1 /* 2 * Copyright (c) 2005, 2014, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "c1/c1_Compilation.hpp" 27 #include "c1/c1_FrameMap.hpp" 28 #include "c1/c1_Instruction.hpp" 29 #include "c1/c1_LIRAssembler.hpp" 30 #include "c1/c1_LIRGenerator.hpp" 31 #include "c1/c1_ValueStack.hpp" 32 #include "ci/ciArrayKlass.hpp" 33 #include "ci/ciInstance.hpp" 34 #include "ci/ciObjArray.hpp" 35 #include "runtime/arguments.hpp" 36 #include "runtime/sharedRuntime.hpp" 37 #include "runtime/stubRoutines.hpp" 38 #include "runtime/vm_version.hpp" 39 #include "utilities/bitMap.inline.hpp" 40 #include "utilities/macros.hpp" 41 #if INCLUDE_ALL_GCS 42 #include "gc_implementation/g1/heapRegion.hpp" 43 #endif // INCLUDE_ALL_GCS 44 45 #ifdef ASSERT 46 #define __ gen()->lir(__FILE__, __LINE__)-> 47 #else 48 #define __ gen()->lir()-> 49 #endif 50 51 // TODO: ARM - Use some recognizable constant which still fits architectural constraints 52 #ifdef ARM 53 #define PATCHED_ADDR (204) 54 #else 55 #define PATCHED_ADDR (max_jint) 56 #endif 57 58 void PhiResolverState::reset(int max_vregs) { 59 // Initialize array sizes 60 _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL); 61 _virtual_operands.trunc_to(0); 62 _other_operands.at_put_grow(max_vregs - 1, NULL, NULL); 63 _other_operands.trunc_to(0); 64 _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL); 65 _vreg_table.trunc_to(0); 66 } 67 68 69 70 //-------------------------------------------------------------- 71 // PhiResolver 72 73 // Resolves cycles: 74 // 75 // r1 := r2 becomes temp := r1 76 // r2 := r1 r1 := r2 77 // r2 := temp 78 // and orders moves: 79 // 80 // r2 := r3 becomes r1 := r2 81 // r1 := r2 r2 := r3 82 83 PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs) 84 : _gen(gen) 85 , _state(gen->resolver_state()) 86 , _temp(LIR_OprFact::illegalOpr) 87 { 88 // reinitialize the shared state arrays 89 _state.reset(max_vregs); 90 } 91 92 93 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) { 94 assert(src->is_valid(), ""); 95 assert(dest->is_valid(), ""); 96 __ move(src, dest); 97 } 98 99 100 void PhiResolver::move_temp_to(LIR_Opr dest) { 101 assert(_temp->is_valid(), ""); 102 emit_move(_temp, dest); 103 NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr); 104 } 105 106 107 void PhiResolver::move_to_temp(LIR_Opr src) { 108 assert(_temp->is_illegal(), ""); 109 _temp = _gen->new_register(src->type()); 110 emit_move(src, _temp); 111 } 112 113 114 // Traverse assignment graph in depth first order and generate moves in post order 115 // ie. two assignments: b := c, a := b start with node c: 116 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a) 117 // Generates moves in this order: move b to a and move c to b 118 // ie. cycle a := b, b := a start with node a 119 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a) 120 // Generates moves in this order: move b to temp, move a to b, move temp to a 121 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) { 122 if (!dest->visited()) { 123 dest->set_visited(); 124 for (int i = dest->no_of_destinations()-1; i >= 0; i --) { 125 move(dest, dest->destination_at(i)); 126 } 127 } else if (!dest->start_node()) { 128 // cylce in graph detected 129 assert(_loop == NULL, "only one loop valid!"); 130 _loop = dest; 131 move_to_temp(src->operand()); 132 return; 133 } // else dest is a start node 134 135 if (!dest->assigned()) { 136 if (_loop == dest) { 137 move_temp_to(dest->operand()); 138 dest->set_assigned(); 139 } else if (src != NULL) { 140 emit_move(src->operand(), dest->operand()); 141 dest->set_assigned(); 142 } 143 } 144 } 145 146 147 PhiResolver::~PhiResolver() { 148 int i; 149 // resolve any cycles in moves from and to virtual registers 150 for (i = virtual_operands().length() - 1; i >= 0; i --) { 151 ResolveNode* node = virtual_operands()[i]; 152 if (!node->visited()) { 153 _loop = NULL; 154 move(NULL, node); 155 node->set_start_node(); 156 assert(_temp->is_illegal(), "move_temp_to() call missing"); 157 } 158 } 159 160 // generate move for move from non virtual register to abitrary destination 161 for (i = other_operands().length() - 1; i >= 0; i --) { 162 ResolveNode* node = other_operands()[i]; 163 for (int j = node->no_of_destinations() - 1; j >= 0; j --) { 164 emit_move(node->operand(), node->destination_at(j)->operand()); 165 } 166 } 167 } 168 169 170 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) { 171 ResolveNode* node; 172 if (opr->is_virtual()) { 173 int vreg_num = opr->vreg_number(); 174 node = vreg_table().at_grow(vreg_num, NULL); 175 assert(node == NULL || node->operand() == opr, ""); 176 if (node == NULL) { 177 node = new ResolveNode(opr); 178 vreg_table()[vreg_num] = node; 179 } 180 // Make sure that all virtual operands show up in the list when 181 // they are used as the source of a move. 182 if (source && !virtual_operands().contains(node)) { 183 virtual_operands().append(node); 184 } 185 } else { 186 assert(source, ""); 187 node = new ResolveNode(opr); 188 other_operands().append(node); 189 } 190 return node; 191 } 192 193 194 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) { 195 assert(dest->is_virtual(), ""); 196 // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr(); 197 assert(src->is_valid(), ""); 198 assert(dest->is_valid(), ""); 199 ResolveNode* source = source_node(src); 200 source->append(destination_node(dest)); 201 } 202 203 204 //-------------------------------------------------------------- 205 // LIRItem 206 207 void LIRItem::set_result(LIR_Opr opr) { 208 assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change"); 209 value()->set_operand(opr); 210 211 if (opr->is_virtual()) { 212 _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL); 213 } 214 215 _result = opr; 216 } 217 218 void LIRItem::load_item() { 219 if (result()->is_illegal()) { 220 // update the items result 221 _result = value()->operand(); 222 } 223 if (!result()->is_register()) { 224 LIR_Opr reg = _gen->new_register(value()->type()); 225 __ move(result(), reg); 226 if (result()->is_constant()) { 227 _result = reg; 228 } else { 229 set_result(reg); 230 } 231 } 232 } 233 234 235 void LIRItem::load_for_store(BasicType type) { 236 if (_gen->can_store_as_constant(value(), type)) { 237 _result = value()->operand(); 238 if (!_result->is_constant()) { 239 _result = LIR_OprFact::value_type(value()->type()); 240 } 241 } else if (type == T_BYTE || type == T_BOOLEAN) { 242 load_byte_item(); 243 } else { 244 load_item(); 245 } 246 } 247 248 void LIRItem::load_item_force(LIR_Opr reg) { 249 LIR_Opr r = result(); 250 if (r != reg) { 251 #if !defined(ARM) && !defined(E500V2) 252 if (r->type() != reg->type()) { 253 // moves between different types need an intervening spill slot 254 r = _gen->force_to_spill(r, reg->type()); 255 } 256 #endif 257 __ move(r, reg); 258 _result = reg; 259 } 260 } 261 262 ciObject* LIRItem::get_jobject_constant() const { 263 ObjectType* oc = type()->as_ObjectType(); 264 if (oc) { 265 return oc->constant_value(); 266 } 267 return NULL; 268 } 269 270 271 jint LIRItem::get_jint_constant() const { 272 assert(is_constant() && value() != NULL, ""); 273 assert(type()->as_IntConstant() != NULL, "type check"); 274 return type()->as_IntConstant()->value(); 275 } 276 277 278 jint LIRItem::get_address_constant() const { 279 assert(is_constant() && value() != NULL, ""); 280 assert(type()->as_AddressConstant() != NULL, "type check"); 281 return type()->as_AddressConstant()->value(); 282 } 283 284 285 jfloat LIRItem::get_jfloat_constant() const { 286 assert(is_constant() && value() != NULL, ""); 287 assert(type()->as_FloatConstant() != NULL, "type check"); 288 return type()->as_FloatConstant()->value(); 289 } 290 291 292 jdouble LIRItem::get_jdouble_constant() const { 293 assert(is_constant() && value() != NULL, ""); 294 assert(type()->as_DoubleConstant() != NULL, "type check"); 295 return type()->as_DoubleConstant()->value(); 296 } 297 298 299 jlong LIRItem::get_jlong_constant() const { 300 assert(is_constant() && value() != NULL, ""); 301 assert(type()->as_LongConstant() != NULL, "type check"); 302 return type()->as_LongConstant()->value(); 303 } 304 305 306 307 //-------------------------------------------------------------- 308 309 310 void LIRGenerator::init() { 311 _bs = Universe::heap()->barrier_set(); 312 } 313 314 315 void LIRGenerator::block_do_prolog(BlockBegin* block) { 316 #ifndef PRODUCT 317 if (PrintIRWithLIR) { 318 block->print(); 319 } 320 #endif 321 322 // set up the list of LIR instructions 323 assert(block->lir() == NULL, "LIR list already computed for this block"); 324 _lir = new LIR_List(compilation(), block); 325 block->set_lir(_lir); 326 327 __ branch_destination(block->label()); 328 329 if (LIRTraceExecution && 330 Compilation::current()->hir()->start()->block_id() != block->block_id() && 331 !block->is_set(BlockBegin::exception_entry_flag)) { 332 assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst"); 333 trace_block_entry(block); 334 } 335 } 336 337 338 void LIRGenerator::block_do_epilog(BlockBegin* block) { 339 #ifndef PRODUCT 340 if (PrintIRWithLIR) { 341 tty->cr(); 342 } 343 #endif 344 345 // LIR_Opr for unpinned constants shouldn't be referenced by other 346 // blocks so clear them out after processing the block. 347 for (int i = 0; i < _unpinned_constants.length(); i++) { 348 _unpinned_constants.at(i)->clear_operand(); 349 } 350 _unpinned_constants.trunc_to(0); 351 352 // clear our any registers for other local constants 353 _constants.trunc_to(0); 354 _reg_for_constants.trunc_to(0); 355 } 356 357 358 void LIRGenerator::block_do(BlockBegin* block) { 359 CHECK_BAILOUT(); 360 361 block_do_prolog(block); 362 set_block(block); 363 364 for (Instruction* instr = block; instr != NULL; instr = instr->next()) { 365 if (instr->is_pinned()) do_root(instr); 366 } 367 368 set_block(NULL); 369 block_do_epilog(block); 370 } 371 372 373 //-------------------------LIRGenerator----------------------------- 374 375 // This is where the tree-walk starts; instr must be root; 376 void LIRGenerator::do_root(Value instr) { 377 CHECK_BAILOUT(); 378 379 InstructionMark im(compilation(), instr); 380 381 assert(instr->is_pinned(), "use only with roots"); 382 assert(instr->subst() == instr, "shouldn't have missed substitution"); 383 384 instr->visit(this); 385 386 assert(!instr->has_uses() || instr->operand()->is_valid() || 387 instr->as_Constant() != NULL || bailed_out(), "invalid item set"); 388 } 389 390 391 // This is called for each node in tree; the walk stops if a root is reached 392 void LIRGenerator::walk(Value instr) { 393 InstructionMark im(compilation(), instr); 394 //stop walk when encounter a root 395 if (instr->is_pinned() && instr->as_Phi() == NULL || instr->operand()->is_valid()) { 396 assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited"); 397 } else { 398 assert(instr->subst() == instr, "shouldn't have missed substitution"); 399 instr->visit(this); 400 // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use"); 401 } 402 } 403 404 405 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) { 406 assert(state != NULL, "state must be defined"); 407 408 #ifndef PRODUCT 409 state->verify(); 410 #endif 411 412 ValueStack* s = state; 413 for_each_state(s) { 414 if (s->kind() == ValueStack::EmptyExceptionState) { 415 assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty"); 416 continue; 417 } 418 419 int index; 420 Value value; 421 for_each_stack_value(s, index, value) { 422 assert(value->subst() == value, "missed substitution"); 423 if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) { 424 walk(value); 425 assert(value->operand()->is_valid(), "must be evaluated now"); 426 } 427 } 428 429 int bci = s->bci(); 430 IRScope* scope = s->scope(); 431 ciMethod* method = scope->method(); 432 433 MethodLivenessResult liveness = method->liveness_at_bci(bci); 434 if (bci == SynchronizationEntryBCI) { 435 if (x->as_ExceptionObject() || x->as_Throw()) { 436 // all locals are dead on exit from the synthetic unlocker 437 liveness.clear(); 438 } else { 439 assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke"); 440 } 441 } 442 if (!liveness.is_valid()) { 443 // Degenerate or breakpointed method. 444 bailout("Degenerate or breakpointed method"); 445 } else { 446 assert((int)liveness.size() == s->locals_size(), "error in use of liveness"); 447 for_each_local_value(s, index, value) { 448 assert(value->subst() == value, "missed substition"); 449 if (liveness.at(index) && !value->type()->is_illegal()) { 450 if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) { 451 walk(value); 452 assert(value->operand()->is_valid(), "must be evaluated now"); 453 } 454 } else { 455 // NULL out this local so that linear scan can assume that all non-NULL values are live. 456 s->invalidate_local(index); 457 } 458 } 459 } 460 } 461 462 return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException)); 463 } 464 465 466 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) { 467 return state_for(x, x->exception_state()); 468 } 469 470 471 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) { 472 /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if TieredCompilation 473 * is active and the class hasn't yet been resolved we need to emit a patch that resolves 474 * the class. */ 475 if ((TieredCompilation && need_resolve) || !obj->is_loaded() || PatchALot) { 476 assert(info != NULL, "info must be set if class is not loaded"); 477 __ klass2reg_patch(NULL, r, info); 478 } else { 479 // no patching needed 480 __ metadata2reg(obj->constant_encoding(), r); 481 } 482 } 483 484 485 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index, 486 CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) { 487 CodeStub* stub = new RangeCheckStub(range_check_info, index); 488 if (index->is_constant()) { 489 cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(), 490 index->as_jint(), null_check_info); 491 __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch 492 } else { 493 cmp_reg_mem(lir_cond_aboveEqual, index, array, 494 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info); 495 __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch 496 } 497 } 498 499 500 void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) { 501 CodeStub* stub = new RangeCheckStub(info, index, true); 502 if (index->is_constant()) { 503 cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info); 504 __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch 505 } else { 506 cmp_reg_mem(lir_cond_aboveEqual, index, buffer, 507 java_nio_Buffer::limit_offset(), T_INT, info); 508 __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch 509 } 510 __ move(index, result); 511 } 512 513 514 515 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) { 516 LIR_Opr result_op = result; 517 LIR_Opr left_op = left; 518 LIR_Opr right_op = right; 519 520 if (TwoOperandLIRForm && left_op != result_op) { 521 assert(right_op != result_op, "malformed"); 522 __ move(left_op, result_op); 523 left_op = result_op; 524 } 525 526 switch(code) { 527 case Bytecodes::_dadd: 528 case Bytecodes::_fadd: 529 case Bytecodes::_ladd: 530 case Bytecodes::_iadd: __ add(left_op, right_op, result_op); break; 531 case Bytecodes::_fmul: 532 case Bytecodes::_lmul: __ mul(left_op, right_op, result_op); break; 533 534 case Bytecodes::_dmul: 535 { 536 if (is_strictfp) { 537 __ mul_strictfp(left_op, right_op, result_op, tmp_op); break; 538 } else { 539 __ mul(left_op, right_op, result_op); break; 540 } 541 } 542 break; 543 544 case Bytecodes::_imul: 545 { 546 bool did_strength_reduce = false; 547 548 if (right->is_constant()) { 549 int c = right->as_jint(); 550 if (is_power_of_2(c)) { 551 // do not need tmp here 552 __ shift_left(left_op, exact_log2(c), result_op); 553 did_strength_reduce = true; 554 } else { 555 did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op); 556 } 557 } 558 // we couldn't strength reduce so just emit the multiply 