelCompactData::RegionData::region_sz_t 99 ParallelCompactData::RegionData::dc_one = 0x1U << dc_shift; 100 101 const ParallelCompactData::RegionData::region_sz_t 102 ParallelCompactData::RegionData::los_mask = ~dc_mask; 103 104 const ParallelCompactData::RegionData::region_sz_t 105 ParallelCompactData::RegionData::dc_claimed = 0x8U << dc_shift; 106 107 const ParallelCompactData::RegionData::region_sz_t 108 ParallelCompactData::RegionData::dc_completed = 0xcU << dc_shift; 109 110 SpaceInfo PSParallelCompact::_space_info[PSParallelCompact::last_space_id]; 111 112 ReferenceProcessor* PSParallelCompact::_ref_processor = NULL; 113 114 double PSParallelCompact::_dwl_mean; 115 double PSParallelCompact::_dwl_std_dev; 116 double PSParallelCompact::_dwl_first_term; 117 double PSParallelCompact::_dwl_adjustment; 118 #ifdef ASSERT 119 bool PSParallelCompact::_dwl_initialized = false; 120 #endif // #ifdef ASSERT 121 122 void SplitInfo::record(size_t src_region_idx, size_t partial_obj_size, 123 HeapWord* destination) 124 { 125 assert(src_region_idx != 0, "invalid src_region_idx"); 126 assert(partial_obj_size != 0, "invalid partial_obj_size argument"); 127 assert(destination != NULL, "invalid destination argument"); 128 129 _src_region_idx = src_region_idx; 130 _partial_obj_size = partial_obj_size; 131 _destination = destination; 132 133 // These fields may not be updated below, so make sure they're clear. 134 assert(_dest_region_addr == NULL, "should have been cleared"); 135 assert(_first_src_addr == NULL, "should have been cleared"); 136 137 // Determine the number of destination regions for the partial object. 138 HeapWord* const last_word = destination + partial_obj_size - 1; 139 const ParallelCompactData& sd = PSParallelCompact::summary_data(); 140 HeapWord* const beg_region_addr = sd.region_align_down(destination); 141 HeapWord* const end_region_addr = sd.region_align_down(last_word); 142 143 if (beg_region_addr == end_region_addr) { 144 // One destination region. 145 _destination_count = 1; 146 if (end_region_addr == destination) { 147 // The destination falls on a region boundary, thus the first word of the 148 // partial object will be the first word copied to the destination region. 149 _dest_region_addr = end_region_addr; 150 _first_src_addr = sd.region_to_addr(src_region_idx); 151 } 152 } else { 153 // Two destination regions. When copied, the partial object will cross a 154 // destination region boundary, so a word somewhere within the partial 155 // object will be the first word copied to the second destination region. 156 _destination_count = 2; 157 _dest_region_addr = end_region_addr; 158 const size_t ofs = pointer_delta(end_region_addr, destination); 159 assert(ofs < _partial_obj_size, "sanity"); 160 _first_src_addr = sd.region_to_addr(src_region_idx) + ofs; 161 } 162 } 163 164 void SplitInfo::clear() 165 { 166 _src_region_idx = 0; 167 _partial_obj_size = 0; 168 _destination = NULL; 169 _destination_count = 0; 170 _dest_region_addr = NULL; 171 _first_src_addr = NULL; 172 assert(!is_valid(), "sanity"); 173 } 174 175 #ifdef ASSERT 176 void SplitInfo::verify_clear() 177 { 178 assert(_src_region_idx == 0, "not clear"); 179 assert(_partial_obj_size == 0, "not clear"); 180 assert(_destination == NULL, "not clear"); 181 assert(_destination_count == 0, "not clear"); 182 assert(_dest_region_addr == NULL, "not clear"); 183 assert(_first_src_addr == NULL, "not clear"); 184 } 185 #endif // #ifdef ASSERT 186 187 188 void PSParallelCompact::print_on_error(outputStream* st) { 189 _mark_bitmap.print_on_error(st); 190 } 191 192 #ifndef PRODUCT 193 const char* PSParallelCompact::space_names[] = { 194 "old ", "eden", "from", "to " 195 }; 196 197 void PSParallelCompact::print_region_ranges() { 198 if (!log_develop_is_enabled(Trace, gc, compaction, phases)) { 199 return; 200 } 201 LogHandle(gc, compaction, phases) log; 202 ResourceMark rm; 203 Universe::print_on(log.trace_stream()); 204 log.trace("space bottom top end new_top"); 205 log.trace("------ ---------- ---------- ---------- ----------"); 206 207 for (unsigned int id = 0; id < last_space_id; ++id) { 208 const MutableSpace* space = _space_info[id].space(); 209 log.trace("%u %s " 210 SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " " 211 SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " ", 212 id, space_names[id], 213 summary_data().addr_to_region_idx(space->bottom()), 214 summary_data().addr_to_region_idx(space->top()), 215 summary_data().addr_to_region_idx(space->end()), 216 summary_data().addr_to_region_idx(_space_info[id].new_top())); 217 } 218 } 219 220 void 221 print_generic_summary_region(size_t i, const ParallelCompactData::RegionData* c) 222 { 223 #define REGION_IDX_FORMAT SIZE_FORMAT_W(7) 224 #define REGION_DATA_FORMAT SIZE_FORMAT_W(5) 225 226 ParallelCompactData& sd = PSParallelCompact::summary_data(); 227 size_t dci = c->destination() ? sd.addr_to_region_idx(c->destination()) : 0; 228 log_develop_trace(gc, compaction, phases)( 229 REGION_IDX_FORMAT " " PTR_FORMAT " " 230 REGION_IDX_FORMAT " " PTR_FORMAT " " 231 REGION_DATA_FORMAT " " REGION_DATA_FORMAT " " 232 REGION_DATA_FORMAT " " REGION_IDX_FORMAT " %d", 233 i, p2i(c->data_location()), dci, p2i(c->destination()), 234 c->partial_obj_size(), c->live_obj_size(), 235 c->data_size(), c->source_region(), c->destination_count()); 236 237 #undef REGION_IDX_FORMAT 238 #undef REGION_DATA_FORMAT 239 } 240 241 void 242 print_generic_summary_data(ParallelCompactData& summary_data, 243 HeapWord* const beg_addr, 244 HeapWord* const end_addr) 245 { 246 size_t total_words = 0; 247 size_t i = summary_data.addr_to_region_idx(beg_addr); 248 const size_t last = summary_data.addr_to_region_idx(end_addr); 249 HeapWord* pdest = 0; 250 251 while (i <= last) { 252 ParallelCompactData::RegionData* c = summary_data.region(i); 253 if (c->data_size() != 0 || c->destination() != pdest) { 254 print_generic_summary_region(i, c); 255 total_words += c->data_size(); 256 pdest = c->destination(); 257 } 258 ++i; 259 } 260 261 log_develop_trace(gc, compaction, phases)("summary_data_bytes=" SIZE_FORMAT, total_words * HeapWordSize); 262 } 263 264 void 265 print_generic_summary_data(ParallelCompactData& summary_data, 266 SpaceInfo* space_info) 267 { 268 if (!log_develop_is_enabled(Trace, gc, compaction, phases)) { 269 return; 270 } 271 272 for (unsigned int id = 0; id < PSParallelCompact::last_space_id; ++id) { 273 const MutableSpace* space = space_info[id].space(); 274 print_generic_summary_data(summary_data, space->bottom(), 275 MAX2(space->top(), space_info[id].new_top())); 276 } 277 } 278 279 void 280 print_initial_summary_data(ParallelCompactData& summary_data, 281 const MutableSpace* space) { 282 if (space->top() == space->bottom()) { 283 return; 284 } 285 286 const size_t region_size = ParallelCompactData::RegionSize; 287 typedef ParallelCompactData::RegionData RegionData; 288 HeapWord* const top_aligned_up = summary_data.region_align_up(space->top()); 289 const size_t end_region = summary_data.addr_to_region_idx(top_aligned_up); 290 const RegionData* c = summary_data.region(end_region - 1); 291 HeapWord* end_addr = c->destination() + c->data_size(); 292 const size_t live_in_space = pointer_delta(end_addr, space->bottom()); 293 294 // Print (and count) the full regions at the beginning of the space. 295 size_t full_region_count = 0; 296 size_t i = summary_data.addr_to_region_idx(space->bottom()); 297 while (i < end_region && summary_data.region(i)->data_size() == region_size) { 298 ParallelCompactData::RegionData* c = summary_data.region(i); 299 log_develop_trace(gc, compaction, phases)( 300 SIZE_FORMAT_W(5) " " PTR_FORMAT " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d", 301 i, p2i(c->destination()), 302 c->partial_obj_size(), c->live_obj_size(), 303 c->data_size(), c->source_region(), c->destination_count()); 304 ++full_region_count; 305 ++i; 306 } 307 308 size_t live_to_right = live_in_space - full_region_count * region_size; 309 310 double max_reclaimed_ratio = 0.0; 311 size_t max_reclaimed_ratio_region = 0; 312 size_t max_dead_to_right = 0; 313 size_t max_live_to_right = 0; 314 315 // Print the 'reclaimed ratio' for regions while there is something live in 316 // the region or to the right of it. The remaining regions are empty (and 317 // uninteresting), and computing the ratio will result in division by 0. 318 while (i < end_region && live_to_right > 0) { 319 c = summary_data.region(i); 320 HeapWord* const region_addr = summary_data.region_to_addr(i); 321 const size_t used_to_right = pointer_delta(space->top(), region_addr); 322 const size_t dead_to_right = used_to_right - live_to_right; 323 const double reclaimed_ratio = double(dead_to_right) / live_to_right; 324 325 if (reclaimed_ratio > max_reclaimed_ratio) { 326 max_reclaimed_ratio = reclaimed_ratio; 327 max_reclaimed_ratio_region = i; 328 max_dead_to_right = dead_to_right; 329 max_live_to_right = live_to_right; 330 } 331 332 ParallelCompactData::RegionData* c = summary_data.region(i); 333 log_develop_trace(gc, compaction, phases)( 334 SIZE_FORMAT_W(5) " " PTR_FORMAT " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d" 335 "%12.10f " SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10), 336 i, p2i(c->destination()), 337 c->partial_obj_size(), c->live_obj_size(), 338 c->data_size(), c->source_region(), c->destination_count(), 339 reclaimed_ratio, dead_to_right, live_to_right); 340 341 342 live_to_right -= c->data_size(); 343 ++i; 344 } 345 346 // Any remaining regions are empty. Print one more if there is one. 347 if (i < end_region) { 348 ParallelCompactData::RegionData* c = summary_data.region(i); 349 log_develop_trace(gc, compaction, phases)( 350 SIZE_FORMAT_W(5) " " PTR_FORMAT " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d", 351 i, p2i(c->destination()), 352 c->partial_obj_size(), c->live_obj_size(), 353 c->data_size(), c->source_region(), c->destination_count()); 354 } 355 356 log_develop_trace(gc, compaction, phases)("max: " SIZE_FORMAT_W(4) " d2r=" SIZE_FORMAT_W(10) " l2r=" SIZE_FORMAT_W(10) " max_ratio=%14.12f", 357 max_reclaimed_ratio_region, max_dead_to_right, max_live_to_right, max_reclaimed_ratio); 358 } 359 360 void 361 print_initial_summary_data(ParallelCompactData& summary_data, 362 SpaceInfo* space_info) { 363 if (!log_develop_is_enabled(Trace, gc, compaction, phases)) { 364 return; 365 } 366 367 unsigned int id = PSParallelCompact::old_space_id; 368 const MutableSpace* space; 369 do { 370 space = space_info[id].space(); 371 print_initial_summary_data(summary_data, space); 372 } while (++id < PSParallelCompact::eden_space_id); 373 374 do { 375 space = space_info[id].space(); 376 print_generic_summary_data(summary_data, space->bottom(), space->top()); 377 } while (++id < PSParallelCompact::last_space_id); 378 } 379 #endif // #ifndef PRODUCT 380 381 #ifdef ASSERT 382 size_t add_obj_count; 383 size_t add_obj_size; 384 size_t mark_bitmap_count; 385 size_t mark_bitmap_size; 386 #endif // #ifdef ASSERT 387 388 ParallelCompactData::ParallelCompactData() 389 { 390 _region_start = 0; 391 392 _region_vspace = 0; 393 _reserved_byte_size = 0; 394 _region_data = 0; 395 _region_count = 0; 396 397 _block_vspace = 0; 398 _block_data = 0; 399 _block_count = 0; 400 } 401 402 bool ParallelCompactData::initialize(MemRegion covered_region) 403 { 404 _region_start = covered_region.start(); 405 const size_t region_size = covered_region.word_size(); 406 DEBUG_ONLY(_region_end = _region_start + region_size;) 407 408 assert(region_align_down(_region_start) == _region_start, 409 "region start not aligned"); 410 assert((region_size & RegionSizeOffsetMask) == 0, 411 "region size not a multiple of RegionSize"); 412 413 bool result = initialize_region_data(region_size) && initialize_block_data(); 414 return result; 415 } 416 417 PSVirtualSpace* 418 ParallelCompactData::create_vspace(size_t count, size_t element_size) 419 { 420 const size_t raw_bytes = count * element_size; 421 const size_t page_sz = os::page_size_for_region_aligned(raw_bytes, 10); 422 const size_t granularity = os::vm_allocation_granularity(); 423 _reserved_byte_size = align_size_up(raw_bytes, MAX2(page_sz, granularity)); 424 425 const size_t rs_align = page_sz == (size_t) os::vm_page_size() ? 0 : 426 MAX2(page_sz, granularity); 427 ReservedSpace rs(_reserved_byte_size, rs_align, rs_align > 0); 428 os::trace_page_sizes("par compact", raw_bytes, raw_bytes, page_sz, rs.base(), 429 rs.size()); 430 431 MemTracker::record_virtual_memory_type((address)rs.base(), mtGC); 432 433 PSVirtualSpace* vspace = new PSVirtualSpace(rs, page_sz); 434 if (vspace != 0) { 435 if (vspace->expand_by(_reserved_byte_size)) { 436 return vspace; 437 } 438 delete vspace; 439 // Release memory reserved in the space. 440 rs.release(); 441 } 442 443 return 0; 444 } 445 446 bool ParallelCompactData::initialize_region_data(size_t region_size) 447 { 448 const size_t count = (region_size + RegionSizeOffsetMask) >> Log2RegionSize; 449 _region_vspace = create_vspace(count, sizeof(RegionData)); 450 if (_region_vspace != 0) { 451 _region_data = (RegionData*)_region_vspace->reserved_low_addr(); 452 _region_count = count; 453 return true; 454 } 455 return false; 456 } 457 458 bool ParallelCompactData::initialize_block_data() 459 { 460 assert(_region_count != 0, "region data must be initialized first"); 461 const size_t count = _region_count << Log2BlocksPerRegion; 462 _block_vspace = create_vspace(count, sizeof(BlockData)); 463 if (_block_vspace != 0) { 464 _block_data = (BlockData*)_block_vspace->reserved_low_addr(); 465 _block_count = count; 466 return true; 467 } 468 return false; 469 } 470 471 void ParallelCompactData::clear() 472 { 473 memset(_region_data, 0, _region_vspace->committed_size()); 474 memset(_block_data, 0, _block_vspace->committed_size()); 475 } 476 477 void ParallelCompactData::clear_range(size_t beg_region, size_t end_region) { 478 assert(beg_region <= _region_count, "beg_region out of range"); 479 assert(end_region <= _region_count, "end_region out of range"); 480 assert(RegionSize % BlockSize == 0, "RegionSize not a multiple of BlockSize"); 481 482 const size_t region_cnt = end_region - beg_region; 483 memset(_region_data + beg_region, 0, region_cnt * sizeof(RegionData)); 484 485 const size_t beg_block = beg_region * BlocksPerRegion; 486 const size_t block_cnt = region_cnt * BlocksPerRegion; 487 memset(_block_data + beg_block, 0, block_cnt * sizeof(BlockData)); 488 } 489 490 HeapWord* ParallelCompactData::partial_obj_end(size_t region_idx) const 491 { 492 const RegionData* cur_cp = region(region_idx); 493 const RegionData* const end_cp = region(region_count() - 1); 494 495 HeapWord* result = region_to_addr(region_idx); 496 if (cur_cp < end_cp) { 497 do { 498 result += cur_cp->partial_obj_size(); 499 } while (cur_cp->partial_obj_size() == RegionSize && ++cur_cp < end_cp); 500 } 501 return result; 502 } 503 504 void ParallelCompactData::add_obj(HeapWord* addr, size_t len) 505 { 506 const size_t obj_ofs = pointer_delta(addr, _region_start); 507 const size_t beg_region = obj_ofs >> Log2RegionSize; 508 const size_t end_region = (obj_ofs + len - 1) >> Log2RegionSize; 509 510 DEBUG_ONLY(Atomic::inc_ptr(&add_obj_count);) 511 DEBUG_ONLY(Atomic::add_ptr(len, &add_obj_size);) 512 513 if (beg_region == end_region) { 514 // All in one region. 515 _region_data[beg_region].add_live_obj(len); 516 return; 517 } 518 519 // First region. 520 const size_t beg_ofs = region_offset(addr); 521 _region_data[beg_region].add_live_obj(RegionSize - beg_ofs); 522 523 Klass* klass = ((oop)addr)->klass(); 524 // Middle regions--completely spanned by this object. 