1 /* 2 * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/macroAssembler.hpp" 27 #include "interpreter/interpreter.hpp" 28 #include "interpreter/interpreterRuntime.hpp" 29 #include "interpreter/interp_masm.hpp" 30 #include "interpreter/templateTable.hpp" 31 #include "memory/universe.inline.hpp" 32 #include "oops/methodData.hpp" 33 #include "oops/objArrayKlass.hpp" 34 #include "oops/oop.inline.hpp" 35 #include "prims/methodHandles.hpp" 36 #include "runtime/sharedRuntime.hpp" 37 #include "runtime/stubRoutines.hpp" 38 #include "runtime/synchronizer.hpp" 39 #include "utilities/macros.hpp" 40 41 #ifndef CC_INTERP 42 #define __ _masm-> 43 44 //---------------------------------------------------------------------------------------------------- 45 // Platform-dependent initialization 46 47 void TemplateTable::pd_initialize() { 48 // No i486 specific initialization 49 } 50 51 //---------------------------------------------------------------------------------------------------- 52 // Address computation 53 54 // local variables 55 static inline Address iaddress(int n) { 56 return Address(rdi, Interpreter::local_offset_in_bytes(n)); 57 } 58 59 static inline Address laddress(int n) { return iaddress(n + 1); } 60 static inline Address haddress(int n) { return iaddress(n + 0); } 61 static inline Address faddress(int n) { return iaddress(n); } 62 static inline Address daddress(int n) { return laddress(n); } 63 static inline Address aaddress(int n) { return iaddress(n); } 64 65 static inline Address iaddress(Register r) { 66 return Address(rdi, r, Interpreter::stackElementScale()); 67 } 68 static inline Address laddress(Register r) { 69 return Address(rdi, r, Interpreter::stackElementScale(), Interpreter::local_offset_in_bytes(1)); 70 } 71 static inline Address haddress(Register r) { 72 return Address(rdi, r, Interpreter::stackElementScale(), Interpreter::local_offset_in_bytes(0)); 73 } 74 75 static inline Address faddress(Register r) { return iaddress(r); } 76 static inline Address daddress(Register r) { return laddress(r); } 77 static inline Address aaddress(Register r) { return iaddress(r); } 78 79 // expression stack 80 // (Note: Must not use symmetric equivalents at_rsp_m1/2 since they store 81 // data beyond the rsp which is potentially unsafe in an MT environment; 82 // an interrupt may overwrite that data.) 83 static inline Address at_rsp () { 84 return Address(rsp, 0); 85 } 86 87 // At top of Java expression stack which may be different than rsp(). It 88 // isn't for category 1 objects. 89 static inline Address at_tos () { 90 Address tos = Address(rsp, Interpreter::expr_offset_in_bytes(0)); 91 return tos; 92 } 93 94 static inline Address at_tos_p1() { 95 return Address(rsp, Interpreter::expr_offset_in_bytes(1)); 96 } 97 98 static inline Address at_tos_p2() { 99 return Address(rsp, Interpreter::expr_offset_in_bytes(2)); 100 } 101 102 // Condition conversion 103 static Assembler::Condition j_not(TemplateTable::Condition cc) { 104 switch (cc) { 105 case TemplateTable::equal : return Assembler::notEqual; 106 case TemplateTable::not_equal : return Assembler::equal; 107 case TemplateTable::less : return Assembler::greaterEqual; 108 case TemplateTable::less_equal : return Assembler::greater; 109 case TemplateTable::greater : return Assembler::lessEqual; 110 case TemplateTable::greater_equal: return Assembler::less; 111 } 112 ShouldNotReachHere(); 113 return Assembler::zero; 114 } 115 116 117 //---------------------------------------------------------------------------------------------------- 118 // Miscelaneous helper routines 119 120 // Store an oop (or NULL) at the address described by obj. 121 // If val == noreg this means store a NULL 122 123 static void do_oop_store(InterpreterMacroAssembler* _masm, 124 Address obj, 125 Register val, 126 BarrierSet::Name barrier, 127 bool precise) { 128 assert(val == noreg || val == rax, "parameter is just for looks"); 129 switch (barrier) { 130 #if INCLUDE_ALL_GCS 131 case BarrierSet::G1SATBCT: 132 case BarrierSet::G1SATBCTLogging: 133 { 134 // flatten object address if needed 135 // We do it regardless of precise because we need the registers 136 if (obj.index() == noreg && obj.disp() == 0) { 137 if (obj.base() != rdx) { 138 __ movl(rdx, obj.base()); 139 } 140 } else { 141 __ leal(rdx, obj); 142 } 143 __ get_thread(rcx); 144 __ save_bcp(); 145 __ g1_write_barrier_pre(rdx /* obj */, 146 rbx /* pre_val */, 147 rcx /* thread */, 148 rsi /* tmp */, 149 val != noreg /* tosca_live */, 150 false /* expand_call */); 151 152 // Do the actual store 153 // noreg means NULL 154 if (val == noreg) { 155 __ movptr(Address(rdx, 0), NULL_WORD); 156 // No post barrier for NULL 157 } else { 158 __ movl(Address(rdx, 0), val); 159 __ g1_write_barrier_post(rdx /* store_adr */, 160 val /* new_val */, 161 rcx /* thread */, 162 rbx /* tmp */, 163 rsi /* tmp2 */); 164 } 165 __ restore_bcp(); 166 167 } 168 break; 169 #endif // INCLUDE_ALL_GCS 170 case BarrierSet::CardTableModRef: 171 case BarrierSet::CardTableExtension: 172 { 173 if (val == noreg) { 174 __ movptr(obj, NULL_WORD); 175 } else { 176 __ movl(obj, val); 177 // flatten object address if needed 178 if (!precise || (obj.index() == noreg && obj.disp() == 0)) { 179 __ store_check(obj.base()); 180 } else { 181 __ leal(rdx, obj); 182 __ store_check(rdx); 183 } 184 } 185 } 186 break; 187 case BarrierSet::ModRef: 188 if (val == noreg) { 189 __ movptr(obj, NULL_WORD); 190 } else { 191 __ movl(obj, val); 192 } 193 break; 194 default : 195 ShouldNotReachHere(); 196 197 } 198 } 199 200 Address TemplateTable::at_bcp(int offset) { 201 assert(_desc->uses_bcp(), "inconsistent uses_bcp information"); 202 return Address(rsi, offset); 203 } 204 205 206 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg, 207 Register temp_reg, bool load_bc_into_bc_reg/*=true*/, 208 int byte_no) { 209 if (!RewriteBytecodes) return; 210 Label L_patch_done; 211 212 switch (bc) { 213 case Bytecodes::_fast_aputfield: 214 case Bytecodes::_fast_bputfield: 215 case Bytecodes::_fast_cputfield: 216 case Bytecodes::_fast_dputfield: 217 case Bytecodes::_fast_fputfield: 218 case Bytecodes::_fast_iputfield: 219 case Bytecodes::_fast_lputfield: 220 case Bytecodes::_fast_sputfield: 221 { 222 // We skip bytecode quickening for putfield instructions when 223 // the put_code written to the constant pool cache is zero. 224 // This is required so that every execution of this instruction 225 // calls out to InterpreterRuntime::resolve_get_put to do 226 // additional, required work. 227 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 228 assert(load_bc_into_bc_reg, "we use bc_reg as temp"); 229 __ get_cache_and_index_and_bytecode_at_bcp(bc_reg, temp_reg, temp_reg, byte_no, 1); 230 __ movl(bc_reg, bc); 231 __ cmpl(temp_reg, (int) 0); 232 __ jcc(Assembler::zero, L_patch_done); // don't patch 233 } 234 break; 235 default: 236 assert(byte_no == -1, "sanity"); 237 // the pair bytecodes have already done the load. 238 if (load_bc_into_bc_reg) { 239 __ movl(bc_reg, bc); 240 } 241 } 242 243 if (JvmtiExport::can_post_breakpoint()) { 244 Label L_fast_patch; 245 // if a breakpoint is present we can't rewrite the stream directly 246 __ movzbl(temp_reg, at_bcp(0)); 247 __ cmpl(temp_reg, Bytecodes::_breakpoint); 248 __ jcc(Assembler::notEqual, L_fast_patch); 249 __ get_method(temp_reg); 250 // Let breakpoint table handling rewrite to quicker bytecode 251 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), temp_reg, rsi, bc_reg); 252 #ifndef ASSERT 253 __ jmpb(L_patch_done); 254 #else 255 __ jmp(L_patch_done); 256 #endif 257 __ bind(L_fast_patch); 258 } 259 260 #ifdef ASSERT 261 Label L_okay; 262 __ load_unsigned_byte(temp_reg, at_bcp(0)); 263 __ cmpl(temp_reg, (int)Bytecodes::java_code(bc)); 264 __ jccb(Assembler::equal, L_okay); 265 __ cmpl(temp_reg, bc_reg); 266 __ jcc(Assembler::equal, L_okay); 267 __ stop("patching the wrong bytecode"); 268 __ bind(L_okay); 269 #endif 270 271 // patch bytecode 272 __ movb(at_bcp(0), bc_reg); 273 __ bind(L_patch_done); 274 } 275 276 //---------------------------------------------------------------------------------------------------- 277 // Individual instructions 278 279 void TemplateTable::nop() { 280 transition(vtos, vtos); 281 // nothing to do 282 } 283 284 void TemplateTable::shouldnotreachhere() { 285 transition(vtos, vtos); 286 __ stop("shouldnotreachhere bytecode"); 287 } 288 289 290 291 void TemplateTable::aconst_null() { 292 transition(vtos, atos); 293 __ xorptr(rax, rax); 294 } 295 296 297 void TemplateTable::iconst(int value) { 298 transition(vtos, itos); 299 if (value == 0) { 300 __ xorptr(rax, rax); 301 } else { 302 __ movptr(rax, value); 303 } 304 } 305 306 307 void TemplateTable::lconst(int value) { 308 transition(vtos, ltos); 309 if (value == 0) { 310 __ xorptr(rax, rax); 311 } else { 312 __ movptr(rax, value); 313 } 314 assert(value >= 0, "check this code"); 315 __ xorptr(rdx, rdx); 316 } 317 318 319 void TemplateTable::fconst(int value) { 320 transition(vtos, ftos); 321 if (value == 0) { __ fldz(); 322 } else if (value == 1) { __ fld1(); 323 } else if (value == 2) { __ fld1(); __ fld1(); __ faddp(); // should do a better solution here 324 } else { ShouldNotReachHere(); 325 } 326 } 327 328 329 void TemplateTable::dconst(int value) { 330 transition(vtos, dtos); 331 if (value == 0) { __ fldz(); 332 } else if (value == 1) { __ fld1(); 333 } else { ShouldNotReachHere(); 334 } 335 } 336 337 338 void TemplateTable::bipush() { 339 transition(vtos, itos); 340 __ load_signed_byte(rax, at_bcp(1)); 341 } 342 343 344 void TemplateTable::sipush() { 345 transition(vtos, itos); 346 __ load_unsigned_short(rax, at_bcp(1)); 347 __ bswapl(rax); 348 __ sarl(rax, 16); 349 } 350 351 void TemplateTable::ldc(bool wide) { 352 transition(vtos, vtos); 353 Label call_ldc, notFloat, notClass, Done; 354 355 if (wide) { 356 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); 357 } else { 358 __ load_unsigned_byte(rbx, at_bcp(1)); 359 } 360 __ get_cpool_and_tags(rcx, rax); 361 const int base_offset = ConstantPool::header_size() * wordSize; 362 const int tags_offset = Array<u1>::base_offset_in_bytes(); 363 364 // get type 365 __ xorptr(rdx, rdx); 366 __ movb(rdx, Address(rax, rbx, Address::times_1, tags_offset)); 367 368 // unresolved class - get the resolved class 369 __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass); 370 __ jccb(Assembler::equal, call_ldc); 371 372 // unresolved class in error (resolution failed) - call into runtime 373 // so that the same error from first resolution attempt is thrown. 374 __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError); 375 __ jccb(Assembler::equal, call_ldc); 376 377 // resolved class - need to call vm to get java mirror of the class 378 __ cmpl(rdx, JVM_CONSTANT_Class); 379 __ jcc(Assembler::notEqual, notClass); 380 381 __ bind(call_ldc); 382 __ movl(rcx, wide); 383 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), rcx); 384 __ push(atos); 385 __ jmp(Done); 386 387 __ bind(notClass); 388 __ cmpl(rdx, JVM_CONSTANT_Float); 389 __ jccb(Assembler::notEqual, notFloat); 390 // ftos 391 __ fld_s( Address(rcx, rbx, Address::times_ptr, base_offset)); 392 __ push(ftos); 393 __ jmp(Done); 394 395 __ bind(notFloat); 396 #ifdef ASSERT 397 { Label L; 398 __ cmpl(rdx, JVM_CONSTANT_Integer); 399 __ jcc(Assembler::equal, L); 400 // String and Object are rewritten to fast_aldc 401 __ stop("unexpected tag type in ldc"); 402 __ bind(L); 403 } 404 #endif 405 // itos JVM_CONSTANT_Integer only 406 __ movl(rax, Address(rcx, rbx, Address::times_ptr, base_offset)); 407 __ push(itos); 408 __ bind(Done); 409 } 410 411 // Fast path for caching oop constants. 412 void TemplateTable::fast_aldc(bool wide) { 413 transition(vtos, atos); 414 415 Register result = rax; 416 Register tmp = rdx; 417 int index_size = wide ? sizeof(u2) : sizeof(u1); 418 419 Label resolved; 420 421 // We are resolved if the resolved reference cache entry contains a 422 // non-null object (String, MethodType, etc.) 423 assert_different_registers(result, tmp); 424 __ get_cache_index_at_bcp(tmp, 1, index_size); 425 __ load_resolved_reference_at_index(result, tmp); 426 __ testl(result, result); 427 __ jcc(Assembler::notZero, resolved); 428 429 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc); 430 431 // first time invocation - must resolve first 432 __ movl(tmp, (int)bytecode()); 433 __ call_VM(result, entry, tmp); 434 435 __ bind(resolved); 436 437 if (VerifyOops) { 438 __ verify_oop(result); 439 } 440 } 441 442 void TemplateTable::ldc2_w() { 443 transition(vtos, vtos); 444 Label Long, Done; 445 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); 446 447 __ get_cpool_and_tags(rcx, rax); 448 const int base_offset = ConstantPool::header_size() * wordSize; 449 const int tags_offset = Array<u1>::base_offset_in_bytes(); 450 451 // get type 452 __ cmpb(Address(rax, rbx, Address::times_1, tags_offset), JVM_CONSTANT_Double); 453 __ jccb(Assembler::notEqual, Long); 454 // dtos 455 __ fld_d( Address(rcx, rbx, Address::times_ptr, base_offset)); 456 __ push(dtos); 457 __ jmpb(Done); 458 459 __ bind(Long); 460 // ltos 461 __ movptr(rax, Address(rcx, rbx, Address::times_ptr, base_offset + 0 * wordSize)); 462 NOT_LP64(__ movptr(rdx, Address(rcx, rbx, Address::times_ptr, base_offset + 1 * wordSize))); 463 464 __ push(ltos); 465 466 __ bind(Done); 467 } 468 469 470 void TemplateTable::locals_index(Register reg, int offset) { 471 __ load_unsigned_byte(reg, at_bcp(offset)); 472 __ negptr(reg); 473 } 474 475 476 void TemplateTable::iload() { 477 transition(vtos, itos); 478 if (RewriteFrequentPairs) { 479 Label rewrite, done; 480 481 // get next byte 482 __ load_unsigned_byte(rbx, at_bcp(Bytecodes::length_for(Bytecodes::_iload))); 483 // if _iload, wait to rewrite to iload2. We only want to rewrite the 484 // last two iloads in a pair. Comparing against fast_iload means that 485 // the next bytecode is neither an iload or a caload, and therefore 486 // an iload pair. 487 __ cmpl(rbx, Bytecodes::_iload); 488 __ jcc(Assembler::equal, done); 489 490 __ cmpl(rbx, Bytecodes::_fast_iload); 491 __ movl(rcx, Bytecodes::_fast_iload2); 492 __ jccb(Assembler::equal, rewrite); 493 494 // if _caload, rewrite to fast_icaload 495 __ cmpl(rbx, Bytecodes::_caload); 496 __ movl(rcx, Bytecodes::_fast_icaload); 497 __ jccb(Assembler::equal, rewrite); 498 499 // rewrite so iload doesn't check again. 