1 /* 2 * Copyright (c) 2003, 2014, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/macroAssembler.hpp" 27 #include "interpreter/interpreter.hpp" 28 #include "interpreter/interpreterRuntime.hpp" 29 #include "interpreter/interp_masm.hpp" 30 #include "interpreter/templateTable.hpp" 31 #include "memory/universe.inline.hpp" 32 #include "oops/methodData.hpp" 33 #include "oops/objArrayKlass.hpp" 34 #include "oops/oop.inline.hpp" 35 #include "prims/methodHandles.hpp" 36 #include "runtime/sharedRuntime.hpp" 37 #include "runtime/stubRoutines.hpp" 38 #include "runtime/synchronizer.hpp" 39 #include "utilities/macros.hpp" 40 41 #ifndef CC_INTERP 42 43 #define __ _masm-> 44 45 // Platform-dependent initialization 46 47 void TemplateTable::pd_initialize() { 48 // No amd64 specific initialization 49 } 50 51 // Address computation: local variables 52 53 static inline Address iaddress(int n) { 54 return Address(r14, Interpreter::local_offset_in_bytes(n)); 55 } 56 57 static inline Address laddress(int n) { 58 return iaddress(n + 1); 59 } 60 61 static inline Address faddress(int n) { 62 return iaddress(n); 63 } 64 65 static inline Address daddress(int n) { 66 return laddress(n); 67 } 68 69 static inline Address aaddress(int n) { 70 return iaddress(n); 71 } 72 73 static inline Address iaddress(Register r) { 74 return Address(r14, r, Address::times_8); 75 } 76 77 static inline Address laddress(Register r) { 78 return Address(r14, r, Address::times_8, Interpreter::local_offset_in_bytes(1)); 79 } 80 81 static inline Address faddress(Register r) { 82 return iaddress(r); 83 } 84 85 static inline Address daddress(Register r) { 86 return laddress(r); 87 } 88 89 static inline Address aaddress(Register r) { 90 return iaddress(r); 91 } 92 93 static inline Address at_rsp() { 94 return Address(rsp, 0); 95 } 96 97 // At top of Java expression stack which may be different than esp(). It 98 // isn't for category 1 objects. 99 static inline Address at_tos () { 100 return Address(rsp, Interpreter::expr_offset_in_bytes(0)); 101 } 102 103 static inline Address at_tos_p1() { 104 return Address(rsp, Interpreter::expr_offset_in_bytes(1)); 105 } 106 107 static inline Address at_tos_p2() { 108 return Address(rsp, Interpreter::expr_offset_in_bytes(2)); 109 } 110 111 // Condition conversion 112 static Assembler::Condition j_not(TemplateTable::Condition cc) { 113 switch (cc) { 114 case TemplateTable::equal : return Assembler::notEqual; 115 case TemplateTable::not_equal : return Assembler::equal; 116 case TemplateTable::less : return Assembler::greaterEqual; 117 case TemplateTable::less_equal : return Assembler::greater; 118 case TemplateTable::greater : return Assembler::lessEqual; 119 case TemplateTable::greater_equal: return Assembler::less; 120 } 121 ShouldNotReachHere(); 122 return Assembler::zero; 123 } 124 125 126 // Miscelaneous helper routines 127 // Store an oop (or NULL) at the address described by obj. 128 // If val == noreg this means store a NULL 129 130 static void do_oop_store(InterpreterMacroAssembler* _masm, 131 Address obj, 132 Register val, 133 BarrierSet::Name barrier, 134 bool precise) { 135 assert(val == noreg || val == rax, "parameter is just for looks"); 136 switch (barrier) { 137 #if INCLUDE_ALL_GCS 138 case BarrierSet::G1SATBCT: 139 case BarrierSet::G1SATBCTLogging: 140 { 141 // flatten object address if needed 142 if (obj.index() == noreg && obj.disp() == 0) { 143 if (obj.base() != rdx) { 144 __ movq(rdx, obj.base()); 145 } 146 } else { 147 __ leaq(rdx, obj); 148 } 149 __ g1_write_barrier_pre(rdx /* obj */, 150 rbx /* pre_val */, 151 r15_thread /* thread */, 152 r8 /* tmp */, 153 val != noreg /* tosca_live */, 154 false /* expand_call */); 155 if (val == noreg) { 156 __ store_heap_oop_null(Address(rdx, 0)); 157 } else { 158 // G1 barrier needs uncompressed oop for region cross check. 159 Register new_val = val; 160 if (UseCompressedOops) { 161 new_val = rbx; 162 __ movptr(new_val, val); 163 } 164 __ store_heap_oop(Address(rdx, 0), val); 165 __ g1_write_barrier_post(rdx /* store_adr */, 166 new_val /* new_val */, 167 r15_thread /* thread */, 168 r8 /* tmp */, 169 rbx /* tmp2 */); 170 } 171 } 172 break; 173 #endif // INCLUDE_ALL_GCS 174 case BarrierSet::CardTableModRef: 175 case BarrierSet::CardTableExtension: 176 { 177 if (val == noreg) { 178 __ store_heap_oop_null(obj); 179 } else { 180 __ store_heap_oop(obj, val); 181 // flatten object address if needed 182 if (!precise || (obj.index() == noreg && obj.disp() == 0)) { 183 __ store_check(obj.base()); 184 } else { 185 __ leaq(rdx, obj); 186 __ store_check(rdx); 187 } 188 } 189 } 190 break; 191 case BarrierSet::ModRef: 192 case BarrierSet::Other: 193 if (val == noreg) { 194 __ store_heap_oop_null(obj); 195 } else { 196 __ store_heap_oop(obj, val); 197 } 198 break; 199 default : 200 ShouldNotReachHere(); 201 202 } 203 } 204 205 Address TemplateTable::at_bcp(int offset) { 206 assert(_desc->uses_bcp(), "inconsistent uses_bcp information"); 207 return Address(r13, offset); 208 } 209 210 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg, 211 Register temp_reg, bool load_bc_into_bc_reg/*=true*/, 212 int byte_no) { 213 if (!RewriteBytecodes) return; 214 Label L_patch_done; 215 216 switch (bc) { 217 case Bytecodes::_fast_aputfield: 218 case Bytecodes::_fast_bputfield: 219 case Bytecodes::_fast_cputfield: 220 case Bytecodes::_fast_dputfield: 221 case Bytecodes::_fast_fputfield: 222 case Bytecodes::_fast_iputfield: 223 case Bytecodes::_fast_lputfield: 224 case Bytecodes::_fast_sputfield: 225 { 226 // We skip bytecode quickening for putfield instructions when 227 // the put_code written to the constant pool cache is zero. 228 // This is required so that every execution of this instruction 229 // calls out to InterpreterRuntime::resolve_get_put to do 230 // additional, required work. 231 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 232 assert(load_bc_into_bc_reg, "we use bc_reg as temp"); 233 __ get_cache_and_index_and_bytecode_at_bcp(temp_reg, bc_reg, temp_reg, byte_no, 1); 234 __ movl(bc_reg, bc); 235 __ cmpl(temp_reg, (int) 0); 236 __ jcc(Assembler::zero, L_patch_done); // don't patch 237 } 238 break; 239 default: 240 assert(byte_no == -1, "sanity"); 241 // the pair bytecodes have already done the load. 242 if (load_bc_into_bc_reg) { 243 __ movl(bc_reg, bc); 244 } 245 } 246 247 if (JvmtiExport::can_post_breakpoint()) { 248 Label L_fast_patch; 249 // if a breakpoint is present we can't rewrite the stream directly 250 __ movzbl(temp_reg, at_bcp(0)); 251 __ cmpl(temp_reg, Bytecodes::_breakpoint); 252 __ jcc(Assembler::notEqual, L_fast_patch); 253 __ get_method(temp_reg); 254 // Let breakpoint table handling rewrite to quicker bytecode 255 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), temp_reg, r13, bc_reg); 256 #ifndef ASSERT 257 __ jmpb(L_patch_done); 258 #else 259 __ jmp(L_patch_done); 260 #endif 261 __ bind(L_fast_patch); 262 } 263 264 #ifdef ASSERT 265 Label L_okay; 266 __ load_unsigned_byte(temp_reg, at_bcp(0)); 267 __ cmpl(temp_reg, (int) Bytecodes::java_code(bc)); 268 __ jcc(Assembler::equal, L_okay); 269 __ cmpl(temp_reg, bc_reg); 270 __ jcc(Assembler::equal, L_okay); 271 __ stop("patching the wrong bytecode"); 272 __ bind(L_okay); 273 #endif 274 275 // patch bytecode 276 __ movb(at_bcp(0), bc_reg); 277 __ bind(L_patch_done); 278 } 279 280 281 // Individual instructions 282 283 void TemplateTable::nop() { 284 transition(vtos, vtos); 285 // nothing to do 286 } 287 288 void TemplateTable::shouldnotreachhere() { 289 transition(vtos, vtos); 290 __ stop("shouldnotreachhere bytecode"); 291 } 292 293 void TemplateTable::aconst_null() { 294 transition(vtos, atos); 295 __ xorl(rax, rax); 296 } 297 298 void TemplateTable::iconst(int value) { 299 transition(vtos, itos); 300 if (value == 0) { 301 __ xorl(rax, rax); 302 } else { 303 __ movl(rax, value); 304 } 305 } 306 307 void TemplateTable::lconst(int value) { 308 transition(vtos, ltos); 309 if (value == 0) { 310 __ xorl(rax, rax); 311 } else { 312 __ movl(rax, value); 313 } 314 } 315 316 void TemplateTable::fconst(int value) { 317 transition(vtos, ftos); 318 static float one = 1.0f, two = 2.0f; 319 switch (value) { 320 case 0: 321 __ xorps(xmm0, xmm0); 322 break; 323 case 1: 324 __ movflt(xmm0, ExternalAddress((address) &one)); 325 break; 326 case 2: 327 __ movflt(xmm0, ExternalAddress((address) &two)); 328 break; 329 default: 330 ShouldNotReachHere(); 331 break; 332 } 333 } 334 335 void TemplateTable::dconst(int value) { 336 transition(vtos, dtos); 337 static double one = 1.0; 338 switch (value) { 339 case 0: 340 __ xorpd(xmm0, xmm0); 341 break; 342 case 1: 343 __ movdbl(xmm0, ExternalAddress((address) &one)); 344 break; 345 default: 346 ShouldNotReachHere(); 347 break; 348 } 349 } 350 351 void TemplateTable::bipush() { 352 transition(vtos, itos); 353 __ load_signed_byte(rax, at_bcp(1)); 354 } 355 356 void TemplateTable::sipush() { 357 transition(vtos, itos); 358 __ load_unsigned_short(rax, at_bcp(1)); 359 __ bswapl(rax); 360 __ sarl(rax, 16); 361 } 362 363 void TemplateTable::ldc(bool wide) { 364 transition(vtos, vtos); 365 Label call_ldc, notFloat, notClass, Done; 366 367 if (wide) { 368 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); 369 } else { 370 __ load_unsigned_byte(rbx, at_bcp(1)); 371 } 372 373 __ get_cpool_and_tags(rcx, rax); 374 const int base_offset = ConstantPool::header_size() * wordSize; 375 const int tags_offset = Array<u1>::base_offset_in_bytes(); 376 377 // get type 378 __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset)); 379 380 // unresolved class - get the resolved class 381 __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass); 382 __ jccb(Assembler::equal, call_ldc); 383 384 // unresolved class in error state - call into runtime to throw the error 385 // from the first resolution attempt 386 __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError); 387 __ jccb(Assembler::equal, call_ldc); 388 389 // resolved class - need to call vm to get java mirror of the class 390 __ cmpl(rdx, JVM_CONSTANT_Class); 391 __ jcc(Assembler::notEqual, notClass); 392 393 __ bind(call_ldc); 394 __ movl(c_rarg1, wide); 395 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), c_rarg1); 396 __ push_ptr(rax); 397 __ verify_oop(rax); 398 __ jmp(Done); 399 400 __ bind(notClass); 401 __ cmpl(rdx, JVM_CONSTANT_Float); 402 __ jccb(Assembler::notEqual, notFloat); 403 // ftos 404 __ movflt(xmm0, Address(rcx, rbx, Address::times_8, base_offset)); 405 __ push_f(); 406 __ jmp(Done); 407 408 __ bind(notFloat); 409 #ifdef ASSERT 410 { 411 Label L; 412 __ cmpl(rdx, JVM_CONSTANT_Integer); 413 __ jcc(Assembler::equal, L); 414 // String and Object are rewritten to fast_aldc 415 __ stop("unexpected tag type in ldc"); 416 __ bind(L); 417 } 418 #endif 419 // itos JVM_CONSTANT_Integer only 420 __ movl(rax, Address(rcx, rbx, Address::times_8, base_offset)); 421 __ push_i(rax); 422 __ bind(Done); 423 } 424 425 // Fast path for caching oop constants. 426 void TemplateTable::fast_aldc(bool wide) { 427 transition(vtos, atos); 428 429 Register result = rax; 430 Register tmp = rdx; 431 int index_size = wide ? sizeof(u2) : sizeof(u1); 432 433 Label resolved; 434 435 // We are resolved if the resolved reference cache entry contains a 436 // non-null object (String, MethodType, etc.) 437 assert_different_registers(result, tmp); 438 __ get_cache_index_at_bcp(tmp, 1, index_size); 439 __ load_resolved_reference_at_index(result, tmp); 440 __ testl(result, result); 441 __ jcc(Assembler::notZero, resolved); 442 443 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc); 444 445 // first time invocation - must resolve first 446 __ movl(tmp, (int)bytecode()); 447 __ call_VM(result, entry, tmp); 448 449 __ bind(resolved); 450 451 if (VerifyOops) { 452 __ verify_oop(result); 453 } 454 } 455 456 void TemplateTable::ldc2_w() { 457 transition(vtos, vtos); 458 Label Long, Done; 459 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); 460 461 __ get_cpool_and_tags(rcx, rax); 462 const int base_offset = ConstantPool::header_size() * wordSize; 463 const int tags_offset = Array<u1>::base_offset_in_bytes(); 464 465 // get type 466 __ cmpb(Address(rax, rbx, Address::times_1, tags_offset), 467 JVM_CONSTANT_Double); 468 __ jccb(Assembler::notEqual, Long); 469 // dtos 470 __ movdbl(xmm0, Address(rcx, rbx, Address::times_8, base_offset)); 471 __ push_d(); 472 __ jmpb(Done); 473 474 __ bind(Long); 475 // ltos 476 __ movq(rax, Address(rcx, rbx, Address::times_8, base_offset)); 477 __ push_l(); 478 479 __ bind(Done); 480 } 481 482 void TemplateTable::locals_index(Register reg, int offset) { 483 __ load_unsigned_byte(reg, at_bcp(offset)); 484 __ negptr(reg); 485 } 486 487 void TemplateTable::iload() { 488 transition(vtos, itos); 489 if (RewriteFrequentPairs) { 490 Label rewrite, done; 491 const Register bc = c_rarg3; 492 assert(rbx != bc, "register damaged"); 493 494 // get next byte 495 __ load_unsigned_byte(rbx, 496 at_bcp(Bytecodes::length_for(Bytecodes::_iload))); 497 // if _iload, wait to rewrite to iload2. We only want to rewrite the 498 // last two iloads in a pair. Comparing against fast_iload means that 499 // the next bytecode is neither an iload or a caload, and therefore 500 // an iload pair. 501 __ cmpl(rbx, Bytecodes::_iload); 502 __ jcc(Assembler::equal, done); 503 504 __ cmpl(rbx, Bytecodes::_fast_iload); 505 __ movl(bc, Bytecodes::_fast_iload2); 506 __ jccb(Assembler::equal, rewrite); 507 508 // if _caload, rewrite to fast_icaload 509 __ cmpl(rbx, Bytecodes::_caload); 510 __ movl(bc, Bytecodes::_fast_icaload); 511 __ jccb(Assembler::equal, rewrite); 512 513 // rewrite so iload doesn't check again. 