559 if (!did_strength_reduce) { 560 __ mul(left_op, right_op, result_op); 561 } 562 } 563 break; 564 565 case Bytecodes::_dsub: 566 case Bytecodes::_fsub: 567 case Bytecodes::_lsub: 568 case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break; 569 570 case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break; 571 // ldiv and lrem are implemented with a direct runtime call 572 573 case Bytecodes::_ddiv: 574 { 575 if (is_strictfp) { 576 __ div_strictfp (left_op, right_op, result_op, tmp_op); break; 577 } else { 578 __ div (left_op, right_op, result_op); break; 579 } 580 } 581 break; 582 583 case Bytecodes::_drem: 584 case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break; 585 586 default: ShouldNotReachHere(); 587 } 588 } 589 590 591 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) { 592 arithmetic_op(code, result, left, right, false, tmp); 593 } 594 595 596 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) { 597 arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info); 598 } 599 600 601 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) { 602 arithmetic_op(code, result, left, right, is_strictfp, tmp); 603 } 604 605 606 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) { 607 if (TwoOperandLIRForm && value != result_op) { 608 assert(count != result_op, "malformed"); 609 __ move(value, result_op); 610 value = result_op; 611 } 612 613 assert(count->is_constant() || count->is_register(), "must be"); 614 switch(code) { 615 case Bytecodes::_ishl: 616 case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break; 617 case Bytecodes::_ishr: 618 case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break; 619 case Bytecodes::_iushr: 620 case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break; 621 default: ShouldNotReachHere(); 622 } 623 } 624 625 626 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) { 627 if (TwoOperandLIRForm && left_op != result_op) { 628 assert(right_op != result_op, "malformed"); 629 __ move(left_op, result_op); 630 left_op = result_op; 631 } 632 633 switch(code) { 634 case Bytecodes::_iand: 635 case Bytecodes::_land: __ logical_and(left_op, right_op, result_op); break; 636 637 case Bytecodes::_ior: 638 case Bytecodes::_lor: __ logical_or(left_op, right_op, result_op); break; 639 640 case Bytecodes::_ixor: 641 case Bytecodes::_lxor: __ logical_xor(left_op, right_op, result_op); break; 642 643 default: ShouldNotReachHere(); 644 } 645 } 646 647 648 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) { 649 if (!GenerateSynchronizationCode) return; 650 // for slow path, use debug info for state after successful locking 651 CodeStub* slow_path = new MonitorEnterStub(object, lock, info); 652 __ load_stack_address_monitor(monitor_no, lock); 653 // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter 654 __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception); 655 } 656 657 658 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) { 659 if (!GenerateSynchronizationCode) return; 660 // setup registers 661 LIR_Opr hdr = lock; 662 lock = new_hdr; 663 CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no); 664 __ load_stack_address_monitor(monitor_no, lock); 665 __ unlock_object(hdr, object, lock, scratch, slow_path); 666 } 667 668 #ifndef PRODUCT 669 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) { 670 if (PrintNotLoaded && !new_instance->klass()->is_loaded()) { 671 tty->print_cr(" ###class not loaded at new bci %d", new_instance->printable_bci()); 672 } else if (PrintNotLoaded && (TieredCompilation && new_instance->is_unresolved())) { 673 tty->print_cr(" ###class not resolved at new bci %d", new_instance->printable_bci()); 674 } 675 } 676 #endif 677 678 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) { 679 klass2reg_with_patching(klass_reg, klass, info, is_unresolved); 680 // If klass is not loaded we do not know if the klass has finalizers: 681 if (UseFastNewInstance && klass->is_loaded() 682 && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) { 683 684 Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id; 685 686 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id); 687 688 assert(klass->is_loaded(), "must be loaded"); 689 // allocate space for instance 690 assert(klass->size_helper() >= 0, "illegal instance size"); 691 const int instance_size = align_object_size(klass->size_helper()); 692 __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4, 693 oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path); 694 } else { 695 CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id); 696 __ branch(lir_cond_always, T_ILLEGAL, slow_path); 697 __ branch_destination(slow_path->continuation()); 698 } 699 } 700 701 702 static bool is_constant_zero(Instruction* inst) { 703 IntConstant* c = inst->type()->as_IntConstant(); 704 if (c) { 705 return (c->value() == 0); 706 } 707 return false; 708 } 709 710 711 static bool positive_constant(Instruction* inst) { 712 IntConstant* c = inst->type()->as_IntConstant(); 713 if (c) { 714 return (c->value() >= 0); 715 } 716 return false; 717 } 718 719 720 static ciArrayKlass* as_array_klass(ciType* type) { 721 if (type != NULL && type->is_array_klass() && type->is_loaded()) { 722 return (ciArrayKlass*)type; 723 } else { 724 return NULL; 725 } 726 } 727 728 static ciType* phi_declared_type(Phi* phi) { 729 ciType* t = phi->operand_at(0)->declared_type(); 730 if (t == NULL) { 731 return NULL; 732 } 733 for(int i = 1; i < phi->operand_count(); i++) { 734 if (t != phi->operand_at(i)->declared_type()) { 735 return NULL; 736 } 737 } 738 return t; 739 } 740 741 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) { 742 Instruction* src = x->argument_at(0); 743 Instruction* src_pos = x->argument_at(1); 744 Instruction* dst = x->argument_at(2); 745 Instruction* dst_pos = x->argument_at(3); 746 Instruction* length = x->argument_at(4); 747 748 // first try to identify the likely type of the arrays involved 749 ciArrayKlass* expected_type = NULL; 750 bool is_exact = false, src_objarray = false, dst_objarray = false; 751 { 752 ciArrayKlass* src_exact_type = as_array_klass(src->exact_type()); 753 ciArrayKlass* src_declared_type = as_array_klass(src->declared_type()); 754 Phi* phi; 755 if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) { 756 src_declared_type = as_array_klass(phi_declared_type(phi)); 757 } 758 ciArrayKlass* dst_exact_type = as_array_klass(dst->exact_type()); 759 ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type()); 760 if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) { 761 dst_declared_type = as_array_klass(phi_declared_type(phi)); 762 } 763 764 if (src_exact_type != NULL && src_exact_type == dst_exact_type) { 765 // the types exactly match so the type is fully known 766 is_exact = true; 767 expected_type = src_exact_type; 768 } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) { 769 ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type; 770 ciArrayKlass* src_type = NULL; 771 if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) { 772 src_type = (ciArrayKlass*) src_exact_type; 773 } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) { 774 src_type = (ciArrayKlass*) src_declared_type; 775 } 776 if (src_type != NULL) { 777 if (src_type->element_type()->is_subtype_of(dst_type->element_type())) { 778 is_exact = true; 779 expected_type = dst_type; 780 } 781 } 782 } 783 // at least pass along a good guess 784 if (expected_type == NULL) expected_type = dst_exact_type; 785 if (expected_type == NULL) expected_type = src_declared_type; 786 if (expected_type == NULL) expected_type = dst_declared_type; 787 788 src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass()); 789 dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass()); 790 } 791 792 // if a probable array type has been identified, figure out if any 793 // of the required checks for a fast case can be elided. 794 int flags = LIR_OpArrayCopy::all_flags; 795 796 if (!src_objarray) 797 flags &= ~LIR_OpArrayCopy::src_objarray; 798 if (!dst_objarray) 799 flags &= ~LIR_OpArrayCopy::dst_objarray; 800 801 if (!x->arg_needs_null_check(0)) 802 flags &= ~LIR_OpArrayCopy::src_null_check; 803 if (!x->arg_needs_null_check(2)) 804 flags &= ~LIR_OpArrayCopy::dst_null_check; 805 806 807 if (expected_type != NULL) { 808 Value length_limit = NULL; 809 810 IfOp* ifop = length->as_IfOp(); 811 if (ifop != NULL) { 812 // look for expressions like min(v, a.length) which ends up as 813 // x > y ? y : x or x >= y ? y : x 814 if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) && 815 ifop->x() == ifop->fval() && 816 ifop->y() == ifop->tval()) { 817 length_limit = ifop->y(); 818 } 819 } 820 821 // try to skip null checks and range checks 822 NewArray* src_array = src->as_NewArray(); 823 if (src_array != NULL) { 824 flags &= ~LIR_OpArrayCopy::src_null_check; 825 if (length_limit != NULL && 826 src_array->length() == length_limit && 827 is_constant_zero(src_pos)) { 828 flags &= ~LIR_OpArrayCopy::src_range_check; 829 } 830 } 831 832 NewArray* dst_array = dst->as_NewArray(); 833 if (dst_array != NULL) { 834 flags &= ~LIR_OpArrayCopy::dst_null_check; 835 if (length_limit != NULL && 836 dst_array->length() == length_limit && 837 is_constant_zero(dst_pos)) { 838 flags &= ~LIR_OpArrayCopy::dst_range_check; 839 } 840 } 841 842 // check from incoming constant values 843 if (positive_constant(src_pos)) 844 flags &= ~LIR_OpArrayCopy::src_pos_positive_check; 845 if (positive_constant(dst_pos)) 846 flags &= ~LIR_OpArrayCopy::dst_pos_positive_check; 847 if (positive_constant(length)) 848 flags &= ~LIR_OpArrayCopy::length_positive_check; 849 850 // see if the range check can be elided, which might also imply 851 // that src or dst is non-null. 852 ArrayLength* al = length->as_ArrayLength(); 853 if (al != NULL) { 854 if (al->array() == src) { 855 // it's the length of the source array 856 flags &= ~LIR_OpArrayCopy::length_positive_check; 857 flags &= ~LIR_OpArrayCopy::src_null_check; 858 if (is_constant_zero(src_pos)) 859 flags &= ~LIR_OpArrayCopy::src_range_check; 860 } 861 if (al->array() == dst) { 862 // it's the length of the destination array 863 flags &= ~LIR_OpArrayCopy::length_positive_check; 864 flags &= ~LIR_OpArrayCopy::dst_null_check; 865 if (is_constant_zero(dst_pos)) 866 flags &= ~LIR_OpArrayCopy::dst_range_check; 867 } 868 } 869 if (is_exact) { 870 flags &= ~LIR_OpArrayCopy::type_check; 871 } 872 } 873 874 IntConstant* src_int = src_pos->type()->as_IntConstant(); 875 IntConstant* dst_int = dst_pos->type()->as_IntConstant(); 876 if (src_int && dst_int) { 877 int s_offs = src_int->value(); 878 int d_offs = dst_int->value(); 879 if (src_int->value() >= dst_int->value()) { 880 flags &= ~LIR_OpArrayCopy::overlapping; 881 } 882 if (expected_type != NULL) { 883 BasicType t = expected_type->element_type()->basic_type(); 884 int element_size = type2aelembytes(t); 885 if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) && 886 ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) { 887 flags &= ~LIR_OpArrayCopy::unaligned; 888 } 889 } 890 } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) { 891 // src and dest positions are the same, or dst is zero so assume 892 // nonoverlapping copy. 893 flags &= ~LIR_OpArrayCopy::overlapping; 894 } 895 896 if (src == dst) { 897 // moving within a single array so no type checks are needed 898 if (flags & LIR_OpArrayCopy::type_check) { 899 flags &= ~LIR_OpArrayCopy::type_check; 900 } 901 } 902 *flagsp = flags; 903 *expected_typep = (ciArrayKlass*)expected_type; 904 } 905 906 907 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) { 908 assert(opr->is_register(), "why spill if item is not register?"); 909 910 if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) { 911 LIR_Opr result = new_register(T_FLOAT); 912 set_vreg_flag(result, must_start_in_memory); 913 assert(opr->is_register(), "only a register can be spilled"); 914 assert(opr->value_type()->is_float(), "rounding only for floats available"); 915 __ roundfp(opr, LIR_OprFact::illegalOpr, result); 916 return result; 917 } 918 return opr; 919 } 920 921 922 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) { 923 assert(type2size[t] == type2size[value->type()], 924 err_msg_res("size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type()))); 925 if (!value->is_register()) { 926 // force into a register 927 LIR_Opr r = new_register(value->type()); 928 __ move(value, r); 929 value = r; 930 } 931 932 // create a spill location 933 LIR_Opr tmp = new_register(t); 934 set_vreg_flag(tmp, LIRGenerator::must_start_in_memory); 935 936 // move from register to spill 937 __ move(value, tmp); 938 return tmp; 939 } 940 941 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) { 942 if (if_instr->should_profile()) { 943 ciMethod* method = if_instr->profiled_method(); 944 assert(method != NULL, "method should be set if branch is profiled"); 945 ciMethodData* md = method->method_data_or_null(); 946 assert(md != NULL, "Sanity"); 947 ciProfileData* data = md->bci_to_data(if_instr->profiled_bci()); 948 assert(data != NULL, "must have profiling data"); 949 assert(data->is_BranchData(), "need BranchData for two-way branches"); 950 int taken_count_offset = md->byte_offset_of_slot(data, BranchData::taken_offset()); 951 int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset()); 952 if (if_instr->is_swapped()) { 953 int t = taken_count_offset; 954 taken_count_offset = not_taken_count_offset; 955 not_taken_count_offset = t; 956 } 957 958 LIR_Opr md_reg = new_register(T_METADATA); 959 __ metadata2reg(md->constant_encoding(), md_reg); 960 961 LIR_Opr data_offset_reg = new_pointer_register(); 962 __ cmove(lir_cond(cond), 963 LIR_OprFact::intptrConst(taken_count_offset), 964 LIR_OprFact::intptrConst(not_taken_count_offset), 965 data_offset_reg, as_BasicType(if_instr->x()->type())); 966 967 // MDO cells are intptr_t, so the data_reg width is arch-dependent. 968 LIR_Opr data_reg = new_pointer_register(); 969 LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type()); 970 __ move(data_addr, data_reg); 971 // Use leal instead of add to avoid destroying condition codes on x86 972 LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT); 973 __ leal(LIR_OprFact::address(fake_incr_value), data_reg); 974 __ move(data_reg, data_addr); 975 } 976 } 977 978 // Phi technique: 979 // This is about passing live values from one basic block to the other. 980 // In code generated with Java it is rather rare that more than one 981 // value is on the stack from one basic block to the other. 982 // We optimize our technique for efficient passing of one value 983 // (of type long, int, double..) but it can be extended. 984 // When entering or leaving a basic block, all registers and all spill 985 // slots are release and empty. We use the released registers 986 // and spill slots to pass the live values from one block 987 // to the other. The topmost value, i.e., the value on TOS of expression 988 // stack is passed in registers. All other values are stored in spilling 989 // area. Every Phi has an index which designates its spill slot 990 // At exit of a basic block, we fill the register(s) and spill slots. 991 // At entry of a basic block, the block_prolog sets up the content of phi nodes 992 // and locks necessary registers and spilling slots. 