rev 55090 : secret-sfac
1 /* 2 * Copyright (c) 1998, 2018, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "compiler/compileLog.hpp" 27 #include "interpreter/linkResolver.hpp" 28 #include "memory/universe.hpp" 29 #include "oops/objArrayKlass.hpp" 30 #include "oops/valueArrayKlass.hpp" 31 #include "opto/addnode.hpp" 32 #include "opto/castnode.hpp" 33 #include "opto/memnode.hpp" 34 #include "opto/parse.hpp" 35 #include "opto/rootnode.hpp" 36 #include "opto/runtime.hpp" 37 #include "opto/subnode.hpp" 38 #include "opto/valuetypenode.hpp" 39 #include "runtime/deoptimization.hpp" 40 #include "runtime/handles.inline.hpp" 41 42 //============================================================================= 43 // Helper methods for _get* and _put* bytecodes 44 //============================================================================= 45 bool Parse::static_field_ok_in_clinit(ciField *field, ciMethod *method) { 46 // Could be the field_holder's <clinit> method, or <clinit> for a subklass. 47 // Better to check now than to Deoptimize as soon as we execute 48 assert( field->is_static(), "Only check if field is static"); 49 // is_being_initialized() is too generous. It allows access to statics 50 // by threads that are not running the <clinit> before the <clinit> finishes. 51 // return field->holder()->is_being_initialized(); 52 53 // The following restriction is correct but conservative. 54 // It is also desirable to allow compilation of methods called from <clinit> 55 // but this generated code will need to be made safe for execution by 56 // other threads, or the transition from interpreted to compiled code would 57 // need to be guarded. 58 ciInstanceKlass *field_holder = field->holder(); 59 60 if (method->holder()->is_subclass_of(field_holder)) { 61 if (method->is_static_initializer()) { 62 // OK to access static fields inside initializer 63 return true; 64 } else if (method->is_object_initializer()) { 65 // It's also OK to access static fields inside a constructor, 66 // because any thread calling the constructor must first have 67 // synchronized on the class by executing a '_new' bytecode. 68 return true; 69 } 70 } 71 if (C->is_compiling_clinit_for(field_holder)) { 72 return true; // access in the context of static initializer 73 } 74 return false; 75 } 76 77 78 void Parse::do_field_access(bool is_get, bool is_field) { 79 bool will_link; 80 ciField* field = iter().get_field(will_link); 81 assert(will_link, "getfield: typeflow responsibility"); 82 83 ciInstanceKlass* field_holder = field->holder(); 84 85 if (is_field && field_holder->is_valuetype() && peek()->is_ValueType()) { 86 assert(is_get, "value type field store not supported"); 87 ValueTypeNode* vt = pop()->as_ValueType(); 88 Node* value = vt->field_value_by_offset(field->offset()); 89 push_node(field->layout_type(), value); 90 return; 91 } 92 93 if (is_field == field->is_static()) { 94 // Interpreter will throw java_lang_IncompatibleClassChangeError 95 // Check this before allowing <clinit> methods to access static fields 96 uncommon_trap(Deoptimization::Reason_unhandled, 97 Deoptimization::Action_none); 98 return; 99 } 100 101 if (!is_field && !field_holder->is_initialized()) { 102 if (!static_field_ok_in_clinit(field, method())) { 103 uncommon_trap(Deoptimization::Reason_uninitialized, 104 Deoptimization::Action_reinterpret, 105 NULL, "!static_field_ok_in_clinit"); 106 return; 107 } 108 } 109 110 // Deoptimize on putfield writes to call site target field. 111 if (!is_get && field->is_call_site_target()) { 112 uncommon_trap(Deoptimization::Reason_unhandled, 113 Deoptimization::Action_reinterpret, 114 NULL, "put to call site target field"); 115 return; 116 } 117 118 assert(field->will_link(method(), bc()), "getfield: typeflow responsibility"); 119 120 // Note: We do not check for an unloaded field type here any more. 121 122 // Generate code for the object pointer. 