525 for (size_t region = beg_region + 1; region < end_region; ++region) { 526 _region_data[region].set_partial_obj_size(RegionSize); 527 _region_data[region].set_partial_obj_addr(addr); 528 } 529 530 // Last region. 531 const size_t end_ofs = region_offset(addr + len - 1); 532 _region_data[end_region].set_partial_obj_size(end_ofs + 1); 533 _region_data[end_region].set_partial_obj_addr(addr); 534 } 535 536 void 537 ParallelCompactData::summarize_dense_prefix(HeapWord* beg, HeapWord* end) 538 { 539 assert(region_offset(beg) == 0, "not RegionSize aligned"); 540 assert(region_offset(end) == 0, "not RegionSize aligned"); 541 542 size_t cur_region = addr_to_region_idx(beg); 543 const size_t end_region = addr_to_region_idx(end); 544 HeapWord* addr = beg; 545 while (cur_region < end_region) { 546 _region_data[cur_region].set_destination(addr); 547 _region_data[cur_region].set_destination_count(0); 548 _region_data[cur_region].set_source_region(cur_region); 549 _region_data[cur_region].set_data_location(addr); 550 551 // Update live_obj_size so the region appears completely full. 552 size_t live_size = RegionSize - _region_data[cur_region].partial_obj_size(); 553 _region_data[cur_region].set_live_obj_size(live_size); 554 555 ++cur_region; 556 addr += RegionSize; 557 } 558 } 559 560 // Find the point at which a space can be split and, if necessary, record the 561 // split point. 562 // 563 // If the current src region (which overflowed the destination space) doesn't 564 // have a partial object, the split point is at the beginning of the current src 565 // region (an "easy" split, no extra bookkeeping required). 566 // 567 // If the current src region has a partial object, the split point is in the 568 // region where that partial object starts (call it the split_region). If 569 // split_region has a partial object, then the split point is just after that 570 // partial object (a "hard" split where we have to record the split data and 571 // zero the partial_obj_size field). With a "hard" split, we know that the 572 // partial_obj ends within split_region because the partial object that caused 573 // the overflow starts in split_region. If split_region doesn't have a partial 574 // obj, then the split is at the beginning of split_region (another "easy" 575 // split). 576 HeapWord* 577 ParallelCompactData::summarize_split_space(size_t src_region, 578 SplitInfo& split_info, 579 HeapWord* destination, 580 HeapWord* target_end, 581 HeapWord** target_next) 582 { 583 assert(destination <= target_end, "sanity"); 584 assert(destination + _region_data[src_region].data_size() > target_end, 585 "region should not fit into target space"); 586 assert(is_region_aligned(target_end), "sanity"); 587 588 size_t split_region = src_region; 589 HeapWord* split_destination = destination; 590 size_t partial_obj_size = _region_data[src_region].partial_obj_size(); 591 592 if (destination + partial_obj_size > target_end) { 593 // The split point is just after the partial object (if any) in the 594 // src_region that contains the start of the object that overflowed the 595 // destination space. 596 // 597 // Find the start of the "overflow" object and set split_region to the 598 // region containing it. 599 HeapWord* const overflow_obj = _region_data[src_region].partial_obj_addr(); 600 split_region = addr_to_region_idx(overflow_obj); 601 602 // Clear the source_region field of all destination regions whose first word 603 // came from data after the split point (a non-null source_region field 604 // implies a region must be filled). 605 // 606 // An alternative to the simple loop below: clear during post_compact(), 607 // which uses memcpy instead of individual stores, and is easy to 608 // parallelize. (The downside is that it clears the entire RegionData 609 // object as opposed to just one field.) 610 // 611 // post_compact() would have to clear the summary data up to the highest 612 // address that was written during the summary phase, which would be 613 // 614 // max(top, max(new_top, clear_top)) 615 // 616 // where clear_top is a new field in SpaceInfo. Would have to set clear_top 617 // to target_end. 618 const RegionData* const sr = region(split_region); 619 const size_t beg_idx = 620 addr_to_region_idx(region_align_up(sr->destination() + 621 sr->partial_obj_size())); 622 const size_t end_idx = addr_to_region_idx(target_end); 623 624 log_develop_trace(gc, compaction, phases)("split: clearing source_region field in [" SIZE_FORMAT ", " SIZE_FORMAT ")", beg_idx, end_idx); 625 for (size_t idx = beg_idx; idx < end_idx; ++idx) { 626 _region_data[idx].set_source_region(0); 627 } 628 629 // Set split_destination and partial_obj_size to reflect the split region. 630 split_destination = sr->destination(); 631 partial_obj_size = sr->partial_obj_size(); 632 } 633 634 // The split is recorded only if a partial object extends onto the region. 635 if (partial_obj_size != 0) { 636 _region_data[split_region].set_partial_obj_size(0); 637 split_info.record(split_region, partial_obj_size, split_destination); 638 } 639 640 // Setup the continuation addresses. 641 *target_next = split_destination + partial_obj_size; 642 HeapWord* const source_next = region_to_addr(split_region) + partial_obj_size; 643 644 if (log_develop_is_enabled(Trace, gc, compaction, phases)) { 645 const char * split_type = partial_obj_size == 0 ? "easy" : "hard"; 646 log_develop_trace(gc, compaction, phases)("%s split: src=" PTR_FORMAT " src_c=" SIZE_FORMAT " pos=" SIZE_FORMAT, 647 split_type, p2i(source_next), split_region, partial_obj_size); 648 log_develop_trace(gc, compaction, phases)("%s split: dst=" PTR_FORMAT " dst_c=" SIZE_FORMAT " tn=" PTR_FORMAT, 649 split_type, p2i(split_destination), 650 addr_to_region_idx(split_destination), 651 p2i(*target_next)); 652 653 if (partial_obj_size != 0) { 654 HeapWord* const po_beg = split_info.destination(); 655 HeapWord* const po_end = po_beg + split_info.partial_obj_size(); 656 log_develop_trace(gc, compaction, phases)("%s split: po_beg=" PTR_FORMAT " " SIZE_FORMAT " po_end=" PTR_FORMAT " " SIZE_FORMAT, 657 split_type, 658 p2i(po_beg), addr_to_region_idx(po_beg), 659 p2i(po_end), addr_to_region_idx(po_end)); 660 } 661 } 662 663 return source_next; 664 } 665 666 bool ParallelCompactData::summarize(SplitInfo& split_info, 667 HeapWord* source_beg, HeapWord* source_end, 668 HeapWord** source_next, 669 HeapWord* target_beg, HeapWord* target_end, 670 HeapWord** target_next) 671 { 672 HeapWord* const source_next_val = source_next == NULL ? NULL : *source_next; 673 log_develop_trace(gc, compaction, phases)( 674 "sb=" PTR_FORMAT " se=" PTR_FORMAT " sn=" PTR_FORMAT 675 "tb=" PTR_FORMAT " te=" PTR_FORMAT " tn=" PTR_FORMAT, 676 p2i(source_beg), p2i(source_end), p2i(source_next_val), 677 p2i(target_beg), p2i(target_end), p2i(*target_next)); 678 679 size_t cur_region = addr_to_region_idx(source_beg); 680 const size_t end_region = addr_to_region_idx(region_align_up(source_end)); 681 682 HeapWord *dest_addr = target_beg; 683 while (cur_region < end_region) { 684 // The destination must be set even if the region has no data. 685 _region_data[cur_region].set_destination(dest_addr); 686 687 size_t words = _region_data[cur_region].data_size(); 688 if (words > 0) { 689 // If cur_region does not fit entirely into the target space, find a point 690 // at which the source space can be 'split' so that part is copied to the 691 // target space and the rest is copied elsewhere. 692 if (dest_addr + words > target_end) { 693 assert(source_next != NULL, "source_next is NULL when splitting"); 694 *source_next = summarize_split_space(cur_region, split_info, dest_addr, 695 target_end, target_next); 696 return false; 697 } 698 699 // Compute the destination_count for cur_region, and if necessary, update 700 // source_region for a destination region. The source_region field is 701 // updated if cur_region is the first (left-most) region to be copied to a 702 // destination region. 703 // 704 // The destination_count calculation is a bit subtle. A region that has 705 // data that compacts into itself does not count itself as a destination. 706 // This maintains the invariant that a zero count means the region is 707 // available and can be claimed and then filled. 708 uint destination_count = 0; 709 if (split_info.is_split(cur_region)) { 710 // The current region has been split: the partial object will be copied 711 // to one destination space and the remaining data will be copied to 712 // another destination space. Adjust the initial destination_count and, 713 // if necessary, set the source_region field if the partial object will 714 // cross a destination region boundary. 715 destination_count = split_info.destination_count(); 716 if (destination_count == 2) { 717 size_t dest_idx = addr_to_region_idx(split_info.dest_region_addr()); 718 _region_data[dest_idx].set_source_region(cur_region); 719 } 720 } 721 722 HeapWord* const last_addr = dest_addr + words - 1; 723 const size_t dest_region_1 = addr_to_region_idx(dest_addr); 724 const size_t dest_region_2 = addr_to_region_idx(last_addr); 725 726 // Initially assume that the destination regions will be the same and 727 // adjust the value below if necessary. Under this assumption, if 728 // cur_region == dest_region_2, then cur_region will be compacted 729 // completely into itself. 730 destination_count += cur_region == dest_region_2 ? 0 : 1; 731 if (dest_region_1 != dest_region_2) { 732 // Destination regions differ; adjust destination_count. 733 destination_count += 1; 734 // Data from cur_region will be copied to the start of dest_region_2. 735 _region_data[dest_region_2].set_source_region(cur_region); 736 } else if (region_offset(dest_addr) == 0) { 737 // Data from cur_region will be copied to the start of the destination 738 // region. 739 _region_data[dest_region_1].set_source_region(cur_region); 740 } 741 742 _region_data[cur_region].set_destination_count(destination_count); 743 _region_data[cur_region].set_data_location(region_to_addr(cur_region)); 744 dest_addr += words; 745 } 746 747 ++cur_region; 748 } 749 750 *target_next = dest_addr; 751 return true; 752 } 753 754 HeapWord* ParallelCompactData::calc_new_pointer(HeapWord* addr, ParCompactionManager* cm) { 755 assert(addr != NULL, "Should detect NULL oop earlier"); 756 assert(ParallelScavengeHeap::heap()->is_in(addr), "not in heap"); 757 assert(PSParallelCompact::mark_bitmap()->is_marked(addr), "not marked"); 758 759 // Region covering the object. 760 RegionData* const region_ptr = addr_to_region_ptr(addr); 761 HeapWord* result = region_ptr->destination(); 762 763 // If the entire Region is live, the new location is region->destination + the 764 // offset of the object within in the Region. 765 766 // Run some performance tests to determine if this special case pays off. It 767 // is worth it for pointers into the dense prefix. If the optimization to 768 // avoid pointer updates in regions that only point to the dense prefix is 769 // ever implemented, this should be revisited. 770 if (region_ptr->data_size() == RegionSize) { 771 result += region_offset(addr); 772 return result; 773 } 774 775 // Otherwise, the new location is region->destination + block offset + the 776 // number of live words in the Block that are (a) to the left of addr and (b) 777 // due to objects that start in the Block. 778 779 // Fill in the block table if necessary. This is unsynchronized, so multiple 780 // threads may fill the block table for a region (harmless, since it is 781 // idempotent). 782 if (!region_ptr->blocks_filled()) { 783 PSParallelCompact::fill_blocks(addr_to_region_idx(addr)); 784 region_ptr->set_blocks_filled(); 785 } 786 787 HeapWord* const search_start = block_align_down(addr); 788 const size_t block_offset = addr_to_block_ptr(addr)->offset(); 789 790 const ParMarkBitMap* bitmap = PSParallelCompact::mark_bitmap(); 791 const size_t live = bitmap->live_words_in_range(cm, search_start, oop(addr)); 792 result += block_offset + live; 793 DEBUG_ONLY(PSParallelCompact::check_new_location(addr, result)); 794 return result; 795 } 796 797 #ifdef ASSERT 798 void ParallelCompactData::verify_clear(const PSVirtualSpace* vspace) 799 { 800 const size_t* const beg = (const size_t*)vspace->committed_low_addr(); 801 const size_t* const end = (const size_t*)vspace->committed_high_addr(); 802 for (const size_t* p = beg; p < end; ++p) { 803 assert(*p == 0, "not zero"); 804 } 805 } 806 807 void ParallelCompactData::verify_clear() 808 { 809 verify_clear(_region_vspace); 810 verify_clear(_block_vspace); 811 } 812 #endif // #ifdef ASSERT 813 814 STWGCTimer PSParallelCompact::_gc_timer; 815 ParallelOldTracer PSParallelCompact::_gc_tracer; 816 elapsedTimer PSParallelCompact::_accumulated_time; 817 unsigned int PSParallelCompact::_total_invocations = 0; 818 unsigned int PSParallelCompact::_maximum_compaction_gc_num = 0; 819 jlong PSParallelCompact::_time_of_last_gc = 0; 820 CollectorCounters* PSParallelCompact::_counters = NULL; 821 ParMarkBitMap PSParallelCompact::_mark_bitmap; 822 ParallelCompactData PSParallelCompact::_summary_data; 823 824 PSParallelCompact::IsAliveClosure PSParallelCompact::_is_alive_closure; 825 826 bool PSParallelCompact::IsAliveClosure::do_object_b(oop p) { return mark_bitmap()->is_marked(p); } 827 828 void PSParallelCompact::AdjustKlassClosure::do_klass(Klass* klass) { 829 PSParallelCompact::AdjustPointerClosure closure(_cm); 830 klass->oops_do(&closure); 831 } 832 833 void PSParallelCompact::post_initialize() { 834 ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); 835 MemRegion mr = heap->reserved_region(); 836 _ref_processor = 837 new ReferenceProcessor(mr, // span 838 ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing 839 ParallelGCThreads, // mt processing degree 840 true, // mt discovery 841 ParallelGCThreads, // mt discovery degree 842 true, // atomic_discovery 843 &_is_alive_closure); // non-header is alive closure 844 _counters = new CollectorCounters("PSParallelCompact", 1); 845 846 // Initialize static fields in ParCompactionManager. 847 ParCompactionManager::initialize(mark_bitmap()); 848 } 849 850 bool PSParallelCompact::initialize() { 851 ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); 852 MemRegion mr = heap->reserved_region(); 853 854 // Was the old gen get allocated successfully? 855 if (!heap->old_gen()->is_allocated()) { 856 return false; 857 } 858 859 initialize_space_info(); 860 initialize_dead_wood_limiter(); 861 862 if (!_mark_bitmap.initialize(mr)) { 863 vm_shutdown_during_initialization( 864 err_msg("Unable to allocate " SIZE_FORMAT "KB bitmaps for parallel " 865 "garbage collection for the requested " SIZE_FORMAT "KB heap.", 866 _mark_bitmap.reserved_byte_size()/K, mr.byte_size()/K)); 867 return false; 868 } 869 870 if (!