1 /*
2 * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "precompiled.hpp"
26 #include "asm/macroAssembler.hpp"
27 #include "interpreter/interpreter.hpp"
28 #include "interpreter/interpreterRuntime.hpp"
29 #include "interpreter/interp_masm.hpp"
30 #include "interpreter/templateTable.hpp"
31 #include "memory/universe.inline.hpp"
32 #include "oops/methodData.hpp"
33 #include "oops/objArrayKlass.hpp"
34 #include "oops/oop.inline.hpp"
35 #include "prims/methodHandles.hpp"
36 #include "runtime/sharedRuntime.hpp"
37 #include "runtime/stubRoutines.hpp"
38 #include "runtime/synchronizer.hpp"
39 #include "utilities/macros.hpp"
40
41 #ifndef CC_INTERP
42 #define __ _masm->
43
44 //----------------------------------------------------------------------------------------------------
45 // Platform-dependent initialization
46
47 void TemplateTable::pd_initialize() {
48 // No i486 specific initialization
49 }
50
51 //----------------------------------------------------------------------------------------------------
52 // Address computation
53
54 // local variables
55 static inline Address iaddress(int n) {
56 return Address(rdi, Interpreter::local_offset_in_bytes(n));
57 }
58
59 static inline Address laddress(int n) { return iaddress(n + 1); }
60 static inline Address haddress(int n) { return iaddress(n + 0); }
61 static inline Address faddress(int n) { return iaddress(n); }
62 static inline Address daddress(int n) { return laddress(n); }
63 static inline Address aaddress(int n) { return iaddress(n); }
64
65 static inline Address iaddress(Register r) {
66 return Address(rdi, r, Interpreter::stackElementScale());
67 }
68 static inline Address laddress(Register r) {
69 return Address(rdi, r, Interpreter::stackElementScale(), Interpreter::local_offset_in_bytes(1));
70 }
71 static inline Address haddress(Register r) {
72 return Address(rdi, r, Interpreter::stackElementScale(), Interpreter::local_offset_in_bytes(0));
73 }
74
75 static inline Address faddress(Register r) { return iaddress(r); }
76 static inline Address daddress(Register r) { return laddress(r); }
77 static inline Address aaddress(Register r) { return iaddress(r); }
78
79 // expression stack
80 // (Note: Must not use symmetric equivalents at_rsp_m1/2 since they store
81 // data beyond the rsp which is potentially unsafe in an MT environment;
82 // an interrupt may overwrite that data.)
83 static inline Address at_rsp () {
84 return Address(rsp, 0);
85 }
86
87 // At top of Java expression stack which may be different than rsp(). It
88 // isn't for category 1 objects.
89 static inline Address at_tos () {
90 Address tos = Address(rsp, Interpreter::expr_offset_in_bytes(0));
91 return tos;
92 }
93
94 static inline Address at_tos_p1() {
95 return Address(rsp, Interpreter::expr_offset_in_bytes(1));
96 }
97
98 static inline Address at_tos_p2() {
99 return Address(rsp, Interpreter::expr_offset_in_bytes(2));
100 }
101
102 // Condition conversion
103 static Assembler::Condition j_not(TemplateTable::Condition cc) {
104 switch (cc) {
105 case TemplateTable::equal : return Assembler::notEqual;
106 case TemplateTable::not_equal : return Assembler::equal;
107 case TemplateTable::less : return Assembler::greaterEqual;
108 case TemplateTable::less_equal : return Assembler::greater;
109 case TemplateTable::greater : return Assembler::lessEqual;
110 case TemplateTable::greater_equal: return Assembler::less;
111 }
112 ShouldNotReachHere();
113 return Assembler::zero;
114 }
115
116
117 //----------------------------------------------------------------------------------------------------
118 // Miscelaneous helper routines
119
120 // Store an oop (or NULL) at the address described by obj.
121 // If val == noreg this means store a NULL
122
123 static void do_oop_store(InterpreterMacroAssembler* _masm,
124 Address obj,
125 Register val,
126 BarrierSet::Name barrier,
127 bool precise) {
128 assert(val == noreg || val == rax, "parameter is just for looks");
129 switch (barrier) {
130 #if INCLUDE_ALL_GCS
131 case BarrierSet::G1SATBCT:
132 case BarrierSet::G1SATBCTLogging:
133 {
134 // flatten object address if needed
135 // We do it regardless of precise because we need the registers
136 if (obj.index() == noreg && obj.disp() == 0) {
137 if (obj.base() != rdx) {
138 __ movl(rdx, obj.base());
139 }
140 } else {
141 __ leal(rdx, obj);
142 }
143 __ get_thread(rcx);
144 __ save_bcp();
145 __ g1_write_barrier_pre(rdx /* obj */,
146 rbx /* pre_val */,
147 rcx /* thread */,
148 rsi /* tmp */,
149 val != noreg /* tosca_live */,
150 false /* expand_call */);
151
152 // Do the actual store
153 // noreg means NULL
154 if (val == noreg) {
155 __ movptr(Address(rdx, 0), NULL_WORD);
156 // No post barrier for NULL
157 } else {
158 __ movl(Address(rdx, 0), val);
159 __ g1_write_barrier_post(rdx /* store_adr */,
160 val /* new_val */,
161 rcx /* thread */,
162 rbx /* tmp */,
163 rsi /* tmp2 */);
164 }
165 __ restore_bcp();
166
167 }
168 break;
169 #endif // INCLUDE_ALL_GCS
170 case BarrierSet::CardTableModRef:
171 case BarrierSet::CardTableExtension:
172 {
173 if (val == noreg) {
174 __ movptr(obj, NULL_WORD);
175 } else {
176 __ movl(obj, val);
177 // flatten object address if needed
178 if (!precise || (obj.index() == noreg && obj.disp() == 0)) {
179 __ store_check(obj.base());
180 } else {
181 __ leal(rdx, obj);
182 __ store_check(rdx);
183 }
184 }
185 }
186 break;
187 case BarrierSet::ModRef:
188 if (val == noreg) {
189 __ movptr(obj, NULL_WORD);
190 } else {
191 __ movl(obj, val);
192 }
193 break;
194 default :
195 ShouldNotReachHere();
196
197 }
198 }
199
200 Address TemplateTable::at_bcp(int offset) {
201 assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
202 return Address(rsi, offset);
203 }
204
205
206 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
207 Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
208 int byte_no) {
209 if (!RewriteBytecodes) return;
210 Label L_patch_done;
211
212 switch (bc) {
213 case Bytecodes::_fast_aputfield:
214 case Bytecodes::_fast_bputfield:
215 case Bytecodes::_fast_cputfield:
216 case Bytecodes::_fast_dputfield:
217 case Bytecodes::_fast_fputfield:
218 case Bytecodes::_fast_iputfield:
219 case Bytecodes::_fast_lputfield:
220 case Bytecodes::_fast_sputfield:
221 {
222 // We skip bytecode quickening for putfield instructions when
223 // the put_code written to the constant pool cache is zero.
224 // This is required so that every execution of this instruction
225 // calls out to InterpreterRuntime::resolve_get_put to do
226 // additional, required work.
227 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
228 assert(load_bc_into_bc_reg, "we use bc_reg as temp");
229 __ get_cache_and_index_and_bytecode_at_bcp(bc_reg, temp_reg, temp_reg, byte_no, 1);
230 __ movl(bc_reg, bc);
231 __ cmpl(temp_reg, (int) 0);
232 __ jcc(Assembler::zero, L_patch_done); // don't patch
233 }
234 break;
235 default:
236 assert(byte_no == -1, "sanity");
237 // the pair bytecodes have already done the load.
238 if (load_bc_into_bc_reg) {
239 __ movl(bc_reg, bc);
240 }
241 }
242
243 if (JvmtiExport::can_post_breakpoint()) {
244 Label L_fast_patch;
245 // if a breakpoint is present we can't rewrite the stream directly
246 __ movzbl(temp_reg, at_bcp(0));
247 __ cmpl(temp_reg, Bytecodes::_breakpoint);
248 __ jcc(Assembler::notEqual, L_fast_patch);
249 __ get_method(temp_reg);
250 // Let breakpoint table handling rewrite to quicker bytecode
251 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), temp_reg, rsi, bc_reg);
252 #ifndef ASSERT
253 __ jmpb(L_patch_done);
254 #else
255 __ jmp(L_patch_done);
256 #endif
257 __ bind(L_fast_patch);
258 }
259
260 #ifdef ASSERT
261 Label L_okay;
262 __ load_unsigned_byte(temp_reg, at_bcp(0));
263 __ cmpl(temp_reg, (int)Bytecodes::java_code(bc));
264 __ jccb(Assembler::equal, L_okay);
265 __ cmpl(temp_reg, bc_reg);
266 __ jcc(Assembler::equal, L_okay);
267 __ stop("patching the wrong bytecode");
268 __ bind(L_okay);
269 #endif
270
271 // patch bytecode
272 __ movb(at_bcp(0), bc_reg);
273 __ bind(L_patch_done);
274 }
275
276 //----------------------------------------------------------------------------------------------------
277 // Individual instructions
278
279 void TemplateTable::nop() {
280 transition(vtos, vtos);
281 // nothing to do
282 }
283
284 void TemplateTable::shouldnotreachhere() {
285 transition(vtos, vtos);
286 __ stop("shouldnotreachhere bytecode");
287 }
288
289
290
291 void TemplateTable::aconst_null() {
292 transition(vtos, atos);
293 __ xorptr(rax, rax);
294 }
295
296
297 void TemplateTable::iconst(int value) {
298 transition(vtos, itos);
299 if (value == 0) {
300 __ xorptr(rax, rax);
301 } else {
302 __ movptr(rax, value);
303 }
304 }
305
306
307 void TemplateTable::lconst(int value) {
308 transition(vtos, ltos);
309 if (value == 0) {
310 __ xorptr(rax, rax);
311 } else {
312 __ movptr(rax, value);
313 }
314 assert(value >= 0, "check this code");
315 __ xorptr(rdx, rdx);
316 }
317
318
319 void TemplateTable::fconst(int value) {
320 transition(vtos, ftos);
321 if (value == 0) { __ fldz();
322 } else if (value == 1) { __ fld1();
323 } else if (value == 2) { __ fld1(); __ fld1(); __ faddp(); // should do a better solution here
324 } else { ShouldNotReachHere();
325 }
326 }
327
328
329 void TemplateTable::dconst(int value) {
330 transition(vtos, dtos);
331 if (value == 0) { __ fldz();
332 } else if (value == 1) { __ fld1();
333 } else { ShouldNotReachHere();
334 }
335 }
336
337
338 void TemplateTable::bipush() {
339 transition(vtos, itos);
340 __ load_signed_byte(rax, at_bcp(1));
341 }
342
343
344 void TemplateTable::sipush() {
345 transition(vtos, itos);
346 __ load_unsigned_short(rax, at_bcp(1));
347 __ bswapl(rax);
348 __ sarl(rax, 16);
349 }
350
351 void TemplateTable::ldc(bool wide) {
352 transition(vtos, vtos);
353 Label call_ldc, notFloat, notClass, Done;
354
355 if (wide) {
356 __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
357 } else {
358 __ load_unsigned_byte(rbx, at_bcp(1));
359 }
360 __ get_cpool_and_tags(rcx, rax);
361 const int base_offset = ConstantPool::header_size() * wordSize;
362 const int tags_offset = Array<u1>::base_offset_in_bytes();
363
364 // get type
365 __ xorptr(rdx, rdx);
366 __ movb(rdx, Address(rax, rbx, Address::times_1, tags_offset));
367
368 // unresolved class - get the resolved class
369 __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass);
370 __ jccb(Assembler::equal, call_ldc);
371
372 // unresolved class in error (resolution failed) - call into runtime
373 // so that the same error from first resolution attempt is thrown.
374 __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError);
375 __ jccb(Assembler::equal, call_ldc);
376
377 // resolved class - need to call vm to get java mirror of the class
378 __ cmpl(rdx, JVM_CONSTANT_Class);
379 __ jcc(Assembler::notEqual, notClass);
380
381 __ bind(call_ldc);
382 __ movl(rcx, wide);
383 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), rcx);
384 __ push(atos);
385 __ jmp(Done);
386
387 __ bind(notClass);
388 __ cmpl(rdx, JVM_CONSTANT_Float);
389 __ jccb(Assembler::notEqual, notFloat);
390 // ftos
391 __ fld_s( Address(rcx, rbx, Address::times_ptr, base_offset));
392 __ push(ftos);
393 __ jmp(Done);
394
395 __ bind(notFloat);
396 #ifdef ASSERT
397 { Label L;
398 __ cmpl(rdx, JVM_CONSTANT_Integer);
399 __ jcc(Assembler::equal, L);
400 // String and Object are rewritten to fast_aldc
401 __ stop("unexpected tag type in ldc");
402 __ bind(L);
403 }
404 #endif
405 // itos JVM_CONSTANT_Integer only
406 __ movl(rax, Address(rcx, rbx, Address::times_ptr, base_offset));
407 __ push(itos);
408 __ bind(Done);
409 }
410
411 // Fast path for caching oop constants.
412 void TemplateTable::fast_aldc(bool wide) {
413 transition(vtos, atos);
414
415 Register result = rax;
416 Register tmp = rdx;
417 int index_size = wide ? sizeof(u2) : sizeof(u1);
418
419 Label resolved;
420
421 // We are resolved if the resolved reference cache entry contains a
422 // non-null object (String, MethodType, etc.)
423 assert_different_registers(result, tmp);
424 __ get_cache_index_at_bcp(tmp, 1, index_size);
425 __ load_resolved_reference_at_index(result, tmp);
426 __ testl(result, result);
427 __ jcc(Assembler::notZero, resolved);
428
429 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
430
431 // first time invocation - must resolve first
432 __ movl(tmp, (int)bytecode());
433 __ call_VM(result, entry, tmp);
434
435 __ bind(resolved);
436
437 if (VerifyOops) {
438 __ verify_oop(result);
439 }
440 }
441
442 void TemplateTable::ldc2_w() {
443 transition(vtos, vtos);
444 Label Long, Done;
445 __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
446
447 __ get_cpool_and_tags(rcx, rax);
448 const int base_offset = ConstantPool::header_size() * wordSize;
449 const int tags_offset = Array<u1>::base_offset_in_bytes();
450
451 // get type
452 __ cmpb(Address(rax, rbx, Address::times_1, tags_offset), JVM_CONSTANT_Double);
453 __ jccb(Assembler::notEqual, Long);
454 // dtos
455 __ fld_d( Address(rcx, rbx, Address::times_ptr, base_offset));
456 __ push(dtos);
457 __ jmpb(Done);
458
459 __ bind(Long);
460 // ltos
461 __ movptr(rax, Address(rcx, rbx, Address::times_ptr, base_offset + 0 * wordSize));
462 NOT_LP64(__ movptr(rdx, Address(rcx, rbx, Address::times_ptr, base_offset + 1 * wordSize)));
463
464 __ push(ltos);
465
466 __ bind(Done);
467 }
468
469
470 void TemplateTable::locals_index(Register reg, int offset) {
471 __ load_unsigned_byte(reg, at_bcp(offset));
472 __ negptr(reg);
473 }
474
475
476 void TemplateTable::iload() {
477 transition(vtos, itos);
478 if (RewriteFrequentPairs) {
479 Label rewrite, done;
480
481 // get next byte
482 __ load_unsigned_byte(rbx, at_bcp(Bytecodes::length_for(Bytecodes::_iload)));
483 // if _iload, wait to rewrite to iload2. We only want to rewrite the
484 // last two iloads in a pair. Comparing against fast_iload means that
485 // the next bytecode is neither an iload or a caload, and therefore
486 // an iload pair.
487 __ cmpl(rbx, Bytecodes::_iload);
488 __ jcc(Assembler::equal, done);
489
490 __ cmpl(rbx, Bytecodes::_fast_iload);
491 __ movl(rcx, Bytecodes::_fast_iload2);
492 __ jccb(Assembler::equal, rewrite);
493
494 // if _caload, rewrite to fast_icaload
495 __ cmpl(rbx, Bytecodes::_caload);
496 __ movl(rcx, Bytecodes::_fast_icaload);
497 __ jccb(Assembler::equal, rewrite);
498
499 // rewrite so iload doesn't check again.