500 __ movl(rcx, Bytecodes::_fast_iload); 501 502 // rewrite 503 // rcx: fast bytecode 504 __ bind(rewrite); 505 patch_bytecode(Bytecodes::_iload, rcx, rbx, false); 506 __ bind(done); 507 } 508 509 // Get the local value into tos 510 locals_index(rbx); 511 __ movl(rax, iaddress(rbx)); 512 } 513 514 515 void TemplateTable::fast_iload2() { 516 transition(vtos, itos); 517 locals_index(rbx); 518 __ movl(rax, iaddress(rbx)); 519 __ push(itos); 520 locals_index(rbx, 3); 521 __ movl(rax, iaddress(rbx)); 522 } 523 524 void TemplateTable::fast_iload() { 525 transition(vtos, itos); 526 locals_index(rbx); 527 __ movl(rax, iaddress(rbx)); 528 } 529 530 531 void TemplateTable::lload() { 532 transition(vtos, ltos); 533 locals_index(rbx); 534 __ movptr(rax, laddress(rbx)); 535 NOT_LP64(__ movl(rdx, haddress(rbx))); 536 } 537 538 539 void TemplateTable::fload() { 540 transition(vtos, ftos); 541 locals_index(rbx); 542 __ fld_s(faddress(rbx)); 543 } 544 545 546 void TemplateTable::dload() { 547 transition(vtos, dtos); 548 locals_index(rbx); 549 __ fld_d(daddress(rbx)); 550 } 551 552 553 void TemplateTable::aload() { 554 transition(vtos, atos); 555 locals_index(rbx); 556 __ movptr(rax, aaddress(rbx)); 557 } 558 559 560 void TemplateTable::locals_index_wide(Register reg) { 561 __ load_unsigned_short(reg, at_bcp(2)); 562 __ bswapl(reg); 563 __ shrl(reg, 16); 564 __ negptr(reg); 565 } 566 567 568 void TemplateTable::wide_iload() { 569 transition(vtos, itos); 570 locals_index_wide(rbx); 571 __ movl(rax, iaddress(rbx)); 572 } 573 574 575 void TemplateTable::wide_lload() { 576 transition(vtos, ltos); 577 locals_index_wide(rbx); 578 __ movptr(rax, laddress(rbx)); 579 NOT_LP64(__ movl(rdx, haddress(rbx))); 580 } 581 582 583 void TemplateTable::wide_fload() { 584 transition(vtos, ftos); 585 locals_index_wide(rbx); 586 __ fld_s(faddress(rbx)); 587 } 588 589 590 void TemplateTable::wide_dload() { 591 transition(vtos, dtos); 592 locals_index_wide(rbx); 593 __ fld_d(daddress(rbx)); 594 } 595 596 597 void TemplateTable::wide_aload() { 598 transition(vtos, atos); 599 locals_index_wide(rbx); 600 __ movptr(rax, aaddress(rbx)); 601 } 602 603 void TemplateTable::index_check(Register array, Register index) { 604 // Pop ptr into array 605 __ pop_ptr(array); 606 index_check_without_pop(array, index); 607 } 608 609 void TemplateTable::index_check_without_pop(Register array, Register index) { 610 // destroys rbx, 611 // check array 612 __ null_check(array, arrayOopDesc::length_offset_in_bytes()); 613 LP64_ONLY(__ movslq(index, index)); 614 // check index 615 __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes())); 616 if (index != rbx) { 617 // ??? convention: move aberrant index into rbx, for exception message 618 assert(rbx != array, "different registers"); 619 __ mov(rbx, index); 620 } 621 __ jump_cc(Assembler::aboveEqual, 622 ExternalAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry)); 623 } 624 625 626 void TemplateTable::iaload() { 627 transition(itos, itos); 628 // rdx: array 629 index_check(rdx, rax); // kills rbx, 630 // rax,: index 631 __ movl(rax, Address(rdx, rax, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_INT))); 632 } 633 634 635 void TemplateTable::laload() { 636 transition(itos, ltos); 637 // rax,: index 638 // rdx: array 639 index_check(rdx, rax); 640 __ mov(rbx, rax); 641 // rbx,: index 642 __ movptr(rax, Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 0 * wordSize)); 643 NOT_LP64(__ movl(rdx, Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 1 * wordSize))); 644 } 645 646 647 void TemplateTable::faload() { 648 transition(itos, ftos); 649 // rdx: array 650 index_check(rdx, rax); // kills rbx, 651 // rax,: index 652 __ fld_s(Address(rdx, rax, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_FLOAT))); 653 } 654 655 656 void TemplateTable::daload() { 657 transition(itos, dtos); 658 // rdx: array 659 index_check(rdx, rax); // kills rbx, 660 // rax,: index 661 __ fld_d(Address(rdx, rax, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_DOUBLE))); 662 } 663 664 665 void TemplateTable::aaload() { 666 transition(itos, atos); 667 // rdx: array 668 index_check(rdx, rax); // kills rbx, 669 // rax,: index 670 __ movptr(rax, Address(rdx, rax, Address::times_ptr, arrayOopDesc::base_offset_in_bytes(T_OBJECT))); 671 } 672 673 674 void TemplateTable::baload() { 675 transition(itos, itos); 676 // rdx: array 677 index_check(rdx, rax); // kills rbx, 678 // rax,: index 679 // can do better code for P5 - fix this at some point 680 __ load_signed_byte(rbx, Address(rdx, rax, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_BYTE))); 681 __ mov(rax, rbx); 682 } 683 684 685 void TemplateTable::caload() { 686 transition(itos, itos); 687 // rdx: array 688 index_check(rdx, rax); // kills rbx, 689 // rax,: index 690 // can do better code for P5 - may want to improve this at some point 691 __ load_unsigned_short(rbx, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR))); 692 __ mov(rax, rbx); 693 } 694 695 // iload followed by caload frequent pair 696 void TemplateTable::fast_icaload() { 697 transition(vtos, itos); 698 // load index out of locals 699 locals_index(rbx); 700 __ movl(rax, iaddress(rbx)); 701 702 // rdx: array 703 index_check(rdx, rax); 704 // rax,: index 705 __ load_unsigned_short(rbx, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR))); 706 __ mov(rax, rbx); 707 } 708 709 void TemplateTable::saload() { 710 transition(itos, itos); 711 // rdx: array 712 index_check(rdx, rax); // kills rbx, 713 // rax,: index 714 // can do better code for P5 - may want to improve this at some point 715 __ load_signed_short(rbx, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_SHORT))); 716 __ mov(rax, rbx); 717 } 718 719 720 void TemplateTable::iload(int n) { 721 transition(vtos, itos); 722 __ movl(rax, iaddress(n)); 723 } 724 725 726 void TemplateTable::lload(int n) { 727 transition(vtos, ltos); 728 __ movptr(rax, laddress(n)); 729 NOT_LP64(__ movptr(rdx, haddress(n))); 730 } 731 732 733 void TemplateTable::fload(int n) { 734 transition(vtos, ftos); 735 __ fld_s(faddress(n)); 736 } 737 738 739 void TemplateTable::dload(int n) { 740 transition(vtos, dtos); 741 __ fld_d(daddress(n)); 742 } 743 744 745 void TemplateTable::aload(int n) { 746 transition(vtos, atos); 747 __ movptr(rax, aaddress(n)); 748 } 749 750 751 void TemplateTable::aload_0() { 752 transition(vtos, atos); 753 // According to bytecode histograms, the pairs: 754 // 755 // _aload_0, _fast_igetfield 756 // _aload_0, _fast_agetfield 757 // _aload_0, _fast_fgetfield 758 // 759 // occur frequently. If RewriteFrequentPairs is set, the (slow) _aload_0 760 // bytecode checks if the next bytecode is either _fast_igetfield, 761 // _fast_agetfield or _fast_fgetfield and then rewrites the 762 // current bytecode into a pair bytecode; otherwise it rewrites the current 763 // bytecode into _fast_aload_0 that doesn't do the pair check anymore. 764 // 765 // Note: If the next bytecode is _getfield, the rewrite must be delayed, 766 // otherwise we may miss an opportunity for a pair. 767 // 768 // Also rewrite frequent pairs 769 // aload_0, aload_1 770 // aload_0, iload_1 771 // These bytecodes with a small amount of code are most profitable to rewrite 772 if (RewriteFrequentPairs) { 773 Label rewrite, done; 774 // get next byte 775 __ load_unsigned_byte(rbx, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0))); 776 777 // do actual aload_0 778 aload(0); 779 780 // if _getfield then wait with rewrite 781 __ cmpl(rbx, Bytecodes::_getfield); 782 __ jcc(Assembler::equal, done); 783 784 // if _igetfield then reqrite to _fast_iaccess_0 785 assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 786 __ cmpl(rbx, Bytecodes::_fast_igetfield); 787 __ movl(rcx, Bytecodes::_fast_iaccess_0); 788 __ jccb(Assembler::equal, rewrite); 789 790 // if _agetfield then reqrite to _fast_aaccess_0 791 assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 792 __ cmpl(rbx, Bytecodes::_fast_agetfield); 793 __ movl(rcx, Bytecodes::_fast_aaccess_0); 794 __ jccb(Assembler::equal, rewrite); 795 796 // if _fgetfield then reqrite to _fast_faccess_0 797 assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 798 __ cmpl(rbx, Bytecodes::_fast_fgetfield); 799 __ movl(rcx, Bytecodes::_fast_faccess_0); 800 __ jccb(Assembler::equal, rewrite); 801 802 // else rewrite to _fast_aload0 803 assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition"); 804 __ movl(rcx, Bytecodes::_fast_aload_0); 805 806 // rewrite 807 // rcx: fast bytecode 808 __ bind(rewrite); 809 patch_bytecode(Bytecodes::_aload_0, rcx, rbx, false); 810 811 __ bind(done); 812 } else { 813 aload(0); 814 } 815 } 816 817 void TemplateTable::istore() { 818 transition(itos, vtos); 819 locals_index(rbx); 820 __ movl(iaddress(rbx), rax); 821 } 822 823 824 void TemplateTable::lstore() { 825 transition(ltos, vtos); 826 locals_index(rbx); 827 __ movptr(laddress(rbx), rax); 828 NOT_LP64(__ movptr(haddress(rbx), rdx)); 829 } 830 831 832 void TemplateTable::fstore() { 833 transition(ftos, vtos); 834 locals_index(rbx); 835 __ fstp_s(faddress(rbx)); 836 } 837 838 839 void TemplateTable::dstore() { 840 transition(dtos, vtos); 841 locals_index(rbx); 842 __ fstp_d(daddress(rbx)); 843 } 844 845 846 void TemplateTable::astore() { 847 transition(vtos, vtos); 848 __ pop_ptr(rax); 849 locals_index(rbx); 850 __ movptr(aaddress(rbx), rax); 851 } 852 853 854 void TemplateTable::wide_istore() { 855 transition(vtos, vtos); 856 __ pop_i(rax); 857 locals_index_wide(rbx); 858 __ movl(iaddress(rbx), rax); 859 } 860 861 862 void TemplateTable::wide_lstore() { 863 transition(vtos, vtos); 864 __ pop_l(rax, rdx); 865 locals_index_wide(rbx); 866 __ movptr(laddress(rbx), rax); 867 NOT_LP64(__ movl(haddress(rbx), rdx)); 868 } 869 870 871 void TemplateTable::wide_fstore() { 872 wide_istore(); 873 } 874 875 876 void TemplateTable::wide_dstore() { 877 wide_lstore(); 878 } 879 880 881 void TemplateTable::wide_astore() { 882 transition(vtos, vtos); 883 __ pop_ptr(rax); 884 locals_index_wide(rbx); 885 __ movptr(aaddress(rbx), rax); 886 } 887 888 889 void TemplateTable::iastore() { 890 transition(itos, vtos); 891 __ pop_i(rbx); 892 // rax,: value 893 // rdx: array 894 index_check(rdx, rbx); // prefer index in rbx, 895 // rbx,: index 896 __ movl(Address(rdx, rbx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_INT)), rax); 897 } 898 899 900 void TemplateTable::lastore() { 901 transition(ltos, vtos); 902 __ pop_i(rbx); 903 // rax,: low(value) 904 // rcx: array 905 // rdx: high(value) 906 index_check(rcx, rbx); // prefer index in rbx, 907 // rbx,: index 908 __ movptr(Address(rcx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 0 * wordSize), rax); 909 NOT_LP64(__ movl(Address(rcx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 1 * wordSize), rdx)); 910 } 911 912 913 void TemplateTable::fastore() { 914 transition(ftos, vtos); 915 __ pop_i(rbx); 916 // rdx: array 917 // st0: value 918 index_check(rdx, rbx); // prefer index in rbx, 919 // rbx,: index 920 __ fstp_s(Address(rdx, rbx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_FLOAT))); 921 } 922 923 924 void TemplateTable::dastore() { 925 transition(dtos, vtos); 926 __ pop_i(rbx); 927 // rdx: array 928 // st0: value 929 index_check(rdx, rbx); // prefer index in rbx, 930 // rbx,: index 931 __ fstp_d(Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_DOUBLE))); 932 } 933 934 935 void TemplateTable::aastore() { 936 Label is_null, ok_is_subtype, done; 937 transition(vtos, vtos); 938 // stack: ..., array, index, value 939 __ movptr(rax, at_tos()); // Value 940 __ movl(rcx, at_tos_p1()); // Index 941 __ movptr(rdx, at_tos_p2()); // Array 942 943 Address element_address(rdx, rcx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_OBJECT)); 944 index_check_without_pop(rdx, rcx); // kills rbx, 945 // do array store check - check for NULL value first 946 __ testptr(rax, rax); 947 __ jcc(Assembler::zero, is_null); 948 949 // Move subklass into EBX 950 __ load_klass(rbx, rax); 951 // Move superklass into EAX 952 __ load_klass(rax, rdx); 953 __ movptr(rax, Address(rax, ObjArrayKlass::element_klass_offset())); 954 // Compress array+index*wordSize+12 into a single register. Frees ECX. 955 __ lea(rdx, element_address); 956 957 // Generate subtype check. Blows ECX. Resets EDI to locals. 958 // Superklass in EAX. Subklass in EBX. 959 __ gen_subtype_check( rbx, ok_is_subtype ); 960 961 // Come here on failure 962 // object is at TOS 963 __ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry)); 964 965 // Come here on success 966 __ bind(ok_is_subtype); 967 968 // Get the value to store 969 __ movptr(rax, at_rsp()); 970 // and store it with appropriate barrier 971 do_oop_store(_masm, Address(rdx, 0), rax, _bs->kind(), true); 972 973 __ jmp(done); 974 975 // Have a NULL in EAX, EDX=array, ECX=index. Store NULL at ary[idx] 976 __ bind(is_null); 977 __ profile_null_seen(rbx); 978 979 // Store NULL, (noreg means NULL to do_oop_store) 980 do_oop_store(_masm, element_address, noreg, _bs->kind(), true); 981 982 // Pop stack arguments 983 __ bind(done); 984 __ addptr(rsp, 3 * Interpreter::stackElementSize); 985 } 986 987 988 void TemplateTable::bastore() { 989 transition(itos, vtos); 990 __ pop_i(rbx); 991 // rax,: value 992 // rdx: array 993 index_check(rdx, rbx); // prefer index in rbx, 994 // rbx,: index 995 __ movb(Address(rdx, rbx, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_BYTE)), rax); 996 } 997 998 999 void TemplateTable::castore() { 1000 transition(itos, vtos); 1001 __ pop_i(rbx); 1002 // rax,: value 1003 // rdx: array 1004 index_check(rdx, rbx); // prefer index in rbx, 1005 // rbx,: index 1006 __ movw(Address(rdx, rbx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)), rax); 1007 } 1008 1009 1010 void TemplateTable::sastore() { 1011 castore(); 1012 } 1013 1014 1015 void TemplateTable::istore(int n) { 1016 transition(itos, vtos); 1017 __ movl(iaddress(n), rax); 1018 } 1019 1020 1021 void TemplateTable::lstore(int n) { 1022 transition(ltos, vtos); 1023 __ movptr(laddress(n), rax); 1024 NOT_LP64(__ movptr(haddress(n), rdx)); 1025 } 1026 1027 1028 void TemplateTable::fstore(int n) { 1029 transition(ftos, vtos); 1030 __ fstp_s(faddress(n)); 1031 } 1032 1033 1034 void TemplateTable::dstore(int n) { 1035 transition(dtos, vtos); 1036 __ fstp_d(daddress(n)); 1037 } 1038 1039 1040 void TemplateTable::astore(int n) { 1041 transition(vtos, vtos); 1042 __ pop_ptr(rax); 1043 __ movptr(aaddress(n), rax); 1044 } 1045 1046 1047 void TemplateTable::pop() { 1048 transition(vtos, vtos); 1049 __ addptr(rsp, Interpreter::stackElementSize); 1050 } 1051 1052 1053 void TemplateTable::pop2() { 1054 transition(vtos, vtos); 1055 __ addptr(rsp, 2*Interpreter::stackElementSize); 1056 } 1057 1058 1059 void TemplateTable::dup() { 1060 transition(vtos, vtos); 1061 // stack: ..., a 1062 __ load_ptr(0, rax); 1063 __ push_ptr(rax); 1064 // stack: ..., a, a 1065 } 1066 1067 1068 void TemplateTable::dup_x1() { 1069 transition(vtos, vtos); 1070 // stack: ..., a, b 1071 __ load_ptr( 0, rax); // load b 1072 __ load_ptr( 1, rcx); // load a 1073 __ store_ptr(1, rax); // store b 1074 __ store_ptr(0, rcx); // store a 1075 __ push_ptr(rax); // push b 1076 // stack: ..., b, a, b 1077 } 1078 1079 1080 void TemplateTable::dup_x2() { 1081 transition(vtos, vtos); 1082 // stack: ..., a, b, c 1083 __ load_ptr( 0, rax); // load c 1084 __ load_ptr( 2, rcx); // load a 1085 __ store_ptr(2, rax); // store c in a 1086 __ push_ptr(rax); // push c 1087 // stack: ..., c, b, c, c 1088 __ load_ptr( 2, rax); // load b 1089 __ store_ptr(2, rcx); // store a in b 1090 // stack: ..., c, a, c, c 1091 __ store_ptr(1, rax); // store b in c 1092 // stack: ..., c, a, b, c 1093 } 1094 1095 1096 void TemplateTable::dup2() { 1097 transition(vtos, vtos); 1098 // stack: ..., a, b 1099 __ load_ptr(1, rax); // load a 1100 __ push_ptr(rax); // push a 1101 __ load_ptr(1, rax); // load b 1102 __ push_ptr(rax); // push b 1103 // stack: ..., a, b, a, b 1104 } 1105 1106 1107 void TemplateTable::dup2_x1() { 1108 transition(vtos, vtos); 1109 // stack: ..., a, b, c 1110 __ load_ptr( 0, rcx); // load c 1111 __ load_ptr( 1, rax); // load b 1112 __ push_ptr(rax); // push b 1113 __ push_ptr(rcx); // push c 1114 // stack: ..., a, b, c, b, c 1115 __ store_ptr(3, rcx); // store c in b 1116 // stack: ..., a, c, c, b, c 1117 __ load_ptr( 4, rcx); // load a 1118 __ store_ptr(2, rcx); // store a in 2nd c 1119 // stack: ..., a, c, a, b, c 1120 __ store_ptr(4, rax); // store b in a 1121 // stack: ..., b, c, a, b, c 1122 // stack: ..., b, c, a, b, c 1123 } 1124 1125 1126 void TemplateTable::dup2_x2() { 1127 transition(vtos, vtos); 1128 // stack: ..., a, b, c, d 1129 __ load_ptr( 0, rcx); // load d 1130 __ load_ptr( 1, rax); // load c 1131 __ push_ptr(rax); // push c 1132 __ push_ptr(rcx); // push d 1133 // stack: ..., a, b, c, d, c, d 1134 __ load_ptr( 4, rax); // load b 1135 __ store_ptr(2, rax); // store b in d 1136 __ store_ptr(4, rcx); // store d in b 1137 // stack: ..., a, d, c, b, c, d 1138 __ load_ptr( 5, rcx); // load a 1139 __ load_ptr( 3, rax); // load c 1140 __ store_ptr(3, rcx); // store a in c 1141 __ store_ptr(5, rax); // store c in a 1142 // stack: ..., c, d, a, b, c, d 1143 // stack: ..., c, d, a, b, c, d 1144 } 1145 1146 1147 void TemplateTable::swap() { 1148 transition(vtos, vtos); 1149 // stack: ..., a, b 1150 __ load_ptr( 1, rcx); // load a 1151 __ load_ptr( 0, rax); // load b 1152 __ store_ptr(0, rcx); // store a in b 1153 __ store_ptr(1, rax); // store b in a 1154 // stack: ..., b, a 1155 } 1156 1157 1158 void TemplateTable::iop2(Operation op) { 1159 transition(itos, itos); 1160 switch (op) { 1161 case add : __ pop_i(rdx); __ addl (rax, rdx); break; 1162 case sub : __ mov(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break; 1163 case mul : __ pop_i(rdx); __ imull(rax, rdx); break; 1164 case _and : __ pop_i(rdx); __ andl (rax, rdx); break; 1165 case _or : __ pop_i(rdx); __ orl (rax, rdx); break; 1166 case _xor : __ pop_i(rdx); __ xorl (rax, rdx); break; 1167 case shl : __ mov(rcx, rax); __ pop_i(rax); __ shll (rax); break; // implicit masking of lower 5 bits by Intel shift instr. 1168 case shr : __ mov(rcx, rax); __ pop_i(rax); __ sarl (rax); break; // implicit masking of lower 5 bits by Intel shift instr. 1169 case ushr : __ mov(rcx, rax); __ pop_i(rax); __ shrl (rax); break; // implicit masking of lower 5 bits by Intel shift instr. 1170 default : ShouldNotReachHere(); 1171 } 1172 } 1173 1174 1175 void TemplateTable::lop2(Operation op) { 1176 transition(ltos, ltos); 1177 __ pop_l(rbx, rcx); 1178 switch (op) { 1179 case add : __ addl(rax, rbx); __ adcl(rdx, rcx); break; 1180 case sub : __ subl(rbx, rax); __ sbbl(rcx, rdx); 1181 __ mov (rax, rbx); __ mov (rdx, rcx); break; 1182 case _and : __ andl(rax, rbx); __ andl(rdx, rcx); break; 1183 case _or : __ orl (rax, rbx); __ orl (rdx, rcx); break; 1184 case _xor : __ xorl(rax, rbx); __ xorl(rdx, rcx); break; 1185 default : ShouldNotReachHere(); 1186 } 1187 } 1188 1189 1190 void TemplateTable::idiv() { 1191 transition(itos, itos); 1192 __ mov(rcx, rax); 1193 __ pop_i(rax); 1194 // Note: could xor rax, and rcx and compare with (-1 ^ min_int). If 1195 // they are not equal, one could do a normal division (no correction 1196 // needed), which may speed up this implementation for the common case. 1197 // (see also JVM spec., p.243 & p.271) 1198 __ corrected_idivl(rcx); 1199 } 1200 1201 1202 void TemplateTable::irem() { 1203 transition(itos, itos); 1204 __ mov(rcx, rax); 1205 __ pop_i(rax); 1206 // Note: could xor rax, and rcx and compare with (-1 ^ min_int). If 1207 // they are not equal, one could do a normal division (no correction 1208 // needed), which may speed up this implementation for the common case. 1209 // (see also JVM spec., p.243 & p.271) 1210 __ corrected_idivl(rcx); 1211 __ mov(rax, rdx); 1212 } 1213 1214 1215 void TemplateTable::lmul() { 1216 transition(ltos, ltos); 1217 __ pop_l(rbx, rcx); 1218 __ push(rcx); __ push(rbx); 1219 __ push(rdx); __ push(rax); 1220 __ lmul(2 * wordSize, 0); 1221 __ addptr(rsp, 4 * wordSize); // take off temporaries 1222 } 1223 1224 1225 void TemplateTable::ldiv() { 1226 transition(ltos, ltos); 1227 __ pop_l(rbx, rcx); 1228 __ push(rcx); __ push(rbx); 1229 __ push(rdx); __ push(rax); 1230 // check if y = 0 1231 __ orl(rax, rdx); 1232 __ jump_cc(Assembler::zero, 1233 ExternalAddress(Interpreter::_throw_ArithmeticException_entry)); 1234 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::ldiv)); 1235 __ addptr(rsp, 4 * wordSize); // take off temporaries 1236 } 1237 1238 1239 void TemplateTable::lrem() { 1240 transition(ltos, ltos); 1241 __ pop_l(rbx, rcx); 1242 __ push(rcx); __ push(rbx); 1243 __ push(rdx); __ push(rax); 1244 // check if y = 0 1245 __ orl(rax, rdx); 1246 __ jump_cc(Assembler::zero, 1247 ExternalAddress(Interpreter::_throw_ArithmeticException_entry)); 1248 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::lrem)); 1249 __ addptr(rsp, 4 * wordSize); 1250 } 1251 1252 1253 void TemplateTable::lshl() { 1254 transition(itos, ltos); 1255 __ movl(rcx, rax); // get shift count 1256 __ pop_l(rax, rdx); // get shift value 1257 __ lshl(rdx, rax); 1258 } 1259 1260 1261 void TemplateTable::lshr() { 1262 transition(itos, ltos); 1263 __ mov(rcx, rax); // get shift count 1264 __ pop_l(rax, rdx); // get shift value 1265 __ lshr(rdx, rax, true); 1266 } 1267 1268 1269 void TemplateTable::lushr() { 1270 transition(itos, ltos); 1271 __ mov(rcx, rax); // get shift count 1272 __ pop_l(rax, rdx); // get shift value 1273 __ lshr(rdx, rax); 1274 } 1275 1276 1277 void TemplateTable::fop2(Operation op) { 1278 transition(ftos, ftos); 1279 switch (op) { 1280 case add: __ fadd_s (at_rsp()); break; 1281 case sub: __ fsubr_s(at_rsp()); break; 1282 case mul: __ fmul_s (at_rsp()); break; 1283 case div: __ fdivr_s(at_rsp()); break; 1284 case rem: __ fld_s (at_rsp()); __ fremr(rax); break; 1285 default : ShouldNotReachHere(); 1286 } 1287 __ f2ieee(); 1288 __ pop(rax); // pop float thing off 1289 } 1290 1291 1292 void TemplateTable::dop2(Operation op) { 1293 transition(dtos, dtos); 1294 1295 switch (op) { 1296 case add: __ fadd_d (at_rsp()); break; 1297 case sub: __ fsubr_d(at_rsp()); break; 1298 case mul: { 1299 Label L_strict; 1300 Label L_join; 1301 const Address access_flags (rcx, Method::access_flags_offset()); 1302 __ get_method(rcx); 1303 __ movl(rcx, access_flags); 1304 __ testl(rcx, JVM_ACC_STRICT); 1305 __ jccb(Assembler::notZero, L_strict); 1306 __ fmul_d (at_rsp()); 1307 __ jmpb(L_join); 1308 __ bind(L_strict); 1309 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1())); 1310 __ fmulp(); 1311 __ fmul_d (at_rsp()); 1312 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2())); 1313 __ fmulp(); 1314 __ bind(L_join); 1315 break; 1316 } 1317 case div: { 1318 Label L_strict; 1319 Label L_join; 1320 const Address access_flags (rcx, Method::access_flags_offset()); 1321 __ get_method(rcx); 1322 __ movl(rcx, access_flags); 1323 __ testl(rcx, JVM_ACC_STRICT); 1324 __ jccb(Assembler::notZero, L_strict); 1325 __ fdivr_d(at_rsp()); 1326 __ jmp(L_join); 1327 __ bind(L_strict); 1328 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1())); 1329 __ fmul_d (at_rsp()); 1330 __ fdivrp(); 1331 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2())); 1332 __ fmulp(); 1333 __ bind(L_join); 1334 break; 1335 } 1336 case rem: __ fld_d (at_rsp()); __ fremr(rax); break; 1337 default : ShouldNotReachHere(); 1338 } 1339 __ d2ieee(); 1340 // Pop double precision number from rsp. 1341 __ pop(rax); 1342 __ pop(rdx); 1343 } 1344 1345 1346 void TemplateTable::ineg() { 1347 transition(itos, itos); 1348 __ negl(rax); 1349 } 1350 1351 1352 void TemplateTable::lneg() { 1353 transition(ltos, ltos); 1354 __ lneg(rdx, rax); 1355 } 1356 1357 1358 void TemplateTable::fneg() { 1359 transition(ftos, ftos); 1360 __ fchs(); 1361 } 1362 1363 1364 void TemplateTable::dneg() { 1365 transition(dtos, dtos); 1366 __ fchs(); 1367 } 1368 1369 1370 void TemplateTable::iinc() { 1371 transition(vtos, vtos); 1372 __ load_signed_byte(rdx, at_bcp(2)); // get constant 1373 locals_index(rbx); 1374 __ addl(iaddress(rbx), rdx); 1375 } 1376 1377 1378 void TemplateTable::wide_iinc() { 1379 transition(vtos, vtos); 1380 __ movl(rdx, at_bcp(4)); // get constant 1381 locals_index_wide(rbx); 1382 __ bswapl(rdx); // swap bytes & sign-extend constant 1383 __ sarl(rdx, 16); 1384 __ addl(iaddress(rbx), rdx); 1385 // Note: should probably use only one movl to get both 1386 // the index and the constant -> fix this 1387 } 1388 1389 1390 void TemplateTable::convert() { 1391 // Checking 1392 #ifdef ASSERT 1393 { TosState tos_in = ilgl; 1394 TosState tos_out = ilgl; 1395 switch (bytecode()) { 1396 case Bytecodes::_i2l: // fall through 1397 case Bytecodes::_i2f: // fall through 1398 case Bytecodes::_i2d: // fall through 1399 case Bytecodes::_i2b: // fall through 1400 case Bytecodes::_i2c: // fall through 1401 case Bytecodes::_i2s: tos_in = itos; break; 1402 case Bytecodes::_l2i: // fall through 1403 case Bytecodes::_l2f: // fall through 1404 case Bytecodes::_l2d: tos_in = ltos; break; 1405 case Bytecodes::_f2i: // fall through 1406 case Bytecodes::_f2l: // fall through 1407 case Bytecodes::_f2d: tos_in = ftos; break; 1408 case Bytecodes::_d2i: // fall through 1409 case Bytecodes::_d2l: // fall through 1410 case Bytecodes::_d2f: tos_in = dtos; break; 1411 default : ShouldNotReachHere(); 1412 } 1413 switch (bytecode()) { 1414 case Bytecodes::_l2i: // fall through 1415 case Bytecodes::_f2i: // fall through 1416 case Bytecodes::_d2i: // fall through 1417 case Bytecodes::_i2b: // fall through 1418 case Bytecodes::_i2c: // fall through 1419 case Bytecodes::_i2s: tos_out = itos; break; 1420 case Bytecodes::_i2l: // fall through 1421 case Bytecodes::_f2l: // fall through 1422 case Bytecodes::_d2l: tos_out = ltos; break; 1423 case Bytecodes::_i2f: // fall through 1424 case Bytecodes::_l2f: // fall through 1425 case Bytecodes::_d2f: tos_out = ftos; break; 1426 case Bytecodes::_i2d: // fall through 1427 case Bytecodes::_l2d: // fall through 1428 case Bytecodes::_f2d: tos_out = dtos; break; 1429 default : ShouldNotReachHere(); 1430 } 1431 transition(tos_in, tos_out); 1432 } 1433 #endif // ASSERT 1434 1435 // Conversion 1436 // (Note: use push(rcx)/pop(rcx) for 1/2-word stack-ptr manipulation) 1437 switch (bytecode()) { 1438 case Bytecodes::_i2l: 1439 __ extend_sign(rdx, rax); 1440 break; 1441 case Bytecodes::_i2f: 1442 __ push(rax); // store int on tos 1443 __ fild_s(at_rsp()); // load int to ST0 1444 __ f2ieee(); // truncate to float size 1445 __ pop(rcx); // adjust rsp 1446 break; 1447 case Bytecodes::_i2d: 1448 __ push(rax); // add one slot for d2ieee() 1449 __ push(rax); // store int on tos 1450 __ fild_s(at_rsp()); // load int to ST0 1451 __ d2ieee(); // truncate to double size 1452 __ pop(rcx); // adjust rsp 1453 __ pop(rcx); 1454 break; 1455 case Bytecodes::_i2b: 1456 __ shll(rax, 24); // truncate upper 24 bits 1457 __ sarl(rax, 24); // and sign-extend byte 1458 LP64_ONLY(__ movsbl(rax, rax)); 1459 break; 1460 case Bytecodes::_i2c: 1461 __ andl(rax, 0xFFFF); // truncate upper 16 bits 1462 LP64_ONLY(__ movzwl(rax, rax)); 1463 break; 1464 case Bytecodes::_i2s: 1465 __ shll(rax, 16); // truncate upper 16 bits 1466 __ sarl(rax, 16); // and sign-extend short 1467 LP64_ONLY(__ movswl(rax, rax)); 1468 break; 1469 case Bytecodes::_l2i: 1470 /* nothing to do */ 1471 break; 1472 case Bytecodes::_l2f: 1473 __ push(rdx); // store long on tos 1474 __ push(rax); 1475 __ fild_d(at_rsp()); // load long to ST0 1476 __ f2ieee(); // truncate to float size 1477 __ pop(rcx); // adjust rsp 1478 __ pop(rcx); 1479 break; 1480 case Bytecodes::_l2d: 1481 __ push(rdx); // store long on tos 1482 __ push(rax); 1483 __ fild_d(at_rsp()); // load long to ST0 1484 __ d2ieee(); // truncate to double size 1485 __ pop(rcx); // adjust rsp 1486 __ pop(rcx); 1487 break; 1488 case Bytecodes::_f2i: 1489 __ push(rcx); // reserve space for argument 1490 __ fstp_s(at_rsp()); // pass float argument on stack 1491 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1); 1492 break; 1493 case Bytecodes::_f2l: 1494 __ push(rcx); // reserve space for argument 1495 __ fstp_s(at_rsp()); // pass float argument on stack 1496 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1); 1497 break; 1498 case Bytecodes::_f2d: 1499 /* nothing to do */ 1500 break; 1501 case Bytecodes::_d2i: 1502 __ push(rcx); // reserve space for argument 1503 __ push(rcx); 1504 __ fstp_d(at_rsp()); // pass double argument on stack 1505 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 2); 1506 break; 1507 case Bytecodes::_d2l: 1508 __ push(rcx); // reserve space for argument 1509 __ push(rcx); 1510 __ fstp_d(at_rsp()); // pass double argument on stack 1511 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 2); 1512 break; 1513 case Bytecodes::_d2f: 1514 __ push(rcx); // reserve space for f2ieee() 1515 __ f2ieee(); // truncate to float size 1516 __ pop(rcx); // adjust rsp 1517 break; 1518 default : 1519 ShouldNotReachHere(); 1520 } 1521 } 1522 1523 1524 void TemplateTable::lcmp() { 1525 transition(ltos, itos); 1526 // y = rdx:rax 1527 __ pop_l(rbx, rcx); // get x = rcx:rbx 1528 __ lcmp2int(rcx, rbx, rdx, rax);// rcx := cmp(x, y) 1529 __ mov(rax, rcx); 1530 } 1531 1532 1533 void TemplateTable::float_cmp(bool is_float, int unordered_result) { 1534 if (is_float) { 1535 __ fld_s(at_rsp()); 1536 } else { 1537 __ fld_d(at_rsp()); 1538 __ pop(rdx); 1539 } 1540 __ pop(rcx); 1541 __ fcmp2int(rax, unordered_result < 0); 1542 } 1543 1544 1545 void TemplateTable::branch(bool is_jsr, bool is_wide) { 1546 __ get_method(rcx); // ECX holds method 1547 __ profile_taken_branch(rax,rbx); // EAX holds updated MDP, EBX holds bumped taken count 1548 1549 const ByteSize be_offset = MethodCounters::backedge_counter_offset() + 1550 InvocationCounter::counter_offset(); 1551 const ByteSize inv_offset = MethodCounters::invocation_counter_offset() + 1552 InvocationCounter::counter_offset(); 1553 1554 // Load up EDX with the branch displacement 1555 if (is_wide) { 1556 __ movl(rdx, at_bcp(1)); 1557 } else { 1558 __ load_signed_short(rdx, at_bcp(1)); 1559 } 1560 __ bswapl(rdx); 1561 if (!is_wide) __ sarl(rdx, 16); 1562 LP64_ONLY(__ movslq(rdx, rdx)); 1563 1564 1565 // Handle all the JSR stuff here, then exit. 1566 // It's much shorter and cleaner than intermingling with the 1567 // non-JSR normal-branch stuff occurring below. 