_summary_data.initialize(mr)) { 871 vm_shutdown_during_initialization( 872 err_msg("Unable to allocate " SIZE_FORMAT "KB card tables for parallel " 873 "garbage collection for the requested " SIZE_FORMAT "KB heap.", 874 _summary_data.reserved_byte_size()/K, mr.byte_size()/K)); 875 return false; 876 } 877 878 return true; 879 } 880 881 void PSParallelCompact::initialize_space_info() 882 { 883 memset(&_space_info, 0, sizeof(_space_info)); 884 885 ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); 886 PSYoungGen* young_gen = heap->young_gen(); 887 888 _space_info[old_space_id].set_space(heap->old_gen()->object_space()); 889 _space_info[eden_space_id].set_space(young_gen->eden_space()); 890 _space_info[from_space_id].set_space(young_gen->from_space()); 891 _space_info[to_space_id].set_space(young_gen->to_space()); 892 893 _space_info[old_space_id].set_start_array(heap->old_gen()->start_array()); 894 } 895 896 void PSParallelCompact::initialize_dead_wood_limiter() 897 { 898 const size_t max = 100; 899 _dwl_mean = double(MIN2(ParallelOldDeadWoodLimiterMean, max)) / 100.0; 900 _dwl_std_dev = double(MIN2(ParallelOldDeadWoodLimiterStdDev, max)) / 100.0; 901 _dwl_first_term = 1.0 / (sqrt(2.0 * M_PI) * _dwl_std_dev); 902 DEBUG_ONLY(_dwl_initialized = true;) 903 _dwl_adjustment = normal_distribution(1.0); 904 } 905 906 void 907 PSParallelCompact::clear_data_covering_space(SpaceId id) 908 { 909 // At this point, top is the value before GC, new_top() is the value that will 910 // be set at the end of GC. The marking bitmap is cleared to top; nothing 911 // should be marked above top. The summary data is cleared to the larger of 912 // top & new_top. 913 MutableSpace* const space = _space_info[id].space(); 914 HeapWord* const bot = space->bottom(); 915 HeapWord* const top = space->top(); 916 HeapWord* const max_top = MAX2(top, _space_info[id].new_top()); 917 918 const idx_t beg_bit = _mark_bitmap.addr_to_bit(bot); 919 const idx_t end_bit = BitMap::word_align_up(_mark_bitmap.addr_to_bit(top)); 920 _mark_bitmap.clear_range(beg_bit, end_bit); 921 922 const size_t beg_region = _summary_data.addr_to_region_idx(bot); 923 const size_t end_region = 924 _summary_data.addr_to_region_idx(_summary_data.region_align_up(max_top)); 925 _summary_data.clear_range(beg_region, end_region); 926 927 // Clear the data used to 'split' regions. 928 SplitInfo& split_info = _space_info[id].split_info(); 929 if (split_info.is_valid()) { 930 split_info.clear(); 931 } 932 DEBUG_ONLY(split_info.verify_clear();) 933 } 934 935 void PSParallelCompact::pre_compact() 936 { 937 // Update the from & to space pointers in space_info, since they are swapped 938 // at each young gen gc. Do the update unconditionally (even though a 939 // promotion failure does not swap spaces) because an unknown number of young 940 // collections will have swapped the spaces an unknown number of times. 941 GCTraceTime(Trace, gc, phases) tm("Pre Compact", &_gc_timer); 942 ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); 943 _space_info[from_space_id].set_space(heap->young_gen()->from_space()); 944 _space_info[to_space_id].set_space(heap->young_gen()->to_space()); 945 946 DEBUG_ONLY(add_obj_count = add_obj_size = 0;) 947 DEBUG_ONLY(mark_bitmap_count = mark_bitmap_size = 0;) 948 949 // Increment the invocation count 950 heap->increment_total_collections(true); 951 952 // We need to track unique mark sweep invocations as well. 953 _total_invocations++; 954 955 heap->print_heap_before_gc(); 956 heap->trace_heap_before_gc(&_gc_tracer); 957 958 // Fill in TLABs 959 heap->accumulate_statistics_all_tlabs(); 960 heap->ensure_parsability(true); // retire TLABs 961 962 if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) { 963 HandleMark hm; // Discard invalid handles created during verification 964 Universe::verify("Before GC"); 965 } 966 967 // Verify object start arrays 968 if (VerifyObjectStartArray && 969 VerifyBeforeGC) { 970 heap->old_gen()->verify_object_start_array(); 971 } 972 973 DEBUG_ONLY(mark_bitmap()->verify_clear();) 974 DEBUG_ONLY(summary_data().verify_clear();) 975 976 // Have worker threads release resources the next time they run a task. 977 gc_task_manager()->release_all_resources(); 978 979 ParCompactionManager::reset_all_bitmap_query_caches(); 980 } 981 982 void PSParallelCompact::post_compact() 983 { 984 GCTraceTime(Trace, gc, phases) tm("Post Compact", &_gc_timer); 985 986 for (unsigned int id = old_space_id; id < last_space_id; ++id) { 987 // Clear the marking bitmap, summary data and split info. 988 clear_data_covering_space(SpaceId(id)); 989 // Update top(). Must be done after clearing the bitmap and summary data. 990 _space_info[id].publish_new_top(); 991 } 992 993 MutableSpace* const eden_space = _space_info[eden_space_id].space(); 994 MutableSpace* const from_space = _space_info[from_space_id].space(); 995 MutableSpace* const to_space = _space_info[to_space_id].space(); 996 997 ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); 998 bool eden_empty = eden_space->is_empty(); 999 if (!eden_empty) { 1000 eden_empty = absorb_live_data_from_eden(heap->size_policy(), 1001 heap->young_gen(), heap->old_gen()); 1002 } 1003 1004 // Update heap occupancy information which is used as input to the soft ref 1005 // clearing policy at the next gc. 1006 Universe::update_heap_info_at_gc(); 1007 1008 bool young_gen_empty = eden_empty && from_space->is_empty() && 1009 to_space->is_empty(); 1010 1011 ModRefBarrierSet* modBS = barrier_set_cast<ModRefBarrierSet>(heap->barrier_set()); 1012 MemRegion old_mr = heap->old_gen()->reserved(); 1013 if (young_gen_empty) { 1014 modBS->clear(MemRegion(old_mr.start(), old_mr.end())); 1015 } else { 1016 modBS->invalidate(MemRegion(old_mr.start(), old_mr.end())); 1017 } 1018 1019 // Delete metaspaces for unloaded class loaders and clean up loader_data graph 1020 ClassLoaderDataGraph::purge(); 1021 MetaspaceAux::verify_metrics(); 1022 1023 CodeCache::gc_epilogue(); 1024 JvmtiExport::gc_epilogue(); 1025 1026 #if defined(COMPILER2) || INCLUDE_JVMCI 1027 DerivedPointerTable::update_pointers(); 1028 #endif 1029 1030 ref_processor()->enqueue_discovered_references(NULL); 1031 1032 if (ZapUnusedHeapArea) { 1033 heap->gen_mangle_unused_area(); 1034 } 1035 1036 // Update time of last GC 1037 reset_millis_since_last_gc(); 1038 } 1039 1040 HeapWord* 1041 PSParallelCompact::compute_dense_prefix_via_density(const SpaceId id, 1042 bool maximum_compaction) 1043 { 1044 const size_t region_size = ParallelCompactData::RegionSize; 1045 const ParallelCompactData& sd = summary_data(); 1046 1047 const MutableSpace* const space = _space_info[id].space(); 1048 HeapWord* const top_aligned_up = sd.region_align_up(space->top()); 1049 const RegionData* const beg_cp = sd.addr_to_region_ptr(space->bottom()); 1050 const RegionData* const end_cp = sd.addr_to_region_ptr(top_aligned_up); 1051 1052 // Skip full regions at the beginning of the space--they are necessarily part 1053 // of the dense prefix. 1054 size_t full_count = 0; 1055 const RegionData* cp; 1056 for (cp = beg_cp; cp < end_cp && cp->data_size() == region_size; ++cp) { 1057 ++full_count; 1058 } 1059 1060 assert(total_invocations() >= _maximum_compaction_gc_num, "sanity"); 1061 const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num; 1062 const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval; 1063 if (maximum_compaction || cp == end_cp || interval_ended) { 1064 _maximum_compaction_gc_num = total_invocations(); 1065 return sd.region_to_addr(cp); 1066 } 1067 1068 HeapWord* const new_top = _space_info[id].new_top(); 1069 const size_t space_live = pointer_delta(new_top, space->bottom()); 1070 const size_t space_used = space->used_in_words(); 1071 const size_t space_capacity = space->capacity_in_words(); 1072 1073 const double cur_density = double(space_live) / space_capacity; 1074 const double deadwood_density = 1075 (1.0 - cur_density) * (1.0 - cur_density) * cur_density * cur_density; 1076 const size_t deadwood_goal = size_t(space_capacity * deadwood_density); 1077 1078 if (TraceParallelOldGCDensePrefix) { 1079 tty->print_cr("cur_dens=%5.3f dw_dens=%5.3f dw_goal=" SIZE_FORMAT, 1080 cur_density, deadwood_density, deadwood_goal); 1081 tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " " 1082 "space_cap=" SIZE_FORMAT, 1083 space_live, space_used, 1084 space_capacity); 1085 } 1086 1087 // XXX - Use binary search? 1088 HeapWord* dense_prefix = sd.region_to_addr(cp); 1089 const RegionData* full_cp = cp; 1090 const RegionData* const top_cp = sd.addr_to_region_ptr(space->top() - 1); 1091 while (cp < end_cp) { 1092 HeapWord* region_destination = cp->destination(); 1093 const size_t cur_deadwood = pointer_delta(dense_prefix, region_destination); 1094 if (TraceParallelOldGCDensePrefix && Verbose) { 1095 tty->print_cr("c#=" SIZE_FORMAT_W(4) " dst=" PTR_FORMAT " " 1096 "dp=" PTR_FORMAT " " "cdw=" SIZE_FORMAT_W(8), 1097 sd.region(cp), p2i(region_destination), 1098 p2i(dense_prefix), cur_deadwood); 1099 } 1100 1101 if (cur_deadwood >= deadwood_goal) { 1102 // Found the region that has the correct amount of deadwood to the left. 1103 // This typically occurs after crossing a fairly sparse set of regions, so 1104 // iterate backwards over those sparse regions, looking for the region 1105 // that has the lowest density of live objects 'to the right.' 1106 size_t space_to_left = sd.region(cp) * region_size; 1107 size_t live_to_left = space_to_left - cur_deadwood; 1108 size_t space_to_right = space_capacity - space_to_left; 1109 size_t live_to_right = space_live - live_to_left; 1110 double density_to_right = double(live_to_right) / space_to_right; 1111 while (cp > full_cp) { 1112 --cp; 1113 const size_t prev_region_live_to_right = live_to_right - 1114 cp->data_size(); 1115 const size_t prev_region_space_to_right = space_to_right + region_size; 1116 double prev_region_density_to_right = 1117 double(prev_region_live_to_right) / prev_region_space_to_right; 1118 if (density_to_right <= prev_region_density_to_right) { 1119 return dense_prefix; 1120 } 1121 if (TraceParallelOldGCDensePrefix && Verbose) { 1122 tty->print_cr("backing up from c=" SIZE_FORMAT_W(4) " d2r=%10.8f " 1123 "pc_d2r=%10.8f", sd.region(cp), density_to_right, 1124 prev_region_density_to_right); 1125 } 1126 dense_prefix -= region_size; 1127 live_to_right = prev_region_live_to_right; 1128 space_to_right = prev_region_space_to_right; 1129 density_to_right = prev_region_density_to_right; 1130 } 1131 return dense_prefix; 1132 } 1133 1134 dense_prefix += region_size; 1135 ++cp; 1136 } 1137 1138 return dense_prefix; 1139 } 1140 1141 #ifndef PRODUCT 1142 void PSParallelCompact::print_dense_prefix_stats(const char* const algorithm, 1143 const SpaceId id, 1144 const bool maximum_compaction, 1145 HeapWord* const addr) 1146 { 1147 const size_t region_idx = summary_data().addr_to_region_idx(addr); 1148 RegionData* const cp = summary_data().region(region_idx); 1149 const MutableSpace* const space = _space_info[id].space(); 1150 HeapWord* const new_top = _space_info[id].new_top(); 1151 1152 const size_t space_live = pointer_delta(new_top, space->bottom()); 1153 const size_t dead_to_left = pointer_delta(addr, cp->destination()); 1154 const size_t space_cap = space->capacity_in_words(); 1155 const double dead_to_left_pct = double(dead_to_left) / space_cap; 1156 const size_t live_to_right = new_top - cp->destination(); 1157 const size_t dead_to_right = space->top() - addr - live_to_right; 1158 1159 tty->print_cr("%s=" PTR_FORMAT " dpc=" SIZE_FORMAT_W(5) " " 1160 "spl=" SIZE_FORMAT " " 1161 "d2l=" SIZE_FORMAT " d2l%%=%6.4f " 1162 "d2r=" SIZE_FORMAT " l2r=" SIZE_FORMAT 1163 " ratio=%10.8f", 1164 algorithm, p2i(addr), region_idx, 1165 space_live, 1166 dead_to_left, dead_to_left_pct, 1167 dead_to_right, live_to_right, 1168 double(dead_to_right) / live_to_right); 1169 } 1170 #endif // #ifndef PRODUCT 1171 1172 // Return a fraction indicating how much of the generation can be treated as 1173 // "dead wood" (i.e., not reclaimed). The function uses a normal distribution 1174 // based on the density of live objects in the generation to determine a limit, 1175 // which is then adjusted so the return value is min_percent when the density is 1176 // 1. 1177 // 1178 // The following table shows some return values for a different values of the 1179 // standard deviation (ParallelOldDeadWoodLimiterStdDev); the mean is 0.5 and 1180 // min_percent is 1. 1181 // 1182 // fraction allowed as dead wood 1183 // ----------------------------------------------------------------- 1184 // density std_dev=70 std_dev=75 std_dev=80 std_dev=85 std_dev=90 std_dev=95 1185 // ------- ---------- ---------- ---------- ---------- ---------- ---------- 1186 // 0.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 1187 // 0.05000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941 1188 // 0.10000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272 1189 // 0.15000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066 1190 // 0.20000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975 1191 // 0.25000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313 1192 // 0.30000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132 1193 // 0.35000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289 1194 // 0.40000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500 1195 // 0.45000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386 1196 // 0.50000 0.13832410 0.11599237 0.09847664 0.08456518 0.07338887 0.06431510 1197 // 0.55000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386 1198 // 0.60000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500 1199 // 0.65000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289 1200 // 0.70000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132 1201 // 0.75000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313 1202 // 0.80000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975 1203 // 0.85000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066 1204 // 0.90000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272 1205 // 0.95000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941 1206 // 1.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 1207 1208 double PSParallelCompact::dead_wood_limiter(double density, size_t min_percent) 1209 { 1210 assert(_dwl_initialized, "uninitialized"); 1211 1212 // The raw limit is the value of the normal distribution at x = density. 1213 const double raw_limit = normal_distribution(density); 1214 1215 // Adjust the raw limit so it becomes the minimum when the density is 1. 1216 // 1217 // First subtract the adjustment value (which is simply the precomputed value 1218 // normal_distribution(1.0)); this yields a value of 0 when the density is 1. 1219 // Then add the minimum value, so the minimum is returned when the density is 1220 // 1. Finally, prevent negative values, which occur when the mean is not 0.5. 1221 const double min = double(min_percent) / 100.0; 1222 const double limit = raw_limit - _dwl_adjustment + min; 1223 return MAX2(limit, 0.0); 1224 } 1225 1226 ParallelCompactData::RegionData* 1227 PSParallelCompact::first_dead_space_region(const RegionData* beg, 1228 const RegionData* end) 1229 { 1230 const size_t region_size = ParallelCompactData::RegionSize; 1231 ParallelCompactData& sd = summary_data(); 1232 size_t left = sd.region(beg); 1233 size_t right = end > beg ? sd.region(end) - 1 : left; 1234 1235 // Binary search. 1236 while (left < right) { 1237 // Equivalent to (left + right) / 2, but does not overflow. 1238 const size_t middle = left + (right - left) / 2; 1239 RegionData* const middle_ptr = sd.region(middle); 1240 HeapWord* const dest = middle_ptr->destination(); 1241 HeapWord* const addr = sd.region_to_addr(middle); 1242 assert(dest != NULL, "sanity"); 1243 assert(dest <= addr, "must move left"); 1244 1245 if (middle > left && dest < addr) { 1246 right = middle - 1; 1247 } else if (middle < right && middle_ptr->data_size() == region_size) { 1248 left = middle + 1; 1249 } else { 1250 return middle_ptr; 1251 } 1252 } 1253 return sd.region(left); 1254 } 1255 1256 ParallelCompactData::RegionData* 1257 PSParallelCompact::dead_wood_limit_region(const RegionData* beg, 1258 const RegionData* end, 1259 size_t dead_words) 1260 { 1261 ParallelCompactData& sd = summary_data(); 1262 size_t left = sd.region(beg); 1263 size_t right = end > beg ? sd.region(end) - 1 : left; 1264 1265 // Binary search. 