993 994 995 // move current value to referenced phi function 996 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) { 997 Phi* phi = sux_val->as_Phi(); 998 // cur_val can be null without phi being null in conjunction with inlining 999 if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) { 1000 LIR_Opr operand = cur_val->operand(); 1001 if (cur_val->operand()->is_illegal()) { 1002 assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL, 1003 "these can be produced lazily"); 1004 operand = operand_for_instruction(cur_val); 1005 } 1006 resolver->move(operand, operand_for_instruction(phi)); 1007 } 1008 } 1009 1010 1011 // Moves all stack values into their PHI position 1012 void LIRGenerator::move_to_phi(ValueStack* cur_state) { 1013 BlockBegin* bb = block(); 1014 if (bb->number_of_sux() == 1) { 1015 BlockBegin* sux = bb->sux_at(0); 1016 assert(sux->number_of_preds() > 0, "invalid CFG"); 1017 1018 // a block with only one predecessor never has phi functions 1019 if (sux->number_of_preds() > 1) { 1020 int max_phis = cur_state->stack_size() + cur_state->locals_size(); 1021 PhiResolver resolver(this, _virtual_register_number + max_phis * 2); 1022 1023 ValueStack* sux_state = sux->state(); 1024 Value sux_value; 1025 int index; 1026 1027 assert(cur_state->scope() == sux_state->scope(), "not matching"); 1028 assert(cur_state->locals_size() == sux_state->locals_size(), "not matching"); 1029 assert(cur_state->stack_size() == sux_state->stack_size(), "not matching"); 1030 1031 for_each_stack_value(sux_state, index, sux_value) { 1032 move_to_phi(&resolver, cur_state->stack_at(index), sux_value); 1033 } 1034 1035 for_each_local_value(sux_state, index, sux_value) { 1036 move_to_phi(&resolver, cur_state->local_at(index), sux_value); 1037 } 1038 1039 assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal"); 1040 } 1041 } 1042 } 1043 1044 1045 LIR_Opr LIRGenerator::new_register(BasicType type) { 1046 int vreg = _virtual_register_number; 1047 // add a little fudge factor for the bailout, since the bailout is 1048 // only checked periodically. This gives a few extra registers to 1049 // hand out before we really run out, which helps us keep from 1050 // tripping over assertions. 1051 if (vreg + 20 >= LIR_OprDesc::vreg_max) { 1052 bailout("out of virtual registers"); 1053 if (vreg + 2 >= LIR_OprDesc::vreg_max) { 1054 // wrap it around 1055 _virtual_register_number = LIR_OprDesc::vreg_base; 1056 } 1057 } 1058 _virtual_register_number += 1; 1059 return LIR_OprFact::virtual_register(vreg, type); 1060 } 1061 1062 1063 // Try to lock using register in hint 1064 LIR_Opr LIRGenerator::rlock(Value instr) { 1065 return new_register(instr->type()); 1066 } 1067 1068 1069 // does an rlock and sets result 1070 LIR_Opr LIRGenerator::rlock_result(Value x) { 1071 LIR_Opr reg = rlock(x); 1072 set_result(x, reg); 1073 return reg; 1074 } 1075 1076 1077 // does an rlock and sets result 1078 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) { 1079 LIR_Opr reg; 1080 switch (type) { 1081 case T_BYTE: 1082 case T_BOOLEAN: 1083 reg = rlock_byte(type); 1084 break; 1085 default: 1086 reg = rlock(x); 1087 break; 1088 } 1089 1090 set_result(x, reg); 1091 return reg; 1092 } 1093 1094 1095 //--------------------------------------------------------------------- 1096 ciObject* LIRGenerator::get_jobject_constant(Value value) { 1097 ObjectType* oc = value->type()->as_ObjectType(); 1098 if (oc) { 1099 return oc->constant_value(); 1100 } 1101 return NULL; 1102 } 1103 1104 1105 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) { 1106 assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block"); 1107 assert(block()->next() == x, "ExceptionObject must be first instruction of block"); 1108 1109 // no moves are created for phi functions at the begin of exception 1110 // handlers, so assign operands manually here 1111 for_each_phi_fun(block(), phi, 1112 operand_for_instruction(phi)); 1113 1114 LIR_Opr thread_reg = getThreadPointer(); 1115 __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT), 1116 exceptionOopOpr()); 1117 __ move_wide(LIR_OprFact::oopConst(NULL), 1118 new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT)); 1119 __ move_wide(LIR_OprFact::oopConst(NULL), 1120 new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT)); 1121 1122 LIR_Opr result = new_register(T_OBJECT); 1123 __ move(exceptionOopOpr(), result); 1124 set_result(x, result); 1125 } 1126 1127 1128 //---------------------------------------------------------------------- 1129 //---------------------------------------------------------------------- 1130 //---------------------------------------------------------------------- 1131 //---------------------------------------------------------------------- 1132 // visitor functions 1133 //---------------------------------------------------------------------- 1134 //---------------------------------------------------------------------- 1135 //---------------------------------------------------------------------- 1136 //---------------------------------------------------------------------- 1137 1138 void LIRGenerator::do_Phi(Phi* x) { 1139 // phi functions are never visited directly 1140 ShouldNotReachHere(); 1141 } 1142 1143 1144 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined. 1145 void LIRGenerator::do_Constant(Constant* x) { 1146 if (x->state_before() != NULL) { 1147 // Any constant with a ValueStack requires patching so emit the patch here 1148 LIR_Opr reg = rlock_result(x); 1149 CodeEmitInfo* info = state_for(x, x->state_before()); 1150 __ oop2reg_patch(NULL, reg, info); 1151 } else if (x->use_count() > 1 && !can_inline_as_constant(x)) { 1152 if (!x->is_pinned()) { 1153 // unpinned constants are handled specially so that they can be 1154 // put into registers when they are used multiple times within a 1155 // block. After the block completes their operand will be 1156 // cleared so that other blocks can't refer to that register. 1157 set_result(x, load_constant(x)); 1158 } else { 1159 LIR_Opr res = x->operand(); 1160 if (!res->is_valid()) { 1161 res = LIR_OprFact::value_type(x->type()); 1162 } 1163 if (res->is_constant()) { 1164 LIR_Opr reg = rlock_result(x); 1165 __ move(res, reg); 1166 } else { 1167 set_result(x, res); 1168 } 1169 } 1170 } else { 1171 set_result(x, LIR_OprFact::value_type(x->type())); 1172 } 1173 } 1174 1175 1176 void LIRGenerator::do_Local(Local* x) { 1177 // operand_for_instruction has the side effect of setting the result 1178 // so there's no need to do it here. 1179 operand_for_instruction(x); 1180 } 1181 1182 1183 void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) { 1184 Unimplemented(); 1185 } 1186 1187 1188 void LIRGenerator::do_Return(Return* x) { 1189 if (compilation()->env()->dtrace_method_probes()) { 1190 BasicTypeList signature; 1191 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread 1192 signature.append(T_METADATA); // Method* 1193 LIR_OprList* args = new LIR_OprList(); 1194 args->append(getThreadPointer()); 1195 LIR_Opr meth = new_register(T_METADATA); 1196 __ metadata2reg(method()->constant_encoding(), meth); 1197 args->append(meth); 1198 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL); 1199 } 1200 1201 if (x->type()->is_void()) { 1202 __ return_op(LIR_OprFact::illegalOpr); 1203 } else { 1204 LIR_Opr reg = result_register_for(x->type(), /*callee=*/true); 1205 LIRItem result(x->result(), this); 1206 1207 result.load_item_force(reg); 1208 __ return_op(result.result()); 1209 } 1210 set_no_result(x); 1211 } 1212 1213 // Examble: ref.get() 1214 // Combination of LoadField and g1 pre-write barrier 1215 void LIRGenerator::do_Reference_get(Intrinsic* x) { 1216 1217 const int referent_offset = java_lang_ref_Reference::referent_offset; 1218 guarantee(referent_offset > 0, "referent offset not initialized"); 1219 1220 assert(x->number_of_arguments() == 1, "wrong type"); 1221 1222 LIRItem reference(x->argument_at(0), this); 1223 reference.load_item(); 1224 1225 // need to perform the null check on the reference objecy 1226 CodeEmitInfo* info = NULL; 1227 if (x->needs_null_check()) { 1228 info = state_for(x); 1229 } 1230 1231 LIR_Address* referent_field_adr = 1232 new LIR_Address(reference.result(), referent_offset, T_OBJECT); 1233 1234 LIR_Opr result = rlock_result(x); 1235 1236 __ load(referent_field_adr, result, info); 1237 1238 // Register the value in the referent field with the pre-barrier 1239 pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */, 1240 result /* pre_val */, 1241 false /* do_load */, 1242 false /* patch */, 1243 NULL /* info */); 1244 } 1245 1246 // Example: clazz.isInstance(object) 1247 void LIRGenerator::do_isInstance(Intrinsic* x) { 1248 assert(x->number_of_arguments() == 2, "wrong type"); 1249 1250 // TODO could try to substitute this node with an equivalent InstanceOf 1251 // if clazz is known to be a constant Class. This will pick up newly found 1252 // constants after HIR construction. I'll leave this to a future change. 1253 1254 // as a first cut, make a simple leaf call to runtime to stay platform independent. 1255 // could follow the aastore example in a future change. 1256 1257 LIRItem clazz(x->argument_at(0), this); 1258 LIRItem object(x->argument_at(1), this); 1259 clazz.load_item(); 1260 object.load_item(); 1261 LIR_Opr result = rlock_result(x); 1262 1263 // need to perform null check on clazz 1264 if (x->needs_null_check()) { 1265 CodeEmitInfo* info = state_for(x); 1266 __ null_check(clazz.result(), info); 1267 } 1268 1269 LIR_Opr call_result = call_runtime(clazz.value(), object.value(), 1270 CAST_FROM_FN_PTR(address, Runtime1::is_instance_of), 1271 x->type(), 1272 NULL); // NULL CodeEmitInfo results in a leaf call 1273 __ move(call_result, result); 1274 } 1275 1276 // Example: object.getClass () 1277 void LIRGenerator::do_getClass(Intrinsic* x) { 1278 assert(x->number_of_arguments() == 1, "wrong type"); 1279 1280 LIRItem rcvr(x->argument_at(0), this); 1281 rcvr.load_item(); 1282 LIR_Opr temp = new_register(T_METADATA); 1283 LIR_Opr result = rlock_result(x); 1284 1285 // need to perform the null check on the rcvr 1286 CodeEmitInfo* info = NULL; 1287 if (x->needs_null_check()) { 1288 info = state_for(x); 1289 } 1290 1291 // FIXME T_ADDRESS should actually be T_METADATA but it can't because the 1292 // meaning of these two is mixed up (see JDK-8026837). 1293 __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), temp, info); 1294 __ move_wide(new LIR_Address(temp, in_bytes(Klass::java_mirror_offset()), T_OBJECT), result); 1295 } 1296 1297 1298 // Example: Thread.currentThread() 1299 void LIRGenerator::do_currentThread(Intrinsic* x) { 1300 assert(x->number_of_arguments() == 0, "wrong type"); 1301 LIR_Opr reg = rlock_result(x); 1302 __ move_wide(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg); 1303 } 1304 1305 1306 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) { 1307 assert(x->number_of_arguments() == 1, "wrong type"); 1308 LIRItem receiver(x->argument_at(0), this); 1309 1310 receiver.load_item(); 1311 BasicTypeList signature; 1312 signature.append(T_OBJECT); // receiver 1313 LIR_OprList* args = new LIR_OprList(); 1314 args->append(receiver.result()); 1315 CodeEmitInfo* info = state_for(x, x->state()); 1316 call_runtime(&signature, args, 1317 CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)), 1318 voidType, info); 1319 1320 set_no_result(x); 1321 } 1322 1323 1324 //------------------------local access-------------------------------------- 1325 1326 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) { 1327 if (x->operand()->is_illegal()) { 1328 Constant* c = x->as_Constant(); 1329 if (c != NULL) { 1330 x->set_operand(LIR_OprFact::value_type(c->type())); 1331 } else { 1332 assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local"); 1333 // allocate a virtual register for this local or phi 1334 x->set_operand(rlock(x)); 1335 _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL); 1336 } 1337 } 1338 return x->operand(); 1339 } 1340 1341 1342 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) { 1343 if (opr->is_virtual()) { 1344 return instruction_for_vreg(opr->vreg_number()); 1345 } 1346 return NULL; 1347 } 1348 1349 1350 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) { 1351 if (reg_num < _instruction_for_operand.length()) { 1352 return _instruction_for_operand.at(reg_num); 1353 } 1354 return NULL; 1355 } 1356 1357 1358 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) { 1359 if (_vreg_flags.size_in_bits() == 0) { 1360 BitMap2D temp(100, num_vreg_flags); 1361 temp.clear(); 1362 _vreg_flags = temp; 1363 } 1364 _vreg_flags.at_put_grow(vreg_num, f, true); 1365 } 1366 1367 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) { 1368 if (!_vreg_flags.is_valid_index(vreg_num, f)) { 1369 return false; 1370 } 1371 return _vreg_flags.at(vreg_num, f); 1372 } 1373 1374 1375 // Block local constant handling. This code is useful for keeping 1376 // unpinned constants and constants which aren't exposed in the IR in 1377 // registers. Unpinned Constant instructions have their operands 1378 // cleared when the block is finished so that other blocks can't end 1379 // up referring to their registers. 1380 1381 LIR_Opr LIRGenerator::load_constant(Constant* x) { 1382 assert(!x->is_pinned(), "only for unpinned constants"); 1383 _unpinned_constants.append(x); 1384 return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr()); 1385 } 1386 1387 1388 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) { 1389 BasicType t = c->type(); 1390 for (int i = 0; i < _constants.length(); i++) { 1391 LIR_Const* other = _constants.at(i); 1392 if (t == other->type()) { 1393 switch (t) { 1394 case T_INT: 1395 case T_FLOAT: 1396 if (c->as_jint_bits() != other->as_jint_bits()) continue; 1397 break; 1398 case T_LONG: 1399 case T_DOUBLE: 1400 if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue; 1401 if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue; 1402 break; 1403 case T_OBJECT: 1404 if (c->as_jobject() != other->as_jobject()) continue; 1405 break; 1406 } 1407 return _reg_for_constants.at(i); 1408 } 1409 } 1410 1411 LIR_Opr result = new_register(t); 1412 __ move((LIR_Opr)c, result); 1413 _constants.append(c); 1414 _reg_for_constants.append(result); 1415 return result; 1416 } 1417 1418 // Various barriers 1419 1420 void LIRGenerator::pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val, 1421 bool do_load, bool patch, CodeEmitInfo* info) { 1422 // Do the pre-write barrier, if any. 1423 switch (_bs->kind()) { 1424 #if INCLUDE_ALL_GCS 1425 case BarrierSet::G1SATBCT: 1426 case BarrierSet::G1SATBCTLogging: 1427 G1SATBCardTableModRef_pre_barrier(addr_opr, pre_val, do_load, patch, info); 1428 break; 1429 #endif // INCLUDE_ALL_GCS 1430 case BarrierSet::CardTableModRef: 1431 case BarrierSet::CardTableExtension: 1432 // No pre barriers 1433 break; 1434 case BarrierSet::ModRef: 1435 case BarrierSet::Other: 1436 // No pre barriers 1437 break; 1438 default : 1439 ShouldNotReachHere(); 1440 1441 } 1442 } 1443 1444 void LIRGenerator::post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) { 1445 switch (_bs->kind()) { 1446 #if INCLUDE_ALL_GCS 1447 case BarrierSet::G1SATBCT: 1448 case BarrierSet::G1SATBCTLogging: 1449 G1SATBCardTableModRef_post_barrier(addr, new_val); 1450 break; 1451 #endif // INCLUDE_ALL_GCS 1452 case BarrierSet::CardTableModRef: 1453 case BarrierSet::CardTableExtension: 1454 CardTableModRef_post_barrier(addr, new_val); 1455 break; 1456 case BarrierSet::ModRef: 1457 case BarrierSet::Other: 1458 // No post barriers 1459 break; 1460 default : 1461 ShouldNotReachHere(); 1462 } 1463 } 1464 1465 //////////////////////////////////////////////////////////////////////// 1466 #if INCLUDE_ALL_GCS 1467 1468 void LIRGenerator::G1SATBCardTableModRef_pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val, 1469 bool do_load, bool patch, CodeEmitInfo* info) { 1470 // First we test whether marking is in progress. 