514 __ movl(bc, Bytecodes::_fast_iload); 515 516 // rewrite 517 // bc: fast bytecode 518 __ bind(rewrite); 519 patch_bytecode(Bytecodes::_iload, bc, rbx, false); 520 __ bind(done); 521 } 522 523 // Get the local value into tos 524 locals_index(rbx); 525 __ movl(rax, iaddress(rbx)); 526 } 527 528 void TemplateTable::fast_iload2() { 529 transition(vtos, itos); 530 locals_index(rbx); 531 __ movl(rax, iaddress(rbx)); 532 __ push(itos); 533 locals_index(rbx, 3); 534 __ movl(rax, iaddress(rbx)); 535 } 536 537 void TemplateTable::fast_iload() { 538 transition(vtos, itos); 539 locals_index(rbx); 540 __ movl(rax, iaddress(rbx)); 541 } 542 543 void TemplateTable::lload() { 544 transition(vtos, ltos); 545 locals_index(rbx); 546 __ movq(rax, laddress(rbx)); 547 } 548 549 void TemplateTable::fload() { 550 transition(vtos, ftos); 551 locals_index(rbx); 552 __ movflt(xmm0, faddress(rbx)); 553 } 554 555 void TemplateTable::dload() { 556 transition(vtos, dtos); 557 locals_index(rbx); 558 __ movdbl(xmm0, daddress(rbx)); 559 } 560 561 void TemplateTable::aload() { 562 transition(vtos, atos); 563 locals_index(rbx); 564 __ movptr(rax, aaddress(rbx)); 565 } 566 567 void TemplateTable::locals_index_wide(Register reg) { 568 __ load_unsigned_short(reg, at_bcp(2)); 569 __ bswapl(reg); 570 __ shrl(reg, 16); 571 __ negptr(reg); 572 } 573 574 void TemplateTable::wide_iload() { 575 transition(vtos, itos); 576 locals_index_wide(rbx); 577 __ movl(rax, iaddress(rbx)); 578 } 579 580 void TemplateTable::wide_lload() { 581 transition(vtos, ltos); 582 locals_index_wide(rbx); 583 __ movq(rax, laddress(rbx)); 584 } 585 586 void TemplateTable::wide_fload() { 587 transition(vtos, ftos); 588 locals_index_wide(rbx); 589 __ movflt(xmm0, faddress(rbx)); 590 } 591 592 void TemplateTable::wide_dload() { 593 transition(vtos, dtos); 594 locals_index_wide(rbx); 595 __ movdbl(xmm0, daddress(rbx)); 596 } 597 598 void TemplateTable::wide_aload() { 599 transition(vtos, atos); 600 locals_index_wide(rbx); 601 __ movptr(rax, aaddress(rbx)); 602 } 603 604 void TemplateTable::index_check(Register array, Register index) { 605 // destroys rbx 606 // check array 607 __ null_check(array, arrayOopDesc::length_offset_in_bytes()); 608 // sign extend index for use by indexed load 609 __ movl2ptr(index, index); 610 // check index 611 __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes())); 612 if (index != rbx) { 613 // ??? convention: move aberrant index into ebx for exception message 614 assert(rbx != array, "different registers"); 615 __ movl(rbx, index); 616 } 617 __ jump_cc(Assembler::aboveEqual, 618 ExternalAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry)); 619 } 620 621 void TemplateTable::iaload() { 622 transition(itos, itos); 623 __ pop_ptr(rdx); 624 // eax: index 625 // rdx: array 626 index_check(rdx, rax); // kills rbx 627 __ movl(rax, Address(rdx, rax, 628 Address::times_4, 629 arrayOopDesc::base_offset_in_bytes(T_INT))); 630 } 631 632 void TemplateTable::laload() { 633 transition(itos, ltos); 634 __ pop_ptr(rdx); 635 // eax: index 636 // rdx: array 637 index_check(rdx, rax); // kills rbx 638 __ movq(rax, Address(rdx, rbx, 639 Address::times_8, 640 arrayOopDesc::base_offset_in_bytes(T_LONG))); 641 } 642 643 void TemplateTable::faload() { 644 transition(itos, ftos); 645 __ pop_ptr(rdx); 646 // eax: index 647 // rdx: array 648 index_check(rdx, rax); // kills rbx 649 __ movflt(xmm0, Address(rdx, rax, 650 Address::times_4, 651 arrayOopDesc::base_offset_in_bytes(T_FLOAT))); 652 } 653 654 void TemplateTable::daload() { 655 transition(itos, dtos); 656 __ pop_ptr(rdx); 657 // eax: index 658 // rdx: array 659 index_check(rdx, rax); // kills rbx 660 __ movdbl(xmm0, Address(rdx, rax, 661 Address::times_8, 662 arrayOopDesc::base_offset_in_bytes(T_DOUBLE))); 663 } 664 665 void TemplateTable::aaload() { 666 transition(itos, atos); 667 __ pop_ptr(rdx); 668 // eax: index 669 // rdx: array 670 index_check(rdx, rax); // kills rbx 671 __ load_heap_oop(rax, Address(rdx, rax, 672 UseCompressedOops ? Address::times_4 : Address::times_8, 673 arrayOopDesc::base_offset_in_bytes(T_OBJECT))); 674 } 675 676 void TemplateTable::baload() { 677 transition(itos, itos); 678 __ pop_ptr(rdx); 679 // eax: index 680 // rdx: array 681 index_check(rdx, rax); // kills rbx 682 __ load_signed_byte(rax, 683 Address(rdx, rax, 684 Address::times_1, 685 arrayOopDesc::base_offset_in_bytes(T_BYTE))); 686 } 687 688 void TemplateTable::caload() { 689 transition(itos, itos); 690 __ pop_ptr(rdx); 691 // eax: index 692 // rdx: array 693 index_check(rdx, rax); // kills rbx 694 __ load_unsigned_short(rax, 695 Address(rdx, rax, 696 Address::times_2, 697 arrayOopDesc::base_offset_in_bytes(T_CHAR))); 698 } 699 700 // iload followed by caload frequent pair 701 void TemplateTable::fast_icaload() { 702 transition(vtos, itos); 703 // load index out of locals 704 locals_index(rbx); 705 __ movl(rax, iaddress(rbx)); 706 707 // eax: index 708 // rdx: array 709 __ pop_ptr(rdx); 710 index_check(rdx, rax); // kills rbx 711 __ load_unsigned_short(rax, 712 Address(rdx, rax, 713 Address::times_2, 714 arrayOopDesc::base_offset_in_bytes(T_CHAR))); 715 } 716 717 void TemplateTable::saload() { 718 transition(itos, itos); 719 __ pop_ptr(rdx); 720 // eax: index 721 // rdx: array 722 index_check(rdx, rax); // kills rbx 723 __ load_signed_short(rax, 724 Address(rdx, rax, 725 Address::times_2, 726 arrayOopDesc::base_offset_in_bytes(T_SHORT))); 727 } 728 729 void TemplateTable::iload(int n) { 730 transition(vtos, itos); 731 __ movl(rax, iaddress(n)); 732 } 733 734 void TemplateTable::lload(int n) { 735 transition(vtos, ltos); 736 __ movq(rax, laddress(n)); 737 } 738 739 void TemplateTable::fload(int n) { 740 transition(vtos, ftos); 741 __ movflt(xmm0, faddress(n)); 742 } 743 744 void TemplateTable::dload(int n) { 745 transition(vtos, dtos); 746 __ movdbl(xmm0, daddress(n)); 747 } 748 749 void TemplateTable::aload(int n) { 750 transition(vtos, atos); 751 __ movptr(rax, aaddress(n)); 752 } 753 754 void TemplateTable::aload_0() { 755 transition(vtos, atos); 756 // According to bytecode histograms, the pairs: 757 // 758 // _aload_0, _fast_igetfield 759 // _aload_0, _fast_agetfield 760 // _aload_0, _fast_fgetfield 761 // 762 // occur frequently. If RewriteFrequentPairs is set, the (slow) 763 // _aload_0 bytecode checks if the next bytecode is either 764 // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then 765 // rewrites the current bytecode into a pair bytecode; otherwise it 766 // rewrites the current bytecode into _fast_aload_0 that doesn't do 767 // the pair check anymore. 768 // 769 // Note: If the next bytecode is _getfield, the rewrite must be 770 // delayed, otherwise we may miss an opportunity for a pair. 771 // 772 // Also rewrite frequent pairs 773 // aload_0, aload_1 774 // aload_0, iload_1 775 // These bytecodes with a small amount of code are most profitable 776 // to rewrite 777 if (RewriteFrequentPairs) { 778 Label rewrite, done; 779 const Register bc = c_rarg3; 780 assert(rbx != bc, "register damaged"); 781 // get next byte 782 __ load_unsigned_byte(rbx, 783 at_bcp(Bytecodes::length_for(Bytecodes::_aload_0))); 784 785 // do actual aload_0 786 aload(0); 787 788 // if _getfield then wait with rewrite 789 __ cmpl(rbx, Bytecodes::_getfield); 790 __ jcc(Assembler::equal, done); 791 792 // if _igetfield then reqrite to _fast_iaccess_0 793 assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == 794 Bytecodes::_aload_0, 795 "fix bytecode definition"); 796 __ cmpl(rbx, Bytecodes::_fast_igetfield); 797 __ movl(bc, Bytecodes::_fast_iaccess_0); 798 __ jccb(Assembler::equal, rewrite); 799 800 // if _agetfield then reqrite to _fast_aaccess_0 801 assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == 802 Bytecodes::_aload_0, 803 "fix bytecode definition"); 804 __ cmpl(rbx, Bytecodes::_fast_agetfield); 805 __ movl(bc, Bytecodes::_fast_aaccess_0); 806 __ jccb(Assembler::equal, rewrite); 807 808 // if _fgetfield then reqrite to _fast_faccess_0 809 assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == 810 Bytecodes::_aload_0, 811 "fix bytecode definition"); 812 __ cmpl(rbx, Bytecodes::_fast_fgetfield); 813 __ movl(bc, Bytecodes::_fast_faccess_0); 814 __ jccb(Assembler::equal, rewrite); 815 816 // else rewrite to _fast_aload0 817 assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == 818 Bytecodes::_aload_0, 819 "fix bytecode definition"); 820 __ movl(bc, Bytecodes::_fast_aload_0); 821 822 // rewrite 823 // bc: fast bytecode 824 __ bind(rewrite); 825 patch_bytecode(Bytecodes::_aload_0, bc, rbx, false); 826 827 __ bind(done); 828 } else { 829 aload(0); 830 } 831 } 832 833 void TemplateTable::istore() { 834 transition(itos, vtos); 835 locals_index(rbx); 836 __ movl(iaddress(rbx), rax); 837 } 838 839 void TemplateTable::lstore() { 840 transition(ltos, vtos); 841 locals_index(rbx); 842 __ movq(laddress(rbx), rax); 843 } 844 845 void TemplateTable::fstore() { 846 transition(ftos, vtos); 847 locals_index(rbx); 848 __ movflt(faddress(rbx), xmm0); 849 } 850 851 void TemplateTable::dstore() { 852 transition(dtos, vtos); 853 locals_index(rbx); 854 __ movdbl(daddress(rbx), xmm0); 855 } 856 857 void TemplateTable::astore() { 858 transition(vtos, vtos); 859 __ pop_ptr(rax); 860 locals_index(rbx); 861 __ movptr(aaddress(rbx), rax); 862 } 863 864 void TemplateTable::wide_istore() { 865 transition(vtos, vtos); 866 __ pop_i(); 867 locals_index_wide(rbx); 868 __ movl(iaddress(rbx), rax); 869 } 870 871 void TemplateTable::wide_lstore() { 872 transition(vtos, vtos); 873 __ pop_l(); 874 locals_index_wide(rbx); 875 __ movq(laddress(rbx), rax); 876 } 877 878 void TemplateTable::wide_fstore() { 879 transition(vtos, vtos); 880 __ pop_f(); 881 locals_index_wide(rbx); 882 __ movflt(faddress(rbx), xmm0); 883 } 884 885 void TemplateTable::wide_dstore() { 886 transition(vtos, vtos); 887 __ pop_d(); 888 locals_index_wide(rbx); 889 __ movdbl(daddress(rbx), xmm0); 890 } 891 892 void TemplateTable::wide_astore() { 893 transition(vtos, vtos); 894 __ pop_ptr(rax); 895 locals_index_wide(rbx); 896 __ movptr(aaddress(rbx), rax); 897 } 898 899 void TemplateTable::iastore() { 900 transition(itos, vtos); 901 __ pop_i(rbx); 902 __ pop_ptr(rdx); 903 // eax: value 904 // ebx: index 905 // rdx: array 906 index_check(rdx, rbx); // prefer index in ebx 907 __ movl(Address(rdx, rbx, 908 Address::times_4, 909 arrayOopDesc::base_offset_in_bytes(T_INT)), 910 rax); 911 } 912 913 void TemplateTable::lastore() { 914 transition(ltos, vtos); 915 __ pop_i(rbx); 916 __ pop_ptr(rdx); 917 // rax: value 918 // ebx: index 919 // rdx: array 920 index_check(rdx, rbx); // prefer index in ebx 921 __ movq(Address(rdx, rbx, 922 Address::times_8, 923 arrayOopDesc::base_offset_in_bytes(T_LONG)), 924 rax); 925 } 926 927 void TemplateTable::fastore() { 928 transition(ftos, vtos); 929 __ pop_i(rbx); 930 __ pop_ptr(rdx); 931 // xmm0: value 932 // ebx: index 933 // rdx: array 934 index_check(rdx, rbx); // prefer index in ebx 935 __ movflt(Address(rdx, rbx, 936 Address::times_4, 937 arrayOopDesc::base_offset_in_bytes(T_FLOAT)), 938 xmm0); 939 } 940 941 void TemplateTable::dastore() { 942 transition(dtos, vtos); 943 __ pop_i(rbx); 944 __ pop_ptr(rdx); 945 // xmm0: value 946 // ebx: index 947 // rdx: array 948 index_check(rdx, rbx); // prefer index in ebx 949 __ movdbl(Address(rdx, rbx, 950 Address::times_8, 951 arrayOopDesc::base_offset_in_bytes(T_DOUBLE)), 952 xmm0); 953 } 954 955 void TemplateTable::aastore() { 956 Label is_null, ok_is_subtype, done; 957 transition(vtos, vtos); 958 // stack: ..., array, index, value 959 __ movptr(rax, at_tos()); // value 960 __ movl(rcx, at_tos_p1()); // index 961 __ movptr(rdx, at_tos_p2()); // array 962 963 Address element_address(rdx, rcx, 964 UseCompressedOops? Address::times_4 : Address::times_8, 965 arrayOopDesc::base_offset_in_bytes(T_OBJECT)); 966 967 index_check(rdx, rcx); // kills rbx 968 // do array store check - check for NULL value first 969 __ testptr(rax, rax); 970 __ jcc(Assembler::zero, is_null); 971 972 // Move subklass into rbx 973 __ load_klass(rbx, rax); 974 // Move superklass into rax 975 __ load_klass(rax, rdx); 976 __ movptr(rax, Address(rax, 977 ObjArrayKlass::element_klass_offset())); 978 // Compress array + index*oopSize + 12 into a single register. Frees rcx. 979 __ lea(rdx, element_address); 980 981 // Generate subtype check. Blows rcx, rdi 982 // Superklass in rax. Subklass in rbx. 983 __ gen_subtype_check(rbx, ok_is_subtype); 984 985 // Come here on failure 986 // object is at TOS 987 __ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry)); 988 989 // Come here on success 990 __ bind(ok_is_subtype); 991 992 // Get the value we will store 993 __ movptr(rax, at_tos()); 994 // Now store using the appropriate barrier 995 do_oop_store(_masm, Address(rdx, 0), rax, _bs->kind(), true); 996 __ jmp(done); 997 998 // Have a NULL in rax, rdx=array, ecx=index. Store NULL at ary[idx] 999 __ bind(is_null); 1000 __ profile_null_seen(rbx); 1001 1002 // Store a NULL 1003 do_oop_store(_masm, element_address, noreg, _bs->kind(), true); 1004 1005 // Pop stack arguments 1006 __ bind(done); 1007 __ addptr(rsp, 3 * Interpreter::stackElementSize); 1008 } 1009 1010 void TemplateTable::bastore() { 1011 transition(itos, vtos); 1012 __ pop_i(rbx); 1013 __ pop_ptr(rdx); 1014 // eax: value 1015 // ebx: index 1016 // rdx: array 1017 index_check(rdx, rbx); // prefer index in ebx 1018 __ movb(Address(rdx, rbx, 1019 Address::times_1, 1020 arrayOopDesc::base_offset_in_bytes(T_BYTE)), 1021 rax); 1022 } 1023 1024 void TemplateTable::castore() { 1025 transition(itos, vtos); 1026 __ pop_i(rbx); 1027 __ pop_ptr(rdx); 1028 // eax: value 1029 // ebx: index 1030 // rdx: array 1031 index_check(rdx, rbx); // prefer index in ebx 1032 __ movw(Address(rdx, rbx, 1033 Address::times_2, 1034 arrayOopDesc::base_offset_in_bytes(T_CHAR)), 1035 rax); 1036 } 1037 1038 void TemplateTable::sastore() { 1039 castore(); 1040 } 1041 1042 void TemplateTable::istore(int n) { 1043 transition(itos, vtos); 1044 __ movl(iaddress(n), rax); 1045 } 1046 1047 void TemplateTable::lstore(int n) { 1048 transition(ltos, vtos); 1049 __ movq(laddress(n), rax); 1050 } 1051 1052 void TemplateTable::fstore(int n) { 1053 transition(ftos, vtos); 1054 __ movflt(faddress(n), xmm0); 1055 } 1056 1057 void TemplateTable::dstore(int n) { 1058 transition(dtos, vtos); 1059 __ movdbl(daddress(n), xmm0); 1060 } 1061 1062 void TemplateTable::astore(int n) { 1063 transition(vtos, vtos); 1064 __ pop_ptr(rax); 1065 __ movptr(aaddress(n), rax); 1066 } 1067 1068 void TemplateTable::pop() { 1069 transition(vtos, vtos); 1070 __ addptr(rsp, Interpreter::stackElementSize); 1071 } 1072 1073 void TemplateTable::pop2() { 1074 transition(vtos, vtos); 1075 __ addptr(rsp, 2 * Interpreter::stackElementSize); 1076 } 1077 1078 void TemplateTable::dup() { 1079 transition(vtos, vtos); 1080 __ load_ptr(0, rax); 1081 __ push_ptr(rax); 1082 // stack: ..., a, a 1083 } 1084 1085 void TemplateTable::dup_x1() { 1086 transition(vtos, vtos); 1087 // stack: ..., a, b 1088 __ load_ptr( 0, rax); // load b 1089 __ load_ptr( 1, rcx); // load a 1090 __ store_ptr(1, rax); // store b 1091 __ store_ptr(0, rcx); // store a 1092 __ push_ptr(rax); // push b 1093 // stack: ..., b, a, b 1094 } 1095 1096 void TemplateTable::dup_x2() { 1097 transition(vtos, vtos); 1098 // stack: ..., a, b, c 1099 __ load_ptr( 0, rax); // load c 1100 __ load_ptr( 2, rcx); // load a 1101 __ store_ptr(2, rax); // store c in a 1102 __ push_ptr(rax); // push c 1103 // stack: ..., c, b, c, c 1104 __ load_ptr( 2, rax); // load b 1105 __ store_ptr(2, rcx); // store a in b 1106 // stack: ..., c, a, c, c 1107 __ store_ptr(1, rax); // store b in c 1108 // stack: ..., c, a, b, c 1109 } 1110 1111 void TemplateTable::dup2() { 1112 transition(vtos, vtos); 