123 Node* obj; 124 if (is_field) { 125 int obj_depth = is_get ? 0 : field->type()->size(); 126 obj = null_check(peek(obj_depth)); 127 // Compile-time detect of null-exception? 128 if (stopped()) return; 129 130 #ifdef ASSERT 131 const TypeInstPtr *tjp = TypeInstPtr::make(TypePtr::NotNull, iter().get_declared_field_holder()); 132 assert(_gvn.type(obj)->higher_equal(tjp), "cast_up is no longer needed"); 133 #endif 134 135 if (is_get) { 136 (void) pop(); // pop receiver before getting 137 do_get_xxx(obj, field); 138 } else { 139 do_put_xxx(obj, field, is_field); 140 if (stopped()) { 141 return; 142 } 143 (void) pop(); // pop receiver after putting 144 } 145 } else { 146 const TypeInstPtr* tip = TypeInstPtr::make(field_holder->java_mirror()); 147 obj = _gvn.makecon(tip); 148 if (is_get) { 149 do_get_xxx(obj, field); 150 } else { 151 do_put_xxx(obj, field, is_field); 152 } 153 } 154 } 155 156 void Parse::do_get_xxx(Node* obj, ciField* field) { 157 BasicType bt = field->layout_type(); 158 159 // Does this field have a constant value? If so, just push the value. 160 if (field->is_constant() && 161 // Keep consistent with types found by ciTypeFlow: for an 162 // unloaded field type, ciTypeFlow::StateVector::do_getstatic() 163 // speculates the field is null. The code in the rest of this 164 // method does the same. We must not bypass it and use a non 165 // null constant here. 166 (bt != T_OBJECT || field->type()->is_loaded())) { 167 // final or stable field 168 Node* con = make_constant_from_field(field, obj); 169 if (con != NULL) { 170 push_node(field->layout_type(), con); 171 return; 172 } 173 } 174 175 ciType* field_klass = field->type(); 176 bool is_vol = field->is_volatile(); 177 bool flattened = field->is_flattened(); 178 bool flattenable = field->is_flattenable(); 179 180 // Compute address and memory type. 181 int offset = field->offset_in_bytes(); 182 const TypePtr* adr_type = C->alias_type(field)->adr_type(); 183 Node *adr = basic_plus_adr(obj, obj, offset); 184 185 // Build the resultant type of the load 186 const Type *type; 187 188 bool must_assert_null = false; 189 190 if (bt == T_OBJECT || bt == T_ARRAY || bt == T_VALUETYPE) { 191 if (!field->type()->is_loaded()) { 192 type = TypeInstPtr::BOTTOM; 193 must_assert_null = true; 194 } else if (field->is_static_constant()) { 195 // This can happen if the constant oop is non-perm. 196 ciObject* con = field->constant_value().as_object(); 197 // Do not "join" in the previous type; it doesn't add value, 198 // and may yield a vacuous result if the field is of interface type. 199 if (con->is_null_object()) { 200 type = TypePtr::NULL_PTR; 201 } else { 202 type = TypeOopPtr::make_from_constant(con)->isa_oopptr(); 203 } 204 assert(type != NULL, "field singleton type must be consistent"); 205 } else { 206 type = TypeOopPtr::make_from_klass(field_klass->as_klass()); 207 if (bt == T_VALUETYPE && field->is_static()) { 208 // Check if static value type field is already initialized 209 assert(!flattened, "static fields should not be flattened"); 210 ciInstance* mirror = field->holder()->java_mirror(); 211 ciObject* val = mirror->field_value(field).as_object(); 212 if (!val->is_null_object()) { 213 type = type->join_speculative(TypePtr::NOTNULL); 214 flattenable = true; // Null-free, treat as flattenable 215 } 216 } 217 } 218 } else { 219 type = Type::get_const_basic_type(bt); 220 } 221 222 Node* ld = NULL; 223 if (flattened) { 224 // Load flattened value type 225 ld = ValueTypeNode::make_from_flattened(this, field_klass->as_value_klass(), obj, obj, field->holder(), offset); 226 } else { 227 DecoratorSet decorators = IN_HEAP; 228 decorators |= is_vol ? MO_SEQ_CST : MO_UNORDERED; 229 ld = access_load_at(obj, adr, adr_type, type, bt, decorators); 230 if (flattenable) { 231 // Load a non-flattened but flattenable value type from memory 232 if (field_klass->as_value_klass()->is_scalarizable()) { 233 ld = ValueTypeNode::make_from_oop(this, ld, field_klass->as_value_klass()); 234 } else { 235 ld = null2default(ld, field_klass->as_value_klass()); 236 } 237 } 238 } 239 240 // Adjust Java stack 241 if (type2size[bt] == 1) 242 push(ld); 243 else 244 push_pair(ld); 245 246 if (must_assert_null) { 247 // Do not take a trap here. It's possible that the program 248 // will never load the field's class, and will happily see 249 // null values in this field forever. Don't stumble into a 250 // trap for such a program, or we might get a long series 251 // of useless recompilations. (Or, we might load a class 252 // which should not be loaded.) If we ever see a non-null 253 // value, we will then trap and recompile. (The trap will 254 // not need to mention the class index, since the class will 255 // already have been loaded if we ever see a non-null value.) 256 // uncommon_trap(iter().get_field_signature_index()); 257 if (PrintOpto && (Verbose || WizardMode)) { 258 method()->print_name(); tty->print_cr(" asserting nullness of field at bci: %d", bci()); 259 } 260 if (C->log() != NULL) { 261 C->log()->elem("assert_null reason='field' klass='%d'", 262 C->log()->identify(field->type())); 263 } 264 // If there is going to be a trap, put it at the next bytecode: 265 set_bci(iter().next_bci()); 266 null_assert(peek()); 267 set_bci(iter().cur_bci()); // put it back 268 } 269 } 270 271 void Parse::do_put_xxx(Node* obj, ciField* field, bool is_field) { 272 bool is_vol = field->is_volatile(); 273 274 // Compute address and memory type. 275 int offset = field->offset_in_bytes(); 276 const TypePtr* adr_type = C->alias_type(field)->adr_type(); 277 Node* adr = basic_plus_adr(obj, obj, offset); 278 BasicType bt = field->layout_type(); 279 // Value to be stored 280 Node* val = type2size[bt] == 1 ? pop() : pop_pair(); 281 282 DecoratorSet decorators = IN_HEAP; 283 decorators |= is_vol ? MO_SEQ_CST : MO_UNORDERED; 284 285 // Store the value. 286 const Type* field_type; 287 if (!field->type()->is_loaded()) { 288 field_type = TypeInstPtr::BOTTOM; 289 } else { 290 if (bt == T_OBJECT || bt == T_ARRAY || bt == T_VALUETYPE) { 291 field_type = TypeOopPtr::make_from_klass(field->type()->as_klass()); 292 } else { 293 field_type = Type::BOTTOM; 294 } 295 } 296 297 if (field->is_flattenable() && !val->is_ValueType()) { 298 inc_sp(1); 299 val = null_check(val); 300 dec_sp(1); 301 if (stopped()) return; 302 } 303 304 if (field->is_flattened()) { 305 // Store flattened value type to a non-static field 306 if (!val->is_ValueType()) { 307 assert(!gvn().type(val)->maybe_null(), "should never be null"); 308 val = ValueTypeNode::make_from_oop(this, val, field->type()->as_value_klass()); 309 } 310 val->as_ValueType()->store_flattened(this, obj, obj, field->holder(), offset); 311 } else { 312 access_store_at(obj, adr, adr_type, val, field_type, bt, decorators); 313 } 314 315 if (is_field) { 316 // Remember we wrote a volatile field. 317 // For not multiple copy atomic cpu (ppc64) a barrier should be issued 318 // in constructors which have such stores. See do_exits() in parse1.cpp. 319 if (is_vol) { 320 set_wrote_volatile(true); 321 } 322 set_wrote_fields(true); 323 324 // If the field is final, the rules of Java say we are in <init> or <clinit>. 325 // Note the presence of writes to final non-static fields, so that we 326 // can insert a memory barrier later on to keep the writes from floating 327 // out of the constructor. 328 // Any method can write a @Stable field; insert memory barriers after those also. 329 if (field->is_final()) { 330 set_wrote_final(true); 331 if (AllocateNode::Ideal_allocation(obj, &_gvn) != NULL) { 332 // Preserve allocation ptr to create precedent edge to it in membar 333 // generated on exit from constructor. 334 // Can't bind stable with its allocation, only record allocation for final field. 