1471 BasicType flag_type; 1472 if (in_bytes(PtrQueue::byte_width_of_active()) == 4) { 1473 flag_type = T_INT; 1474 } else { 1475 guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1, 1476 "Assumption"); 1477 flag_type = T_BYTE; 1478 } 1479 LIR_Opr thrd = getThreadPointer(); 1480 LIR_Address* mark_active_flag_addr = 1481 new LIR_Address(thrd, 1482 in_bytes(JavaThread::satb_mark_queue_offset() + 1483 PtrQueue::byte_offset_of_active()), 1484 flag_type); 1485 // Read the marking-in-progress flag. 1486 LIR_Opr flag_val = new_register(T_INT); 1487 __ load(mark_active_flag_addr, flag_val); 1488 __ cmp(lir_cond_notEqual, flag_val, LIR_OprFact::intConst(0)); 1489 1490 LIR_PatchCode pre_val_patch_code = lir_patch_none; 1491 1492 CodeStub* slow; 1493 1494 if (do_load) { 1495 assert(pre_val == LIR_OprFact::illegalOpr, "sanity"); 1496 assert(addr_opr != LIR_OprFact::illegalOpr, "sanity"); 1497 1498 if (patch) 1499 pre_val_patch_code = lir_patch_normal; 1500 1501 pre_val = new_register(T_OBJECT); 1502 1503 if (!addr_opr->is_address()) { 1504 assert(addr_opr->is_register(), "must be"); 1505 addr_opr = LIR_OprFact::address(new LIR_Address(addr_opr, T_OBJECT)); 1506 } 1507 slow = new G1PreBarrierStub(addr_opr, pre_val, pre_val_patch_code, info); 1508 } else { 1509 assert(addr_opr == LIR_OprFact::illegalOpr, "sanity"); 1510 assert(pre_val->is_register(), "must be"); 1511 assert(pre_val->type() == T_OBJECT, "must be an object"); 1512 assert(info == NULL, "sanity"); 1513 1514 slow = new G1PreBarrierStub(pre_val); 1515 } 1516 1517 __ branch(lir_cond_notEqual, T_INT, slow); 1518 __ branch_destination(slow->continuation()); 1519 } 1520 1521 void LIRGenerator::G1SATBCardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) { 1522 // If the "new_val" is a constant NULL, no barrier is necessary. 1523 if (new_val->is_constant() && 1524 new_val->as_constant_ptr()->as_jobject() == NULL) return; 1525 1526 if (!new_val->is_register()) { 1527 LIR_Opr new_val_reg = new_register(T_OBJECT); 1528 if (new_val->is_constant()) { 1529 __ move(new_val, new_val_reg); 1530 } else { 1531 __ leal(new_val, new_val_reg); 1532 } 1533 new_val = new_val_reg; 1534 } 1535 assert(new_val->is_register(), "must be a register at this point"); 1536 1537 if (addr->is_address()) { 1538 LIR_Address* address = addr->as_address_ptr(); 1539 LIR_Opr ptr = new_pointer_register(); 1540 if (!address->index()->is_valid() && address->disp() == 0) { 1541 __ move(address->base(), ptr); 1542 } else { 1543 assert(address->disp() != max_jint, "lea doesn't support patched addresses!"); 1544 __ leal(addr, ptr); 1545 } 1546 addr = ptr; 1547 } 1548 assert(addr->is_register(), "must be a register at this point"); 1549 1550 LIR_Opr xor_res = new_pointer_register(); 1551 LIR_Opr xor_shift_res = new_pointer_register(); 1552 if (TwoOperandLIRForm ) { 1553 __ move(addr, xor_res); 1554 __ logical_xor(xor_res, new_val, xor_res); 1555 __ move(xor_res, xor_shift_res); 1556 __ unsigned_shift_right(xor_shift_res, 1557 LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes), 1558 xor_shift_res, 1559 LIR_OprDesc::illegalOpr()); 1560 } else { 1561 __ logical_xor(addr, new_val, xor_res); 1562 __ unsigned_shift_right(xor_res, 1563 LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes), 1564 xor_shift_res, 1565 LIR_OprDesc::illegalOpr()); 1566 } 1567 1568 if (!new_val->is_register()) { 1569 LIR_Opr new_val_reg = new_register(T_OBJECT); 1570 __ leal(new_val, new_val_reg); 1571 new_val = new_val_reg; 1572 } 1573 assert(new_val->is_register(), "must be a register at this point"); 1574 1575 __ cmp(lir_cond_notEqual, xor_shift_res, LIR_OprFact::intptrConst(NULL_WORD)); 1576 1577 CodeStub* slow = new G1PostBarrierStub(addr, new_val); 1578 __ branch(lir_cond_notEqual, LP64_ONLY(T_LONG) NOT_LP64(T_INT), slow); 1579 __ branch_destination(slow->continuation()); 1580 } 1581 1582 #endif // INCLUDE_ALL_GCS 1583 //////////////////////////////////////////////////////////////////////// 1584 1585 void LIRGenerator::CardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) { 1586 1587 assert(sizeof(*((CardTableModRefBS*)_bs)->byte_map_base) == sizeof(jbyte), "adjust this code"); 1588 LIR_Const* card_table_base = new LIR_Const(((CardTableModRefBS*)_bs)->byte_map_base); 1589 if (addr->is_address()) { 1590 LIR_Address* address = addr->as_address_ptr(); 1591 // ptr cannot be an object because we use this barrier for array card marks 1592 // and addr can point in the middle of an array. 1593 LIR_Opr ptr = new_pointer_register(); 1594 if (!address->index()->is_valid() && address->disp() == 0) { 1595 __ move(address->base(), ptr); 1596 } else { 1597 assert(address->disp() != max_jint, "lea doesn't support patched addresses!"); 1598 __ leal(addr, ptr); 1599 } 1600 addr = ptr; 1601 } 1602 assert(addr->is_register(), "must be a register at this point"); 1603 1604 #ifdef ARM 1605 // TODO: ARM - move to platform-dependent code 1606 LIR_Opr tmp = FrameMap::R14_opr; 1607 if (VM_Version::supports_movw()) { 1608 __ move((LIR_Opr)card_table_base, tmp); 1609 } else { 1610 __ move(new LIR_Address(FrameMap::Rthread_opr, in_bytes(JavaThread::card_table_base_offset()), T_ADDRESS), tmp); 1611 } 1612 1613 CardTableModRefBS* ct = (CardTableModRefBS*)_bs; 1614 LIR_Address *card_addr = new LIR_Address(tmp, addr, (LIR_Address::Scale) -CardTableModRefBS::card_shift, 0, T_BYTE); 1615 if(((int)ct->byte_map_base & 0xff) == 0) { 1616 __ move(tmp, card_addr); 1617 } else { 1618 LIR_Opr tmp_zero = new_register(T_INT); 1619 __ move(LIR_OprFact::intConst(0), tmp_zero); 1620 __ move(tmp_zero, card_addr); 1621 } 1622 #else // ARM 1623 LIR_Opr tmp = new_pointer_register(); 1624 if (TwoOperandLIRForm) { 1625 __ move(addr, tmp); 1626 __ unsigned_shift_right(tmp, CardTableModRefBS::card_shift, tmp); 1627 } else { 1628 __ unsigned_shift_right(addr, CardTableModRefBS::card_shift, tmp); 1629 } 1630 if (can_inline_as_constant(card_table_base)) { 1631 __ move(LIR_OprFact::intConst(0), 1632 new LIR_Address(tmp, card_table_base->as_jint(), T_BYTE)); 1633 } else { 1634 __ move(LIR_OprFact::intConst(0), 1635 new LIR_Address(tmp, load_constant(card_table_base), 1636 T_BYTE)); 1637 } 1638 #endif // ARM 1639 } 1640 1641 1642 //------------------------field access-------------------------------------- 1643 1644 // Comment copied form templateTable_i486.cpp 1645 // ---------------------------------------------------------------------------- 1646 // Volatile variables demand their effects be made known to all CPU's in 1647 // order. Store buffers on most chips allow reads & writes to reorder; the 1648 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of 1649 // memory barrier (i.e., it's not sufficient that the interpreter does not 1650 // reorder volatile references, the hardware also must not reorder them). 1651 // 1652 // According to the new Java Memory Model (JMM): 1653 // (1) All volatiles are serialized wrt to each other. 1654 // ALSO reads & writes act as aquire & release, so: 1655 // (2) A read cannot let unrelated NON-volatile memory refs that happen after 1656 // the read float up to before the read. It's OK for non-volatile memory refs 1657 // that happen before the volatile read to float down below it. 1658 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs 1659 // that happen BEFORE the write float down to after the write. It's OK for 1660 // non-volatile memory refs that happen after the volatile write to float up 1661 // before it. 1662 // 1663 // We only put in barriers around volatile refs (they are expensive), not 1664 // _between_ memory refs (that would require us to track the flavor of the 1665 // previous memory refs). Requirements (2) and (3) require some barriers 1666 // before volatile stores and after volatile loads. These nearly cover 1667 // requirement (1) but miss the volatile-store-volatile-load case. This final 1668 // case is placed after volatile-stores although it could just as well go 1669 // before volatile-loads. 1670 1671 1672 void LIRGenerator::do_StoreField(StoreField* x) { 1673 bool needs_patching = x->needs_patching(); 1674 bool is_volatile = x->field()->is_volatile(); 1675 BasicType field_type = x->field_type(); 1676 bool is_oop = (field_type == T_ARRAY || field_type == T_OBJECT); 1677 1678 CodeEmitInfo* info = NULL; 1679 if (needs_patching) { 1680 assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access"); 1681 info = state_for(x, x->state_before()); 1682 } else if (x->needs_null_check()) { 1683 NullCheck* nc = x->explicit_null_check(); 1684 if (nc == NULL) { 1685 info = state_for(x); 1686 } else { 1687 info = state_for(nc); 1688 } 1689 } 1690 1691 1692 LIRItem object(x->obj(), this); 1693 LIRItem value(x->value(), this); 1694 1695 object.load_item(); 1696 1697 if (is_volatile || needs_patching) { 1698 // load item if field is volatile (fewer special cases for volatiles) 1699 // load item if field not initialized 1700 // load item if field not constant 1701 // because of code patching we cannot inline constants 1702 if (field_type == T_BYTE || field_type == T_BOOLEAN) { 1703 value.load_byte_item(); 1704 } else { 1705 value.load_item(); 1706 } 1707 } else { 1708 value.load_for_store(field_type); 1709 } 1710 1711 set_no_result(x); 1712 1713 #ifndef PRODUCT 1714 if (PrintNotLoaded && needs_patching) { 1715 tty->print_cr(" ###class not loaded at store_%s bci %d", 1716 x->is_static() ? "static" : "field", x->printable_bci()); 1717 } 1718 #endif 1719 1720 if (x->needs_null_check() && 1721 (needs_patching || 1722 MacroAssembler::needs_explicit_null_check(x->offset()))) { 1723 // emit an explicit null check because the offset is too large 1724 __ null_check(object.result(), new CodeEmitInfo(info)); 1725 } 1726 1727 LIR_Address* address; 1728 if (needs_patching) { 1729 // we need to patch the offset in the instruction so don't allow 1730 // generate_address to try to be smart about emitting the -1. 1731 // Otherwise the patching code won't know how to find the 1732 // instruction to patch. 1733 address = new LIR_Address(object.result(), PATCHED_ADDR, field_type); 1734 } else { 1735 address = generate_address(object.result(), x->offset(), field_type); 1736 } 1737 1738 if (is_volatile && os::is_MP()) { 1739 __ membar_release(); 1740 } 1741 1742 if (is_oop) { 1743 // Do the pre-write barrier, if any. 1744 pre_barrier(LIR_OprFact::address(address), 1745 LIR_OprFact::illegalOpr /* pre_val */, 1746 true /* do_load*/, 1747 needs_patching, 1748 (info ? new CodeEmitInfo(info) : NULL)); 1749 } 1750 1751 bool needs_atomic_access = is_volatile || AlwaysAtomicAccesses; 1752 if (needs_atomic_access && !needs_patching) { 1753 volatile_field_store(value.result(), address, info); 1754 } else { 1755 LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none; 1756 __ store(value.result(), address, info, patch_code); 1757 } 1758 1759 if (is_oop) { 1760 // Store to object so mark the card of the header 1761 post_barrier(object.result(), value.result()); 1762 } 1763 1764 if (is_volatile && os::is_MP()) { 1765 __ membar(); 1766 } 1767 } 1768 1769 1770 void LIRGenerator::do_LoadField(LoadField* x) { 1771 bool needs_patching = x->needs_patching(); 1772 bool is_volatile = x->field()->is_volatile(); 1773 BasicType field_type = x->field_type(); 1774 1775 CodeEmitInfo* info = NULL; 1776 if (needs_patching) { 1777 assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access"); 1778 info = state_for(x, x->state_before()); 1779 } else if (x->needs_null_check()) { 1780 NullCheck* nc = x->explicit_null_check(); 1781 if (nc == NULL) { 1782 info = state_for(x); 1783 } else { 1784 info = state_for(nc); 1785 } 1786 } 1787 1788 LIRItem object(x->obj(), this); 1789 1790 object.load_item(); 1791 1792 #ifndef PRODUCT 1793 if (PrintNotLoaded && needs_patching) { 1794 tty->print_cr(" ###class not loaded at load_%s bci %d", 1795 x->is_static() ? "static" : "field", x->printable_bci()); 1796 } 1797 #endif 1798 1799 bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception(); 1800 if (x->needs_null_check() && 1801 (needs_patching || 1802 MacroAssembler::needs_explicit_null_check(x->offset()) || 1803 stress_deopt)) { 1804 LIR_Opr obj = object.result(); 1805 if (stress_deopt) { 1806 obj = new_register(T_OBJECT); 1807 __ move(LIR_OprFact::oopConst(NULL), obj); 1808 } 1809 // emit an explicit null check because the offset is too large 1810 __ null_check(obj, new CodeEmitInfo(info)); 1811 } 1812 1813 LIR_Opr reg = rlock_result(x, field_type); 1814 LIR_Address* address; 1815 if (needs_patching) { 1816 // we need to patch the offset in the instruction so don't allow 1817 // generate_address to try to be smart about emitting the -1. 1818 // Otherwise the patching code won't know how to find the 1819 // instruction to patch. 1820 address = new LIR_Address(object.result(), PATCHED_ADDR, field_type); 1821 } else { 1822 address = generate_address(object.result(), x->offset(), field_type); 1823 } 1824 1825 bool needs_atomic_access = is_volatile || AlwaysAtomicAccesses; 1826 if (needs_atomic_access && !needs_patching) { 1827 volatile_field_load(address, reg, info); 1828 } else { 1829 LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none; 1830 __ load(address, reg, info, patch_code); 1831 } 1832 1833 if (is_volatile && os::is_MP()) { 1834 __ membar_acquire(); 1835 } 1836 } 1837 1838 1839 //------------------------java.nio.Buffer.checkIndex------------------------ 1840 1841 // int java.nio.Buffer.checkIndex(int) 1842 void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) { 1843 // NOTE: by the time we are in checkIndex() we are guaranteed that 1844 // the buffer is non-null (because checkIndex is package-private and 1845 // only called from within other methods in the buffer). 1846 assert(x->number_of_arguments() == 2, "wrong type"); 1847 LIRItem buf (x->argument_at(0), this); 1848 LIRItem index(x->argument_at(1), this); 1849 buf.load_item(); 1850 index.load_item(); 1851 1852 LIR_Opr result = rlock_result(x); 1853 if (GenerateRangeChecks) { 1854 CodeEmitInfo* info = state_for(x); 1855 CodeStub* stub = new RangeCheckStub(info, index.result(), true); 1856 if (index.result()->is_constant()) { 1857 cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info); 1858 __ branch(lir_cond_belowEqual, T_INT, stub); 1859 } else { 1860 cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(), 1861 java_nio_Buffer::limit_offset(), T_INT, info); 1862 __ branch(lir_cond_aboveEqual, T_INT, stub); 1863 } 1864 __ move(index.result(), result); 1865 } else { 1866 // Just load the index into the result register 1867 __ move(index.result(), result); 1868 } 1869 } 1870 1871 1872 //------------------------array access-------------------------------------- 1873 1874 1875 void LIRGenerator::do_ArrayLength(ArrayLength* x) { 1876 LIRItem array(x->array(), this); 1877 array.load_item(); 1878 LIR_Opr reg = rlock_result(x); 1879 1880 CodeEmitInfo* info = NULL; 1881 if (x->needs_null_check()) { 1882 NullCheck* nc = x->explicit_null_check(); 1883 if (nc == NULL) { 1884 info = state_for(x); 1885 } else { 1886 info = state_for(nc); 1887 } 1888 if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) { 1889 LIR_Opr obj = new_register(T_OBJECT); 1890 __ move(LIR_OprFact::oopConst(NULL), obj); 1891 __ null_check(obj, new CodeEmitInfo(info)); 1892 } 1893 } 1894 __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none); 1895 } 1896 1897 1898 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) { 1899 bool use_length = x->length() != NULL; 1900 LIRItem array(x->array(), this); 1901 LIRItem index(x->index(), this); 1902 LIRItem length(this); 1903 bool needs_range_check = x->compute_needs_range_check(); 1904 1905 if (use_length && needs_range_check) { 1906 length.set_instruction(x->length()); 1907 length.load_item(); 1908 } 1909 1910 array.load_item(); 1911 if (index.is_constant() && can_inline_as_constant(x->index())) { 1912 // let it be a constant 1913 index.dont_load_item(); 1914 } else { 1915 index.load_item(); 1916 } 1917 1918 CodeEmitInfo* range_check_info = state_for(x); 1919 CodeEmitInfo* null_check_info = NULL; 1920 if (x->needs_null_check()) { 1921 NullCheck* nc = x->explicit_null_check(); 1922 if (nc != NULL) { 1923 null_check_info = state_for(nc); 1924 } else { 1925 null_check_info = range_check_info; 1926 } 1927 if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) { 1928 LIR_Opr obj = new_register(T_OBJECT); 1929 __ move(LIR_OprFact::oopConst(NULL), obj); 1930 __ null_check(obj, new CodeEmitInfo(null_check_info)); 1931 } 1932 } 1933 1934 // emit array address setup early so it schedules