500 __ movl(rcx, Bytecodes::_fast_iload);
501
502 // rewrite
503 // rcx: fast bytecode
504 __ bind(rewrite);
505 patch_bytecode(Bytecodes::_iload, rcx, rbx, false);
506 __ bind(done);
507 }
508
509 // Get the local value into tos
510 locals_index(rbx);
511 __ movl(rax, iaddress(rbx));
512 }
513
514
515 void TemplateTable::fast_iload2() {
516 transition(vtos, itos);
517 locals_index(rbx);
518 __ movl(rax, iaddress(rbx));
519 __ push(itos);
520 locals_index(rbx, 3);
521 __ movl(rax, iaddress(rbx));
522 }
523
524 void TemplateTable::fast_iload() {
525 transition(vtos, itos);
526 locals_index(rbx);
527 __ movl(rax, iaddress(rbx));
528 }
529
530
531 void TemplateTable::lload() {
532 transition(vtos, ltos);
533 locals_index(rbx);
534 __ movptr(rax, laddress(rbx));
535 NOT_LP64(__ movl(rdx, haddress(rbx)));
536 }
537
538
539 void TemplateTable::fload() {
540 transition(vtos, ftos);
541 locals_index(rbx);
542 __ fld_s(faddress(rbx));
543 }
544
545
546 void TemplateTable::dload() {
547 transition(vtos, dtos);
548 locals_index(rbx);
549 __ fld_d(daddress(rbx));
550 }
551
552
553 void TemplateTable::aload() {
554 transition(vtos, atos);
555 locals_index(rbx);
556 __ movptr(rax, aaddress(rbx));
557 }
558
559
560 void TemplateTable::locals_index_wide(Register reg) {
561 __ load_unsigned_short(reg, at_bcp(2));
562 __ bswapl(reg);
563 __ shrl(reg, 16);
564 __ negptr(reg);
565 }
566
567
568 void TemplateTable::wide_iload() {
569 transition(vtos, itos);
570 locals_index_wide(rbx);
571 __ movl(rax, iaddress(rbx));
572 }
573
574
575 void TemplateTable::wide_lload() {
576 transition(vtos, ltos);
577 locals_index_wide(rbx);
578 __ movptr(rax, laddress(rbx));
579 NOT_LP64(__ movl(rdx, haddress(rbx)));
580 }
581
582
583 void TemplateTable::wide_fload() {
584 transition(vtos, ftos);
585 locals_index_wide(rbx);
586 __ fld_s(faddress(rbx));
587 }
588
589
590 void TemplateTable::wide_dload() {
591 transition(vtos, dtos);
592 locals_index_wide(rbx);
593 __ fld_d(daddress(rbx));
594 }
595
596
597 void TemplateTable::wide_aload() {
598 transition(vtos, atos);
599 locals_index_wide(rbx);
600 __ movptr(rax, aaddress(rbx));
601 }
602
603 void TemplateTable::index_check(Register array, Register index) {
604 // Pop ptr into array
605 __ pop_ptr(array);
606 index_check_without_pop(array, index);
607 }
608
609 void TemplateTable::index_check_without_pop(Register array, Register index) {
610 // destroys rbx,
611 // check array
612 __ null_check(array, arrayOopDesc::length_offset_in_bytes());
613 LP64_ONLY(__ movslq(index, index));
614 // check index
615 __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes()));
616 if (index != rbx) {
617 // ??? convention: move aberrant index into rbx, for exception message
618 assert(rbx != array, "different registers");
619 __ mov(rbx, index);
620 }
621 __ jump_cc(Assembler::aboveEqual,
622 ExternalAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry));
623 }
624
625
626 void TemplateTable::iaload() {
627 transition(itos, itos);
628 // rdx: array
629 index_check(rdx, rax); // kills rbx,
630 // rax,: index
631 __ movl(rax, Address(rdx, rax, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_INT)));
632 }
633
634
635 void TemplateTable::laload() {
636 transition(itos, ltos);
637 // rax,: index
638 // rdx: array
639 index_check(rdx, rax);
640 __ mov(rbx, rax);
641 // rbx,: index
642 __ movptr(rax, Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 0 * wordSize));
643 NOT_LP64(__ movl(rdx, Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 1 * wordSize)));
644 }
645
646
647 void TemplateTable::faload() {
648 transition(itos, ftos);
649 // rdx: array
650 index_check(rdx, rax); // kills rbx,
651 // rax,: index
652 __ fld_s(Address(rdx, rax, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
653 }
654
655
656 void TemplateTable::daload() {
657 transition(itos, dtos);
658 // rdx: array
659 index_check(rdx, rax); // kills rbx,
660 // rax,: index
661 __ fld_d(Address(rdx, rax, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
662 }
663
664
665 void TemplateTable::aaload() {
666 transition(itos, atos);
667 // rdx: array
668 index_check(rdx, rax); // kills rbx,
669 // rax,: index
670 __ movptr(rax, Address(rdx, rax, Address::times_ptr, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
671 }
672
673
674 void TemplateTable::baload() {
675 transition(itos, itos);
676 // rdx: array
677 index_check(rdx, rax); // kills rbx,
678 // rax,: index
679 // can do better code for P5 - fix this at some point
680 __ load_signed_byte(rbx, Address(rdx, rax, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_BYTE)));
681 __ mov(rax, rbx);
682 }
683
684
685 void TemplateTable::caload() {
686 transition(itos, itos);
687 // rdx: array
688 index_check(rdx, rax); // kills rbx,
689 // rax,: index
690 // can do better code for P5 - may want to improve this at some point
691 __ load_unsigned_short(rbx, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
692 __ mov(rax, rbx);
693 }
694
695 // iload followed by caload frequent pair
696 void TemplateTable::fast_icaload() {
697 transition(vtos, itos);
698 // load index out of locals
699 locals_index(rbx);
700 __ movl(rax, iaddress(rbx));
701
702 // rdx: array
703 index_check(rdx, rax);
704 // rax,: index
705 __ load_unsigned_short(rbx, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
706 __ mov(rax, rbx);
707 }
708
709 void TemplateTable::saload() {
710 transition(itos, itos);
711 // rdx: array
712 index_check(rdx, rax); // kills rbx,
713 // rax,: index
714 // can do better code for P5 - may want to improve this at some point
715 __ load_signed_short(rbx, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_SHORT)));
716 __ mov(rax, rbx);
717 }
718
719
720 void TemplateTable::iload(int n) {
721 transition(vtos, itos);
722 __ movl(rax, iaddress(n));
723 }
724
725
726 void TemplateTable::lload(int n) {
727 transition(vtos, ltos);
728 __ movptr(rax, laddress(n));
729 NOT_LP64(__ movptr(rdx, haddress(n)));
730 }
731
732
733 void TemplateTable::fload(int n) {
734 transition(vtos, ftos);
735 __ fld_s(faddress(n));
736 }
737
738
739 void TemplateTable::dload(int n) {
740 transition(vtos, dtos);
741 __ fld_d(daddress(n));
742 }
743
744
745 void TemplateTable::aload(int n) {
746 transition(vtos, atos);
747 __ movptr(rax, aaddress(n));
748 }
749
750
751 void TemplateTable::aload_0() {
752 transition(vtos, atos);
753 // According to bytecode histograms, the pairs:
754 //
755 // _aload_0, _fast_igetfield
756 // _aload_0, _fast_agetfield
757 // _aload_0, _fast_fgetfield
758 //
759 // occur frequently. If RewriteFrequentPairs is set, the (slow) _aload_0
760 // bytecode checks if the next bytecode is either _fast_igetfield,
761 // _fast_agetfield or _fast_fgetfield and then rewrites the
762 // current bytecode into a pair bytecode; otherwise it rewrites the current
763 // bytecode into _fast_aload_0 that doesn't do the pair check anymore.
764 //
765 // Note: If the next bytecode is _getfield, the rewrite must be delayed,
766 // otherwise we may miss an opportunity for a pair.
767 //
768 // Also rewrite frequent pairs
769 // aload_0, aload_1
770 // aload_0, iload_1
771 // These bytecodes with a small amount of code are most profitable to rewrite
772 if (RewriteFrequentPairs) {
773 Label rewrite, done;
774 // get next byte
775 __ load_unsigned_byte(rbx, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)));
776
777 // do actual aload_0
778 aload(0);
779
780 // if _getfield then wait with rewrite
781 __ cmpl(rbx, Bytecodes::_getfield);
782 __ jcc(Assembler::equal, done);
783
784 // if _igetfield then reqrite to _fast_iaccess_0
785 assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
786 __ cmpl(rbx, Bytecodes::_fast_igetfield);
787 __ movl(rcx, Bytecodes::_fast_iaccess_0);
788 __ jccb(Assembler::equal, rewrite);
789
790 // if _agetfield then reqrite to _fast_aaccess_0
791 assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
792 __ cmpl(rbx, Bytecodes::_fast_agetfield);
793 __ movl(rcx, Bytecodes::_fast_aaccess_0);
794 __ jccb(Assembler::equal, rewrite);
795
796 // if _fgetfield then reqrite to _fast_faccess_0
797 assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
798 __ cmpl(rbx, Bytecodes::_fast_fgetfield);
799 __ movl(rcx, Bytecodes::_fast_faccess_0);
800 __ jccb(Assembler::equal, rewrite);
801
802 // else rewrite to _fast_aload0
803 assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition");
804 __ movl(rcx, Bytecodes::_fast_aload_0);
805
806 // rewrite
807 // rcx: fast bytecode
808 __ bind(rewrite);
809 patch_bytecode(Bytecodes::_aload_0, rcx, rbx, false);
810
811 __ bind(done);
812 } else {
813 aload(0);
814 }
815 }
816
817 void TemplateTable::istore() {
818 transition(itos, vtos);
819 locals_index(rbx);
820 __ movl(iaddress(rbx), rax);
821 }
822
823
824 void TemplateTable::lstore() {
825 transition(ltos, vtos);
826 locals_index(rbx);
827 __ movptr(laddress(rbx), rax);
828 NOT_LP64(__ movptr(haddress(rbx), rdx));
829 }
830
831
832 void TemplateTable::fstore() {
833 transition(ftos, vtos);
834 locals_index(rbx);
835 __ fstp_s(faddress(rbx));
836 }
837
838
839 void TemplateTable::dstore() {
840 transition(dtos, vtos);
841 locals_index(rbx);
842 __ fstp_d(daddress(rbx));
843 }
844
845
846 void TemplateTable::astore() {
847 transition(vtos, vtos);
848 __ pop_ptr(rax);
849 locals_index(rbx);
850 __ movptr(aaddress(rbx), rax);
851 }
852
853
854 void TemplateTable::wide_istore() {
855 transition(vtos, vtos);
856 __ pop_i(rax);
857 locals_index_wide(rbx);
858 __ movl(iaddress(rbx), rax);
859 }
860
861
862 void TemplateTable::wide_lstore() {
863 transition(vtos, vtos);
864 __ pop_l(rax, rdx);
865 locals_index_wide(rbx);
866 __ movptr(laddress(rbx), rax);
867 NOT_LP64(__ movl(haddress(rbx), rdx));
868 }
869
870
871 void TemplateTable::wide_fstore() {
872 wide_istore();
873 }
874
875
876 void TemplateTable::wide_dstore() {
877 wide_lstore();
878 }
879
880
881 void TemplateTable::wide_astore() {
882 transition(vtos, vtos);
883 __ pop_ptr(rax);
884 locals_index_wide(rbx);
885 __ movptr(aaddress(rbx), rax);
886 }
887
888
889 void TemplateTable::iastore() {
890 transition(itos, vtos);
891 __ pop_i(rbx);
892 // rax,: value
893 // rdx: array
894 index_check(rdx, rbx); // prefer index in rbx,
895 // rbx,: index
896 __ movl(Address(rdx, rbx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_INT)), rax);
897 }
898
899
900 void TemplateTable::lastore() {
901 transition(ltos, vtos);
902 __ pop_i(rbx);
903 // rax,: low(value)
904 // rcx: array
905 // rdx: high(value)
906 index_check(rcx, rbx); // prefer index in rbx,
907 // rbx,: index
908 __ movptr(Address(rcx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 0 * wordSize), rax);
909 NOT_LP64(__ movl(Address(rcx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 1 * wordSize), rdx));
910 }
911
912
913 void TemplateTable::fastore() {
914 transition(ftos, vtos);
915 __ pop_i(rbx);
916 // rdx: array
917 // st0: value
918 index_check(rdx, rbx); // prefer index in rbx,
919 // rbx,: index
920 __ fstp_s(Address(rdx, rbx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
921 }
922
923
924 void TemplateTable::dastore() {
925 transition(dtos, vtos);
926 __ pop_i(rbx);
927 // rdx: array
928 // st0: value
929 index_check(rdx, rbx); // prefer index in rbx,
930 // rbx,: index
931 __ fstp_d(Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
932 }
933
934
935 void TemplateTable::aastore() {
936 Label is_null, ok_is_subtype, done;
937 transition(vtos, vtos);
938 // stack: ..., array, index, value
939 __ movptr(rax, at_tos()); // Value
940 __ movl(rcx, at_tos_p1()); // Index
941 __ movptr(rdx, at_tos_p2()); // Array
942
943 Address element_address(rdx, rcx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
944 index_check_without_pop(rdx, rcx); // kills rbx,
945 // do array store check - check for NULL value first
946 __ testptr(rax, rax);
947 __ jcc(Assembler::zero, is_null);
948
949 // Move subklass into EBX
950 __ load_klass(rbx, rax);
951 // Move superklass into EAX
952 __ load_klass(rax, rdx);
953 __ movptr(rax, Address(rax, ObjArrayKlass::element_klass_offset()));
954 // Compress array+index*wordSize+12 into a single register. Frees ECX.
955 __ lea(rdx, element_address);
956
957 // Generate subtype check. Blows ECX. Resets EDI to locals.
958 // Superklass in EAX. Subklass in EBX.
959 __ gen_subtype_check( rbx, ok_is_subtype );
960
961 // Come here on failure
962 // object is at TOS
963 __ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry));
964
965 // Come here on success
966 __ bind(ok_is_subtype);
967
968 // Get the value to store
969 __ movptr(rax, at_rsp());
970 // and store it with appropriate barrier
971 do_oop_store(_masm, Address(rdx, 0), rax, _bs->kind(), true);
972
973 __ jmp(done);
974
975 // Have a NULL in EAX, EDX=array, ECX=index. Store NULL at ary[idx]
976 __ bind(is_null);
977 __ profile_null_seen(rbx);
978
979 // Store NULL, (noreg means NULL to do_oop_store)
980 do_oop_store(_masm, element_address, noreg, _bs->kind(), true);
981
982 // Pop stack arguments
983 __ bind(done);
984 __ addptr(rsp, 3 * Interpreter::stackElementSize);
985 }
986
987
988 void TemplateTable::bastore() {
989 transition(itos, vtos);
990 __ pop_i(rbx);
991 // rax,: value
992 // rdx: array
993 index_check(rdx, rbx); // prefer index in rbx,
994 // rbx,: index
995 __ movb(Address(rdx, rbx, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_BYTE)), rax);
996 }
997
998
999 void TemplateTable::castore() {
1000 transition(itos, vtos);
1001 __ pop_i(rbx);
1002 // rax,: value
1003 // rdx: array
1004 index_check(rdx, rbx); // prefer index in rbx,
1005 // rbx,: index
1006 __ movw(Address(rdx, rbx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)), rax);
1007 }
1008
1009
1010 void TemplateTable::sastore() {
1011 castore();
1012 }
1013
1014
1015 void TemplateTable::istore(int n) {
1016 transition(itos, vtos);
1017 __ movl(iaddress(n), rax);
1018 }
1019
1020
1021 void TemplateTable::lstore(int n) {
1022 transition(ltos, vtos);
1023 __ movptr(laddress(n), rax);
1024 NOT_LP64(__ movptr(haddress(n), rdx));
1025 }
1026
1027
1028 void TemplateTable::fstore(int n) {
1029 transition(ftos, vtos);
1030 __ fstp_s(faddress(n));
1031 }
1032
1033
1034 void TemplateTable::dstore(int n) {
1035 transition(dtos, vtos);
1036 __ fstp_d(daddress(n));
1037 }
1038
1039
1040 void TemplateTable::astore(int n) {
1041 transition(vtos, vtos);
1042 __ pop_ptr(rax);
1043 __ movptr(aaddress(n), rax);
1044 }
1045
1046
1047 void TemplateTable::pop() {
1048 transition(vtos, vtos);
1049 __ addptr(rsp, Interpreter::stackElementSize);
1050 }
1051
1052
1053 void TemplateTable::pop2() {
1054 transition(vtos, vtos);
1055 __ addptr(rsp, 2*Interpreter::stackElementSize);
1056 }
1057
1058
1059 void TemplateTable::dup() {
1060 transition(vtos, vtos);
1061 // stack: ..., a
1062 __ load_ptr(0, rax);
1063 __ push_ptr(rax);
1064 // stack: ..., a, a
1065 }
1066
1067
1068 void TemplateTable::dup_x1() {
1069 transition(vtos, vtos);
1070 // stack: ..., a, b
1071 __ load_ptr( 0, rax); // load b
1072 __ load_ptr( 1, rcx); // load a
1073 __ store_ptr(1, rax); // store b
1074 __ store_ptr(0, rcx); // store a
1075 __ push_ptr(rax); // push b
1076 // stack: ..., b, a, b
1077 }
1078
1079
1080 void TemplateTable::dup_x2() {
1081 transition(vtos, vtos);
1082 // stack: ..., a, b, c
1083 __ load_ptr( 0, rax); // load c
1084 __ load_ptr( 2, rcx); // load a
1085 __ store_ptr(2, rax); // store c in a
1086 __ push_ptr(rax); // push c
1087 // stack: ..., c, b, c, c
1088 __ load_ptr( 2, rax); // load b
1089 __ store_ptr(2, rcx); // store a in b
1090 // stack: ..., c, a, c, c
1091 __ store_ptr(1, rax); // store b in c
1092 // stack: ..., c, a, b, c
1093 }
1094
1095
1096 void TemplateTable::dup2() {
1097 transition(vtos, vtos);
1098 // stack: ..., a, b
1099 __ load_ptr(1, rax); // load a
1100 __ push_ptr(rax); // push a
1101 __ load_ptr(1, rax); // load b
1102 __ push_ptr(rax); // push b
1103 // stack: ..., a, b, a, b
1104 }
1105
1106
1107 void TemplateTable::dup2_x1() {
1108 transition(vtos, vtos);
1109 // stack: ..., a, b, c
1110 __ load_ptr( 0, rcx); // load c
1111 __ load_ptr( 1, rax); // load b
1112 __ push_ptr(rax); // push b
1113 __ push_ptr(rcx); // push c
1114 // stack: ..., a, b, c, b, c
1115 __ store_ptr(3, rcx); // store c in b
1116 // stack: ..., a, c, c, b, c
1117 __ load_ptr( 4, rcx); // load a
1118 __ store_ptr(2, rcx); // store a in 2nd c
1119 // stack: ..., a, c, a, b, c
1120 __ store_ptr(4, rax); // store b in a
1121 // stack: ..., b, c, a, b, c
1122 // stack: ..., b, c, a, b, c
1123 }
1124
1125
1126 void TemplateTable::dup2_x2() {
1127 transition(vtos, vtos);
1128 // stack: ..., a, b, c, d
1129 __ load_ptr( 0, rcx); // load d
1130 __ load_ptr( 1, rax); // load c
1131 __ push_ptr(rax); // push c
1132 __ push_ptr(rcx); // push d
1133 // stack: ..., a, b, c, d, c, d
1134 __ load_ptr( 4, rax); // load b
1135 __ store_ptr(2, rax); // store b in d
1136 __ store_ptr(4, rcx); // store d in b
1137 // stack: ..., a, d, c, b, c, d
1138 __ load_ptr( 5, rcx); // load a
1139 __ load_ptr( 3, rax); // load c
1140 __ store_ptr(3, rcx); // store a in c
1141 __ store_ptr(5, rax); // store c in a
1142 // stack: ..., c, d, a, b, c, d
1143 // stack: ..., c, d, a, b, c, d
1144 }
1145
1146
1147 void TemplateTable::swap() {
1148 transition(vtos, vtos);
1149 // stack: ..., a, b
1150 __ load_ptr( 1, rcx); // load a
1151 __ load_ptr( 0, rax); // load b
1152 __ store_ptr(0, rcx); // store a in b
1153 __ store_ptr(1, rax); // store b in a
1154 // stack: ..., b, a
1155 }
1156
1157
1158 void TemplateTable::iop2(Operation op) {
1159 transition(itos, itos);
1160 switch (op) {
1161 case add : __ pop_i(rdx); __ addl (rax, rdx); break;
1162 case sub : __ mov(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break;
1163 case mul : __ pop_i(rdx); __ imull(rax, rdx); break;
1164 case _and : __ pop_i(rdx); __ andl (rax, rdx); break;
1165 case _or : __ pop_i(rdx); __ orl (rax, rdx); break;
1166 case _xor : __ pop_i(rdx); __ xorl (rax, rdx); break;
1167 case shl : __ mov(rcx, rax); __ pop_i(rax); __ shll (rax); break; // implicit masking of lower 5 bits by Intel shift instr.