1266 while (left < right) { 1267 // Equivalent to (left + right) / 2, but does not overflow. 1268 const size_t middle = left + (right - left) / 2; 1269 RegionData* const middle_ptr = sd.region(middle); 1270 HeapWord* const dest = middle_ptr->destination(); 1271 HeapWord* const addr = sd.region_to_addr(middle); 1272 assert(dest != NULL, "sanity"); 1273 assert(dest <= addr, "must move left"); 1274 1275 const size_t dead_to_left = pointer_delta(addr, dest); 1276 if (middle > left && dead_to_left > dead_words) { 1277 right = middle - 1; 1278 } else if (middle < right && dead_to_left < dead_words) { 1279 left = middle + 1; 1280 } else { 1281 return middle_ptr; 1282 } 1283 } 1284 return sd.region(left); 1285 } 1286 1287 // The result is valid during the summary phase, after the initial summarization 1288 // of each space into itself, and before final summarization. 1289 inline double 1290 PSParallelCompact::reclaimed_ratio(const RegionData* const cp, 1291 HeapWord* const bottom, 1292 HeapWord* const top, 1293 HeapWord* const new_top) 1294 { 1295 ParallelCompactData& sd = summary_data(); 1296 1297 assert(cp != NULL, "sanity"); 1298 assert(bottom != NULL, "sanity"); 1299 assert(top != NULL, "sanity"); 1300 assert(new_top != NULL, "sanity"); 1301 assert(top >= new_top, "summary data problem?"); 1302 assert(new_top > bottom, "space is empty; should not be here"); 1303 assert(new_top >= cp->destination(), "sanity"); 1304 assert(top >= sd.region_to_addr(cp), "sanity"); 1305 1306 HeapWord* const destination = cp->destination(); 1307 const size_t dense_prefix_live = pointer_delta(destination, bottom); 1308 const size_t compacted_region_live = pointer_delta(new_top, destination); 1309 const size_t compacted_region_used = pointer_delta(top, 1310 sd.region_to_addr(cp)); 1311 const size_t reclaimable = compacted_region_used - compacted_region_live; 1312 1313 const double divisor = dense_prefix_live + 1.25 * compacted_region_live; 1314 return double(reclaimable) / divisor; 1315 } 1316 1317 // Return the address of the end of the dense prefix, a.k.a. the start of the 1318 // compacted region. The address is always on a region boundary. 1319 // 1320 // Completely full regions at the left are skipped, since no compaction can 1321 // occur in those regions. Then the maximum amount of dead wood to allow is 1322 // computed, based on the density (amount live / capacity) of the generation; 1323 // the region with approximately that amount of dead space to the left is 1324 // identified as the limit region. Regions between the last completely full 1325 // region and the limit region are scanned and the one that has the best 1326 // (maximum) reclaimed_ratio() is selected. 1327 HeapWord* 1328 PSParallelCompact::compute_dense_prefix(const SpaceId id, 1329 bool maximum_compaction) 1330 { 1331 const size_t region_size = ParallelCompactData::RegionSize; 1332 const ParallelCompactData& sd = summary_data(); 1333 1334 const MutableSpace* const space = _space_info[id].space(); 1335 HeapWord* const top = space->top(); 1336 HeapWord* const top_aligned_up = sd.region_align_up(top); 1337 HeapWord* const new_top = _space_info[id].new_top(); 1338 HeapWord* const new_top_aligned_up = sd.region_align_up(new_top); 1339 HeapWord* const bottom = space->bottom(); 1340 const RegionData* const beg_cp = sd.addr_to_region_ptr(bottom); 1341 const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up); 1342 const RegionData* const new_top_cp = 1343 sd.addr_to_region_ptr(new_top_aligned_up); 1344 1345 // Skip full regions at the beginning of the space--they are necessarily part 1346 // of the dense prefix. 1347 const RegionData* const full_cp = first_dead_space_region(beg_cp, new_top_cp); 1348 assert(full_cp->destination() == sd.region_to_addr(full_cp) || 1349 space->is_empty(), "no dead space allowed to the left"); 1350 assert(full_cp->data_size() < region_size || full_cp == new_top_cp - 1, 1351 "region must have dead space"); 1352 1353 // The gc number is saved whenever a maximum compaction is done, and used to 1354 // determine when the maximum compaction interval has expired. This avoids 1355 // successive max compactions for different reasons. 1356 assert(total_invocations() >= _maximum_compaction_gc_num, "sanity"); 1357 const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num; 1358 const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval || 1359 total_invocations() == HeapFirstMaximumCompactionCount; 1360 if (maximum_compaction || full_cp == top_cp || interval_ended) { 1361 _maximum_compaction_gc_num = total_invocations(); 1362 return sd.region_to_addr(full_cp); 1363 } 1364 1365 const size_t space_live = pointer_delta(new_top, bottom); 1366 const size_t space_used = space->used_in_words(); 1367 const size_t space_capacity = space->capacity_in_words(); 1368 1369 const double density = double(space_live) / double(space_capacity); 1370 const size_t min_percent_free = MarkSweepDeadRatio; 1371 const double limiter = dead_wood_limiter(density, min_percent_free); 1372 const size_t dead_wood_max = space_used - space_live; 1373 const size_t dead_wood_limit = MIN2(size_t(space_capacity * limiter), 1374 dead_wood_max); 1375 1376 if (TraceParallelOldGCDensePrefix) { 1377 tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " " 1378 "space_cap=" SIZE_FORMAT, 1379 space_live, space_used, 1380 space_capacity); 1381 tty->print_cr("dead_wood_limiter(%6.4f, " SIZE_FORMAT ")=%6.4f " 1382 "dead_wood_max=" SIZE_FORMAT " dead_wood_limit=" SIZE_FORMAT, 1383 density, min_percent_free, limiter, 1384 dead_wood_max, dead_wood_limit); 1385 } 1386 1387 // Locate the region with the desired amount of dead space to the left. 1388 const RegionData* const limit_cp = 1389 dead_wood_limit_region(full_cp, top_cp, dead_wood_limit); 1390 1391 // Scan from the first region with dead space to the limit region and find the 1392 // one with the best (largest) reclaimed ratio. 1393 double best_ratio = 0.0; 1394 const RegionData* best_cp = full_cp; 1395 for (const RegionData* cp = full_cp; cp < limit_cp; ++cp) { 1396 double tmp_ratio = reclaimed_ratio(cp, bottom, top, new_top); 1397 if (tmp_ratio > best_ratio) { 1398 best_cp = cp; 1399 best_ratio = tmp_ratio; 1400 } 1401 } 1402 1403 return sd.region_to_addr(best_cp); 1404 } 1405 1406 void PSParallelCompact::summarize_spaces_quick() 1407 { 1408 for (unsigned int i = 0; i < last_space_id; ++i) { 1409 const MutableSpace* space = _space_info[i].space(); 1410 HeapWord** nta = _space_info[i].new_top_addr(); 1411 bool result = _summary_data.summarize(_space_info[i].split_info(), 1412 space->bottom(), space->top(), NULL, 1413 space->bottom(), space->end(), nta); 1414 assert(result, "space must fit into itself"); 1415 _space_info[i].set_dense_prefix(space->bottom()); 1416 } 1417 } 1418 1419 void PSParallelCompact::fill_dense_prefix_end(SpaceId id) 1420 { 1421 HeapWord* const dense_prefix_end = dense_prefix(id); 1422 const RegionData* region = _summary_data.addr_to_region_ptr(dense_prefix_end); 1423 const idx_t dense_prefix_bit = _mark_bitmap.addr_to_bit(dense_prefix_end); 1424 if (dead_space_crosses_boundary(region, dense_prefix_bit)) { 1425 // Only enough dead space is filled so that any remaining dead space to the 1426 // left is larger than the minimum filler object. (The remainder is filled 1427 // during the copy/update phase.) 1428 // 1429 // The size of the dead space to the right of the boundary is not a 1430 // concern, since compaction will be able to use whatever space is 1431 // available. 1432 // 1433 // Here '||' is the boundary, 'x' represents a don't care bit and a box 1434 // surrounds the space to be filled with an object. 1435 // 1436 // In the 32-bit VM, each bit represents two 32-bit words: 1437 // +---+ 1438 // a) beg_bits: ... x x x | 0 | || 0 x x ... 1439 // end_bits: ... x x x | 0 | || 0 x x ... 1440 // +---+ 1441 // 1442 // In the 64-bit VM, each bit represents one 64-bit word: 1443 // +------------+ 1444 // b) beg_bits: ... x x x | 0 || 0 | x x ... 1445 // end_bits: ... x x 1 | 0 || 0 | x x ... 1446 // +------------+ 1447 // +-------+ 1448 // c) beg_bits: ... x x | 0 0 | || 0 x x ... 1449 // end_bits: ... x 1 | 0 0 | || 0 x x ... 1450 // +-------+ 1451 // +-----------+ 1452 // d) beg_bits: ... x | 0 0 0 | || 0 x x ... 1453 // end_bits: ... 1 | 0 0 0 | || 0 x x ... 1454 // +-----------+ 1455 // +-------+ 1456 // e) beg_bits: ... 0 0 | 0 0 | || 0 x x ... 1457 // end_bits: ... 0 0 | 0 0 | || 0 x x ... 1458 // +-------+ 1459 1460 // Initially assume case a, c or e will apply. 1461 size_t obj_len = CollectedHeap::min_fill_size(); 1462 HeapWord* obj_beg = dense_prefix_end - obj_len; 1463 1464 #ifdef _LP64 1465 if (MinObjAlignment > 1) { // object alignment > heap word size 1466 // Cases a, c or e. 1467 } else if (_mark_bitmap.is_obj_end(dense_prefix_bit - 2)) { 1468 // Case b above. 1469 obj_beg = dense_prefix_end - 1; 1470 } else if (!_mark_bitmap.is_obj_end(dense_prefix_bit - 3) && 1471 _mark_bitmap.is_obj_end(dense_prefix_bit - 4)) { 1472 // Case d above. 1473 obj_beg = dense_prefix_end - 3; 1474 obj_len = 3; 1475 } 1476 #endif // #ifdef _LP64 1477 1478 CollectedHeap::fill_with_object(obj_beg, obj_len); 1479 _mark_bitmap.mark_obj(obj_beg, obj_len); 1480 _summary_data.add_obj(obj_beg, obj_len); 1481 assert(start_array(id) != NULL, "sanity"); 1482 start_array(id)->allocate_block(obj_beg); 1483 } 1484 } 1485 1486 void 1487 PSParallelCompact::clear_source_region(HeapWord* beg_addr, HeapWord* end_addr) 1488 { 1489 RegionData* const beg_ptr = _summary_data.addr_to_region_ptr(beg_addr); 1490 HeapWord* const end_aligned_up = _summary_data.region_align_up(end_addr); 1491 RegionData* const end_ptr = _summary_data.addr_to_region_ptr(end_aligned_up); 1492 for (RegionData* cur = beg_ptr; cur < end_ptr; ++cur) { 1493 cur->set_source_region(0); 1494 } 1495 } 1496 1497 void 1498 PSParallelCompact::summarize_space(SpaceId id, bool maximum_compaction) 1499 { 1500 assert(id < last_space_id, "id out of range"); 1501 assert(_space_info[id].dense_prefix() == _space_info[id].space()->bottom(), 1502 "should have been reset in summarize_spaces_quick()"); 1503 1504 const MutableSpace* space = _space_info[id].space(); 1505 if (_space_info[id].new_top() != space->bottom()) { 1506 HeapWord* dense_prefix_end = compute_dense_prefix(id, maximum_compaction); 1507 _space_info[id].set_dense_prefix(dense_prefix_end); 1508 1509 #ifndef PRODUCT 1510 if (TraceParallelOldGCDensePrefix) { 1511 print_dense_prefix_stats("ratio", id, maximum_compaction, 1512 dense_prefix_end); 1513 HeapWord* addr = compute_dense_prefix_via_density(id, maximum_compaction); 1514 print_dense_prefix_stats("density", id, maximum_compaction, addr); 1515 } 1516 #endif // #ifndef PRODUCT 1517 1518 // Recompute the summary data, taking into account the dense prefix. If 1519 // every last byte will be reclaimed, then the existing summary data which 1520 // compacts everything can be left in place. 1521 if (!maximum_compaction && dense_prefix_end != space->bottom()) { 1522 // If dead space crosses the dense prefix boundary, it is (at least 1523 // partially) filled with a dummy object, marked live and added to the 1524 // summary data. This simplifies the copy/update phase and must be done 1525 // before the final locations of objects are determined, to prevent 1526 // leaving a fragment of dead space that is too small to fill. 1527 fill_dense_prefix_end(id); 1528 1529 // Compute the destination of each Region, and thus each object. 1530 _summary_data.summarize_dense_prefix(space->bottom(), dense_prefix_end); 1531 _summary_data.summarize(_space_info[id].split_info(), 1532 dense_prefix_end, space->top(), NULL, 1533 dense_prefix_end, space->end(), 1534 _space_info[id].new_top_addr()); 1535 } 1536 } 1537 1538 if (log_develop_is_enabled(Trace, gc, compaction, phases)) { 1539 const size_t region_size = ParallelCompactData::RegionSize; 1540 HeapWord* const dense_prefix_end = _space_info[id].dense_prefix(); 1541 const size_t dp_region = _summary_data.addr_to_region_idx(dense_prefix_end); 1542 const size_t dp_words = pointer_delta(dense_prefix_end, space->bottom()); 1543 HeapWord* const new_top = _space_info[id].new_top(); 1544 const HeapWord* nt_aligned_up = _summary_data.region_align_up(new_top); 1545 const size_t cr_words = pointer_delta(nt_aligned_up, dense_prefix_end); 1546 log_develop_trace(gc, compaction, phases)( 1547 "id=%d cap=" SIZE_FORMAT " dp=" PTR_FORMAT " " 1548 "dp_region=" SIZE_FORMAT " " "dp_count=" SIZE_FORMAT " " 1549 "cr_count=" SIZE_FORMAT " " "nt=" PTR_FORMAT, 1550 id, space->capacity_in_words(), p2i(dense_prefix_end), 1551 dp_region, dp_words / region_size, 1552 cr_words / region_size, p2i(new_top)); 1553 } 1554 } 1555 1556 #ifndef PRODUCT 1557 void PSParallelCompact::summary_phase_msg(SpaceId dst_space_id, 1558 HeapWord* dst_beg, HeapWord* dst_end, 1559 SpaceId src_space_id, 1560 HeapWord* src_beg, HeapWord* src_end) 1561 { 1562 log_develop_trace(gc, compaction, phases)( 1563 "Summarizing %d [%s] into %d [%s]: " 1564 "src=" PTR_FORMAT "-" PTR_FORMAT " " 1565 SIZE_FORMAT "-" SIZE_FORMAT " " 1566 "dst=" PTR_FORMAT "-" PTR_FORMAT " " 1567 SIZE_FORMAT "-" SIZE_FORMAT, 1568 src_space_id, space_names[src_space_id], 1569 dst_space_id, space_names[dst_space_id], 1570 p2i(src_beg), p2i(src_end), 1571 _summary_data.addr_to_region_idx(src_beg), 1572 _summary_data.addr_to_region_idx(src_end), 1573 p2i(dst_beg), p2i(dst_end), 1574 _summary_data.addr_to_region_idx(dst_beg), 1575 _summary_data.addr_to_region_idx(dst_end)); 1576 } 1577 #endif // #ifndef PRODUCT 1578 1579 void PSParallelCompact::summary_phase(ParCompactionManager* cm, 1580 bool maximum_compaction) 1581 { 1582 GCTraceTime(Trace, gc, phases) tm("Summary Phase", &_gc_timer); 1583 1584 #ifdef ASSERT 1585 if (TraceParallelOldGCMarkingPhase) { 1586 tty->print_cr("add_obj_count=" SIZE_FORMAT " " 1587 "add_obj_bytes=" SIZE_FORMAT, 1588 add_obj_count, add_obj_size * HeapWordSize); 1589 tty->print_cr("mark_bitmap_count=" SIZE_FORMAT " " 1590 "mark_bitmap_bytes=" SIZE_FORMAT, 1591 mark_bitmap_count, mark_bitmap_size * HeapWordSize); 1592 } 1593 #endif // #ifdef ASSERT 1594 1595 // Quick summarization of each space into itself, to see how much is live. 1596 summarize_spaces_quick(); 1597 1598 log_develop_trace(gc, compaction, phases)("summary phase: after summarizing each space to self"); 1599 NOT_PRODUCT(print_region_ranges()); 1600 NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info)); 1601 1602 // The amount of live data that will end up in old space (assuming it fits). 1603 size_t old_space_total_live = 0; 1604 for (unsigned int id = old_space_id; id < last_space_id; ++id) { 1605 old_space_total_live += pointer_delta(_space_info[id].new_top(), 1606 _space_info[id].space()->bottom()); 1607 } 1608 1609 MutableSpace* const old_space = _space_info[old_space_id].space(); 1610 const size_t old_capacity = old_space->capacity_in_words(); 1611 if (old_space_total_live > old_capacity) { 1612 // XXX - should also try to expand 1613 maximum_compaction = true; 1614 } 1615 1616 // Old generations. 1617 summarize_space(old_space_id, maximum_compaction); 1618 1619 // Summarize the remaining spaces in the young gen. The initial target space 1620 // is the old gen. If a space does not fit entirely into the target, then the 1621 // remainder is compacted into the space itself and that space becomes the new 1622 // target. 