1568 if (is_jsr) { 1569 // Pre-load the next target bytecode into EBX 1570 __ load_unsigned_byte(rbx, Address(rsi, rdx, Address::times_1, 0)); 1571 1572 // compute return address as bci in rax, 1573 __ lea(rax, at_bcp((is_wide ? 5 : 3) - in_bytes(ConstMethod::codes_offset()))); 1574 __ subptr(rax, Address(rcx, Method::const_offset())); 1575 // Adjust the bcp in RSI by the displacement in EDX 1576 __ addptr(rsi, rdx); 1577 // Push return address 1578 __ push_i(rax); 1579 // jsr returns vtos 1580 __ dispatch_only_noverify(vtos); 1581 return; 1582 } 1583 1584 // Normal (non-jsr) branch handling 1585 1586 // Adjust the bcp in RSI by the displacement in EDX 1587 __ addptr(rsi, rdx); 1588 1589 assert(UseLoopCounter || !UseOnStackReplacement, "on-stack-replacement requires loop counters"); 1590 Label backedge_counter_overflow; 1591 Label profile_method; 1592 Label dispatch; 1593 if (UseLoopCounter) { 1594 // increment backedge counter for backward branches 1595 // rax,: MDO 1596 // rbx,: MDO bumped taken-count 1597 // rcx: method 1598 // rdx: target offset 1599 // rsi: target bcp 1600 // rdi: locals pointer 1601 __ testl(rdx, rdx); // check if forward or backward branch 1602 __ jcc(Assembler::positive, dispatch); // count only if backward branch 1603 1604 // check if MethodCounters exists 1605 Label has_counters; 1606 __ movptr(rax, Address(rcx, Method::method_counters_offset())); 1607 __ testptr(rax, rax); 1608 __ jcc(Assembler::notZero, has_counters); 1609 __ push(rdx); 1610 __ push(rcx); 1611 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::build_method_counters), 1612 rcx); 1613 __ pop(rcx); 1614 __ pop(rdx); 1615 __ movptr(rax, Address(rcx, Method::method_counters_offset())); 1616 __ testptr(rax, rax); 1617 __ jcc(Assembler::zero, dispatch); 1618 __ bind(has_counters); 1619 1620 if (TieredCompilation) { 1621 Label no_mdo; 1622 int increment = InvocationCounter::count_increment; 1623 if (ProfileInterpreter) { 1624 // Are we profiling? 1625 __ movptr(rbx, Address(rcx, in_bytes(Method::method_data_offset()))); 1626 __ testptr(rbx, rbx); 1627 __ jccb(Assembler::zero, no_mdo); 1628 // Increment the MDO backedge counter 1629 const Address mdo_backedge_counter(rbx, in_bytes(MethodData::backedge_counter_offset()) + 1630 in_bytes(InvocationCounter::counter_offset())); 1631 const Address mask(rbx, in_bytes(MethodData::backedge_mask_offset())); 1632 __ increment_mask_and_jump(mdo_backedge_counter, increment, mask, 1633 rax, false, Assembler::zero, &backedge_counter_overflow); 1634 __ jmp(dispatch); 1635 } 1636 __ bind(no_mdo); 1637 // Increment backedge counter in MethodCounters* 1638 __ movptr(rcx, Address(rcx, Method::method_counters_offset())); 1639 const Address mask(rcx, in_bytes(MethodCounters::backedge_mask_offset())); 1640 __ increment_mask_and_jump(Address(rcx, be_offset), increment, mask, 1641 rax, false, Assembler::zero, &backedge_counter_overflow); 1642 } else { // not TieredCompilation 1643 // increment counter 1644 __ movptr(rcx, Address(rcx, Method::method_counters_offset())); 1645 __ movl(rax, Address(rcx, be_offset)); // load backedge counter 1646 __ incrementl(rax, InvocationCounter::count_increment); // increment counter 1647 __ movl(Address(rcx, be_offset), rax); // store counter 1648 1649 __ movl(rax, Address(rcx, inv_offset)); // load invocation counter 1650 1651 __ andl(rax, InvocationCounter::count_mask_value); // and the status bits 1652 __ addl(rax, Address(rcx, be_offset)); // add both counters 1653 1654 if (ProfileInterpreter) { 1655 // Test to see if we should create a method data oop 1656 __ cmp32(rax, Address(rcx, in_bytes(MethodCounters::interpreter_profile_limit_offset()))); 1657 __ jcc(Assembler::less, dispatch); 1658 1659 // if no method data exists, go to profile method 1660 __ test_method_data_pointer(rax, profile_method); 1661 1662 if (UseOnStackReplacement) { 1663 // check for overflow against rbx, which is the MDO taken count 1664 __ cmp32(rbx, Address(rcx, in_bytes(MethodCounters::interpreter_backward_branch_limit_offset()))); 1665 __ jcc(Assembler::below, dispatch); 1666 1667 // When ProfileInterpreter is on, the backedge_count comes from the 1668 // MethodData*, which value does not get reset on the call to 1669 // frequency_counter_overflow(). To avoid excessive calls to the overflow 1670 // routine while the method is being compiled, add a second test to make 1671 // sure the overflow function is called only once every overflow_frequency. 1672 const int overflow_frequency = 1024; 1673 __ andptr(rbx, overflow_frequency-1); 1674 __ jcc(Assembler::zero, backedge_counter_overflow); 1675 } 1676 } else { 1677 if (UseOnStackReplacement) { 1678 // check for overflow against rax, which is the sum of the counters 1679 __ cmp32(rax, Address(rcx, in_bytes(MethodCounters::interpreter_backward_branch_limit_offset()))); 1680 __ jcc(Assembler::aboveEqual, backedge_counter_overflow); 1681 1682 } 1683 } 1684 } 1685 __ bind(dispatch); 1686 } 1687 1688 // Pre-load the next target bytecode into EBX 1689 __ load_unsigned_byte(rbx, Address(rsi, 0)); 1690 1691 // continue with the bytecode @ target 1692 // rax,: return bci for jsr's, unused otherwise 1693 // rbx,: target bytecode 1694 // rsi: target bcp 1695 __ dispatch_only(vtos); 1696 1697 if (UseLoopCounter) { 1698 if (ProfileInterpreter) { 1699 // Out-of-line code to allocate method data oop. 1700 __ bind(profile_method); 1701 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method)); 1702 __ load_unsigned_byte(rbx, Address(rsi, 0)); // restore target bytecode 1703 __ set_method_data_pointer_for_bcp(); 1704 __ jmp(dispatch); 1705 } 1706 1707 if (UseOnStackReplacement) { 1708 1709 // invocation counter overflow 1710 __ bind(backedge_counter_overflow); 1711 __ negptr(rdx); 1712 __ addptr(rdx, rsi); // branch bcp 1713 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), rdx); 1714 __ load_unsigned_byte(rbx, Address(rsi, 0)); // restore target bytecode 1715 1716 // rax,: osr nmethod (osr ok) or NULL (osr not possible) 1717 // rbx,: target bytecode 1718 // rdx: scratch 1719 // rdi: locals pointer 1720 // rsi: bcp 1721 __ testptr(rax, rax); // test result 1722 __ jcc(Assembler::zero, dispatch); // no osr if null 1723 // nmethod may have been invalidated (VM may block upon call_VM return) 1724 __ cmpb(Address(rax, nmethod::state_offset()), nmethod::in_use); 1725 __ jcc(Assembler::notEqual, dispatch); 1726 1727 // We have the address of an on stack replacement routine in rax, 1728 // We need to prepare to execute the OSR method. First we must 1729 // migrate the locals and monitors off of the stack. 1730 1731 __ mov(rbx, rax); // save the nmethod 1732 1733 __ get_thread(rcx); 1734 call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin)); 1735 // rax, is OSR buffer, move it to expected parameter location 1736 __ mov(rcx, rax); 1737 1738 // pop the interpreter frame 1739 __ movptr(rdx, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp 1740 __ leave(); // remove frame anchor 1741 __ pop(rdi); // get return address 1742 __ mov(rsp, rdx); // set sp to sender sp 1743 1744 // Align stack pointer for compiled code (note that caller is 1745 // responsible for undoing this fixup by remembering the old SP 1746 // in an rbp,-relative location) 1747 __ andptr(rsp, -(StackAlignmentInBytes)); 1748 1749 // push the (possibly adjusted) return address 1750 __ push(rdi); 1751 1752 // and begin the OSR nmethod 1753 __ jmp(Address(rbx, nmethod::osr_entry_point_offset())); 1754 } 1755 } 1756 } 1757 1758 1759 void TemplateTable::if_0cmp(Condition cc) { 1760 transition(itos, vtos); 1761 // assume branch is more often taken than not (loops use backward branches) 1762 Label not_taken; 1763 __ testl(rax, rax); 1764 __ jcc(j_not(cc), not_taken); 1765 branch(false, false); 1766 __ bind(not_taken); 1767 __ profile_not_taken_branch(rax); 1768 } 1769 1770 1771 void TemplateTable::if_icmp(Condition cc) { 1772 transition(itos, vtos); 1773 // assume branch is more often taken than not (loops use backward branches) 1774 Label not_taken; 1775 __ pop_i(rdx); 1776 __ cmpl(rdx, rax); 1777 __ jcc(j_not(cc), not_taken); 1778 branch(false, false); 1779 __ bind(not_taken); 1780 __ profile_not_taken_branch(rax); 1781 } 1782 1783 1784 void TemplateTable::if_nullcmp(Condition cc) { 1785 transition(atos, vtos); 1786 // assume branch is more often taken than not (loops use backward branches) 1787 Label not_taken; 1788 __ testptr(rax, rax); 1789 __ jcc(j_not(cc), not_taken); 1790 branch(false, false); 1791 __ bind(not_taken); 1792 __ profile_not_taken_branch(rax); 1793 } 1794 1795 1796 void TemplateTable::if_acmp(Condition cc) { 1797 transition(atos, vtos); 1798 // assume branch is more often taken than not (loops use backward branches) 1799 Label not_taken; 1800 __ pop_ptr(rdx); 1801 __ cmpptr(rdx, rax); 1802 __ jcc(j_not(cc), not_taken); 1803 branch(false, false); 1804 __ bind(not_taken); 1805 __ profile_not_taken_branch(rax); 1806 } 1807 1808 1809 void TemplateTable::ret() { 1810 transition(vtos, vtos); 1811 locals_index(rbx); 1812 __ movptr(rbx, iaddress(rbx)); // get return bci, compute return bcp 1813 __ profile_ret(rbx, rcx); 1814 __ get_method(rax); 1815 __ movptr(rsi, Address(rax, Method::const_offset())); 1816 __ lea(rsi, Address(rsi, rbx, Address::times_1, 1817 ConstMethod::codes_offset())); 1818 __ dispatch_next(vtos); 1819 } 1820 1821 1822 void TemplateTable::wide_ret() { 1823 transition(vtos, vtos); 1824 locals_index_wide(rbx); 1825 __ movptr(rbx, iaddress(rbx)); // get return bci, compute return bcp 1826 __ profile_ret(rbx, rcx); 1827 __ get_method(rax); 1828 __ movptr(rsi, Address(rax, Method::const_offset())); 1829 __ lea(rsi, Address(rsi, rbx, Address::times_1, ConstMethod::codes_offset())); 1830 __ dispatch_next(vtos); 1831 } 1832 1833 1834 void TemplateTable::tableswitch() { 1835 Label default_case, continue_execution; 1836 transition(itos, vtos); 1837 // align rsi 1838 __ lea(rbx, at_bcp(wordSize)); 1839 __ andptr(rbx, -wordSize); 1840 // load lo & hi 1841 __ movl(rcx, Address(rbx, 1 * wordSize)); 1842 __ movl(rdx, Address(rbx, 2 * wordSize)); 1843 __ bswapl(rcx); 1844 __ bswapl(rdx); 1845 // check against lo & hi 1846 __ cmpl(rax, rcx); 1847 __ jccb(Assembler::less, default_case); 1848 __ cmpl(rax, rdx); 1849 __ jccb(Assembler::greater, default_case); 1850 // lookup dispatch offset 1851 __ subl(rax, rcx); 1852 __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt)); 1853 __ profile_switch_case(rax, rbx, rcx); 1854 // continue execution 1855 __ bind(continue_execution); 1856 __ bswapl(rdx); 1857 __ load_unsigned_byte(rbx, Address(rsi, rdx, Address::times_1)); 1858 __ addptr(rsi, rdx); 1859 __ dispatch_only(vtos); 1860 // handle default 1861 __ bind(default_case); 1862 __ profile_switch_default(rax); 1863 __ movl(rdx, Address(rbx, 0)); 1864 __ jmp(continue_execution); 1865 } 1866 1867 1868 void TemplateTable::lookupswitch() { 1869 transition(itos, itos); 1870 __ stop("lookupswitch bytecode should have been rewritten"); 1871 } 1872 1873 1874 void TemplateTable::fast_linearswitch() { 1875 transition(itos, vtos); 1876 Label loop_entry, loop, found, continue_execution; 1877 // bswapl rax, so we can avoid bswapping the table entries 1878 __ bswapl(rax); 1879 // align rsi 1880 __ lea(rbx, at_bcp(wordSize)); // btw: should be able to get rid of this instruction (change offsets below) 1881 __ andptr(rbx, -wordSize); 1882 // set counter 1883 __ movl(rcx, Address(rbx, wordSize)); 1884 __ bswapl(rcx); 1885 __ jmpb(loop_entry); 1886 // table search 1887 __ bind(loop); 1888 __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * wordSize)); 1889 __ jccb(Assembler::equal, found); 1890 __ bind(loop_entry); 1891 __ decrementl(rcx); 1892 __ jcc(Assembler::greaterEqual, loop); 1893 // default case 1894 __ profile_switch_default(rax); 1895 __ movl(rdx, Address(rbx, 0)); 1896 __ jmpb(continue_execution); 1897 // entry found -> get offset 1898 __ bind(found); 1899 __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * wordSize)); 1900 __ profile_switch_case(rcx, rax, rbx); 1901 // continue execution 1902 __ bind(continue_execution); 1903 __ bswapl(rdx); 1904 __ load_unsigned_byte(rbx, Address(rsi, rdx, Address::times_1)); 1905 __ addptr(rsi, rdx); 1906 __ dispatch_only(vtos); 1907 } 1908 1909 1910 void TemplateTable::fast_binaryswitch() { 1911 transition(itos, vtos); 1912 // Implementation using the following core algorithm: 1913 // 1914 // int binary_search(int key, LookupswitchPair* array, int n) { 1915 // // Binary search according to "Methodik des Programmierens" by 1916 // // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985. 1917 // int i = 0; 1918 // int j = n; 1919 // while (i+1 < j) { 1920 // // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q) 1921 // // with Q: for all i: 0 <= i < n: key < a[i] 1922 // // where a stands for the array and assuming that the (inexisting) 1923 // // element a[n] is infinitely big. 1924 // int h = (i + j) >> 1; 1925 // // i < h < j 1926 // if (key < array[h].fast_match()) { 1927 // j = h; 1928 // } else { 1929 // i = h; 1930 // } 1931 // } 1932 // // R: a[i] <= key < a[i+1] or Q 1933 // // (i.e., if key is within array, i is the correct index) 1934 // return i; 1935 // } 1936 1937 // register allocation 1938 const Register key = rax; // already set (tosca) 1939 const Register array = rbx; 1940 const Register i = rcx; 1941 const Register j = rdx; 1942 const Register h = rdi; // needs to be restored 1943 const Register temp = rsi; 1944 // setup array 1945 __ save_bcp(); 1946 1947 __ lea(array, at_bcp(3*wordSize)); // btw: should be able to get rid of this instruction (change offsets below) 1948 __ andptr(array, -wordSize); 1949 // initialize i & j 1950 __ xorl(i, i); // i = 0; 1951 __ movl(j, Address(array, -wordSize)); // j = length(array); 1952 // Convert j into native byteordering 1953 __ bswapl(j); 1954 // and start 1955 Label entry; 1956 __ jmp(entry); 1957 1958 // binary search loop 1959 { Label loop; 1960 __ bind(loop); 1961 // int h = (i + j) >> 1; 1962 __ leal(h, Address(i, j, Address::times_1)); // h = i + j; 1963 __ sarl(h, 1); // h = (i + j) >> 1; 1964 // if (key < array[h].fast_match()) { 1965 // j = h; 1966 // } else { 1967 // i = h; 1968 // } 1969 // Convert array[h].match to native byte-ordering before compare 1970 __ movl(temp, Address(array, h, Address::times_8, 0*wordSize)); 1971 __ bswapl(temp); 1972 __ cmpl(key, temp); 1973 // j = h if (key < array[h].fast_match()) 1974 __ cmov32(Assembler::less , j, h); 1975 // i = h if (key >= array[h].fast_match()) 1976 __ cmov32(Assembler::greaterEqual, i, h); 1977 // while (i+1 < j) 1978 __ bind(entry); 1979 __ leal(h, Address(i, 1)); // i+1 1980 __ cmpl(h, j); // i+1 < j 1981 __ jcc(Assembler::less, loop); 1982 } 1983 1984 // end of binary search, result index is i (must check again!) 