1168 case shr : __ mov(rcx, rax); __ pop_i(rax); __ sarl (rax); break; // implicit masking of lower 5 bits by Intel shift instr.
1169 case ushr : __ mov(rcx, rax); __ pop_i(rax); __ shrl (rax); break; // implicit masking of lower 5 bits by Intel shift instr.
1170 default : ShouldNotReachHere();
1171 }
1172 }
1173
1174
1175 void TemplateTable::lop2(Operation op) {
1176 transition(ltos, ltos);
1177 __ pop_l(rbx, rcx);
1178 switch (op) {
1179 case add : __ addl(rax, rbx); __ adcl(rdx, rcx); break;
1180 case sub : __ subl(rbx, rax); __ sbbl(rcx, rdx);
1181 __ mov (rax, rbx); __ mov (rdx, rcx); break;
1182 case _and : __ andl(rax, rbx); __ andl(rdx, rcx); break;
1183 case _or : __ orl (rax, rbx); __ orl (rdx, rcx); break;
1184 case _xor : __ xorl(rax, rbx); __ xorl(rdx, rcx); break;
1185 default : ShouldNotReachHere();
1186 }
1187 }
1188
1189
1190 void TemplateTable::idiv() {
1191 transition(itos, itos);
1192 __ mov(rcx, rax);
1193 __ pop_i(rax);
1194 // Note: could xor rax, and rcx and compare with (-1 ^ min_int). If
1195 // they are not equal, one could do a normal division (no correction
1196 // needed), which may speed up this implementation for the common case.
1197 // (see also JVM spec., p.243 & p.271)
1198 __ corrected_idivl(rcx);
1199 }
1200
1201
1202 void TemplateTable::irem() {
1203 transition(itos, itos);
1204 __ mov(rcx, rax);
1205 __ pop_i(rax);
1206 // Note: could xor rax, and rcx and compare with (-1 ^ min_int). If
1207 // they are not equal, one could do a normal division (no correction
1208 // needed), which may speed up this implementation for the common case.
1209 // (see also JVM spec., p.243 & p.271)
1210 __ corrected_idivl(rcx);
1211 __ mov(rax, rdx);
1212 }
1213
1214
1215 void TemplateTable::lmul() {
1216 transition(ltos, ltos);
1217 __ pop_l(rbx, rcx);
1218 __ push(rcx); __ push(rbx);
1219 __ push(rdx); __ push(rax);
1220 __ lmul(2 * wordSize, 0);
1221 __ addptr(rsp, 4 * wordSize); // take off temporaries
1222 }
1223
1224
1225 void TemplateTable::ldiv() {
1226 transition(ltos, ltos);
1227 __ pop_l(rbx, rcx);
1228 __ push(rcx); __ push(rbx);
1229 __ push(rdx); __ push(rax);
1230 // check if y = 0
1231 __ orl(rax, rdx);
1232 __ jump_cc(Assembler::zero,
1233 ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
1234 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::ldiv));
1235 __ addptr(rsp, 4 * wordSize); // take off temporaries
1236 }
1237
1238
1239 void TemplateTable::lrem() {
1240 transition(ltos, ltos);
1241 __ pop_l(rbx, rcx);
1242 __ push(rcx); __ push(rbx);
1243 __ push(rdx); __ push(rax);
1244 // check if y = 0
1245 __ orl(rax, rdx);
1246 __ jump_cc(Assembler::zero,
1247 ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
1248 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::lrem));
1249 __ addptr(rsp, 4 * wordSize);
1250 }
1251
1252
1253 void TemplateTable::lshl() {
1254 transition(itos, ltos);
1255 __ movl(rcx, rax); // get shift count
1256 __ pop_l(rax, rdx); // get shift value
1257 __ lshl(rdx, rax);
1258 }
1259
1260
1261 void TemplateTable::lshr() {
1262 transition(itos, ltos);
1263 __ mov(rcx, rax); // get shift count
1264 __ pop_l(rax, rdx); // get shift value
1265 __ lshr(rdx, rax, true);
1266 }
1267
1268
1269 void TemplateTable::lushr() {
1270 transition(itos, ltos);
1271 __ mov(rcx, rax); // get shift count
1272 __ pop_l(rax, rdx); // get shift value
1273 __ lshr(rdx, rax);
1274 }
1275
1276
1277 void TemplateTable::fop2(Operation op) {
1278 transition(ftos, ftos);
1279 switch (op) {
1280 case add: __ fadd_s (at_rsp()); break;
1281 case sub: __ fsubr_s(at_rsp()); break;
1282 case mul: __ fmul_s (at_rsp()); break;
1283 case div: __ fdivr_s(at_rsp()); break;
1284 case rem: __ fld_s (at_rsp()); __ fremr(rax); break;
1285 default : ShouldNotReachHere();
1286 }
1287 __ f2ieee();
1288 __ pop(rax); // pop float thing off
1289 }
1290
1291
1292 void TemplateTable::dop2(Operation op) {
1293 transition(dtos, dtos);
1294
1295 switch (op) {
1296 case add: __ fadd_d (at_rsp()); break;
1297 case sub: __ fsubr_d(at_rsp()); break;
1298 case mul: {
1299 Label L_strict;
1300 Label L_join;
1301 const Address access_flags (rcx, Method::access_flags_offset());
1302 __ get_method(rcx);
1303 __ movl(rcx, access_flags);
1304 __ testl(rcx, JVM_ACC_STRICT);
1305 __ jccb(Assembler::notZero, L_strict);
1306 __ fmul_d (at_rsp());
1307 __ jmpb(L_join);
1308 __ bind(L_strict);
1309 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
1310 __ fmulp();
1311 __ fmul_d (at_rsp());
1312 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
1313 __ fmulp();
1314 __ bind(L_join);
1315 break;
1316 }
1317 case div: {
1318 Label L_strict;
1319 Label L_join;
1320 const Address access_flags (rcx, Method::access_flags_offset());
1321 __ get_method(rcx);
1322 __ movl(rcx, access_flags);
1323 __ testl(rcx, JVM_ACC_STRICT);
1324 __ jccb(Assembler::notZero, L_strict);
1325 __ fdivr_d(at_rsp());
1326 __ jmp(L_join);
1327 __ bind(L_strict);
1328 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
1329 __ fmul_d (at_rsp());
1330 __ fdivrp();
1331 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
1332 __ fmulp();
1333 __ bind(L_join);
1334 break;
1335 }
1336 case rem: __ fld_d (at_rsp()); __ fremr(rax); break;
1337 default : ShouldNotReachHere();
1338 }
1339 __ d2ieee();
1340 // Pop double precision number from rsp.
1341 __ pop(rax);
1342 __ pop(rdx);
1343 }
1344
1345
1346 void TemplateTable::ineg() {
1347 transition(itos, itos);
1348 __ negl(rax);
1349 }
1350
1351
1352 void TemplateTable::lneg() {
1353 transition(ltos, ltos);
1354 __ lneg(rdx, rax);
1355 }
1356
1357
1358 void TemplateTable::fneg() {
1359 transition(ftos, ftos);
1360 __ fchs();
1361 }
1362
1363
1364 void TemplateTable::dneg() {
1365 transition(dtos, dtos);
1366 __ fchs();
1367 }
1368
1369
1370 void TemplateTable::iinc() {
1371 transition(vtos, vtos);
1372 __ load_signed_byte(rdx, at_bcp(2)); // get constant
1373 locals_index(rbx);
1374 __ addl(iaddress(rbx), rdx);
1375 }
1376
1377
1378 void TemplateTable::wide_iinc() {
1379 transition(vtos, vtos);
1380 __ movl(rdx, at_bcp(4)); // get constant
1381 locals_index_wide(rbx);
1382 __ bswapl(rdx); // swap bytes & sign-extend constant
1383 __ sarl(rdx, 16);
1384 __ addl(iaddress(rbx), rdx);
1385 // Note: should probably use only one movl to get both
1386 // the index and the constant -> fix this
1387 }
1388
1389
1390 void TemplateTable::convert() {
1391 // Checking
1392 #ifdef ASSERT
1393 { TosState tos_in = ilgl;
1394 TosState tos_out = ilgl;
1395 switch (bytecode()) {
1396 case Bytecodes::_i2l: // fall through
1397 case Bytecodes::_i2f: // fall through
1398 case Bytecodes::_i2d: // fall through
1399 case Bytecodes::_i2b: // fall through
1400 case Bytecodes::_i2c: // fall through
1401 case Bytecodes::_i2s: tos_in = itos; break;
1402 case Bytecodes::_l2i: // fall through
1403 case Bytecodes::_l2f: // fall through
1404 case Bytecodes::_l2d: tos_in = ltos; break;
1405 case Bytecodes::_f2i: // fall through
1406 case Bytecodes::_f2l: // fall through
1407 case Bytecodes::_f2d: tos_in = ftos; break;
1408 case Bytecodes::_d2i: // fall through
1409 case Bytecodes::_d2l: // fall through
1410 case Bytecodes::_d2f: tos_in = dtos; break;
1411 default : ShouldNotReachHere();
1412 }
1413 switch (bytecode()) {
1414 case Bytecodes::_l2i: // fall through
1415 case Bytecodes::_f2i: // fall through
1416 case Bytecodes::_d2i: // fall through
1417 case Bytecodes::_i2b: // fall through
1418 case Bytecodes::_i2c: // fall through
1419 case Bytecodes::_i2s: tos_out = itos; break;
1420 case Bytecodes::_i2l: // fall through
1421 case Bytecodes::_f2l: // fall through
1422 case Bytecodes::_d2l: tos_out = ltos; break;
1423 case Bytecodes::_i2f: // fall through
1424 case Bytecodes::_l2f: // fall through
1425 case Bytecodes::_d2f: tos_out = ftos; break;
1426 case Bytecodes::_i2d: // fall through
1427 case Bytecodes::_l2d: // fall through
1428 case Bytecodes::_f2d: tos_out = dtos; break;
1429 default : ShouldNotReachHere();
1430 }
1431 transition(tos_in, tos_out);
1432 }
1433 #endif // ASSERT
1434
1435 // Conversion
1436 // (Note: use push(rcx)/pop(rcx) for 1/2-word stack-ptr manipulation)
1437 switch (bytecode()) {
1438 case Bytecodes::_i2l:
1439 __ extend_sign(rdx, rax);
1440 break;
1441 case Bytecodes::_i2f:
1442 __ push(rax); // store int on tos
1443 __ fild_s(at_rsp()); // load int to ST0
1444 __ f2ieee(); // truncate to float size
1445 __ pop(rcx); // adjust rsp
1446 break;
1447 case Bytecodes::_i2d:
1448 __ push(rax); // add one slot for d2ieee()
1449 __ push(rax); // store int on tos
1450 __ fild_s(at_rsp()); // load int to ST0
1451 __ d2ieee(); // truncate to double size
1452 __ pop(rcx); // adjust rsp
1453 __ pop(rcx);
1454 break;
1455 case Bytecodes::_i2b:
1456 __ shll(rax, 24); // truncate upper 24 bits
1457 __ sarl(rax, 24); // and sign-extend byte
1458 LP64_ONLY(__ movsbl(rax, rax));
1459 break;
1460 case Bytecodes::_i2c:
1461 __ andl(rax, 0xFFFF); // truncate upper 16 bits
1462 LP64_ONLY(__ movzwl(rax, rax));
1463 break;
1464 case Bytecodes::_i2s:
1465 __ shll(rax, 16); // truncate upper 16 bits
1466 __ sarl(rax, 16); // and sign-extend short
1467 LP64_ONLY(__ movswl(rax, rax));
1468 break;
1469 case Bytecodes::_l2i:
1470 /* nothing to do */
1471 break;
1472 case Bytecodes::_l2f:
1473 __ push(rdx); // store long on tos
1474 __ push(rax);
1475 __ fild_d(at_rsp()); // load long to ST0
1476 __ f2ieee(); // truncate to float size
1477 __ pop(rcx); // adjust rsp
1478 __ pop(rcx);
1479 break;
1480 case Bytecodes::_l2d:
1481 __ push(rdx); // store long on tos
1482 __ push(rax);
1483 __ fild_d(at_rsp()); // load long to ST0
1484 __ d2ieee(); // truncate to double size
1485 __ pop(rcx); // adjust rsp
1486 __ pop(rcx);
1487 break;
1488 case Bytecodes::_f2i:
1489 __ push(rcx); // reserve space for argument
1490 __ fstp_s(at_rsp()); // pass float argument on stack
1491 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1);
1492 break;
1493 case Bytecodes::_f2l:
1494 __ push(rcx); // reserve space for argument
1495 __ fstp_s(at_rsp()); // pass float argument on stack
1496 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1);
1497 break;
1498 case Bytecodes::_f2d:
1499 /* nothing to do */
1500 break;
1501 case Bytecodes::_d2i:
1502 __ push(rcx); // reserve space for argument
1503 __ push(rcx);
1504 __ fstp_d(at_rsp()); // pass double argument on stack
1505 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 2);
1506 break;
1507 case Bytecodes::_d2l:
1508 __ push(rcx); // reserve space for argument
1509 __ push(rcx);
1510 __ fstp_d(at_rsp()); // pass double argument on stack
1511 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 2);
1512 break;
1513 case Bytecodes::_d2f:
1514 __ push(rcx); // reserve space for f2ieee()
1515 __ f2ieee(); // truncate to float size
1516 __ pop(rcx); // adjust rsp
1517 break;
1518 default :
1519 ShouldNotReachHere();
1520 }
1521 }
1522
1523
1524 void TemplateTable::lcmp() {
1525 transition(ltos, itos);
1526 // y = rdx:rax
1527 __ pop_l(rbx, rcx); // get x = rcx:rbx
1528 __ lcmp2int(rcx, rbx, rdx, rax);// rcx := cmp(x, y)
1529 __ mov(rax, rcx);
1530 }
1531
1532
1533 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
1534 if (is_float) {
1535 __ fld_s(at_rsp());
1536 } else {
1537 __ fld_d(at_rsp());
1538 __ pop(rdx);
1539 }
1540 __ pop(rcx);
1541 __ fcmp2int(rax, unordered_result < 0);
1542 }
1543
1544
1545 void TemplateTable::branch(bool is_jsr, bool is_wide) {
1546 __ get_method(rcx); // ECX holds method
1547 __ profile_taken_branch(rax,rbx); // EAX holds updated MDP, EBX holds bumped taken count
1548
1549 const ByteSize be_offset = MethodCounters::backedge_counter_offset() +
1550 InvocationCounter::counter_offset();
1551 const ByteSize inv_offset = MethodCounters::invocation_counter_offset() +
1552 InvocationCounter::counter_offset();
1553
1554 // Load up EDX with the branch displacement
1555 if (is_wide) {
1556 __ movl(rdx, at_bcp(1));
1557 } else {
1558 __ load_signed_short(rdx, at_bcp(1));
1559 }
1560 __ bswapl(rdx);
1561 if (!is_wide) __ sarl(rdx, 16);
1562 LP64_ONLY(__ movslq(rdx, rdx));
1563
1564
1565 // Handle all the JSR stuff here, then exit.