better 1935 LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), false); 1936 1937 if (GenerateRangeChecks && needs_range_check) { 1938 if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) { 1939 __ branch(lir_cond_always, T_ILLEGAL, new RangeCheckStub(range_check_info, index.result())); 1940 } else if (use_length) { 1941 // TODO: use a (modified) version of array_range_check that does not require a 1942 // constant length to be loaded to a register 1943 __ cmp(lir_cond_belowEqual, length.result(), index.result()); 1944 __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result())); 1945 } else { 1946 array_range_check(array.result(), index.result(), null_check_info, range_check_info); 1947 // The range check performs the null check, so clear it out for the load 1948 null_check_info = NULL; 1949 } 1950 } 1951 1952 __ move(array_addr, rlock_result(x, x->elt_type()), null_check_info); 1953 } 1954 1955 1956 void LIRGenerator::do_NullCheck(NullCheck* x) { 1957 if (x->can_trap()) { 1958 LIRItem value(x->obj(), this); 1959 value.load_item(); 1960 CodeEmitInfo* info = state_for(x); 1961 __ null_check(value.result(), info); 1962 } 1963 } 1964 1965 1966 void LIRGenerator::do_TypeCast(TypeCast* x) { 1967 LIRItem value(x->obj(), this); 1968 value.load_item(); 1969 // the result is the same as from the node we are casting 1970 set_result(x, value.result()); 1971 } 1972 1973 1974 void LIRGenerator::do_Throw(Throw* x) { 1975 LIRItem exception(x->exception(), this); 1976 exception.load_item(); 1977 set_no_result(x); 1978 LIR_Opr exception_opr = exception.result(); 1979 CodeEmitInfo* info = state_for(x, x->state()); 1980 1981 #ifndef PRODUCT 1982 if (PrintC1Statistics) { 1983 increment_counter(Runtime1::throw_count_address(), T_INT); 1984 } 1985 #endif 1986 1987 // check if the instruction has an xhandler in any of the nested scopes 1988 bool unwind = false; 1989 if (info->exception_handlers()->length() == 0) { 1990 // this throw is not inside an xhandler 1991 unwind = true; 1992 } else { 1993 // get some idea of the throw type 1994 bool type_is_exact = true; 1995 ciType* throw_type = x->exception()->exact_type(); 1996 if (throw_type == NULL) { 1997 type_is_exact = false; 1998 throw_type = x->exception()->declared_type(); 1999 } 2000 if (throw_type != NULL && throw_type->is_instance_klass()) { 2001 ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type; 2002 unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact); 2003 } 2004 } 2005 2006 // do null check before moving exception oop into fixed register 2007 // to avoid a fixed interval with an oop during the null check. 2008 // Use a copy of the CodeEmitInfo because debug information is 2009 // different for null_check and throw. 2010 if (GenerateCompilerNullChecks && 2011 (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL)) { 2012 // if the exception object wasn't created using new then it might be null. 2013 __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci()))); 2014 } 2015 2016 if (compilation()->env()->jvmti_can_post_on_exceptions()) { 2017 // we need to go through the exception lookup path to get JVMTI 2018 // notification done 2019 unwind = false; 2020 } 2021 2022 // move exception oop into fixed register 2023 __ move(exception_opr, exceptionOopOpr()); 2024 2025 if (unwind) { 2026 __ unwind_exception(exceptionOopOpr()); 2027 } else { 2028 __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info); 2029 } 2030 } 2031 2032 2033 void LIRGenerator::do_RoundFP(RoundFP* x) { 2034 LIRItem input(x->input(), this); 2035 input.load_item(); 2036 LIR_Opr input_opr = input.result(); 2037 assert(input_opr->is_register(), "why round if value is not in a register?"); 2038 assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value"); 2039 if (input_opr->is_single_fpu()) { 2040 set_result(x, round_item(input_opr)); // This code path not currently taken 2041 } else { 2042 LIR_Opr result = new_register(T_DOUBLE); 2043 set_vreg_flag(result, must_start_in_memory); 2044 __ roundfp(input_opr, LIR_OprFact::illegalOpr, result); 2045 set_result(x, result); 2046 } 2047 } 2048 2049 // Here UnsafeGetRaw may have x->base() and x->index() be int or long 2050 // on both 64 and 32 bits. Expecting x->base() to be always long on 64bit. 2051 void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) { 2052 LIRItem base(x->base(), this); 2053 LIRItem idx(this); 2054 2055 base.load_item(); 2056 if (x->has_index()) { 2057 idx.set_instruction(x->index()); 2058 idx.load_nonconstant(); 2059 } 2060 2061 LIR_Opr reg = rlock_result(x, x->basic_type()); 2062 2063 int log2_scale = 0; 2064 if (x->has_index()) { 2065 log2_scale = x->log2_scale(); 2066 } 2067 2068 assert(!x->has_index() || idx.value() == x->index(), "should match"); 2069 2070 LIR_Opr base_op = base.result(); 2071 LIR_Opr index_op = idx.result(); 2072 #ifndef _LP64 2073 if (base_op->type() == T_LONG) { 2074 base_op = new_register(T_INT); 2075 __ convert(Bytecodes::_l2i, base.result(), base_op); 2076 } 2077 if (x->has_index()) { 2078 if (index_op->type() == T_LONG) { 2079 LIR_Opr long_index_op = index_op; 2080 if (index_op->is_constant()) { 2081 long_index_op = new_register(T_LONG); 2082 __ move(index_op, long_index_op); 2083 } 2084 index_op = new_register(T_INT); 2085 __ convert(Bytecodes::_l2i, long_index_op, index_op); 2086 } else { 2087 assert(x->index()->type()->tag() == intTag, "must be"); 2088 } 2089 } 2090 // At this point base and index should be all ints. 2091 assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int"); 2092 assert(!x->has_index() || index_op->type() == T_INT, "index should be an int"); 2093 #else 2094 if (x->has_index()) { 2095 if (index_op->type() == T_INT) { 2096 if (!index_op->is_constant()) { 2097 index_op = new_register(T_LONG); 2098 __ convert(Bytecodes::_i2l, idx.result(), index_op); 2099 } 2100 } else { 2101 assert(index_op->type() == T_LONG, "must be"); 2102 if (index_op->is_constant()) { 2103 index_op = new_register(T_LONG); 2104 __ move(idx.result(), index_op); 2105 } 2106 } 2107 } 2108 // At this point base is a long non-constant 2109 // Index is a long register or a int constant. 2110 // We allow the constant to stay an int because that would allow us a more compact encoding by 2111 // embedding an immediate offset in the address expression. If we have a long constant, we have to 2112 // move it into a register first. 2113 assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a long non-constant"); 2114 assert(!x->has_index() || (index_op->type() == T_INT && index_op->is_constant()) || 2115 (index_op->type() == T_LONG && !index_op->is_constant()), "unexpected index type"); 2116 #endif 2117 2118 BasicType dst_type = x->basic_type(); 2119 2120 LIR_Address* addr; 2121 if (index_op->is_constant()) { 2122 assert(log2_scale == 0, "must not have a scale"); 2123 assert(index_op->type() == T_INT, "only int constants supported"); 2124 addr = new LIR_Address(base_op, index_op->as_jint(), dst_type); 2125 } else { 2126 #ifdef X86 2127 addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type); 2128 #elif defined(ARM) 2129 addr = generate_address(base_op, index_op, log2_scale, 0, dst_type); 2130 #else 2131 if (index_op->is_illegal() || log2_scale == 0) { 2132 addr = new LIR_Address(base_op, index_op, dst_type); 2133 } else { 2134 LIR_Opr tmp = new_pointer_register(); 2135 __ shift_left(index_op, log2_scale, tmp); 2136 addr = new LIR_Address(base_op, tmp, dst_type); 2137 } 2138 #endif 2139 } 2140 2141 if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) { 2142 __ unaligned_move(addr, reg); 2143 } else { 2144 if (dst_type == T_OBJECT && x->is_wide()) { 2145 __ move_wide(addr, reg); 2146 } else { 2147 __ move(addr, reg); 2148 } 2149 } 2150 } 2151 2152 2153 void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) { 2154 int log2_scale = 0; 2155 BasicType type = x->basic_type(); 2156 2157 if (x->has_index()) { 2158 log2_scale = x->log2_scale(); 2159 } 2160 2161 LIRItem base(x->base(), this); 2162 LIRItem value(x->value(), this); 2163 LIRItem idx(this); 2164 2165 base.load_item(); 2166 if (x->has_index()) { 2167 idx.set_instruction(x->index()); 2168 idx.load_item(); 2169 } 2170 2171 if (type == T_BYTE || type == T_BOOLEAN) { 2172 value.load_byte_item(); 2173 } else { 2174 value.load_item(); 2175 } 2176 2177 set_no_result(x); 2178 2179 LIR_Opr base_op = base.result(); 2180 LIR_Opr index_op = idx.result(); 2181 2182 #ifndef _LP64 2183 if (base_op->type() == T_LONG) { 2184 base_op = new_register(T_INT); 2185 __ convert(Bytecodes::_l2i, base.result(), base_op); 2186 } 2187 if (x->has_index()) { 2188 if (index_op->type() == T_LONG) { 2189 index_op = new_register(T_INT); 2190 __ convert(Bytecodes::_l2i, idx.result(), index_op); 2191 } 2192 } 2193 // At this point base and index should be all ints and not constants 2194 assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int"); 2195 assert(!x->has_index() || (index_op->type() == T_INT && !index_op->is_constant()), "index should be an non-constant int"); 2196 #else 2197 if (x->has_index()) { 2198 if (index_op->type() == T_INT) { 2199 index_op = new_register(T_LONG); 2200 __ convert(Bytecodes::_i2l, idx.result(), index_op); 2201 } 2202 } 2203 // At this point base and index are long and non-constant 2204 assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a non-constant long"); 2205 assert(!x->has_index() || (index_op->type() == T_LONG && !index_op->is_constant()), "index must be a non-constant long"); 2206 #endif 2207 2208 if (log2_scale != 0) { 2209 // temporary fix (platform dependent code without shift on Intel would be better) 2210 // TODO: ARM also allows embedded shift in the address 2211 __ shift_left(index_op, log2_scale, index_op); 2212 } 2213 2214 LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type()); 2215 __ move(value.result(), addr); 2216 } 2217 2218 2219 void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) { 2220 BasicType type = x->basic_type(); 2221 LIRItem src(x->object(), this); 2222 LIRItem off(x->offset(), this); 2223 2224 off.load_item(); 2225 src.load_item(); 2226 2227 LIR_Opr value = rlock_result(x, x->basic_type()); 2228 2229 get_Object_unsafe(value, src.result(), off.result(), type, x->is_volatile()); 2230 2231 #if INCLUDE_ALL_GCS 2232 // We might be reading the value of the referent field of a 2233 // Reference object in order to attach it back to the live 2234 // object graph. If G1 is enabled then we need to record 2235 // the value that is being returned in an SATB log buffer. 2236 // 2237 // We need to generate code similar to the following... 2238 // 2239 // if (offset == java_lang_ref_Reference::referent_offset) { 2240 // if (src != NULL) { 2241 // if (klass(src)->reference_type() != REF_NONE) { 2242 // pre_barrier(..., value, ...); 2243 // } 2244 // } 2245 // } 2246 2247 if (UseG1GC && type == T_OBJECT) { 2248 bool gen_pre_barrier = true; // Assume we need to generate pre_barrier. 2249 bool gen_offset_check = true; // Assume we need to generate the offset guard. 2250 bool gen_source_check = true; // Assume we need to check the src object for null. 2251 bool gen_type_check = true; // Assume we need to check the reference_type. 2252 2253 if (off.is_constant()) { 2254 jlong off_con = (off.type()->is_int() ? 2255 (jlong) off.get_jint_constant() : 2256 off.get_jlong_constant()); 2257 2258 2259 if (off_con != (jlong) java_lang_ref_Reference::referent_offset) { 2260 // The constant offset is something other than referent_offset. 2261 // We can skip generating/checking the remaining guards and 2262 // skip generation of the code stub. 2263 gen_pre_barrier = false; 2264 } else { 2265 // The constant offset is the same as referent_offset - 2266 // we do not need to generate a runtime offset check. 2267 gen_offset_check = false; 2268 } 2269 } 2270 2271 // We don't need to generate stub if the source object is an array 2272 if (gen_pre_barrier && src.type()->is_array()) { 2273 gen_pre_barrier = false; 2274 } 2275 2276 if (gen_pre_barrier) { 2277 // We still need to continue with the checks. 2278 if (src.is_constant()) { 2279 ciObject* src_con = src.get_jobject_constant(); 2280 guarantee(src_con != NULL, "no source constant"); 2281 2282 if (src_con->is_null_object()) { 2283 // The constant src object is null - We can skip 2284 // generating the code stub. 2285 gen_pre_barrier = false; 2286 } else { 2287 // Non-null constant source object. We still have to generate 2288 // the slow stub - but we don't need to generate the runtime 2289 // null object check. 2290 gen_source_check = false; 2291 } 2292 } 2293 } 2294 if (gen_pre_barrier && !PatchALot) { 2295 // Can the klass of object be statically determined to be 2296 // a sub-class of Reference? 2297 ciType* type = src.value()->declared_type(); 2298 if ((type != NULL) && type->is_loaded()) { 2299 if (type->is_subtype_of(compilation()->env()->Reference_klass())) { 2300 gen_type_check = false; 2301 } else if (type->is_klass() && 2302 !compilation()->env()->Object_klass()->is_subtype_of(type->as_klass())) { 2303 // Not Reference and not Object klass. 2304 gen_pre_barrier = false; 2305 } 2306 } 2307 } 2308 2309 if (gen_pre_barrier) { 2310 LabelObj* Lcont = new LabelObj(); 2311 2312 // We can have generate one runtime check here. Let's start with 2313 // the offset check. 2314 if (gen_offset_check) { 2315 // if (offset != referent_offset) -> continue 2316 // If offset is an int then we can do the comparison with the 2317 // referent_offset constant; otherwise we need to move 2318 // referent_offset into a temporary register and generate 2319 // a reg-reg compare. 2320 2321 LIR_Opr referent_off; 2322 2323 if (off.type()->is_int()) { 2324 referent_off = LIR_OprFact::intConst(java_lang_ref_Reference::referent_offset); 2325 } else { 2326 assert(off.type()->is_long(), "what else?"); 2327 referent_off = new_register(T_LONG); 2328 __ move(LIR_OprFact::longConst(java_lang_ref_Reference::referent_offset), referent_off); 2329 } 2330 __ cmp(lir_cond_notEqual, off.result(), referent_off); 2331 __ branch(lir_cond_notEqual, as_BasicType(off.type()), Lcont->label()); 2332 } 2333 if (gen_source_check) { 2334 // offset is a const and equals referent offset 2335 // if (source == null) -> continue 2336 __ cmp(lir_cond_equal, src.result(), LIR_OprFact::oopConst(NULL)); 2337 __ branch(lir_cond_equal, T_OBJECT, Lcont->label()); 2338 } 2339 LIR_Opr src_klass = new_register(T_OBJECT); 2340 if (gen_type_check) { 2341 // We have determined that offset == referent_offset && src != null. 2342 // if (src->_klass->_reference_type == REF_NONE) -> continue 2343 __ move(new LIR_Address(src.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), src_klass); 2344 LIR_Address* reference_type_addr = new LIR_Address(src_klass, in_bytes(InstanceKlass::reference_type_offset()), T_BYTE); 2345 LIR_Opr reference_type = new_register(T_INT); 2346 __ move(reference_type_addr, reference_type); 2347 __ cmp(lir_cond_equal, reference_type, LIR_OprFact::intConst(REF_NONE)); 2348 __ branch(lir_cond_equal, T_INT, Lcont->label()); 2349 } 2350 { 2351 // We have determined that src->_klass->_reference_type != REF_NONE 2352 // so register the value in the referent field with the pre-barrier. 