1113 // stack: ..., a, b 1114 __ load_ptr(1, rax); // load a 1115 __ push_ptr(rax); // push a 1116 __ load_ptr(1, rax); // load b 1117 __ push_ptr(rax); // push b 1118 // stack: ..., a, b, a, b 1119 } 1120 1121 void TemplateTable::dup2_x1() { 1122 transition(vtos, vtos); 1123 // stack: ..., a, b, c 1124 __ load_ptr( 0, rcx); // load c 1125 __ load_ptr( 1, rax); // load b 1126 __ push_ptr(rax); // push b 1127 __ push_ptr(rcx); // push c 1128 // stack: ..., a, b, c, b, c 1129 __ store_ptr(3, rcx); // store c in b 1130 // stack: ..., a, c, c, b, c 1131 __ load_ptr( 4, rcx); // load a 1132 __ store_ptr(2, rcx); // store a in 2nd c 1133 // stack: ..., a, c, a, b, c 1134 __ store_ptr(4, rax); // store b in a 1135 // stack: ..., b, c, a, b, c 1136 } 1137 1138 void TemplateTable::dup2_x2() { 1139 transition(vtos, vtos); 1140 // stack: ..., a, b, c, d 1141 __ load_ptr( 0, rcx); // load d 1142 __ load_ptr( 1, rax); // load c 1143 __ push_ptr(rax); // push c 1144 __ push_ptr(rcx); // push d 1145 // stack: ..., a, b, c, d, c, d 1146 __ load_ptr( 4, rax); // load b 1147 __ store_ptr(2, rax); // store b in d 1148 __ store_ptr(4, rcx); // store d in b 1149 // stack: ..., a, d, c, b, c, d 1150 __ load_ptr( 5, rcx); // load a 1151 __ load_ptr( 3, rax); // load c 1152 __ store_ptr(3, rcx); // store a in c 1153 __ store_ptr(5, rax); // store c in a 1154 // stack: ..., c, d, a, b, c, d 1155 } 1156 1157 void TemplateTable::swap() { 1158 transition(vtos, vtos); 1159 // stack: ..., a, b 1160 __ load_ptr( 1, rcx); // load a 1161 __ load_ptr( 0, rax); // load b 1162 __ store_ptr(0, rcx); // store a in b 1163 __ store_ptr(1, rax); // store b in a 1164 // stack: ..., b, a 1165 } 1166 1167 void TemplateTable::iop2(Operation op) { 1168 transition(itos, itos); 1169 switch (op) { 1170 case add : __ pop_i(rdx); __ addl (rax, rdx); break; 1171 case sub : __ movl(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break; 1172 case mul : __ pop_i(rdx); __ imull(rax, rdx); break; 1173 case _and : __ pop_i(rdx); __ andl (rax, rdx); break; 1174 case _or : __ pop_i(rdx); __ orl (rax, rdx); break; 1175 case _xor : __ pop_i(rdx); __ xorl (rax, rdx); break; 1176 case shl : __ movl(rcx, rax); __ pop_i(rax); __ shll (rax); break; 1177 case shr : __ movl(rcx, rax); __ pop_i(rax); __ sarl (rax); break; 1178 case ushr : __ movl(rcx, rax); __ pop_i(rax); __ shrl (rax); break; 1179 default : ShouldNotReachHere(); 1180 } 1181 } 1182 1183 void TemplateTable::lop2(Operation op) { 1184 transition(ltos, ltos); 1185 switch (op) { 1186 case add : __ pop_l(rdx); __ addptr(rax, rdx); break; 1187 case sub : __ mov(rdx, rax); __ pop_l(rax); __ subptr(rax, rdx); break; 1188 case _and : __ pop_l(rdx); __ andptr(rax, rdx); break; 1189 case _or : __ pop_l(rdx); __ orptr (rax, rdx); break; 1190 case _xor : __ pop_l(rdx); __ xorptr(rax, rdx); break; 1191 default : ShouldNotReachHere(); 1192 } 1193 } 1194 1195 void TemplateTable::idiv() { 1196 transition(itos, itos); 1197 __ movl(rcx, rax); 1198 __ pop_i(rax); 1199 // Note: could xor eax and ecx and compare with (-1 ^ min_int). If 1200 // they are not equal, one could do a normal division (no correction 1201 // needed), which may speed up this implementation for the common case. 1202 // (see also JVM spec., p.243 & p.271) 1203 __ corrected_idivl(rcx); 1204 } 1205 1206 void TemplateTable::irem() { 1207 transition(itos, itos); 1208 __ movl(rcx, rax); 1209 __ pop_i(rax); 1210 // Note: could xor eax and ecx and compare with (-1 ^ min_int). If 1211 // they are not equal, one could do a normal division (no correction 1212 // needed), which may speed up this implementation for the common case. 1213 // (see also JVM spec., p.243 & p.271) 1214 __ corrected_idivl(rcx); 1215 __ movl(rax, rdx); 1216 } 1217 1218 void TemplateTable::lmul() { 1219 transition(ltos, ltos); 1220 __ pop_l(rdx); 1221 __ imulq(rax, rdx); 1222 } 1223 1224 void TemplateTable::ldiv() { 1225 transition(ltos, ltos); 1226 __ mov(rcx, rax); 1227 __ pop_l(rax); 1228 // generate explicit div0 check 1229 __ testq(rcx, rcx); 1230 __ jump_cc(Assembler::zero, 1231 ExternalAddress(Interpreter::_throw_ArithmeticException_entry)); 1232 // Note: could xor rax and rcx and compare with (-1 ^ min_int). If 1233 // they are not equal, one could do a normal division (no correction 1234 // needed), which may speed up this implementation for the common case. 1235 // (see also JVM spec., p.243 & p.271) 1236 __ corrected_idivq(rcx); // kills rbx 1237 } 1238 1239 void TemplateTable::lrem() { 1240 transition(ltos, ltos); 1241 __ mov(rcx, rax); 1242 __ pop_l(rax); 1243 __ testq(rcx, rcx); 1244 __ jump_cc(Assembler::zero, 1245 ExternalAddress(Interpreter::_throw_ArithmeticException_entry)); 1246 // Note: could xor rax and rcx and compare with (-1 ^ min_int). If 1247 // they are not equal, one could do a normal division (no correction 1248 // needed), which may speed up this implementation for the common case. 1249 // (see also JVM spec., p.243 & p.271) 1250 __ corrected_idivq(rcx); // kills rbx 1251 __ mov(rax, rdx); 1252 } 1253 1254 void TemplateTable::lshl() { 1255 transition(itos, ltos); 1256 __ movl(rcx, rax); // get shift count 1257 __ pop_l(rax); // get shift value 1258 __ shlq(rax); 1259 } 1260 1261 void TemplateTable::lshr() { 1262 transition(itos, ltos); 1263 __ movl(rcx, rax); // get shift count 1264 __ pop_l(rax); // get shift value 1265 __ sarq(rax); 1266 } 1267 1268 void TemplateTable::lushr() { 1269 transition(itos, ltos); 1270 __ movl(rcx, rax); // get shift count 1271 __ pop_l(rax); // get shift value 1272 __ shrq(rax); 1273 } 1274 1275 void TemplateTable::fop2(Operation op) { 1276 transition(ftos, ftos); 1277 switch (op) { 1278 case add: 1279 __ addss(xmm0, at_rsp()); 1280 __ addptr(rsp, Interpreter::stackElementSize); 1281 break; 1282 case sub: 1283 __ movflt(xmm1, xmm0); 1284 __ pop_f(xmm0); 1285 __ subss(xmm0, xmm1); 1286 break; 1287 case mul: 1288 __ mulss(xmm0, at_rsp()); 1289 __ addptr(rsp, Interpreter::stackElementSize); 1290 break; 1291 case div: 1292 __ movflt(xmm1, xmm0); 1293 __ pop_f(xmm0); 1294 __ divss(xmm0, xmm1); 1295 break; 1296 case rem: 1297 __ movflt(xmm1, xmm0); 1298 __ pop_f(xmm0); 1299 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem), 2); 1300 break; 1301 default: 1302 ShouldNotReachHere(); 1303 break; 1304 } 1305 } 1306 1307 void TemplateTable::dop2(Operation op) { 1308 transition(dtos, dtos); 1309 switch (op) { 1310 case add: 1311 __ addsd(xmm0, at_rsp()); 1312 __ addptr(rsp, 2 * Interpreter::stackElementSize); 1313 break; 1314 case sub: 1315 __ movdbl(xmm1, xmm0); 1316 __ pop_d(xmm0); 1317 __ subsd(xmm0, xmm1); 1318 break; 1319 case mul: 1320 __ mulsd(xmm0, at_rsp()); 1321 __ addptr(rsp, 2 * Interpreter::stackElementSize); 1322 break; 1323 case div: 1324 __ movdbl(xmm1, xmm0); 1325 __ pop_d(xmm0); 1326 __ divsd(xmm0, xmm1); 1327 break; 1328 case rem: 1329 __ movdbl(xmm1, xmm0); 1330 __ pop_d(xmm0); 1331 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem), 2); 1332 break; 1333 default: 1334 ShouldNotReachHere(); 1335 break; 1336 } 1337 } 1338 1339 void TemplateTable::ineg() { 1340 transition(itos, itos); 1341 __ negl(rax); 1342 } 1343 1344 void TemplateTable::lneg() { 1345 transition(ltos, ltos); 1346 __ negq(rax); 1347 } 1348 1349 // Note: 'double' and 'long long' have 32-bits alignment on x86. 1350 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) { 1351 // Use the expression (adr)&(~0xF) to provide 128-bits aligned address 1352 // of 128-bits operands for SSE instructions. 1353 jlong *operand = (jlong*)(((intptr_t)adr)&((intptr_t)(~0xF))); 1354 // Store the value to a 128-bits operand. 1355 operand[0] = lo; 1356 operand[1] = hi; 1357 return operand; 1358 } 1359 1360 // Buffer for 128-bits masks used by SSE instructions. 1361 static jlong float_signflip_pool[2*2]; 1362 static jlong double_signflip_pool[2*2]; 1363 1364 void TemplateTable::fneg() { 1365 transition(ftos, ftos); 1366 static jlong *float_signflip = double_quadword(&float_signflip_pool[1], 0x8000000080000000, 0x8000000080000000); 1367 __ xorps(xmm0, ExternalAddress((address) float_signflip)); 1368 } 1369 1370 void TemplateTable::dneg() { 1371 transition(dtos, dtos); 1372 static jlong *double_signflip = double_quadword(&double_signflip_pool[1], 0x8000000000000000, 0x8000000000000000); 1373 __ xorpd(xmm0, ExternalAddress((address) double_signflip)); 1374 } 1375 1376 void TemplateTable::iinc() { 1377 transition(vtos, vtos); 1378 __ load_signed_byte(rdx, at_bcp(2)); // get constant 1379 locals_index(rbx); 1380 __ addl(iaddress(rbx), rdx); 1381 } 1382 1383 void TemplateTable::wide_iinc() { 1384 transition(vtos, vtos); 1385 __ movl(rdx, at_bcp(4)); // get constant 1386 locals_index_wide(rbx); 1387 __ bswapl(rdx); // swap bytes & sign-extend constant 1388 __ sarl(rdx, 16); 1389 __ addl(iaddress(rbx), rdx); 1390 // Note: should probably use only one movl to get both 1391 // the index and the constant -> fix this 1392 } 1393 1394 void TemplateTable::convert() { 1395 // Checking 1396 #ifdef ASSERT 1397 { 1398 TosState tos_in = ilgl; 1399 TosState tos_out = ilgl; 1400 switch (bytecode()) { 1401 case Bytecodes::_i2l: // fall through 1402 case Bytecodes::_i2f: // fall through 1403 case Bytecodes::_i2d: // fall through 1404 case Bytecodes::_i2b: // fall through 1405 case Bytecodes::_i2c: // fall through 1406 case Bytecodes::_i2s: tos_in = itos; break; 1407 case Bytecodes::_l2i: // fall through 1408 case Bytecodes::_l2f: // fall through 1409 case Bytecodes::_l2d: tos_in = ltos; break; 1410 case Bytecodes::_f2i: // fall through 1411 case Bytecodes::_f2l: // fall through 1412 case Bytecodes::_f2d: tos_in = ftos; break; 1413 case Bytecodes::_d2i: // fall through 1414 case Bytecodes::_d2l: // fall through 1415 case Bytecodes::_d2f: tos_in = dtos; break; 1416 default : ShouldNotReachHere(); 1417 } 1418 switch (bytecode()) { 1419 case Bytecodes::_l2i: // fall through 1420 case Bytecodes::_f2i: // fall through 1421 case Bytecodes::_d2i: // fall through 1422 case Bytecodes::_i2b: // fall through 1423 case Bytecodes::_i2c: // fall through 1424 case Bytecodes::_i2s: tos_out = itos; break; 1425 case Bytecodes::_i2l: // fall through 1426 case Bytecodes::_f2l: // fall through 1427 case Bytecodes::_d2l: tos_out = ltos; break; 1428 case Bytecodes::_i2f: // fall through 1429 case Bytecodes::_l2f: // fall through 1430 case Bytecodes::_d2f: tos_out = ftos; break; 1431 case Bytecodes::_i2d: // fall through 1432 case Bytecodes::_l2d: // fall through 1433 case Bytecodes::_f2d: tos_out = dtos; break; 1434 default : ShouldNotReachHere(); 1435 } 1436 transition(tos_in, tos_out); 1437 } 1438 #endif // ASSERT 1439 1440 static const int64_t is_nan = 0x8000000000000000L; 1441 1442 // Conversion 1443 switch (bytecode()) { 1444 case Bytecodes::_i2l: 1445 __ movslq(rax, rax); 1446 break; 1447 case Bytecodes::_i2f: 1448 __ cvtsi2ssl(xmm0, rax); 1449 break; 1450 case Bytecodes::_i2d: 1451 __ cvtsi2sdl(xmm0, rax); 1452 break; 1453 case Bytecodes::_i2b: 1454 __ movsbl(rax, rax); 1455 break; 1456 case Bytecodes::_i2c: 1457 __ movzwl(rax, rax); 1458 break; 1459 case Bytecodes::_i2s: 1460 __ movswl(rax, rax); 1461 break; 1462 case Bytecodes::_l2i: 1463 __ movl(rax, rax); 1464 break; 1465 case Bytecodes::_l2f: 1466 __ cvtsi2ssq(xmm0, rax); 1467 break; 1468 case Bytecodes::_l2d: 1469 __ cvtsi2sdq(xmm0, rax); 1470 break; 1471 case Bytecodes::_f2i: 1472 { 1473 Label L; 1474 __ cvttss2sil(rax, xmm0); 1475 __ cmpl(rax, 0x80000000); // NaN or overflow/underflow? 1476 __ jcc(Assembler::notEqual, L); 1477 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1); 1478 __ bind(L); 1479 } 1480 break; 1481 case Bytecodes::_f2l: 1482 { 1483 Label L; 1484 __ cvttss2siq(rax, xmm0); 1485 // NaN or overflow/underflow? 1486 __ cmp64(rax, ExternalAddress((address) &is_nan)); 1487 __ jcc(Assembler::notEqual, L); 1488 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1); 1489 __ bind(L); 1490 } 1491 break; 1492 case Bytecodes::_f2d: 1493 __ cvtss2sd(xmm0, xmm0); 1494 break; 1495 case Bytecodes::_d2i: 1496 { 1497 Label L; 1498 __ cvttsd2sil(rax, xmm0); 1499 __ cmpl(rax, 0x80000000); // NaN or overflow/underflow? 1500 __ jcc(Assembler::notEqual, L); 1501 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 1); 1502 __ bind(L); 1503 } 1504 break; 1505 case Bytecodes::_d2l: 1506 { 1507 Label L; 1508 __ cvttsd2siq(rax, xmm0); 1509 // NaN or overflow/underflow? 1510 __ cmp64(rax, ExternalAddress((address) &is_nan)); 1511 __ jcc(Assembler::notEqual, L); 1512 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 1); 1513 __ bind(L); 1514 } 1515 break; 1516 case Bytecodes::_d2f: 1517 __ cvtsd2ss(xmm0, xmm0); 1518 break; 1519 default: 1520 ShouldNotReachHere(); 1521 } 1522 } 1523 1524 void TemplateTable::lcmp() { 1525 transition(ltos, itos); 1526 Label done; 1527 __ pop_l(rdx); 1528 __ cmpq(rdx, rax); 1529 __ movl(rax, -1); 1530 __ jccb(Assembler::less, done); 1531 __ setb(Assembler::notEqual, rax); 1532 __ movzbl(rax, rax); 1533 __ bind(done); 1534 } 1535 1536 void TemplateTable::float_cmp(bool is_float, int unordered_result) { 1537 Label done; 1538 if (is_float) { 1539 // XXX get rid of pop here, use ... reg, mem32 1540 __ pop_f(xmm1); 1541 __ ucomiss(xmm1, xmm0); 1542 } else { 1543 // XXX get rid of pop here, use ... reg, mem64 1544 __ pop_d(xmm1); 1545 __ ucomisd(xmm1, xmm0); 1546 } 1547 if (unordered_result < 0) { 1548 __ movl(rax, -1); 1549 __ jccb(Assembler::parity, done); 1550 __ jccb(Assembler::below, done); 1551 __ setb(Assembler::notEqual, rdx); 1552 __ movzbl(rax, rdx); 1553 } else { 1554 __ movl(rax, 1); 1555 __ jccb(Assembler::parity, done); 1556 __ jccb(Assembler::above, done); 1557 __ movl(rax, 0); 1558 __ jccb(Assembler::equal, done); 1559 __ decrementl(rax); 1560 } 1561 __ bind(done); 1562 } 1563 1564 void TemplateTable::branch(bool is_jsr, bool is_wide) { 1565 __ get_method(rcx); // rcx holds method 1566 __ profile_taken_branch(rax, rbx); // rax holds updated MDP, rbx 1567 // holds bumped taken count 1568 1569 const ByteSize be_offset = MethodCounters::backedge_counter_offset() + 1570 InvocationCounter::counter_offset(); 1571 const ByteSize inv_offset = MethodCounters::invocation_counter_offset() + 1572 InvocationCounter::counter_offset(); 1573 1574 // Load up edx with the branch displacement 1575 if (is_wide) { 1576 __ movl(rdx, at_bcp(1)); 1577 } else { 1578 __ load_signed_short(rdx, at_bcp(1)); 1579 } 1580 __ bswapl(rdx); 1581 1582 if (!is_wide) { 1583 __ sarl(rdx, 16); 1584 } 1585 __ movl2ptr(rdx, rdx); 1586 1587 // Handle all the JSR stuff here, then exit. 1588 // It's much shorter and cleaner than intermingling with the non-JSR 1589 // normal-branch stuff occurring below. 