1566 // It's much shorter and cleaner than intermingling with the
1567 // non-JSR normal-branch stuff occurring below.
1568 if (is_jsr) {
1569 // Pre-load the next target bytecode into EBX
1570 __ load_unsigned_byte(rbx, Address(rsi, rdx, Address::times_1, 0));
1571
1572 // compute return address as bci in rax,
1573 __ lea(rax, at_bcp((is_wide ? 5 : 3) - in_bytes(ConstMethod::codes_offset())));
1574 __ subptr(rax, Address(rcx, Method::const_offset()));
1575 // Adjust the bcp in RSI by the displacement in EDX
1576 __ addptr(rsi, rdx);
1577 // Push return address
1578 __ push_i(rax);
1579 // jsr returns vtos
1580 __ dispatch_only_noverify(vtos);
1581 return;
1582 }
1583
1584 // Normal (non-jsr) branch handling
1585
1586 // Adjust the bcp in RSI by the displacement in EDX
1587 __ addptr(rsi, rdx);
1588
1589 assert(UseLoopCounter || !UseOnStackReplacement, "on-stack-replacement requires loop counters");
1590 Label backedge_counter_overflow;
1591 Label profile_method;
1592 Label dispatch;
1593 if (UseLoopCounter) {
1594 // increment backedge counter for backward branches
1595 // rax,: MDO
1596 // rbx,: MDO bumped taken-count
1597 // rcx: method
1598 // rdx: target offset
1599 // rsi: target bcp
1600 // rdi: locals pointer
1601 __ testl(rdx, rdx); // check if forward or backward branch
1602 __ jcc(Assembler::positive, dispatch); // count only if backward branch
1603
1604 // check if MethodCounters exists
1605 Label has_counters;
1606 __ movptr(rax, Address(rcx, Method::method_counters_offset()));
1607 __ testptr(rax, rax);
1608 __ jcc(Assembler::notZero, has_counters);
1609 __ push(rdx);
1610 __ push(rcx);
1611 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::build_method_counters),
1612 rcx);
1613 __ pop(rcx);
1614 __ pop(rdx);
1615 __ movptr(rax, Address(rcx, Method::method_counters_offset()));
1616 __ testptr(rax, rax);
1617 __ jcc(Assembler::zero, dispatch);
1618 __ bind(has_counters);
1619
1620 if (TieredCompilation) {
1621 Label no_mdo;
1622 int increment = InvocationCounter::count_increment;
1623 if (ProfileInterpreter) {
1624 // Are we profiling?
1625 __ movptr(rbx, Address(rcx, in_bytes(Method::method_data_offset())));
1626 __ testptr(rbx, rbx);
1627 __ jccb(Assembler::zero, no_mdo);
1628 // Increment the MDO backedge counter
1629 const Address mdo_backedge_counter(rbx, in_bytes(MethodData::backedge_counter_offset()) +
1630 in_bytes(InvocationCounter::counter_offset()));
1631 const Address mask(rbx, in_bytes(MethodData::backedge_mask_offset()));
1632 __ increment_mask_and_jump(mdo_backedge_counter, increment, mask,
1633 rax, false, Assembler::zero, &backedge_counter_overflow);
1634 __ jmp(dispatch);
1635 }
1636 __ bind(no_mdo);
1637 // Increment backedge counter in MethodCounters*
1638 __ movptr(rcx, Address(rcx, Method::method_counters_offset()));
1639 const Address mask(rcx, in_bytes(MethodCounters::backedge_mask_offset()));
1640 __ increment_mask_and_jump(Address(rcx, be_offset), increment, mask,
1641 rax, false, Assembler::zero, &backedge_counter_overflow);
1642 } else { // not TieredCompilation
1643 // increment counter
1644 __ movptr(rcx, Address(rcx, Method::method_counters_offset()));
1645 __ movl(rax, Address(rcx, be_offset)); // load backedge counter
1646 __ incrementl(rax, InvocationCounter::count_increment); // increment counter
1647 __ movl(Address(rcx, be_offset), rax); // store counter
1648
1649 __ movl(rax, Address(rcx, inv_offset)); // load invocation counter
1650
1651 __ andl(rax, InvocationCounter::count_mask_value); // and the status bits
1652 __ addl(rax, Address(rcx, be_offset)); // add both counters
1653
1654 if (ProfileInterpreter) {
1655 // Test to see if we should create a method data oop
1656 __ cmp32(rax, Address(rcx, in_bytes(MethodCounters::interpreter_profile_limit_offset())));
1657 __ jcc(Assembler::less, dispatch);
1658
1659 // if no method data exists, go to profile method
1660 __ test_method_data_pointer(rax, profile_method);
1661
1662 if (UseOnStackReplacement) {
1663 // check for overflow against rbx, which is the MDO taken count
1664 __ cmp32(rbx, Address(rcx, in_bytes(MethodCounters::interpreter_backward_branch_limit_offset())));
1665 __ jcc(Assembler::below, dispatch);
1666
1667 // When ProfileInterpreter is on, the backedge_count comes from the
1668 // MethodData*, which value does not get reset on the call to
1669 // frequency_counter_overflow(). To avoid excessive calls to the overflow
1670 // routine while the method is being compiled, add a second test to make
1671 // sure the overflow function is called only once every overflow_frequency.
1672 const int overflow_frequency = 1024;
1673 __ andptr(rbx, overflow_frequency-1);
1674 __ jcc(Assembler::zero, backedge_counter_overflow);
1675 }
1676 } else {
1677 if (UseOnStackReplacement) {
1678 // check for overflow against rax, which is the sum of the counters
1679 __ cmp32(rax, Address(rcx, in_bytes(MethodCounters::interpreter_backward_branch_limit_offset())));
1680 __ jcc(Assembler::aboveEqual, backedge_counter_overflow);
1681
1682 }
1683 }
1684 }
1685 __ bind(dispatch);
1686 }
1687
1688 // Pre-load the next target bytecode into EBX
1689 __ load_unsigned_byte(rbx, Address(rsi, 0));
1690
1691 // continue with the bytecode @ target
1692 // rax,: return bci for jsr's, unused otherwise
1693 // rbx,: target bytecode
1694 // rsi: target bcp
1695 __ dispatch_only(vtos);
1696
1697 if (UseLoopCounter) {
1698 if (ProfileInterpreter) {
1699 // Out-of-line code to allocate method data oop.
1700 __ bind(profile_method);
1701 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
1702 __ load_unsigned_byte(rbx, Address(rsi, 0)); // restore target bytecode
1703 __ set_method_data_pointer_for_bcp();
1704 __ jmp(dispatch);
1705 }
1706
1707 if (UseOnStackReplacement) {
1708
1709 // invocation counter overflow
1710 __ bind(backedge_counter_overflow);
1711 __ negptr(rdx);
1712 __ addptr(rdx, rsi); // branch bcp
1713 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), rdx);
1714 __ load_unsigned_byte(rbx, Address(rsi, 0)); // restore target bytecode
1715
1716 // rax,: osr nmethod (osr ok) or NULL (osr not possible)
1717 // rbx,: target bytecode
1718 // rdx: scratch
1719 // rdi: locals pointer
1720 // rsi: bcp
1721 __ testptr(rax, rax); // test result
1722 __ jcc(Assembler::zero, dispatch); // no osr if null
1723 // nmethod may have been invalidated (VM may block upon call_VM return)
1724 __ cmpb(Address(rax, nmethod::state_offset()), nmethod::in_use);
1725 __ jcc(Assembler::notEqual, dispatch);
1726
1727 // We have the address of an on stack replacement routine in rax,
1728 // We need to prepare to execute the OSR method. First we must
1729 // migrate the locals and monitors off of the stack.
1730
1731 __ mov(rbx, rax); // save the nmethod
1732
1733 __ get_thread(rcx);
1734 call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
1735 // rax, is OSR buffer, move it to expected parameter location
1736 __ mov(rcx, rax);
1737
1738 // pop the interpreter frame
1739 __ movptr(rdx, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
1740 __ leave(); // remove frame anchor
1741 __ pop(rdi); // get return address
1742 __ mov(rsp, rdx); // set sp to sender sp
1743
1744 // Align stack pointer for compiled code (note that caller is
1745 // responsible for undoing this fixup by remembering the old SP
1746 // in an rbp,-relative location)
1747 __ andptr(rsp, -(StackAlignmentInBytes));
1748
1749 // push the (possibly adjusted) return address
1750 __ push(rdi);
1751
1752 // and begin the OSR nmethod
1753 __ jmp(Address(rbx, nmethod::osr_entry_point_offset()));
1754 }
1755 }
1756 }
1757
1758
1759 void TemplateTable::if_0cmp(Condition cc) {
1760 transition(itos, vtos);
1761 // assume branch is more often taken than not (loops use backward branches)
1762 Label not_taken;
1763 __ testl(rax, rax);
1764 __ jcc(j_not(cc), not_taken);
1765 branch(false, false);
1766 __ bind(not_taken);
1767 __ profile_not_taken_branch(rax);
1768 }
1769
1770
1771 void TemplateTable::if_icmp(Condition cc) {
1772 transition(itos, vtos);
1773 // assume branch is more often taken than not (loops use backward branches)
1774 Label not_taken;
1775 __ pop_i(rdx);
1776 __ cmpl(rdx, rax);
1777 __ jcc(j_not(cc), not_taken);
1778 branch(false, false);
1779 __ bind(not_taken);
1780 __ profile_not_taken_branch(rax);
1781 }
1782
1783
1784 void TemplateTable::if_nullcmp(Condition cc) {
1785 transition(atos, vtos);
1786 // assume branch is more often taken than not (loops use backward branches)
1787 Label not_taken;
1788 __ testptr(rax, rax);
1789 __ jcc(j_not(cc), not_taken);
1790 branch(false, false);
1791 __ bind(not_taken);
1792 __ profile_not_taken_branch(rax);
1793 }
1794
1795
1796 void TemplateTable::if_acmp(Condition cc) {
1797 transition(atos, vtos);
1798 // assume branch is more often taken than not (loops use backward branches)
1799 Label not_taken;
1800 __ pop_ptr(rdx);
1801 __ cmpptr(rdx, rax);
1802 __ jcc(j_not(cc), not_taken);
1803 branch(false, false);
1804 __ bind(not_taken);
1805 __ profile_not_taken_branch(rax);
1806 }
1807
1808
1809 void TemplateTable::ret() {
1810 transition(vtos, vtos);
1811 locals_index(rbx);
1812 __ movptr(rbx, iaddress(rbx)); // get return bci, compute return bcp
1813 __ profile_ret(rbx, rcx);
1814 __ get_method(rax);
1815 __ movptr(rsi, Address(rax, Method::const_offset()));
1816 __ lea(rsi, Address(rsi, rbx, Address::times_1,
1817 ConstMethod::codes_offset()));
1818 __ dispatch_next(vtos);
1819 }
1820
1821
1822 void TemplateTable::wide_ret() {
1823 transition(vtos, vtos);
1824 locals_index_wide(rbx);
1825 __ movptr(rbx, iaddress(rbx)); // get return bci, compute return bcp
1826 __ profile_ret(rbx, rcx);
1827 __ get_method(rax);
1828 __ movptr(rsi, Address(rax, Method::const_offset()));
1829 __ lea(rsi, Address(rsi, rbx, Address::times_1, ConstMethod::codes_offset()));
1830 __ dispatch_next(vtos);
1831 }
1832
1833
1834 void TemplateTable::tableswitch() {
1835 Label default_case, continue_execution;
1836 transition(itos, vtos);
1837 // align rsi
1838 __ lea(rbx, at_bcp(wordSize));
1839 __ andptr(rbx, -wordSize);
1840 // load lo & hi
1841 __ movl(rcx, Address(rbx, 1 * wordSize));
1842 __ movl(rdx, Address(rbx, 2 * wordSize));
1843 __ bswapl(rcx);
1844 __ bswapl(rdx);
1845 // check against lo & hi
1846 __ cmpl(rax, rcx);
1847 __ jccb(Assembler::less, default_case);
1848 __ cmpl(rax, rdx);
1849 __ jccb(Assembler::greater, default_case);
1850 // lookup dispatch offset
1851 __ subl(rax, rcx);
1852 __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt));
1853 __ profile_switch_case(rax, rbx, rcx);
1854 // continue execution
1855 __ bind(continue_execution);
1856 __ bswapl(rdx);
1857 __ load_unsigned_byte(rbx, Address(rsi, rdx, Address::times_1));
1858 __ addptr(rsi, rdx);
1859 __ dispatch_only(vtos);
1860 // handle default
1861 __ bind(default_case);
1862 __ profile_switch_default(rax);
1863 __ movl(rdx, Address(rbx, 0));
1864 __ jmp(continue_execution);
1865 }
1866
1867
1868 void TemplateTable::lookupswitch() {
1869 transition(itos, itos);
1870 __ stop("lookupswitch bytecode should have been rewritten");
1871 }
1872
1873
1874 void TemplateTable::fast_linearswitch() {
1875 transition(itos, vtos);
1876 Label loop_entry, loop, found, continue_execution;
1877 // bswapl rax, so we can avoid bswapping the table entries
1878 __ bswapl(rax);
1879 // align rsi
1880 __ lea(rbx, at_bcp(wordSize)); // btw: should be able to get rid of this instruction (change offsets below)
1881 __ andptr(rbx, -wordSize);
1882 // set counter
1883 __ movl(rcx, Address(rbx, wordSize));
1884 __ bswapl(rcx);
1885 __ jmpb(loop_entry);
1886 // table search
1887 __ bind(loop);
1888 __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * wordSize));
1889 __ jccb(Assembler::equal, found);
1890 __ bind(loop_entry);
1891 __ decrementl(rcx);
1892 __ jcc(Assembler::greaterEqual, loop);
1893 // default case
1894 __ profile_switch_default(rax);
1895 __ movl(rdx, Address(rbx, 0));
1896 __ jmpb(continue_execution);
1897 // entry found -> get offset
1898 __ bind(found);
1899 __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * wordSize));
1900 __ profile_switch_case(rcx, rax, rbx);
1901 // continue execution
1902 __ bind(continue_execution);
1903 __ bswapl(rdx);
1904 __ load_unsigned_byte(rbx, Address(rsi, rdx, Address::times_1));
1905 __ addptr(rsi, rdx);
1906 __ dispatch_only(vtos);
1907 }
1908
1909
1910 void TemplateTable::fast_binaryswitch() {
1911 transition(itos, vtos);
1912 // Implementation using the following core algorithm:
1913 //
1914 // int binary_search(int key, LookupswitchPair* array, int n) {
1915 // // Binary search according to "Methodik des Programmierens" by
1916 // // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
1917 // int i = 0;
1918 // int j = n;
1919 // while (i+1 < j) {
1920 // // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
1921 // // with Q: for all i: 0 <= i < n: key < a[i]
1922 // // where a stands for the array and assuming that the (inexisting)
1923 // // element a[n] is infinitely big.