2353 pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */, 2354 value /* pre_val */, 2355 false /* do_load */, 2356 false /* patch */, 2357 NULL /* info */); 2358 } 2359 __ branch_destination(Lcont->label()); 2360 } 2361 } 2362 #endif // INCLUDE_ALL_GCS 2363 2364 if (x->is_volatile() && os::is_MP()) __ membar_acquire(); 2365 } 2366 2367 2368 void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) { 2369 BasicType type = x->basic_type(); 2370 LIRItem src(x->object(), this); 2371 LIRItem off(x->offset(), this); 2372 LIRItem data(x->value(), this); 2373 2374 src.load_item(); 2375 if (type == T_BOOLEAN || type == T_BYTE) { 2376 data.load_byte_item(); 2377 } else { 2378 data.load_item(); 2379 } 2380 off.load_item(); 2381 2382 set_no_result(x); 2383 2384 if (x->is_volatile() && os::is_MP()) __ membar_release(); 2385 put_Object_unsafe(src.result(), off.result(), data.result(), type, x->is_volatile()); 2386 if (x->is_volatile() && os::is_MP()) __ membar(); 2387 } 2388 2389 2390 void LIRGenerator::do_UnsafePrefetch(UnsafePrefetch* x, bool is_store) { 2391 LIRItem src(x->object(), this); 2392 LIRItem off(x->offset(), this); 2393 2394 src.load_item(); 2395 if (off.is_constant() && can_inline_as_constant(x->offset())) { 2396 // let it be a constant 2397 off.dont_load_item(); 2398 } else { 2399 off.load_item(); 2400 } 2401 2402 set_no_result(x); 2403 2404 LIR_Address* addr = generate_address(src.result(), off.result(), 0, 0, T_BYTE); 2405 __ prefetch(addr, is_store); 2406 } 2407 2408 2409 void LIRGenerator::do_UnsafePrefetchRead(UnsafePrefetchRead* x) { 2410 do_UnsafePrefetch(x, false); 2411 } 2412 2413 2414 void LIRGenerator::do_UnsafePrefetchWrite(UnsafePrefetchWrite* x) { 2415 do_UnsafePrefetch(x, true); 2416 } 2417 2418 2419 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) { 2420 int lng = x->length(); 2421 2422 for (int i = 0; i < lng; i++) { 2423 SwitchRange* one_range = x->at(i); 2424 int low_key = one_range->low_key(); 2425 int high_key = one_range->high_key(); 2426 BlockBegin* dest = one_range->sux(); 2427 if (low_key == high_key) { 2428 __ cmp(lir_cond_equal, value, low_key); 2429 __ branch(lir_cond_equal, T_INT, dest); 2430 } else if (high_key - low_key == 1) { 2431 __ cmp(lir_cond_equal, value, low_key); 2432 __ branch(lir_cond_equal, T_INT, dest); 2433 __ cmp(lir_cond_equal, value, high_key); 2434 __ branch(lir_cond_equal, T_INT, dest); 2435 } else { 2436 LabelObj* L = new LabelObj(); 2437 __ cmp(lir_cond_less, value, low_key); 2438 __ branch(lir_cond_less, T_INT, L->label()); 2439 __ cmp(lir_cond_lessEqual, value, high_key); 2440 __ branch(lir_cond_lessEqual, T_INT, dest); 2441 __ branch_destination(L->label()); 2442 } 2443 } 2444 __ jump(default_sux); 2445 } 2446 2447 2448 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) { 2449 SwitchRangeList* res = new SwitchRangeList(); 2450 int len = x->length(); 2451 if (len > 0) { 2452 BlockBegin* sux = x->sux_at(0); 2453 int key = x->lo_key(); 2454 BlockBegin* default_sux = x->default_sux(); 2455 SwitchRange* range = new SwitchRange(key, sux); 2456 for (int i = 0; i < len; i++, key++) { 2457 BlockBegin* new_sux = x->sux_at(i); 2458 if (sux == new_sux) { 2459 // still in same range 2460 range->set_high_key(key); 2461 } else { 2462 // skip tests which explicitly dispatch to the default 2463 if (sux != default_sux) { 2464 res->append(range); 2465 } 2466 range = new SwitchRange(key, new_sux); 2467 } 2468 sux = new_sux; 2469 } 2470 if (res->length() == 0 || res->last() != range) res->append(range); 2471 } 2472 return res; 2473 } 2474 2475 2476 // we expect the keys to be sorted by increasing value 2477 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) { 2478 SwitchRangeList* res = new SwitchRangeList(); 2479 int len = x->length(); 2480 if (len > 0) { 2481 BlockBegin* default_sux = x->default_sux(); 2482 int key = x->key_at(0); 2483 BlockBegin* sux = x->sux_at(0); 2484 SwitchRange* range = new SwitchRange(key, sux); 2485 for (int i = 1; i < len; i++) { 2486 int new_key = x->key_at(i); 2487 BlockBegin* new_sux = x->sux_at(i); 2488 if (key+1 == new_key && sux == new_sux) { 2489 // still in same range 2490 range->set_high_key(new_key); 2491 } else { 2492 // skip tests which explicitly dispatch to the default 2493 if (range->sux() != default_sux) { 2494 res->append(range); 2495 } 2496 range = new SwitchRange(new_key, new_sux); 2497 } 2498 key = new_key; 2499 sux = new_sux; 2500 } 2501 if (res->length() == 0 || res->last() != range) res->append(range); 2502 } 2503 return res; 2504 } 2505 2506 2507 void LIRGenerator::do_TableSwitch(TableSwitch* x) { 2508 LIRItem tag(x->tag(), this); 2509 tag.load_item(); 2510 set_no_result(x); 2511 2512 if (x->is_safepoint()) { 2513 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before())); 2514 } 2515 2516 // move values into phi locations 2517 move_to_phi(x->state()); 2518 2519 int lo_key = x->lo_key(); 2520 int hi_key = x->hi_key(); 2521 int len = x->length(); 2522 LIR_Opr value = tag.result(); 2523 if (UseTableRanges) { 2524 do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux()); 2525 } else { 2526 for (int i = 0; i < len; i++) { 2527 __ cmp(lir_cond_equal, value, i + lo_key); 2528 __ branch(lir_cond_equal, T_INT, x->sux_at(i)); 2529 } 2530 __ jump(x->default_sux()); 2531 } 2532 } 2533 2534 2535 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) { 2536 LIRItem tag(x->tag(), this); 2537 tag.load_item(); 2538 set_no_result(x); 2539 2540 if (x->is_safepoint()) { 2541 __ safepoint(safepoint_poll_register(), state_for(x, x->state_before())); 2542 } 2543 2544 // move values into phi locations 2545 move_to_phi(x->state()); 2546 2547 LIR_Opr value = tag.result(); 2548 if (UseTableRanges) { 2549 do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux()); 2550 } else { 2551 int len = x->length(); 2552 for (int i = 0; i < len; i++) { 2553 __ cmp(lir_cond_equal, value, x->key_at(i)); 2554 __ branch(lir_cond_equal, T_INT, x->sux_at(i)); 2555 } 2556 __ jump(x->default_sux()); 2557 } 2558 } 2559 2560 2561 void LIRGenerator::do_Goto(Goto* x) { 2562 set_no_result(x); 2563 2564 if (block()->next()->as_OsrEntry()) { 2565 // need to free up storage used for OSR entry point 2566 LIR_Opr osrBuffer = block()->next()->operand(); 2567 BasicTypeList signature; 2568 signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer 2569 CallingConvention* cc = frame_map()->c_calling_convention(&signature); 2570 __ move(osrBuffer, cc->args()->at(0)); 2571 __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end), 2572 getThreadTemp(), LIR_OprFact::illegalOpr, cc->args()); 2573 } 2574 2575 if (x->is_safepoint()) { 2576 ValueStack* state = x->state_before() ? x->state_before() : x->state(); 2577 2578 // increment backedge counter if needed 2579 CodeEmitInfo* info = state_for(x, state); 2580 increment_backedge_counter(info, x->profiled_bci()); 2581 CodeEmitInfo* safepoint_info = state_for(x, state); 2582 __ safepoint(safepoint_poll_register(), safepoint_info); 2583 } 2584 2585 // Gotos can be folded Ifs, handle this case. 2586 if (x->should_profile()) { 2587 ciMethod* method = x->profiled_method(); 2588 assert(method != NULL, "method should be set if branch is profiled"); 2589 ciMethodData* md = method->method_data_or_null(); 2590 assert(md != NULL, "Sanity"); 2591 ciProfileData* data = md->bci_to_data(x->profiled_bci()); 2592 assert(data != NULL, "must have profiling data"); 2593 int offset; 2594 if (x->direction() == Goto::taken) { 2595 assert(data->is_BranchData(), "need BranchData for two-way branches"); 2596 offset = md->byte_offset_of_slot(data, BranchData::taken_offset()); 2597 } else if (x->direction() == Goto::not_taken) { 2598 assert(data->is_BranchData(), "need BranchData for two-way branches"); 2599 offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset()); 2600 } else { 2601 assert(data->is_JumpData(), "need JumpData for branches"); 2602 offset = md->byte_offset_of_slot(data, JumpData::taken_offset()); 2603 } 2604 LIR_Opr md_reg = new_register(T_METADATA); 2605 __ metadata2reg(md->constant_encoding(), md_reg); 2606 2607 increment_counter(new LIR_Address(md_reg, offset, 2608 NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment); 2609 } 2610 2611 // emit phi-instruction move after safepoint since this simplifies 2612 // describing the state as the safepoint. 2613 move_to_phi(x->state()); 2614 2615 __ jump(x->default_sux()); 2616 } 2617 2618 /** 2619 * Emit profiling code if needed for arguments, parameters, return value types 2620 * 2621 * @param md MDO the code will update at runtime 2622 * @param md_base_offset common offset in the MDO for this profile and subsequent ones 2623 * @param md_offset offset in the MDO (on top of md_base_offset) for this profile 2624 * @param profiled_k current profile 2625 * @param obj IR node for the object to be profiled 2626 * @param mdp register to hold the pointer inside the MDO (md + md_base_offset). 2627 * Set once we find an update to make and use for next ones. 2628 * @param not_null true if we know obj cannot be null 2629 * @param signature_at_call_k signature at call for obj 2630 * @param callee_signature_k signature of callee for obj 2631 * at call and callee signatures differ at method handle call 2632 * @return the only klass we know will ever be seen at this profile point 2633 */ 2634 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k, 2635 Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k, 2636 ciKlass* callee_signature_k) { 2637 ciKlass* result = NULL; 2638 bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k); 2639 bool do_update = !TypeEntries::is_type_unknown(profiled_k); 2640 // known not to be null or null bit already set and already set to 2641 // unknown: nothing we can do to improve profiling 2642 if (!do_null && !do_update) { 2643 return result; 2644 } 2645 2646 ciKlass* exact_klass = NULL; 2647 Compilation* comp = Compilation::current(); 2648 if (do_update) { 2649 // try to find exact type, using CHA if possible, so that loading 2650 // the klass from the object can be avoided 2651 ciType* type = obj->exact_type(); 2652 if (type == NULL) { 2653 type = obj->declared_type(); 2654 type = comp->cha_exact_type(type); 2655 } 2656 assert(type == NULL || type->is_klass(), "type should be class"); 2657 exact_klass = (type != NULL && type->is_loaded()) ? (ciKlass*)type : NULL; 2658 2659 do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass; 2660 } 2661 2662 if (!do_null && !do_update) { 2663 return result; 2664 } 2665 2666 ciKlass* exact_signature_k = NULL; 2667 if (do_update) { 2668 // Is the type from the signature exact (the only one possible)? 2669 exact_signature_k = signature_at_call_k->exact_klass(); 2670 if (exact_signature_k == NULL) { 2671 exact_signature_k = comp->cha_exact_type(signature_at_call_k); 2672 } else { 2673 result = exact_signature_k; 2674 // Known statically. No need to emit any code: prevent 2675 // LIR_Assembler::emit_profile_type() from emitting useless code 2676 profiled_k = ciTypeEntries::with_status(result, profiled_k); 2677 } 2678 // exact_klass and exact_signature_k can be both non NULL but 2679 // different if exact_klass is loaded after the ciObject for 2680 // exact_signature_k is created. 2681 if (exact_klass == NULL && exact_signature_k != NULL && exact_klass != exact_signature_k) { 2682 // sometimes the type of the signature is better than the best type 2683 // the compiler has 2684 exact_klass = exact_signature_k; 2685 } 2686 if (callee_signature_k != NULL && 2687 callee_signature_k != signature_at_call_k) { 2688 ciKlass* improved_klass = callee_signature_k->exact_klass(); 2689 if (improved_klass == NULL) { 2690 improved_klass = comp->cha_exact_type(callee_signature_k); 2691 } 2692 if (exact_klass == NULL && improved_klass != NULL && exact_klass != improved_klass) { 2693 exact_klass = exact_signature_k; 2694 } 2695 } 2696 do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass; 2697 } 2698 2699 if (!do_null && !do_update) { 2700 return result; 2701 } 2702 2703 if (mdp == LIR_OprFact::illegalOpr) { 2704 mdp = new_register(T_METADATA); 2705 __ metadata2reg(md->constant_encoding(), mdp); 2706 if (md_base_offset != 0) { 2707 LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS); 2708 mdp = new_pointer_register(); 2709 __ leal(LIR_OprFact::address(base_type_address), mdp); 2710 } 2711 } 2712 LIRItem value(obj, this); 2713 value.load_item(); 2714 __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA), 2715 value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != NULL); 2716 return result; 2717 } 2718 2719 // profile parameters on entry to the root of the compilation 2720 void LIRGenerator::profile_parameters(Base* x) { 2721 if (compilation()->profile_parameters()) { 2722 CallingConvention* args = compilation()->frame_map()->incoming_arguments(); 2723 ciMethodData* md = scope()->method()->method_data_or_null(); 2724 assert(md != NULL, "Sanity"); 2725 2726 if (md->parameters_type_data() != NULL) { 2727 ciParametersTypeData* parameters_type_data = md->parameters_type_data(); 2728 ciTypeStackSlotEntries* parameters = parameters_type_data->parameters(); 2729 LIR_Opr mdp = LIR_OprFact::illegalOpr; 2730 for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) { 2731 LIR_Opr src = args->at(i); 2732 assert(!src->is_illegal(), "check"); 2733 BasicType t = src->type(); 2734 if (t == T_OBJECT || t == T_ARRAY) { 2735 intptr_t profiled_k = parameters->type(j); 2736 Local* local = x->state()->local_at(java_index)->as_Local(); 2737 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)), 2738 in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)), 2739 profiled_k, local, mdp, false, local->declared_type()->as_klass(), NULL); 2740 // If the profile is known statically set it once for all and do not emit any code 2741 if (exact != NULL) { 2742 md->set_parameter_type(j, exact); 2743 } 2744 j++; 2745 } 2746 java_index += type2size[t]; 2747 } 2748 } 2749 } 2750 } 2751 2752 void LIRGenerator::do_Base(Base* x) { 2753 __ std_entry(LIR_OprFact::illegalOpr); 2754 // Emit moves from physical registers / stack slots to virtual registers 2755 CallingConvention* args = compilation()->frame_map()->incoming_arguments(); 2756 IRScope* irScope = compilation()->hir()->top_scope(); 2757 int java_index = 0; 2758 for (int i = 0; i < args->length(); i++) { 2759 LIR_Opr src = args->at(i); 2760 assert(!src->is_illegal(), "check"); 2761 BasicType t = src->type(); 2762 2763 // Types which are smaller than int are passed as int, so 2764 // correct the type which passed. 2765 switch (t) { 2766 case T_BYTE: 2767 case T_BOOLEAN: 2768 case T_SHORT: 2769 case T_CHAR: 2770 t = T_INT; 2771 break; 2772 } 2773 2774 LIR_Opr dest = new_register(t); 2775 __ move(src, dest); 2776 2777 // Assign new location to Local instruction for this local 2778 Local* local = x->state()->local_at(java_index)->as_Local(); 2779 assert(local != NULL, "Locals for incoming arguments must have been created"); 2780 #ifndef __SOFTFP__ 2781 // The java calling convention passes double as long and float as int. 2782 assert(as_ValueType(t)->tag() == local->type()->tag(), "check"); 2783 #endif // __SOFTFP__ 2784 local->set_operand(dest); 2785 _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL); 2786 java_index += type2size[t]; 2787 } 2788 2789 if (compilation()->env()->dtrace_method_probes()) { 2790 BasicTypeList signature; 2791 signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread 2792 signature.append(T_METADATA); // Method* 2793 LIR_OprList* args = new LIR_OprList(); 2794 args->append(getThreadPointer()); 2795 LIR_Opr meth = new_register(T_METADATA); 2796 __ metadata2reg(method()->constant_encoding(), meth); 2797 args->append(meth); 2798 call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL); 2799 } 2800 2801 if (method()->is_synchronized()) { 2802 LIR_Opr obj; 2803 if (method()->is_static()) { 2804 obj = new_register(T_OBJECT); 2805 __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj); 2806 } else { 2807 Local* receiver = x->state()->local_at(0)->as_Local(); 2808 assert(receiver != NULL, "must already exist"); 2809 obj = receiver->operand(); 2810 } 2811 assert(obj->is_valid(), "must be valid"); 2812 2813 if (method()->is_synchronized() && GenerateSynchronizationCode) { 2814 LIR_Opr lock = new_register(T_INT); 2815 __ load_stack_address_monitor(0, lock); 2816 2817 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, x->check_flag(Instruction::DeoptimizeOnException)); 2818 CodeStub* slow_path = new MonitorEnterStub(obj, lock, info); 2819 2820 // receiver is guaranteed non-NULL so don't need CodeEmitInfo 2821 __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL); 2822 } 2823 } 2824 if (compilation()->age_code()) { 2825 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, 0), NULL, false); 2826 decrement_age(info); 2827 } 2828 // increment invocation counters if needed 2829 if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting. 2830 profile_parameters(x); 2831 CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, false); 2832 increment_invocation_counter(info); 2833 } 2834 2835 // all blocks with a successor must end with an unconditional jump 2836 // to the successor even if they are consecutive 2837 __ jump(x->default_sux()); 2838 } 2839 2840 2841 void LIRGenerator::do_OsrEntry(OsrEntry* x) { 2842 // construct our frame and model the production of incoming pointer 2843 // to the OSR buffer. 