1 /* 2 * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/macroAssembler.hpp" 27 #include "interpreter/interpreter.hpp" 28 #include "interpreter/interpreterRuntime.hpp" 29 #include "interpreter/interp_masm.hpp" 30 #include "interpreter/templateTable.hpp" 31 #include "memory/universe.inline.hpp" 32 #include "oops/methodData.hpp" 33 #include "oops/objArrayKlass.hpp" 34 #include "oops/oop.inline.hpp" 35 #include "prims/methodHandles.hpp" 36 #include "runtime/sharedRuntime.hpp" 37 #include "runtime/stubRoutines.hpp" 38 #include "runtime/synchronizer.hpp" 39 #include "utilities/macros.hpp" 40 41 #ifndef CC_INTERP 42 #define __ _masm-> 43 44 //---------------------------------------------------------------------------------------------------- 45 // Platform-dependent initialization 46 47 void TemplateTable::pd_initialize() { 48 // No i486 specific initialization 49 } 50 51 //---------------------------------------------------------------------------------------------------- 52 // Address computation 53 54 // local variables 55 static inline Address iaddress(int n) { 56 return Address(rdi, Interpreter::local_offset_in_bytes(n)); 57 } 58 59 static inline Address laddress(int n) { return iaddress(n + 1); } 60 static inline Address haddress(int n) { return iaddress(n + 0); } 61 static inline Address faddress(int n) { return iaddress(n); } 62 static inline Address daddress(int n) { return laddress(n); } 63 static inline Address aaddress(int n) { return iaddress(n); } 64 65 static inline Address iaddress(Register r) { 66 return Address(rdi, r, Interpreter::stackElementScale()); 67 } 68 static inline Address laddress(Register r) { 69 return Address(rdi, r, Interpreter::stackElementScale(), Interpreter::local_offset_in_bytes(1)); 70 } 71 static inline Address haddress(Register r) { 72 return Address(rdi, r, Interpreter::stackElementScale(), Interpreter::local_offset_in_bytes(0)); 73 } 74 75 static inline Address faddress(Register r) { return iaddress(r); } 76 static inline Address daddress(Register r) { return laddress(r); } 77 static inline Address aaddress(Register r) { return iaddress(r); } 78 79 // expression stack 80 // (Note: Must not use symmetric equivalents at_rsp_m1/2 since they store 81 // data beyond the rsp which is potentially unsafe in an MT environment; 82 // an interrupt may overwrite that data.) 83 static inline Address at_rsp () { 84 return Address(rsp, 0); 85 } 86 87 // At top of Java expression stack which may be different than rsp(). It 88 // isn't for category 1 objects. 89 static inline Address at_tos () { 90 Address tos = Address(rsp, Interpreter::expr_offset_in_bytes(0)); 91 return tos; 92 } 93 94 static inline Address at_tos_p1() { 95 return Address(rsp, Interpreter::expr_offset_in_bytes(1)); 96 } 97 98 static inline Address at_tos_p2() { 99 return Address(rsp, Interpreter::expr_offset_in_bytes(2)); 100 } 101 102 // Condition conversion 103 static Assembler::Condition j_not(TemplateTable::Condition cc) { 104 switch (cc) { 105 case TemplateTable::equal : return Assembler::notEqual; 106 case TemplateTable::not_equal : return Assembler::equal; 107 case TemplateTable::less : return Assembler::greaterEqual; 108 case TemplateTable::less_equal : return Assembler::greater; 109 case TemplateTable::greater : return Assembler::lessEqual; 110 case TemplateTable::greater_equal: return Assembler::less; 111 } 112 ShouldNotReachHere(); 113 return Assembler::zero; 114 } 115 116 117 //---------------------------------------------------------------------------------------------------- 118 // Miscelaneous helper routines 119 120 // Store an oop (or NULL) at the address described by obj. 121 // If val == noreg this means store a NULL 122 123 static void do_oop_store(InterpreterMacroAssembler* _masm, 124 Address obj, 125 Register val, 126 BarrierSet::Name barrier, 127 bool precise) { 128 assert(val == noreg || val == rax, "parameter is just for looks"); 129 switch (barrier) { 130 #if INCLUDE_ALL_GCS 131 case BarrierSet::G1SATBCT: 132 case BarrierSet::G1SATBCTLogging: 133 { 134 // flatten object address if needed 135 // We do it regardless of precise because we need the registers 136 if (obj.index() == noreg && obj.disp() == 0) { 137 if (obj.base() != rdx) { 138 __ movl(rdx, obj.base()); 139 } 140 } else { 141 __ leal(rdx, obj); 142 } 143 __ get_thread(rcx); 144 __ save_bcp(); 145 __ g1_write_barrier_pre(rdx /* obj */, 146 rbx /* pre_val */, 147 rcx /* thread */, 148 rsi /* tmp */, 149 val != noreg /* tosca_live */, 150 false /* expand_call */); 151 152 // Do the actual store 153 // noreg means NULL 154 if (val == noreg) { 155 __ movptr(Address(rdx, 0), NULL_WORD); 156 // No post barrier for NULL 157 } else { 158 __ movl(Address(rdx, 0), val); 159 __ g1_write_barrier_post(rdx /* store_adr */, 160 val /* new_val */, 161 rcx /* thread */, 162 rbx /* tmp */, 163 rsi /* tmp2 */); 164 } 165 __ restore_bcp(); 166 167 } 168 break; 169 #endif // INCLUDE_ALL_GCS 170 case BarrierSet::CardTableModRef: 171 case BarrierSet::CardTableExtension: 172 { 173 if (val == noreg) { 174 __ movptr(obj, NULL_WORD); 175 } else { 176 __ movl(obj, val); 177 // flatten object address if needed 178 if (!precise || (obj.index() == noreg && obj.disp() == 0)) { 179 __ store_check(obj.base()); 180 } else { 181 __ leal(rdx, obj); 182 __ store_check(rdx); 183 } 184 } 185 } 186 break; 187 case BarrierSet::ModRef: 188 case BarrierSet::Other: 189 if (val == noreg) { 190 __ movptr(obj, NULL_WORD); 191 } else { 192 __ movl(obj, val); 193 } 194 break; 195 default : 196 ShouldNotReachHere(); 197 198 } 199 } 200 201 Address TemplateTable::at_bcp(int offset) { 202 assert(_desc->uses_bcp(), "inconsistent uses_bcp information"); 203 return Address(rsi, offset); 204 } 205 206 207 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg, 208 Register temp_reg, bool load_bc_into_bc_reg/*=true*/, 209 int byte_no) { 210 if (!RewriteBytecodes) return; 211 Label L_patch_done; 212 213 switch (bc) { 214 case Bytecodes::_fast_aputfield: 215 case Bytecodes::_fast_bputfield: 216 case Bytecodes::_fast_cputfield: 217 case Bytecodes::_fast_dputfield: 218 case Bytecodes::_fast_fputfield: 219 case Bytecodes::_fast_iputfield: 220 case Bytecodes::_fast_lputfield: 221 case Bytecodes::_fast_sputfield: 222 { 223 // We skip bytecode quickening for putfield instructions when 224 // the put_code written to the constant pool cache is zero. 225 // This is required so that every execution of this instruction 226 // calls out to InterpreterRuntime::resolve_get_put to do 227 // additional, required work. 228 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 229 assert(load_bc_into_bc_reg, "we use bc_reg as temp"); 230 __ get_cache_and_index_and_bytecode_at_bcp(bc_reg, temp_reg, temp_reg, byte_no, 1); 231 __ movl(bc_reg, bc); 232 __ cmpl(temp_reg, (int) 0); 233 __ jcc(Assembler::zero, L_patch_done); // don't patch 234 } 235 break; 236 default: 237 assert(byte_no == -1, "sanity"); 238 // the pair bytecodes have already done the load. 239 if (load_bc_into_bc_reg) { 240 __ movl(bc_reg, bc); 241 } 242 } 243 244 if (JvmtiExport::can_post_breakpoint()) { 245 Label L_fast_patch; 246 // if a breakpoint is present we can't rewrite the stream directly 247 __ movzbl(temp_reg, at_bcp(0)); 248 __ cmpl(temp_reg, Bytecodes::_breakpoint); 249 __ jcc(Assembler::notEqual, L_fast_patch); 250 __ get_method(temp_reg); 251 // Let breakpoint table handling rewrite to quicker bytecode 252 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), temp_reg, rsi, bc_reg); 253 #ifndef ASSERT 254 __ jmpb(L_patch_done); 255 #else 256 __ jmp(L_patch_done); 257 #endif 258 __ bind(L_fast_patch); 259 } 260 261 #ifdef ASSERT 262 Label L_okay; 263 __ load_unsigned_byte(temp_reg, at_bcp(0)); 264 __ cmpl(temp_reg, (int)Bytecodes::java_code(bc)); 265 __ jccb(Assembler::equal, L_okay); 266 __ cmpl(temp_reg, bc_reg); 267 __ jcc(Assembler::equal, L_okay); 268 __ stop("patching the wrong bytecode"); 269 __ bind(L_okay); 270 #endif 271 272 // patch bytecode 273 __ movb(at_bcp(0), bc_reg); 274 __ bind(L_patch_done); 