1590 if (is_jsr) { 1591 // Pre-load the next target bytecode into rbx 1592 __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1, 0)); 1593 1594 // compute return address as bci in rax 1595 __ lea(rax, at_bcp((is_wide ? 5 : 3) - 1596 in_bytes(ConstMethod::codes_offset()))); 1597 __ subptr(rax, Address(rcx, Method::const_offset())); 1598 // Adjust the bcp in r13 by the displacement in rdx 1599 __ addptr(r13, rdx); 1600 // jsr returns atos that is not an oop 1601 __ push_i(rax); 1602 __ dispatch_only(vtos); 1603 return; 1604 } 1605 1606 // Normal (non-jsr) branch handling 1607 1608 // Adjust the bcp in r13 by the displacement in rdx 1609 __ addptr(r13, rdx); 1610 1611 assert(UseLoopCounter || !UseOnStackReplacement, 1612 "on-stack-replacement requires loop counters"); 1613 Label backedge_counter_overflow; 1614 Label profile_method; 1615 Label dispatch; 1616 if (UseLoopCounter) { 1617 // increment backedge counter for backward branches 1618 // rax: MDO 1619 // ebx: MDO bumped taken-count 1620 // rcx: method 1621 // rdx: target offset 1622 // r13: target bcp 1623 // r14: locals pointer 1624 __ testl(rdx, rdx); // check if forward or backward branch 1625 __ jcc(Assembler::positive, dispatch); // count only if backward branch 1626 1627 // check if MethodCounters exists 1628 Label has_counters; 1629 __ movptr(rax, Address(rcx, Method::method_counters_offset())); 1630 __ testptr(rax, rax); 1631 __ jcc(Assembler::notZero, has_counters); 1632 __ push(rdx); 1633 __ push(rcx); 1634 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::build_method_counters), 1635 rcx); 1636 __ pop(rcx); 1637 __ pop(rdx); 1638 __ movptr(rax, Address(rcx, Method::method_counters_offset())); 1639 __ jcc(Assembler::zero, dispatch); 1640 __ bind(has_counters); 1641 1642 if (TieredCompilation) { 1643 Label no_mdo; 1644 int increment = InvocationCounter::count_increment; 1645 if (ProfileInterpreter) { 1646 // Are we profiling? 1647 __ movptr(rbx, Address(rcx, in_bytes(Method::method_data_offset()))); 1648 __ testptr(rbx, rbx); 1649 __ jccb(Assembler::zero, no_mdo); 1650 // Increment the MDO backedge counter 1651 const Address mdo_backedge_counter(rbx, in_bytes(MethodData::backedge_counter_offset()) + 1652 in_bytes(InvocationCounter::counter_offset())); 1653 const Address mask(rbx, in_bytes(MethodData::backedge_mask_offset())); 1654 __ increment_mask_and_jump(mdo_backedge_counter, increment, mask, 1655 rax, false, Assembler::zero, &backedge_counter_overflow); 1656 __ jmp(dispatch); 1657 } 1658 __ bind(no_mdo); 1659 // Increment backedge counter in MethodCounters* 1660 __ movptr(rcx, Address(rcx, Method::method_counters_offset())); 1661 const Address mask(rcx, in_bytes(MethodCounters::backedge_mask_offset())); 1662 __ increment_mask_and_jump(Address(rcx, be_offset), increment, mask, 1663 rax, false, Assembler::zero, &backedge_counter_overflow); 1664 } else { // not TieredCompilation 1665 // increment counter 1666 __ movptr(rcx, Address(rcx, Method::method_counters_offset())); 1667 __ movl(rax, Address(rcx, be_offset)); // load backedge counter 1668 __ incrementl(rax, InvocationCounter::count_increment); // increment counter 1669 __ movl(Address(rcx, be_offset), rax); // store counter 1670 1671 __ movl(rax, Address(rcx, inv_offset)); // load invocation counter 1672 1673 __ andl(rax, InvocationCounter::count_mask_value); // and the status bits 1674 __ addl(rax, Address(rcx, be_offset)); // add both counters 1675 1676 if (ProfileInterpreter) { 1677 // Test to see if we should create a method data oop 1678 __ cmp32(rax, Address(rcx, in_bytes(MethodCounters::interpreter_profile_limit_offset()))); 1679 __ jcc(Assembler::less, dispatch); 1680 1681 // if no method data exists, go to profile method 1682 __ test_method_data_pointer(rax, profile_method); 1683 1684 if (UseOnStackReplacement) { 1685 // check for overflow against ebx which is the MDO taken count 1686 __ cmp32(rbx, Address(rcx, in_bytes(MethodCounters::interpreter_backward_branch_limit_offset()))); 1687 __ jcc(Assembler::below, dispatch); 1688 1689 // When ProfileInterpreter is on, the backedge_count comes 1690 // from the MethodData*, which value does not get reset on 1691 // the call to frequency_counter_overflow(). To avoid 1692 // excessive calls to the overflow routine while the method is 1693 // being compiled, add a second test to make sure the overflow 1694 // function is called only once every overflow_frequency. 1695 const int overflow_frequency = 1024; 1696 __ andl(rbx, overflow_frequency - 1); 1697 __ jcc(Assembler::zero, backedge_counter_overflow); 1698 1699 } 1700 } else { 1701 if (UseOnStackReplacement) { 1702 // check for overflow against eax, which is the sum of the 1703 // counters 1704 __ cmp32(rax, Address(rcx, in_bytes(MethodCounters::interpreter_backward_branch_limit_offset()))); 1705 __ jcc(Assembler::aboveEqual, backedge_counter_overflow); 1706 1707 } 1708 } 1709 } 1710 __ bind(dispatch); 1711 } 1712 1713 // Pre-load the next target bytecode into rbx 1714 __ load_unsigned_byte(rbx, Address(r13, 0)); 1715 1716 // continue with the bytecode @ target 1717 // eax: return bci for jsr's, unused otherwise 1718 // ebx: target bytecode 1719 // r13: target bcp 1720 __ dispatch_only(vtos); 1721 1722 if (UseLoopCounter) { 1723 if (ProfileInterpreter) { 1724 // Out-of-line code to allocate method data oop. 1725 __ bind(profile_method); 1726 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method)); 1727 __ load_unsigned_byte(rbx, Address(r13, 0)); // restore target bytecode 1728 __ set_method_data_pointer_for_bcp(); 1729 __ jmp(dispatch); 1730 } 1731 1732 if (UseOnStackReplacement) { 1733 // invocation counter overflow 1734 __ bind(backedge_counter_overflow); 1735 __ negptr(rdx); 1736 __ addptr(rdx, r13); // branch bcp 1737 // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp) 1738 __ call_VM(noreg, 1739 CAST_FROM_FN_PTR(address, 1740 InterpreterRuntime::frequency_counter_overflow), 1741 rdx); 1742 __ load_unsigned_byte(rbx, Address(r13, 0)); // restore target bytecode 1743 1744 // rax: osr nmethod (osr ok) or NULL (osr not possible) 1745 // ebx: target bytecode 1746 // rdx: scratch 1747 // r14: locals pointer 1748 // r13: bcp 1749 __ testptr(rax, rax); // test result 1750 __ jcc(Assembler::zero, dispatch); // no osr if null 1751 // nmethod may have been invalidated (VM may block upon call_VM return) 1752 __ cmpb(Address(rax, nmethod::state_offset()), nmethod::in_use); 1753 __ jcc(Assembler::notEqual, dispatch); 1754 1755 // We have the address of an on stack replacement routine in eax 1756 // We need to prepare to execute the OSR method. First we must 1757 // migrate the locals and monitors off of the stack. 1758 1759 __ mov(r13, rax); // save the nmethod 1760 1761 call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin)); 1762 1763 // eax is OSR buffer, move it to expected parameter location 1764 __ mov(j_rarg0, rax); 1765 1766 // We use j_rarg definitions here so that registers don't conflict as parameter 1767 // registers change across platforms as we are in the midst of a calling 1768 // sequence to the OSR nmethod and we don't want collision. These are NOT parameters. 1769 1770 const Register retaddr = j_rarg2; 1771 const Register sender_sp = j_rarg1; 1772 1773 // pop the interpreter frame 1774 __ movptr(sender_sp, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp 1775 __ leave(); // remove frame anchor 1776 __ pop(retaddr); // get return address 1777 __ mov(rsp, sender_sp); // set sp to sender sp 1778 // Ensure compiled code always sees stack at proper alignment 1779 __ andptr(rsp, -(StackAlignmentInBytes)); 1780 1781 // unlike x86 we need no specialized return from compiled code 1782 // to the interpreter or the call stub. 1783 1784 // push the return address 1785 __ push(retaddr); 1786 1787 // and begin the OSR nmethod 1788 __ jmp(Address(r13, nmethod::osr_entry_point_offset())); 1789 } 1790 } 1791 } 1792 1793 1794 void TemplateTable::if_0cmp(Condition cc) { 1795 transition(itos, vtos); 1796 // assume branch is more often taken than not (loops use backward branches) 1797 Label not_taken; 1798 __ testl(rax, rax); 1799 __ jcc(j_not(cc), not_taken); 1800 branch(false, false); 1801 __ bind(not_taken); 1802 __ profile_not_taken_branch(rax); 1803 } 1804 1805 void TemplateTable::if_icmp(Condition cc) { 1806 transition(itos, vtos); 1807 // assume branch is more often taken than not (loops use backward branches) 1808 Label not_taken; 1809 __ pop_i(rdx); 1810 __ cmpl(rdx, rax); 1811 __ jcc(j_not(cc), not_taken); 1812 branch(false, false); 1813 __ bind(not_taken); 1814 __ profile_not_taken_branch(rax); 1815 } 1816 1817 void TemplateTable::if_nullcmp(Condition cc) { 1818 transition(atos, vtos); 1819 // assume branch is more often taken than not (loops use backward branches) 1820 Label not_taken; 1821 __ testptr(rax, rax); 1822 __ jcc(j_not(cc), not_taken); 1823 branch(false, false); 1824 __ bind(not_taken); 1825 __ profile_not_taken_branch(rax); 1826 } 1827 1828 void TemplateTable::if_acmp(Condition cc) { 1829 transition(atos, vtos); 1830 // assume branch is more often taken than not (loops use backward branches) 1831 Label not_taken; 1832 __ pop_ptr(rdx); 1833 __ cmpptr(rdx, rax); 1834 __ jcc(j_not(cc), not_taken); 1835 branch(false, false); 1836 __ bind(not_taken); 1837 __ profile_not_taken_branch(rax); 1838 } 1839 1840 void TemplateTable::ret() { 1841 transition(vtos, vtos); 1842 locals_index(rbx); 1843 __ movslq(rbx, iaddress(rbx)); // get return bci, compute return bcp 1844 __ profile_ret(rbx, rcx); 1845 __ get_method(rax); 1846 __ movptr(r13, Address(rax, Method::const_offset())); 1847 __ lea(r13, Address(r13, rbx, Address::times_1, 1848 ConstMethod::codes_offset())); 1849 __ dispatch_next(vtos); 1850 } 1851 1852 void TemplateTable::wide_ret() { 1853 transition(vtos, vtos); 1854 locals_index_wide(rbx); 1855 __ movptr(rbx, aaddress(rbx)); // get return bci, compute return bcp 1856 __ profile_ret(rbx, rcx); 1857 __ get_method(rax); 1858 __ movptr(r13, Address(rax, Method::const_offset())); 1859 __ lea(r13, Address(r13, rbx, Address::times_1, ConstMethod::codes_offset())); 1860 __ dispatch_next(vtos); 1861 } 1862 1863 void TemplateTable::tableswitch() { 1864 Label default_case, continue_execution; 1865 transition(itos, vtos); 1866 // align r13 1867 __ lea(rbx, at_bcp(BytesPerInt)); 1868 __ andptr(rbx, -BytesPerInt); 1869 // load lo & hi 1870 __ movl(rcx, Address(rbx, BytesPerInt)); 1871 __ movl(rdx, Address(rbx, 2 * BytesPerInt)); 1872 __ bswapl(rcx); 1873 __ bswapl(rdx); 1874 // check against lo & hi 1875 __ cmpl(rax, rcx); 1876 __ jcc(Assembler::less, default_case); 1877 __ cmpl(rax, rdx); 1878 __ jcc(Assembler::greater, default_case); 1879 // lookup dispatch offset 1880 __ subl(rax, rcx); 1881 __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt)); 1882 __ profile_switch_case(rax, rbx, rcx); 1883 // continue execution 1884 __ bind(continue_execution); 1885 __ bswapl(rdx); 1886 __ movl2ptr(rdx, rdx); 1887 __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1)); 1888 __ addptr(r13, rdx); 1889 __ dispatch_only(vtos); 1890 // handle default 1891 __ bind(default_case); 1892 __ profile_switch_default(rax); 1893 __ movl(rdx, Address(rbx, 0)); 1894 __ jmp(continue_execution); 1895 } 1896 1897 void TemplateTable::lookupswitch() { 1898 transition(itos, itos); 1899 __ stop("lookupswitch bytecode should have been rewritten"); 1900 } 1901 1902 void TemplateTable::fast_linearswitch() { 1903 transition(itos, vtos); 1904 Label loop_entry, loop, found, continue_execution; 1905 // bswap rax so we can avoid bswapping the table entries 1906 __ bswapl(rax); 1907 // align r13 1908 __ lea(rbx, at_bcp(BytesPerInt)); // btw: should be able to get rid of 1909 // this instruction (change offsets 1910 // below) 1911 __ andptr(rbx, -BytesPerInt); 1912 // set counter 1913 __ movl(rcx, Address(rbx, BytesPerInt)); 1914 __ bswapl(rcx); 1915 __ jmpb(loop_entry); 1916 // table search 1917 __ bind(loop); 1918 __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * BytesPerInt)); 1919 __ jcc(Assembler::equal, found); 1920 __ bind(loop_entry); 1921 __ decrementl(rcx); 1922 __ jcc(Assembler::greaterEqual, loop); 1923 // default case 1924 __ profile_switch_default(rax); 1925 __ movl(rdx, Address(rbx, 0)); 1926 __ jmp(continue_execution); 1927 // entry found -> get offset 1928 __ bind(found); 1929 __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * BytesPerInt)); 1930 __ profile_switch_case(rcx, rax, rbx); 1931 // continue execution 1932 __ bind(continue_execution); 1933 __ bswapl(rdx); 1934 __ movl2ptr(rdx, rdx); 1935 __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1)); 1936 __ addptr(r13, rdx); 1937 __ dispatch_only(vtos); 1938 } 1939 1940 void TemplateTable::fast_binaryswitch() { 1941 transition(itos, vtos); 1942 // Implementation using the following core algorithm: 1943 // 1944 // int binary_search(int key, LookupswitchPair* array, int n) { 1945 // // Binary search according to "Methodik des Programmierens" by 1946 // // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985. 1947 // int i = 0; 1948 // int j = n; 1949 // while (i+1 < j) { 1950 // // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q) 1951 // // with Q: for all i: 0 <= i < n: key < a[i] 1952 // // where a stands for the array and assuming that the (inexisting) 1953 // // element a[n] is infinitely big. 1954 // int h = (i + j) >> 1; 1955 // // i < h < j 1956 // if (key < array[h].fast_match()) { 1957 // j = h; 1958 // } else { 1959 // i = h; 1960 // } 1961 // } 1962 // // R: a[i] <= key < a[i+1] or Q 1963 // // (i.e., if key is within array, i is the correct index) 1964 // return i; 1965 // } 1966 1967 // Register allocation 1968 const Register key = rax; // already set (tosca) 1969 const Register array = rbx; 1970 const Register i = rcx; 1971 const Register j = rdx; 1972 const Register h = rdi; 1973 const Register temp = rsi; 1974 1975 // Find array start 1976 __ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to 1977 // get rid of this 1978 // instruction (change 1979 // offsets below) 1980 __ andptr(array, -BytesPerInt); 1981 1982 // Initialize i & j 1983 __ xorl(i, i); // i = 0; 1984 __ movl(j, Address(array, -BytesPerInt)); // j = length(array); 1985 1986 // Convert j into native byteordering 1987 __ bswapl(j); 1988 1989 // And start 1990 Label entry; 1991 __ jmp(entry); 1992 1993 // binary search loop 1994 { 1995 Label loop; 1996 __ bind(loop); 1997 // int h = (i + j) >> 1; 1998 __ leal(h, Address(i, j, Address::times_1)); // h = i + j; 1999 __ sarl(h, 1); // h = (i + j) >> 1; 2000 // if (key < array[h].fast_match()) { 2001 // j = h; 2002 // } else { 2003 // i = h; 2004 // } 2005 // Convert array[h].match to native byte-ordering before compare 2006 __ movl(temp, Address(array, h, Address::times_8)); 2007 __ bswapl(temp); 2008 __ cmpl(key, temp); 2009 // j = h if (key < array[h].fast_match()) 2010 __ cmovl(Assembler::less, j, h); 2011 // i = h if (key >= array[h].fast_match()) 2012 __ cmovl(Assembler::greaterEqual, i, h); 2013 // while (i+1 < j) 2014 __ bind(entry); 2015 __ leal(h, Address(i, 1)); // i+1 2016 __ cmpl(h, j); // i+1 < j 2017 __ jcc(Assembler::less, loop); 2018 } 2019 2020 // end of binary search, result index is i (must check again!) 