1623 SpaceId dst_space_id = old_space_id; 1624 HeapWord* dst_space_end = old_space->end(); 1625 HeapWord** new_top_addr = _space_info[dst_space_id].new_top_addr(); 1626 for (unsigned int id = eden_space_id; id < last_space_id; ++id) { 1627 const MutableSpace* space = _space_info[id].space(); 1628 const size_t live = pointer_delta(_space_info[id].new_top(), 1629 space->bottom()); 1630 const size_t available = pointer_delta(dst_space_end, *new_top_addr); 1631 1632 NOT_PRODUCT(summary_phase_msg(dst_space_id, *new_top_addr, dst_space_end, 1633 SpaceId(id), space->bottom(), space->top());) 1634 if (live > 0 && live <= available) { 1635 // All the live data will fit. 1636 bool done = _summary_data.summarize(_space_info[id].split_info(), 1637 space->bottom(), space->top(), 1638 NULL, 1639 *new_top_addr, dst_space_end, 1640 new_top_addr); 1641 assert(done, "space must fit into old gen"); 1642 1643 // Reset the new_top value for the space. 1644 _space_info[id].set_new_top(space->bottom()); 1645 } else if (live > 0) { 1646 // Attempt to fit part of the source space into the target space. 1647 HeapWord* next_src_addr = NULL; 1648 bool done = _summary_data.summarize(_space_info[id].split_info(), 1649 space->bottom(), space->top(), 1650 &next_src_addr, 1651 *new_top_addr, dst_space_end, 1652 new_top_addr); 1653 assert(!done, "space should not fit into old gen"); 1654 assert(next_src_addr != NULL, "sanity"); 1655 1656 // The source space becomes the new target, so the remainder is compacted 1657 // within the space itself. 1658 dst_space_id = SpaceId(id); 1659 dst_space_end = space->end(); 1660 new_top_addr = _space_info[id].new_top_addr(); 1661 NOT_PRODUCT(summary_phase_msg(dst_space_id, 1662 space->bottom(), dst_space_end, 1663 SpaceId(id), next_src_addr, space->top());) 1664 done = _summary_data.summarize(_space_info[id].split_info(), 1665 next_src_addr, space->top(), 1666 NULL, 1667 space->bottom(), dst_space_end, 1668 new_top_addr); 1669 assert(done, "space must fit when compacted into itself"); 1670 assert(*new_top_addr <= space->top(), "usage should not grow"); 1671 } 1672 } 1673 1674 log_develop_trace(gc, compaction, phases)("Summary_phase: after final summarization"); 1675 NOT_PRODUCT(print_region_ranges()); 1676 NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info)); 1677 } 1678 1679 // This method should contain all heap-specific policy for invoking a full 1680 // collection. invoke_no_policy() will only attempt to compact the heap; it 1681 // will do nothing further. If we need to bail out for policy reasons, scavenge 1682 // before full gc, or any other specialized behavior, it needs to be added here. 1683 // 1684 // Note that this method should only be called from the vm_thread while at a 1685 // safepoint. 1686 // 1687 // Note that the all_soft_refs_clear flag in the collector policy 1688 // may be true because this method can be called without intervening 1689 // activity. For example when the heap space is tight and full measure 1690 // are being taken to free space. 1691 void PSParallelCompact::invoke(bool maximum_heap_compaction) { 1692 assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint"); 1693 assert(Thread::current() == (Thread*)VMThread::vm_thread(), 1694 "should be in vm thread"); 1695 1696 ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); 1697 GCCause::Cause gc_cause = heap->gc_cause(); 1698 assert(!heap->is_gc_active(), "not reentrant"); 1699 1700 PSAdaptiveSizePolicy* policy = heap->size_policy(); 1701 IsGCActiveMark mark; 1702 1703 if (ScavengeBeforeFullGC) { 1704 PSScavenge::invoke_no_policy(); 1705 } 1706 1707 const bool clear_all_soft_refs = 1708 heap->collector_policy()->should_clear_all_soft_refs(); 1709 1710 PSParallelCompact::invoke_no_policy(clear_all_soft_refs || 1711 maximum_heap_compaction); 1712 } 1713 1714 // This method contains no policy. You should probably 1715 // be calling invoke() instead. 1716 bool PSParallelCompact::invoke_no_policy(bool maximum_heap_compaction) { 1717 assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint"); 1718 assert(ref_processor() != NULL, "Sanity"); 1719 1720 if (GCLocker::check_active_before_gc()) { 1721 return false; 1722 } 1723 1724 ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); 1725 1726 GCIdMark gc_id_mark; 1727 _gc_timer.register_gc_start(); 1728 _gc_tracer.report_gc_start(heap->gc_cause(), _gc_timer.gc_start()); 1729 1730 TimeStamp marking_start; 1731 TimeStamp compaction_start; 1732 TimeStamp collection_exit; 1733 1734 GCCause::Cause gc_cause = heap->gc_cause(); 1735 PSYoungGen* young_gen = heap->young_gen(); 1736 PSOldGen* old_gen = heap->old_gen(); 1737 PSAdaptiveSizePolicy* size_policy = heap->size_policy(); 1738 1739 // The scope of casr should end after code that can change 1740 // CollectorPolicy::_should_clear_all_soft_refs. 1741 ClearedAllSoftRefs casr(maximum_heap_compaction, 1742 heap->collector_policy()); 1743 1744 if (ZapUnusedHeapArea) { 1745 // Save information needed to minimize mangling 1746 heap->record_gen_tops_before_GC(); 1747 } 1748 1749 // Make sure data structures are sane, make the heap parsable, and do other 1750 // miscellaneous bookkeeping. 1751 pre_compact(); 1752 1753 PreGCValues pre_gc_values(heap); 1754 1755 // Get the compaction manager reserved for the VM thread. 1756 ParCompactionManager* const vmthread_cm = 1757 ParCompactionManager::manager_array(gc_task_manager()->workers()); 1758 1759 { 1760 ResourceMark rm; 1761 HandleMark hm; 1762 1763 // Set the number of GC threads to be used in this collection 1764 gc_task_manager()->set_active_gang(); 1765 gc_task_manager()->task_idle_workers(); 1766 1767 GCTraceCPUTime tcpu; 1768 GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause, true); 1769 1770 heap->pre_full_gc_dump(&_gc_timer); 1771 1772 TraceCollectorStats tcs(counters()); 1773 TraceMemoryManagerStats tms(true /* Full GC */,gc_cause); 1774 1775 if (TraceOldGenTime) accumulated_time()->start(); 1776 1777 // Let the size policy know we're starting 1778 size_policy->major_collection_begin(); 1779 1780 CodeCache::gc_prologue(); 1781 1782 #if defined(COMPILER2) || INCLUDE_JVMCI 1783 DerivedPointerTable::clear(); 1784 #endif 1785 1786 ref_processor()->enable_discovery(); 1787 ref_processor()->setup_policy(maximum_heap_compaction); 1788 1789 bool marked_for_unloading = false; 1790 1791 marking_start.update(); 1792 marking_phase(vmthread_cm, maximum_heap_compaction, &_gc_tracer); 1793 1794 bool max_on_system_gc = UseMaximumCompactionOnSystemGC 1795 && GCCause::is_user_requested_gc(gc_cause); 1796 summary_phase(vmthread_cm, maximum_heap_compaction || max_on_system_gc); 1797 1798 #if defined(COMPILER2) || INCLUDE_JVMCI 1799 assert(DerivedPointerTable::is_active(), "Sanity"); 1800 DerivedPointerTable::set_active(false); 1801 #endif 1802 1803 // adjust_roots() updates Universe::_intArrayKlassObj which is 1804 // needed by the compaction for filling holes in the dense prefix. 1805 adjust_roots(vmthread_cm); 1806 1807 compaction_start.update(); 1808 compact(); 1809 1810 // Reset the mark bitmap, summary data, and do other bookkeeping. Must be 1811 // done before resizing. 1812 post_compact(); 1813 1814 // Let the size policy know we're done 1815 size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause); 1816 1817 if (UseAdaptiveSizePolicy) { 1818 log_debug(gc, ergo)("AdaptiveSizeStart: collection: %d ", heap->total_collections()); 1819 log_trace(gc, ergo)("old_gen_capacity: " SIZE_FORMAT " young_gen_capacity: " SIZE_FORMAT, 1820 old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes()); 1821 1822 // Don't check if the size_policy is ready here. Let 1823 // the size_policy check that internally. 1824 if (UseAdaptiveGenerationSizePolicyAtMajorCollection && 1825 AdaptiveSizePolicy::should_update_promo_stats(gc_cause)) { 1826 // Swap the survivor spaces if from_space is empty. The 1827 // resize_young_gen() called below is normally used after 1828 // a successful young GC and swapping of survivor spaces; 1829 // otherwise, it will fail to resize the young gen with 1830 // the current implementation. 1831 if (young_gen->from_space()->is_empty()) { 1832 young_gen->from_space()->clear(SpaceDecorator::Mangle); 1833 young_gen->swap_spaces(); 1834 } 1835 1836 // Calculate optimal free space amounts 1837 assert(young_gen->max_size() > 1838 young_gen->from_space()->capacity_in_bytes() + 1839 young_gen->to_space()->capacity_in_bytes(), 1840 "Sizes of space in young gen are out-of-bounds"); 1841 1842 size_t young_live = young_gen->used_in_bytes(); 1843 size_t eden_live = young_gen->eden_space()->used_in_bytes(); 1844 size_t old_live = old_gen->used_in_bytes(); 1845 size_t cur_eden = young_gen->eden_space()->capacity_in_bytes(); 1846 size_t max_old_gen_size = old_gen->max_gen_size(); 1847 size_t max_eden_size = young_gen->max_size() - 1848 young_gen->from_space()->capacity_in_bytes() - 1849 young_gen->to_space()->capacity_in_bytes(); 1850 1851 // Used for diagnostics 1852 size_policy->clear_generation_free_space_flags(); 1853 1854 size_policy->compute_generations_free_space(young_live, 1855 eden_live, 1856 old_live, 1857 cur_eden, 1858 max_old_gen_size, 1859 max_eden_size, 1860 true /* full gc*/); 1861 1862 size_policy->check_gc_overhead_limit(young_live, 1863 eden_live, 1864 max_old_gen_size, 1865 max_eden_size, 1866 true /* full gc*/, 1867 gc_cause, 1868 heap->collector_policy()); 1869 1870 size_policy->decay_supplemental_growth(true /* full gc*/); 1871 1872 heap->resize_old_gen( 1873 size_policy->calculated_old_free_size_in_bytes()); 1874 1875 heap->resize_young_gen(size_policy->calculated_eden_size_in_bytes(), 1876 size_policy->calculated_survivor_size_in_bytes()); 1877 } 1878 1879 log_debug(gc, ergo)("AdaptiveSizeStop: collection: %d ", heap->total_collections()); 1880 } 1881 1882 if (UsePerfData) { 1883 PSGCAdaptivePolicyCounters* const counters = heap->gc_policy_counters(); 1884 counters->update_counters(); 1885 counters->update_old_capacity(old_gen->capacity_in_bytes()); 1886 counters->update_young_capacity(young_gen->capacity_in_bytes()); 1887 } 1888 1889 heap->resize_all_tlabs(); 1890 1891 // Resize the metaspace capacity after a collection 1892 MetaspaceGC::compute_new_size(); 1893 1894 if (TraceOldGenTime) { 1895 accumulated_time()->stop(); 1896 } 1897 1898 young_gen->print_used_change(pre_gc_values.young_gen_used()); 1899 old_gen->print_used_change(pre_gc_values.old_gen_used()); 1900 MetaspaceAux::print_metaspace_change(pre_gc_values.metadata_used()); 1901 1902 // Track memory usage and detect low memory 1903 MemoryService::track_memory_usage(); 1904 heap->update_counters(); 1905 gc_task_manager()->release_idle_workers(); 1906 1907 heap->post_full_gc_dump(&_gc_timer); 1908 } 1909 1910 #ifdef ASSERT 1911 for (size_t i = 0; i < ParallelGCThreads + 1; ++i) { 1912 ParCompactionManager* const cm = 1913 ParCompactionManager::manager_array(int(i)); 1914 assert(cm->marking_stack()->is_empty(), "should be empty"); 1915 assert(ParCompactionManager::region_list(int(i))->is_empty(), "should be empty"); 1916 } 1917 #endif // ASSERT 1918 1919 if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) { 1920 HandleMark hm; // Discard invalid handles created during verification 1921 Universe::verify("After GC"); 1922 } 1923 1924 // Re-verify object start arrays 1925 if (VerifyObjectStartArray && 1926 VerifyAfterGC) { 1927 old_gen->verify_object_start_array(); 1928 } 1929 1930 if (ZapUnusedHeapArea) { 1931 old_gen->object_space()->check_mangled_unused_area_complete(); 1932 } 1933 1934 NOT_PRODUCT(ref_processor()->verify_no_references_recorded()); 1935 1936 collection_exit.update(); 1937 1938 heap->print_heap_after_gc(); 1939 heap->trace_heap_after_gc(&_gc_tracer); 1940 1941 log_debug(gc, task, time)("VM-Thread " JLONG_FORMAT " " JLONG_FORMAT " " JLONG_FORMAT, 1942 marking_start.ticks(), compaction_start.ticks(), 1943 collection_exit.ticks()); 1944 gc_task_manager()->print_task_time_stamps(); 1945 1946 #ifdef TRACESPINNING 1947 ParallelTaskTerminator::print_termination_counts(); 1948 #endif 1949 1950 AdaptiveSizePolicyOutput::print(size_policy, heap->total_collections()); 1951 1952 _gc_timer.register_gc_end(); 1953 1954 _gc_tracer.report_dense_prefix(dense_prefix(old_space_id)); 1955 _gc_tracer.report_gc_end(_gc_timer.gc_end(), _gc_timer.time_partitions()); 1956 1957 return true; 1958 } 1959 1960 bool PSParallelCompact::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy, 1961 PSYoungGen* young_gen, 1962 PSOldGen* old_gen) { 1963 MutableSpace* const eden_space = young_gen->eden_space(); 1964 assert(!eden_space->is_empty(), "eden must be non-empty"); 1965 assert(young_gen->virtual_space()->alignment() == 1966 old_gen->virtual_space()->alignment(), "alignments do not match"); 1967 1968 if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary)) { 1969 return false; 1970 } 1971 1972 // Both generations must be completely committed. 1973 if (young_gen->virtual_space()->uncommitted_size() != 0) { 1974 return false; 1975 } 1976 if (old_gen->virtual_space()->uncommitted_size() != 0) { 1977 return false; 1978 } 1979 1980 // Figure out how much to take from eden. Include the average amount promoted 1981 // in the total; otherwise the next young gen GC will simply bail out to a 1982 // full GC. 1983 const size_t alignment = old_gen->virtual_space()->alignment(); 1984 const size_t eden_used = eden_space->used_in_bytes(); 1985 const size_t promoted = (size_t)size_policy->avg_promoted()->padded_average(); 1986 const size_t absorb_size = align_size_up(eden_used + promoted, alignment); 1987 const size_t eden_capacity = eden_space->capacity_in_bytes(); 1988 1989 if (absorb_size >= eden_capacity) { 1990 return false; // Must leave some space in eden. 1991 } 1992 1993 const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size; 1994 if (new_young_size < young_gen->min_gen_size()) { 1995 return false; // Respect young gen minimum size. 1996 } 1997 1998 log_trace(heap, ergo)(" absorbing " SIZE_FORMAT "K: " 1999 "eden " SIZE_FORMAT "K->" SIZE_FORMAT "K " 2000 "from " SIZE_FORMAT "K, to " SIZE_FORMAT "K " 2001 "young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K ", 2002 absorb_size / K, 2003 eden_capacity / K, (eden_capacity - absorb_size) / K, 2004 young_gen->from_space()->used_in_bytes() / K, 2005 young_gen->to_space()->used_in_bytes() / K, 2006 young_gen->capacity_in_bytes() / K, new_young_size / K); 2007 2008 // Fill the unused part of the old gen. 2009 MutableSpace* const old_space = old_gen->object_space(); 2010 HeapWord* const unused_start = old_space->top(); 2011 size_t const unused_words = pointer_delta(old_space->end(), unused_start); 2012 2013 if (unused_words > 0) { 2014 if (unused_words < CollectedHeap::min_fill_size()) { 2015 return false; // If the old gen cannot be filled, must give up. 2016 } 2017 CollectedHeap::fill_with_objects(unused_start, unused_words); 2018 } 2019 2020 // Take the live data from eden and set both top and end in the old gen to 2021 // eden top. (Need to set end because reset_after_change() mangles the region 2022 // from end to virtual_space->high() in debug builds). 