275 } 276 277 //---------------------------------------------------------------------------------------------------- 278 // Individual instructions 279 280 void TemplateTable::nop() { 281 transition(vtos, vtos); 282 // nothing to do 283 } 284 285 void TemplateTable::shouldnotreachhere() { 286 transition(vtos, vtos); 287 __ stop("shouldnotreachhere bytecode"); 288 } 289 290 291 292 void TemplateTable::aconst_null() { 293 transition(vtos, atos); 294 __ xorptr(rax, rax); 295 } 296 297 298 void TemplateTable::iconst(int value) { 299 transition(vtos, itos); 300 if (value == 0) { 301 __ xorptr(rax, rax); 302 } else { 303 __ movptr(rax, value); 304 } 305 } 306 307 308 void TemplateTable::lconst(int value) { 309 transition(vtos, ltos); 310 if (value == 0) { 311 __ xorptr(rax, rax); 312 } else { 313 __ movptr(rax, value); 314 } 315 assert(value >= 0, "check this code"); 316 __ xorptr(rdx, rdx); 317 } 318 319 320 void TemplateTable::fconst(int value) { 321 transition(vtos, ftos); 322 if (value == 0) { __ fldz(); 323 } else if (value == 1) { __ fld1(); 324 } else if (value == 2) { __ fld1(); __ fld1(); __ faddp(); // should do a better solution here 325 } else { ShouldNotReachHere(); 326 } 327 } 328 329 330 void TemplateTable::dconst(int value) { 331 transition(vtos, dtos); 332 if (value == 0) { __ fldz(); 333 } else if (value == 1) { __ fld1(); 334 } else { ShouldNotReachHere(); 335 } 336 } 337 338 339 void TemplateTable::bipush() { 340 transition(vtos, itos); 341 __ load_signed_byte(rax, at_bcp(1)); 342 } 343 344 345 void TemplateTable::sipush() { 346 transition(vtos, itos); 347 __ load_unsigned_short(rax, at_bcp(1)); 348 __ bswapl(rax); 349 __ sarl(rax, 16); 350 } 351 352 void TemplateTable::ldc(bool wide) { 353 transition(vtos, vtos); 354 Label call_ldc, notFloat, notClass, Done; 355 356 if (wide) { 357 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); 358 } else { 359 __ load_unsigned_byte(rbx, at_bcp(1)); 360 } 361 __ get_cpool_and_tags(rcx, rax); 362 const int base_offset = ConstantPool::header_size() * wordSize; 363 const int tags_offset = Array<u1>::base_offset_in_bytes(); 364 365 // get type 366 __ xorptr(rdx, rdx); 367 __ movb(rdx, Address(rax, rbx, Address::times_1, tags_offset)); 368 369 // unresolved class - get the resolved class 370 __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass); 371 __ jccb(Assembler::equal, call_ldc); 372 373 // unresolved class in error (resolution failed) - call into runtime 374 // so that the same error from first resolution attempt is thrown. 375 __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError); 376 __ jccb(Assembler::equal, call_ldc); 377 378 // resolved class - need to call vm to get java mirror of the class 379 __ cmpl(rdx, JVM_CONSTANT_Class); 380 __ jcc(Assembler::notEqual, notClass); 381 382 __ bind(call_ldc); 383 __ movl(rcx, wide); 384 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), rcx); 385 __ push(atos); 386 __ jmp(Done); 387 388 __ bind(notClass); 389 __ cmpl(rdx, JVM_CONSTANT_Float); 390 __ jccb(Assembler::notEqual, notFloat); 391 // ftos 392 __ fld_s( Address(rcx, rbx, Address::times_ptr, base_offset)); 393 __ push(ftos); 394 __ jmp(Done); 395 396 __ bind(notFloat); 397 #ifdef ASSERT 398 { Label L; 399 __ cmpl(rdx, JVM_CONSTANT_Integer); 400 __ jcc(Assembler::equal, L); 401 // String and Object are rewritten to fast_aldc 402 __ stop("unexpected tag type in ldc"); 403 __ bind(L); 404 } 405 #endif 406 // itos JVM_CONSTANT_Integer only 407 __ movl(rax, Address(rcx, rbx, Address::times_ptr, base_offset)); 408 __ push(itos); 409 __ bind(Done); 410 } 411 412 // Fast path for caching oop constants. 413 void TemplateTable::fast_aldc(bool wide) { 414 transition(vtos, atos); 415 416 Register result = rax; 417 Register tmp = rdx; 418 int index_size = wide ? sizeof(u2) : sizeof(u1); 419 420 Label resolved; 421 422 // We are resolved if the resolved reference cache entry contains a 423 // non-null object (String, MethodType, etc.) 424 assert_different_registers(result, tmp); 425 __ get_cache_index_at_bcp(tmp, 1, index_size); 426 __ load_resolved_reference_at_index(result, tmp); 427 __ testl(result, result); 428 __ jcc(Assembler::notZero, resolved); 429 430 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc); 431 432 // first time invocation - must resolve first 433 __ movl(tmp, (int)bytecode()); 434 __ call_VM(result, entry, tmp); 435 436 __ bind(resolved); 437 438 if (VerifyOops) { 439 __ verify_oop(result); 440 } 441 } 442 443 void TemplateTable::ldc2_w() { 444 transition(vtos, vtos); 445 Label Long, Done; 446 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); 447 448 __ get_cpool_and_tags(rcx, rax); 449 const int base_offset = ConstantPool::header_size() * wordSize; 450 const int tags_offset = Array<u1>::base_offset_in_bytes(); 451 452 // get type 453 __ cmpb(Address(rax, rbx, Address::times_1, tags_offset), JVM_CONSTANT_Double); 454 __ jccb(Assembler::notEqual, Long); 455 // dtos 456 __ fld_d( Address(rcx, rbx, Address::times_ptr, base_offset)); 457 __ push(dtos); 458 __ jmpb(Done); 459 460 __ bind(Long); 461 // ltos 462 __ movptr(rax, Address(rcx, rbx, Address::times_ptr, base_offset + 0 * wordSize)); 463 NOT_LP64(__ movptr(rdx, Address(rcx, rbx, Address::times_ptr, base_offset + 1 * wordSize))); 464 465 __ push(ltos); 466 467 __ bind(Done); 468 } 469 470 471 void TemplateTable::locals_index(Register reg, int offset) { 472 __ load_unsigned_byte(reg, at_bcp(offset)); 473 __ negptr(reg); 474 } 475 476 477 void TemplateTable::iload() { 478 transition(vtos, itos); 479 if (RewriteFrequentPairs) { 480 Label rewrite, done; 481 482 // get next byte 483 __ load_unsigned_byte(rbx, at_bcp(Bytecodes::length_for(Bytecodes::_iload))); 484 // if _iload, wait to rewrite to iload2. We only want to rewrite the 485 // last two iloads in a pair. Comparing against fast_iload means that 486 // the next bytecode is neither an iload or a caload, and therefore 487 // an iload pair. 488 __ cmpl(rbx, Bytecodes::_iload); 489 __ jcc(Assembler::equal, done); 490 491 __ cmpl(rbx, Bytecodes::_fast_iload); 492 __ movl(rcx, Bytecodes::_fast_iload2); 493 __ jccb(Assembler::equal, rewrite); 494 495 // if _caload, rewrite to fast_icaload 496 __ cmpl(rbx, Bytecodes::_caload); 497 __ movl(rcx, Bytecodes::_fast_icaload); 498 __ jccb(Assembler::equal, rewrite); 499 500 // rewrite so iload doesn't check again. 501 __ movl(rcx, Bytecodes::_fast_iload); 502 503 // rewrite 504 // rcx: fast bytecode 505 __ bind(rewrite); 506 patch_bytecode(Bytecodes::_iload, rcx, rbx, false); 507 __ bind(done); 508 } 509 510 // Get the local value into tos 511 locals_index(rbx); 512 __ movl(rax, iaddress(rbx)); 513 } 514 515 516 void TemplateTable::fast_iload2() { 517 transition(vtos, itos); 518 locals_index(rbx); 519 __ movl(rax, iaddress(rbx)); 520 __ push(itos); 521 locals_index(rbx, 3); 522 __ movl(rax, iaddress(rbx)); 523 } 524 525 void TemplateTable::fast_iload() { 526 transition(vtos, itos); 527 locals_index(rbx); 528 __ movl(rax, iaddress(rbx)); 529 } 530 531 532 void TemplateTable::lload() { 533 transition(vtos, ltos); 534 locals_index(rbx); 535 __ movptr(rax, laddress(rbx)); 536 NOT_LP64(__ movl(rdx, haddress(rbx))); 537 } 538 539 540 void TemplateTable::fload() { 541 transition(vtos, ftos); 542 locals_index(rbx); 543 __ fld_s(faddress(rbx)); 544 } 545 546 547 void TemplateTable::dload() { 548 transition(vtos, dtos); 549 locals_index(rbx); 550 __ fld_d(daddress(rbx)); 551 } 552 553 554 void TemplateTable::aload() { 555 transition(vtos, atos); 556 locals_index(rbx); 557 __ movptr(rax, aaddress(rbx)); 558 } 559 560 561 void TemplateTable::locals_index_wide(Register reg) { 562 __ load_unsigned_short(reg, at_bcp(2)); 563 __ bswapl(reg); 564 __ shrl(reg, 16); 565 __ negptr(reg); 566 } 567 568 569 void TemplateTable::wide_iload() { 570 transition(vtos, itos); 571 locals_index_wide(rbx); 572 __ movl(rax, iaddress(rbx)); 573 } 574 575 576 void TemplateTable::wide_lload() { 577 transition(vtos, ltos); 578 locals_index_wide(rbx); 579 __ movptr(rax, laddress(rbx)); 580 