2021 Label default_case; 2022 // Convert array[i].match to native byte-ordering before compare 2023 __ movl(temp, Address(array, i, Address::times_8)); 2024 __ bswapl(temp); 2025 __ cmpl(key, temp); 2026 __ jcc(Assembler::notEqual, default_case); 2027 2028 // entry found -> j = offset 2029 __ movl(j , Address(array, i, Address::times_8, BytesPerInt)); 2030 __ profile_switch_case(i, key, array); 2031 __ bswapl(j); 2032 __ movl2ptr(j, j); 2033 __ load_unsigned_byte(rbx, Address(r13, j, Address::times_1)); 2034 __ addptr(r13, j); 2035 __ dispatch_only(vtos); 2036 2037 // default case -> j = default offset 2038 __ bind(default_case); 2039 __ profile_switch_default(i); 2040 __ movl(j, Address(array, -2 * BytesPerInt)); 2041 __ bswapl(j); 2042 __ movl2ptr(j, j); 2043 __ load_unsigned_byte(rbx, Address(r13, j, Address::times_1)); 2044 __ addptr(r13, j); 2045 __ dispatch_only(vtos); 2046 } 2047 2048 2049 void TemplateTable::_return(TosState state) { 2050 transition(state, state); 2051 assert(_desc->calls_vm(), 2052 "inconsistent calls_vm information"); // call in remove_activation 2053 2054 if (_desc->bytecode() == Bytecodes::_return_register_finalizer) { 2055 assert(state == vtos, "only valid state"); 2056 __ movptr(c_rarg1, aaddress(0)); 2057 __ load_klass(rdi, c_rarg1); 2058 __ movl(rdi, Address(rdi, Klass::access_flags_offset())); 2059 __ testl(rdi, JVM_ACC_HAS_FINALIZER); 2060 Label skip_register_finalizer; 2061 __ jcc(Assembler::zero, skip_register_finalizer); 2062 2063 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), c_rarg1); 2064 2065 __ bind(skip_register_finalizer); 2066 } 2067 2068 __ remove_activation(state, r13); 2069 __ jmp(r13); 2070 } 2071 2072 // ---------------------------------------------------------------------------- 2073 // Volatile variables demand their effects be made known to all CPU's 2074 // in order. Store buffers on most chips allow reads & writes to 2075 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode 2076 // without some kind of memory barrier (i.e., it's not sufficient that 2077 // the interpreter does not reorder volatile references, the hardware 2078 // also must not reorder them). 2079 // 2080 // According to the new Java Memory Model (JMM): 2081 // (1) All volatiles are serialized wrt to each other. ALSO reads & 2082 // writes act as aquire & release, so: 2083 // (2) A read cannot let unrelated NON-volatile memory refs that 2084 // happen after the read float up to before the read. It's OK for 2085 // non-volatile memory refs that happen before the volatile read to 2086 // float down below it. 2087 // (3) Similar a volatile write cannot let unrelated NON-volatile 2088 // memory refs that happen BEFORE the write float down to after the 2089 // write. It's OK for non-volatile memory refs that happen after the 2090 // volatile write to float up before it. 2091 // 2092 // We only put in barriers around volatile refs (they are expensive), 2093 // not _between_ memory refs (that would require us to track the 2094 // flavor of the previous memory refs). Requirements (2) and (3) 2095 // require some barriers before volatile stores and after volatile 2096 // loads. These nearly cover requirement (1) but miss the 2097 // volatile-store-volatile-load case. This final case is placed after 2098 // volatile-stores although it could just as well go before 2099 // volatile-loads. 2100 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits 2101 order_constraint) { 2102 // Helper function to insert a is-volatile test and memory barrier 2103 if (os::is_MP()) { // Not needed on single CPU 2104 __ membar(order_constraint); 2105 } 2106 } 2107 2108 void TemplateTable::resolve_cache_and_index(int byte_no, 2109 Register Rcache, 2110 Register index, 2111 size_t index_size) { 2112 const Register temp = rbx; 2113 assert_different_registers(Rcache, index, temp); 2114 2115 Label resolved; 2116 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 2117 __ get_cache_and_index_and_bytecode_at_bcp(Rcache, index, temp, byte_no, 1, index_size); 2118 __ cmpl(temp, (int) bytecode()); // have we resolved this bytecode? 2119 __ jcc(Assembler::equal, resolved); 2120 2121 // resolve first time through 2122 address entry; 2123 switch (bytecode()) { 2124 case Bytecodes::_getstatic: 2125 case Bytecodes::_putstatic: 2126 case Bytecodes::_getfield: 2127 case Bytecodes::_putfield: 2128 entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put); 2129 break; 2130 case Bytecodes::_invokevirtual: 2131 case Bytecodes::_invokespecial: 2132 case Bytecodes::_invokestatic: 2133 case Bytecodes::_invokeinterface: 2134 entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke); 2135 break; 2136 case Bytecodes::_invokehandle: 2137 entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokehandle); 2138 break; 2139 case Bytecodes::_invokedynamic: 2140 entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic); 2141 break; 2142 default: 2143 fatal(err_msg("unexpected bytecode: %s", Bytecodes::name(bytecode()))); 2144 break; 2145 } 2146 __ movl(temp, (int) bytecode()); 2147 __ call_VM(noreg, entry, temp); 2148 2149 // Update registers with resolved info 2150 __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size); 2151 __ bind(resolved); 2152 } 2153 2154 // The cache and index registers must be set before call 2155 void TemplateTable::load_field_cp_cache_entry(Register obj, 2156 Register cache, 2157 Register index, 2158 Register off, 2159 Register flags, 2160 bool is_static = false) { 2161 assert_different_registers(cache, index, flags, off); 2162 2163 ByteSize cp_base_offset = ConstantPoolCache::base_offset(); 2164 // Field offset 2165 __ movptr(off, Address(cache, index, Address::times_ptr, 2166 in_bytes(cp_base_offset + 2167 ConstantPoolCacheEntry::f2_offset()))); 2168 // Flags 2169 __ movl(flags, Address(cache, index, Address::times_ptr, 2170 in_bytes(cp_base_offset + 2171 ConstantPoolCacheEntry::flags_offset()))); 2172 2173 // klass overwrite register 2174 if (is_static) { 2175 __ movptr(obj, Address(cache, index, Address::times_ptr, 2176 in_bytes(cp_base_offset + 2177 ConstantPoolCacheEntry::f1_offset()))); 2178 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 2179 __ movptr(obj, Address(obj, mirror_offset)); 2180 } 2181 } 2182 2183 void TemplateTable::load_invoke_cp_cache_entry(int byte_no, 2184 Register method, 2185 Register itable_index, 2186 Register flags, 2187 bool is_invokevirtual, 2188 bool is_invokevfinal, /*unused*/ 2189 bool is_invokedynamic) { 2190 // setup registers 2191 const Register cache = rcx; 2192 const Register index = rdx; 2193 assert_different_registers(method, flags); 2194 assert_different_registers(method, cache, index); 2195 assert_different_registers(itable_index, flags); 2196 assert_different_registers(itable_index, cache, index); 2197 // determine constant pool cache field offsets 2198 assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant"); 2199 const int method_offset = in_bytes( 2200 ConstantPoolCache::base_offset() + 2201 ((byte_no == f2_byte) 2202 ? ConstantPoolCacheEntry::f2_offset() 2203 : ConstantPoolCacheEntry::f1_offset())); 2204 const int flags_offset = in_bytes(ConstantPoolCache::base_offset() + 2205 ConstantPoolCacheEntry::flags_offset()); 2206 // access constant pool cache fields 2207 const int index_offset = in_bytes(ConstantPoolCache::base_offset() + 2208 ConstantPoolCacheEntry::f2_offset()); 2209 2210 size_t index_size = (is_invokedynamic ? sizeof(u4) : sizeof(u2)); 2211 resolve_cache_and_index(byte_no, cache, index, index_size); 2212 __ movptr(method, Address(cache, index, Address::times_ptr, method_offset)); 2213 2214 if (itable_index != noreg) { 2215 // pick up itable or appendix index from f2 also: 2216 __ movptr(itable_index, Address(cache, index, Address::times_ptr, index_offset)); 2217 } 2218 __ movl(flags, Address(cache, index, Address::times_ptr, flags_offset)); 2219 } 2220 2221 // Correct values of the cache and index registers are preserved. 2222 void TemplateTable::jvmti_post_field_access(Register cache, Register index, 2223 bool is_static, bool has_tos) { 2224 // do the JVMTI work here to avoid disturbing the register state below 2225 // We use c_rarg registers here because we want to use the register used in 2226 // the call to the VM 2227 if (JvmtiExport::can_post_field_access()) { 2228 // Check to see if a field access watch has been set before we 2229 // take the time to call into the VM. 2230 Label L1; 2231 assert_different_registers(cache, index, rax); 2232 __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr())); 2233 __ testl(rax, rax); 2234 __ jcc(Assembler::zero, L1); 2235 2236 __ get_cache_and_index_at_bcp(c_rarg2, c_rarg3, 1); 2237 2238 // cache entry pointer 2239 __ addptr(c_rarg2, in_bytes(ConstantPoolCache::base_offset())); 2240 __ shll(c_rarg3, LogBytesPerWord); 2241 __ addptr(c_rarg2, c_rarg3); 2242 if (is_static) { 2243 __ xorl(c_rarg1, c_rarg1); // NULL object reference 2244 } else { 2245 __ movptr(c_rarg1, at_tos()); // get object pointer without popping it 2246 __ verify_oop(c_rarg1); 2247 } 2248 // c_rarg1: object pointer or NULL 2249 // c_rarg2: cache entry pointer 2250 // c_rarg3: jvalue object on the stack 2251 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 2252 InterpreterRuntime::post_field_access), 2253 c_rarg1, c_rarg2, c_rarg3); 2254 __ get_cache_and_index_at_bcp(cache, index, 1); 2255 __ bind(L1); 2256 } 2257 } 2258 2259 void TemplateTable::pop_and_check_object(Register r) { 2260 __ pop_ptr(r); 2261 __ null_check(r); // for field access must check obj. 2262 __ verify_oop(r); 2263 } 2264 2265 void TemplateTable::getfield_or_static(int byte_no, bool is_static) { 2266 transition(vtos, vtos); 2267 2268 const Register cache = rcx; 2269 const Register index = rdx; 2270 const Register obj = c_rarg3; 2271 const Register off = rbx; 2272 const Register flags = rax; 2273 const Register bc = c_rarg3; // uses same reg as obj, so don't mix them 2274 2275 resolve_cache_and_index(byte_no, cache, index, sizeof(u2)); 2276 jvmti_post_field_access(cache, index, is_static, false); 2277 load_field_cp_cache_entry(obj, cache, index, off, flags, is_static); 2278 2279 if (!is_static) { 2280 // obj is on the stack 2281 pop_and_check_object(obj); 2282 } 2283 2284 const Address field(obj, off, Address::times_1); 2285 2286 Label Done, notByte, notInt, notShort, notChar, 2287 notLong, notFloat, notObj, notDouble; 2288 2289 __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift); 2290 // Make sure we don't need to mask edx after the above shift 2291 assert(btos == 0, "change code, btos != 0"); 2292 2293 __ andl(flags, ConstantPoolCacheEntry::tos_state_mask); 2294 __ jcc(Assembler::notZero, notByte); 2295 // btos 2296 __ load_signed_byte(rax, field); 2297 __ push(btos); 2298 // Rewrite bytecode to be faster 2299 if (!is_static) { 2300 patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx); 2301 } 2302 __ jmp(Done); 2303 2304 __ bind(notByte); 2305 __ cmpl(flags, atos); 2306 __ jcc(Assembler::notEqual, notObj); 2307 // atos 2308 __ load_heap_oop(rax, field); 2309 __ push(atos); 2310 if (!is_static) { 2311 patch_bytecode(Bytecodes::_fast_agetfield, bc, rbx); 2312 } 2313 __ jmp(Done); 2314 2315 __ bind(notObj); 2316 __ cmpl(flags, itos); 2317 __ jcc(Assembler::notEqual, notInt); 2318 // itos 2319 __ movl(rax, field); 2320 __ push(itos); 2321 // Rewrite bytecode to be faster 2322 if (!is_static) { 2323 patch_bytecode(Bytecodes::_fast_igetfield, bc, rbx); 2324 } 2325 __ jmp(Done); 2326 2327 __ bind(notInt); 2328 __ cmpl(flags, ctos); 2329 __ jcc(Assembler::notEqual, notChar); 2330 // ctos 2331 __ load_unsigned_short(rax, field); 2332 __ push(ctos); 2333 // Rewrite bytecode to be faster 2334 if (!is_static) { 2335 patch_bytecode(Bytecodes::_fast_cgetfield, bc, rbx); 2336 } 2337 __ jmp(Done); 2338 2339 __ bind(notChar); 2340 __ cmpl(flags, stos); 2341 __ jcc(Assembler::notEqual, notShort); 2342 // stos 2343 __ load_signed_short(rax, field); 2344 __ push(stos); 2345 // Rewrite bytecode to be faster 2346 if (!is_static) { 2347 patch_bytecode(Bytecodes::_fast_sgetfield, bc, rbx); 2348 } 2349 __ jmp(Done); 2350 2351 __ bind(notShort); 2352 __ cmpl(flags, ltos); 2353 __ jcc(Assembler::notEqual, notLong); 2354 // ltos 2355 __ movq(rax, field); 2356 __ push(ltos); 2357 // Rewrite bytecode to be faster 2358 if (!is_static) { 2359 patch_bytecode(Bytecodes::_fast_lgetfield, bc, rbx); 2360 } 2361 __ jmp(Done); 2362 2363 __ bind(notLong); 2364 __ cmpl(flags, ftos); 2365 __ jcc(Assembler::notEqual, notFloat); 2366 // ftos 2367 __ movflt(xmm0, field); 2368 __ push(ftos); 2369 // Rewrite bytecode to be faster 2370 if (!is_static) { 2371 patch_bytecode(Bytecodes::_fast_fgetfield, bc, rbx); 2372 } 2373 __ jmp(Done); 2374 2375 __ bind(notFloat); 2376 #ifdef ASSERT 2377 __ cmpl(flags, dtos); 2378 __ jcc(Assembler::notEqual, notDouble); 2379 #endif 2380 // dtos 2381 __ movdbl(xmm0, field); 2382 __ push(dtos); 2383 // Rewrite bytecode to be faster 2384 if (!is_static) { 2385 patch_bytecode(Bytecodes::_fast_dgetfield, bc, rbx); 2386 } 2387 #ifdef ASSERT 2388 __ jmp(Done); 2389 2390 __ bind(notDouble); 2391 __ stop("Bad state"); 2392 #endif 2393 2394 __ bind(Done); 2395 // [jk] not needed currently 2396 // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadLoad | 2397 // Assembler::LoadStore)); 2398 } 2399 2400 2401 void TemplateTable::getfield(int byte_no) { 2402 getfield_or_static(byte_no, false); 2403 } 2404 2405 void TemplateTable::getstatic(int byte_no) { 2406 getfield_or_static(byte_no, true); 2407 } 2408 2409 // The registers cache and index expected to be set before call. 2410 // The function may destroy various registers, just not the cache and index registers. 2411 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) { 2412 transition(vtos, vtos); 2413 2414 ByteSize cp_base_offset = ConstantPoolCache::base_offset(); 2415 2416 if (JvmtiExport::can_post_field_modification()) { 2417 // Check to see if a field modification watch has been set before 2418 // we take the time to call into the VM. 2419 Label L1; 2420 assert_different_registers(cache, index, rax); 2421 __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr())); 2422 __ testl(rax, rax); 2423 __ jcc(Assembler::zero, L1); 2424 2425 __ get_cache_and_index_at_bcp(c_rarg2, rscratch1, 1); 2426 2427 if (is_static) { 2428 // Life is simple. Null out the object pointer. 