335 set_alloc_with_final(obj); 336 } 337 } 338 if (field->is_stable()) { 339 set_wrote_stable(true); 340 } 341 } 342 } 343 344 //============================================================================= 345 346 void Parse::do_newarray() { 347 bool will_link; 348 ciKlass* klass = iter().get_klass(will_link); 349 350 // Uncommon Trap when class that array contains is not loaded 351 // we need the loaded class for the rest of graph; do not 352 // initialize the container class (see Java spec)!!! 353 assert(will_link, "newarray: typeflow responsibility"); 354 355 ciArrayKlass* array_klass = ciArrayKlass::make(klass); 356 // Check that array_klass object is loaded 357 if (!array_klass->is_loaded()) { 358 // Generate uncommon_trap for unloaded array_class 359 uncommon_trap(Deoptimization::Reason_unloaded, 360 Deoptimization::Action_reinterpret, 361 array_klass); 362 return; 363 } else if (array_klass->element_klass() != NULL && 364 array_klass->element_klass()->is_valuetype() && 365 !array_klass->element_klass()->as_value_klass()->is_initialized()) { 366 uncommon_trap(Deoptimization::Reason_uninitialized, 367 Deoptimization::Action_reinterpret, 368 NULL); 369 return; 370 } 371 372 kill_dead_locals(); 373 374 const TypeKlassPtr* array_klass_type = TypeKlassPtr::make(array_klass); 375 Node* count_val = pop(); 376 Node* obj = new_array(makecon(array_klass_type), count_val, 1); 377 push(obj); 378 } 379 380 381 void Parse::do_newarray(BasicType elem_type) { 382 kill_dead_locals(); 383 384 Node* count_val = pop(); 385 const TypeKlassPtr* array_klass = TypeKlassPtr::make(ciTypeArrayKlass::make(elem_type)); 386 Node* obj = new_array(makecon(array_klass), count_val, 1); 387 // Push resultant oop onto stack 388 push(obj); 389 } 390 391 // Expand simple expressions like new int[3][5] and new Object[2][nonConLen]. 392 // Also handle the degenerate 1-dimensional case of anewarray. 393 Node* Parse::expand_multianewarray(ciArrayKlass* array_klass, Node* *lengths, int ndimensions, int nargs) { 394 Node* length = lengths[0]; 395 assert(length != NULL, ""); 396 Node* array = new_array(makecon(TypeKlassPtr::make(array_klass)), length, nargs); 397 if (ndimensions > 1) { 398 jint length_con = find_int_con(length, -1); 399 guarantee(length_con >= 0, "non-constant multianewarray"); 400 ciArrayKlass* array_klass_1 = array_klass->as_obj_array_klass()->element_klass()->as_array_klass(); 401 const TypePtr* adr_type = TypeAryPtr::OOPS; 402 const TypeOopPtr* elemtype = _gvn.type(array)->is_aryptr()->elem()->make_oopptr(); 403 const intptr_t header = arrayOopDesc::base_offset_in_bytes(T_OBJECT); 404 for (jint i = 0; i < length_con; i++) { 405 Node* elem = expand_multianewarray(array_klass_1, &lengths[1], ndimensions-1, nargs); 406 intptr_t offset = header + ((intptr_t)i << LogBytesPerHeapOop); 407 Node* eaddr = basic_plus_adr(array, offset); 408 access_store_at(array, eaddr, adr_type, elem, elemtype, T_OBJECT, IN_HEAP | IS_ARRAY); 409 } 410 } 411 return array; 412 } 413 414 void Parse::do_multianewarray() { 415 int ndimensions = iter().get_dimensions(); 416 417 // the m-dimensional array 418 bool will_link; 419 ciArrayKlass* array_klass = iter().get_klass(will_link)->as_array_klass(); 420 assert(will_link, "multianewarray: typeflow responsibility"); 421 422 // Note: Array classes are always initialized; no is_initialized check. 423 424 kill_dead_locals(); 425 426 // get the lengths from the stack (first dimension is on top) 427 Node** length = NEW_RESOURCE_ARRAY(Node*, ndimensions + 1); 428 length[ndimensions] = NULL; // terminating null for make_runtime_call 429 int j; 430 for (j = ndimensions-1; j >= 0 ; j--) length[j] = pop(); 431 432 // The original expression was of this form: new T[length0][length1]... 433 // It is often the case that the lengths are small (except the last). 