NOT_LP64(__ movl(rdx, haddress(rbx))); 581 } 582 583 584 void TemplateTable::wide_fload() { 585 transition(vtos, ftos); 586 locals_index_wide(rbx); 587 __ fld_s(faddress(rbx)); 588 } 589 590 591 void TemplateTable::wide_dload() { 592 transition(vtos, dtos); 593 locals_index_wide(rbx); 594 __ fld_d(daddress(rbx)); 595 } 596 597 598 void TemplateTable::wide_aload() { 599 transition(vtos, atos); 600 locals_index_wide(rbx); 601 __ movptr(rax, aaddress(rbx)); 602 } 603 604 void TemplateTable::index_check(Register array, Register index) { 605 // Pop ptr into array 606 __ pop_ptr(array); 607 index_check_without_pop(array, index); 608 } 609 610 void TemplateTable::index_check_without_pop(Register array, Register index) { 611 // destroys rbx, 612 // check array 613 __ null_check(array, arrayOopDesc::length_offset_in_bytes()); 614 LP64_ONLY(__ movslq(index, index)); 615 // check index 616 __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes())); 617 if (index != rbx) { 618 // ??? convention: move aberrant index into rbx, for exception message 619 assert(rbx != array, "different registers"); 620 __ mov(rbx, index); 621 } 622 __ jump_cc(Assembler::aboveEqual, 623 ExternalAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry)); 624 } 625 626 627 void TemplateTable::iaload() { 628 transition(itos, itos); 629 // rdx: array 630 index_check(rdx, rax); // kills rbx, 631 // rax,: index 632 __ movl(rax, Address(rdx, rax, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_INT))); 633 } 634 635 636 void TemplateTable::laload() { 637 transition(itos, ltos); 638 // rax,: index 639 // rdx: array 640 index_check(rdx, rax); 641 __ mov(rbx, rax); 642 // rbx,: index 643 __ movptr(rax, Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 0 * wordSize)); 644 NOT_LP64(__ movl(rdx, Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 1 * wordSize))); 645 } 646 647 648 void TemplateTable::faload() { 649 transition(itos, ftos); 650 // rdx: array 651 index_check(rdx, rax); // kills rbx, 652 // rax,: index 653 __ fld_s(Address(rdx, rax, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_FLOAT))); 654 } 655 656 657 void TemplateTable::daload() { 658 transition(itos, dtos); 659 // rdx: array 660 index_check(rdx, rax); // kills rbx, 661 // rax,: index 662 __ fld_d(Address(rdx, rax, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_DOUBLE))); 663 } 664 665 666 void TemplateTable::aaload() { 667 transition(itos, atos); 668 // rdx: array 669 index_check(rdx, rax); // kills rbx, 670 // rax,: index 671 __ movptr(rax, Address(rdx, rax, Address::times_ptr, arrayOopDesc::base_offset_in_bytes(T_OBJECT))); 672 } 673 674 675 void TemplateTable::baload() { 676 transition(itos, itos); 677 // rdx: array 678 index_check(rdx, rax); // kills rbx, 679 // rax,: index 680 // can do better code for P5 - fix this at some point 681 __ load_signed_byte(rbx, Address(rdx, rax, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_BYTE))); 682 __ mov(rax, rbx); 683 } 684 685 686 void TemplateTable::caload() { 687 transition(itos, itos); 688 // rdx: array 689 index_check(rdx, rax); // kills rbx, 690 // rax,: index 691 // can do better code for P5 - may want to improve this at some point 692 __ load_unsigned_short(rbx, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR))); 693 __ mov(rax, rbx); 694 } 695 696 // iload followed by caload frequent pair 697 void TemplateTable::fast_icaload() { 698 transition(vtos, itos); 699 // load index out of locals 700 locals_index(rbx); 701 __ movl(rax, iaddress(rbx)); 702 703 // rdx: array 704 index_check(rdx, rax); 705 // rax,: index 706 __ load_unsigned_short(rbx, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR))); 707 __ mov(rax, rbx); 708 } 709 710 void TemplateTable::saload() { 711 transition(itos, itos); 712 // rdx: array 713 index_check(rdx, rax); // kills rbx, 714 // rax,: index 715 // can do better code for P5 - may want to improve this at some point 716 __ load_signed_short(rbx, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_SHORT))); 717 __ mov(rax, rbx); 718 } 719 720 721 void TemplateTable::iload(int n) { 722 transition(vtos, itos); 723 __ movl(rax, iaddress(n)); 724 } 725 726 727 void TemplateTable::lload(int n) { 728 transition(vtos, ltos); 729 __ movptr(rax, laddress(n)); 730 NOT_LP64(__ movptr(rdx, haddress(n))); 731 } 732 733 734 void TemplateTable::fload(int n) { 735 transition(vtos, ftos); 736 __ fld_s(faddress(n)); 737 } 738 739 740 void TemplateTable::dload(int n) { 741 transition(vtos, dtos); 742 __ fld_d(daddress(n)); 743 } 744 745 746 void TemplateTable::aload(int n) { 747 transition(vtos, atos); 748 __ movptr(rax, aaddress(n)); 749 } 750 751 752 void TemplateTable::aload_0() { 753 transition(vtos, atos); 754 // According to bytecode histograms, the pairs: 755 // 756 // _aload_0, _fast_igetfield 757 // _aload_0, _fast_agetfield 758 // _aload_0, _fast_fgetfield 759 // 760 // occur frequently. If RewriteFrequentPairs is set, the (slow) _aload_0 761 // bytecode checks if the next bytecode is either _fast_igetfield, 762 // _fast_agetfield or _fast_fgetfield and then rewrites the 763 // current bytecode into a pair bytecode; otherwise it rewrites the current 764 // bytecode into _fast_aload_0 that doesn't do the pair check anymore. 765 // 766 // Note: If the next bytecode is _getfield, the rewrite must be delayed, 767 // otherwise we may miss an opportunity for a pair. 768 // 769 // Also rewrite frequent pairs 770 // aload_0, aload_1 771 // aload_0, iload_1 772 // These bytecodes with a small amount of code are most profitable to rewrite 773 if (RewriteFrequentPairs) { 774 Label rewrite, done; 775 // get next byte 776 __ load_unsigned_byte(rbx, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0))); 777 778 // do actual aload_0 779 aload(0); 780 781 // if _getfield then wait with rewrite 782 __ cmpl(rbx, Bytecodes::_getfield); 783 __ jcc(Assembler::equal, done); 784 785 // if _igetfield then reqrite to _fast_iaccess_0 786 assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 787 __ cmpl(rbx, Bytecodes::_fast_igetfield); 788 __ movl(rcx, Bytecodes::_fast_iaccess_0); 789 __ jccb(Assembler::equal, rewrite); 790 791 // if _agetfield then reqrite to _fast_aaccess_0 792 assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 793 __ cmpl(rbx, Bytecodes::_fast_agetfield); 794 __ movl(rcx, Bytecodes::_fast_aaccess_0); 795 __ jccb(Assembler::equal, rewrite); 796 797 // if _fgetfield then reqrite to _fast_faccess_0 798 assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 799 __ cmpl(rbx, Bytecodes::_fast_fgetfield); 800 __ movl(rcx, Bytecodes::_fast_faccess_0); 801 __ jccb(Assembler::equal, rewrite); 802 803 // else rewrite to _fast_aload0 804 assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition"); 805 __ movl(rcx, Bytecodes::_fast_aload_0); 806 807 // rewrite 808 // rcx: fast bytecode 809 __ bind(rewrite); 810 patch_bytecode(Bytecodes::_aload_0, rcx, rbx, false); 811 812 __ bind(done); 813 } else { 814 aload(0); 815 } 816 } 817 818 void TemplateTable::istore() { 819 transition(itos, vtos); 820 locals_index(rbx); 821 __ movl(iaddress(rbx), rax); 822 } 823 824 825 void TemplateTable::lstore() { 826 transition(ltos, vtos); 827 locals_index(rbx); 828 __ movptr(laddress(rbx), rax); 829 NOT_LP64(__ movptr(haddress(rbx), rdx)); 830 } 831 832 833 void TemplateTable::fstore() { 834 transition(ftos, vtos); 835 locals_index(rbx); 836 __ fstp_s(faddress(rbx)); 837 } 838 839 840 void TemplateTable::dstore() { 841 transition(dtos, vtos); 842 locals_index(rbx); 843 __ fstp_d(daddress(rbx)); 844 } 845 846 847 void TemplateTable::astore() { 848 transition(vtos, vtos); 849 __ pop_ptr(rax); 850 locals_index(rbx); 851 __ movptr(aaddress(rbx), rax); 852 } 853 854 855 void TemplateTable::wide_istore() { 856 transition(vtos, vtos); 857 __ pop_i(rax); 858 locals_index_wide(rbx); 859 __ movl(iaddress(rbx), rax); 860 } 861 862 863 void TemplateTable::wide_lstore() { 864 transition(vtos, vtos); 865 __ pop_l(rax, rdx); 866 locals_index_wide(rbx); 867 __ movptr(laddress(rbx), rax); 868 NOT_LP64(__ movl(haddress(rbx), rdx)); 869 } 870 871 872 void TemplateTable::wide_fstore() { 873 wide_istore(); 874 } 875 876 877 void TemplateTable::wide_dstore() { 878 wide_lstore(); 879 } 880 881 882 void TemplateTable::wide_astore() { 883 transition(vtos, vtos); 884 __ pop_ptr(rax); 885 locals_index_wide(rbx); 886 __ movptr(aaddress(rbx), rax); 887 } 888 889 890 void TemplateTable::iastore() { 891 transition(itos, vtos); 892 __ pop_i(rbx); 893 // rax,: value 894 // rdx: array 895 index_check(rdx, rbx); // prefer index in rbx, 896 // rbx,: index 897 __ movl(Address(rdx, rbx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_INT)), rax); 898 } 899 900 901 void TemplateTable::lastore() { 902 transition(ltos, vtos); 903 __ pop_i(rbx); 904 // rax,: low(value) 905 // rcx: array 906 // rdx: high(value) 907 index_check(rcx, rbx); // prefer index in rbx, 908 // rbx,: index 909 __ movptr(Address(rcx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 0 * wordSize), rax); 910 NOT_LP64(__ movl(Address(rcx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 1 * wordSize), rdx)); 911 } 912 913 914 void TemplateTable::fastore() { 915 transition(ftos, vtos); 916 __ pop_i(rbx); 917 // rdx: array 918 // st0: value 919 index_check(rdx, rbx); // prefer index in rbx, 920 // rbx,: index 921 __ fstp_s(Address(rdx, rbx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_FLOAT))); 922 } 923 924 925 void TemplateTable::dastore() { 926 transition(dtos, vtos); 927 __ pop_i(rbx); 928 // rdx: array 929 // st0: value 930 index_check(rdx, rbx); // prefer index in rbx, 931 // rbx,: index 932 __ fstp_d(Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_DOUBLE))); 933 } 934 935 936 void TemplateTable::aastore() { 937 Label is_null, ok_is_subtype, done; 938 transition(vtos, vtos); 939 // stack: ..., array, index, value 940 __ movptr(rax, at_tos()); // Value 941 __ movl(rcx, at_tos_p1()); // Index 942 __ movptr(rdx, at_tos_p2()); // Array 943 944 Address element_address(rdx, rcx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_OBJECT)); 945 index_check_without_pop(rdx, rcx); // kills rbx, 946 // do array store check - check for NULL value first 947 __ testptr(rax, rax); 948 __ jcc(Assembler::zero, is_null); 949 950 // Move subklass into EBX 951 __ load_klass(rbx, rax); 952 // Move superklass into EAX 953 __ load_klass(rax, rdx); 954 __ movptr(rax, Address(rax, ObjArrayKlass::element_klass_offset())); 955 // Compress array+index*wordSize+12 into a single register. Frees ECX. 956 __ lea(rdx, element_address); 957 958 // Generate subtype check. Blows ECX. Resets EDI to locals. 959 // Superklass in EAX. Subklass in EBX. 960 __ gen_subtype_check( rbx, ok_is_subtype ); 961 962 // Come here on failure 963 // object is at TOS 964 __ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry)); 965 966 // Come here on success 967 __ bind(ok_is_subtype); 968 969 // Get the value to store 970 __ movptr(rax, at_rsp()); 971 // and store it with appropriate barrier 972 do_oop_store(_masm, Address(rdx, 0), rax, _bs->kind(), true); 973 974 __ jmp(done); 975 976 // Have a NULL in EAX, EDX=array, ECX=index. Store NULL at ary[idx] 977 __ bind(is_null); 978 __ profile_null_seen(rbx); 979 980 // Store NULL, (noreg means NULL to do_oop_store) 981 do_oop_store(_masm, element_address, noreg, _bs->kind(), true); 982 983 // Pop stack arguments 984 __ bind(done); 985 __ addptr(rsp, 3 * Interpreter::stackElementSize); 986 } 987 988 989 void TemplateTable::bastore() { 990 transition(itos, vtos); 991 __ pop_i(rbx); 992 // rax,: value 993 // rdx: array 994 index_check(rdx, rbx); // prefer index in rbx, 995 // rbx,: index 996 __ movb(Address(rdx, rbx, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_BYTE)), rax); 997 } 998 999 1000 void TemplateTable::castore() { 1001 transition(itos, vtos); 1002 __ pop_i(rbx); 1003 // rax,: value 1004 // rdx: array 1005 index_check(rdx, rbx); // prefer index in rbx, 1006 // rbx,: index 1007 __ movw(Address(rdx, rbx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)), rax); 1008 } 1009 1010 1011 void TemplateTable::sastore() { 1012 castore(); 1013 } 1014 1015 1016 void TemplateTable::istore(int n) { 1017 transition(itos, vtos); 1018 __ movl(iaddress(n), rax); 1019 } 1020 1021 1022 void TemplateTable::lstore(int n) { 1023 transition(ltos, vtos); 1024 __ movptr(laddress(n), rax); 1025 NOT_LP64(__ movptr(haddress(n), rdx)); 1026 } 1027 1028 1029 void TemplateTable::fstore(int n) { 1030 transition(ftos, vtos); 1031 __ fstp_s(faddress(n)); 1032 } 1033 1034 1035 void TemplateTable::dstore(int n) { 1036 transition(dtos, vtos); 1037 __ fstp_d(daddress(n)); 1038 } 1039 1040 1041 void TemplateTable::astore(int n) { 1042 transition(vtos, vtos); 1043 __ pop_ptr(rax); 1044 __ movptr(aaddress(n), rax); 1045 } 1046 1047 1048 void TemplateTable::pop() { 1049 transition(vtos, vtos); 1050 __ addptr(rsp, Interpreter::stackElementSize); 1051 } 1052 1053 1054 void TemplateTable::pop2() { 1055 transition(vtos, vtos); 1056 __ addptr(rsp, 2*Interpreter::stackElementSize); 1057 } 1058 1059 1060 void TemplateTable::dup() { 1061 transition(vtos, vtos); 1062 // stack: ..., a 1063 __ load_ptr(0, rax); 1064 __ push_ptr(rax); 1065 // stack: ..., a, a 1066 } 1067 1068 1069 void TemplateTable::dup_x1() { 1070 transition(vtos, vtos); 1071 // stack: ..., a, b 1072 __ load_ptr( 0, rax); // load b 1073 __ load_ptr( 1, rcx); // load a 1074 __ store_ptr(1, rax); // store b 1075 __ store_ptr(0, rcx); // store a 1076 __ push_ptr(rax); // push b 1077 // stack: ..., b, a, b 1078 } 1079 1080 1081 void TemplateTable::dup_x2() { 1082 transition(vtos, vtos); 1083 // stack: ..., a, b, c 1084 __ load_ptr( 0, rax); // load c 1085 __ load_ptr( 2, rcx); // load a 1086 __ store_ptr(2, rax); // store c in a 1087 __ push_ptr(rax); // push c 1088 // stack: ..., c, b, c, c 1089 __ load_ptr( 2, rax); // load b 1090 __ store_ptr(2, rcx); // store a in b 1091 // stack: ..., c, a, c, c 1092 __ store_ptr(1, rax); // store b in c 1093 // stack: ..., c, a, b, c 1094 } 1095 1096 1097 void TemplateTable::dup2() { 1098 transition(vtos, vtos); 1099 // stack: ..., a, b 1100 __ load_ptr(1, rax); // load a 1101 __ push_ptr(rax); // push a 1102 __ load_ptr(1, rax); // load b 1103 __ push_ptr(rax); // push b 1104 // stack: ..., a, b, a, b 1105 } 1106 1107 1108 void TemplateTable::dup2_x1() { 1109 transition(vtos, vtos); 1110 // stack: ..., a, b, c 1111 __ load_ptr( 0, rcx); // load c 1112 __ load_ptr( 1, rax); // load b 1113 __ push_ptr(rax); // push b 1114 __ push_ptr(rcx); // push c 1115 // stack: ..., a, b, c, b, c 1116 __ store_ptr(3, rcx); // store c in b 1117 // stack: ..., a, c, c, b, c 1118 __ load_ptr( 4, rcx); // load a 1119 __ store_ptr(2, rcx); // store a in 2nd c 1120 // stack: ..., a, c, a, b, c 1121 __ store_ptr(4, rax); // store b in a 1122 // stack: ..., b, c, a, b, c 1123 // stack: ..., b, c, a, b, c 1124 } 1125 1126 1127 void TemplateTable::dup2_x2() { 1128 transition(vtos, vtos); 1129 // stack: ..., a, b, c, d 1130 __ load_ptr( 0, rcx); // load d 1131 __ load_ptr( 1, rax); // load c 1132 __ push_ptr(rax); // push c 1133 __ push_ptr(rcx); // push d 1134 // stack: ..., a, b, c, d, c, d 1135 __ load_ptr( 4, rax); // load b 1136 __ store_ptr(2, rax); // store b in d 1137 __ store_ptr(4, rcx); // store d in b 1138 // stack: ..., a, d, c, b, c, d 1139 __ load_ptr( 5, rcx); // load a 1140 __ load_ptr( 3, rax); // load c 1141 __ store_ptr(3, rcx); // store a in c 1142 __ store_ptr(5, rax); // store c in a 1143 // stack: ..., c, d, a, b, c, d 1144 // stack: ..., c, d, a, b, c, d 1145 } 1146 1147 1148 void TemplateTable::swap() { 1149 transition(vtos, vtos); 1150 // stack: ..., a, b 1151 __ load_ptr( 1, rcx); // load a 1152 __ load_ptr( 0, rax); // load b 1153 __ store_ptr(0, rcx); // store a in b 1154 __ store_ptr(1, rax); // store b in a 1155 // stack: ..., b, a 1156 } 1157 1158 1159 void TemplateTable::iop2(Operation op) { 1160 transition(itos, itos); 1161 switch (op) { 1162 case add : __ pop_i(rdx); __ addl (rax, rdx); break; 1163 case sub : __ mov(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break; 1164 case mul : __ pop_i(rdx); __ imull(rax, rdx); break; 1165 case _and : __ pop_i(rdx); __ andl (rax, rdx); break; 1166 case _or : __ pop_i(rdx); __ orl (rax, rdx); break; 1167 case _xor : __ pop_i(rdx); __ xorl (rax, rdx); break; 1168 case shl : __ mov(rcx, rax); __ pop_i(rax); __ shll (rax); break; // implicit masking of lower 5 bits by Intel shift instr. 