1985 Label default_case; 1986 // Convert array[i].match to native byte-ordering before compare 1987 __ movl(temp, Address(array, i, Address::times_8, 0*wordSize)); 1988 __ bswapl(temp); 1989 __ cmpl(key, temp); 1990 __ jcc(Assembler::notEqual, default_case); 1991 1992 // entry found -> j = offset 1993 __ movl(j , Address(array, i, Address::times_8, 1*wordSize)); 1994 __ profile_switch_case(i, key, array); 1995 __ bswapl(j); 1996 LP64_ONLY(__ movslq(j, j)); 1997 __ restore_bcp(); 1998 __ restore_locals(); // restore rdi 1999 __ load_unsigned_byte(rbx, Address(rsi, j, Address::times_1)); 2000 2001 __ addptr(rsi, j); 2002 __ dispatch_only(vtos); 2003 2004 // default case -> j = default offset 2005 __ bind(default_case); 2006 __ profile_switch_default(i); 2007 __ movl(j, Address(array, -2*wordSize)); 2008 __ bswapl(j); 2009 LP64_ONLY(__ movslq(j, j)); 2010 __ restore_bcp(); 2011 __ restore_locals(); // restore rdi 2012 __ load_unsigned_byte(rbx, Address(rsi, j, Address::times_1)); 2013 __ addptr(rsi, j); 2014 __ dispatch_only(vtos); 2015 } 2016 2017 2018 void TemplateTable::_return(TosState state) { 2019 transition(state, state); 2020 assert(_desc->calls_vm(), "inconsistent calls_vm information"); // call in remove_activation 2021 2022 if (_desc->bytecode() == Bytecodes::_return_register_finalizer) { 2023 assert(state == vtos, "only valid state"); 2024 __ movptr(rax, aaddress(0)); 2025 __ load_klass(rdi, rax); 2026 __ movl(rdi, Address(rdi, Klass::access_flags_offset())); 2027 __ testl(rdi, JVM_ACC_HAS_FINALIZER); 2028 Label skip_register_finalizer; 2029 __ jcc(Assembler::zero, skip_register_finalizer); 2030 2031 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), rax); 2032 2033 __ bind(skip_register_finalizer); 2034 } 2035 2036 __ remove_activation(state, rsi); 2037 __ jmp(rsi); 2038 } 2039 2040 2041 // ---------------------------------------------------------------------------- 2042 // Volatile variables demand their effects be made known to all CPU's in 2043 // order. Store buffers on most chips allow reads & writes to reorder; the 2044 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of 2045 // memory barrier (i.e., it's not sufficient that the interpreter does not 2046 // reorder volatile references, the hardware also must not reorder them). 2047 // 2048 // According to the new Java Memory Model (JMM): 2049 // (1) All volatiles are serialized wrt to each other. 2050 // ALSO reads & writes act as aquire & release, so: 2051 // (2) A read cannot let unrelated NON-volatile memory refs that happen after 2052 // the read float up to before the read. It's OK for non-volatile memory refs 2053 // that happen before the volatile read to float down below it. 2054 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs 2055 // that happen BEFORE the write float down to after the write. It's OK for 2056 // non-volatile memory refs that happen after the volatile write to float up 2057 // before it. 2058 // 2059 // We only put in barriers around volatile refs (they are expensive), not 2060 // _between_ memory refs (that would require us to track the flavor of the 2061 // previous memory refs). Requirements (2) and (3) require some barriers 2062 // before volatile stores and after volatile loads. These nearly cover 2063 // requirement (1) but miss the volatile-store-volatile-load case. This final 2064 // case is placed after volatile-stores although it could just as well go 2065 // before volatile-loads. 2066 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits order_constraint ) { 2067 // Helper function to insert a is-volatile test and memory barrier 2068 if( !os::is_MP() ) return; // Not needed on single CPU 2069 __ membar(order_constraint); 2070 } 2071 2072 void TemplateTable::resolve_cache_and_index(int byte_no, 2073 Register Rcache, 2074 Register index, 2075 size_t index_size) { 2076 const Register temp = rbx; 2077 assert_different_registers(Rcache, index, temp); 2078 2079 Label resolved; 2080 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 2081 __ get_cache_and_index_and_bytecode_at_bcp(Rcache, index, temp, byte_no, 1, index_size); 2082 __ cmpl(temp, (int) bytecode()); // have we resolved this bytecode? 2083 __ jcc(Assembler::equal, resolved); 2084 2085 // resolve first time through 2086 address entry; 2087 switch (bytecode()) { 2088 case Bytecodes::_getstatic : // fall through 2089 case Bytecodes::_putstatic : // fall through 2090 case Bytecodes::_getfield : // fall through 2091 case Bytecodes::_putfield : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put); break; 2092 case Bytecodes::_invokevirtual : // fall through 2093 case Bytecodes::_invokespecial : // fall through 2094 case Bytecodes::_invokestatic : // fall through 2095 case Bytecodes::_invokeinterface: entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke); break; 2096 case Bytecodes::_invokehandle : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokehandle); break; 2097 case Bytecodes::_invokedynamic : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic); break; 2098 default: 2099 fatal(err_msg("unexpected bytecode: %s", Bytecodes::name(bytecode()))); 2100 break; 2101 } 2102 __ movl(temp, (int)bytecode()); 2103 __ call_VM(noreg, entry, temp); 2104 // Update registers with resolved info 2105 __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size); 2106 __ bind(resolved); 2107 } 2108 2109 2110 // The cache and index registers must be set before call 2111 void TemplateTable::load_field_cp_cache_entry(Register obj, 2112 Register cache, 2113 Register index, 2114 Register off, 2115 Register flags, 2116 bool is_static = false) { 2117 assert_different_registers(cache, index, flags, off); 2118 2119 ByteSize cp_base_offset = ConstantPoolCache::base_offset(); 2120 // Field offset 2121 __ movptr(off, Address(cache, index, Address::times_ptr, 2122 in_bytes(cp_base_offset + ConstantPoolCacheEntry::f2_offset()))); 2123 // Flags 2124 __ movl(flags, Address(cache, index, Address::times_ptr, 2125 in_bytes(cp_base_offset + ConstantPoolCacheEntry::flags_offset()))); 2126 2127 // klass overwrite register 2128 if (is_static) { 2129 __ movptr(obj, Address(cache, index, Address::times_ptr, 2130 in_bytes(cp_base_offset + ConstantPoolCacheEntry::f1_offset()))); 2131 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 2132 __ movptr(obj, Address(obj, mirror_offset)); 2133 } 2134 } 2135 2136 void TemplateTable::load_invoke_cp_cache_entry(int byte_no, 2137 Register method, 2138 Register itable_index, 2139 Register flags, 2140 bool is_invokevirtual, 2141 bool is_invokevfinal, /*unused*/ 2142 bool is_invokedynamic) { 2143 // setup registers 2144 const Register cache = rcx; 2145 const Register index = rdx; 2146 assert_different_registers(method, flags); 2147 assert_different_registers(method, cache, index); 2148 assert_different_registers(itable_index, flags); 2149 assert_different_registers(itable_index, cache, index); 2150 // determine constant pool cache field offsets 2151 assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant"); 2152 const int method_offset = in_bytes( 2153 ConstantPoolCache::base_offset() + 2154 ((byte_no == f2_byte) 2155 ? ConstantPoolCacheEntry::f2_offset() 2156 : ConstantPoolCacheEntry::f1_offset())); 2157 const int flags_offset = in_bytes(ConstantPoolCache::base_offset() + 2158 ConstantPoolCacheEntry::flags_offset()); 2159 // access constant pool cache fields 2160 const int index_offset = in_bytes(ConstantPoolCache::base_offset() + 2161 ConstantPoolCacheEntry::f2_offset()); 2162 2163 size_t index_size = (is_invokedynamic ? sizeof(u4) : sizeof(u2)); 2164 resolve_cache_and_index(byte_no, cache, index, index_size); 2165 __ movptr(method, Address(cache, index, Address::times_ptr, method_offset)); 2166 2167 if (itable_index != noreg) { 2168 __ movptr(itable_index, Address(cache, index, Address::times_ptr, index_offset)); 2169 } 2170 __ movl(flags, Address(cache, index, Address::times_ptr, flags_offset)); 2171 } 2172 2173 2174 // The registers cache and index expected to be set before call. 2175 // Correct values of the cache and index registers are preserved. 2176 void TemplateTable::jvmti_post_field_access(Register cache, 2177 Register index, 2178 bool is_static, 2179 bool has_tos) { 2180 if (JvmtiExport::can_post_field_access()) { 2181 // Check to see if a field access watch has been set before we take 2182 // the time to call into the VM. 2183 Label L1; 2184 assert_different_registers(cache, index, rax); 2185 __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr())); 2186 __ testl(rax,rax); 2187 __ jcc(Assembler::zero, L1); 2188 2189 // cache entry pointer 2190 __ addptr(cache, in_bytes(ConstantPoolCache::base_offset())); 2191 __ shll(index, LogBytesPerWord); 2192 __ addptr(cache, index); 2193 if (is_static) { 2194 __ xorptr(rax, rax); // NULL object reference 2195 } else { 2196 __ pop(atos); // Get the object 2197 __ verify_oop(rax); 2198 __ push(atos); // Restore stack state 2199 } 2200 // rax,: object pointer or NULL 2201 // cache: cache entry pointer 2202 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), 2203 rax, cache); 2204 __ get_cache_and_index_at_bcp(cache, index, 1); 2205 __ bind(L1); 2206 } 2207 } 2208 2209 void TemplateTable::pop_and_check_object(Register r) { 2210 __ pop_ptr(r); 2211 __ null_check(r); // for field access must check obj. 2212 __ verify_oop(r); 2213 } 2214 2215 void TemplateTable::getfield_or_static(int byte_no, bool is_static) { 2216 transition(vtos, vtos); 2217 2218 const Register cache = rcx; 2219 const Register index = rdx; 2220 const Register obj = rcx; 2221 const Register off = rbx; 2222 const Register flags = rax; 2223 2224 resolve_cache_and_index(byte_no, cache, index, sizeof(u2)); 2225 jvmti_post_field_access(cache, index, is_static, false); 2226 load_field_cp_cache_entry(obj, cache, index, off, flags, is_static); 2227 2228 if (!is_static) pop_and_check_object(obj); 2229 2230 const Address lo(obj, off, Address::times_1, 0*wordSize); 2231 const Address hi(obj, off, Address::times_1, 1*wordSize); 2232 2233 Label Done, notByte, notInt, notShort, notChar, notLong, notFloat, notObj, notDouble; 2234 2235 __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift); 2236 assert(btos == 0, "change code, btos != 0"); 2237 // btos 2238 __ andptr(flags, ConstantPoolCacheEntry::tos_state_mask); 2239 __ jcc(Assembler::notZero, notByte); 2240 2241 __ load_signed_byte(rax, lo ); 2242 __ push(btos); 2243 // Rewrite bytecode to be faster 2244 if (!is_static) { 2245 patch_bytecode(Bytecodes::_fast_bgetfield, rcx, rbx); 2246 } 2247 __ jmp(Done); 2248 2249 __ bind(notByte); 2250 // itos 2251 __ cmpl(flags, itos ); 2252 __ jcc(Assembler::notEqual, notInt); 2253 2254 __ movl(rax, lo ); 2255 __ push(itos); 2256 // Rewrite bytecode to be faster 2257 if (!is_static) { 2258 patch_bytecode(Bytecodes::_fast_igetfield, rcx, rbx); 2259 } 2260 __ jmp(Done); 2261 2262 __ bind(notInt); 2263 // atos 2264 __ cmpl(flags, atos ); 2265 __ jcc(Assembler::notEqual, notObj); 2266 2267 __ movl(rax, lo ); 2268 __ push(atos); 2269 if (!is_static) { 2270 patch_bytecode(Bytecodes::_fast_agetfield, rcx, rbx); 2271 } 2272 __ jmp(Done); 2273 2274 __ bind(notObj); 2275 // ctos 2276 __ cmpl(flags, ctos ); 2277 __ jcc(Assembler::notEqual, notChar); 2278 2279 __ load_unsigned_short(rax, lo ); 2280 __ push(ctos); 2281 if (!is_static) { 2282 patch_bytecode(Bytecodes::_fast_cgetfield, rcx, rbx); 2283 } 2284 __ jmp(Done); 2285 2286 __ bind(notChar); 2287 // stos 2288 __ cmpl(flags, stos ); 2289 __ jcc(Assembler::notEqual, notShort); 2290 2291 __ load_signed_short(rax, lo ); 2292 __ push(stos); 2293 if (!is_static) { 2294 patch_bytecode(Bytecodes::_fast_sgetfield, rcx, rbx); 2295 } 2296 __ jmp(Done); 2297 2298 __ bind(notShort); 2299 // ltos 2300 __ cmpl(flags, ltos ); 2301 __ jcc(Assembler::notEqual, notLong); 2302 2303 // Generate code as if volatile. There just aren't enough registers to 2304 // save that information and this code is faster than the test. 2305 __ fild_d(lo); // Must load atomically 2306 __ subptr(rsp,2*wordSize); // Make space for store 2307 __ fistp_d(Address(rsp,0)); 2308 __ pop(rax); 2309 __ pop(rdx); 2310 2311 __ push(ltos); 2312 // Don't rewrite to _fast_lgetfield for potential volatile case. 2313 __ jmp(Done); 2314 2315 __ bind(notLong); 2316 // ftos 2317 __ cmpl(flags, ftos ); 2318 __ jcc(Assembler::notEqual, notFloat); 2319 2320 __ fld_s(lo); 2321 __ push(ftos); 2322 if (!is_static) { 2323 patch_bytecode(Bytecodes::_fast_fgetfield, rcx, rbx); 2324 } 2325 __ jmp(Done); 2326 2327 __ bind(notFloat); 2328 // dtos 2329 __ cmpl(flags, dtos ); 2330 __ jcc(Assembler::notEqual, notDouble); 2331 2332 __ fld_d(lo); 2333 __ push(dtos); 2334 if (!is_static) { 2335 patch_bytecode(Bytecodes::_fast_dgetfield, rcx, rbx); 2336 } 2337 __ jmpb(Done); 2338 2339 __ bind(notDouble); 2340 2341 __ stop("Bad state"); 2342 2343 __ bind(Done); 2344 // Doug Lea believes this is not needed with current Sparcs (TSO) and Intel (PSO). 2345 // volatile_barrier( ); 2346 } 2347 2348 2349 void TemplateTable::getfield(int byte_no) { 2350 getfield_or_static(byte_no, false); 2351 } 2352 2353 2354 void TemplateTable::getstatic(int byte_no) { 2355 getfield_or_static(byte_no, true); 2356 } 2357 2358 // The registers cache and index expected to be set before call. 2359 // The function may destroy various registers, just not the cache and index registers. 2360 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) { 2361 2362 ByteSize cp_base_offset = ConstantPoolCache::base_offset(); 2363 2364 if (JvmtiExport::can_post_field_modification()) { 2365 // Check to see if a field modification watch has been set before we take 2366 // the time to call into the VM. 2367 Label L1; 2368 assert_different_registers(cache, index, rax); 2369 __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr())); 2370 __ testl(rax, rax); 2371 __ jcc(Assembler::zero, L1); 2372 2373 // The cache and index registers have been already set. 2374 // This allows to eliminate this call but the cache and index 2375 // registers have to be correspondingly used after this line. 2376 __ get_cache_and_index_at_bcp(rax, rdx, 1); 2377 2378 if (is_static) { 2379 // Life is simple. Null out the object pointer. 2380 __ xorptr(rbx, rbx); 2381 } else { 2382 // Life is harder. The stack holds the value on top, followed by the object. 