434 // If that happens, use the fast 1-d creator a constant number of times. 435 const int expand_limit = MIN2((int)MultiArrayExpandLimit, 100); 436 int expand_count = 1; // count of allocations in the expansion 437 int expand_fanout = 1; // running total fanout 438 for (j = 0; j < ndimensions-1; j++) { 439 int dim_con = find_int_con(length[j], -1); 440 expand_fanout *= dim_con; 441 expand_count += expand_fanout; // count the level-J sub-arrays 442 if (dim_con <= 0 443 || dim_con > expand_limit 444 || expand_count > expand_limit) { 445 expand_count = 0; 446 break; 447 } 448 } 449 450 // Can use multianewarray instead of [a]newarray if only one dimension, 451 // or if all non-final dimensions are small constants. 452 if (ndimensions == 1 || (1 <= expand_count && expand_count <= expand_limit)) { 453 Node* obj = NULL; 454 // Set the original stack and the reexecute bit for the interpreter 455 // to reexecute the multianewarray bytecode if deoptimization happens. 456 // Do it unconditionally even for one dimension multianewarray. 457 // Note: the reexecute bit will be set in GraphKit::add_safepoint_edges() 458 // when AllocateArray node for newarray is created. 459 { PreserveReexecuteState preexecs(this); 460 inc_sp(ndimensions); 461 // Pass 0 as nargs since uncommon trap code does not need to restore stack. 462 obj = expand_multianewarray(array_klass, &length[0], ndimensions, 0); 463 } //original reexecute and sp are set back here 464 push(obj); 465 return; 466 } 467 468 address fun = NULL; 469 switch (ndimensions) { 470 case 1: ShouldNotReachHere(); break; 471 case 2: fun = OptoRuntime::multianewarray2_Java(); break; 472 case 3: fun = OptoRuntime::multianewarray3_Java(); break; 473 case 4: fun = OptoRuntime::multianewarray4_Java(); break; 474 case 5: fun = OptoRuntime::multianewarray5_Java(); break; 475 }; 476 Node* c = NULL; 477 478 if (fun != NULL) { 479 c = make_runtime_call(RC_NO_LEAF | RC_NO_IO, 480 OptoRuntime::multianewarray_Type(ndimensions), 481 fun, NULL, TypeRawPtr::BOTTOM, 482 makecon(TypeKlassPtr::make(array_klass)), 483 length[0], length[1], length[2], 484 (ndimensions > 2) ? length[3] : NULL, 485 (ndimensions > 3) ? length[4] : NULL); 486 } else { 487 // Create a java array for dimension sizes 488 Node* dims = NULL; 489 { PreserveReexecuteState preexecs(this); 490 inc_sp(ndimensions); 491 Node* dims_array_klass = makecon(TypeKlassPtr::make(ciArrayKlass::make(ciType::make(T_INT)))); 492 dims = new_array(dims_array_klass, intcon(ndimensions), 0); 493 494 // Fill-in it with values 495 for (j = 0; j < ndimensions; j++) { 496 Node *dims_elem = array_element_address(dims, intcon(j), T_INT); 497 store_to_memory(control(), dims_elem, length[j], T_INT, TypeAryPtr::INTS, MemNode::unordered); 498 } 499 } 500 501 c = make_runtime_call(RC_NO_LEAF | RC_NO_IO, 502 OptoRuntime::multianewarrayN_Type(), 503 OptoRuntime::multianewarrayN_Java(), NULL, TypeRawPtr::BOTTOM, 504 makecon(TypeKlassPtr::make(array_klass)), 505 dims); 506 } 507 make_slow_call_ex(c, env()->Throwable_klass(), false); 508 509 Node* res = _gvn.transform(new ProjNode(c, TypeFunc::Parms)); 510 511 const Type* type = TypeOopPtr::make_from_klass_raw(array_klass); 512 513 // Improve the type: We know it's not null, exact, and of a given length. 514 type = type->is_ptr()->cast_to_ptr_type(TypePtr::NotNull); 515 type = type->is_aryptr()->cast_to_exactness(true); 516 517 const TypeInt* ltype = _gvn.find_int_type(length[0]); 518 if (ltype != NULL) 519 type = type->is_aryptr()->cast_to_size(ltype); 520 521 // We cannot sharpen the nested sub-arrays, since the top level is mutable. 522 523 Node* cast = _gvn.transform( new CheckCastPPNode(control(), res, type) ); 524 push(cast); 525 526 // Possible improvements: 527 // - Make a fast path for small multi-arrays. (W/ implicit init. loops.) 528 // - Issue CastII against length[*] values, to TypeInt::POS. 529 } --- EOF ---