1924 // int h = (i + j) >> 1;
1925 // // i < h < j
1926 // if (key < array[h].fast_match()) {
1927 // j = h;
1928 // } else {
1929 // i = h;
1930 // }
1931 // }
1932 // // R: a[i] <= key < a[i+1] or Q
1933 // // (i.e., if key is within array, i is the correct index)
1934 // return i;
1935 // }
1936
1937 // register allocation
1938 const Register key = rax; // already set (tosca)
1939 const Register array = rbx;
1940 const Register i = rcx;
1941 const Register j = rdx;
1942 const Register h = rdi; // needs to be restored
1943 const Register temp = rsi;
1944 // setup array
1945 __ save_bcp();
1946
1947 __ lea(array, at_bcp(3*wordSize)); // btw: should be able to get rid of this instruction (change offsets below)
1948 __ andptr(array, -wordSize);
1949 // initialize i & j
1950 __ xorl(i, i); // i = 0;
1951 __ movl(j, Address(array, -wordSize)); // j = length(array);
1952 // Convert j into native byteordering
1953 __ bswapl(j);
1954 // and start
1955 Label entry;
1956 __ jmp(entry);
1957
1958 // binary search loop
1959 { Label loop;
1960 __ bind(loop);
1961 // int h = (i + j) >> 1;
1962 __ leal(h, Address(i, j, Address::times_1)); // h = i + j;
1963 __ sarl(h, 1); // h = (i + j) >> 1;
1964 // if (key < array[h].fast_match()) {
1965 // j = h;
1966 // } else {
1967 // i = h;
1968 // }
1969 // Convert array[h].match to native byte-ordering before compare
1970 __ movl(temp, Address(array, h, Address::times_8, 0*wordSize));
1971 __ bswapl(temp);
1972 __ cmpl(key, temp);
1973 // j = h if (key < array[h].fast_match())
1974 __ cmov32(Assembler::less , j, h);
1975 // i = h if (key >= array[h].fast_match())
1976 __ cmov32(Assembler::greaterEqual, i, h);
1977 // while (i+1 < j)
1978 __ bind(entry);
1979 __ leal(h, Address(i, 1)); // i+1
1980 __ cmpl(h, j); // i+1 < j
1981 __ jcc(Assembler::less, loop);
1982 }
1983
1984 // end of binary search, result index is i (must check again!)
1985 Label default_case;
1986 // Convert array[i].match to native byte-ordering before compare
1987 __ movl(temp, Address(array, i, Address::times_8, 0*wordSize));
1988 __ bswapl(temp);
1989 __ cmpl(key, temp);
1990 __ jcc(Assembler::notEqual, default_case);
1991
1992 // entry found -> j = offset
1993 __ movl(j , Address(array, i, Address::times_8, 1*wordSize));
1994 __ profile_switch_case(i, key, array);
1995 __ bswapl(j);
1996 LP64_ONLY(__ movslq(j, j));
1997 __ restore_bcp();
1998 __ restore_locals(); // restore rdi
1999 __ load_unsigned_byte(rbx, Address(rsi, j, Address::times_1));
2000
2001 __ addptr(rsi, j);
2002 __ dispatch_only(vtos);
2003
2004 // default case -> j = default offset
2005 __ bind(default_case);
2006 __ profile_switch_default(i);
2007 __ movl(j, Address(array, -2*wordSize));
2008 __ bswapl(j);
2009 LP64_ONLY(__ movslq(j, j));
2010 __ restore_bcp();
2011 __ restore_locals(); // restore rdi
2012 __ load_unsigned_byte(rbx, Address(rsi, j, Address::times_1));
2013 __ addptr(rsi, j);
2014 __ dispatch_only(vtos);
2015 }
2016
2017
2018 void TemplateTable::_return(TosState state) {
2019 transition(state, state);
2020 assert(_desc->calls_vm(), "inconsistent calls_vm information"); // call in remove_activation
2021
2022 if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
2023 assert(state == vtos, "only valid state");
2024 __ movptr(rax, aaddress(0));
2025 __ load_klass(rdi, rax);
2026 __ movl(rdi, Address(rdi, Klass::access_flags_offset()));
2027 __ testl(rdi, JVM_ACC_HAS_FINALIZER);
2028 Label skip_register_finalizer;
2029 __ jcc(Assembler::zero, skip_register_finalizer);
2030
2031 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), rax);
2032
2033 __ bind(skip_register_finalizer);
2034 }
2035
2036 __ remove_activation(state, rsi);
2037 __ jmp(rsi);
2038 }
2039
2040
2041 // ----------------------------------------------------------------------------
2042 // Volatile variables demand their effects be made known to all CPU's in
2043 // order. Store buffers on most chips allow reads & writes to reorder; the
2044 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
2045 // memory barrier (i.e., it's not sufficient that the interpreter does not
2046 // reorder volatile references, the hardware also must not reorder them).
2047 //
2048 // According to the new Java Memory Model (JMM):
2049 // (1) All volatiles are serialized wrt to each other.
2050 // ALSO reads & writes act as aquire & release, so:
2051 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
2052 // the read float up to before the read. It's OK for non-volatile memory refs
2053 // that happen before the volatile read to float down below it.
2054 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
2055 // that happen BEFORE the write float down to after the write. It's OK for
2056 // non-volatile memory refs that happen after the volatile write to float up
2057 // before it.
2058 //
2059 // We only put in barriers around volatile refs (they are expensive), not
2060 // _between_ memory refs (that would require us to track the flavor of the
2061 // previous memory refs). Requirements (2) and (3) require some barriers
2062 // before volatile stores and after volatile loads. These nearly cover
2063 // requirement (1) but miss the volatile-store-volatile-load case. This final
2064 // case is placed after volatile-stores although it could just as well go
2065 // before volatile-loads.
2066 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits order_constraint ) {
2067 // Helper function to insert a is-volatile test and memory barrier
2068 if( !os::is_MP() ) return; // Not needed on single CPU
2069 __ membar(order_constraint);
2070 }
2071
2072 void TemplateTable::resolve_cache_and_index(int byte_no,
2073 Register Rcache,
2074 Register index,
2075 size_t index_size) {
2076 const Register temp = rbx;
2077 assert_different_registers(Rcache, index, temp);
2078
2079 Label resolved;
2080 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
2081 __ get_cache_and_index_and_bytecode_at_bcp(Rcache, index, temp, byte_no, 1, index_size);
2082 __ cmpl(temp, (int) bytecode()); // have we resolved this bytecode?
2083 __ jcc(Assembler::equal, resolved);
2084
2085 // resolve first time through
2086 address entry;
2087 switch (bytecode()) {
2088 case Bytecodes::_getstatic : // fall through
2089 case Bytecodes::_putstatic : // fall through
2090 case Bytecodes::_getfield : // fall through
2091 case Bytecodes::_putfield : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put); break;
2092 case Bytecodes::_invokevirtual : // fall through
2093 case Bytecodes::_invokespecial : // fall through
2094 case Bytecodes::_invokestatic : // fall through
2095 case Bytecodes::_invokeinterface: entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke); break;
2096 case Bytecodes::_invokehandle : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokehandle); break;
2097 case Bytecodes::_invokedynamic : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic); break;
2098 default:
2099 fatal(err_msg("unexpected bytecode: %s", Bytecodes::name(bytecode())));
2100 break;
2101 }
2102 __ movl(temp, (int)bytecode());
2103 __ call_VM(noreg, entry, temp);
2104 // Update registers with resolved info
2105 __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
2106 __ bind(resolved);
2107 }
2108
2109
2110 // The cache and index registers must be set before call
2111 void TemplateTable::load_field_cp_cache_entry(Register obj,
2112 Register cache,
2113 Register index,
2114 Register off,
2115 Register flags,
2116 bool is_static = false) {
2117 assert_different_registers(cache, index, flags, off);
2118
2119 ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2120 // Field offset
2121 __ movptr(off, Address(cache, index, Address::times_ptr,
2122 in_bytes(cp_base_offset + ConstantPoolCacheEntry::f2_offset())));
2123 // Flags
2124 __ movl(flags, Address(cache, index, Address::times_ptr,
2125 in_bytes(cp_base_offset + ConstantPoolCacheEntry::flags_offset())));
2126
2127 // klass overwrite register
2128 if (is_static) {
2129 __ movptr(obj, Address(cache, index, Address::times_ptr,
2130 in_bytes(cp_base_offset + ConstantPoolCacheEntry::f1_offset())));
2131 const int mirror_offset = in_bytes(Klass::java_mirror_offset());
2132 __ movptr(obj, Address(obj, mirror_offset));
2133 }
2134 }
2135
2136 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
2137 Register method,
2138 Register itable_index,
2139 Register flags,
2140 bool is_invokevirtual,
2141 bool is_invokevfinal, /*unused*/
2142 bool is_invokedynamic) {
2143 // setup registers
2144 const Register cache = rcx;
2145 const Register index = rdx;
2146 assert_different_registers(method, flags);
2147 assert_different_registers(method, cache, index);
2148 assert_different_registers(itable_index, flags);
2149 assert_different_registers(itable_index, cache, index);
2150 // determine constant pool cache field offsets
2151 assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant");
2152 const int method_offset = in_bytes(
2153 ConstantPoolCache::base_offset() +
2154 ((byte_no == f2_byte)
2155 ? ConstantPoolCacheEntry::f2_offset()
2156 : ConstantPoolCacheEntry::f1_offset()));
2157 const int flags_offset = in_bytes(ConstantPoolCache::base_offset() +
2158 ConstantPoolCacheEntry::flags_offset());
2159 // access constant pool cache fields
2160 const int index_offset = in_bytes(ConstantPoolCache::base_offset() +
2161 ConstantPoolCacheEntry::f2_offset());
2162
2163 size_t index_size = (is_invokedynamic ? sizeof(u4) : sizeof(u2));
2164 resolve_cache_and_index(byte_no, cache, index, index_size);
2165 __ movptr(method, Address(cache, index, Address::times_ptr, method_offset));
2166
2167 if (itable_index != noreg) {
2168 __ movptr(itable_index, Address(cache, index, Address::times_ptr, index_offset));
2169 }
2170 __ movl(flags, Address(cache, index, Address::times_ptr, flags_offset));
2171 }
2172
2173
2174 // The registers cache and index expected to be set before call.
2175 // Correct values of the cache and index registers are preserved.
2176 void TemplateTable::jvmti_post_field_access(Register cache,
2177 Register index,
2178 bool is_static,
2179 bool has_tos) {
2180 if (JvmtiExport::can_post_field_access()) {
2181 // Check to see if a field access watch has been set before we take
2182 // the time to call into the VM.
2183 Label L1;
2184 assert_different_registers(cache, index, rax);
2185 __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
2186 __ testl(rax,rax);
2187 __ jcc(Assembler::zero, L1);
2188
2189 // cache entry pointer
2190 __ addptr(cache, in_bytes(ConstantPoolCache::base_offset()));
2191 __ shll(index, LogBytesPerWord);
2192 __ addptr(cache, index);
2193 if (is_static) {
2194 __ xorptr(rax, rax); // NULL object reference
2195 } else {
2196 __ pop(atos); // Get the object
2197 __ verify_oop(rax);
2198 __ push(atos); // Restore stack state
2199 }
2200 // rax,: object pointer or NULL
2201 // cache: cache entry pointer
2202 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access),
2203 rax, cache);
2204 __ get_cache_and_index_at_bcp(cache, index, 1);
2205 __ bind(L1);
2206 }
2207 }
2208
2209 void TemplateTable::pop_and_check_object(Register r) {
2210 __ pop_ptr(r);
2211 __ null_check(r); // for field access must check obj.
2212 __ verify_oop(r);
2213 }
2214
2215 void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
2216 transition(vtos, vtos);
2217
2218 const Register cache = rcx;
2219 const Register index = rdx;
2220 const Register obj = rcx;
2221 const Register off = rbx;
2222 const Register flags = rax;
2223
2224 resolve_cache_and_index(byte_no, cache, index, sizeof(u2));
2225 jvmti_post_field_access(cache, index, is_static, false);
2226 load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
2227
2228 if (!is_static) pop_and_check_object(obj);
2229
2230 const Address lo(obj, off, Address::times_1, 0*wordSize);
2231 const Address hi(obj, off, Address::times_1, 1*wordSize);
2232
2233 Label Done, notByte, notInt, notShort, notChar, notLong, notFloat, notObj, notDouble;
2234
2235 __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
2236 assert(btos == 0, "change code, btos != 0");
2237 // btos
2238 __ andptr(flags, ConstantPoolCacheEntry::tos_state_mask);
2239 __ jcc(Assembler::notZero, notByte);
2240
2241 __ load_signed_byte(rax, lo );
2242 __ push(btos);
2243 // Rewrite bytecode to be faster
2244 if (!is_static) {
2245 patch_bytecode(Bytecodes::_fast_bgetfield, rcx, rbx);
2246 }
2247 __ jmp(Done);
2248
2249 __ bind(notByte);
2250 // itos
2251 __ cmpl(flags, itos );
2252 __ jcc(Assembler::notEqual, notInt);
2253
2254 __ movl(rax, lo );
2255 __ push(itos);
2256 // Rewrite bytecode to be faster
2257 if (!is_static) {
2258 patch_bytecode(Bytecodes::_fast_igetfield, rcx, rbx);
2259 }
2260 __ jmp(Done);
2261
2262 __ bind(notInt);
2263 // atos
2264 __ cmpl(flags, atos );
2265 __ jcc(Assembler::notEqual, notObj);
2266
2267 __ movl(rax, lo );
2268 __ push(atos);
2269 if (!is_static) {
2270 patch_bytecode(Bytecodes::_fast_agetfield, rcx, rbx);
2271 }
2272 __ jmp(Done);
2273
2274 __ bind(notObj);
2275 // ctos
2276 __ cmpl(flags, ctos );
2277 __ jcc(Assembler::notEqual, notChar);
2278
2279 __ load_unsigned_short(rax, lo );
2280 __ push(ctos);
2281 if (!is_static) {
2282 patch_bytecode(Bytecodes::_fast_cgetfield, rcx, rbx);
2283 }
2284 __ jmp(Done);
2285
2286 __ bind(notChar);
2287 // stos
2288 __ cmpl(flags, stos );
2289 __ jcc(Assembler::notEqual, notShort);
2290
2291 __ load_signed_short(rax, lo );
2292 __ push(stos);
2293 if (!is_static) {
2294 patch_bytecode(Bytecodes::_fast_sgetfield, rcx, rbx);
2295 }
2296 __ jmp(Done);
2297
2298 __ bind(notShort);
2299 // ltos
2300 __ cmpl(flags, ltos );
2301 __ jcc(Assembler::notEqual, notLong);
2302
2303 // Generate code as if volatile. There just aren't enough registers to
2304 // save that information and this code is faster than the test.
2305 __ fild_d(lo); // Must load atomically
2306 __ subptr(rsp,2*wordSize); // Make space for store
2307 __ fistp_d(Address(rsp,0));
2308 __ pop(rax);
2309 __ pop(rdx);
2310
2311 __ push(ltos);
2312 // Don't rewrite to _fast_lgetfield for potential volatile case.
2313 __ jmp(Done);
2314
2315 __ bind(notLong);
2316 // ftos
2317 __ cmpl(flags, ftos );
2318 __ jcc(Assembler::notEqual, notFloat);
2319
2320 __ fld_s(lo);
2321 __ push(ftos);
2322 if (!is_static) {
2323 patch_bytecode(Bytecodes::_fast_fgetfield, rcx, rbx);
2324 }
2325 __ jmp(Done);
2326
2327 __ bind(notFloat);
2328 // dtos
2329 __ cmpl(flags, dtos );
2330 __ jcc(Assembler::notEqual, notDouble);
2331
2332 __ fld_d(lo);
2333 __ push(dtos);
2334 if (!is_static) {
2335 patch_bytecode(Bytecodes::_fast_dgetfield, rcx, rbx);
2336 }
2337 __ jmpb(Done);
2338
2339 __ bind(notDouble);
2340
2341 __ stop("Bad state");
2342
2343 __ bind(Done);
2344 // Doug Lea believes this is not needed with current Sparcs (TSO) and Intel (PSO).
2345 // volatile_barrier( );
2346 }
2347
2348
2349 void TemplateTable::getfield(int byte_no) {
2350 getfield_or_static(byte_no, false);
2351 }
2352
2353
2354 void TemplateTable::getstatic(int byte_no) {
2355 getfield_or_static(byte_no, true);
2356 }
2357
2358 // The registers cache and index expected to be set before call.
2359 // The function may destroy various registers, just not the cache and index registers.
2360 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) {
2361
2362 ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2363
2364 if (JvmtiExport::can_post_field_modification()) {
2365 // Check to see if a field modification watch has been set before we take
2366 // the time to call into the VM.
2367 Label L1;
2368 assert_different_registers(cache, index, rax);
2369 __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
2370 __ testl(rax, rax);
2371 __ jcc(Assembler::zero, L1);
2372
2373 // The cache and index registers have been already set.
2374 // This allows to eliminate this call but the cache and index
2375 // registers have to be correspondingly used after this line.
2376 __ get_cache_and_index_at_bcp(rax, rdx, 1);
2377
2378 if (is_static) {
2379 // Life is simple. Null out the object pointer.