2023 HeapWord* const new_top = eden_space->top(); 2024 old_gen->virtual_space()->expand_into(young_gen->virtual_space(), 2025 absorb_size); 2026 young_gen->reset_after_change(); 2027 old_space->set_top(new_top); 2028 old_space->set_end(new_top); 2029 old_gen->reset_after_change(); 2030 2031 // Update the object start array for the filler object and the data from eden. 2032 ObjectStartArray* const start_array = old_gen->start_array(); 2033 for (HeapWord* p = unused_start; p < new_top; p += oop(p)->size()) { 2034 start_array->allocate_block(p); 2035 } 2036 2037 // Could update the promoted average here, but it is not typically updated at 2038 // full GCs and the value to use is unclear. Something like 2039 // 2040 // cur_promoted_avg + absorb_size / number_of_scavenges_since_last_full_gc. 2041 2042 size_policy->set_bytes_absorbed_from_eden(absorb_size); 2043 return true; 2044 } 2045 2046 GCTaskManager* const PSParallelCompact::gc_task_manager() { 2047 assert(ParallelScavengeHeap::gc_task_manager() != NULL, 2048 "shouldn't return NULL"); 2049 return ParallelScavengeHeap::gc_task_manager(); 2050 } 2051 2052 void PSParallelCompact::marking_phase(ParCompactionManager* cm, 2053 bool maximum_heap_compaction, 2054 ParallelOldTracer *gc_tracer) { 2055 // Recursively traverse all live objects and mark them 2056 GCTraceTime(Trace, gc, phases) tm("Marking Phase", &_gc_timer); 2057 2058 ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); 2059 uint parallel_gc_threads = heap->gc_task_manager()->workers(); 2060 uint active_gc_threads = heap->gc_task_manager()->active_workers(); 2061 TaskQueueSetSuper* qset = ParCompactionManager::region_array(); 2062 ParallelTaskTerminator terminator(active_gc_threads, qset); 2063 2064 ParCompactionManager::MarkAndPushClosure mark_and_push_closure(cm); 2065 ParCompactionManager::FollowStackClosure follow_stack_closure(cm); 2066 2067 // Need new claim bits before marking starts. 2068 ClassLoaderDataGraph::clear_claimed_marks(); 2069 2070 { 2071 GCTraceTime(Trace, gc, phases) tm("Par Mark", &_gc_timer); 2072 2073 ParallelScavengeHeap::ParStrongRootsScope psrs; 2074 2075 GCTaskQueue* q = GCTaskQueue::create(); 2076 2077 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::universe)); 2078 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jni_handles)); 2079 // We scan the thread roots in parallel 2080 Threads::create_thread_roots_marking_tasks(q); 2081 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::object_synchronizer)); 2082 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::flat_profiler)); 2083 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::management)); 2084 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::system_dictionary)); 2085 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::class_loader_data)); 2086 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jvmti)); 2087 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::code_cache)); 2088 2089 if (active_gc_threads > 1) { 2090 for (uint j = 0; j < active_gc_threads; j++) { 2091 q->enqueue(new StealMarkingTask(&terminator)); 2092 } 2093 } 2094 2095 gc_task_manager()->execute_and_wait(q); 2096 } 2097 2098 // Process reference objects found during marking 2099 { 2100 GCTraceTime(Trace, gc, phases) tm("Reference Processing", &_gc_timer); 2101 2102 ReferenceProcessorStats stats; 2103 if (ref_processor()->processing_is_mt()) { 2104 RefProcTaskExecutor task_executor; 2105 stats = ref_processor()->process_discovered_references( 2106 is_alive_closure(), &mark_and_push_closure, &follow_stack_closure, 2107 &task_executor, &_gc_timer); 2108 } else { 2109 stats = ref_processor()->process_discovered_references( 2110 is_alive_closure(), &mark_and_push_closure, &follow_stack_closure, NULL, 2111 &_gc_timer); 2112 } 2113 2114 gc_tracer->report_gc_reference_stats(stats); 2115 } 2116 2117 GCTraceTime(Trace, gc) tm_m("Class Unloading", &_gc_timer); 2118 2119 // This is the point where the entire marking should have completed. 2120 assert(cm->marking_stacks_empty(), "Marking should have completed"); 2121 2122 // Follow system dictionary roots and unload classes. 2123 bool purged_class = SystemDictionary::do_unloading(is_alive_closure()); 2124 2125 // Unload nmethods. 2126 CodeCache::do_unloading(is_alive_closure(), purged_class); 2127 2128 // Prune dead klasses from subklass/sibling/implementor lists. 2129 Klass::clean_weak_klass_links(is_alive_closure()); 2130 2131 // Delete entries for dead interned strings. 2132 StringTable::unlink(is_alive_closure()); 2133 2134 // Clean up unreferenced symbols in symbol table. 2135 SymbolTable::unlink(); 2136 _gc_tracer.report_object_count_after_gc(is_alive_closure()); 2137 } 2138 2139 // This should be moved to the shared markSweep code! 2140 class PSAlwaysTrueClosure: public BoolObjectClosure { 2141 public: 2142 bool do_object_b(oop p) { return true; } 2143 }; 2144 static PSAlwaysTrueClosure always_true; 2145 2146 void PSParallelCompact::adjust_roots(ParCompactionManager* cm) { 2147 // Adjust the pointers to reflect the new locations 2148 GCTraceTime(Trace, gc, phases) tm("Adjust Roots", &_gc_timer); 2149 2150 // Need new claim bits when tracing through and adjusting pointers. 2151 ClassLoaderDataGraph::clear_claimed_marks(); 2152 2153 PSParallelCompact::AdjustPointerClosure oop_closure(cm); 2154 PSParallelCompact::AdjustKlassClosure klass_closure(cm); 2155 2156 // General strong roots. 2157 Universe::oops_do(&oop_closure); 2158 JNIHandles::oops_do(&oop_closure); // Global (strong) JNI handles 2159 CLDToOopClosure adjust_from_cld(&oop_closure); 2160 Threads::oops_do(&oop_closure, &adjust_from_cld, NULL); 2161 ObjectSynchronizer::oops_do(&oop_closure); 2162 FlatProfiler::oops_do(&oop_closure); 2163 Management::oops_do(&oop_closure); 2164 JvmtiExport::oops_do(&oop_closure); 2165 SystemDictionary::oops_do(&oop_closure); 2166 ClassLoaderDataGraph::oops_do(&oop_closure, &klass_closure, true); 2167 2168 // Now adjust pointers in remaining weak roots. (All of which should 2169 // have been cleared if they pointed to non-surviving objects.) 2170 // Global (weak) JNI handles 2171 JNIHandles::weak_oops_do(&always_true, &oop_closure); 2172 2173 CodeBlobToOopClosure adjust_from_blobs(&oop_closure, CodeBlobToOopClosure::FixRelocations); 2174 CodeCache::blobs_do(&adjust_from_blobs); 2175 StringTable::oops_do(&oop_closure); 2176 ref_processor()->weak_oops_do(&oop_closure); 2177 // Roots were visited so references into the young gen in roots 2178 // may have been scanned. Process them also. 2179 // Should the reference processor have a span that excludes 2180 // young gen objects? 2181 PSScavenge::reference_processor()->weak_oops_do(&oop_closure); 2182 } 2183 2184 // Helper class to print 8 region numbers per line and then print the total at the end. 2185 class FillableRegionLogger : public StackObj { 2186 private: 2187 LogHandle(gc, compaction) log; 2188 static const int LineLength = 8; 2189 size_t _regions[LineLength]; 2190 int _next_index; 2191 bool _enabled; 2192 size_t _total_regions; 2193 public: 2194 FillableRegionLogger() : _next_index(0), _total_regions(0), _enabled(log_develop_is_enabled(Trace, gc, compaction)) { } 2195 ~FillableRegionLogger() { 2196 log.trace(SIZE_FORMAT " initially fillable regions", _total_regions); 2197 } 2198 2199 void print_line() { 2200 if (!_enabled || _next_index == 0) { 2201 return; 2202 } 2203 FormatBuffer<> line("Fillable: "); 2204 for (int i = 0; i < _next_index; i++) { 2205 line.append(" " SIZE_FORMAT_W(7), _regions[i]); 2206 } 2207 log.trace("%s", line.buffer()); 2208 _next_index = 0; 2209 } 2210 2211 void handle(size_t region) { 2212 if (!_enabled) { 2213 return; 2214 } 2215 _regions[_next_index++] = region; 2216 if (_next_index == LineLength) { 2217 print_line(); 2218 } 2219 _total_regions++; 2220 } 2221 }; 2222 2223 void PSParallelCompact::enqueue_region_draining_tasks(GCTaskQueue* q, 2224 uint parallel_gc_threads) 2225 { 2226 GCTraceTime(Trace, gc, phases) tm("Drain Task Setup", &_gc_timer); 2227 2228 // Find the threads that are active 2229 unsigned int which = 0; 2230 2231 const uint task_count = MAX2(parallel_gc_threads, 1U); 2232 for (uint j = 0; j < task_count; j++) { 2233 q->enqueue(new DrainStacksCompactionTask(j)); 2234 ParCompactionManager::verify_region_list_empty(j); 2235 // Set the region stacks variables to "no" region stack values 2236 // so that they will be recognized and needing a region stack 2237 // in the stealing tasks if they do not get one by executing 2238 // a draining stack. 2239 ParCompactionManager* cm = ParCompactionManager::manager_array(j); 2240 cm->set_region_stack(NULL); 2241 cm->set_region_stack_index((uint)max_uintx); 2242 } 2243 ParCompactionManager::reset_recycled_stack_index(); 2244 2245 // Find all regions that are available (can be filled immediately) and 2246 // distribute them to the thread stacks. The iteration is done in reverse 2247 // order (high to low) so the regions will be removed in ascending order. 2248 2249 const ParallelCompactData& sd = PSParallelCompact::summary_data(); 2250 2251 // A region index which corresponds to the tasks created above. 2252 // "which" must be 0 <= which < task_count 2253 2254 which = 0; 2255 // id + 1 is used to test termination so unsigned can 2256 // be used with an old_space_id == 0. 2257 FillableRegionLogger region_logger; 2258 for (unsigned int id = to_space_id; id + 1 > old_space_id; --id) { 2259 SpaceInfo* const space_info = _space_info + id; 2260 MutableSpace* const space = space_info->space(); 2261 HeapWord* const new_top = space_info->new_top(); 2262 2263 const size_t beg_region = sd.addr_to_region_idx(space_info->dense_prefix()); 2264 const size_t end_region = 2265 sd.addr_to_region_idx(sd.region_align_up(new_top)); 2266 2267 for (size_t cur = end_region - 1; cur + 1 > beg_region; --cur) { 2268 if (sd.region(cur)->claim_unsafe()) { 2269 ParCompactionManager::region_list_push(which, cur); 2270 region_logger.handle(cur); 2271 // Assign regions to tasks in round-robin fashion. 2272 if (++which == task_count) { 2273 assert(which <= parallel_gc_threads, 2274 "Inconsistent number of workers"); 2275 which = 0; 2276 } 2277 } 2278 } 2279 region_logger.print_line(); 2280 } 2281 } 2282 2283 #define PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING 4 2284 2285 void PSParallelCompact::enqueue_dense_prefix_tasks(GCTaskQueue* q, 2286 uint parallel_gc_threads) { 2287 GCTraceTime(Trace, gc, phases) tm("Dense Prefix Task Setup", &_gc_timer); 2288 2289 ParallelCompactData& sd = PSParallelCompact::summary_data(); 2290 2291 // Iterate over all the spaces adding tasks for updating 2292 // regions in the dense prefix. Assume that 1 gc thread 2293 // will work on opening the gaps and the remaining gc threads 2294 // will work on the dense prefix. 2295 unsigned int space_id; 2296 for (space_id = old_space_id; space_id < last_space_id; ++ space_id) { 2297 HeapWord* const dense_prefix_end = _space_info[space_id].dense_prefix(); 2298 const MutableSpace* const space = _space_info[space_id].space(); 2299 2300 if (dense_prefix_end == space->bottom()) { 2301 // There is no dense prefix for this space. 2302 continue; 2303 } 2304 2305 // The dense prefix is before this region. 2306 size_t region_index_end_dense_prefix = 2307 sd.addr_to_region_idx(dense_prefix_end); 2308 RegionData* const dense_prefix_cp = 2309 sd.region(region_index_end_dense_prefix); 2310 assert(dense_prefix_end == space->end() || 2311 dense_prefix_cp->available() || 2312 dense_prefix_cp->claimed(), 2313 "The region after the dense prefix should always be ready to fill"); 2314 2315 size_t region_index_start = sd.addr_to_region_idx(space->bottom()); 2316 2317 // Is there dense prefix work? 2318 size_t total_dense_prefix_regions = 2319 region_index_end_dense_prefix - region_index_start; 2320 // How many regions of the dense prefix should be given to 2321 // each thread? 2322 if (total_dense_prefix_regions > 0) { 2323 uint tasks_for_dense_prefix = 1; 2324 if (total_dense_prefix_regions <= 2325 (parallel_gc_threads * PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING)) { 2326 // Don't over partition. This assumes that 2327 // PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING is a small integer value 2328 // so there are not many regions to process. 2329 tasks_for_dense_prefix = parallel_gc_threads; 2330 } else { 2331 // Over partition 2332 tasks_for_dense_prefix = parallel_gc_threads * 2333 PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING; 2334 } 2335 size_t regions_per_thread = total_dense_prefix_regions / 2336 tasks_for_dense_prefix; 2337 // Give each thread at least 1 region. 2338 if (regions_per_thread == 0) { 2339 regions_per_thread = 1; 2340 } 2341 2342 for (uint k = 0; k < tasks_for_dense_prefix; k++) { 2343 if (region_index_start >= region_index_end_dense_prefix) { 2344 break; 2345 } 2346 // region_index_end is not processed 2347 size_t region_index_end = MIN2(region_index_start + regions_per_thread, 2348 region_index_end_dense_prefix); 2349 q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id), 2350 region_index_start, 2351 region_index_end)); 2352 region_index_start = region_index_end; 2353 } 2354 } 2355 // This gets any part of the dense prefix that did not 2356 // fit evenly. 2357 if (region_index_start < region_index_end_dense_prefix) { 2358 q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id), 2359 region_index_start, 2360 region_index_end_dense_prefix)); 2361 } 2362 } 2363 } 2364 2365 void PSParallelCompact::enqueue_region_stealing_tasks( 2366 GCTaskQueue* q, 2367 ParallelTaskTerminator* terminator_ptr, 2368 uint parallel_gc_threads) { 2369 GCTraceTime(Trace, gc, phases) tm("Steal Task Setup", &_gc_timer); 2370 2371 // Once a thread has drained it's stack, it should try to steal regions from 2372 // other threads. 2373 if (parallel_gc_threads > 1) { 2374 for (uint j = 0; j < parallel_gc_threads; j++) { 2375 q->enqueue(new StealRegionCompactionTask(terminator_ptr)); 2376 } 2377 } 2378 } 2379 2380 #ifdef ASSERT 2381 // Write a histogram of the number of times the block table was filled for a 2382 // region. 2383 void PSParallelCompact::write_block_fill_histogram() 2384 { 2385 if (!log_develop_is_enabled(Trace, gc, compaction)) { 2386 return; 2387 } 2388 2389 LogHandle(gc, compaction) log; 2390 ResourceMark rm; 2391 outputStream* out = log.trace_stream(); 2392 2393 typedef ParallelCompactData::RegionData rd_t; 2394 ParallelCompactData& sd = summary_data(); 2395 2396 for (unsigned int id = old_space_id; id < last_space_id; ++id) { 2397 MutableSpace* const spc = _space_info[id].space(); 2398 if (spc->bottom() != spc->top()) { 2399 const rd_t* const beg = sd.addr_to_region_ptr(spc->bottom()); 2400 HeapWord* const top_aligned_up = sd.region_align_up(spc->top()); 2401 const rd_t* const end = sd.addr_to_region_ptr(top_aligned_up); 2402 2403 size_t histo[5] = { 0, 0, 0, 0, 0 }; 2404 const size_t histo_len = sizeof(histo) / sizeof(size_t); 2405 const size_t region_cnt = pointer_delta(end, beg, sizeof(rd_t)); 2406 2407 for (const rd_t* cur = beg; cur < end; ++cur) { 2408 ++histo[MIN2(cur->blocks_filled_count(), histo_len - 1)]; 2409 } 2410 out->print("Block fill histogram: %u %-4s" SIZE_FORMAT_W(5), id, space_names[id], region_cnt); 2411 for (size_t i = 0; i < histo_len; ++i) { 2412 out->print(" " SIZE_FORMAT_W(5) " %5.1f%%", 2413 histo[i], 100.0 * histo[i] / region_cnt); 2414 } 2415 out->cr(); 2416 } 2417 } 2418 } 2419 #endif // #ifdef ASSERT 2420 2421 void PSParallelCompact::compact() { 2422 GCTraceTime(Trace, gc, phases) tm("Compaction Phase", &_gc_timer); 2423 2424 ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); 2425 PSOldGen* old_gen = heap->old_gen(); 2426 old_gen->start_array()->reset(); 2427 uint parallel_gc_threads = heap->gc_task_manager()->workers(); 2428 uint active_gc_threads = heap->gc_task_manager()->active_workers(); 2429 TaskQueueSetSuper* qset = ParCompactionManager::region_array(); 2430 ParallelTaskTerminator terminator(active_gc_threads, qset); 2431 2432 GCTaskQueue* q = GCTaskQueue::create(); 2433 enqueue_region_draining_tasks(q, active_gc_threads); 2434 enqueue_dense_prefix_tasks(q, active_gc_threads); 2435 enqueue_region_stealing_tasks(q, &terminator, active_gc_threads); 2436 2437 { 2438 GCTraceTime(Trace, gc, phases) tm("Par Compact", &_gc_timer); 2439 2440 gc_task_manager()->execute_and_wait(q); 2441 2442 #ifdef ASSERT 2443 // Verify that all regions have been processed before the deferred updates. 