2844 __ osr_entry(LIR_Assembler::osrBufferPointer()); 2845 LIR_Opr result = rlock_result(x); 2846 __ move(LIR_Assembler::osrBufferPointer(), result); 2847 } 2848 2849 2850 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) { 2851 assert(args->length() == arg_list->length(), 2852 err_msg_res("args=%d, arg_list=%d", args->length(), arg_list->length())); 2853 for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) { 2854 LIRItem* param = args->at(i); 2855 LIR_Opr loc = arg_list->at(i); 2856 if (loc->is_register()) { 2857 param->load_item_force(loc); 2858 } else { 2859 LIR_Address* addr = loc->as_address_ptr(); 2860 param->load_for_store(addr->type()); 2861 if (addr->type() == T_OBJECT) { 2862 __ move_wide(param->result(), addr); 2863 } else 2864 if (addr->type() == T_LONG || addr->type() == T_DOUBLE) { 2865 __ unaligned_move(param->result(), addr); 2866 } else { 2867 __ move(param->result(), addr); 2868 } 2869 } 2870 } 2871 2872 if (x->has_receiver()) { 2873 LIRItem* receiver = args->at(0); 2874 LIR_Opr loc = arg_list->at(0); 2875 if (loc->is_register()) { 2876 receiver->load_item_force(loc); 2877 } else { 2878 assert(loc->is_address(), "just checking"); 2879 receiver->load_for_store(T_OBJECT); 2880 __ move_wide(receiver->result(), loc->as_address_ptr()); 2881 } 2882 } 2883 } 2884 2885 2886 // Visits all arguments, returns appropriate items without loading them 2887 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) { 2888 LIRItemList* argument_items = new LIRItemList(); 2889 if (x->has_receiver()) { 2890 LIRItem* receiver = new LIRItem(x->receiver(), this); 2891 argument_items->append(receiver); 2892 } 2893 for (int i = 0; i < x->number_of_arguments(); i++) { 2894 LIRItem* param = new LIRItem(x->argument_at(i), this); 2895 argument_items->append(param); 2896 } 2897 return argument_items; 2898 } 2899 2900 2901 // The invoke with receiver has following phases: 2902 // a) traverse and load/lock receiver; 2903 // b) traverse all arguments -> item-array (invoke_visit_argument) 2904 // c) push receiver on stack 2905 // d) load each of the items and push on stack 2906 // e) unlock receiver 2907 // f) move receiver into receiver-register %o0 2908 // g) lock result registers and emit call operation 2909 // 2910 // Before issuing a call, we must spill-save all values on stack 2911 // that are in caller-save register. "spill-save" moves thos registers 2912 // either in a free callee-save register or spills them if no free 2913 // callee save register is available. 2914 // 2915 // The problem is where to invoke spill-save. 2916 // - if invoked between e) and f), we may lock callee save 2917 // register in "spill-save" that destroys the receiver register 2918 // before f) is executed 2919 // - if we rearange the f) to be earlier, by loading %o0, it 2920 // may destroy a value on the stack that is currently in %o0 2921 // and is waiting to be spilled 2922 // - if we keep the receiver locked while doing spill-save, 2923 // we cannot spill it as it is spill-locked 2924 // 2925 void LIRGenerator::do_Invoke(Invoke* x) { 2926 CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true); 2927 2928 LIR_OprList* arg_list = cc->args(); 2929 LIRItemList* args = invoke_visit_arguments(x); 2930 LIR_Opr receiver = LIR_OprFact::illegalOpr; 2931 2932 // setup result register 2933 LIR_Opr result_register = LIR_OprFact::illegalOpr; 2934 if (x->type() != voidType) { 2935 result_register = result_register_for(x->type()); 2936 } 2937 2938 CodeEmitInfo* info = state_for(x, x->state()); 2939 2940 invoke_load_arguments(x, args, arg_list); 2941 2942 if (x->has_receiver()) { 2943 args->at(0)->load_item_force(LIR_Assembler::receiverOpr()); 2944 receiver = args->at(0)->result(); 2945 } 2946 2947 // emit invoke code 2948 bool optimized = x->target_is_loaded() && x->target_is_final(); 2949 assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match"); 2950 2951 // JSR 292 2952 // Preserve the SP over MethodHandle call sites. 2953 ciMethod* target = x->target(); 2954 bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant? 2955 target->is_method_handle_intrinsic() || 2956 target->is_compiled_lambda_form()); 2957 if (is_method_handle_invoke) { 2958 info->set_is_method_handle_invoke(true); 2959 __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr()); 2960 } 2961 2962 switch (x->code()) { 2963 case Bytecodes::_invokestatic: 2964 __ call_static(target, result_register, 2965 SharedRuntime::get_resolve_static_call_stub(), 2966 arg_list, info); 2967 break; 2968 case Bytecodes::_invokespecial: 2969 case Bytecodes::_invokevirtual: 2970 case Bytecodes::_invokeinterface: 2971 // for final target we still produce an inline cache, in order 2972 // to be able to call mixed mode 2973 if (x->code() == Bytecodes::_invokespecial || optimized) { 2974 __ call_opt_virtual(target, receiver, result_register, 2975 SharedRuntime::get_resolve_opt_virtual_call_stub(), 2976 arg_list, info); 2977 } else if (x->vtable_index() < 0) { 2978 __ call_icvirtual(target, receiver, result_register, 2979 SharedRuntime::get_resolve_virtual_call_stub(), 2980 arg_list, info); 2981 } else { 2982 int entry_offset = InstanceKlass::vtable_start_offset() + x->vtable_index() * vtableEntry::size(); 2983 int vtable_offset = entry_offset * wordSize + vtableEntry::method_offset_in_bytes(); 2984 __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info); 2985 } 2986 break; 2987 case Bytecodes::_invokedynamic: { 2988 __ call_dynamic(target, receiver, result_register, 2989 SharedRuntime::get_resolve_static_call_stub(), 2990 arg_list, info); 2991 break; 2992 } 2993 default: 2994 fatal(err_msg("unexpected bytecode: %s", Bytecodes::name(x->code()))); 2995 break; 2996 } 2997 2998 // JSR 292 2999 // Restore the SP after MethodHandle call sites. 3000 if (is_method_handle_invoke) { 3001 __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer()); 3002 } 3003 3004 if (x->type()->is_float() || x->type()->is_double()) { 3005 // Force rounding of results from non-strictfp when in strictfp 3006 // scope (or when we don't know the strictness of the callee, to 3007 // be safe.) 3008 if (method()->is_strict()) { 3009 if (!x->target_is_loaded() || !x->target_is_strictfp()) { 3010 result_register = round_item(result_register); 3011 } 3012 } 3013 } 3014 3015 if (result_register->is_valid()) { 3016 LIR_Opr result = rlock_result(x); 3017 __ move(result_register, result); 3018 } 3019 } 3020 3021 3022 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) { 3023 assert(x->number_of_arguments() == 1, "wrong type"); 3024 LIRItem value (x->argument_at(0), this); 3025 LIR_Opr reg = rlock_result(x); 3026 value.load_item(); 3027 LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type())); 3028 __ move(tmp, reg); 3029 } 3030 3031 3032 3033 // Code for : x->x() {x->cond()} x->y() ? x->tval() : x->fval() 3034 void LIRGenerator::do_IfOp(IfOp* x) { 3035 #ifdef ASSERT 3036 { 3037 ValueTag xtag = x->x()->type()->tag(); 3038 ValueTag ttag = x->tval()->type()->tag(); 3039 assert(xtag == intTag || xtag == objectTag, "cannot handle others"); 3040 assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others"); 3041 assert(ttag == x->fval()->type()->tag(), "cannot handle others"); 3042 } 3043 #endif 3044 3045 LIRItem left(x->x(), this); 3046 LIRItem right(x->y(), this); 3047 left.load_item(); 3048 if (can_inline_as_constant(right.value())) { 3049 right.dont_load_item(); 3050 } else { 3051 right.load_item(); 3052 } 3053 3054 LIRItem t_val(x->tval(), this); 3055 LIRItem f_val(x->fval(), this); 3056 t_val.dont_load_item(); 3057 f_val.dont_load_item(); 3058 LIR_Opr reg = rlock_result(x); 3059 3060 __ cmp(lir_cond(x->cond()), left.result(), right.result()); 3061 __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type())); 3062 } 3063 3064 void LIRGenerator::do_RuntimeCall(address routine, int expected_arguments, Intrinsic* x) { 3065 assert(x->number_of_arguments() == expected_arguments, "wrong type"); 3066 LIR_Opr reg = result_register_for(x->type()); 3067 __ call_runtime_leaf(routine, getThreadTemp(), 3068 reg, new LIR_OprList()); 3069 LIR_Opr result = rlock_result(x); 3070 __ move(reg, result); 3071 } 3072 3073 #ifdef TRACE_HAVE_INTRINSICS 3074 void LIRGenerator::do_ThreadIDIntrinsic(Intrinsic* x) { 3075 LIR_Opr thread = getThreadPointer(); 3076 LIR_Opr osthread = new_pointer_register(); 3077 __ move(new LIR_Address(thread, in_bytes(JavaThread::osthread_offset()), osthread->type()), osthread); 3078 size_t thread_id_size = OSThread::thread_id_size(); 3079 if (thread_id_size == (size_t) BytesPerLong) { 3080 LIR_Opr id = new_register(T_LONG); 3081 __ move(new LIR_Address(osthread, in_bytes(OSThread::thread_id_offset()), T_LONG), id); 3082 __ convert(Bytecodes::_l2i, id, rlock_result(x)); 3083 } else if (thread_id_size == (size_t) BytesPerInt) { 3084 __ move(new LIR_Address(osthread, in_bytes(OSThread::thread_id_offset()), T_INT), rlock_result(x)); 3085 } else { 3086 ShouldNotReachHere(); 3087 } 3088 } 3089 3090 void LIRGenerator::do_ClassIDIntrinsic(Intrinsic* x) { 3091 CodeEmitInfo* info = state_for(x); 3092 CodeEmitInfo* info2 = new CodeEmitInfo(info); // Clone for the second null check 3093 BasicType klass_pointer_type = NOT_LP64(T_INT) LP64_ONLY(T_LONG); 3094 assert(info != NULL, "must have info"); 3095 LIRItem arg(x->argument_at(1), this); 3096 arg.load_item(); 3097 LIR_Opr klass = new_pointer_register(); 3098 __ move(new LIR_Address(arg.result(), java_lang_Class::klass_offset_in_bytes(), klass_pointer_type), klass, info); 3099 LIR_Opr id = new_register(T_LONG); 3100 ByteSize offset = TRACE_ID_OFFSET; 3101 LIR_Address* trace_id_addr = new LIR_Address(klass, in_bytes(offset), T_LONG); 3102 __ move(trace_id_addr, id); 3103 __ logical_or(id, LIR_OprFact::longConst(0x01l), id); 3104 __ store(id, trace_id_addr); 3105 __ logical_and(id, LIR_OprFact::longConst(~0x3l), id); 3106 __ move(id, rlock_result(x)); 3107 } 3108 #endif 3109 3110 void LIRGenerator::do_Intrinsic(Intrinsic* x) { 3111 switch (x->id()) { 3112 case vmIntrinsics::_intBitsToFloat : 3113 case vmIntrinsics::_doubleToRawLongBits : 3114 case vmIntrinsics::_longBitsToDouble : 3115 case vmIntrinsics::_floatToRawIntBits : { 3116 do_FPIntrinsics(x); 3117 break; 3118 } 3119 3120 #ifdef TRACE_HAVE_INTRINSICS 3121 case vmIntrinsics::_threadID: do_ThreadIDIntrinsic(x); break; 3122 case vmIntrinsics::_classID: do_ClassIDIntrinsic(x); break; 3123 case vmIntrinsics::_counterTime: 3124 do_RuntimeCall(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), 0, x); 3125 break; 3126 #endif 3127 3128 case vmIntrinsics::_currentTimeMillis: 3129 do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), 0, x); 3130 break; 3131 3132 case vmIntrinsics::_nanoTime: 3133 do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), 0, x); 3134 break; 3135 3136 case vmIntrinsics::_Object_init: do_RegisterFinalizer(x); break; 3137 case vmIntrinsics::_isInstance: do_isInstance(x); break; 3138 case vmIntrinsics::_getClass: do_getClass(x); break; 3139 case vmIntrinsics::_currentThread: do_currentThread(x); break; 3140 3141 case vmIntrinsics::_dlog: // fall through 3142 case vmIntrinsics::_dlog10: // fall through 3143 case vmIntrinsics::_dabs: // fall through 3144 case vmIntrinsics::_dsqrt: // fall through 3145 case vmIntrinsics::_dtan: // fall through 3146 case vmIntrinsics::_dsin : // fall through 3147 case vmIntrinsics::_dcos : // fall through 3148 case vmIntrinsics::_dexp : // fall through 3149 case vmIntrinsics::_dpow : do_MathIntrinsic(x); break; 3150 case vmIntrinsics::_arraycopy: do_ArrayCopy(x); break; 3151 3152 // java.nio.Buffer.checkIndex 3153 case vmIntrinsics::_checkIndex: do_NIOCheckIndex(x); break; 3154 3155 case vmIntrinsics::_compareAndSwapObject: 3156 do_CompareAndSwap(x, objectType); 3157 break; 3158 case vmIntrinsics::_compareAndSwapInt: 3159 do_CompareAndSwap(x, intType); 3160 break; 3161 case vmIntrinsics::_compareAndSwapLong: 3162 do_CompareAndSwap(x, longType); 3163 break; 3164 3165 case vmIntrinsics::_loadFence : 3166 if (os::is_MP()) __ membar_acquire(); 3167 break; 3168 case vmIntrinsics::_storeFence: 3169 if (os::is_MP()) __ membar_release(); 3170 break; 3171 case vmIntrinsics::_fullFence : 3172 if (os::is_MP()) __ membar(); 3173 break; 3174 3175 case vmIntrinsics::_Reference_get: 3176 do_Reference_get(x); 3177 break; 3178 3179 case vmIntrinsics::_updateCRC32: 3180 case vmIntrinsics::_updateBytesCRC32: 3181 case vmIntrinsics::_updateByteBufferCRC32: 3182 do_update_CRC32(x); 3183 break; 3184 3185 default: ShouldNotReachHere(); break; 3186 } 3187 } 3188 3189 void LIRGenerator::profile_arguments(ProfileCall* x) { 3190 if (compilation()->profile_arguments()) { 3191 int bci = x->bci_of_invoke(); 3192 ciMethodData* md = x->method()->method_data_or_null(); 3193 ciProfileData* data = md->bci_to_data(bci); 3194 if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) || 3195 (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) { 3196 ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset(); 3197 int base_offset = md->byte_offset_of_slot(data, extra); 3198 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3199 ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args(); 3200 3201 Bytecodes::Code bc = x->method()->java_code_at_bci(bci); 3202 int start = 0; 3203 int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments(); 3204 if (x->inlined() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) { 3205 // first argument is not profiled at call (method handle invoke) 3206 assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected"); 3207 start = 1; 3208 } 3209 ciSignature* callee_signature = x->callee()->signature(); 3210 // method handle call to virtual method 3211 bool has_receiver = x->inlined() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc); 3212 ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : NULL); 3213 3214 bool ignored_will_link; 3215 ciSignature* signature_at_call = NULL; 3216 x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call); 3217 ciSignatureStream signature_at_call_stream(signature_at_call); 3218 3219 // if called through method handle invoke, some arguments may have been popped 3220 for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) { 3221 int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset()); 3222 ciKlass* exact = profile_type(md, base_offset, off, 3223 args->type(i), x->profiled_arg_at(i+start), mdp, 3224 !x->arg_needs_null_check(i+start), 3225 signature_at_call_stream.next_klass(), callee_signature_stream.next_klass()); 3226 if (exact != NULL) { 3227 md->set_argument_type(bci, i, exact); 3228 } 3229 } 3230 } else { 3231 #ifdef ASSERT 3232 Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke()); 3233 int n = x->nb_profiled_args(); 3234 assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() || 3235 (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))), 3236 "only at JSR292 bytecodes"); 3237 #endif 3238 } 3239 } 3240 } 3241 3242 // profile parameters on entry to an inlined method 3243 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) { 3244 if (compilation()->profile_parameters() && x->inlined()) { 3245 ciMethodData* md = x->callee()->method_data_or_null(); 3246 if (md != NULL) { 