2380 __ xorptr(rbx, rbx);
2381 } else {
2382 // Life is harder. The stack holds the value on top, followed by the object.
2383 // We don't know the size of the value, though; it could be one or two words
2384 // depending on its type. As a result, we must find the type to determine where
2385 // the object is.
2386 Label two_word, valsize_known;
2387 __ movl(rcx, Address(rax, rdx, Address::times_ptr, in_bytes(cp_base_offset +
2388 ConstantPoolCacheEntry::flags_offset())));
2389 __ mov(rbx, rsp);
2390 __ shrl(rcx, ConstantPoolCacheEntry::tos_state_shift);
2391 // Make sure we don't need to mask rcx after the above shift
2392 ConstantPoolCacheEntry::verify_tos_state_shift();
2393 __ cmpl(rcx, ltos);
2394 __ jccb(Assembler::equal, two_word);
2395 __ cmpl(rcx, dtos);
2396 __ jccb(Assembler::equal, two_word);
2397 __ addptr(rbx, Interpreter::expr_offset_in_bytes(1)); // one word jvalue (not ltos, dtos)
2398 __ jmpb(valsize_known);
2399
2400 __ bind(two_word);
2401 __ addptr(rbx, Interpreter::expr_offset_in_bytes(2)); // two words jvalue
2402
2403 __ bind(valsize_known);
2404 // setup object pointer
2405 __ movptr(rbx, Address(rbx, 0));
2406 }
2407 // cache entry pointer
2408 __ addptr(rax, in_bytes(cp_base_offset));
2409 __ shll(rdx, LogBytesPerWord);
2410 __ addptr(rax, rdx);
2411 // object (tos)
2412 __ mov(rcx, rsp);
2413 // rbx,: object pointer set up above (NULL if static)
2414 // rax,: cache entry pointer
2415 // rcx: jvalue object on the stack
2416 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification),
2417 rbx, rax, rcx);
2418 __ get_cache_and_index_at_bcp(cache, index, 1);
2419 __ bind(L1);
2420 }
2421 }
2422
2423
2424 void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
2425 transition(vtos, vtos);
2426
2427 const Register cache = rcx;
2428 const Register index = rdx;
2429 const Register obj = rcx;
2430 const Register off = rbx;
2431 const Register flags = rax;
2432
2433 resolve_cache_and_index(byte_no, cache, index, sizeof(u2));
2434 jvmti_post_field_mod(cache, index, is_static);
2435 load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
2436
2437 // Doug Lea believes this is not needed with current Sparcs (TSO) and Intel (PSO).
2438 // volatile_barrier( );
2439
2440 Label notVolatile, Done;
2441 __ movl(rdx, flags);
2442 __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
2443 __ andl(rdx, 0x1);
2444
2445 // field addresses
2446 const Address lo(obj, off, Address::times_1, 0*wordSize);
2447 const Address hi(obj, off, Address::times_1, 1*wordSize);
2448
2449 Label notByte, notInt, notShort, notChar, notLong, notFloat, notObj, notDouble;
2450
2451 __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
2452 assert(btos == 0, "change code, btos != 0");
2453 __ andl(flags, ConstantPoolCacheEntry::tos_state_mask);
2454 __ jcc(Assembler::notZero, notByte);
2455
2456 // btos
2457 {
2458 __ pop(btos);
2459 if (!is_static) pop_and_check_object(obj);
2460 __ movb(lo, rax);
2461 if (!is_static) {
2462 patch_bytecode(Bytecodes::_fast_bputfield, rcx, rbx, true, byte_no);
2463 }
2464 __ jmp(Done);
2465 }
2466
2467 __ bind(notByte);
2468 __ cmpl(flags, itos);
2469 __ jcc(Assembler::notEqual, notInt);
2470
2471 // itos
2472 {
2473 __ pop(itos);
2474 if (!is_static) pop_and_check_object(obj);
2475 __ movl(lo, rax);
2476 if (!is_static) {
2477 patch_bytecode(Bytecodes::_fast_iputfield, rcx, rbx, true, byte_no);
2478 }
2479 __ jmp(Done);
2480 }
2481
2482 __ bind(notInt);
2483 __ cmpl(flags, atos);
2484 __ jcc(Assembler::notEqual, notObj);
2485
2486 // atos
2487 {
2488 __ pop(atos);
2489 if (!is_static) pop_and_check_object(obj);
2490 do_oop_store(_masm, lo, rax, _bs->kind(), false);
2491 if (!is_static) {
2492 patch_bytecode(Bytecodes::_fast_aputfield, rcx, rbx, true, byte_no);
2493 }
2494 __ jmp(Done);
2495 }
2496
2497 __ bind(notObj);
2498 __ cmpl(flags, ctos);
2499 __ jcc(Assembler::notEqual, notChar);
2500
2501 // ctos
2502 {
2503 __ pop(ctos);
2504 if (!is_static) pop_and_check_object(obj);
2505 __ movw(lo, rax);
2506 if (!is_static) {
2507 patch_bytecode(Bytecodes::_fast_cputfield, rcx, rbx, true, byte_no);
2508 }
2509 __ jmp(Done);
2510 }
2511
2512 __ bind(notChar);
2513 __ cmpl(flags, stos);
2514 __ jcc(Assembler::notEqual, notShort);
2515
2516 // stos
2517 {
2518 __ pop(stos);
2519 if (!is_static) pop_and_check_object(obj);
2520 __ movw(lo, rax);
2521 if (!is_static) {
2522 patch_bytecode(Bytecodes::_fast_sputfield, rcx, rbx, true, byte_no);
2523 }
2524 __ jmp(Done);
2525 }
2526
2527 __ bind(notShort);
2528 __ cmpl(flags, ltos);
2529 __ jcc(Assembler::notEqual, notLong);
2530
2531 // ltos
2532 {
2533 Label notVolatileLong;
2534 __ testl(rdx, rdx);
2535 __ jcc(Assembler::zero, notVolatileLong);
2536
2537 __ pop(ltos); // overwrites rdx, do this after testing volatile.
2538 if (!is_static) pop_and_check_object(obj);
2539
2540 // Replace with real volatile test
2541 __ push(rdx);
2542 __ push(rax); // Must update atomically with FIST
2543 __ fild_d(Address(rsp,0)); // So load into FPU register
2544 __ fistp_d(lo); // and put into memory atomically
2545 __ addptr(rsp, 2*wordSize);
2546 // volatile_barrier();
2547 volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
2548 Assembler::StoreStore));
2549 // Don't rewrite volatile version
2550 __ jmp(notVolatile);
2551
2552 __ bind(notVolatileLong);
2553
2554 __ pop(ltos); // overwrites rdx
2555 if (!is_static) pop_and_check_object(obj);
2556 NOT_LP64(__ movptr(hi, rdx));
2557 __ movptr(lo, rax);
2558 if (!is_static) {
2559 patch_bytecode(Bytecodes::_fast_lputfield, rcx, rbx, true, byte_no);
2560 }
2561 __ jmp(notVolatile);
2562 }
2563
2564 __ bind(notLong);
2565 __ cmpl(flags, ftos);
2566 __ jcc(Assembler::notEqual, notFloat);
2567
2568 // ftos
2569 {
2570 __ pop(ftos);
2571 if (!is_static) pop_and_check_object(obj);
2572 __ fstp_s(lo);
2573 if (!is_static) {
2574 patch_bytecode(Bytecodes::_fast_fputfield, rcx, rbx, true, byte_no);
2575 }
2576 __ jmp(Done);
2577 }
2578
2579 __ bind(notFloat);
2580 #ifdef ASSERT
2581 __ cmpl(flags, dtos);
2582 __ jcc(Assembler::notEqual, notDouble);
2583 #endif
2584
2585 // dtos
2586 {
2587 __ pop(dtos);
2588 if (!is_static) pop_and_check_object(obj);
2589 __ fstp_d(lo);
2590 if (!is_static) {
2591 patch_bytecode(Bytecodes::_fast_dputfield, rcx, rbx, true, byte_no);
2592 }
2593 __ jmp(Done);
2594 }
2595
2596 #ifdef ASSERT
2597 __ bind(notDouble);
2598 __ stop("Bad state");
2599 #endif
2600
2601 __ bind(Done);
2602
2603 // Check for volatile store
2604 __ testl(rdx, rdx);
2605 __ jcc(Assembler::zero, notVolatile);
2606 volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
2607 Assembler::StoreStore));
2608 __ bind(notVolatile);
2609 }
2610
2611
2612 void TemplateTable::putfield(int byte_no) {
2613 putfield_or_static(byte_no, false);
2614 }
2615
2616
2617 void TemplateTable::putstatic(int byte_no) {
2618 putfield_or_static(byte_no, true);
2619 }
2620
2621 void TemplateTable::jvmti_post_fast_field_mod() {
2622 if (JvmtiExport::can_post_field_modification()) {
2623 // Check to see if a field modification watch has been set before we take
2624 // the time to call into the VM.
2625 Label L2;
2626 __ mov32(rcx, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
2627 __ testl(rcx,rcx);
2628 __ jcc(Assembler::zero, L2);
2629 __ pop_ptr(rbx); // copy the object pointer from tos
2630 __ verify_oop(rbx);
2631 __ push_ptr(rbx); // put the object pointer back on tos
2632
2633 // Save tos values before call_VM() clobbers them. Since we have
2634 // to do it for every data type, we use the saved values as the
2635 // jvalue object.
2636 switch (bytecode()) { // load values into the jvalue object
2637 case Bytecodes::_fast_aputfield: __ push_ptr(rax); break;
2638 case Bytecodes::_fast_bputfield: // fall through
2639 case Bytecodes::_fast_sputfield: // fall through
2640 case Bytecodes::_fast_cputfield: // fall through
2641 case Bytecodes::_fast_iputfield: __ push_i(rax); break;
2642 case Bytecodes::_fast_dputfield: __ push_d(); break;
2643 case Bytecodes::_fast_fputfield: __ push_f(); break;
2644 case Bytecodes::_fast_lputfield: __ push_l(rax); break;
2645
2646 default:
2647 ShouldNotReachHere();
2648 }
2649 __ mov(rcx, rsp); // points to jvalue on the stack
2650 // access constant pool cache entry
2651 __ get_cache_entry_pointer_at_bcp(rax, rdx, 1);
2652 __ verify_oop(rbx);
2653 // rbx,: object pointer copied above
2654 // rax,: cache entry pointer
2655 // rcx: jvalue object on the stack
2656 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), rbx, rax, rcx);
2657
2658 switch (bytecode()) { // restore tos values
2659 case Bytecodes::_fast_aputfield: __ pop_ptr(rax); break;
2660 case Bytecodes::_fast_bputfield: // fall through
2661 case Bytecodes::_fast_sputfield: // fall through
2662 case Bytecodes::_fast_cputfield: // fall through
2663 case Bytecodes::_fast_iputfield: __ pop_i(rax); break;
2664 case Bytecodes::_fast_dputfield: __ pop_d(); break;
2665 case Bytecodes::_fast_fputfield: __ pop_f(); break;
2666 case Bytecodes::_fast_lputfield: __ pop_l(rax); break;
2667 }
2668 __ bind(L2);
2669 }
2670 }
2671
2672 void TemplateTable::fast_storefield(TosState state) {
2673 transition(state, vtos);
2674
2675 ByteSize base = ConstantPoolCache::base_offset();
2676
2677 jvmti_post_fast_field_mod();
2678
2679 // access constant pool cache
2680 __ get_cache_and_index_at_bcp(rcx, rbx, 1);
2681
2682 // test for volatile with rdx but rdx is tos register for lputfield.
2683 if (bytecode() == Bytecodes::_fast_lputfield) __ push(rdx);
2684 __ movl(rdx, Address(rcx, rbx, Address::times_ptr, in_bytes(base +
2685 ConstantPoolCacheEntry::flags_offset())));
2686
2687 // replace index with field offset from cache entry
2688 __ movptr(rbx, Address(rcx, rbx, Address::times_ptr, in_bytes(base + ConstantPoolCacheEntry::f2_offset())));
2689
2690 // Doug Lea believes this is not needed with current Sparcs (TSO) and Intel (PSO).
2691 // volatile_barrier( );
2692
2693 Label notVolatile, Done;
2694 __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
2695 __ andl(rdx, 0x1);
2696 // Check for volatile store
2697 __ testl(rdx, rdx);
2698 __ jcc(Assembler::zero, notVolatile);
2699
2700 if (bytecode() == Bytecodes::_fast_lputfield) __ pop(rdx);
2701
2702 // Get object from stack
2703 pop_and_check_object(rcx);
2704
2705 // field addresses
2706 const Address lo(rcx, rbx, Address::times_1, 0*wordSize);
2707 const Address hi(rcx, rbx, Address::times_1, 1*wordSize);
2708
2709 // access field
2710 switch (bytecode()) {
2711 case Bytecodes::_fast_bputfield: __ movb(lo, rax); break;
2712 case Bytecodes::_fast_sputfield: // fall through
2713 case Bytecodes::_fast_cputfield: __ movw(lo, rax); break;
2714 case Bytecodes::_fast_iputfield: __ movl(lo, rax); break;
2715 case Bytecodes::_fast_lputfield:
2716 NOT_LP64(__ movptr(hi, rdx));
2717 __ movptr(lo, rax);
2718 break;
2719 case Bytecodes::_fast_fputfield: __ fstp_s(lo); break;
2720 case Bytecodes::_fast_dputfield: __ fstp_d(lo); break;
2721 case Bytecodes::_fast_aputfield: {
2722 do_oop_store(_masm, lo, rax, _bs->kind(), false);
2723 break;
2724 }
2725 default:
2726 ShouldNotReachHere();
2727 }
2728
2729 Label done;
2730 volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
2731 Assembler::StoreStore));
2732 // Barriers are so large that short branch doesn't reach!
2733 __ jmp(done);
2734
2735 // Same code as above, but don't need rdx to test for volatile.
2736 __ bind(notVolatile);
2737
2738 if (bytecode() == Bytecodes::_fast_lputfield) __ pop(rdx);
2739
2740 // Get object from stack
2741 pop_and_check_object(rcx);
2742
2743 // access field
2744 switch (bytecode()) {
2745 case Bytecodes::_fast_bputfield: __ movb(lo, rax); break;
2746 case Bytecodes::_fast_sputfield: // fall through
2747 case Bytecodes::_fast_cputfield: __ movw(lo, rax); break;
2748 case Bytecodes::_fast_iputfield: __ movl(lo, rax); break;
2749 case Bytecodes::_fast_lputfield:
2750 NOT_LP64(__ movptr(hi, rdx));
2751 __ movptr(lo, rax);
2752 break;
2753 case Bytecodes::_fast_fputfield: __ fstp_s(lo); break;
2754 case Bytecodes::_fast_dputfield: __ fstp_d(lo); break;
2755 case Bytecodes::_fast_aputfield: {
2756 do_oop_store(_masm, lo, rax, _bs->kind(), false);
2757 break;
2758 }
2759 default:
2760 ShouldNotReachHere();
2761 }
2762 __ bind(done);
2763 }
2764
2765
2766 void TemplateTable::fast_accessfield(TosState state) {
2767 transition(atos, state);
2768
2769 // do the JVMTI work here to avoid disturbing the register state below
2770 if (JvmtiExport::can_post_field_access()) {
2771 // Check to see if a field access watch has been set before we take
2772 // the time to call into the VM.