2383 // We don't know the size of the value, though; it could be one or two words 2384 // depending on its type. As a result, we must find the type to determine where 2385 // the object is. 2386 Label two_word, valsize_known; 2387 __ movl(rcx, Address(rax, rdx, Address::times_ptr, in_bytes(cp_base_offset + 2388 ConstantPoolCacheEntry::flags_offset()))); 2389 __ mov(rbx, rsp); 2390 __ shrl(rcx, ConstantPoolCacheEntry::tos_state_shift); 2391 // Make sure we don't need to mask rcx after the above shift 2392 ConstantPoolCacheEntry::verify_tos_state_shift(); 2393 __ cmpl(rcx, ltos); 2394 __ jccb(Assembler::equal, two_word); 2395 __ cmpl(rcx, dtos); 2396 __ jccb(Assembler::equal, two_word); 2397 __ addptr(rbx, Interpreter::expr_offset_in_bytes(1)); // one word jvalue (not ltos, dtos) 2398 __ jmpb(valsize_known); 2399 2400 __ bind(two_word); 2401 __ addptr(rbx, Interpreter::expr_offset_in_bytes(2)); // two words jvalue 2402 2403 __ bind(valsize_known); 2404 // setup object pointer 2405 __ movptr(rbx, Address(rbx, 0)); 2406 } 2407 // cache entry pointer 2408 __ addptr(rax, in_bytes(cp_base_offset)); 2409 __ shll(rdx, LogBytesPerWord); 2410 __ addptr(rax, rdx); 2411 // object (tos) 2412 __ mov(rcx, rsp); 2413 // rbx,: object pointer set up above (NULL if static) 2414 // rax,: cache entry pointer 2415 // rcx: jvalue object on the stack 2416 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), 2417 rbx, rax, rcx); 2418 __ get_cache_and_index_at_bcp(cache, index, 1); 2419 __ bind(L1); 2420 } 2421 } 2422 2423 2424 void TemplateTable::putfield_or_static(int byte_no, bool is_static) { 2425 transition(vtos, vtos); 2426 2427 const Register cache = rcx; 2428 const Register index = rdx; 2429 const Register obj = rcx; 2430 const Register off = rbx; 2431 const Register flags = rax; 2432 2433 resolve_cache_and_index(byte_no, cache, index, sizeof(u2)); 2434 jvmti_post_field_mod(cache, index, is_static); 2435 load_field_cp_cache_entry(obj, cache, index, off, flags, is_static); 2436 2437 // Doug Lea believes this is not needed with current Sparcs (TSO) and Intel (PSO). 2438 // volatile_barrier( ); 2439 2440 Label notVolatile, Done; 2441 __ movl(rdx, flags); 2442 __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift); 2443 __ andl(rdx, 0x1); 2444 2445 // field addresses 2446 const Address lo(obj, off, Address::times_1, 0*wordSize); 2447 const Address hi(obj, off, Address::times_1, 1*wordSize); 2448 2449 Label notByte, notInt, notShort, notChar, notLong, notFloat, notObj, notDouble; 2450 2451 __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift); 2452 assert(btos == 0, "change code, btos != 0"); 2453 __ andl(flags, ConstantPoolCacheEntry::tos_state_mask); 2454 __ jcc(Assembler::notZero, notByte); 2455 2456 // btos 2457 { 2458 __ pop(btos); 2459 if (!is_static) pop_and_check_object(obj); 2460 __ movb(lo, rax); 2461 if (!is_static) { 2462 patch_bytecode(Bytecodes::_fast_bputfield, rcx, rbx, true, byte_no); 2463 } 2464 __ jmp(Done); 2465 } 2466 2467 __ bind(notByte); 2468 __ cmpl(flags, itos); 2469 __ jcc(Assembler::notEqual, notInt); 2470 2471 // itos 2472 { 2473 __ pop(itos); 2474 if (!is_static) pop_and_check_object(obj); 2475 __ movl(lo, rax); 2476 if (!is_static) { 2477 patch_bytecode(Bytecodes::_fast_iputfield, rcx, rbx, true, byte_no); 2478 } 2479 __ jmp(Done); 2480 } 2481 2482 __ bind(notInt); 2483 __ cmpl(flags, atos); 2484 __ jcc(Assembler::notEqual, notObj); 2485 2486 // atos 2487 { 2488 __ pop(atos); 2489 if (!is_static) pop_and_check_object(obj); 2490 do_oop_store(_masm, lo, rax, _bs->kind(), false); 2491 if (!is_static) { 2492 patch_bytecode(Bytecodes::_fast_aputfield, rcx, rbx, true, byte_no); 2493 } 2494 __ jmp(Done); 2495 } 2496 2497 __ bind(notObj); 2498 __ cmpl(flags, ctos); 2499 __ jcc(Assembler::notEqual, notChar); 2500 2501 // ctos 2502 { 2503 __ pop(ctos); 2504 if (!is_static) pop_and_check_object(obj); 2505 __ movw(lo, rax); 2506 if (!is_static) { 2507 patch_bytecode(Bytecodes::_fast_cputfield, rcx, rbx, true, byte_no); 2508 } 2509 __ jmp(Done); 2510 } 2511 2512 __ bind(notChar); 2513 __ cmpl(flags, stos); 2514 __ jcc(Assembler::notEqual, notShort); 2515 2516 // stos 2517 { 2518 __ pop(stos); 2519 if (!is_static) pop_and_check_object(obj); 2520 __ movw(lo, rax); 2521 if (!is_static) { 2522 patch_bytecode(Bytecodes::_fast_sputfield, rcx, rbx, true, byte_no); 2523 } 2524 __ jmp(Done); 2525 } 2526 2527 __ bind(notShort); 2528 __ cmpl(flags, ltos); 2529 __ jcc(Assembler::notEqual, notLong); 2530 2531 // ltos 2532 { 2533 Label notVolatileLong; 2534 __ testl(rdx, rdx); 2535 __ jcc(Assembler::zero, notVolatileLong); 2536 2537 __ pop(ltos); // overwrites rdx, do this after testing volatile. 2538 if (!is_static) pop_and_check_object(obj); 2539 2540 // Replace with real volatile test 2541 __ push(rdx); 2542 __ push(rax); // Must update atomically with FIST 2543 __ fild_d(Address(rsp,0)); // So load into FPU register 2544 __ fistp_d(lo); // and put into memory atomically 2545 __ addptr(rsp, 2*wordSize); 2546 // volatile_barrier(); 2547 volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad | 2548 Assembler::StoreStore)); 2549 // Don't rewrite volatile version 2550 __ jmp(notVolatile); 2551 2552 __ bind(notVolatileLong); 2553 2554 __ pop(ltos); // overwrites rdx 2555 if (!is_static) pop_and_check_object(obj); 2556 NOT_LP64(__ movptr(hi, rdx)); 2557 __ movptr(lo, rax); 2558 if (!is_static) { 2559 patch_bytecode(Bytecodes::_fast_lputfield, rcx, rbx, true, byte_no); 2560 } 2561 __ jmp(notVolatile); 2562 } 2563 2564 __ bind(notLong); 2565 __ cmpl(flags, ftos); 2566 __ jcc(Assembler::notEqual, notFloat); 2567 2568 // ftos 2569 { 2570 __ pop(ftos); 2571 if (!is_static) pop_and_check_object(obj); 2572 __ fstp_s(lo); 2573 if (!is_static) { 2574 patch_bytecode(Bytecodes::_fast_fputfield, rcx, rbx, true, byte_no); 2575 } 2576 __ jmp(Done); 2577 } 2578 2579 __ bind(notFloat); 2580 #ifdef ASSERT 2581 __ cmpl(flags, dtos); 2582 __ jcc(Assembler::notEqual, notDouble); 2583 #endif 2584 2585 // dtos 2586 { 2587 __ pop(dtos); 2588 if (!is_static) pop_and_check_object(obj); 2589 __ fstp_d(lo); 2590 if (!is_static) { 2591 patch_bytecode(Bytecodes::_fast_dputfield, rcx, rbx, true, byte_no); 2592 } 2593 __ jmp(Done); 2594 } 2595 2596 #ifdef ASSERT 2597 __ bind(notDouble); 2598 __ stop("Bad state"); 2599 #endif 2600 2601 __ bind(Done); 2602 2603 // Check for volatile store 2604 __ testl(rdx, rdx); 2605 __ jcc(Assembler::zero, notVolatile); 2606 volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad | 2607 Assembler::StoreStore)); 2608 __ bind(notVolatile); 2609 } 2610 2611 2612 void TemplateTable::putfield(int byte_no) { 2613 putfield_or_static(byte_no, false); 2614 } 2615 2616 2617 void TemplateTable::putstatic(int byte_no) { 2618 putfield_or_static(byte_no, true); 2619 } 2620 2621 void TemplateTable::jvmti_post_fast_field_mod() { 2622 if (JvmtiExport::can_post_field_modification()) { 2623 // Check to see if a field modification watch has been set before we take 2624 // the time to call into the VM. 2625 Label L2; 2626 __ mov32(rcx, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr())); 2627 __ testl(rcx,rcx); 2628 __ jcc(Assembler::zero, L2); 2629 __ pop_ptr(rbx); // copy the object pointer from tos 2630 __ verify_oop(rbx); 2631 __ push_ptr(rbx); // put the object pointer back on tos 2632 2633 // Save tos values before call_VM() clobbers them. Since we have 2634 // to do it for every data type, we use the saved values as the 2635 // jvalue object. 2636 switch (bytecode()) { // load values into the jvalue object 2637 case Bytecodes::_fast_aputfield: __ push_ptr(rax); break; 2638 case Bytecodes::_fast_bputfield: // fall through 2639 case Bytecodes::_fast_sputfield: // fall through 2640 case Bytecodes::_fast_cputfield: // fall through 2641 case Bytecodes::_fast_iputfield: __ push_i(rax); break; 2642 case Bytecodes::_fast_dputfield: __ push_d(); break; 2643 case Bytecodes::_fast_fputfield: __ push_f(); break; 2644 case Bytecodes::_fast_lputfield: __ push_l(rax); break; 2645 2646 default: 2647 ShouldNotReachHere(); 2648 } 2649 __ mov(rcx, rsp); // points to jvalue on the stack 2650 // access constant pool cache entry 2651 __ get_cache_entry_pointer_at_bcp(rax, rdx, 1); 2652 __ verify_oop(rbx); 2653 // rbx,: object pointer copied above 2654 // rax,: cache entry pointer 2655 // rcx: jvalue object on the stack 2656 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), rbx, rax, rcx); 2657 2658 switch (bytecode()) { // restore tos values 2659 case Bytecodes::_fast_aputfield: __ pop_ptr(rax); break; 2660 case Bytecodes::_fast_bputfield: // fall through 2661 case Bytecodes::_fast_sputfield: // fall through 2662 case Bytecodes::_fast_cputfield: // fall through 2663 case Bytecodes::_fast_iputfield: __ pop_i(rax); break; 2664 case Bytecodes::_fast_dputfield: __ pop_d(); break; 2665 case Bytecodes::_fast_fputfield: __ pop_f(); break; 2666 case Bytecodes::_fast_lputfield: __ pop_l(rax); break; 2667 } 2668 __ bind(L2); 2669 } 2670 } 2671 2672 void TemplateTable::fast_storefield(TosState state) { 2673 transition(state, vtos); 2674 2675 ByteSize base = ConstantPoolCache::base_offset(); 2676 2677 jvmti_post_fast_field_mod(); 2678 2679 // access constant pool cache 2680 __ get_cache_and_index_at_bcp(rcx, rbx, 1); 2681 2682 // test for volatile with rdx but rdx is tos register for lputfield. 2683 if (bytecode() == Bytecodes::_fast_lputfield) __ push(rdx); 2684 __ movl(rdx, Address(rcx, rbx, Address::times_ptr, in_bytes(base + 2685 ConstantPoolCacheEntry::flags_offset()))); 2686 2687 // replace index with field offset from cache entry 2688 __ movptr(rbx, Address(rcx, rbx, Address::times_ptr, in_bytes(base + ConstantPoolCacheEntry::f2_offset()))); 2689 2690 // Doug Lea believes this is not needed with current Sparcs (TSO) and Intel (PSO). 2691 // volatile_barrier( ); 2692 2693 Label notVolatile, Done; 2694 __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift); 2695 __ andl(rdx, 0x1); 2696 // Check for volatile store 2697 __ testl(rdx, rdx); 2698 __ jcc(Assembler::zero, notVolatile); 2699 2700 if (bytecode() == Bytecodes::_fast_lputfield) __ pop(rdx); 2701 2702 // Get object from stack 2703 pop_and_check_object(rcx); 2704 2705 // field addresses 2706 const Address lo(rcx, rbx, Address::times_1, 0*wordSize); 2707 const Address hi(rcx, rbx, Address::times_1, 1*wordSize); 2708 2709 // access field 2710 switch (bytecode()) { 2711 case Bytecodes::_fast_bputfield: __ movb(lo, rax); break; 2712 case Bytecodes::_fast_sputfield: // fall through 2713 case Bytecodes::_fast_cputfield: __ movw(lo, rax); break; 2714 case Bytecodes::_fast_iputfield: __ movl(lo, rax); break; 2715 case Bytecodes::_fast_lputfield: 2716 NOT_LP64(__ movptr(hi, rdx)); 2717 __ movptr(lo, rax); 2718 break; 2719 case Bytecodes::_fast_fputfield: __ fstp_s(lo); break; 2720 case Bytecodes::_fast_dputfield: __ fstp_d(lo); break; 2721 case Bytecodes::_fast_aputfield: { 2722 do_oop_store(_masm, lo, rax, _bs->kind(), false); 2723 break; 2724 } 2725 default: 2726 ShouldNotReachHere(); 2727 } 2728 2729 Label done; 2730 volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad | 2731 Assembler::StoreStore)); 2732 // Barriers are so large that short branch doesn't reach! 2733 __ jmp(done); 2734 2735 // Same code as above, but don't need rdx to test for volatile. 2736 __ bind(notVolatile); 2737 2738 if (bytecode() == Bytecodes::_fast_lputfield) __ pop(rdx); 2739 2740 // Get object from stack 2741 pop_and_check_object(rcx); 2742 2743 // access field 2744 switch (bytecode()) { 2745 case Bytecodes::_fast_bputfield: __ movb(lo, rax); break; 2746 case Bytecodes::_fast_sputfield: // fall through 2747 case Bytecodes::_fast_cputfield: __ movw(lo, rax); break; 2748 case Bytecodes::_fast_iputfield: __ movl(lo, rax); break; 2749 case Bytecodes::_fast_lputfield: 2750 NOT_LP64(__ movptr(hi, rdx)); 2751 __ movptr(lo, rax); 2752 break; 2753 case Bytecodes::_fast_fputfield: __ fstp_s(lo); break; 2754 case Bytecodes::_fast_dputfield: __ fstp_d(lo); break; 2755 case Bytecodes::_fast_aputfield: { 2756 do_oop_store(_masm, lo, rax, _bs->kind(), false); 2757 break; 2758 } 2759 default: 2760 ShouldNotReachHere(); 2761 } 2762 __ bind(done); 2763 } 2764 2765 2766 void TemplateTable::fast_accessfield(TosState state) { 2767 transition(atos, state); 2768 2769 // do the JVMTI work here to avoid disturbing the register state below 2770 if (JvmtiExport::can_post_field_access()) { 2771 // Check to see if a field access watch has been set before we take 2772 // the time to call into the VM. 2773 Label L1; 2774 __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr())); 2775 __ testl(rcx,rcx); 2776 __ jcc(Assembler::zero, L1); 2777 // access constant pool cache entry 2778 __ get_cache_entry_pointer_at_bcp(rcx, rdx, 1); 2779 __ push_ptr(rax); // save object pointer before call_VM() clobbers it 2780 __ verify_oop(rax); 2781 // rax,: object pointer copied above 2782 // rcx: cache entry pointer 2783 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), rax, rcx); 2784 __ pop_ptr(rax); // restore object pointer 2785 __ bind(L1); 2786 } 2787 2788 // access constant pool cache 2789 __ get_cache_and_index_at_bcp(rcx, rbx, 1); 2790 // replace index with field offset from cache entry 2791 __ movptr(rbx, Address(rcx, 2792 rbx, 2793 Address::times_ptr, 2794 in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::f2_offset()))); 2795 2796 2797 // rax,: object 2798 __ verify_oop(rax); 2799 __ null_check(rax); 2800 // field addresses 2801 const Address lo = Address(rax, rbx, Address::times_1, 0*wordSize); 2802 const Address hi = Address(rax, rbx, Address::times_1, 1*wordSize); 2803 2804 // access field 2805 switch (bytecode()) { 2806 case Bytecodes::_fast_bgetfield: __ movsbl(rax, lo ); break; 2807 case Bytecodes::_fast_sgetfield: __ load_signed_short(rax, lo ); break; 2808 case Bytecodes::_fast_cgetfield: __ load_unsigned_short(rax, lo ); break; 2809 case Bytecodes::_fast_igetfield: __ movl(rax, lo); break; 2810 case Bytecodes::_fast_lgetfield: __ stop("should not be rewritten"); break; 2811 case Bytecodes::_fast_fgetfield: __ fld_s(lo); break; 2812 case Bytecodes::_fast_dgetfield: __ fld_d(lo); break; 2813 case Bytecodes::_fast_agetfield: __ movptr(rax, lo); __ verify_oop(rax); break; 2814 default: 2815 ShouldNotReachHere(); 2816 } 2817 2818 // Doug Lea believes this is not needed with current Sparcs(TSO) and Intel(PSO) 2819 // volatile_barrier( ); 2820 } 2821 2822 void TemplateTable::fast_xaccess(TosState state) { 2823 transition(vtos, state); 2824 // get receiver 2825 __ movptr(rax, aaddress(0)); 2826 // access constant pool cache 2827 __ get_cache_and_index_at_bcp(rcx, rdx, 2); 2828 __ movptr(rbx, Address(rcx, 2829 rdx, 2830 Address::times_ptr, 2831 in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::f2_offset()))); 2832 // make sure exception is reported in correct bcp range (getfield is next instruction) 2833 __ increment(rsi); 2834 __ null_check(rax); 2835 const Address lo = Address(rax, rbx, Address::times_1, 0*wordSize); 2836 if (state == itos) { 2837 __ movl(rax, lo); 2838 } else if (state == atos) { 2839 __ movptr(rax, lo); 2840 __ verify_oop(rax); 2841 } else if (state == ftos) { 2842 __ fld_s(lo); 2843 } else { 2844 ShouldNotReachHere(); 2845 } 2846 __ decrement(rsi); 2847 } 2848 2849 2850 2851 //---------------------------------------------------------------------------------------------------- 2852 // Calls 2853 2854 void TemplateTable::count_calls(Register method, Register temp) { 2855 // implemented elsewhere 2856 ShouldNotReachHere(); 2857 } 2858 2859 2860 void TemplateTable::prepare_invoke(int byte_no, 2861 Register method, // linked method (or i-klass) 2862 Register index, // itable index, MethodType, etc. 2863 Register recv, // if caller wants to see it 2864 Register flags // if caller wants to test it 2865 ) { 2866 // determine flags 2867 const Bytecodes::Code code = bytecode(); 2868 const bool is_invokeinterface = code == Bytecodes::_invokeinterface; 2869 const bool is_invokedynamic = code == Bytecodes::_invokedynamic; 2870 const bool is_invokehandle = code == Bytecodes::_invokehandle; 2871 const bool is_invokevirtual = code == Bytecodes::_invokevirtual; 2872 const bool is_invokespecial = code == Bytecodes::_invokespecial; 2873 const bool load_receiver = (recv != noreg); 2874 const bool save_flags = (flags != noreg); 2875 assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), ""); 2876 assert(save_flags == (is_invokeinterface || is_invokevirtual), "need flags for vfinal"); 2877 assert(flags == noreg || flags == rdx, ""); 2878 assert(recv == noreg || recv == rcx, ""); 2879 2880 // setup registers & access constant pool cache 2881 if (recv == noreg) recv = rcx; 2882 if (flags == noreg) flags = rdx; 2883 assert_different_registers(method, index, recv, flags); 2884 2885 // save 'interpreter return address' 2886 __ save_bcp(); 2887 2888 load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic); 2889 2890 // maybe push appendix to arguments (just before return address) 2891 if (is_invokedynamic || is_invokehandle) { 2892 Label L_no_push; 2893 __ testl(flags, (1 << ConstantPoolCacheEntry::has_appendix_shift)); 2894 __ jccb(Assembler::zero, L_no_push); 2895 // Push the appendix as a trailing parameter. 