3247 ciParametersTypeData* parameters_type_data = md->parameters_type_data(); 3248 if (parameters_type_data != NULL) { 3249 ciTypeStackSlotEntries* parameters = parameters_type_data->parameters(); 3250 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3251 bool has_receiver = !x->callee()->is_static(); 3252 ciSignature* sig = x->callee()->signature(); 3253 ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : NULL); 3254 int i = 0; // to iterate on the Instructions 3255 Value arg = x->recv(); 3256 bool not_null = false; 3257 int bci = x->bci_of_invoke(); 3258 Bytecodes::Code bc = x->method()->java_code_at_bci(bci); 3259 // The first parameter is the receiver so that's what we start 3260 // with if it exists. One exception is method handle call to 3261 // virtual method: the receiver is in the args list 3262 if (arg == NULL || !Bytecodes::has_receiver(bc)) { 3263 i = 1; 3264 arg = x->profiled_arg_at(0); 3265 not_null = !x->arg_needs_null_check(0); 3266 } 3267 int k = 0; // to iterate on the profile data 3268 for (;;) { 3269 intptr_t profiled_k = parameters->type(k); 3270 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)), 3271 in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)), 3272 profiled_k, arg, mdp, not_null, sig_stream.next_klass(), NULL); 3273 // If the profile is known statically set it once for all and do not emit any code 3274 if (exact != NULL) { 3275 md->set_parameter_type(k, exact); 3276 } 3277 k++; 3278 if (k >= parameters_type_data->number_of_parameters()) { 3279 #ifdef ASSERT 3280 int extra = 0; 3281 if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 && 3282 x->nb_profiled_args() >= TypeProfileParmsLimit && 3283 x->recv() != NULL && Bytecodes::has_receiver(bc)) { 3284 extra += 1; 3285 } 3286 assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?"); 3287 #endif 3288 break; 3289 } 3290 arg = x->profiled_arg_at(i); 3291 not_null = !x->arg_needs_null_check(i); 3292 i++; 3293 } 3294 } 3295 } 3296 } 3297 } 3298 3299 void LIRGenerator::do_ProfileCall(ProfileCall* x) { 3300 // Need recv in a temporary register so it interferes with the other temporaries 3301 LIR_Opr recv = LIR_OprFact::illegalOpr; 3302 LIR_Opr mdo = new_register(T_OBJECT); 3303 // tmp is used to hold the counters on SPARC 3304 LIR_Opr tmp = new_pointer_register(); 3305 3306 if (x->nb_profiled_args() > 0) { 3307 profile_arguments(x); 3308 } 3309 3310 // profile parameters on inlined method entry including receiver 3311 if (x->recv() != NULL || x->nb_profiled_args() > 0) { 3312 profile_parameters_at_call(x); 3313 } 3314 3315 if (x->recv() != NULL) { 3316 LIRItem value(x->recv(), this); 3317 value.load_item(); 3318 recv = new_register(T_OBJECT); 3319 __ move(value.result(), recv); 3320 } 3321 __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder()); 3322 } 3323 3324 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) { 3325 int bci = x->bci_of_invoke(); 3326 ciMethodData* md = x->method()->method_data_or_null(); 3327 ciProfileData* data = md->bci_to_data(bci); 3328 assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type"); 3329 ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret(); 3330 LIR_Opr mdp = LIR_OprFact::illegalOpr; 3331 3332 bool ignored_will_link; 3333 ciSignature* signature_at_call = NULL; 3334 x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call); 3335 3336 // The offset within the MDO of the entry to update may be too large 3337 // to be used in load/store instructions on some platforms. So have 3338 // profile_type() compute the address of the profile in a register. 3339 ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0, 3340 ret->type(), x->ret(), mdp, 3341 !x->needs_null_check(), 3342 signature_at_call->return_type()->as_klass(), 3343 x->callee()->signature()->return_type()->as_klass()); 3344 if (exact != NULL) { 3345 md->set_return_type(bci, exact); 3346 } 3347 } 3348 3349 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) { 3350 // We can safely ignore accessors here, since c2 will inline them anyway, 3351 // accessors are also always mature. 3352 if (!x->inlinee()->is_accessor()) { 3353 CodeEmitInfo* info = state_for(x, x->state(), true); 3354 // Notify the runtime very infrequently only to take care of counter overflows 3355 int freq_log = Tier23InlineeNotifyFreqLog; 3356 double scale; 3357 if (_method->has_option_value("CompileThresholdScaling", scale)) { 3358 freq_log = Arguments::scaled_freq_log(freq_log, scale); 3359 } 3360 increment_event_counter_impl(info, x->inlinee(), right_n_bits(freq_log), InvocationEntryBci, false, true); 3361 } 3362 } 3363 3364 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, int bci, bool backedge) { 3365 int freq_log; 3366 int level = compilation()->env()->comp_level(); 3367 if (level == CompLevel_limited_profile) { 3368 freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog); 3369 } else if (level == CompLevel_full_profile) { 3370 freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog); 3371 } else { 3372 ShouldNotReachHere(); 3373 } 3374 // Increment the appropriate invocation/backedge counter and notify the runtime. 3375 double scale; 3376 if (_method->has_option_value("CompileThresholdScaling", scale)) { 3377 freq_log = Arguments::scaled_freq_log(freq_log, scale); 3378 } 3379 increment_event_counter_impl(info, info->scope()->method(), right_n_bits(freq_log), bci, backedge, true); 3380 } 3381 3382 void LIRGenerator::decrement_age(CodeEmitInfo* info) { 3383 ciMethod* method = info->scope()->method(); 3384 MethodCounters* mc_adr = method->ensure_method_counters(); 3385 if (mc_adr != NULL) { 3386 LIR_Opr mc = new_pointer_register(); 3387 __ move(LIR_OprFact::intptrConst(mc_adr), mc); 3388 int offset = in_bytes(MethodCounters::nmethod_age_offset()); 3389 LIR_Address* counter = new LIR_Address(mc, offset, T_INT); 3390 LIR_Opr result = new_register(T_INT); 3391 __ load(counter, result); 3392 __ sub(result, LIR_OprFact::intConst(1), result); 3393 __ store(result, counter); 3394 // DeoptimizeStub will reexecute from the current state in code info. 3395 CodeStub* deopt = new DeoptimizeStub(info, Deoptimization::Reason_tenured, 3396 Deoptimization::Action_make_not_entrant); 3397 __ cmp(lir_cond_lessEqual, result, LIR_OprFact::intConst(0)); 3398 __ branch(lir_cond_lessEqual, T_INT, deopt); 3399 } 3400 } 3401 3402 3403 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info, 3404 ciMethod *method, int frequency, 3405 int bci, bool backedge, bool notify) { 3406 assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0"); 3407 int level = _compilation->env()->comp_level(); 3408 assert(level > CompLevel_simple, "Shouldn't be here"); 3409 3410 int offset = -1; 3411 LIR_Opr counter_holder; 3412 if (level == CompLevel_limited_profile) { 3413 MethodCounters* counters_adr = method->ensure_method_counters(); 3414 if (counters_adr == NULL) { 3415 bailout("method counters allocation failed"); 3416 return; 3417 } 3418 counter_holder = new_pointer_register(); 3419 __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder); 3420 offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() : 3421 MethodCounters::invocation_counter_offset()); 3422 } else if (level == CompLevel_full_profile) { 3423 counter_holder = new_register(T_METADATA); 3424 offset = in_bytes(backedge ? MethodData::backedge_counter_offset() : 3425 MethodData::invocation_counter_offset()); 3426 ciMethodData* md = method->method_data_or_null(); 3427 assert(md != NULL, "Sanity"); 3428 __ metadata2reg(md->constant_encoding(), counter_holder); 3429 } else { 3430 ShouldNotReachHere(); 3431 } 3432 LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT); 3433 LIR_Opr result = new_register(T_INT); 3434 __ load(counter, result); 3435 __ add(result, LIR_OprFact::intConst(InvocationCounter::count_increment), result); 3436 __ store(result, counter); 3437 if (notify) { 3438 LIR_Opr mask = load_immediate(frequency << InvocationCounter::count_shift, T_INT); 3439 LIR_Opr meth = new_register(T_METADATA); 3440 __ metadata2reg(method->constant_encoding(), meth); 3441 __ logical_and(result, mask, result); 3442 __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0)); 3443 // The bci for info can point to cmp for if's we want the if bci 3444 CodeStub* overflow = new CounterOverflowStub(info, bci, meth); 3445 __ branch(lir_cond_equal, T_INT, overflow); 3446 __ branch_destination(overflow->continuation()); 3447 } 3448 } 3449 3450 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) { 3451 LIR_OprList* args = new LIR_OprList(x->number_of_arguments()); 3452 BasicTypeList* signature = new BasicTypeList(x->number_of_arguments()); 3453 3454 if (x->pass_thread()) { 3455 signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread 3456 args->append(getThreadPointer()); 3457 } 3458 3459 for (int i = 0; i < x->number_of_arguments(); i++) { 3460 Value a = x->argument_at(i); 3461 LIRItem* item = new LIRItem(a, this); 3462 item->load_item(); 3463 args->append(item->result()); 3464 signature->append(as_BasicType(a->type())); 3465 } 3466 3467 LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL); 3468 if (x->type() == voidType) { 3469 set_no_result(x); 3470 } else { 3471 __ move(result, rlock_result(x)); 3472 } 3473 } 3474 3475 #ifdef ASSERT 3476 void LIRGenerator::do_Assert(Assert *x) { 3477 ValueTag tag = x->x()->type()->tag(); 3478 If::Condition cond = x->cond(); 3479 3480 LIRItem xitem(x->x(), this); 3481 LIRItem yitem(x->y(), this); 3482 LIRItem* xin = &xitem; 3483 LIRItem* yin = &yitem; 3484 3485 assert(tag == intTag, "Only integer assertions are valid!"); 3486 3487 xin->load_item(); 3488 yin->dont_load_item(); 3489 3490 set_no_result(x); 3491 3492 LIR_Opr left = xin->result(); 3493 LIR_Opr right = yin->result(); 3494 3495 __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true); 3496 } 3497 #endif 3498 3499 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) { 3500 3501 3502 Instruction *a = x->x(); 3503 Instruction *b = x->y(); 3504 if (!a || StressRangeCheckElimination) { 3505 assert(!b || StressRangeCheckElimination, "B must also be null"); 3506 3507 CodeEmitInfo *info = state_for(x, x->state()); 3508 CodeStub* stub = new PredicateFailedStub(info); 3509 3510 __ jump(stub); 3511 } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) { 3512 int a_int = a->type()->as_IntConstant()->value(); 3513 int b_int = b->type()->as_IntConstant()->value(); 3514 3515 bool ok = false; 3516 3517 switch(x->cond()) { 3518 case Instruction::eql: ok = (a_int == b_int); break; 3519 case Instruction::neq: ok = (a_int != b_int); break; 3520 case Instruction::lss: ok = (a_int < b_int); break; 3521 case Instruction::leq: ok = (a_int <= b_int); break; 3522 case Instruction::gtr: ok = (a_int > b_int); break; 3523 case Instruction::geq: ok = (a_int >= b_int); break; 3524 case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break; 3525 case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break; 3526 default: ShouldNotReachHere(); 3527 } 3528 3529 if (ok) { 3530 3531 CodeEmitInfo *info = state_for(x, x->state()); 3532 CodeStub* stub = new PredicateFailedStub(info); 3533 3534 __ jump(stub); 3535 } 3536 } else { 3537 3538 ValueTag tag = x->x()->type()->tag(); 3539 If::Condition cond = x->cond(); 3540 LIRItem xitem(x->x(), this); 3541 LIRItem yitem(x->y(), this); 3542 LIRItem* xin = &xitem; 3543 LIRItem* yin = &yitem; 3544 3545 assert(tag == intTag, "Only integer deoptimizations are valid!"); 3546 3547 xin->load_item(); 3548 yin->dont_load_item(); 3549 set_no_result(x); 3550 3551 LIR_Opr left = xin->result(); 3552 LIR_Opr right = yin->result(); 3553 3554 CodeEmitInfo *info = state_for(x, x->state()); 3555 CodeStub* stub = new PredicateFailedStub(info); 3556 3557 __ cmp(lir_cond(cond), left, right); 3558 __ branch(lir_cond(cond), right->type(), stub); 3559 } 3560 } 3561 3562 3563 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) { 3564 LIRItemList args(1); 3565 LIRItem value(arg1, this); 3566 args.append(&value); 3567 BasicTypeList signature; 3568 signature.append(as_BasicType(arg1->type())); 3569 3570 return call_runtime(&signature, &args, entry, result_type, info); 3571 } 3572 3573 3574 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) { 3575 LIRItemList args(2); 3576 LIRItem value1(arg1, this); 3577 LIRItem value2(arg2, this); 3578 args.append(&value1); 3579 args.append(&value2); 3580 BasicTypeList signature; 3581 signature.append(as_BasicType(arg1->type())); 3582 signature.append(as_BasicType(arg2->type())); 3583 3584 return call_runtime(&signature, &args, entry, result_type, info); 3585 } 3586 3587 3588 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args, 3589 address entry, ValueType* result_type, CodeEmitInfo* info) { 3590 // get a result register 3591 LIR_Opr phys_reg = LIR_OprFact::illegalOpr; 3592 LIR_Opr result = LIR_OprFact::illegalOpr; 3593 if (result_type->tag() != voidTag) { 3594 result = new_register(result_type); 3595 phys_reg = result_register_for(result_type); 3596 } 3597 3598 // move the arguments into the correct location 3599 CallingConvention* cc = frame_map()->c_calling_convention(signature); 3600 assert(cc->length() == args->length(), "argument mismatch"); 3601 for (int i = 0; i < args->length(); i++) { 3602 LIR_Opr arg = args->at(i); 3603 LIR_Opr loc = cc->at(i); 3604 if (loc->is_register()) { 3605 __ move(arg, loc); 3606 } else { 3607 LIR_Address* addr = loc->as_address_ptr(); 3608 // if (!can_store_as_constant(arg)) { 3609 // LIR_Opr tmp = new_register(arg->type()); 3610 // __ move(arg, tmp); 3611 // arg = tmp; 3612 // } 3613 if (addr->type() == T_LONG || addr->type() == T_DOUBLE) { 3614 __ unaligned_move(arg, addr); 3615 } else { 3616 __ move(arg, addr); 3617 } 3618 } 3619 } 3620 3621 if (info) { 3622 __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info); 3623 } else { 3624 __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args()); 3625 } 3626 if (result->is_valid()) { 3627 __ move(phys_reg, result); 3628 } 3629 return result; 3630 } 3631 3632 3633 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args, 3634 address entry, ValueType* result_type, CodeEmitInfo* info) { 3635 // get a result register 3636 LIR_Opr phys_reg = LIR_OprFact::illegalOpr; 3637 LIR_Opr result = LIR_OprFact::illegalOpr; 3638 if (result_type->tag() != voidTag) { 3639 result = new_register(result_type); 3640 phys_reg = result_register_for(result_type); 3641 } 3642 3643 // move the arguments into the correct location 3644 CallingConvention* cc = frame_map()->c_calling_convention(signature); 3645 3646 assert(cc->length() == args->length(), "argument mismatch"); 3647 for (int i = 0; i < args->length(); i++) { 3648 LIRItem* arg = args->at(i); 3649 LIR_Opr loc = cc->at(i); 3650 if (loc->is_register()) { 3651 arg->load_item_force(loc); 3652 } else { 3653 LIR_Address* addr = loc->as_address_ptr(); 3654 arg->load_for_store(addr->type()); 3655 if (addr->type() == T_LONG || addr->type() == T_DOUBLE) { 3656 __ unaligned_move(arg->result(), addr); 3657 } else { 3658 __ move(arg->result(), addr); 3659 } 3660 } 3661 } 3662 3663 if (info) { 3664 __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info); 3665 } else { 3666 __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args()); 3667 } 3668 if (result->is_valid()) { 3669 __ move(phys_reg, result); 3670 } 3671 return result; 3672 } 3673 3674 void LIRGenerator::do_MemBar(MemBar* x) { 3675 if (os::is_MP()) { 3676 LIR_Code code = x->code(); 3677 switch(code) { 3678 case lir_membar_acquire : __ membar_acquire(); break; 3679 case lir_membar_release : __ membar_release(); break; 3680 case lir_membar : __ membar(); break; 3681 case lir_membar_loadload : __ membar_loadload(); break; 3682 case lir_membar_storestore: __ membar_storestore(); break; 3683 case lir_membar_loadstore : __ membar_loadstore(); break; 3684 case lir_membar_storeload : __ membar_storeload(); break; 3685 default : ShouldNotReachHere(); break; 3686 } 3687 } 3688 } --- EOF ---