1169 case shr : __ mov(rcx, rax); __ pop_i(rax); __ sarl (rax); break; // implicit masking of lower 5 bits by Intel shift instr. 1170 case ushr : __ mov(rcx, rax); __ pop_i(rax); __ shrl (rax); break; // implicit masking of lower 5 bits by Intel shift instr. 1171 default : ShouldNotReachHere(); 1172 } 1173 } 1174 1175 1176 void TemplateTable::lop2(Operation op) { 1177 transition(ltos, ltos); 1178 __ pop_l(rbx, rcx); 1179 switch (op) { 1180 case add : __ addl(rax, rbx); __ adcl(rdx, rcx); break; 1181 case sub : __ subl(rbx, rax); __ sbbl(rcx, rdx); 1182 __ mov (rax, rbx); __ mov (rdx, rcx); break; 1183 case _and : __ andl(rax, rbx); __ andl(rdx, rcx); break; 1184 case _or : __ orl (rax, rbx); __ orl (rdx, rcx); break; 1185 case _xor : __ xorl(rax, rbx); __ xorl(rdx, rcx); break; 1186 default : ShouldNotReachHere(); 1187 } 1188 } 1189 1190 1191 void TemplateTable::idiv() { 1192 transition(itos, itos); 1193 __ mov(rcx, rax); 1194 __ pop_i(rax); 1195 // Note: could xor rax, and rcx and compare with (-1 ^ min_int). If 1196 // they are not equal, one could do a normal division (no correction 1197 // needed), which may speed up this implementation for the common case. 1198 // (see also JVM spec., p.243 & p.271) 1199 __ corrected_idivl(rcx); 1200 } 1201 1202 1203 void TemplateTable::irem() { 1204 transition(itos, itos); 1205 __ mov(rcx, rax); 1206 __ pop_i(rax); 1207 // Note: could xor rax, and rcx and compare with (-1 ^ min_int). If 1208 // they are not equal, one could do a normal division (no correction 1209 // needed), which may speed up this implementation for the common case. 1210 // (see also JVM spec., p.243 & p.271) 1211 __ corrected_idivl(rcx); 1212 __ mov(rax, rdx); 1213 } 1214 1215 1216 void TemplateTable::lmul() { 1217 transition(ltos, ltos); 1218 __ pop_l(rbx, rcx); 1219 __ push(rcx); __ push(rbx); 1220 __ push(rdx); __ push(rax); 1221 __ lmul(2 * wordSize, 0); 1222 __ addptr(rsp, 4 * wordSize); // take off temporaries 1223 } 1224 1225 1226 void TemplateTable::ldiv() { 1227 transition(ltos, ltos); 1228 __ pop_l(rbx, rcx); 1229 __ push(rcx); __ push(rbx); 1230 __ push(rdx); __ push(rax); 1231 // check if y = 0 1232 __ orl(rax, rdx); 1233 __ jump_cc(Assembler::zero, 1234 ExternalAddress(Interpreter::_throw_ArithmeticException_entry)); 1235 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::ldiv)); 1236 __ addptr(rsp, 4 * wordSize); // take off temporaries 1237 } 1238 1239 1240 void TemplateTable::lrem() { 1241 transition(ltos, ltos); 1242 __ pop_l(rbx, rcx); 1243 __ push(rcx); __ push(rbx); 1244 __ push(rdx); __ push(rax); 1245 // check if y = 0 1246 __ orl(rax, rdx); 1247 __ jump_cc(Assembler::zero, 1248 ExternalAddress(Interpreter::_throw_ArithmeticException_entry)); 1249 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::lrem)); 1250 __ addptr(rsp, 4 * wordSize); 1251 } 1252 1253 1254 void TemplateTable::lshl() { 1255 transition(itos, ltos); 1256 __ movl(rcx, rax); // get shift count 1257 __ pop_l(rax, rdx); // get shift value 1258 __ lshl(rdx, rax); 1259 } 1260 1261 1262 void TemplateTable::lshr() { 1263 transition(itos, ltos); 1264 __ mov(rcx, rax); // get shift count 1265 __ pop_l(rax, rdx); // get shift value 1266 __ lshr(rdx, rax, true); 1267 } 1268 1269 1270 void TemplateTable::lushr() { 1271 transition(itos, ltos); 1272 __ mov(rcx, rax); // get shift count 1273 __ pop_l(rax, rdx); // get shift value 1274 __ lshr(rdx, rax); 1275 } 1276 1277 1278 void TemplateTable::fop2(Operation op) { 1279 transition(ftos, ftos); 1280 switch (op) { 1281 case add: __ fadd_s (at_rsp()); break; 1282 case sub: __ fsubr_s(at_rsp()); break; 1283 case mul: __ fmul_s (at_rsp()); break; 1284 case div: __ fdivr_s(at_rsp()); break; 1285 case rem: __ fld_s (at_rsp()); __ fremr(rax); break; 1286 default : ShouldNotReachHere(); 1287 } 1288 __ f2ieee(); 1289 __ pop(rax); // pop float thing off 1290 } 1291 1292 1293 void TemplateTable::dop2(Operation op) { 1294 transition(dtos, dtos); 1295 1296 switch (op) { 1297 case add: __ fadd_d (at_rsp()); break; 1298 case sub: __ fsubr_d(at_rsp()); break; 1299 case mul: { 1300 Label L_strict; 1301 Label L_join; 1302 const Address access_flags (rcx, Method::access_flags_offset()); 1303 __ get_method(rcx); 1304 __ movl(rcx, access_flags); 1305 __ testl(rcx, JVM_ACC_STRICT); 1306 __ jccb(Assembler::notZero, L_strict); 1307 __ fmul_d (at_rsp()); 1308 __ jmpb(L_join); 1309 __ bind(L_strict); 1310 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1())); 1311 __ fmulp(); 1312 __ fmul_d (at_rsp()); 1313 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2())); 1314 __ fmulp(); 1315 __ bind(L_join); 1316 break; 1317 } 1318 case div: { 1319 Label L_strict; 1320 Label L_join; 1321 const Address access_flags (rcx, Method::access_flags_offset()); 1322 __ get_method(rcx); 1323 __ movl(rcx, access_flags); 1324 __ testl(rcx, JVM_ACC_STRICT); 1325 __ jccb(Assembler::notZero, L_strict); 1326 __ fdivr_d(at_rsp()); 1327 __ jmp(L_join); 1328 __ bind(L_strict); 1329 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1())); 1330 __ fmul_d (at_rsp()); 1331 __ fdivrp(); 1332 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2())); 1333 __ fmulp(); 1334 __ bind(L_join); 1335 break; 1336 } 1337 case rem: __ fld_d (at_rsp()); __ fremr(rax); break; 1338 default : ShouldNotReachHere(); 1339 } 1340 __ d2ieee(); 1341 // Pop double precision number from rsp. 1342 __ pop(rax); 1343 __ pop(rdx); 1344 } 1345 1346 1347 void TemplateTable::ineg() { 1348 transition(itos, itos); 1349 __ negl(rax); 1350 } 1351 1352 1353 void TemplateTable::lneg() { 1354 transition(ltos, ltos); 1355 __ lneg(rdx, rax); 1356 } 1357 1358 1359 void TemplateTable::fneg() { 1360 transition(ftos, ftos); 1361 __ fchs(); 1362 } 1363 1364 1365 void TemplateTable::dneg() { 1366 transition(dtos, dtos); 1367 __ fchs(); 1368 } 1369 1370 1371 void TemplateTable::iinc() { 1372 transition(vtos, vtos); 1373 __ load_signed_byte(rdx, at_bcp(2)); // get constant 1374 locals_index(rbx); 1375 __ addl(iaddress(rbx), rdx); 1376 } 1377 1378 1379 void TemplateTable::wide_iinc() { 1380 transition(vtos, vtos); 1381 __ movl(rdx, at_bcp(4)); // get constant 1382 locals_index_wide(rbx); 1383 __ bswapl(rdx); // swap bytes & sign-extend constant 1384 __ sarl(rdx, 16); 1385 __ addl(iaddress(rbx), rdx); 1386 // Note: should probably use only one movl to get both 1387 // the index and the constant -> fix this 1388 } 1389 1390 1391 void TemplateTable::convert() { 1392 // Checking 1393 #ifdef ASSERT 1394 { TosState tos_in = ilgl; 1395 TosState tos_out = ilgl; 1396 switch (bytecode()) { 1397 case Bytecodes::_i2l: // fall through 1398 case Bytecodes::_i2f: // fall through 1399 case Bytecodes::_i2d: // fall through 1400 case Bytecodes::_i2b: // fall through 1401 case Bytecodes::_i2c: // fall through 1402 case Bytecodes::_i2s: tos_in = itos; break; 1403 case Bytecodes::_l2i: // fall through 1404 case Bytecodes::_l2f: // fall through 1405 case Bytecodes::_l2d: tos_in = ltos; break; 1406 case Bytecodes::_f2i: // fall through 1407 case Bytecodes::_f2l: // fall through 1408 case Bytecodes::_f2d: tos_in = ftos; break; 1409 case Bytecodes::_d2i: // fall through 1410 case Bytecodes::_d2l: // fall through 1411 case Bytecodes::_d2f: tos_in = dtos; break; 1412 default : ShouldNotReachHere(); 1413 } 1414 switch (bytecode()) { 1415 case Bytecodes::_l2i: // fall through 1416 case Bytecodes::_f2i: // fall through 1417 case Bytecodes::_d2i: // fall through 1418 case Bytecodes::_i2b: // fall through 1419 case Bytecodes::_i2c: // fall through 1420 case Bytecodes::_i2s: tos_out = itos; break; 1421 case Bytecodes::_i2l: // fall through 1422 case Bytecodes::_f2l: // fall through 