2896 // This must be done before we get the receiver, 2897 // since the parameter_size includes it. 2898 __ push(rbx); 2899 __ mov(rbx, index); 2900 assert(ConstantPoolCacheEntry::_indy_resolved_references_appendix_offset == 0, "appendix expected at index+0"); 2901 __ load_resolved_reference_at_index(index, rbx); 2902 __ pop(rbx); 2903 __ push(index); // push appendix (MethodType, CallSite, etc.) 2904 __ bind(L_no_push); 2905 } 2906 2907 // load receiver if needed (note: no return address pushed yet) 2908 if (load_receiver) { 2909 __ movl(recv, flags); 2910 __ andl(recv, ConstantPoolCacheEntry::parameter_size_mask); 2911 const int no_return_pc_pushed_yet = -1; // argument slot correction before we push return address 2912 const int receiver_is_at_end = -1; // back off one slot to get receiver 2913 Address recv_addr = __ argument_address(recv, no_return_pc_pushed_yet + receiver_is_at_end); 2914 __ movptr(recv, recv_addr); 2915 __ verify_oop(recv); 2916 } 2917 2918 if (save_flags) { 2919 __ mov(rsi, flags); 2920 } 2921 2922 // compute return type 2923 __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift); 2924 // Make sure we don't need to mask flags after the above shift 2925 ConstantPoolCacheEntry::verify_tos_state_shift(); 2926 // load return address 2927 { 2928 const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code); 2929 ExternalAddress table(table_addr); 2930 __ movptr(flags, ArrayAddress(table, Address(noreg, flags, Address::times_ptr))); 2931 } 2932 2933 // push return address 2934 __ push(flags); 2935 2936 // Restore flags value from the constant pool cache, and restore rsi 2937 // for later null checks. rsi is the bytecode pointer 2938 if (save_flags) { 2939 __ mov(flags, rsi); 2940 __ restore_bcp(); 2941 } 2942 } 2943 2944 2945 void TemplateTable::invokevirtual_helper(Register index, 2946 Register recv, 2947 Register flags) { 2948 // Uses temporary registers rax, rdx 2949 assert_different_registers(index, recv, rax, rdx); 2950 assert(index == rbx, ""); 2951 assert(recv == rcx, ""); 2952 2953 // Test for an invoke of a final method 2954 Label notFinal; 2955 __ movl(rax, flags); 2956 __ andl(rax, (1 << ConstantPoolCacheEntry::is_vfinal_shift)); 2957 __ jcc(Assembler::zero, notFinal); 2958 2959 const Register method = index; // method must be rbx 2960 assert(method == rbx, 2961 "Method* must be rbx for interpreter calling convention"); 2962 2963 // do the call - the index is actually the method to call 2964 // that is, f2 is a vtable index if !is_vfinal, else f2 is a Method* 2965 2966 // It's final, need a null check here! 2967 __ null_check(recv); 2968 2969 // profile this call 2970 __ profile_final_call(rax); 2971 __ profile_arguments_type(rax, method, rsi, true); 2972 2973 __ jump_from_interpreted(method, rax); 2974 2975 __ bind(notFinal); 2976 2977 // get receiver klass 2978 __ null_check(recv, oopDesc::klass_offset_in_bytes()); 2979 __ load_klass(rax, recv); 2980 2981 // profile this call 2982 __ profile_virtual_call(rax, rdi, rdx); 2983 2984 // get target Method* & entry point 2985 __ lookup_virtual_method(rax, index, method); 2986 __ profile_arguments_type(rdx, method, rsi, true); 2987 __ jump_from_interpreted(method, rdx); 2988 } 2989 2990 2991 void TemplateTable::invokevirtual(int byte_no) { 2992 transition(vtos, vtos); 2993 assert(byte_no == f2_byte, "use this argument"); 2994 prepare_invoke(byte_no, 2995 rbx, // method or vtable index 2996 noreg, // unused itable index 2997 rcx, rdx); // recv, flags 2998 2999 // rbx: index 3000 // rcx: receiver 3001 // rdx: flags 3002 3003 invokevirtual_helper(rbx, rcx, rdx); 3004 } 3005 3006 3007 void TemplateTable::invokespecial(int byte_no) { 3008 transition(vtos, vtos); 3009 assert(byte_no == f1_byte, "use this argument"); 3010 prepare_invoke(byte_no, rbx, noreg, // get f1 Method* 3011 rcx); // get receiver also for null check 3012 __ verify_oop(rcx); 3013 __ null_check(rcx); 3014 // do the call 3015 __ profile_call(rax); 3016 __ profile_arguments_type(rax, rbx, rsi, false); 3017 __ jump_from_interpreted(rbx, rax); 3018 } 3019 3020 3021 void TemplateTable::invokestatic(int byte_no) { 3022 transition(vtos, vtos); 3023 assert(byte_no == f1_byte, "use this argument"); 3024 prepare_invoke(byte_no, rbx); // get f1 Method* 3025 // do the call 3026 __ profile_call(rax); 3027 __ profile_arguments_type(rax, rbx, rsi, false); 3028 __ jump_from_interpreted(rbx, rax); 3029 } 3030 3031 3032 void TemplateTable::fast_invokevfinal(int byte_no) { 3033 transition(vtos, vtos); 3034 assert(byte_no == f2_byte, "use this argument"); 3035 __ stop("fast_invokevfinal not used on x86"); 3036 } 3037 3038 3039 void TemplateTable::invokeinterface(int byte_no) { 3040 transition(vtos, vtos); 3041 assert(byte_no == f1_byte, "use this argument"); 3042 prepare_invoke(byte_no, rax, rbx, // get f1 Klass*, f2 itable index 3043 rcx, rdx); // recv, flags 3044 3045 // rax: interface klass (from f1) 3046 // rbx: itable index (from f2) 3047 // rcx: receiver 3048 // rdx: flags 3049 3050 // Special case of invokeinterface called for virtual method of 3051 // java.lang.Object. See cpCacheOop.cpp for details. 3052 // This code isn't produced by javac, but could be produced by 3053 // another compliant java compiler. 3054 Label notMethod; 3055 __ movl(rdi, rdx); 3056 __ andl(rdi, (1 << ConstantPoolCacheEntry::is_forced_virtual_shift)); 3057 __ jcc(Assembler::zero, notMethod); 3058 3059 invokevirtual_helper(rbx, rcx, rdx); 3060 __ bind(notMethod); 3061 3062 // Get receiver klass into rdx - also a null check 3063 __ restore_locals(); // restore rdi 3064 __ null_check(rcx, oopDesc::klass_offset_in_bytes()); 3065 __ load_klass(rdx, rcx); 3066 3067 // profile this call 3068 __ profile_virtual_call(rdx, rsi, rdi); 3069 3070 Label no_such_interface, no_such_method; 3071 3072 __ lookup_interface_method(// inputs: rec. class, interface, itable index 3073 rdx, rax, rbx, 3074 // outputs: method, scan temp. reg 3075 rbx, rsi, 3076 no_such_interface); 3077 3078 // rbx: Method* to call 3079 // rcx: receiver 3080 // Check for abstract method error 3081 // Note: This should be done more efficiently via a throw_abstract_method_error 3082 // interpreter entry point and a conditional jump to it in case of a null 3083 // method. 3084 __ testptr(rbx, rbx); 3085 __ jcc(Assembler::zero, no_such_method); 3086 3087 __ profile_arguments_type(rdx, rbx, rsi, true); 3088 3089 // do the call 3090 // rcx: receiver 3091 // rbx,: Method* 3092 __ jump_from_interpreted(rbx, rdx); 3093 __ should_not_reach_here(); 3094 3095 // exception handling code follows... 3096 // note: must restore interpreter registers to canonical 3097 // state for exception handling to work correctly! 3098 3099 __ bind(no_such_method); 3100 // throw exception 3101 __ pop(rbx); // pop return address (pushed by prepare_invoke) 3102 __ restore_bcp(); // rsi must be correct for exception handler (was destroyed) 3103 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) 3104 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError)); 3105 // the call_VM checks for exception, so we should never return here. 3106 __ should_not_reach_here(); 3107 3108 __ bind(no_such_interface); 3109 // throw exception 3110 __ pop(rbx); // pop return address (pushed by prepare_invoke) 3111 __ restore_bcp(); // rsi must be correct for exception handler (was destroyed) 3112 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) 3113 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 3114 InterpreterRuntime::throw_IncompatibleClassChangeError)); 3115 // the call_VM checks for exception, so we should never return here. 3116 __ should_not_reach_here(); 3117 } 3118 3119 void TemplateTable::invokehandle(int byte_no) { 3120 transition(vtos, vtos); 3121 assert(byte_no == f1_byte, "use this argument"); 3122 const Register rbx_method = rbx; 3123 const Register rax_mtype = rax; 3124 const Register rcx_recv = rcx; 3125 const Register rdx_flags = rdx; 3126 3127 prepare_invoke(byte_no, rbx_method, rax_mtype, rcx_recv); 3128 __ verify_method_ptr(rbx_method); 3129 __ verify_oop(rcx_recv); 3130 __ null_check(rcx_recv); 3131 3132 // rax: MethodType object (from cpool->resolved_references[f1], if necessary) 3133 // rbx: MH.invokeExact_MT method (from f2) 3134 3135 // Note: rax_mtype is already pushed (if necessary) by prepare_invoke 3136 3137 // FIXME: profile the LambdaForm also 3138 __ profile_final_call(rax); 3139 __ profile_arguments_type(rdx, rbx_method, rsi, true); 3140 3141 __ jump_from_interpreted(rbx_method, rdx); 3142 } 3143 3144 3145 void TemplateTable::invokedynamic(int byte_no) { 3146 transition(vtos, vtos); 3147 assert(byte_no == f1_byte, "use this argument"); 3148 3149 const Register rbx_method = rbx; 3150 const Register rax_callsite = rax; 3151 3152 prepare_invoke(byte_no, rbx_method, rax_callsite); 3153 3154 // rax: CallSite object (from cpool->resolved_references[f1]) 3155 // rbx: MH.linkToCallSite method (from f2) 3156 3157 // Note: rax_callsite is already pushed by prepare_invoke 3158 3159 // %%% should make a type profile for any invokedynamic that takes a ref argument 3160 // profile this call 3161 __ profile_call(rsi); 3162 __ profile_arguments_type(rdx, rbx, rsi, false); 3163 3164 __ verify_oop(rax_callsite); 3165 3166 __ jump_from_interpreted(rbx_method, rdx); 3167 } 3168 3169 //---------------------------------------------------------------------------------------------------- 3170 // Allocation 3171 3172 void TemplateTable::_new() { 3173 transition(vtos, atos); 3174 __ get_unsigned_2_byte_index_at_bcp(rdx, 1); 3175 Label slow_case; 3176 Label slow_case_no_pop; 3177 Label done; 3178 Label initialize_header; 3179 Label initialize_object; // including clearing the fields 3180 Label allocate_shared; 3181 3182 __ get_cpool_and_tags(rcx, rax); 3183 3184 // Make sure the class we're about to instantiate has been resolved. 3185 // This is done before loading InstanceKlass to be consistent with the order 3186 // how Constant Pool is updated (see ConstantPool::klass_at_put) 3187 const int tags_offset = Array<u1>::base_offset_in_bytes(); 3188 __ cmpb(Address(rax, rdx, Address::times_1, tags_offset), JVM_CONSTANT_Class); 3189 __ jcc(Assembler::notEqual, slow_case_no_pop); 3190 3191 // get InstanceKlass 3192 __ movptr(rcx, Address(rcx, rdx, Address::times_ptr, sizeof(ConstantPool))); 3193 __ push(rcx); // save the contexts of klass for initializing the header 3194 3195 // make sure klass is initialized & doesn't have finalizer 3196 // make sure klass is fully initialized 3197 __ cmpb(Address(rcx, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized); 3198 __ jcc(Assembler::notEqual, slow_case); 3199 3200 // get instance_size in InstanceKlass (scaled to a count of bytes) 3201 __ movl(rdx, Address(rcx, Klass::layout_helper_offset())); 3202 // test to see if it has a finalizer or is malformed in some way 3203 __ testl(rdx, Klass::_lh_instance_slow_path_bit); 3204 __ jcc(Assembler::notZero, slow_case); 3205 3206 // 3207 // Allocate the instance 3208 // 1) Try to allocate in the TLAB 3209 // 2) if fail and the object is large allocate in the shared Eden 3210 // 3) if the above fails (or is not applicable), go to a slow case 3211 // (creates a new TLAB, etc.) 3212 3213 const bool allow_shared_alloc = 3214 Universe::heap()->supports_inline_contig_alloc(); 3215 3216 const Register thread = rcx; 3217 if (UseTLAB || allow_shared_alloc) { 3218 __ get_thread(thread); 3219 } 3220 3221 if (UseTLAB) { 3222 __ movptr(rax, Address(thread, in_bytes(JavaThread::tlab_top_offset()))); 3223 __ lea(rbx, Address(rax, rdx, Address::times_1)); 3224 __ cmpptr(rbx, Address(thread, in_bytes(JavaThread::tlab_end_offset()))); 3225 __ jcc(Assembler::above, allow_shared_alloc ? allocate_shared : slow_case); 3226 __ movptr(Address(thread, in_bytes(JavaThread::tlab_top_offset())), rbx); 3227 if (ZeroTLAB) { 3228 // the fields have been already cleared 3229 __ jmp(initialize_header); 3230 } else { 3231 // initialize both the header and fields 3232 __ jmp(initialize_object); 3233 } 3234 } 3235 3236 // Allocation in the shared Eden, if allowed. 3237 // 3238 // rdx: instance size in bytes 3239 if (allow_shared_alloc) { 3240 __ bind(allocate_shared); 3241 3242 ExternalAddress heap_top((address)Universe::heap()->top_addr()); 3243 3244 Label retry; 3245 __ bind(retry); 3246 __ movptr(rax, heap_top); 3247 __ lea(rbx, Address(rax, rdx, Address::times_1)); 3248 __ cmpptr(rbx, ExternalAddress((address)Universe::heap()->end_addr())); 3249 __ jcc(Assembler::above, slow_case); 3250 3251 // Compare rax, with the top addr, and if still equal, store the new 3252 // top addr in rbx, at the address of the top addr pointer. Sets ZF if was 3253 // equal, and clears it otherwise. Use lock prefix for atomicity on MPs. 3254 // 3255 // rax,: object begin 3256 // rbx,: object end 3257 // rdx: instance size in bytes 3258 __ locked_cmpxchgptr(rbx, heap_top); 3259 3260 // if someone beat us on the allocation, try again, otherwise continue 3261 __ jcc(Assembler::notEqual, retry); 3262 3263 __ incr_allocated_bytes(thread, rdx, 0); 3264 } 3265 3266 if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) { 3267 // The object is initialized before the header. If the object size is 3268 // zero, go directly to the header initialization. 