2444 for (unsigned int id = old_space_id; id < last_space_id; ++id) { 2445 verify_complete(SpaceId(id)); 2446 } 2447 #endif 2448 } 2449 2450 { 2451 // Update the deferred objects, if any. Any compaction manager can be used. 2452 GCTraceTime(Trace, gc, phases) tm("Deferred Updates", &_gc_timer); 2453 ParCompactionManager* cm = ParCompactionManager::manager_array(0); 2454 for (unsigned int id = old_space_id; id < last_space_id; ++id) { 2455 update_deferred_objects(cm, SpaceId(id)); 2456 } 2457 } 2458 2459 DEBUG_ONLY(write_block_fill_histogram()); 2460 } 2461 2462 #ifdef ASSERT 2463 void PSParallelCompact::verify_complete(SpaceId space_id) { 2464 // All Regions between space bottom() to new_top() should be marked as filled 2465 // and all Regions between new_top() and top() should be available (i.e., 2466 // should have been emptied). 2467 ParallelCompactData& sd = summary_data(); 2468 SpaceInfo si = _space_info[space_id]; 2469 HeapWord* new_top_addr = sd.region_align_up(si.new_top()); 2470 HeapWord* old_top_addr = sd.region_align_up(si.space()->top()); 2471 const size_t beg_region = sd.addr_to_region_idx(si.space()->bottom()); 2472 const size_t new_top_region = sd.addr_to_region_idx(new_top_addr); 2473 const size_t old_top_region = sd.addr_to_region_idx(old_top_addr); 2474 2475 bool issued_a_warning = false; 2476 2477 size_t cur_region; 2478 for (cur_region = beg_region; cur_region < new_top_region; ++cur_region) { 2479 const RegionData* const c = sd.region(cur_region); 2480 if (!c->completed()) { 2481 warning("region " SIZE_FORMAT " not filled: " 2482 "destination_count=%u", 2483 cur_region, c->destination_count()); 2484 issued_a_warning = true; 2485 } 2486 } 2487 2488 for (cur_region = new_top_region; cur_region < old_top_region; ++cur_region) { 2489 const RegionData* const c = sd.region(cur_region); 2490 if (!c->available()) { 2491 warning("region " SIZE_FORMAT " not empty: " 2492 "destination_count=%u", 2493 cur_region, c->destination_count()); 2494 issued_a_warning = true; 2495 } 2496 } 2497 2498 if (issued_a_warning) { 2499 print_region_ranges(); 2500 } 2501 } 2502 #endif // #ifdef ASSERT 2503 2504 inline void UpdateOnlyClosure::do_addr(HeapWord* addr) { 2505 _start_array->allocate_block(addr); 2506 compaction_manager()->update_contents(oop(addr)); 2507 } 2508 2509 // Update interior oops in the ranges of regions [beg_region, end_region). 2510 void 2511 PSParallelCompact::update_and_deadwood_in_dense_prefix(ParCompactionManager* cm, 2512 SpaceId space_id, 2513 size_t beg_region, 2514 size_t end_region) { 2515 ParallelCompactData& sd = summary_data(); 2516 ParMarkBitMap* const mbm = mark_bitmap(); 2517 2518 HeapWord* beg_addr = sd.region_to_addr(beg_region); 2519 HeapWord* const end_addr = sd.region_to_addr(end_region); 2520 assert(beg_region <= end_region, "bad region range"); 2521 assert(end_addr <= dense_prefix(space_id), "not in the dense prefix"); 2522 2523 #ifdef ASSERT 2524 // Claim the regions to avoid triggering an assert when they are marked as 2525 // filled. 2526 for (size_t claim_region = beg_region; claim_region < end_region; ++claim_region) { 2527 assert(sd.region(claim_region)->claim_unsafe(), "claim() failed"); 2528 } 2529 #endif // #ifdef ASSERT 2530 2531 if (beg_addr != space(space_id)->bottom()) { 2532 // Find the first live object or block of dead space that *starts* in this 2533 // range of regions. If a partial object crosses onto the region, skip it; 2534 // it will be marked for 'deferred update' when the object head is 2535 // processed. If dead space crosses onto the region, it is also skipped; it 2536 // will be filled when the prior region is processed. If neither of those 2537 // apply, the first word in the region is the start of a live object or dead 2538 // space. 2539 assert(beg_addr > space(space_id)->bottom(), "sanity"); 2540 const RegionData* const cp = sd.region(beg_region); 2541 if (cp->partial_obj_size() != 0) { 2542 beg_addr = sd.partial_obj_end(beg_region); 2543 } else if (dead_space_crosses_boundary(cp, mbm->addr_to_bit(beg_addr))) { 2544 beg_addr = mbm->find_obj_beg(beg_addr, end_addr); 2545 } 2546 } 2547 2548 if (beg_addr < end_addr) { 2549 // A live object or block of dead space starts in this range of Regions. 2550 HeapWord* const dense_prefix_end = dense_prefix(space_id); 2551 2552 // Create closures and iterate. 2553 UpdateOnlyClosure update_closure(mbm, cm, space_id); 2554 FillClosure fill_closure(cm, space_id); 2555 ParMarkBitMap::IterationStatus status; 2556 status = mbm->iterate(&update_closure, &fill_closure, beg_addr, end_addr, 2557 dense_prefix_end); 2558 if (status == ParMarkBitMap::incomplete) { 2559 update_closure.do_addr(update_closure.source()); 2560 } 2561 } 2562 2563 // Mark the regions as filled. 2564 RegionData* const beg_cp = sd.region(beg_region); 2565 RegionData* const end_cp = sd.region(end_region); 2566 for (RegionData* cp = beg_cp; cp < end_cp; ++cp) { 2567 cp->set_completed(); 2568 } 2569 } 2570 2571 // Return the SpaceId for the space containing addr. If addr is not in the 2572 // heap, last_space_id is returned. In debug mode it expects the address to be 2573 // in the heap and asserts such. 2574 PSParallelCompact::SpaceId PSParallelCompact::space_id(HeapWord* addr) { 2575 assert(ParallelScavengeHeap::heap()->is_in_reserved(addr), "addr not in the heap"); 2576 2577 for (unsigned int id = old_space_id; id < last_space_id; ++id) { 2578 if (_space_info[id].space()->contains(addr)) { 2579 return SpaceId(id); 2580 } 2581 } 2582 2583 assert(false, "no space contains the addr"); 2584 return last_space_id; 2585 } 2586 2587 void PSParallelCompact::update_deferred_objects(ParCompactionManager* cm, 2588 SpaceId id) { 2589 assert(id < last_space_id, "bad space id"); 2590 2591 ParallelCompactData& sd = summary_data(); 2592 const SpaceInfo* const space_info = _space_info + id; 2593 ObjectStartArray* const start_array = space_info->start_array(); 2594 2595 const MutableSpace* const space = space_info->space(); 2596 assert(space_info->dense_prefix() >= space->bottom(), "dense_prefix not set"); 2597 HeapWord* const beg_addr = space_info->dense_prefix(); 2598 HeapWord* const end_addr = sd.region_align_up(space_info->new_top()); 2599 2600 const RegionData* const beg_region = sd.addr_to_region_ptr(beg_addr); 2601 const RegionData* const end_region = sd.addr_to_region_ptr(end_addr); 2602 const RegionData* cur_region; 2603 for (cur_region = beg_region; cur_region < end_region; ++cur_region) { 2604 HeapWord* const addr = cur_region->deferred_obj_addr(); 2605 if (addr != NULL) { 2606 if (start_array != NULL) { 2607 start_array->allocate_block(addr); 2608 } 2609 cm->update_contents(oop(addr)); 2610 assert(oop(addr)->is_oop_or_null(), "Expected an oop or NULL at " PTR_FORMAT, p2i(oop(addr))); 2611 } 2612 } 2613 } 2614 2615 // Skip over count live words starting from beg, and return the address of the 2616 // next live word. Unless marked, the word corresponding to beg is assumed to 2617 // be dead. Callers must either ensure beg does not correspond to the middle of 2618 // an object, or account for those live words in some other way. Callers must 2619 // also ensure that there are enough live words in the range [beg, end) to skip. 2620 HeapWord* 2621 PSParallelCompact::skip_live_words(HeapWord* beg, HeapWord* end, size_t count) 2622 { 2623 assert(count > 0, "sanity"); 2624 2625 ParMarkBitMap* m = mark_bitmap(); 2626 idx_t bits_to_skip = m->words_to_bits(count); 2627 idx_t cur_beg = m->addr_to_bit(beg); 2628 const idx_t search_end = BitMap::word_align_up(m->addr_to_bit(end)); 2629 2630 do { 2631 cur_beg = m->find_obj_beg(cur_beg, search_end); 2632 idx_t cur_end = m->find_obj_end(cur_beg, search_end); 2633 const size_t obj_bits = cur_end - cur_beg + 1; 2634 if (obj_bits > bits_to_skip) { 2635 return m->bit_to_addr(cur_beg + bits_to_skip); 2636 } 2637 bits_to_skip -= obj_bits; 2638 cur_beg = cur_end + 1; 2639 } while (bits_to_skip > 0); 2640 2641 // Skipping the desired number of words landed just past the end of an object. 2642 // Find the start of the next object. 2643 cur_beg = m->find_obj_beg(cur_beg, search_end); 2644 assert(cur_beg < m->addr_to_bit(end), "not enough live words to skip"); 2645 return m->bit_to_addr(cur_beg); 2646 } 2647 2648 HeapWord* PSParallelCompact::first_src_addr(HeapWord* const dest_addr, 2649 SpaceId src_space_id, 2650 size_t src_region_idx) 2651 { 2652 assert(summary_data().is_region_aligned(dest_addr), "not aligned"); 2653 2654 const SplitInfo& split_info = _space_info[src_space_id].split_info(); 2655 if (split_info.dest_region_addr() == dest_addr) { 2656 // The partial object ending at the split point contains the first word to 2657 // be copied to dest_addr. 2658 return split_info.first_src_addr(); 2659 } 2660 2661 const ParallelCompactData& sd = summary_data(); 2662 ParMarkBitMap* const bitmap = mark_bitmap(); 2663 const size_t RegionSize = ParallelCompactData::RegionSize; 2664 2665 assert(sd.is_region_aligned(dest_addr), "not aligned"); 2666 const RegionData* const src_region_ptr = sd.region(src_region_idx); 2667 const size_t partial_obj_size = src_region_ptr->partial_obj_size(); 2668 HeapWord* const src_region_destination = src_region_ptr->destination(); 2669 2670 assert(dest_addr >= src_region_destination, "wrong src region"); 2671 assert(src_region_ptr->data_size() > 0, "src region cannot be empty"); 2672 2673 HeapWord* const src_region_beg = sd.region_to_addr(src_region_idx); 2674 HeapWord* const src_region_end = src_region_beg + RegionSize; 2675 2676 HeapWord* addr = src_region_beg; 2677 if (dest_addr == src_region_destination) { 2678 // Return the first live word in the source region. 2679 if (partial_obj_size == 0) { 2680 addr = bitmap->find_obj_beg(addr, src_region_end); 2681 assert(addr < src_region_end, "no objects start in src region"); 2682 } 2683 return addr; 2684 } 2685 2686 // Must skip some live data. 2687 size_t words_to_skip = dest_addr - src_region_destination; 2688 assert(src_region_ptr->data_size() > words_to_skip, "wrong src region"); 2689 2690 if (partial_obj_size >= words_to_skip) { 2691 // All the live words to skip are part of the partial object. 2692 addr += words_to_skip; 2693 if (partial_obj_size == words_to_skip) { 2694 // Find the first live word past the partial object. 2695 addr = bitmap->find_obj_beg(addr, src_region_end); 2696 assert(addr < src_region_end, "wrong src region"); 2697 } 2698 return addr; 2699 } 2700 2701 // Skip over the partial object (if any). 2702 if (partial_obj_size != 0) { 2703 words_to_skip -= partial_obj_size; 2704 addr += partial_obj_size; 2705 } 2706 2707 // Skip over live words due to objects that start in the region. 2708 addr = skip_live_words(addr, src_region_end, words_to_skip); 2709 assert(addr < src_region_end, "wrong src region"); 2710 return addr; 2711 } 2712 2713 void PSParallelCompact::decrement_destination_counts(ParCompactionManager* cm, 2714 SpaceId src_space_id, 2715 size_t beg_region, 2716 HeapWord* end_addr) 2717 { 2718 ParallelCompactData& sd = summary_data(); 2719 2720 #ifdef ASSERT 2721 MutableSpace* const src_space = _space_info[src_space_id].space(); 2722 HeapWord* const beg_addr = sd.region_to_addr(beg_region); 2723 assert(src_space->contains(beg_addr) || beg_addr == src_space->end(), 2724 "src_space_id does not match beg_addr"); 2725 assert(src_space->contains(end_addr) || end_addr == src_space->end(), 2726 "src_space_id does not match end_addr"); 2727 #endif // #ifdef ASSERT 2728 2729 RegionData* const beg = sd.region(beg_region); 2730 RegionData* const end = sd.addr_to_region_ptr(sd.region_align_up(end_addr)); 2731 2732 // Regions up to new_top() are enqueued if they become available. 2733 HeapWord* const new_top = _space_info[src_space_id].new_top(); 2734 RegionData* const enqueue_end = 2735 sd.addr_to_region_ptr(sd.region_align_up(new_top)); 2736 2737 for (RegionData* cur = beg; cur < end; ++cur) { 2738 assert(cur->data_size() > 0, "region must have live data"); 2739 cur->decrement_destination_count(); 2740 if (cur < enqueue_end && cur->available() && cur->claim()) { 2741 cm->push_region(sd.region(cur)); 2742 } 2743 } 2744 } 2745 2746 size_t PSParallelCompact::next_src_region(MoveAndUpdateClosure& closure, 2747 SpaceId& src_space_id, 2748 HeapWord*& src_space_top, 2749 HeapWord* end_addr) 2750 { 2751 typedef ParallelCompactData::RegionData RegionData; 2752 2753 ParallelCompactData& sd = PSParallelCompact::summary_data(); 2754 const size_t region_size = ParallelCompactData::RegionSize; 2755 2756 size_t src_region_idx = 0; 2757 2758 // Skip empty regions (if any) up to the top of the space. 2759 HeapWord* const src_aligned_up = sd.region_align_up(end_addr); 2760 RegionData* src_region_ptr = sd.addr_to_region_ptr(src_aligned_up); 2761 HeapWord* const top_aligned_up = sd.region_align_up(src_space_top); 2762 const RegionData* const top_region_ptr = 2763 sd.addr_to_region_ptr(top_aligned_up); 2764 while (src_region_ptr < top_region_ptr && src_region_ptr->data_size() == 0) { 2765 ++src_region_ptr; 2766 } 2767 2768 if (src_region_ptr < top_region_ptr) { 2769 // The next source region is in the current space. Update src_region_idx 2770 // and the source address to match src_region_ptr. 2771 src_region_idx = sd.region(src_region_ptr); 2772 HeapWord* const src_region_addr = sd.region_to_addr(src_region_idx); 2773 if (src_region_addr > closure.source()) { 2774 closure.set_source(src_region_addr); 2775 } 2776 return src_region_idx; 2777 } 2778 2779 // Switch to a new source space and find the first non-empty region. 2780 unsigned int space_id = src_space_id + 1; 2781 assert(space_id < last_space_id, "not enough spaces"); 2782 2783 HeapWord* const destination = closure.destination(); 2784 2785 do { 2786 MutableSpace* space = _space_info[space_id].space(); 2787 HeapWord* const bottom = space->bottom(); 2788 const RegionData* const bottom_cp = sd.addr_to_region_ptr(bottom); 2789 2790 // Iterate over the spaces that do not compact into themselves. 2791 if (bottom_cp->destination() != bottom) { 2792 HeapWord* const top_aligned_up = sd.region_align_up(space->top()); 2793 const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up); 2794 2795 for (const RegionData* src_cp = bottom_cp; src_cp < top_cp; ++src_cp) { 2796 if (src_cp->live_obj_size() > 0) { 2797 // Found it. 2798 assert(src_cp->destination() == destination, 2799 "first live obj in the space must match the destination"); 2800 assert(src_cp->partial_obj_size() == 0, 2801 "a space cannot begin with a partial obj"); 2802 2803 src_space_id = SpaceId(space_id); 2804 src_space_top = space->top(); 2805 const size_t src_region_idx = sd.region(src_cp); 2806 closure.set_source(sd.region_to_addr(src_region_idx)); 2807 return src_region_idx; 2808 } else { 2809 assert(src_cp->data_size() == 0, "sanity"); 2810 } 2811 } 2812 } 2813 } while (++space_id < last_space_id); 2814 2815 assert(false, "no source region was found"); 2816 return 0; 2817 } 2818 2819 void PSParallelCompact::fill_region(ParCompactionManager* cm, size_t region_idx) 2820 { 2821 typedef ParMarkBitMap::IterationStatus IterationStatus; 2822 const size_t RegionSize = ParallelCompactData::RegionSize; 2823 ParMarkBitMap* const bitmap = mark_bitmap(); 2824 ParallelCompactData& sd = summary_data(); 2825 RegionData* const region_ptr = sd.region(region_idx); 2826 2827 // Get the items needed to construct the closure. 