1423 case Bytecodes::_d2l: tos_out = ltos; break; 1424 case Bytecodes::_i2f: // fall through 1425 case Bytecodes::_l2f: // fall through 1426 case Bytecodes::_d2f: tos_out = ftos; break; 1427 case Bytecodes::_i2d: // fall through 1428 case Bytecodes::_l2d: // fall through 1429 case Bytecodes::_f2d: tos_out = dtos; break; 1430 default : ShouldNotReachHere(); 1431 } 1432 transition(tos_in, tos_out); 1433 } 1434 #endif // ASSERT 1435 1436 // Conversion 1437 // (Note: use push(rcx)/pop(rcx) for 1/2-word stack-ptr manipulation) 1438 switch (bytecode()) { 1439 case Bytecodes::_i2l: 1440 __ extend_sign(rdx, rax); 1441 break; 1442 case Bytecodes::_i2f: 1443 __ push(rax); // store int on tos 1444 __ fild_s(at_rsp()); // load int to ST0 1445 __ f2ieee(); // truncate to float size 1446 __ pop(rcx); // adjust rsp 1447 break; 1448 case Bytecodes::_i2d: 1449 __ push(rax); // add one slot for d2ieee() 1450 __ push(rax); // store int on tos 1451 __ fild_s(at_rsp()); // load int to ST0 1452 __ d2ieee(); // truncate to double size 1453 __ pop(rcx); // adjust rsp 1454 __ pop(rcx); 1455 break; 1456 case Bytecodes::_i2b: 1457 __ shll(rax, 24); // truncate upper 24 bits 1458 __ sarl(rax, 24); // and sign-extend byte 1459 LP64_ONLY(__ movsbl(rax, rax)); 1460 break; 1461 case Bytecodes::_i2c: 1462 __ andl(rax, 0xFFFF); // truncate upper 16 bits 1463 LP64_ONLY(__ movzwl(rax, rax)); 1464 break; 1465 case Bytecodes::_i2s: 1466 __ shll(rax, 16); // truncate upper 16 bits 1467 __ sarl(rax, 16); // and sign-extend short 1468 LP64_ONLY(__ movswl(rax, rax)); 1469 break; 1470 case Bytecodes::_l2i: 1471 /* nothing to do */ 1472 break; 1473 case Bytecodes::_l2f: 1474 __ push(rdx); // store long on tos 1475 __ push(rax); 1476 __ fild_d(at_rsp()); // load long to ST0 1477 __ f2ieee(); // truncate to float size 1478 __ pop(rcx); // adjust rsp 1479 __ pop(rcx); 1480 break; 1481 case Bytecodes::_l2d: 1482 __ push(rdx); // store long on tos 1483 __ push(rax); 1484 __ fild_d(at_rsp()); // load long to ST0 1485 __ d2ieee(); // truncate to double size 1486 __ pop(rcx); // adjust rsp 1487 __ pop(rcx); 1488 break; 1489 case Bytecodes::_f2i: 1490 __ push(rcx); // reserve space for argument 1491 __ fstp_s(at_rsp()); // pass float argument on stack 1492 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1); 1493 break; 1494 case Bytecodes::_f2l: 1495 __ push(rcx); // reserve space for argument 1496 __ fstp_s(at_rsp()); // pass float argument on stack 1497 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1); 1498 break; 1499 case Bytecodes::_f2d: 1500 /* nothing to do */ 1501 break; 1502 case Bytecodes::_d2i: 1503 __ push(rcx); // reserve space for argument 1504 __ push(rcx); 1505 __ fstp_d(at_rsp()); // pass double argument on stack 1506 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 2); 1507 break; 1508 case Bytecodes::_d2l: 1509 __ push(rcx); // reserve space for argument 1510 __ push(rcx); 1511 __ fstp_d(at_rsp()); // pass double argument on stack 1512 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 2); 1513 break; 1514 case Bytecodes::_d2f: 1515 __ push(rcx); // reserve space for f2ieee() 1516 __ f2ieee(); // truncate to float size 1517 __ pop(rcx); // adjust rsp 1518 break; 1519 default : 1520 ShouldNotReachHere(); 1521 } 1522 } 1523 1524 1525 void TemplateTable::lcmp() { 1526 transition(ltos, itos); 1527 // y = rdx:rax 1528 __ pop_l(rbx, rcx); // get x = rcx:rbx 1529 __ lcmp2int(rcx, rbx, rdx, rax);// rcx := cmp(x, y) 1530 __ mov(rax, rcx); 1531 } 1532 1533 1534 void TemplateTable::float_cmp(bool is_float, int unordered_result) { 1535 if (is_float) { 1536 __ fld_s(at_rsp()); 1537 } else { 1538 __ fld_d(at_rsp()); 1539 __ pop(rdx); 1540 } 1541 __ pop(rcx); 1542 __ fcmp2int(rax, unordered_result < 0); 1543 } 1544 1545 1546 void TemplateTable::branch(bool is_jsr, bool is_wide) { 1547 __ get_method(rcx); // ECX holds method 1548 __ profile_taken_branch(rax,rbx); // EAX holds updated MDP, EBX holds bumped taken count 1549 1550 const ByteSize be_offset = MethodCounters::backedge_counter_offset() + 1551 InvocationCounter::counter_offset(); 1552 const ByteSize inv_offset = MethodCounters::invocation_counter_offset() + 1553 InvocationCounter::counter_offset(); 1554 1555 // Load up EDX with the branch displacement 1556 if (is_wide) { 1557 __ movl(rdx, at_bcp(1)); 1558 } else { 1559 __ load_signed_short(rdx, at_bcp(1)); 1560 } 1561 __ bswapl(rdx); 1562 if (!is_wide) __ sarl(rdx, 16); 1563 LP64_ONLY(__ movslq(rdx, rdx)); 1564 1565 1566 // Handle all the JSR stuff here, then exit. 1567 // It's much shorter and cleaner than intermingling with the 1568 // non-JSR normal-branch stuff occurring below. 1569 if (is_jsr) { 1570 // Pre-load the next target bytecode into EBX 1571 __ load_unsigned_byte(rbx, Address(rsi, rdx, Address::times_1, 0)); 1572 1573 // compute return address as bci in rax, 1574 __ lea(rax, at_bcp((is_wide ? 5 : 3) - in_bytes(ConstMethod::codes_offset()))); 1575 __ subptr(rax, Address(rcx, Method::const_offset())); 1576 // Adjust the bcp in RSI by the displacement in EDX 1577 __ addptr(rsi, rdx); 1578 // Push return address 1579 __ push_i(rax); 1580 // jsr returns vtos 1581 __ dispatch_only_noverify(vtos); 1582 return; 1583 } 1584 1585 // Normal (non-jsr) branch handling 1586 1587 // Adjust the bcp in RSI by the displacement in EDX 1588 __ addptr(rsi, rdx); 1589 1590 assert(UseLoopCounter || !UseOnStackReplacement, "on-stack-replacement requires loop counters"); 1591 Label backedge_counter_overflow; 1592 Label profile_method; 1593 Label dispatch; 1594 if (UseLoopCounter) { 1595 // increment backedge counter for backward branches 1596 // rax,: MDO 1597 // rbx,: MDO bumped taken-count 1598 // rcx: method 1599 // rdx: target offset 1600 // rsi: target bcp 1601 // rdi: locals pointer 1602 __ testl(rdx, rdx); // check if forward or backward branch 1603 __ jcc(Assembler::positive, dispatch); // count only if backward branch 1604 1605 // check if MethodCounters exists 1606 Label has_counters; 1607 __ movptr(rax, Address(rcx, Method::method_counters_offset())); 1608 __ testptr(rax, rax); 1609 __ jcc(Assembler::notZero, has_counters); 1610 __ push(rdx); 1611 __ push(rcx); 1612 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::build_method_counters), 1613 rcx); 1614 __ pop(rcx); 1615 __ pop(rdx); 1616 __ movptr(rax, Address(rcx, Method::method_counters_offset())); 1617 __ testptr(rax, rax); 1618 __ jcc(Assembler::zero, dispatch); 1619 __ bind(has_counters); 1620 1621 if (TieredCompilation) { 1622 Label no_mdo; 1623 int increment = InvocationCounter::count_increment; 1624 if (ProfileInterpreter) { 1625 // Are we profiling? 1626 __ movptr(rbx, Address(rcx, in_bytes(Method::method_data_offset()))); 1627 __ testptr(rbx, rbx); 1628 __ jccb(Assembler::zero, no_mdo); 1629 // Increment the MDO backedge counter 1630 const Address mdo_backedge_counter(rbx, in_bytes(MethodData::backedge_counter_offset()) + 1631 in_bytes(InvocationCounter::counter_offset())); 1632 const Address mask(rbx, in_bytes(MethodData::backedge_mask_offset())); 1633 __ increment_mask_and_jump(mdo_backedge_counter, increment, mask, 1634 rax, false, Assembler::zero, &backedge_counter_overflow); 1635 __ jmp(dispatch); 1636 } 1637 __ bind(no_mdo); 1638 // Increment backedge counter in MethodCounters* 1639 __ movptr(rcx, Address(rcx, Method::method_counters_offset())); 1640 const Address mask(rcx, in_bytes(MethodCounters::backedge_mask_offset())); 1641 __ increment_mask_and_jump(Address(rcx, be_offset), increment, mask, 1642 rax, false, Assembler::zero, &backedge_counter_overflow); 1643 } else { // not TieredCompilation 1644 // increment counter 1645 __ movptr(rcx, Address(rcx, Method::method_counters_offset())); 1646 __ movl(rax, Address(rcx, be_offset)); // load backedge counter 1647 __ incrementl(rax, InvocationCounter::count_increment); // increment counter 1648 __ movl(Address(rcx, be_offset), rax); // store counter 1649 1650 __ movl(rax, Address(rcx, inv_offset)); // load invocation counter 1651 1652 __ andl(rax, InvocationCounter::count_mask_value); // and the status bits 1653 __ addl(rax, Address(rcx, be_offset)); // add both counters 1654 1655 if (ProfileInterpreter) { 1656 // Test to see if we should create a method data oop 1657 __ cmp32(rax, Address(rcx, in_bytes(MethodCounters::interpreter_profile_limit_offset()))); 1658 __ jcc(Assembler::less, dispatch); 1659 1660 // if no method data exists, go to profile method 1661 __ test_method_data_pointer(rax, profile_method); 1662 1663 if (UseOnStackReplacement) { 1664 // check for overflow against rbx, which is the MDO taken count 1665 __ cmp32(rbx, Address(rcx, in_bytes(MethodCounters::interpreter_backward_branch_limit_offset()))); 1666 __ jcc(Assembler::below, dispatch); 1667 1668 // When ProfileInterpreter is on, the backedge_count comes from the 1669 // MethodData*, which value does not get reset on the call to 1670 // frequency_counter_overflow(). To avoid excessive calls to the overflow 1671 // routine while the method is being compiled, add a second test to make 1672 // sure the overflow function is called only once every overflow_frequency. 