2429 __ xorl(c_rarg1, c_rarg1); 2430 } else { 2431 // Life is harder. The stack holds the value on top, followed by 2432 // the object. We don't know the size of the value, though; it 2433 // could be one or two words depending on its type. As a result, 2434 // we must find the type to determine where the object is. 2435 __ movl(c_rarg3, Address(c_rarg2, rscratch1, 2436 Address::times_8, 2437 in_bytes(cp_base_offset + 2438 ConstantPoolCacheEntry::flags_offset()))); 2439 __ shrl(c_rarg3, ConstantPoolCacheEntry::tos_state_shift); 2440 // Make sure we don't need to mask rcx after the above shift 2441 ConstantPoolCacheEntry::verify_tos_state_shift(); 2442 __ movptr(c_rarg1, at_tos_p1()); // initially assume a one word jvalue 2443 __ cmpl(c_rarg3, ltos); 2444 __ cmovptr(Assembler::equal, 2445 c_rarg1, at_tos_p2()); // ltos (two word jvalue) 2446 __ cmpl(c_rarg3, dtos); 2447 __ cmovptr(Assembler::equal, 2448 c_rarg1, at_tos_p2()); // dtos (two word jvalue) 2449 } 2450 // cache entry pointer 2451 __ addptr(c_rarg2, in_bytes(cp_base_offset)); 2452 __ shll(rscratch1, LogBytesPerWord); 2453 __ addptr(c_rarg2, rscratch1); 2454 // object (tos) 2455 __ mov(c_rarg3, rsp); 2456 // c_rarg1: object pointer set up above (NULL if static) 2457 // c_rarg2: cache entry pointer 2458 // c_rarg3: jvalue object on the stack 2459 __ call_VM(noreg, 2460 CAST_FROM_FN_PTR(address, 2461 InterpreterRuntime::post_field_modification), 2462 c_rarg1, c_rarg2, c_rarg3); 2463 __ get_cache_and_index_at_bcp(cache, index, 1); 2464 __ bind(L1); 2465 } 2466 } 2467 2468 void TemplateTable::putfield_or_static(int byte_no, bool is_static) { 2469 transition(vtos, vtos); 2470 2471 const Register cache = rcx; 2472 const Register index = rdx; 2473 const Register obj = rcx; 2474 const Register off = rbx; 2475 const Register flags = rax; 2476 const Register bc = c_rarg3; 2477 2478 resolve_cache_and_index(byte_no, cache, index, sizeof(u2)); 2479 jvmti_post_field_mod(cache, index, is_static); 2480 load_field_cp_cache_entry(obj, cache, index, off, flags, is_static); 2481 2482 // [jk] not needed currently 2483 // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore | 2484 // Assembler::StoreStore)); 2485 2486 Label notVolatile, Done; 2487 __ movl(rdx, flags); 2488 __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift); 2489 __ andl(rdx, 0x1); 2490 2491 // field address 2492 const Address field(obj, off, Address::times_1); 2493 2494 Label notByte, notInt, notShort, notChar, 2495 notLong, notFloat, notObj, notDouble; 2496 2497 __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift); 2498 2499 assert(btos == 0, "change code, btos != 0"); 2500 __ andl(flags, ConstantPoolCacheEntry::tos_state_mask); 2501 __ jcc(Assembler::notZero, notByte); 2502 2503 // btos 2504 { 2505 __ pop(btos); 2506 if (!is_static) pop_and_check_object(obj); 2507 __ movb(field, rax); 2508 if (!is_static) { 2509 patch_bytecode(Bytecodes::_fast_bputfield, bc, rbx, true, byte_no); 2510 } 2511 __ jmp(Done); 2512 } 2513 2514 __ bind(notByte); 2515 __ cmpl(flags, atos); 2516 __ jcc(Assembler::notEqual, notObj); 2517 2518 // atos 2519 { 2520 __ pop(atos); 2521 if (!is_static) pop_and_check_object(obj); 2522 // Store into the field 2523 do_oop_store(_masm, field, rax, _bs->kind(), false); 2524 if (!is_static) { 2525 patch_bytecode(Bytecodes::_fast_aputfield, bc, rbx, true, byte_no); 2526 } 2527 __ jmp(Done); 2528 } 2529 2530 __ bind(notObj); 2531 __ cmpl(flags, itos); 2532 __ jcc(Assembler::notEqual, notInt); 2533 2534 // itos 2535 { 2536 __ pop(itos); 2537 if (!is_static) pop_and_check_object(obj); 2538 __ movl(field, rax); 2539 if (!is_static) { 2540 patch_bytecode(Bytecodes::_fast_iputfield, bc, rbx, true, byte_no); 2541 } 2542 __ jmp(Done); 2543 } 2544 2545 __ bind(notInt); 2546 __ cmpl(flags, ctos); 2547 __ jcc(Assembler::notEqual, notChar); 2548 2549 // ctos 2550 { 2551 __ pop(ctos); 2552 if (!is_static) pop_and_check_object(obj); 2553 __ movw(field, rax); 2554 if (!is_static) { 2555 patch_bytecode(Bytecodes::_fast_cputfield, bc, rbx, true, byte_no); 2556 } 2557 __ jmp(Done); 2558 } 2559 2560 __ bind(notChar); 2561 __ cmpl(flags, stos); 2562 __ jcc(Assembler::notEqual, notShort); 2563 2564 // stos 2565 { 2566 __ pop(stos); 2567 if (!is_static) pop_and_check_object(obj); 2568 __ movw(field, rax); 2569 if (!is_static) { 2570 patch_bytecode(Bytecodes::_fast_sputfield, bc, rbx, true, byte_no); 2571 } 2572 __ jmp(Done); 2573 } 2574 2575 __ bind(notShort); 2576 __ cmpl(flags, ltos); 2577 __ jcc(Assembler::notEqual, notLong); 2578 2579 // ltos 2580 { 2581 __ pop(ltos); 2582 if (!is_static) pop_and_check_object(obj); 2583 __ movq(field, rax); 2584 if (!is_static) { 2585 patch_bytecode(Bytecodes::_fast_lputfield, bc, rbx, true, byte_no); 2586 } 2587 __ jmp(Done); 2588 } 2589 2590 __ bind(notLong); 2591 __ cmpl(flags, ftos); 2592 __ jcc(Assembler::notEqual, notFloat); 2593 2594 // ftos 2595 { 2596 __ pop(ftos); 2597 if (!is_static) pop_and_check_object(obj); 2598 __ movflt(field, xmm0); 2599 if (!is_static) { 2600 patch_bytecode(Bytecodes::_fast_fputfield, bc, rbx, true, byte_no); 2601 } 2602 __ jmp(Done); 2603 } 2604 2605 __ bind(notFloat); 2606 #ifdef ASSERT 2607 __ cmpl(flags, dtos); 2608 __ jcc(Assembler::notEqual, notDouble); 2609 #endif 2610 2611 // dtos 2612 { 2613 __ pop(dtos); 2614 if (!is_static) pop_and_check_object(obj); 2615 __ movdbl(field, xmm0); 2616 if (!is_static) { 2617 patch_bytecode(Bytecodes::_fast_dputfield, bc, rbx, true, byte_no); 2618 } 2619 } 2620 2621 #ifdef ASSERT 2622 __ jmp(Done); 2623 2624 __ bind(notDouble); 2625 __ stop("Bad state"); 2626 #endif 2627 2628 __ bind(Done); 2629 2630 // Check for volatile store 2631 __ testl(rdx, rdx); 2632 __ jcc(Assembler::zero, notVolatile); 2633 volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad | 2634 Assembler::StoreStore)); 2635 __ bind(notVolatile); 2636 } 2637 2638 void TemplateTable::putfield(int byte_no) { 2639 putfield_or_static(byte_no, false); 2640 } 2641 2642 void TemplateTable::putstatic(int byte_no) { 2643 putfield_or_static(byte_no, true); 2644 } 2645 2646 void TemplateTable::jvmti_post_fast_field_mod() { 2647 if (JvmtiExport::can_post_field_modification()) { 2648 // Check to see if a field modification watch has been set before 2649 // we take the time to call into the VM. 2650 Label L2; 2651 __ mov32(c_rarg3, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr())); 2652 __ testl(c_rarg3, c_rarg3); 2653 __ jcc(Assembler::zero, L2); 2654 __ pop_ptr(rbx); // copy the object pointer from tos 2655 __ verify_oop(rbx); 2656 __ push_ptr(rbx); // put the object pointer back on tos 2657 // Save tos values before call_VM() clobbers them. Since we have 2658 // to do it for every data type, we use the saved values as the 2659 // jvalue object. 2660 switch (bytecode()) { // load values into the jvalue object 2661 case Bytecodes::_fast_aputfield: __ push_ptr(rax); break; 2662 case Bytecodes::_fast_bputfield: // fall through 2663 case Bytecodes::_fast_sputfield: // fall through 2664 case Bytecodes::_fast_cputfield: // fall through 2665 case Bytecodes::_fast_iputfield: __ push_i(rax); break; 2666 case Bytecodes::_fast_dputfield: __ push_d(); break; 2667 case Bytecodes::_fast_fputfield: __ push_f(); break; 2668 case Bytecodes::_fast_lputfield: __ push_l(rax); break; 2669 2670 default: 2671 ShouldNotReachHere(); 2672 } 2673 __ mov(c_rarg3, rsp); // points to jvalue on the stack 2674 // access constant pool cache entry 2675 __ get_cache_entry_pointer_at_bcp(c_rarg2, rax, 1); 2676 __ verify_oop(rbx); 2677 // rbx: object pointer copied above 2678 // c_rarg2: cache entry pointer 2679 // c_rarg3: jvalue object on the stack 2680 __ call_VM(noreg, 2681 CAST_FROM_FN_PTR(address, 2682 InterpreterRuntime::post_field_modification), 2683 rbx, c_rarg2, c_rarg3); 2684 2685 switch (bytecode()) { // restore tos values 2686 case Bytecodes::_fast_aputfield: __ pop_ptr(rax); break; 2687 case Bytecodes::_fast_bputfield: // fall through 2688 case Bytecodes::_fast_sputfield: // fall through 2689 case Bytecodes::_fast_cputfield: // fall through 2690 case Bytecodes::_fast_iputfield: __ pop_i(rax); break; 2691 case Bytecodes::_fast_dputfield: __ pop_d(); break; 2692 case Bytecodes::_fast_fputfield: __ pop_f(); break; 2693 case Bytecodes::_fast_lputfield: __ pop_l(rax); break; 2694 } 2695 __ bind(L2); 2696 } 2697 } 2698 2699 void TemplateTable::fast_storefield(TosState state) { 2700 transition(state, vtos); 2701 2702 ByteSize base = ConstantPoolCache::base_offset(); 2703 2704 jvmti_post_fast_field_mod(); 2705 2706 // access constant pool cache 2707 __ get_cache_and_index_at_bcp(rcx, rbx, 1); 2708 2709 // test for volatile with rdx 2710 __ movl(rdx, Address(rcx, rbx, Address::times_8, 2711 in_bytes(base + 2712 ConstantPoolCacheEntry::flags_offset()))); 2713 2714 // replace index with field offset from cache entry 2715 __ movptr(rbx, Address(rcx, rbx, Address::times_8, 2716 in_bytes(base + ConstantPoolCacheEntry::f2_offset()))); 2717 2718 // [jk] not needed currently 2719 // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore | 2720 // Assembler::StoreStore)); 2721 2722 Label notVolatile; 2723 __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift); 2724 __ andl(rdx, 0x1); 2725 2726 // Get object from stack 2727 pop_and_check_object(rcx); 2728 2729 // field address 2730 const Address field(rcx, rbx, Address::times_1); 2731 2732 // access field 2733 switch (bytecode()) { 2734 case Bytecodes::_fast_aputfield: 2735 do_oop_store(_masm, field, rax, _bs->kind(), false); 2736 break; 2737 case Bytecodes::_fast_lputfield: 2738 __ movq(field, rax); 2739 break; 2740 case Bytecodes::_fast_iputfield: 2741 __ movl(field, rax); 2742 break; 2743 case Bytecodes::_fast_bputfield: 2744 __ movb(field, rax); 2745 break; 2746 case Bytecodes::_fast_sputfield: 2747 // fall through 2748 case Bytecodes::_fast_cputfield: 2749 __ movw(field, rax); 2750 break; 2751 case Bytecodes::_fast_fputfield: 2752 __ movflt(field, xmm0); 2753 break; 2754 case Bytecodes::_fast_dputfield: 2755 __ movdbl(field, xmm0); 2756 break; 2757 default: 2758 ShouldNotReachHere(); 2759 } 2760 2761 // Check for volatile store 2762 __ testl(rdx, rdx); 2763 __ jcc(Assembler::zero, notVolatile); 2764 volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad | 2765 Assembler::StoreStore)); 2766 __ bind(notVolatile); 2767 } 2768 2769 2770 void TemplateTable::fast_accessfield(TosState state) { 2771 transition(atos, state); 2772 2773 // Do the JVMTI work here to avoid disturbing the register state below 2774 if (JvmtiExport::can_post_field_access()) { 2775 // Check to see if a field access watch has been set before we 2776 // take the time to call into the VM. 2777 Label L1; 2778 __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr())); 2779 __ testl(rcx, rcx); 2780 __ jcc(Assembler::zero, L1); 2781 // access constant pool cache entry 2782 __ get_cache_entry_pointer_at_bcp(c_rarg2, rcx, 1); 2783 __ verify_oop(rax); 2784 __ push_ptr(rax); // save object pointer before call_VM() clobbers it 2785 __ mov(c_rarg1, rax); 2786 // c_rarg1: object pointer copied above 2787 // c_rarg2: cache entry pointer 2788 __ call_VM(noreg, 2789 CAST_FROM_FN_PTR(address, 2790 InterpreterRuntime::post_field_access), 2791 c_rarg1, c_rarg2); 2792 __ pop_ptr(rax); // restore object pointer 2793 __ bind(L1); 2794 } 2795 2796 // access constant pool cache 2797 __ get_cache_and_index_at_bcp(rcx, rbx, 1); 2798 // replace index with field offset from cache entry 2799 // [jk] not needed currently 2800 // if (os::is_MP()) { 2801 // __ movl(rdx, Address(rcx, rbx, Address::times_8, 2802 // in_bytes(ConstantPoolCache::base_offset() + 2803 // ConstantPoolCacheEntry::flags_offset()))); 2804 // __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift); 2805 // __ andl(rdx, 0x1); 2806 // } 2807 __ movptr(rbx, Address(rcx, rbx, Address::times_8, 2808 in_bytes(ConstantPoolCache::base_offset() + 2809 ConstantPoolCacheEntry::f2_offset()))); 2810 2811 // rax: object 2812 __ verify_oop(rax); 2813 __ null_check(rax); 2814 Address field(rax, rbx, Address::times_1); 2815 2816 // access field 2817 switch (bytecode()) { 2818 case Bytecodes::_fast_agetfield: 2819 __ load_heap_oop(rax, field); 2820 __ verify_oop(rax); 2821 break; 2822 case Bytecodes::_fast_lgetfield: 2823 __ movq(rax, field); 2824 break; 2825 case Bytecodes::_fast_igetfield: 2826 __ movl(rax, field); 2827 break; 2828 case Bytecodes::_fast_bgetfield: 2829 __ movsbl(rax, field); 2830 break; 2831 case Bytecodes::_fast_sgetfield: 2832 __ load_signed_short(rax, field); 2833 break; 2834 case Bytecodes::_fast_cgetfield: 2835 __ load_unsigned_short(rax, field); 2836 break; 2837 case Bytecodes::_fast_fgetfield: 2838 __ movflt(xmm0, field); 2839 break; 2840 case Bytecodes::_fast_dgetfield: 2841 __ movdbl(xmm0, field); 2842 break; 2843 default: 2844 ShouldNotReachHere(); 2845 } 2846 // [jk] not needed currently 2847 // if (os::is_MP()) { 2848 // Label notVolatile; 2849 // __ testl(rdx, rdx); 2850 // __ jcc(Assembler::zero, notVolatile); 2851 // __ membar(Assembler::LoadLoad); 2852 // __ bind(notVolatile); 2853 //}; 2854 } 2855 2856 void TemplateTable::fast_xaccess(TosState state) { 2857 transition(vtos, state); 2858 2859 // get receiver 2860 __ movptr(rax, aaddress(0)); 2861 // access constant pool cache 2862 __ get_cache_and_index_at_bcp(rcx, rdx, 2); 2863 __ movptr(rbx, 2864 Address(rcx, rdx, Address::times_8, 2865 in_bytes(ConstantPoolCache::base_offset() + 2866 ConstantPoolCacheEntry::f2_offset()))); 2867 // make sure exception is reported in correct bcp range (getfield is 2868 // next instruction) 2869 __ increment(r13); 2870 __ null_check(rax); 2871 switch (state) { 2872 case itos: 2873 __ movl(rax, Address(rax, rbx, Address::times_1)); 2874 break; 2875 case atos: 2876 __ load_heap_oop(rax, Address(rax, rbx, Address::times_1)); 2877 __ verify_oop(rax); 2878 break; 2879 case ftos: 2880 __ movflt(xmm0, Address(rax, rbx, Address::times_1)); 2881 break; 2882 default: 2883 ShouldNotReachHere(); 2884 } 2885 2886 // [jk] not needed currently 2887 // if (os::is_MP()) { 2888 // Label notVolatile; 2889 // __ movl(rdx, Address(rcx, rdx, Address::times_8, 2890 // in_bytes(ConstantPoolCache::base_offset() + 2891 // ConstantPoolCacheEntry::flags_offset()))); 2892 // __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift); 2893 // __ testl(rdx, 0x1); 2894 // __ jcc(Assembler::zero, notVolatile); 2895 // __ membar(Assembler::LoadLoad); 2896 // __ bind(notVolatile); 2897 // } 2898 2899 __ decrement(r13); 2900 } 2901 2902 2903 2904 //----------------------------------------------------------------------------- 2905 // Calls 2906 2907 void TemplateTable::count_calls(Register method, Register temp) { 2908 // implemented elsewhere 2909 ShouldNotReachHere(); 2910 } 2911 2912 void TemplateTable::prepare_invoke(int byte_no, 2913 Register method, // linked method (or i-klass) 2914 Register index, // itable index, MethodType, etc. 2915 Register recv, // if caller wants to see it 2916 Register flags // if caller wants to test it 2917 ) { 2918 // determine flags 2919 const Bytecodes::Code code = bytecode(); 2920 const bool is_invokeinterface = code == Bytecodes::_invokeinterface; 2921 const bool is_invokedynamic = code == Bytecodes::_invokedynamic; 2922 const bool is_invokehandle = code == Bytecodes::_invokehandle; 2923 const bool is_invokevirtual = code == Bytecodes::_invokevirtual; 2924 const bool is_invokespecial = code == Bytecodes::_invokespecial; 2925 const bool load_receiver = (recv != noreg); 2926 const bool save_flags = (flags != noreg); 2927 assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), ""); 2928 assert(save_flags == (is_invokeinterface || is_invokevirtual), "need flags for vfinal"); 2929 assert(flags == noreg || flags == rdx, ""); 2930 assert(recv == noreg || recv == rcx, ""); 2931 2932 // setup registers & access constant pool cache 2933 if (recv == noreg) recv = rcx; 2934 if (flags == noreg) flags = rdx; 2935 assert_different_registers(method, index, recv, flags); 2936 2937 // save 'interpreter return address' 2938 __ save_bcp(); 2939 2940 load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic); 2941 2942 // maybe push appendix to arguments (just before return address) 2943 if (is_invokedynamic || is_invokehandle) { 2944 Label L_no_push; 2945 __ testl(flags, (1 << ConstantPoolCacheEntry::has_appendix_shift)); 2946 __ jcc(Assembler::zero, L_no_push); 2947 // Push the appendix as a trailing parameter. 