1 /*
   2  * Copyright (c) 2000, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_MEMORY_BARRIERSET_HPP
  26 #define SHARE_VM_MEMORY_BARRIERSET_HPP
  27 
  28 #include "memory/memRegion.hpp"
  29 #include "oops/oopsHierarchy.hpp"
  30 
  31 // This class provides the interface between a barrier implementation and
  32 // the rest of the system.
  33 
  34 class BarrierSet: public CHeapObj<mtGC> {
  35   friend class VMStructs;
  36 public:
  37   enum Name {
  38     ModRef,
  39     CardTableModRef,
  40     CardTableExtension,
  41     G1SATBCT,
  42     G1SATBCTLogging,
  43     Other
  44   };
  45 
  46   enum Flags {
  47     None                = 0,
  48     TargetUninitialized = 1
  49   };
  50 protected:
  51   // Some barrier sets create tables whose elements correspond to parts of
  52   // the heap; the CardTableModRefBS is an example.  Such barrier sets will
  53   // normally reserve space for such tables, and commit parts of the table
  54   // "covering" parts of the heap that are committed. At most one covered
  55   // region per generation is needed.
  56   static const int _max_covered_regions = 2;
  57   Name _kind;
  58 
  59   BarrierSet(Name kind) : _kind(kind) { }
  60   ~BarrierSet() { }
  61 
  62 public:
  63 
  64   // To get around prohibition on RTTI.
  65   BarrierSet::Name kind() { return _kind; }
  66   virtual bool is_a(BarrierSet::Name bsn) = 0;
  67 
  68   // These operations indicate what kind of barriers the BarrierSet has.
  69   virtual bool has_read_ref_barrier() = 0;
  70   virtual bool has_read_prim_barrier() = 0;
  71   virtual bool has_write_ref_barrier() = 0;
  72   virtual bool has_write_ref_pre_barrier() = 0;
  73   virtual bool has_write_prim_barrier() = 0;
  74 
  75   // These functions indicate whether a particular access of the given
  76   // kinds requires a barrier.
  77   virtual bool read_ref_needs_barrier(void* field) = 0;
  78   virtual bool read_prim_needs_barrier(HeapWord* field, size_t bytes) = 0;
  79   virtual bool write_prim_needs_barrier(HeapWord* field, size_t bytes,
  80                                         juint val1, juint val2) = 0;
  81 
  82   // The first four operations provide a direct implementation of the
  83   // barrier set.  An interpreter loop, for example, could call these
  84   // directly, as appropriate.
  85 
  86   // Invoke the barrier, if any, necessary when reading the given ref field.
  87   virtual void read_ref_field(void* field) = 0;
  88 
  89   // Invoke the barrier, if any, necessary when reading the given primitive
  90   // "field" of "bytes" bytes in "obj".
  91   virtual void read_prim_field(HeapWord* field, size_t bytes) = 0;
  92 
  93   // Invoke the barrier, if any, necessary when writing "new_val" into the
  94   // ref field at "offset" in "obj".
  95   // (For efficiency reasons, this operation is specialized for certain
  96   // barrier types.  Semantically, it should be thought of as a call to the
  97   // virtual "_work" function below, which must implement the barrier.)
  98   // First the pre-write versions...
  99   template <class T> inline void write_ref_field_pre(T* field, oop new_val);
 100 private:
 101   // Keep this private so as to catch violations at build time.
 102   virtual void write_ref_field_pre_work(     void* field, oop new_val) { guarantee(false, "Not needed"); };
 103 protected:
 104   virtual void write_ref_field_pre_work(      oop* field, oop new_val) {};
 105   virtual void write_ref_field_pre_work(narrowOop* field, oop new_val) {};
 106 public:
 107 
 108   // ...then the post-write version.
 109   inline void write_ref_field(void* field, oop new_val, bool release = false);
 110 protected:
 111   virtual void write_ref_field_work(void* field, oop new_val, bool release = false) = 0;
 112 public:
 113 
 114   // Invoke the barrier, if any, necessary when writing the "bytes"-byte
 115   // value(s) "val1" (and "val2") into the primitive "field".
 116   virtual void write_prim_field(HeapWord* field, size_t bytes,
 117                                 juint val1, juint val2) = 0;
 118 
 119   // Operations on arrays, or general regions (e.g., for "clone") may be
 120   // optimized by some barriers.
 121 
 122   // The first six operations tell whether such an optimization exists for
 123   // the particular barrier.
 124   virtual bool has_read_ref_array_opt() = 0;
 125   virtual bool has_read_prim_array_opt() = 0;
 126   virtual bool has_write_ref_array_pre_opt() { return true; }
 127   virtual bool has_write_ref_array_opt() = 0;
 128   virtual bool has_write_prim_array_opt() = 0;
 129 
 130   virtual bool has_read_region_opt() = 0;
 131   virtual bool has_write_region_opt() = 0;
 132 
 133   // These operations should assert false unless the corresponding operation
 134   // above returns true.  Otherwise, they should perform an appropriate
 135   // barrier for an array whose elements are all in the given memory region.
 136   virtual void read_ref_array(MemRegion mr) = 0;
 137   virtual void read_prim_array(MemRegion mr) = 0;
 138 
 139   // Below length is the # array elements being written
 140   virtual void write_ref_array_pre(oop* dst, int length,
 141                                    bool dest_uninitialized = false) {}
 142   virtual void write_ref_array_pre(narrowOop* dst, int length,
 143                                    bool dest_uninitialized = false) {}
 144   // Below count is the # array elements being written, starting
 145   // at the address "start", which may not necessarily be HeapWord-aligned
 146   inline void write_ref_array(HeapWord* start, size_t count);
 147 
 148   // Static versions, suitable for calling from generated code;
 149   // count is # array elements being written, starting with "start",
 150   // which may not necessarily be HeapWord-aligned.
 151   static void static_write_ref_array_pre(HeapWord* start, size_t count);
 152   static void static_write_ref_array_post(HeapWord* start, size_t count);
 153 
 154 protected:
 155   virtual void write_ref_array_work(MemRegion mr) = 0;
 156 public:
 157   virtual void write_prim_array(MemRegion mr) = 0;
 158 
 159   virtual void read_region(MemRegion mr) = 0;
 160 
 161   // (For efficiency reasons, this operation is specialized for certain
 162   // barrier types.  Semantically, it should be thought of as a call to the
 163   // virtual "_work" function below, which must implement the barrier.)
 164   inline void write_region(MemRegion mr);
 165 protected:
 166   virtual void write_region_work(MemRegion mr) = 0;
 167 public:
 168   // Inform the BarrierSet that the the covered heap region that starts
 169   // with "base" has been changed to have the given size (possibly from 0,
 170   // for initialization.)
 171   virtual void resize_covered_region(MemRegion new_region) = 0;
 172 
 173   // If the barrier set imposes any alignment restrictions on boundaries
 174   // within the heap, this function tells whether they are met.
 175   virtual bool is_aligned(HeapWord* addr) = 0;
 176 
 177   // Print a description of the memory for the barrier set
 178   virtual void print_on(outputStream* st) const = 0;
 179 };
 180 
 181 #endif // SHARE_VM_MEMORY_BARRIERSET_HPP