2773 Label L1;
2774 __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
2775 __ testl(rcx,rcx);
2776 __ jcc(Assembler::zero, L1);
2777 // access constant pool cache entry
2778 __ get_cache_entry_pointer_at_bcp(rcx, rdx, 1);
2779 __ push_ptr(rax); // save object pointer before call_VM() clobbers it
2780 __ verify_oop(rax);
2781 // rax,: object pointer copied above
2782 // rcx: cache entry pointer
2783 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), rax, rcx);
2784 __ pop_ptr(rax); // restore object pointer
2785 __ bind(L1);
2786 }
2787
2788 // access constant pool cache
2789 __ get_cache_and_index_at_bcp(rcx, rbx, 1);
2790 // replace index with field offset from cache entry
2791 __ movptr(rbx, Address(rcx,
2792 rbx,
2793 Address::times_ptr,
2794 in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::f2_offset())));
2795
2796
2797 // rax,: object
2798 __ verify_oop(rax);
2799 __ null_check(rax);
2800 // field addresses
2801 const Address lo = Address(rax, rbx, Address::times_1, 0*wordSize);
2802 const Address hi = Address(rax, rbx, Address::times_1, 1*wordSize);
2803
2804 // access field
2805 switch (bytecode()) {
2806 case Bytecodes::_fast_bgetfield: __ movsbl(rax, lo ); break;
2807 case Bytecodes::_fast_sgetfield: __ load_signed_short(rax, lo ); break;
2808 case Bytecodes::_fast_cgetfield: __ load_unsigned_short(rax, lo ); break;
2809 case Bytecodes::_fast_igetfield: __ movl(rax, lo); break;
2810 case Bytecodes::_fast_lgetfield: __ stop("should not be rewritten"); break;
2811 case Bytecodes::_fast_fgetfield: __ fld_s(lo); break;
2812 case Bytecodes::_fast_dgetfield: __ fld_d(lo); break;
2813 case Bytecodes::_fast_agetfield: __ movptr(rax, lo); __ verify_oop(rax); break;
2814 default:
2815 ShouldNotReachHere();
2816 }
2817
2818 // Doug Lea believes this is not needed with current Sparcs(TSO) and Intel(PSO)
2819 // volatile_barrier( );
2820 }
2821
2822 void TemplateTable::fast_xaccess(TosState state) {
2823 transition(vtos, state);
2824 // get receiver
2825 __ movptr(rax, aaddress(0));
2826 // access constant pool cache
2827 __ get_cache_and_index_at_bcp(rcx, rdx, 2);
2828 __ movptr(rbx, Address(rcx,
2829 rdx,
2830 Address::times_ptr,
2831 in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::f2_offset())));
2832 // make sure exception is reported in correct bcp range (getfield is next instruction)
2833 __ increment(rsi);
2834 __ null_check(rax);
2835 const Address lo = Address(rax, rbx, Address::times_1, 0*wordSize);
2836 if (state == itos) {
2837 __ movl(rax, lo);
2838 } else if (state == atos) {
2839 __ movptr(rax, lo);
2840 __ verify_oop(rax);
2841 } else if (state == ftos) {
2842 __ fld_s(lo);
2843 } else {
2844 ShouldNotReachHere();
2845 }
2846 __ decrement(rsi);
2847 }
2848
2849
2850
2851 //----------------------------------------------------------------------------------------------------
2852 // Calls
2853
2854 void TemplateTable::count_calls(Register method, Register temp) {
2855 // implemented elsewhere
2856 ShouldNotReachHere();
2857 }
2858
2859
2860 void TemplateTable::prepare_invoke(int byte_no,
2861 Register method, // linked method (or i-klass)
2862 Register index, // itable index, MethodType, etc.
2863 Register recv, // if caller wants to see it
2864 Register flags // if caller wants to test it
2865 ) {
2866 // determine flags
2867 const Bytecodes::Code code = bytecode();
2868 const bool is_invokeinterface = code == Bytecodes::_invokeinterface;
2869 const bool is_invokedynamic = code == Bytecodes::_invokedynamic;
2870 const bool is_invokehandle = code == Bytecodes::_invokehandle;
2871 const bool is_invokevirtual = code == Bytecodes::_invokevirtual;
2872 const bool is_invokespecial = code == Bytecodes::_invokespecial;
2873 const bool load_receiver = (recv != noreg);
2874 const bool save_flags = (flags != noreg);
2875 assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), "");
2876 assert(save_flags == (is_invokeinterface || is_invokevirtual), "need flags for vfinal");
2877 assert(flags == noreg || flags == rdx, "");
2878 assert(recv == noreg || recv == rcx, "");
2879
2880 // setup registers & access constant pool cache
2881 if (recv == noreg) recv = rcx;
2882 if (flags == noreg) flags = rdx;
2883 assert_different_registers(method, index, recv, flags);
2884
2885 // save 'interpreter return address'
2886 __ save_bcp();
2887
2888 load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic);
2889
2890 // maybe push appendix to arguments (just before return address)
2891 if (is_invokedynamic || is_invokehandle) {
2892 Label L_no_push;
2893 __ testl(flags, (1 << ConstantPoolCacheEntry::has_appendix_shift));
2894 __ jccb(Assembler::zero, L_no_push);
2895 // Push the appendix as a trailing parameter.
2896 // This must be done before we get the receiver,
2897 // since the parameter_size includes it.
2898 __ push(rbx);
2899 __ mov(rbx, index);
2900 assert(ConstantPoolCacheEntry::_indy_resolved_references_appendix_offset == 0, "appendix expected at index+0");
2901 __ load_resolved_reference_at_index(index, rbx);
2902 __ pop(rbx);
2903 __ push(index); // push appendix (MethodType, CallSite, etc.)
2904 __ bind(L_no_push);
2905 }
2906
2907 // load receiver if needed (note: no return address pushed yet)
2908 if (load_receiver) {
2909 __ movl(recv, flags);
2910 __ andl(recv, ConstantPoolCacheEntry::parameter_size_mask);
2911 const int no_return_pc_pushed_yet = -1; // argument slot correction before we push return address
2912 const int receiver_is_at_end = -1; // back off one slot to get receiver
2913 Address recv_addr = __ argument_address(recv, no_return_pc_pushed_yet + receiver_is_at_end);
2914 __ movptr(recv, recv_addr);
2915 __ verify_oop(recv);
2916 }
2917
2918 if (save_flags) {
2919 __ mov(rsi, flags);
2920 }
2921
2922 // compute return type
2923 __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
2924 // Make sure we don't need to mask flags after the above shift
2925 ConstantPoolCacheEntry::verify_tos_state_shift();
2926 // load return address
2927 {
2928 const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code);
2929 ExternalAddress table(table_addr);
2930 __ movptr(flags, ArrayAddress(table, Address(noreg, flags, Address::times_ptr)));
2931 }
2932
2933 // push return address
2934 __ push(flags);
2935
2936 // Restore flags value from the constant pool cache, and restore rsi
2937 // for later null checks. rsi is the bytecode pointer
2938 if (save_flags) {
2939 __ mov(flags, rsi);
2940 __ restore_bcp();
2941 }
2942 }
2943
2944
2945 void TemplateTable::invokevirtual_helper(Register index,
2946 Register recv,
2947 Register flags) {
2948 // Uses temporary registers rax, rdx
2949 assert_different_registers(index, recv, rax, rdx);
2950 assert(index == rbx, "");
2951 assert(recv == rcx, "");
2952
2953 // Test for an invoke of a final method
2954 Label notFinal;
2955 __ movl(rax, flags);
2956 __ andl(rax, (1 << ConstantPoolCacheEntry::is_vfinal_shift));
2957 __ jcc(Assembler::zero, notFinal);
2958
2959 const Register method = index; // method must be rbx
2960 assert(method == rbx,
2961 "Method* must be rbx for interpreter calling convention");
2962
2963 // do the call - the index is actually the method to call
2964 // that is, f2 is a vtable index if !is_vfinal, else f2 is a Method*
2965
2966 // It's final, need a null check here!
2967 __ null_check(recv);
2968
2969 // profile this call
2970 __ profile_final_call(rax);
2971 __ profile_arguments_type(rax, method, rsi, true);
2972
2973 __ jump_from_interpreted(method, rax);
2974
2975 __ bind(notFinal);
2976
2977 // get receiver klass
2978 __ null_check(recv, oopDesc::klass_offset_in_bytes());
2979 __ load_klass(rax, recv);
2980
2981 // profile this call
2982 __ profile_virtual_call(rax, rdi, rdx);
2983
2984 // get target Method* & entry point
2985 __ lookup_virtual_method(rax, index, method);
2986 __ profile_arguments_type(rdx, method, rsi, true);
2987 __ jump_from_interpreted(method, rdx);
2988 }
2989
2990
2991 void TemplateTable::invokevirtual(int byte_no) {
2992 transition(vtos, vtos);
2993 assert(byte_no == f2_byte, "use this argument");
2994 prepare_invoke(byte_no,
2995 rbx, // method or vtable index
2996 noreg, // unused itable index
2997 rcx, rdx); // recv, flags
2998
2999 // rbx: index
3000 // rcx: receiver
3001 // rdx: flags
3002
3003 invokevirtual_helper(rbx, rcx, rdx);
3004 }
3005
3006
3007 void TemplateTable::invokespecial(int byte_no) {
3008 transition(vtos, vtos);
3009 assert(byte_no == f1_byte, "use this argument");
3010 prepare_invoke(byte_no, rbx, noreg, // get f1 Method*
3011 rcx); // get receiver also for null check
3012 __ verify_oop(rcx);
3013 __ null_check(rcx);
3014 // do the call
3015 __ profile_call(rax);
3016 __ profile_arguments_type(rax, rbx, rsi, false);
3017 __ jump_from_interpreted(rbx, rax);
3018 }
3019
3020
3021 void TemplateTable::invokestatic(int byte_no) {
3022 transition(vtos, vtos);
3023 assert(byte_no == f1_byte, "use this argument");
3024 prepare_invoke(byte_no, rbx); // get f1 Method*
3025 // do the call
3026 __ profile_call(rax);
3027 __ profile_arguments_type(rax, rbx, rsi, false);
3028 __ jump_from_interpreted(rbx, rax);
3029 }
3030
3031
3032 void TemplateTable::fast_invokevfinal(int byte_no) {
3033 transition(vtos, vtos);
3034 assert(byte_no == f2_byte, "use this argument");
3035 __ stop("fast_invokevfinal not used on x86");
3036 }
3037
3038
3039 void TemplateTable::invokeinterface(int byte_no) {
3040 transition(vtos, vtos);
3041 assert(byte_no == f1_byte, "use this argument");
3042 prepare_invoke(byte_no, rax, rbx, // get f1 Klass*, f2 itable index
3043 rcx, rdx); // recv, flags
3044
3045 // rax: interface klass (from f1)
3046 // rbx: itable index (from f2)
3047 // rcx: receiver
3048 // rdx: flags
3049
3050 // Special case of invokeinterface called for virtual method of
3051 // java.lang.Object. See cpCacheOop.cpp for details.
3052 // This code isn't produced by javac, but could be produced by
3053 // another compliant java compiler.
3054 Label notMethod;
3055 __ movl(rdi, rdx);
3056 __ andl(rdi, (1 << ConstantPoolCacheEntry::is_forced_virtual_shift));
3057 __ jcc(Assembler::zero, notMethod);
3058
3059 invokevirtual_helper(rbx, rcx, rdx);
3060 __ bind(notMethod);
3061
3062 // Get receiver klass into rdx - also a null check
3063 __ restore_locals(); // restore rdi
3064 __ null_check(rcx, oopDesc::klass_offset_in_bytes());
3065 __ load_klass(rdx, rcx);
3066
3067 // profile this call
3068 __ profile_virtual_call(rdx, rsi, rdi);
3069
3070 Label no_such_interface, no_such_method;
3071
3072 __ lookup_interface_method(// inputs: rec. class, interface, itable index
3073 rdx, rax, rbx,
3074 // outputs: method, scan temp. reg
3075 rbx, rsi,
3076 no_such_interface);
3077
3078 // rbx: Method* to call
3079 // rcx: receiver
3080 // Check for abstract method error
3081 // Note: This should be done more efficiently via a throw_abstract_method_error
3082 // interpreter entry point and a conditional jump to it in case of a null
3083 // method.
3084 __ testptr(rbx, rbx);
3085 __ jcc(Assembler::zero, no_such_method);
3086
3087 __ profile_arguments_type(rdx, rbx, rsi, true);
3088
3089 // do the call
3090 // rcx: receiver
3091 // rbx,: Method*
3092 __ jump_from_interpreted(rbx, rdx);
3093 __ should_not_reach_here();
3094
3095 // exception handling code follows...
3096 // note: must restore interpreter registers to canonical
3097 // state for exception handling to work correctly!
3098
3099 __ bind(no_such_method);
3100 // throw exception
3101 __ pop(rbx); // pop return address (pushed by prepare_invoke)
3102 __ restore_bcp(); // rsi must be correct for exception handler (was destroyed)
3103 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed)
3104 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
3105 // the call_VM checks for exception, so we should never return here.
3106 __ should_not_reach_here();
3107
3108 __ bind(no_such_interface);
3109 // throw exception
3110 __ pop(rbx); // pop return address (pushed by prepare_invoke)
3111 __ restore_bcp(); // rsi must be correct for exception handler (was destroyed)
3112 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed)
3113 __ call_VM(noreg, CAST_FROM_FN_PTR(address,
3114 InterpreterRuntime::throw_IncompatibleClassChangeError));
3115 // the call_VM checks for exception, so we should never return here.
3116 __ should_not_reach_here();
3117 }
3118
3119 void TemplateTable::invokehandle(int byte_no) {
3120 transition(vtos, vtos);
3121 assert(byte_no == f1_byte, "use this argument");
3122 const Register rbx_method = rbx;
3123 const Register rax_mtype = rax;
3124 const Register rcx_recv = rcx;
3125 const Register rdx_flags = rdx;
3126
3127 prepare_invoke(byte_no, rbx_method, rax_mtype, rcx_recv);
3128 __ verify_method_ptr(rbx_method);
3129 __ verify_oop(rcx_recv);
3130 __ null_check(rcx_recv);
3131
3132 // rax: MethodType object (from cpool->resolved_references[f1], if necessary)
3133 // rbx: MH.invokeExact_MT method (from f2)
3134
3135 // Note: rax_mtype is already pushed (if necessary) by prepare_invoke
3136
3137 // FIXME: profile the LambdaForm also
3138 __ profile_final_call(rax);
3139 __ profile_arguments_type(rdx, rbx_method, rsi, true);
3140
3141 __ jump_from_interpreted(rbx_method, rdx);
3142 }
3143
3144
3145 void TemplateTable::invokedynamic(int byte_no) {
3146 transition(vtos, vtos);
3147 assert(byte_no == f1_byte, "use this argument");
3148
3149 const Register rbx_method = rbx;
3150 const Register rax_callsite = rax;
3151
3152 prepare_invoke(byte_no, rbx_method, rax_callsite);
3153
3154 // rax: CallSite object (from cpool->resolved_references[f1])
3155 // rbx: MH.linkToCallSite method (from f2)
3156
3157 // Note: rax_callsite is already pushed by prepare_invoke
3158
3159 // %%% should make a type profile for any invokedynamic that takes a ref argument
3160 // profile this call
3161 __ profile_call(rsi);
3162 __ profile_arguments_type(rdx, rbx, rsi, false);
3163
3164 __ verify_oop(rax_callsite);
3165
3166 __ jump_from_interpreted(rbx_method, rdx);
3167 }
3168
3169 //----------------------------------------------------------------------------------------------------
3170 // Allocation
3171
3172 void TemplateTable::_new() {
3173 transition(vtos, atos);
3174 __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
3175 Label slow_case;
3176 Label slow_case_no_pop;
3177 Label done;
3178 Label initialize_header;
3179 Label initialize_object; // including clearing the fields
3180 Label allocate_shared;
3181
3182 __ get_cpool_and_tags(rcx, rax);
3183
3184 // Make sure the class we're about to instantiate has been resolved.
3185 // This is done before loading InstanceKlass to be consistent with the order
3186 // how Constant Pool is updated (see ConstantPool::klass_at_put)
3187 const int tags_offset = Array<u1>::base_offset_in_bytes();
3188 __ cmpb(Address(rax, rdx, Address::times_1, tags_offset), JVM_CONSTANT_Class);
3189 __ jcc(Assembler::notEqual, slow_case_no_pop);
3190
3191 // get InstanceKlass
3192 __ movptr(rcx, Address(rcx, rdx, Address::times_ptr, sizeof(ConstantPool)));
3193 __ push(rcx); // save the contexts of klass for initializing the header
3194
3195 // make sure klass is initialized & doesn't have finalizer
3196 // make sure klass is fully initialized
3197 __ cmpb(Address(rcx, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized);
3198 __ jcc(Assembler::notEqual, slow_case);
3199
3200 // get instance_size in InstanceKlass (scaled to a count of bytes)
3201 __ movl(rdx, Address(rcx, Klass::layout_helper_offset()));
3202 // test to see if it has a finalizer or is malformed in some way
3203 __ testl(rdx, Klass::_lh_instance_slow_path_bit);
3204 __ jcc(Assembler::notZero, slow_case);
3205
3206 //
3207 // Allocate the instance
3208 // 1) Try to allocate in the TLAB
3209 // 2) if fail and the object is large allocate in the shared Eden
3210 // 3) if the above fails (or is not applicable), go to a slow case
3211 // (creates a new TLAB, etc.)
3212
3213 const bool allow_shared_alloc =
3214 Universe::heap()->supports_inline_contig_alloc();
3215
3216 const Register thread = rcx;
3217 if (UseTLAB || allow_shared_alloc) {
3218 __ get_thread(thread);
3219 }
3220
3221 if (UseTLAB) {
3222 __ movptr(rax, Address(thread, in_bytes(JavaThread::tlab_top_offset())));
3223 __ lea(rbx, Address(rax, rdx, Address::times_1));
3224 __ cmpptr(rbx, Address(thread, in_bytes(JavaThread::tlab_end_offset())));
3225 __ jcc(Assembler::above, allow_shared_alloc ? allocate_shared : slow_case);
3226 __ movptr(Address(thread, in_bytes(JavaThread::tlab_top_offset())), rbx);
3227 if (ZeroTLAB) {
3228 // the fields have been already cleared
3229 __ jmp(initialize_header);
3230 } else {
3231 // initialize both the header and fields
3232 __ jmp(initialize_object);
3233 }
3234 }
3235
3236 // Allocation in the shared Eden, if allowed.