2948 // This must be done before we get the receiver, 2949 // since the parameter_size includes it. 2950 __ push(rbx); 2951 __ mov(rbx, index); 2952 assert(ConstantPoolCacheEntry::_indy_resolved_references_appendix_offset == 0, "appendix expected at index+0"); 2953 __ load_resolved_reference_at_index(index, rbx); 2954 __ pop(rbx); 2955 __ push(index); // push appendix (MethodType, CallSite, etc.) 2956 __ bind(L_no_push); 2957 } 2958 2959 // load receiver if needed (after appendix is pushed so parameter size is correct) 2960 // Note: no return address pushed yet 2961 if (load_receiver) { 2962 __ movl(recv, flags); 2963 __ andl(recv, ConstantPoolCacheEntry::parameter_size_mask); 2964 const int no_return_pc_pushed_yet = -1; // argument slot correction before we push return address 2965 const int receiver_is_at_end = -1; // back off one slot to get receiver 2966 Address recv_addr = __ argument_address(recv, no_return_pc_pushed_yet + receiver_is_at_end); 2967 __ movptr(recv, recv_addr); 2968 __ verify_oop(recv); 2969 } 2970 2971 if (save_flags) { 2972 __ movl(r13, flags); 2973 } 2974 2975 // compute return type 2976 __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift); 2977 // Make sure we don't need to mask flags after the above shift 2978 ConstantPoolCacheEntry::verify_tos_state_shift(); 2979 // load return address 2980 { 2981 const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code); 2982 ExternalAddress table(table_addr); 2983 __ lea(rscratch1, table); 2984 __ movptr(flags, Address(rscratch1, flags, Address::times_ptr)); 2985 } 2986 2987 // push return address 2988 __ push(flags); 2989 2990 // Restore flags value from the constant pool cache, and restore rsi 2991 // for later null checks. r13 is the bytecode pointer 2992 if (save_flags) { 2993 __ movl(flags, r13); 2994 __ restore_bcp(); 2995 } 2996 } 2997 2998 2999 void TemplateTable::invokevirtual_helper(Register index, 3000 Register recv, 3001 Register flags) { 3002 // Uses temporary registers rax, rdx 3003 assert_different_registers(index, recv, rax, rdx); 3004 assert(index == rbx, ""); 3005 assert(recv == rcx, ""); 3006 3007 // Test for an invoke of a final method 3008 Label notFinal; 3009 __ movl(rax, flags); 3010 __ andl(rax, (1 << ConstantPoolCacheEntry::is_vfinal_shift)); 3011 __ jcc(Assembler::zero, notFinal); 3012 3013 const Register method = index; // method must be rbx 3014 assert(method == rbx, 3015 "Method* must be rbx for interpreter calling convention"); 3016 3017 // do the call - the index is actually the method to call 3018 // that is, f2 is a vtable index if !is_vfinal, else f2 is a Method* 3019 3020 // It's final, need a null check here! 3021 __ null_check(recv); 3022 3023 // profile this call 3024 __ profile_final_call(rax); 3025 __ profile_arguments_type(rax, method, r13, true); 3026 3027 __ jump_from_interpreted(method, rax); 3028 3029 __ bind(notFinal); 3030 3031 // get receiver klass 3032 __ null_check(recv, oopDesc::klass_offset_in_bytes()); 3033 __ load_klass(rax, recv); 3034 3035 // profile this call 3036 __ profile_virtual_call(rax, r14, rdx); 3037 3038 // get target Method* & entry point 3039 __ lookup_virtual_method(rax, index, method); 3040 __ profile_arguments_type(rdx, method, r13, true); 3041 __ jump_from_interpreted(method, rdx); 3042 } 3043 3044 3045 void TemplateTable::invokevirtual(int byte_no) { 3046 transition(vtos, vtos); 3047 assert(byte_no == f2_byte, "use this argument"); 3048 prepare_invoke(byte_no, 3049 rbx, // method or vtable index 3050 noreg, // unused itable index 3051 rcx, rdx); // recv, flags 3052 3053 // rbx: index 3054 // rcx: receiver 3055 // rdx: flags 3056 3057 invokevirtual_helper(rbx, rcx, rdx); 3058 } 3059 3060 3061 void TemplateTable::invokespecial(int byte_no) { 3062 transition(vtos, vtos); 3063 assert(byte_no == f1_byte, "use this argument"); 3064 prepare_invoke(byte_no, rbx, noreg, // get f1 Method* 3065 rcx); // get receiver also for null check 3066 __ verify_oop(rcx); 3067 __ null_check(rcx); 3068 // do the call 3069 __ profile_call(rax); 3070 __ profile_arguments_type(rax, rbx, r13, false); 3071 __ jump_from_interpreted(rbx, rax); 3072 } 3073 3074 3075 void TemplateTable::invokestatic(int byte_no) { 3076 transition(vtos, vtos); 3077 assert(byte_no == f1_byte, "use this argument"); 3078 prepare_invoke(byte_no, rbx); // get f1 Method* 3079 // do the call 3080 __ profile_call(rax); 3081 __ profile_arguments_type(rax, rbx, r13, false); 3082 __ jump_from_interpreted(rbx, rax); 3083 } 3084 3085 void TemplateTable::fast_invokevfinal(int byte_no) { 3086 transition(vtos, vtos); 3087 assert(byte_no == f2_byte, "use this argument"); 3088 __ stop("fast_invokevfinal not used on amd64"); 3089 } 3090 3091 void TemplateTable::invokeinterface(int byte_no) { 3092 transition(vtos, vtos); 3093 assert(byte_no == f1_byte, "use this argument"); 3094 prepare_invoke(byte_no, rax, rbx, // get f1 Klass*, f2 itable index 3095 rcx, rdx); // recv, flags 3096 3097 // rax: interface klass (from f1) 3098 // rbx: itable index (from f2) 3099 // rcx: receiver 3100 // rdx: flags 3101 3102 // Special case of invokeinterface called for virtual method of 3103 // java.lang.Object. See cpCacheOop.cpp for details. 3104 // This code isn't produced by javac, but could be produced by 3105 // another compliant java compiler. 3106 Label notMethod; 3107 __ movl(r14, rdx); 3108 __ andl(r14, (1 << ConstantPoolCacheEntry::is_forced_virtual_shift)); 3109 __ jcc(Assembler::zero, notMethod); 3110 3111 invokevirtual_helper(rbx, rcx, rdx); 3112 __ bind(notMethod); 3113 3114 // Get receiver klass into rdx - also a null check 3115 __ restore_locals(); // restore r14 3116 __ null_check(rcx, oopDesc::klass_offset_in_bytes()); 3117 __ load_klass(rdx, rcx); 3118 3119 // profile this call 3120 __ profile_virtual_call(rdx, r13, r14); 3121 3122 Label no_such_interface, no_such_method; 3123 3124 __ lookup_interface_method(// inputs: rec. class, interface, itable index 3125 rdx, rax, rbx, 3126 // outputs: method, scan temp. reg 3127 rbx, r13, 3128 no_such_interface); 3129 3130 // rbx: Method* to call 3131 // rcx: receiver 3132 // Check for abstract method error 3133 // Note: This should be done more efficiently via a throw_abstract_method_error 3134 // interpreter entry point and a conditional jump to it in case of a null 3135 // method. 3136 __ testptr(rbx, rbx); 3137 __ jcc(Assembler::zero, no_such_method); 3138 3139 __ profile_arguments_type(rdx, rbx, r13, true); 3140 3141 // do the call 3142 // rcx: receiver 3143 // rbx,: Method* 3144 __ jump_from_interpreted(rbx, rdx); 3145 __ should_not_reach_here(); 3146 3147 // exception handling code follows... 3148 // note: must restore interpreter registers to canonical 3149 // state for exception handling to work correctly! 3150 3151 __ bind(no_such_method); 3152 // throw exception 3153 __ pop(rbx); // pop return address (pushed by prepare_invoke) 3154 __ restore_bcp(); // r13 must be correct for exception handler (was destroyed) 3155 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) 3156 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError)); 3157 // the call_VM checks for exception, so we should never return here. 3158 __ should_not_reach_here(); 3159 3160 __ bind(no_such_interface); 3161 // throw exception 3162 __ pop(rbx); // pop return address (pushed by prepare_invoke) 3163 __ restore_bcp(); // r13 must be correct for exception handler (was destroyed) 3164 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) 3165 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 3166 InterpreterRuntime::throw_IncompatibleClassChangeError)); 3167 // the call_VM checks for exception, so we should never return here. 3168 __ should_not_reach_here(); 3169 } 3170 3171 3172 void TemplateTable::invokehandle(int byte_no) { 3173 transition(vtos, vtos); 3174 assert(byte_no == f1_byte, "use this argument"); 3175 const Register rbx_method = rbx; 3176 const Register rax_mtype = rax; 3177 const Register rcx_recv = rcx; 3178 const Register rdx_flags = rdx; 3179 3180 prepare_invoke(byte_no, rbx_method, rax_mtype, rcx_recv); 3181 __ verify_method_ptr(rbx_method); 3182 __ verify_oop(rcx_recv); 3183 __ null_check(rcx_recv); 3184 3185 // rax: MethodType object (from cpool->resolved_references[f1], if necessary) 3186 // rbx: MH.invokeExact_MT method (from f2) 3187 3188 // Note: rax_mtype is already pushed (if necessary) by prepare_invoke 3189 3190 // FIXME: profile the LambdaForm also 3191 __ profile_final_call(rax); 3192 __ profile_arguments_type(rdx, rbx_method, r13, true); 3193 3194 __ jump_from_interpreted(rbx_method, rdx); 3195 } 3196 3197 3198 void TemplateTable::invokedynamic(int byte_no) { 3199 transition(vtos, vtos); 3200 assert(byte_no == f1_byte, "use this argument"); 3201 3202 const Register rbx_method = rbx; 3203 const Register rax_callsite = rax; 3204 3205 prepare_invoke(byte_no, rbx_method, rax_callsite); 3206 3207 // rax: CallSite object (from cpool->resolved_references[f1]) 3208 // rbx: MH.linkToCallSite method (from f2) 3209 3210 // Note: rax_callsite is already pushed by prepare_invoke 3211 3212 // %%% should make a type profile for any invokedynamic that takes a ref argument 3213 // profile this call 3214 __ profile_call(r13); 3215 __ profile_arguments_type(rdx, rbx_method, r13, false); 3216 3217 __ verify_oop(rax_callsite); 3218 3219 __ jump_from_interpreted(rbx_method, rdx); 3220 } 3221 3222 3223 //----------------------------------------------------------------------------- 3224 // Allocation 3225 3226 void TemplateTable::_new() { 3227 transition(vtos, atos); 3228 __ get_unsigned_2_byte_index_at_bcp(rdx, 1); 3229 Label slow_case; 3230 Label done; 3231 Label initialize_header; 3232 Label initialize_object; // including clearing the fields 3233 Label allocate_shared; 3234 3235 __ get_cpool_and_tags(rsi, rax); 3236 // Make sure the class we're about to instantiate has been resolved. 3237 // This is done before loading InstanceKlass to be consistent with the order 3238 // how Constant Pool is updated (see ConstantPool::klass_at_put) 3239 const int tags_offset = Array<u1>::base_offset_in_bytes(); 3240 __ cmpb(Address(rax, rdx, Address::times_1, tags_offset), 3241 JVM_CONSTANT_Class); 3242 __ jcc(Assembler::notEqual, slow_case); 3243 3244 // get InstanceKlass 3245 __ movptr(rsi, Address(rsi, rdx, 3246 Address::times_8, sizeof(ConstantPool))); 3247 3248 // make sure klass is initialized & doesn't have finalizer 3249 // make sure klass is fully initialized 3250 __ cmpb(Address(rsi, 3251 InstanceKlass::init_state_offset()), 3252 InstanceKlass::fully_initialized); 3253 __ jcc(Assembler::notEqual, slow_case); 3254 3255 // get instance_size in InstanceKlass (scaled to a count of bytes) 3256 __ movl(rdx, 3257 Address(rsi, 3258 Klass::layout_helper_offset())); 3259 // test to see if it has a finalizer or is malformed in some way 3260 __ testl(rdx, Klass::_lh_instance_slow_path_bit); 3261 __ jcc(Assembler::notZero, slow_case); 3262 3263 // Allocate the instance 3264 // 1) Try to allocate in the TLAB 3265 // 2) if fail and the object is large allocate in the shared Eden 3266 // 3) if the above fails (or is not applicable), go to a slow case 3267 // (creates a new TLAB, etc.) 3268 3269 const bool allow_shared_alloc = 3270 Universe::heap()->supports_inline_contig_alloc(); 3271 3272 if (UseTLAB) { 3273 __ movptr(rax, Address(r15_thread, in_bytes(JavaThread::tlab_top_offset()))); 3274 __ lea(rbx, Address(rax, rdx, Address::times_1)); 3275 __ cmpptr(rbx, Address(r15_thread, in_bytes(JavaThread::tlab_end_offset()))); 3276 __ jcc(Assembler::above, allow_shared_alloc ? allocate_shared : slow_case); 3277 __ movptr(Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())), rbx); 3278 if (ZeroTLAB) { 3279 // the fields have been already cleared 3280 __ jmp(initialize_header); 3281 } else { 3282 // initialize both the header and fields 3283 __ jmp(initialize_object); 3284 } 3285 } 3286 3287 // Allocation in the shared Eden, if allowed. 3288 // 3289 // rdx: instance size in bytes 3290 if (allow_shared_alloc) { 3291 __ bind(allocate_shared); 3292 3293 ExternalAddress top((address)Universe::heap()->top_addr()); 3294 ExternalAddress end((address)Universe::heap()->end_addr()); 3295 3296 const Register RtopAddr = rscratch1; 3297 const Register RendAddr = rscratch2; 3298 3299 __ lea(RtopAddr, top); 3300 __ lea(RendAddr, end); 3301 __ movptr(rax, Address(RtopAddr, 0)); 3302 3303 // For retries rax gets set by cmpxchgq 3304 Label retry; 3305 __ bind(retry); 3306 __ lea(rbx, Address(rax, rdx, Address::times_1)); 3307 __ cmpptr(rbx, Address(RendAddr, 0)); 3308 __ jcc(Assembler::above, slow_case); 3309 3310 // Compare rax with the top addr, and if still equal, store the new 3311 // top addr in rbx at the address of the top addr pointer. Sets ZF if was 3312 // equal, and clears it otherwise. Use lock prefix for atomicity on MPs. 3313 // 3314 // rax: object begin 3315 // rbx: object end 3316 // rdx: instance size in bytes 3317 if (os::is_MP()) { 3318 __ lock(); 3319 } 3320 __ cmpxchgptr(rbx, Address(RtopAddr, 0)); 3321 3322 // if someone beat us on the allocation, try again, otherwise continue 3323 __ jcc(Assembler::notEqual, retry); 3324 3325 __ incr_allocated_bytes(r15_thread, rdx, 0); 3326 } 3327 3328 if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) { 3329 // The object is initialized before the header. If the object size is 3330 // zero, go directly to the header initialization. 