1673 const int overflow_frequency = 1024; 1674 __ andptr(rbx, overflow_frequency-1); 1675 __ jcc(Assembler::zero, backedge_counter_overflow); 1676 } 1677 } else { 1678 if (UseOnStackReplacement) { 1679 // check for overflow against rax, which is the sum of the counters 1680 __ cmp32(rax, Address(rcx, in_bytes(MethodCounters::interpreter_backward_branch_limit_offset()))); 1681 __ jcc(Assembler::aboveEqual, backedge_counter_overflow); 1682 1683 } 1684 } 1685 } 1686 __ bind(dispatch); 1687 } 1688 1689 // Pre-load the next target bytecode into EBX 1690 __ load_unsigned_byte(rbx, Address(rsi, 0)); 1691 1692 // continue with the bytecode @ target 1693 // rax,: return bci for jsr's, unused otherwise 1694 // rbx,: target bytecode 1695 // rsi: target bcp 1696 __ dispatch_only(vtos); 1697 1698 if (UseLoopCounter) { 1699 if (ProfileInterpreter) { 1700 // Out-of-line code to allocate method data oop. 1701 __ bind(profile_method); 1702 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method)); 1703 __ load_unsigned_byte(rbx, Address(rsi, 0)); // restore target bytecode 1704 __ set_method_data_pointer_for_bcp(); 1705 __ jmp(dispatch); 1706 } 1707 1708 if (UseOnStackReplacement) { 1709 1710 // invocation counter overflow 1711 __ bind(backedge_counter_overflow); 1712 __ negptr(rdx); 1713 __ addptr(rdx, rsi); // branch bcp 1714 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), rdx); 1715 __ load_unsigned_byte(rbx, Address(rsi, 0)); // restore target bytecode 1716 1717 // rax,: osr nmethod (osr ok) or NULL (osr not possible) 1718 // rbx,: target bytecode 1719 // rdx: scratch 1720 // rdi: locals pointer 1721 // rsi: bcp 1722 __ testptr(rax, rax); // test result 1723 __ jcc(Assembler::zero, dispatch); // no osr if null 1724 // nmethod may have been invalidated (VM may block upon call_VM return) 1725 __ cmpb(Address(rax, nmethod::state_offset()), nmethod::in_use); 1726 __ jcc(Assembler::notEqual, dispatch); 1727 1728 // We have the address of an on stack replacement routine in rax, 1729 // We need to prepare to execute the OSR method. First we must 1730 // migrate the locals and monitors off of the stack. 1731 1732 __ mov(rbx, rax); // save the nmethod 1733 1734 __ get_thread(rcx); 1735 call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin)); 1736 // rax, is OSR buffer, move it to expected parameter location 1737 __ mov(rcx, rax); 1738 1739 // pop the interpreter frame 1740 __ movptr(rdx, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp 1741 __ leave(); // remove frame anchor 1742 __ pop(rdi); // get return address 1743 __ mov(rsp, rdx); // set sp to sender sp 1744 1745 // Align stack pointer for compiled code (note that caller is 1746 // responsible for undoing this fixup by remembering the old SP 1747 // in an rbp,-relative location) 1748 __ andptr(rsp, -(StackAlignmentInBytes)); 1749 1750 // push the (possibly adjusted) return address 1751 __ push(rdi); 1752 1753 // and begin the OSR nmethod 1754 __ jmp(Address(rbx, nmethod::osr_entry_point_offset())); 1755 } 1756 } 1757 } 1758 1759 1760 void TemplateTable::if_0cmp(Condition cc) { 1761 transition(itos, vtos); 1762 // assume branch is more often taken than not (loops use backward branches) 1763 Label not_taken; 1764 __ testl(rax, rax); 1765 __ jcc(j_not(cc), not_taken); 1766 branch(false, false); 1767 __ bind(not_taken); 1768 __ profile_not_taken_branch(rax); 1769 } 1770 1771 1772 void TemplateTable::if_icmp(Condition cc) { 1773 transition(itos, vtos); 1774 // assume branch is more often taken than not (loops use backward branches) 1775 Label not_taken; 1776 __ pop_i(rdx); 1777 __ cmpl(rdx, rax); 1778 __ jcc(j_not(cc), not_taken); 1779 branch(false, false); 1780 __ bind(not_taken); 1781 __ profile_not_taken_branch(rax); 1782 } 1783 1784 1785 void TemplateTable::if_nullcmp(Condition cc) { 1786 transition(atos, vtos); 1787 // assume branch is more often taken than not (loops use backward branches) 1788 Label not_taken; 1789 __ testptr(rax, rax); 1790 __ jcc(j_not(cc), not_taken); 1791 branch(false, false); 1792 __ bind(not_taken); 1793 __ profile_not_taken_branch(rax); 1794 } 1795 1796 1797 void TemplateTable::if_acmp(Condition cc) { 1798 transition(atos, vtos); 1799 // assume branch is more often taken than not (loops use backward branches) 1800 Label not_taken; 1801 __ pop_ptr(rdx); 1802 __ cmpptr(rdx, rax); 1803 __ jcc(j_not(cc), not_taken); 1804 branch(false, false); 1805 __ bind(not_taken); 1806 __ profile_not_taken_branch(rax); 1807 } 1808 1809 1810 void TemplateTable::ret() { 1811 transition(vtos, vtos); 1812 locals_index(rbx); 1813 __ movptr(rbx, iaddress(rbx)); // get return bci, compute return bcp 1814 __ profile_ret(rbx, rcx); 1815 __ get_method(rax); 1816 __ movptr(rsi, Address(rax, Method::const_offset())); 1817 __ lea(rsi, Address(rsi, rbx, Address::times_1, 1818 ConstMethod::codes_offset())); 1819 __ dispatch_next(vtos); 1820 } 1821 1822 1823 void TemplateTable::wide_ret() { 1824 transition(vtos, vtos); 1825 locals_index_wide(rbx); 1826 __ movptr(rbx, iaddress(rbx)); // get return bci, compute return bcp 1827 __ profile_ret(rbx, rcx); 1828 __ get_method(rax); 1829 __ movptr(rsi, Address(rax, Method::const_offset())); 1830 __ lea(rsi, Address(rsi, rbx, Address::times_1, ConstMethod::codes_offset())); 1831 __ dispatch_next(vtos); 1832 } 1833 1834 1835 void TemplateTable::tableswitch() { 1836 Label default_case, continue_execution; 1837 transition(itos, vtos); 1838 // align rsi 1839 __ lea(rbx, at_bcp(wordSize)); 1840 __ andptr(rbx, -wordSize); 1841 // load lo & hi 1842 __ movl(rcx, Address(rbx, 1 * wordSize)); 1843 __ movl(rdx, Address(rbx, 2 * wordSize)); 1844 __ bswapl(rcx); 1845 __ bswapl(rdx); 1846 // check against lo & hi 1847 __ cmpl(rax, rcx); 1848 __ jccb(Assembler::less, default_case); 1849 __ cmpl(rax, rdx); 1850 __ jccb(Assembler::greater, default_case); 1851 // lookup dispatch offset 1852 __ subl(rax, rcx); 1853 __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt)); 1854 __ profile_switch_case(rax, rbx, rcx); 1855 // continue execution 1856 __ bind(continue_execution); 1857 __ bswapl(rdx); 1858 __ load_unsigned_byte(rbx, Address(rsi, rdx, Address::times_1)); 1859 __ addptr(rsi, rdx); 1860 __ dispatch_only(vtos); 1861 // handle default 1862 __ bind(default_case); 1863 __ profile_switch_default(rax); 1864 __ movl(rdx, Address(rbx, 0)); 1865 __ jmp(continue_execution); 1866 } 1867 1868 1869 void TemplateTable::lookupswitch() { 1870 transition(itos, itos); 1871 __ stop("lookupswitch bytecode should have been rewritten"); 1872 } 1873 1874 1875 void TemplateTable::fast_linearswitch() { 1876 transition(itos, vtos); 1877 Label loop_entry, loop, found, continue_execution; 1878 // bswapl rax, so we can avoid bswapping the table entries 1879 __ bswapl(rax); 1880 // align rsi 1881 __ lea(rbx, at_bcp(wordSize)); // btw: should be able to get rid of this instruction (change offsets below) 1882 __ andptr(rbx, -wordSize); 1883 // set counter 1884 __ movl(rcx, Address(rbx, wordSize)); 1885 __ bswapl(rcx); 1886 __ jmpb(loop_entry); 1887 // table search 1888 __ bind(loop); 1889 __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * wordSize)); 1890 __ jccb(Assembler::equal, found); 1891 __ bind(loop_entry); 1892 __ decrementl(rcx); 1893 __ jcc(Assembler::greaterEqual, loop); 1894 // default case 1895 __ profile_switch_default(rax); 1896 __ movl(rdx, Address(rbx, 0)); 1897 __ jmpb(continue_execution); 1898 // entry found -> get offset 1899 __ bind(found); 1900 __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * wordSize)); 1901 __ profile_switch_case(rcx, rax, rbx); 1902 // continue execution 1903 __ bind(continue_execution); 1904 __ bswapl(rdx); 1905 __ load_unsigned_byte(rbx, Address(rsi, rdx, Address::times_1)); 1906 __ addptr(rsi, rdx); 1907 __ dispatch_only(vtos); 1908 } 1909 1910 1911 void TemplateTable::fast_binaryswitch() { 1912 transition(itos, vtos); 1913 // Implementation using the following core algorithm: 1914 // 1915 // int binary_search(int key, LookupswitchPair* array, int n) { 1916 // // Binary search according to "Methodik des Programmierens" by 1917 // // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985. 