3237 //
3238 // rdx: instance size in bytes
3239 if (allow_shared_alloc) {
3240 __ bind(allocate_shared);
3241
3242 ExternalAddress heap_top((address)Universe::heap()->top_addr());
3243
3244 Label retry;
3245 __ bind(retry);
3246 __ movptr(rax, heap_top);
3247 __ lea(rbx, Address(rax, rdx, Address::times_1));
3248 __ cmpptr(rbx, ExternalAddress((address)Universe::heap()->end_addr()));
3249 __ jcc(Assembler::above, slow_case);
3250
3251 // Compare rax, with the top addr, and if still equal, store the new
3252 // top addr in rbx, at the address of the top addr pointer. Sets ZF if was
3253 // equal, and clears it otherwise. Use lock prefix for atomicity on MPs.
3254 //
3255 // rax,: object begin
3256 // rbx,: object end
3257 // rdx: instance size in bytes
3258 __ locked_cmpxchgptr(rbx, heap_top);
3259
3260 // if someone beat us on the allocation, try again, otherwise continue
3261 __ jcc(Assembler::notEqual, retry);
3262
3263 __ incr_allocated_bytes(thread, rdx, 0);
3264 }
3265
3266 if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) {
3267 // The object is initialized before the header. If the object size is
3268 // zero, go directly to the header initialization.
3269 __ bind(initialize_object);
3270 __ decrement(rdx, sizeof(oopDesc));
3271 __ jcc(Assembler::zero, initialize_header);
3272
3273 // Initialize topmost object field, divide rdx by 8, check if odd and
3274 // test if zero.
3275 __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code)
3276 __ shrl(rdx, LogBytesPerLong); // divide by 2*oopSize and set carry flag if odd
3277
3278 // rdx must have been multiple of 8
3279 #ifdef ASSERT
3280 // make sure rdx was multiple of 8
3281 Label L;
3282 // Ignore partial flag stall after shrl() since it is debug VM
3283 __ jccb(Assembler::carryClear, L);
3284 __ stop("object size is not multiple of 2 - adjust this code");
3285 __ bind(L);
3286 // rdx must be > 0, no extra check needed here
3287 #endif
3288
3289 // initialize remaining object fields: rdx was a multiple of 8
3290 { Label loop;
3291 __ bind(loop);
3292 __ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 1*oopSize), rcx);
3293 NOT_LP64(__ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 2*oopSize), rcx));
3294 __ decrement(rdx);
3295 __ jcc(Assembler::notZero, loop);
3296 }
3297
3298 // initialize object header only.
3299 __ bind(initialize_header);
3300 if (UseBiasedLocking) {
3301 __ pop(rcx); // get saved klass back in the register.
3302 __ movptr(rbx, Address(rcx, Klass::prototype_header_offset()));
3303 __ movptr(Address(rax, oopDesc::mark_offset_in_bytes ()), rbx);
3304 } else {
3305 __ movptr(Address(rax, oopDesc::mark_offset_in_bytes ()),
3306 (int32_t)markOopDesc::prototype()); // header
3307 __ pop(rcx); // get saved klass back in the register.
3308 }
3309 __ store_klass(rax, rcx); // klass
3310
3311 {
3312 SkipIfEqual skip_if(_masm, &DTraceAllocProbes, 0);
3313 // Trigger dtrace event for fastpath
3314 __ push(atos);
3315 __ call_VM_leaf(
3316 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), rax);
3317 __ pop(atos);
3318 }
3319
3320 __ jmp(done);
3321 }
3322
3323 // slow case
3324 __ bind(slow_case);
3325 __ pop(rcx); // restore stack pointer to what it was when we came in.
3326 __ bind(slow_case_no_pop);
3327 __ get_constant_pool(rax);
3328 __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
3329 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), rax, rdx);
3330
3331 // continue
3332 __ bind(done);
3333 }
3334
3335
3336 void TemplateTable::newarray() {
3337 transition(itos, atos);
3338 __ push_i(rax); // make sure everything is on the stack
3339 __ load_unsigned_byte(rdx, at_bcp(1));
3340 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), rdx, rax);
3341 __ pop_i(rdx); // discard size
3342 }
3343
3344
3345 void TemplateTable::anewarray() {
3346 transition(itos, atos);
3347 __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
3348 __ get_constant_pool(rcx);
3349 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), rcx, rdx, rax);
3350 }
3351
3352
3353 void TemplateTable::arraylength() {
3354 transition(atos, itos);
3355 __ null_check(rax, arrayOopDesc::length_offset_in_bytes());
3356 __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes()));
3357 }
3358
3359
3360 void TemplateTable::checkcast() {
3361 transition(atos, atos);
3362 Label done, is_null, ok_is_subtype, quicked, resolved;
3363 __ testptr(rax, rax); // Object is in EAX
3364 __ jcc(Assembler::zero, is_null);
3365
3366 // Get cpool & tags index
3367 __ get_cpool_and_tags(rcx, rdx); // ECX=cpool, EDX=tags array
3368 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // EBX=index
3369 // See if bytecode has already been quicked
3370 __ cmpb(Address(rdx, rbx, Address::times_1, Array<u1>::base_offset_in_bytes()), JVM_CONSTANT_Class);
3371 __ jcc(Assembler::equal, quicked);
3372
3373 __ push(atos);
3374 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
3375 // vm_result_2 has metadata result
3376 // borrow rdi from locals
3377 __ get_thread(rdi);
3378 __ get_vm_result_2(rax, rdi);
3379 __ restore_locals();
3380 __ pop_ptr(rdx);
3381 __ jmpb(resolved);
3382
3383 // Get superklass in EAX and subklass in EBX
3384 __ bind(quicked);
3385 __ mov(rdx, rax); // Save object in EDX; EAX needed for subtype check
3386 __ movptr(rax, Address(rcx, rbx, Address::times_ptr, sizeof(ConstantPool)));
3387
3388 __ bind(resolved);
3389 __ load_klass(rbx, rdx);
3390
3391 // Generate subtype check. Blows ECX. Resets EDI. Object in EDX.
3392 // Superklass in EAX. Subklass in EBX.
3393 __ gen_subtype_check( rbx, ok_is_subtype );
3394
3395 // Come here on failure
3396 __ push(rdx);
3397 // object is at TOS
3398 __ jump(ExternalAddress(Interpreter::_throw_ClassCastException_entry));
3399
3400 // Come here on success
3401 __ bind(ok_is_subtype);
3402 __ mov(rax,rdx); // Restore object in EDX
3403
3404 // Collect counts on whether this check-cast sees NULLs a lot or not.
3405 if (ProfileInterpreter) {
3406 __ jmp(done);
3407 __ bind(is_null);
3408 __ profile_null_seen(rcx);
3409 } else {
3410 __ bind(is_null); // same as 'done'
3411 }
3412 __ bind(done);
3413 }
3414
3415
3416 void TemplateTable::instanceof() {
3417 transition(atos, itos);
3418 Label done, is_null, ok_is_subtype, quicked, resolved;
3419 __ testptr(rax, rax);
3420 __ jcc(Assembler::zero, is_null);
3421
3422 // Get cpool & tags index
3423 __ get_cpool_and_tags(rcx, rdx); // ECX=cpool, EDX=tags array
3424 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // EBX=index
3425 // See if bytecode has already been quicked
3426 __ cmpb(Address(rdx, rbx, Address::times_1, Array<u1>::base_offset_in_bytes()), JVM_CONSTANT_Class);
3427 __ jcc(Assembler::equal, quicked);
3428
3429 __ push(atos);
3430 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
3431 // vm_result_2 has metadata result
3432 // borrow rdi from locals
3433 __ get_thread(rdi);
3434 __ get_vm_result_2(rax, rdi);
3435 __ restore_locals();
3436 __ pop_ptr(rdx);
3437 __ load_klass(rdx, rdx);
3438 __ jmp(resolved);
3439
3440 // Get superklass in EAX and subklass in EDX
3441 __ bind(quicked);
3442 __ load_klass(rdx, rax);
3443 __ movptr(rax, Address(rcx, rbx, Address::times_ptr, sizeof(ConstantPool)));
3444
3445 __ bind(resolved);
3446
3447 // Generate subtype check. Blows ECX. Resets EDI.
3448 // Superklass in EAX. Subklass in EDX.
3449 __ gen_subtype_check( rdx, ok_is_subtype );
3450
3451 // Come here on failure
3452 __ xorl(rax,rax);
3453 __ jmpb(done);
3454 // Come here on success
3455 __ bind(ok_is_subtype);
3456 __ movl(rax, 1);
3457
3458 // Collect counts on whether this test sees NULLs a lot or not.
3459 if (ProfileInterpreter) {
3460 __ jmp(done);
3461 __ bind(is_null);
3462 __ profile_null_seen(rcx);
3463 } else {
3464 __ bind(is_null); // same as 'done'
3465 }
3466 __ bind(done);
3467 // rax, = 0: obj == NULL or obj is not an instanceof the specified klass
3468 // rax, = 1: obj != NULL and obj is an instanceof the specified klass
3469 }
3470
3471
3472 //----------------------------------------------------------------------------------------------------
3473 // Breakpoints
3474 void TemplateTable::_breakpoint() {
3475
3476 // Note: We get here even if we are single stepping..
3477 // jbug inists on setting breakpoints at every bytecode
3478 // even if we are in single step mode.
3479
3480 transition(vtos, vtos);
3481
3482 // get the unpatched byte code
3483 __ get_method(rcx);
3484 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::get_original_bytecode_at), rcx, rsi);
3485 __ mov(rbx, rax);
3486
3487 // post the breakpoint event
3488 __ get_method(rcx);
3489 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), rcx, rsi);
3490
3491 // complete the execution of original bytecode
3492 __ dispatch_only_normal(vtos);
3493 }
3494
3495
3496 //----------------------------------------------------------------------------------------------------
3497 // Exceptions
3498
3499 void TemplateTable::athrow() {
3500 transition(atos, vtos);
3501 __ null_check(rax);
3502 __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
3503 }
3504
3505
3506 //----------------------------------------------------------------------------------------------------
3507 // Synchronization
3508 //
3509 // Note: monitorenter & exit are symmetric routines; which is reflected
3510 // in the assembly code structure as well
3511 //
3512 // Stack layout:
3513 //
3514 // [expressions ] <--- rsp = expression stack top
3515 // ..
3516 // [expressions ]
3517 // [monitor entry] <--- monitor block top = expression stack bot
3518 // ..
3519 // [monitor entry]
3520 // [frame data ] <--- monitor block bot
3521 // ...
3522 // [saved rbp, ] <--- rbp,
3523
3524
3525 void TemplateTable::monitorenter() {
3526 transition(atos, vtos);
3527
3528 // check for NULL object
3529 __ null_check(rax);
3530
3531 const Address monitor_block_top(rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
3532 const Address monitor_block_bot(rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
3533 const int entry_size = ( frame::interpreter_frame_monitor_size() * wordSize);
3534 Label allocated;
3535
3536 // initialize entry pointer
3537 __ xorl(rdx, rdx); // points to free slot or NULL
3538
3539 // find a free slot in the monitor block (result in rdx)
3540 { Label entry, loop, exit;
3541 __ movptr(rcx, monitor_block_top); // points to current entry, starting with top-most entry
3542
3543 __ lea(rbx, monitor_block_bot); // points to word before bottom of monitor block
3544 __ jmpb(entry);
3545
3546 __ bind(loop);
3547 __ cmpptr(Address(rcx, BasicObjectLock::obj_offset_in_bytes()), (int32_t)NULL_WORD); // check if current entry is used
3548 __ cmovptr(Assembler::equal, rdx, rcx); // if not used then remember entry in rdx
3549 __ cmpptr(rax, Address(rcx, BasicObjectLock::obj_offset_in_bytes())); // check if current entry is for same object
3550 __ jccb(Assembler::equal, exit); // if same object then stop searching
3551 __ addptr(rcx, entry_size); // otherwise advance to next entry
3552 __ bind(entry);
3553 __ cmpptr(rcx, rbx); // check if bottom reached
3554 __ jcc(Assembler::notEqual, loop); // if not at bottom then check this entry
3555 __ bind(exit);
3556 }
3557
3558 __ testptr(rdx, rdx); // check if a slot has been found
3559 __ jccb(Assembler::notZero, allocated); // if found, continue with that one
3560
3561 // allocate one if there's no free slot
3562 { Label entry, loop;
3563 // 1. compute new pointers // rsp: old expression stack top
3564 __ movptr(rdx, monitor_block_bot); // rdx: old expression stack bottom
3565 __ subptr(rsp, entry_size); // move expression stack top
3566 __ subptr(rdx, entry_size); // move expression stack bottom
3567 __ mov(rcx, rsp); // set start value for copy loop
3568 __ movptr(monitor_block_bot, rdx); // set new monitor block top
3569 __ jmp(entry);
3570 // 2. move expression stack contents
3571 __ bind(loop);
3572 __ movptr(rbx, Address(rcx, entry_size)); // load expression stack word from old location
3573 __ movptr(Address(rcx, 0), rbx); // and store it at new location
3574 __ addptr(rcx, wordSize); // advance to next word
3575 __ bind(entry);
3576 __ cmpptr(rcx, rdx); // check if bottom reached
3577 __ jcc(Assembler::notEqual, loop); // if not at bottom then copy next word
3578 }
3579
3580 // call run-time routine
3581 // rdx: points to monitor entry
3582 __ bind(allocated);
3583
3584 // Increment bcp to point to the next bytecode, so exception handling for async. exceptions work correctly.
3585 // The object has already been poped from the stack, so the expression stack looks correct.
3586 __ increment(rsi);
3587
3588 __ movptr(Address(rdx, BasicObjectLock::obj_offset_in_bytes()), rax); // store object
3589 __ lock_object(rdx);
3590
3591 // check to make sure this monitor doesn't cause stack overflow after locking
3592 __ save_bcp(); // in case of exception
3593 __ generate_stack_overflow_check(0);
3594
3595 // The bcp has already been incremented. Just need to dispatch to next instruction.
3596 __ dispatch_next(vtos);
3597 }
3598
3599
3600 void TemplateTable::monitorexit() {
3601 transition(atos, vtos);
3602
3603 // check for NULL object
3604 __ null_check(rax);
3605
3606 const Address monitor_block_top(rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
3607 const Address monitor_block_bot(rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
3608 const int entry_size = ( frame::interpreter_frame_monitor_size() * wordSize);
3609 Label found;
3610
3611 // find matching slot
3612 { Label entry, loop;
3613 __ movptr(rdx, monitor_block_top); // points to current entry, starting with top-most entry
3614 __ lea(rbx, monitor_block_bot); // points to word before bottom of monitor block
3615 __ jmpb(entry);
3616
3617 __ bind(loop);
3618 __ cmpptr(rax, Address(rdx, BasicObjectLock::obj_offset_in_bytes())); // check if current entry is for same object
3619 __ jcc(Assembler::equal, found); // if same object then stop searching
3620 __ addptr(rdx, entry_size); // otherwise advance to next entry
3621 __ bind(entry);
3622 __ cmpptr(rdx, rbx); // check if bottom reached
3623 __ jcc(Assembler::notEqual, loop); // if not at bottom then check this entry
3624 }
3625
3626 // error handling. Unlocking was not block-structured
3627 Label end;
3628 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
3629 __ should_not_reach_here();
3630
3631 // call run-time routine
3632 // rcx: points to monitor entry
3633 __ bind(found);
3634 __ push_ptr(rax); // make sure object is on stack (contract with oopMaps)
3635 __ unlock_object(rdx);
3636 __ pop_ptr(rax); // discard object
3637 __ bind(end);
3638 }
3639
3640
3641 //----------------------------------------------------------------------------------------------------
3642 // Wide instructions
3643
3644 void TemplateTable::wide() {
3645 transition(vtos, vtos);
3646 __ load_unsigned_byte(rbx, at_bcp(1));
3647 ExternalAddress wtable((address)Interpreter::_wentry_point);
3648 __ jump(ArrayAddress(wtable, Address(noreg, rbx, Address::times_ptr)));
3649 // Note: the rsi increment step is part of the individual wide bytecode implementations
3650 }
3651
3652
3653 //----------------------------------------------------------------------------------------------------
3654 // Multi arrays
3655
3656 void TemplateTable::multianewarray() {
3657 transition(vtos, atos);
3658 __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions
3659 // last dim is on top of stack; we want address of first one:
3660 // first_addr = last_addr + (ndims - 1) * stackElementSize - 1*wordsize
3661 // the latter wordSize to point to the beginning of the array.
3662 __ lea( rax, Address(rsp, rax, Interpreter::stackElementScale(), -wordSize));
3663 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), rax); // pass in rax,
3664 __ load_unsigned_byte(rbx, at_bcp(3));
3665 __ lea(rsp, Address(rsp, rbx, Interpreter::stackElementScale())); // get rid of counts
3666 }
3667
3668 #endif /* !CC_INTERP */
--- EOF ---