3331 __ bind(initialize_object); 3332 __ decrementl(rdx, sizeof(oopDesc)); 3333 __ jcc(Assembler::zero, initialize_header); 3334 3335 // Initialize object fields 3336 __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code) 3337 __ shrl(rdx, LogBytesPerLong); // divide by oopSize to simplify the loop 3338 { 3339 Label loop; 3340 __ bind(loop); 3341 __ movq(Address(rax, rdx, Address::times_8, 3342 sizeof(oopDesc) - oopSize), 3343 rcx); 3344 __ decrementl(rdx); 3345 __ jcc(Assembler::notZero, loop); 3346 } 3347 3348 // initialize object header only. 3349 __ bind(initialize_header); 3350 if (UseBiasedLocking) { 3351 __ movptr(rscratch1, Address(rsi, Klass::prototype_header_offset())); 3352 __ movptr(Address(rax, oopDesc::mark_offset_in_bytes()), rscratch1); 3353 } else { 3354 __ movptr(Address(rax, oopDesc::mark_offset_in_bytes()), 3355 (intptr_t) markOopDesc::prototype()); // header (address 0x1) 3356 } 3357 __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code) 3358 __ store_klass_gap(rax, rcx); // zero klass gap for compressed oops 3359 __ store_klass(rax, rsi); // store klass last 3360 3361 { 3362 SkipIfEqual skip(_masm, &DTraceAllocProbes, false); 3363 // Trigger dtrace event for fastpath 3364 __ push(atos); // save the return value 3365 __ call_VM_leaf( 3366 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), rax); 3367 __ pop(atos); // restore the return value 3368 3369 } 3370 __ jmp(done); 3371 } 3372 3373 3374 // slow case 3375 __ bind(slow_case); 3376 __ get_constant_pool(c_rarg1); 3377 __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1); 3378 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2); 3379 __ verify_oop(rax); 3380 3381 // continue 3382 __ bind(done); 3383 } 3384 3385 void TemplateTable::newarray() { 3386 transition(itos, atos); 3387 __ load_unsigned_byte(c_rarg1, at_bcp(1)); 3388 __ movl(c_rarg2, rax); 3389 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), 3390 c_rarg1, c_rarg2); 3391 } 3392 3393 void TemplateTable::anewarray() { 3394 transition(itos, atos); 3395 __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1); 3396 __ get_constant_pool(c_rarg1); 3397 __ movl(c_rarg3, rax); 3398 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), 3399 c_rarg1, c_rarg2, c_rarg3); 3400 } 3401 3402 void TemplateTable::arraylength() { 3403 transition(atos, itos); 3404 __ null_check(rax, arrayOopDesc::length_offset_in_bytes()); 3405 __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes())); 3406 } 3407 3408 void TemplateTable::checkcast() { 3409 transition(atos, atos); 3410 Label done, is_null, ok_is_subtype, quicked, resolved; 3411 __ testptr(rax, rax); // object is in rax 3412 __ jcc(Assembler::zero, is_null); 3413 3414 // Get cpool & tags index 3415 __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array 3416 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index 3417 // See if bytecode has already been quicked 3418 __ cmpb(Address(rdx, rbx, 3419 Address::times_1, 3420 Array<u1>::base_offset_in_bytes()), 3421 JVM_CONSTANT_Class); 3422 __ jcc(Assembler::equal, quicked); 3423 __ push(atos); // save receiver for result, and for GC 3424 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc)); 3425 // vm_result_2 has metadata result 3426 __ get_vm_result_2(rax, r15_thread); 3427 __ pop_ptr(rdx); // restore receiver 3428 __ jmpb(resolved); 3429 3430 // Get superklass in rax and subklass in rbx 3431 __ bind(quicked); 3432 __ mov(rdx, rax); // Save object in rdx; rax needed for subtype check 3433 __ movptr(rax, Address(rcx, rbx, 3434 Address::times_8, sizeof(ConstantPool))); 3435 3436 __ bind(resolved); 3437 __ load_klass(rbx, rdx); 3438 3439 // Generate subtype check. Blows rcx, rdi. Object in rdx. 3440 // Superklass in rax. Subklass in rbx. 3441 __ gen_subtype_check(rbx, ok_is_subtype); 3442 3443 // Come here on failure 3444 __ push_ptr(rdx); 3445 // object is at TOS 3446 __ jump(ExternalAddress(Interpreter::_throw_ClassCastException_entry)); 3447 3448 // Come here on success 3449 __ bind(ok_is_subtype); 3450 __ mov(rax, rdx); // Restore object in rdx 3451 3452 // Collect counts on whether this check-cast sees NULLs a lot or not. 3453 if (ProfileInterpreter) { 3454 __ jmp(done); 3455 __ bind(is_null); 3456 __ profile_null_seen(rcx); 3457 } else { 3458 __ bind(is_null); // same as 'done' 3459 } 3460 __ bind(done); 3461 } 3462 3463 void TemplateTable::instanceof() { 3464 transition(atos, itos); 3465 Label done, is_null, ok_is_subtype, quicked, resolved; 3466 __ testptr(rax, rax); 3467 __ jcc(Assembler::zero, is_null); 3468 3469 // Get cpool & tags index 3470 __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array 3471 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index 3472 // See if bytecode has already been quicked 3473 __ cmpb(Address(rdx, rbx, 3474 Address::times_1, 3475 Array<u1>::base_offset_in_bytes()), 3476 JVM_CONSTANT_Class); 3477 __ jcc(Assembler::equal, quicked); 3478 3479 __ push(atos); // save receiver for result, and for GC 3480 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc)); 3481 // vm_result_2 has metadata result 3482 __ get_vm_result_2(rax, r15_thread); 3483 __ pop_ptr(rdx); // restore receiver 3484 __ verify_oop(rdx); 3485 __ load_klass(rdx, rdx); 3486 __ jmpb(resolved); 3487 3488 // Get superklass in rax and subklass in rdx 3489 __ bind(quicked); 3490 __ load_klass(rdx, rax); 3491 __ movptr(rax, Address(rcx, rbx, 3492 Address::times_8, sizeof(ConstantPool))); 3493 3494 __ bind(resolved); 3495 3496 // Generate subtype check. Blows rcx, rdi 3497 // Superklass in rax. Subklass in rdx. 3498 __ gen_subtype_check(rdx, ok_is_subtype); 3499 3500 // Come here on failure 3501 __ xorl(rax, rax); 3502 __ jmpb(done); 3503 // Come here on success 3504 __ bind(ok_is_subtype); 3505 __ movl(rax, 1); 3506 3507 // Collect counts on whether this test sees NULLs a lot or not. 3508 if (ProfileInterpreter) { 3509 __ jmp(done); 3510 __ bind(is_null); 3511 __ profile_null_seen(rcx); 3512 } else { 3513 __ bind(is_null); // same as 'done' 3514 } 3515 __ bind(done); 3516 // rax = 0: obj == NULL or obj is not an instanceof the specified klass 3517 // rax = 1: obj != NULL and obj is an instanceof the specified klass 3518 } 3519 3520 //----------------------------------------------------------------------------- 3521 // Breakpoints 3522 void TemplateTable::_breakpoint() { 3523 // Note: We get here even if we are single stepping.. 3524 // jbug inists on setting breakpoints at every bytecode 3525 // even if we are in single step mode. 3526 3527 transition(vtos, vtos); 3528 3529 // get the unpatched byte code 3530 __ get_method(c_rarg1); 3531 __ call_VM(noreg, 3532 CAST_FROM_FN_PTR(address, 3533 InterpreterRuntime::get_original_bytecode_at), 3534 c_rarg1, r13); 3535 __ mov(rbx, rax); 3536 3537 // post the breakpoint event 3538 __ get_method(c_rarg1); 3539 __ call_VM(noreg, 3540 CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), 3541 c_rarg1, r13); 3542 3543 // complete the execution of original bytecode 3544 __ dispatch_only_normal(vtos); 3545 } 3546 3547 //----------------------------------------------------------------------------- 3548 // Exceptions 3549 3550 void TemplateTable::athrow() { 3551 transition(atos, vtos); 3552 __ null_check(rax); 3553 __ jump(ExternalAddress(Interpreter::throw_exception_entry())); 3554 } 3555 3556 //----------------------------------------------------------------------------- 3557 // Synchronization 3558 // 3559 // Note: monitorenter & exit are symmetric routines; which is reflected 3560 // in the assembly code structure as well 3561 // 3562 // Stack layout: 3563 // 3564 // [expressions ] <--- rsp = expression stack top 3565 // .. 3566 // [expressions ] 3567 // [monitor entry] <--- monitor block top = expression stack bot 3568 // .. 3569 // [monitor entry] 3570 // [frame data ] <--- monitor block bot 3571 // ... 3572 // [saved rbp ] <--- rbp 3573 void TemplateTable::monitorenter() { 3574 transition(atos, vtos); 3575 3576 // check for NULL object 3577 __ null_check(rax); 3578 3579 const Address monitor_block_top( 3580 rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 3581 const Address monitor_block_bot( 3582 rbp, frame::interpreter_frame_initial_sp_offset * wordSize); 3583 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; 3584 3585 Label allocated; 3586 3587 // initialize entry pointer 3588 __ xorl(c_rarg1, c_rarg1); // points to free slot or NULL 3589 3590 // find a free slot in the monitor block (result in c_rarg1) 3591 { 3592 Label entry, loop, exit; 3593 __ movptr(c_rarg3, monitor_block_top); // points to current entry, 3594 // starting with top-most entry 3595 __ lea(c_rarg2, monitor_block_bot); // points to word before bottom 3596 // of monitor block 3597 __ jmpb(entry); 3598 3599 __ bind(loop); 3600 // check if current entry is used 3601 __ cmpptr(Address(c_rarg3, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL_WORD); 3602 // if not used then remember entry in c_rarg1 3603 __ cmov(Assembler::equal, c_rarg1, c_rarg3); 3604 // check if current entry is for same object 3605 __ cmpptr(rax, Address(c_rarg3, BasicObjectLock::obj_offset_in_bytes())); 3606 // if same object then stop searching 3607 __ jccb(Assembler::equal, exit); 3608 // otherwise advance to next entry 3609 __ addptr(c_rarg3, entry_size); 3610 __ bind(entry); 3611 // check if bottom reached 3612 __ cmpptr(c_rarg3, c_rarg2); 3613 // if not at bottom then check this entry 3614 __ jcc(Assembler::notEqual, loop); 3615 __ bind(exit); 3616 } 3617 3618 __ testptr(c_rarg1, c_rarg1); // check if a slot has been found 3619 __ jcc(Assembler::notZero, allocated); // if found, continue with that one 3620 3621 // allocate one if there's no free slot 3622 { 3623 Label entry, loop; 3624 // 1. compute new pointers // rsp: old expression stack top 3625 __ movptr(c_rarg1, monitor_block_bot); // c_rarg1: old expression stack bottom 3626 __ subptr(rsp, entry_size); // move expression stack top 3627 __ subptr(c_rarg1, entry_size); // move expression stack bottom 3628 __ mov(c_rarg3, rsp); // set start value for copy loop 3629 __ movptr(monitor_block_bot, c_rarg1); // set new monitor block bottom 3630 __ jmp(entry); 3631 // 2. move expression stack contents 3632 __ bind(loop); 3633 __ movptr(c_rarg2, Address(c_rarg3, entry_size)); // load expression stack 3634 // word from old location 3635 __ movptr(Address(c_rarg3, 0), c_rarg2); // and store it at new location 3636 __ addptr(c_rarg3, wordSize); // advance to next word 3637 __ bind(entry); 3638 __ cmpptr(c_rarg3, c_rarg1); // check if bottom reached 3639 __ jcc(Assembler::notEqual, loop); // if not at bottom then 3640 // copy next word 3641 } 3642 3643 // call run-time routine 3644 // c_rarg1: points to monitor entry 3645 __ bind(allocated); 3646 3647 // Increment bcp to point to the next bytecode, so exception 3648 // handling for async. exceptions work correctly. 3649 // The object has already been poped from the stack, so the 3650 // expression stack looks correct. 3651 __ increment(r13); 3652 3653 // store object 3654 __ movptr(Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()), rax); 3655 __ lock_object(c_rarg1); 3656 3657 // check to make sure this monitor doesn't cause stack overflow after locking 3658 __ save_bcp(); // in case of exception 3659 __ generate_stack_overflow_check(0); 3660 3661 // The bcp has already been incremented. Just need to dispatch to 3662 // next instruction. 3663 __ dispatch_next(vtos); 3664 } 3665 3666 3667 void TemplateTable::monitorexit() { 3668 transition(atos, vtos); 3669 3670 // check for NULL object 3671 __ null_check(rax); 3672 3673 const Address monitor_block_top( 3674 rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 3675 const Address monitor_block_bot( 3676 rbp, frame::interpreter_frame_initial_sp_offset * wordSize); 3677 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; 3678 3679 Label found; 3680 3681 // find matching slot 3682 { 3683 Label entry, loop; 3684 __ movptr(c_rarg1, monitor_block_top); // points to current entry, 3685 // starting with top-most entry 3686 __ lea(c_rarg2, monitor_block_bot); // points to word before bottom 3687 // of monitor block 3688 __ jmpb(entry); 3689 3690 __ bind(loop); 3691 // check if current entry is for same object 3692 __ cmpptr(rax, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes())); 3693 // if same object then stop searching 3694 __ jcc(Assembler::equal, found); 3695 // otherwise advance to next entry 3696 __ addptr(c_rarg1, entry_size); 3697 __ bind(entry); 3698 // check if bottom reached 3699 __ cmpptr(c_rarg1, c_rarg2); 3700 // if not at bottom then check this entry 3701 __ jcc(Assembler::notEqual, loop); 3702 } 3703 3704 // error handling. Unlocking was not block-structured 3705 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 3706 InterpreterRuntime::throw_illegal_monitor_state_exception)); 3707 __ should_not_reach_here(); 3708 3709 // call run-time routine 3710 // rsi: points to monitor entry 3711 __ bind(found); 3712 __ push_ptr(rax); // make sure object is on stack (contract with oopMaps) 3713 __ unlock_object(c_rarg1); 3714 __ pop_ptr(rax); // discard object 3715 } 3716 3717 3718 // Wide instructions 3719 void TemplateTable::wide() { 3720 transition(vtos, vtos); 3721 __ load_unsigned_byte(rbx, at_bcp(1)); 3722 __ lea(rscratch1, ExternalAddress((address)Interpreter::_wentry_point)); 3723 __ jmp(Address(rscratch1, rbx, Address::times_8)); 3724 // Note: the r13 increment step is part of the individual wide 3725 // bytecode implementations 3726 } 3727 3728 3729 // Multi arrays 3730 void TemplateTable::multianewarray() { 3731 transition(vtos, atos); 3732 __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions 3733 // last dim is on top of stack; we want address of first one: 3734 // first_addr = last_addr + (ndims - 1) * wordSize 3735 __ lea(c_rarg1, Address(rsp, rax, Address::times_8, -wordSize)); 3736 call_VM(rax, 3737 CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), 3738 c_rarg1); 3739 __ load_unsigned_byte(rbx, at_bcp(3)); 3740 __ lea(rsp, Address(rsp, rbx, Address::times_8)); 3741 } 3742 #endif // !CC_INTERP