2828 HeapWord* dest_addr = sd.region_to_addr(region_idx); 2829 SpaceId dest_space_id = space_id(dest_addr); 2830 ObjectStartArray* start_array = _space_info[dest_space_id].start_array(); 2831 HeapWord* new_top = _space_info[dest_space_id].new_top(); 2832 assert(dest_addr < new_top, "sanity"); 2833 const size_t words = MIN2(pointer_delta(new_top, dest_addr), RegionSize); 2834 2835 // Get the source region and related info. 2836 size_t src_region_idx = region_ptr->source_region(); 2837 SpaceId src_space_id = space_id(sd.region_to_addr(src_region_idx)); 2838 HeapWord* src_space_top = _space_info[src_space_id].space()->top(); 2839 2840 MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words); 2841 closure.set_source(first_src_addr(dest_addr, src_space_id, src_region_idx)); 2842 2843 // Adjust src_region_idx to prepare for decrementing destination counts (the 2844 // destination count is not decremented when a region is copied to itself). 2845 if (src_region_idx == region_idx) { 2846 src_region_idx += 1; 2847 } 2848 2849 if (bitmap->is_unmarked(closure.source())) { 2850 // The first source word is in the middle of an object; copy the remainder 2851 // of the object or as much as will fit. The fact that pointer updates were 2852 // deferred will be noted when the object header is processed. 2853 HeapWord* const old_src_addr = closure.source(); 2854 closure.copy_partial_obj(); 2855 if (closure.is_full()) { 2856 decrement_destination_counts(cm, src_space_id, src_region_idx, 2857 closure.source()); 2858 region_ptr->set_deferred_obj_addr(NULL); 2859 region_ptr->set_completed(); 2860 return; 2861 } 2862 2863 HeapWord* const end_addr = sd.region_align_down(closure.source()); 2864 if (sd.region_align_down(old_src_addr) != end_addr) { 2865 // The partial object was copied from more than one source region. 2866 decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr); 2867 2868 // Move to the next source region, possibly switching spaces as well. All 2869 // args except end_addr may be modified. 2870 src_region_idx = next_src_region(closure, src_space_id, src_space_top, 2871 end_addr); 2872 } 2873 } 2874 2875 do { 2876 HeapWord* const cur_addr = closure.source(); 2877 HeapWord* const end_addr = MIN2(sd.region_align_up(cur_addr + 1), 2878 src_space_top); 2879 IterationStatus status = bitmap->iterate(&closure, cur_addr, end_addr); 2880 2881 if (status == ParMarkBitMap::incomplete) { 2882 // The last obj that starts in the source region does not end in the 2883 // region. 2884 assert(closure.source() < end_addr, "sanity"); 2885 HeapWord* const obj_beg = closure.source(); 2886 HeapWord* const range_end = MIN2(obj_beg + closure.words_remaining(), 2887 src_space_top); 2888 HeapWord* const obj_end = bitmap->find_obj_end(obj_beg, range_end); 2889 if (obj_end < range_end) { 2890 // The end was found; the entire object will fit. 2891 status = closure.do_addr(obj_beg, bitmap->obj_size(obj_beg, obj_end)); 2892 assert(status != ParMarkBitMap::would_overflow, "sanity"); 2893 } else { 2894 // The end was not found; the object will not fit. 2895 assert(range_end < src_space_top, "obj cannot cross space boundary"); 2896 status = ParMarkBitMap::would_overflow; 2897 } 2898 } 2899 2900 if (status == ParMarkBitMap::would_overflow) { 2901 // The last object did not fit. Note that interior oop updates were 2902 // deferred, then copy enough of the object to fill the region. 2903 region_ptr->set_deferred_obj_addr(closure.destination()); 2904 status = closure.copy_until_full(); // copies from closure.source() 2905 2906 decrement_destination_counts(cm, src_space_id, src_region_idx, 2907 closure.source()); 2908 region_ptr->set_completed(); 2909 return; 2910 } 2911 2912 if (status == ParMarkBitMap::full) { 2913 decrement_destination_counts(cm, src_space_id, src_region_idx, 2914 closure.source()); 2915 region_ptr->set_deferred_obj_addr(NULL); 2916 region_ptr->set_completed(); 2917 return; 2918 } 2919 2920 decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr); 2921 2922 // Move to the next source region, possibly switching spaces as well. All 2923 // args except end_addr may be modified. 2924 src_region_idx = next_src_region(closure, src_space_id, src_space_top, 2925 end_addr); 2926 } while (true); 2927 } 2928 2929 void PSParallelCompact::fill_blocks(size_t region_idx) 2930 { 2931 // Fill in the block table elements for the specified region. Each block 2932 // table element holds the number of live words in the region that are to the 2933 // left of the first object that starts in the block. Thus only blocks in 2934 // which an object starts need to be filled. 2935 // 2936 // The algorithm scans the section of the bitmap that corresponds to the 2937 // region, keeping a running total of the live words. When an object start is 2938 // found, if it's the first to start in the block that contains it, the 2939 // current total is written to the block table element. 2940 const size_t Log2BlockSize = ParallelCompactData::Log2BlockSize; 2941 const size_t Log2RegionSize = ParallelCompactData::Log2RegionSize; 2942 const size_t RegionSize = ParallelCompactData::RegionSize; 2943 2944 ParallelCompactData& sd = summary_data(); 2945 const size_t partial_obj_size = sd.region(region_idx)->partial_obj_size(); 2946 if (partial_obj_size >= RegionSize) { 2947 return; // No objects start in this region. 2948 } 2949 2950 // Ensure the first loop iteration decides that the block has changed. 2951 size_t cur_block = sd.block_count(); 2952 2953 const ParMarkBitMap* const bitmap = mark_bitmap(); 2954 2955 const size_t Log2BitsPerBlock = Log2BlockSize - LogMinObjAlignment; 2956 assert((size_t)1 << Log2BitsPerBlock == 2957 bitmap->words_to_bits(ParallelCompactData::BlockSize), "sanity"); 2958 2959 size_t beg_bit = bitmap->words_to_bits(region_idx << Log2RegionSize); 2960 const size_t range_end = beg_bit + bitmap->words_to_bits(RegionSize); 2961 size_t live_bits = bitmap->words_to_bits(partial_obj_size); 2962 beg_bit = bitmap->find_obj_beg(beg_bit + live_bits, range_end); 2963 while (beg_bit < range_end) { 2964 const size_t new_block = beg_bit >> Log2BitsPerBlock; 2965 if (new_block != cur_block) { 2966 cur_block = new_block; 2967 sd.block(cur_block)->set_offset(bitmap->bits_to_words(live_bits)); 2968 } 2969 2970 const size_t end_bit = bitmap->find_obj_end(beg_bit, range_end); 2971 if (end_bit < range_end - 1) { 2972 live_bits += end_bit - beg_bit + 1; 2973 beg_bit = bitmap->find_obj_beg(end_bit + 1, range_end); 2974 } else { 2975 return; 2976 } 2977 } 2978 } 2979 2980 void 2981 PSParallelCompact::move_and_update(ParCompactionManager* cm, SpaceId space_id) { 2982 const MutableSpace* sp = space(space_id); 2983 if (sp->is_empty()) { 2984 return; 2985 } 2986 2987 ParallelCompactData& sd = PSParallelCompact::summary_data(); 2988 ParMarkBitMap* const bitmap = mark_bitmap(); 2989 HeapWord* const dp_addr = dense_prefix(space_id); 2990 HeapWord* beg_addr = sp->bottom(); 2991 HeapWord* end_addr = sp->top(); 2992 2993 assert(beg_addr <= dp_addr && dp_addr <= end_addr, "bad dense prefix"); 2994 2995 const size_t beg_region = sd.addr_to_region_idx(beg_addr); 2996 const size_t dp_region = sd.addr_to_region_idx(dp_addr); 2997 if (beg_region < dp_region) { 2998 update_and_deadwood_in_dense_prefix(cm, space_id, beg_region, dp_region); 2999 } 3000 3001 // The destination of the first live object that starts in the region is one 3002 // past the end of the partial object entering the region (if any). 3003 HeapWord* const dest_addr = sd.partial_obj_end(dp_region); 3004 HeapWord* const new_top = _space_info[space_id].new_top(); 3005 assert(new_top >= dest_addr, "bad new_top value"); 3006 const size_t words = pointer_delta(new_top, dest_addr); 3007 3008 if (words > 0) { 3009 ObjectStartArray* start_array = _space_info[space_id].start_array(); 3010 MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words); 3011 3012 ParMarkBitMap::IterationStatus status; 3013 status = bitmap->iterate(&closure, dest_addr, end_addr); 3014 assert(status == ParMarkBitMap::full, "iteration not complete"); 3015 assert(bitmap->find_obj_beg(closure.source(), end_addr) == end_addr, 3016 "live objects skipped because closure is full"); 3017 } 3018 } 3019 3020 jlong PSParallelCompact::millis_since_last_gc() { 3021 // We need a monotonically non-decreasing time in ms but 3022 // os::javaTimeMillis() does not guarantee monotonicity. 3023 jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC; 3024 jlong ret_val = now - _time_of_last_gc; 3025 // XXX See note in genCollectedHeap::millis_since_last_gc(). 3026 if (ret_val < 0) { 3027 NOT_PRODUCT(warning("time warp: " JLONG_FORMAT, ret_val);) 3028 return 0; 3029 } 3030 return ret_val; 3031 } 3032 3033 void PSParallelCompact::reset_millis_since_last_gc() { 3034 // We need a monotonically non-decreasing time in ms but 3035 // os::javaTimeMillis() does not guarantee monotonicity. 3036 _time_of_last_gc = os::javaTimeNanos() / NANOSECS_PER_MILLISEC; 3037 } 3038 3039 ParMarkBitMap::IterationStatus MoveAndUpdateClosure::copy_until_full() 3040 { 3041 if (source() != destination()) { 3042 DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());) 3043 Copy::aligned_conjoint_words(source(), destination(), words_remaining()); 3044 } 3045 update_state(words_remaining()); 3046 assert(is_full(), "sanity"); 3047 return ParMarkBitMap::full; 3048 } 3049 3050 void MoveAndUpdateClosure::copy_partial_obj() 3051 { 3052 size_t words = words_remaining(); 3053 3054 HeapWord* const range_end = MIN2(source() + words, bitmap()->region_end()); 3055 HeapWord* const end_addr = bitmap()->find_obj_end(source(), range_end); 3056 if (end_addr < range_end) { 3057 words = bitmap()->obj_size(source(), end_addr); 3058 } 3059 3060 // This test is necessary; if omitted, the pointer updates to a partial object 3061 // that crosses the dense prefix boundary could be overwritten. 3062 if (source() != destination()) { 3063 DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());) 3064 Copy::aligned_conjoint_words(source(), destination(), words); 3065 } 3066 update_state(words); 3067 } 3068 3069 void InstanceKlass::oop_pc_update_pointers(oop obj, ParCompactionManager* cm) { 3070 PSParallelCompact::AdjustPointerClosure closure(cm); 3071 oop_oop_iterate_oop_maps<true>(obj, &closure); 3072 } 3073 3074 void InstanceMirrorKlass::oop_pc_update_pointers(oop obj, ParCompactionManager* cm) { 3075 InstanceKlass::oop_pc_update_pointers(obj, cm); 3076 3077 PSParallelCompact::AdjustPointerClosure closure(cm); 3078 oop_oop_iterate_statics<true>(obj, &closure); 3079 } 3080 3081 void InstanceClassLoaderKlass::oop_pc_update_pointers(oop obj, ParCompactionManager* cm) { 3082 InstanceKlass::oop_pc_update_pointers(obj, cm); 3083 } 3084 3085 #ifdef ASSERT 3086 template <class T> static void trace_reference_gc(const char *s, oop obj, 3087 T* referent_addr, 3088 T* next_addr, 3089 T* discovered_addr) { 3090 log_develop_trace(gc, ref)("%s obj " PTR_FORMAT, s, p2i(obj)); 3091 log_develop_trace(gc, ref)(" referent_addr/* " PTR_FORMAT " / " PTR_FORMAT, 3092 p2i(referent_addr), referent_addr ? p2i(oopDesc::load_decode_heap_oop(referent_addr)) : NULL); 3093 log_develop_trace(gc, ref)(" next_addr/* " PTR_FORMAT " / " PTR_FORMAT, 3094 p2i(next_addr), next_addr ? p2i(oopDesc::load_decode_heap_oop(next_addr)) : NULL); 3095 log_develop_trace(gc, ref)(" discovered_addr/* " PTR_FORMAT " / " PTR_FORMAT, 3096 p2i(discovered_addr), discovered_addr ? p2i(oopDesc::load_decode_heap_oop(discovered_addr)) : NULL); 3097 } 3098 #endif 3099 3100 template <class T> 3101 static void oop_pc_update_pointers_specialized(oop obj, ParCompactionManager* cm) { 3102 T* referent_addr = (T*)java_lang_ref_Reference::referent_addr(obj); 3103 PSParallelCompact::adjust_pointer(referent_addr, cm); 3104 T* next_addr = (T*)java_lang_ref_Reference::next_addr(obj); 3105 PSParallelCompact::adjust_pointer(next_addr, cm); 3106 T* discovered_addr = (T*)java_lang_ref_Reference::discovered_addr(obj); 3107 PSParallelCompact::adjust_pointer(discovered_addr, cm); 3108 debug_only(trace_reference_gc("InstanceRefKlass::oop_update_ptrs", obj, 3109 referent_addr, next_addr, discovered_addr);) 3110 } 3111 3112 void InstanceRefKlass::oop_pc_update_pointers(oop obj, ParCompactionManager* cm) { 3113 InstanceKlass::oop_pc_update_pointers(obj, cm); 3114 3115 if (UseCompressedOops) { 3116 oop_pc_update_pointers_specialized<narrowOop>(obj, cm); 3117 } else { 3118 oop_pc_update_pointers_specialized<oop>(obj, cm); 3119 } 3120 } 3121 3122 void ObjArrayKlass::oop_pc_update_pointers(oop obj, ParCompactionManager* cm) { 3123 assert(obj->is_objArray(), "obj must be obj array"); 3124 PSParallelCompact::AdjustPointerClosure closure(cm); 3125 oop_oop_iterate_elements<true>(objArrayOop(obj), &closure); 3126 } 3127 3128 void TypeArrayKlass::oop_pc_update_pointers(oop obj, ParCompactionManager* cm) { 3129 assert(obj->is_typeArray(),"must be a type array"); 3130 } 3131 3132 ParMarkBitMapClosure::IterationStatus 3133 MoveAndUpdateClosure::do_addr(HeapWord* addr, size_t words) { 3134 assert(destination() != NULL, "sanity"); 3135 assert(bitmap()->obj_size(addr) == words, "bad size"); 3136 3137 _source = addr; 3138 assert(PSParallelCompact::summary_data().calc_new_pointer(source(), compaction_manager()) == 3139 destination(), "wrong destination"); 3140 3141 if (words > words_remaining()) { 3142 return ParMarkBitMap::would_overflow; 3143 } 3144 3145 // The start_array must be updated even if the object is not moving. 3146 if (_start_array != NULL) { 3147 _start_array->allocate_block(destination()); 3148 } 3149 3150 if (destination() != source()) { 3151 DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());) 3152 Copy::aligned_conjoint_words(source(), destination(), words); 3153 } 3154 3155 oop moved_oop = (oop) destination(); 3156 compaction_manager()->update_contents(moved_oop); 3157 assert(moved_oop->is_oop_or_null(), "Expected an oop or NULL at " PTR_FORMAT, p2i(moved_oop)); 3158 3159 update_state(words); 3160 assert(destination() == (HeapWord*)moved_oop + moved_oop->size(), "sanity"); 3161 return is_full() ? ParMarkBitMap::full : ParMarkBitMap::incomplete; 3162 } 3163 3164 UpdateOnlyClosure::UpdateOnlyClosure(ParMarkBitMap* mbm, 3165 ParCompactionManager* cm, 3166 PSParallelCompact::SpaceId space_id) : 3167 ParMarkBitMapClosure(mbm, cm), 3168 _space_id(space_id), 3169 _start_array(PSParallelCompact::start_array(space_id)) 3170 { 3171 } 3172 3173 // Updates the references in the object to their new values. 3174 ParMarkBitMapClosure::IterationStatus 3175 UpdateOnlyClosure::do_addr(HeapWord* addr, size_t words) { 3176 do_addr(addr); 3177 return ParMarkBitMap::incomplete; 3178 } 3179 3180 ParMarkBitMapClosure::IterationStatus 3181 FillClosure::do_addr(HeapWord* addr, size_t size) { 3182 CollectedHeap::fill_with_objects(addr, size); 3183 HeapWord* const end = addr + size; 3184 do { 3185 _start_array->allocate_block(addr); 3186 addr += oop(addr)->size(); 3187 } while (addr < end); 3188 return ParMarkBitMap::incomplete; 3189 } --- EOF ---