3269 __ bind(initialize_object); 3270 __ decrement(rdx, sizeof(oopDesc)); 3271 __ jcc(Assembler::zero, initialize_header); 3272 3273 // Initialize topmost object field, divide rdx by 8, check if odd and 3274 // test if zero. 3275 __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code) 3276 __ shrl(rdx, LogBytesPerLong); // divide by 2*oopSize and set carry flag if odd 3277 3278 // rdx must have been multiple of 8 3279 #ifdef ASSERT 3280 // make sure rdx was multiple of 8 3281 Label L; 3282 // Ignore partial flag stall after shrl() since it is debug VM 3283 __ jccb(Assembler::carryClear, L); 3284 __ stop("object size is not multiple of 2 - adjust this code"); 3285 __ bind(L); 3286 // rdx must be > 0, no extra check needed here 3287 #endif 3288 3289 // initialize remaining object fields: rdx was a multiple of 8 3290 { Label loop; 3291 __ bind(loop); 3292 __ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 1*oopSize), rcx); 3293 NOT_LP64(__ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 2*oopSize), rcx)); 3294 __ decrement(rdx); 3295 __ jcc(Assembler::notZero, loop); 3296 } 3297 3298 // initialize object header only. 3299 __ bind(initialize_header); 3300 if (UseBiasedLocking) { 3301 __ pop(rcx); // get saved klass back in the register. 3302 __ movptr(rbx, Address(rcx, Klass::prototype_header_offset())); 3303 __ movptr(Address(rax, oopDesc::mark_offset_in_bytes ()), rbx); 3304 } else { 3305 __ movptr(Address(rax, oopDesc::mark_offset_in_bytes ()), 3306 (int32_t)markOopDesc::prototype()); // header 3307 __ pop(rcx); // get saved klass back in the register. 3308 } 3309 __ store_klass(rax, rcx); // klass 3310 3311 { 3312 SkipIfEqual skip_if(_masm, &DTraceAllocProbes, 0); 3313 // Trigger dtrace event for fastpath 3314 __ push(atos); 3315 __ call_VM_leaf( 3316 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), rax); 3317 __ pop(atos); 3318 } 3319 3320 __ jmp(done); 3321 } 3322 3323 // slow case 3324 __ bind(slow_case); 3325 __ pop(rcx); // restore stack pointer to what it was when we came in. 3326 __ bind(slow_case_no_pop); 3327 __ get_constant_pool(rax); 3328 __ get_unsigned_2_byte_index_at_bcp(rdx, 1); 3329 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), rax, rdx); 3330 3331 // continue 3332 __ bind(done); 3333 } 3334 3335 3336 void TemplateTable::newarray() { 3337 transition(itos, atos); 3338 __ push_i(rax); // make sure everything is on the stack 3339 __ load_unsigned_byte(rdx, at_bcp(1)); 3340 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), rdx, rax); 3341 __ pop_i(rdx); // discard size 3342 } 3343 3344 3345 void TemplateTable::anewarray() { 3346 transition(itos, atos); 3347 __ get_unsigned_2_byte_index_at_bcp(rdx, 1); 3348 __ get_constant_pool(rcx); 3349 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), rcx, rdx, rax); 3350 } 3351 3352 3353 void TemplateTable::arraylength() { 3354 transition(atos, itos); 3355 __ null_check(rax, arrayOopDesc::length_offset_in_bytes()); 3356 __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes())); 3357 } 3358 3359 3360 void TemplateTable::checkcast() { 3361 transition(atos, atos); 3362 Label done, is_null, ok_is_subtype, quicked, resolved; 3363 __ testptr(rax, rax); // Object is in EAX 3364 __ jcc(Assembler::zero, is_null); 3365 3366 // Get cpool & tags index 3367 __ get_cpool_and_tags(rcx, rdx); // ECX=cpool, EDX=tags array 3368 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // EBX=index 3369 // See if bytecode has already been quicked 3370 __ cmpb(Address(rdx, rbx, Address::times_1, Array<u1>::base_offset_in_bytes()), JVM_CONSTANT_Class); 3371 __ jcc(Assembler::equal, quicked); 3372 3373 __ push(atos); 3374 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) ); 3375 // vm_result_2 has metadata result 3376 // borrow rdi from locals 3377 __ get_thread(rdi); 3378 __ get_vm_result_2(rax, rdi); 3379 __ restore_locals(); 3380 __ pop_ptr(rdx); 3381 __ jmpb(resolved); 3382 3383 // Get superklass in EAX and subklass in EBX 3384 __ bind(quicked); 3385 __ mov(rdx, rax); // Save object in EDX; EAX needed for subtype check 3386 __ movptr(rax, Address(rcx, rbx, Address::times_ptr, sizeof(ConstantPool))); 3387 3388 __ bind(resolved); 3389 __ load_klass(rbx, rdx); 3390 3391 // Generate subtype check. Blows ECX. Resets EDI. Object in EDX. 3392 // Superklass in EAX. Subklass in EBX. 3393 __ gen_subtype_check( rbx, ok_is_subtype ); 3394 3395 // Come here on failure 3396 __ push(rdx); 3397 // object is at TOS 3398 __ jump(ExternalAddress(Interpreter::_throw_ClassCastException_entry)); 3399 3400 // Come here on success 3401 __ bind(ok_is_subtype); 3402 __ mov(rax,rdx); // Restore object in EDX 3403 3404 // Collect counts on whether this check-cast sees NULLs a lot or not. 3405 if (ProfileInterpreter) { 3406 __ jmp(done); 3407 __ bind(is_null); 3408 __ profile_null_seen(rcx); 3409 } else { 3410 __ bind(is_null); // same as 'done' 3411 } 3412 __ bind(done); 3413 } 3414 3415 3416 void TemplateTable::instanceof() { 3417 transition(atos, itos); 3418 Label done, is_null, ok_is_subtype, quicked, resolved; 3419 __ testptr(rax, rax); 3420 __ jcc(Assembler::zero, is_null); 3421 3422 // Get cpool & tags index 3423 __ get_cpool_and_tags(rcx, rdx); // ECX=cpool, EDX=tags array 3424 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // EBX=index 3425 // See if bytecode has already been quicked 3426 __ cmpb(Address(rdx, rbx, Address::times_1, Array<u1>::base_offset_in_bytes()), JVM_CONSTANT_Class); 3427 __ jcc(Assembler::equal, quicked); 3428 3429 __ push(atos); 3430 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) ); 3431 // vm_result_2 has metadata result 3432 // borrow rdi from locals 3433 __ get_thread(rdi); 3434 __ get_vm_result_2(rax, rdi); 3435 __ restore_locals(); 3436 __ pop_ptr(rdx); 3437 __ load_klass(rdx, rdx); 3438 __ jmp(resolved); 3439 3440 // Get superklass in EAX and subklass in EDX 3441 __ bind(quicked); 3442 __ load_klass(rdx, rax); 3443 __ movptr(rax, Address(rcx, rbx, Address::times_ptr, sizeof(ConstantPool))); 3444 3445 __ bind(resolved); 3446 3447 // Generate subtype check. Blows ECX. Resets EDI. 3448 // Superklass in EAX. Subklass in EDX. 3449 __ gen_subtype_check( rdx, ok_is_subtype ); 3450 3451 // Come here on failure 3452 __ xorl(rax,rax); 3453 __ jmpb(done); 3454 // Come here on success 3455 __ bind(ok_is_subtype); 3456 __ movl(rax, 1); 3457 3458 // Collect counts on whether this test sees NULLs a lot or not. 3459 if (ProfileInterpreter) { 3460 __ jmp(done); 3461 __ bind(is_null); 3462 __ profile_null_seen(rcx); 3463 } else { 3464 __ bind(is_null); // same as 'done' 3465 } 3466 __ bind(done); 3467 // rax, = 0: obj == NULL or obj is not an instanceof the specified klass 3468 // rax, = 1: obj != NULL and obj is an instanceof the specified klass 3469 } 3470 3471 3472 //---------------------------------------------------------------------------------------------------- 3473 // Breakpoints 3474 void TemplateTable::_breakpoint() { 3475 3476 // Note: We get here even if we are single stepping.. 3477 // jbug inists on setting breakpoints at every bytecode 3478 // even if we are in single step mode. 3479 3480 transition(vtos, vtos); 3481 3482 // get the unpatched byte code 3483 __ get_method(rcx); 3484 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::get_original_bytecode_at), rcx, rsi); 3485 __ mov(rbx, rax); 3486 3487 // post the breakpoint event 3488 __ get_method(rcx); 3489 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), rcx, rsi); 3490 3491 // complete the execution of original bytecode 3492 __ dispatch_only_normal(vtos); 3493 } 3494 3495 3496 //---------------------------------------------------------------------------------------------------- 3497 // Exceptions 3498 3499 void TemplateTable::athrow() { 3500 transition(atos, vtos); 3501 __ null_check(rax); 3502 __ jump(ExternalAddress(Interpreter::throw_exception_entry())); 3503 } 3504 3505 3506 //---------------------------------------------------------------------------------------------------- 3507 // Synchronization 3508 // 3509 // Note: monitorenter & exit are symmetric routines; which is reflected 3510 // in the assembly code structure as well 3511 // 3512 // Stack layout: 3513 // 3514 // [expressions ] <--- rsp = expression stack top 3515 // .. 3516 // [expressions ] 3517 // [monitor entry] <--- monitor block top = expression stack bot 3518 // .. 3519 // [monitor entry] 3520 // [frame data ] <--- monitor block bot 3521 // ... 3522 // [saved rbp, ] <--- rbp, 3523 3524 3525 void TemplateTable::monitorenter() { 3526 transition(atos, vtos); 3527 3528 // check for NULL object 3529 __ null_check(rax); 3530 3531 const Address monitor_block_top(rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 3532 const Address monitor_block_bot(rbp, frame::interpreter_frame_initial_sp_offset * wordSize); 3533 const int entry_size = ( frame::interpreter_frame_monitor_size() * wordSize); 3534 Label allocated; 3535 3536 // initialize entry pointer 3537 __ xorl(rdx, rdx); // points to free slot or NULL 3538 3539 // find a free slot in the monitor block (result in rdx) 3540 { Label entry, loop, exit; 3541 __ movptr(rcx, monitor_block_top); // points to current entry, starting with top-most entry 3542 3543 __ lea(rbx, monitor_block_bot); // points to word before bottom of monitor block 3544 __ jmpb(entry); 3545 3546 __ bind(loop); 3547 __ cmpptr(Address(rcx, BasicObjectLock::obj_offset_in_bytes()), (int32_t)NULL_WORD); // check if current entry is used 3548 __ cmovptr(Assembler::equal, rdx, rcx); // if not used then remember entry in rdx 3549 __ cmpptr(rax, Address(rcx, BasicObjectLock::obj_offset_in_bytes())); // check if current entry is for same object 3550 __ jccb(Assembler::equal, exit); // if same object then stop searching 3551 __ addptr(rcx, entry_size); // otherwise advance to next entry 3552 __ bind(entry); 3553 __ cmpptr(rcx, rbx); // check if bottom reached 3554 __ jcc(Assembler::notEqual, loop); // if not at bottom then check this entry 3555 __ bind(exit); 3556 } 3557 3558 __ testptr(rdx, rdx); // check if a slot has been found 3559 __ jccb(Assembler::notZero, allocated); // if found, continue with that one 3560 3561 // allocate one if there's no free slot 3562 { Label entry, loop; 3563 // 1. compute new pointers // rsp: old expression stack top 3564 __ movptr(rdx, monitor_block_bot); // rdx: old expression stack bottom 3565 __ subptr(rsp, entry_size); // move expression stack top 3566 __ subptr(rdx, entry_size); // move expression stack bottom 3567 __ mov(rcx, rsp); // set start value for copy loop 3568 __ movptr(monitor_block_bot, rdx); // set new monitor block top 3569 __ jmp(entry); 3570 // 2. move expression stack contents 3571 __ bind(loop); 3572 __ movptr(rbx, Address(rcx, entry_size)); // load expression stack word from old location 3573 __ movptr(Address(rcx, 0), rbx); // and store it at new location 3574 __ addptr(rcx, wordSize); // advance to next word 3575 __ bind(entry); 3576 __ cmpptr(rcx, rdx); // check if bottom reached 3577 __ jcc(Assembler::notEqual, loop); // if not at bottom then copy next word 3578 } 3579 3580 // call run-time routine 3581 // rdx: points to monitor entry 3582 __ bind(allocated); 3583 3584 // Increment bcp to point to the next bytecode, so exception handling for async. exceptions work correctly. 3585 // The object has already been poped from the stack, so the expression stack looks correct. 3586 __ increment(rsi); 3587 3588 __ movptr(Address(rdx, BasicObjectLock::obj_offset_in_bytes()), rax); // store object 3589 __ lock_object(rdx); 3590 3591 // check to make sure this monitor doesn't cause stack overflow after locking 3592 __ save_bcp(); // in case of exception 3593 __ generate_stack_overflow_check(0); 3594 3595 // The bcp has already been incremented. Just need to dispatch to next instruction. 3596 __ dispatch_next(vtos); 3597 } 3598 3599 3600 void TemplateTable::monitorexit() { 3601 transition(atos, vtos); 3602 3603 // check for NULL object 3604 __ null_check(rax); 3605 3606 const Address monitor_block_top(rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 3607 const Address monitor_block_bot(rbp, frame::interpreter_frame_initial_sp_offset * wordSize); 3608 const int entry_size = ( frame::interpreter_frame_monitor_size() * wordSize); 3609 Label found; 3610 3611 // find matching slot 3612 { Label entry, loop; 3613 __ movptr(rdx, monitor_block_top); // points to current entry, starting with top-most entry 3614 __ lea(rbx, monitor_block_bot); // points to word before bottom of monitor block 3615 __ jmpb(entry); 3616 3617 __ bind(loop); 3618 __ cmpptr(rax, Address(rdx, BasicObjectLock::obj_offset_in_bytes())); // check if current entry is for same object 3619 __ jcc(Assembler::equal, found); // if same object then stop searching 3620 __ addptr(rdx, entry_size); // otherwise advance to next entry 3621 __ bind(entry); 3622 __ cmpptr(rdx, rbx); // check if bottom reached 3623 __ jcc(Assembler::notEqual, loop); // if not at bottom then check this entry 3624 } 3625 3626 // error handling. Unlocking was not block-structured 3627 Label end; 3628 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception)); 3629 __ should_not_reach_here(); 3630 3631 // call run-time routine 3632 // rcx: points to monitor entry 3633 __ bind(found); 3634 __ push_ptr(rax); // make sure object is on stack (contract with oopMaps) 3635 __ unlock_object(rdx); 3636 __ pop_ptr(rax); // discard object 3637 __ bind(end); 3638 } 3639 3640 3641 //---------------------------------------------------------------------------------------------------- 3642 // Wide instructions 3643 3644 void TemplateTable::wide() { 3645 transition(vtos, vtos); 3646 __ load_unsigned_byte(rbx, at_bcp(1)); 3647 ExternalAddress wtable((address)Interpreter::_wentry_point); 3648 __ jump(ArrayAddress(wtable, Address(noreg, rbx, Address::times_ptr))); 3649 // Note: the rsi increment step is part of the individual wide bytecode implementations 3650 } 3651 3652 3653 //---------------------------------------------------------------------------------------------------- 3654 // Multi arrays 3655 3656 void TemplateTable::multianewarray() { 3657 transition(vtos, atos); 3658 __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions 3659 // last dim is on top of stack; we want address of first one: 3660 // first_addr = last_addr + (ndims - 1) * stackElementSize - 1*wordsize 3661 // the latter wordSize to point to the beginning of the array. 3662 __ lea( rax, Address(rsp, rax, Interpreter::stackElementScale(), -wordSize)); 3663 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), rax); // pass in rax, 3664 __ load_unsigned_byte(rbx, at_bcp(3)); 3665 __ lea(rsp, Address(rsp, rbx, Interpreter::stackElementScale())); // get rid of counts 3666 } 3667 3668 #endif /* !CC_INTERP */