1918 // int i = 0; 1919 // int j = n; 1920 // while (i+1 < j) { 1921 // // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q) 1922 // // with Q: for all i: 0 <= i < n: key < a[i] 1923 // // where a stands for the array and assuming that the (inexisting) 1924 // // element a[n] is infinitely big. 1925 // int h = (i + j) >> 1; 1926 // // i < h < j 1927 // if (key < array[h].fast_match()) { 1928 // j = h; 1929 // } else { 1930 // i = h; 1931 // } 1932 // } 1933 // // R: a[i] <= key < a[i+1] or Q 1934 // // (i.e., if key is within array, i is the correct index) 1935 // return i; 1936 // } 1937 1938 // register allocation 1939 const Register key = rax; // already set (tosca) 1940 const Register array = rbx; 1941 const Register i = rcx; 1942 const Register j = rdx; 1943 const Register h = rdi; // needs to be restored 1944 const Register temp = rsi; 1945 // setup array 1946 __ save_bcp(); 1947 1948 __ lea(array, at_bcp(3*wordSize)); // btw: should be able to get rid of this instruction (change offsets below) 1949 __ andptr(array, -wordSize); 1950 // initialize i & j 1951 __ xorl(i, i); // i = 0; 1952 __ movl(j, Address(array, -wordSize)); // j = length(array); 1953 // Convert j into native byteordering 1954 __ bswapl(j); 1955 // and start 1956 Label entry; 1957 __ jmp(entry); 1958 1959 // binary search loop 1960 { Label loop; 1961 __ bind(loop); 1962 // int h = (i + j) >> 1; 1963 __ leal(h, Address(i, j, Address::times_1)); // h = i + j; 1964 __ sarl(h, 1); // h = (i + j) >> 1; 1965 // if (key < array[h].fast_match()) { 1966 // j = h; 1967 // } else { 1968 // i = h; 1969 // } 1970 // Convert array[h].match to native byte-ordering before compare 1971 __ movl(temp, Address(array, h, Address::times_8, 0*wordSize)); 1972 __ bswapl(temp); 1973 __ cmpl(key, temp); 1974 // j = h if (key < array[h].fast_match()) 1975 __ cmov32(Assembler::less , j, h); 1976 // i = h if (key >= array[h].fast_match()) 1977 __ cmov32(Assembler::greaterEqual, i, h); 1978 // while (i+1 < j) 1979 __ bind(entry); 1980 __ leal(h, Address(i, 1)); // i+1 1981 __ cmpl(h, j); // i+1 < j 1982 __ jcc(Assembler::less, loop); 1983 } 1984 1985 // end of binary search, result index is i (must check again!) 1986 Label default_case; 1987 // Convert array[i].match to native byte-ordering before compare 1988 __ movl(temp, Address(array, i, Address::times_8, 0*wordSize)); 1989 __ bswapl(temp); 1990 __ cmpl(key, temp); 1991 __ jcc(Assembler::notEqual, default_case); 1992 1993 // entry found -> j = offset 1994 __ movl(j , Address(array, i, Address::times_8, 1*wordSize)); 1995 __ profile_switch_case(i, key, array); 1996 __ bswapl(j); 1997 LP64_ONLY(__ movslq(j, j)); 1998 __ restore_bcp(); 1999 __ restore_locals(); // restore rdi 2000 __ load_unsigned_byte(rbx, Address(rsi, j, Address::times_1)); 2001 2002 __ addptr(rsi, j); 2003 __ dispatch_only(vtos); 2004 2005 // default case -> j = default offset 2006 __ bind(default_case); 2007 __ profile_switch_default(i); 2008 __ movl(j, Address(array, -2*wordSize)); 2009 __ bswapl(j); 2010 LP64_ONLY(__ movslq(j, j)); 2011 __ restore_bcp(); 2012 __ restore_locals(); // restore rdi 2013 __ load_unsigned_byte(rbx, Address(rsi, j, Address::times_1)); 2014 __ addptr(rsi, j); 2015 __ dispatch_only(vtos); 2016 } 2017 2018 2019 void TemplateTable::_return(TosState state) { 2020 transition(state, state); 2021 assert(_desc->calls_vm(), "inconsistent calls_vm information"); // call in remove_activation 2022 2023 if (_desc->bytecode() == Bytecodes::_return_register_finalizer) { 2024 assert(state == vtos, "only valid state"); 2025 __ movptr(rax, aaddress(0)); 2026 __ load_klass(rdi, rax); 2027 __ movl(rdi, Address(rdi, Klass::access_flags_offset())); 2028 __ testl(rdi, JVM_ACC_HAS_FINALIZER); 2029 Label skip_register_finalizer; 2030 __ jcc(Assembler::zero, skip_register_finalizer); 2031 2032 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), rax); 2033 2034 __ bind(skip_register_finalizer); 2035 } 2036 2037 __ remove_activation(state, rsi); 2038 __ jmp(rsi); 2039 } 2040 2041 2042 // ---------------------------------------------------------------------------- 2043 // Volatile variables demand their effects be made known to all CPU's in 2044 // order. Store buffers on most chips allow reads & writes to reorder; the 2045 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of 2046 // memory barrier (i.e., it's not sufficient that the interpreter does not 2047 // reorder volatile references, the hardware also must not reorder them). 2048 // 2049 // According to the new Java Memory Model (JMM): 2050 // (1) All volatiles are serialized wrt to each other. 2051 // ALSO reads & writes act as aquire & release, so: 2052 // (2) A read cannot let unrelated NON-volatile memory refs that happen after 2053 // the read float up to before the read. It's OK for non-volatile memory refs 2054 // that happen before the volatile read to float down below it. 2055 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs 2056 // that happen BEFORE the write float down to after the write. It's OK for 2057 // non-volatile memory refs that happen after the volatile write to float up 2058 // before it. 2059 // 2060 // We only put in barriers around volatile refs (they are expensive), not 2061 // _between_ memory refs (that would require us to track the flavor of the 2062 // previous memory refs). Requirements (2) and (3) require some barriers 2063 // before volatile stores and after volatile loads. These nearly cover 2064 // requirement (1) but miss the volatile-store-volatile-load case. This final 2065 // case is placed after volatile-stores although it could just as well go 2066 // before volatile-loads. 2067 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits order_constraint ) { 2068 // Helper function to insert a is-volatile test and memory barrier 2069 if( !os::is_MP() ) return; // Not needed on single CPU 2070 __ membar(order_constraint); 2071 } 2072 2073 void TemplateTable::resolve_cache_and_index(int byte_no, 2074 Register Rcache, 2075 Register index, 2076 size_t index_size) { 2077 const Register temp = rbx; 2078 assert_different_registers(Rcache, index, temp); 2079 2080 Label resolved; 2081 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 2082 __ get_cache_and_index_and_bytecode_at_bcp(Rcache, index, temp, byte_no, 1, index_size); 2083 __ cmpl(temp, (int) bytecode()); // have we resolved this bytecode? 2084 __ jcc(Assembler::equal, resolved); 2085 2086 // resolve first time through 2087 address entry; 2088 switch (bytecode()) { 2089 case Bytecodes::_getstatic : // fall through 2090 case Bytecodes::_putstatic : // fall through 2091 case Bytecodes::_getfield : // fall through 2092 case Bytecodes::_putfield : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put); break; 2093 case Bytecodes::_invokevirtual : // fall through 2094 case Bytecodes::_invokespecial : // fall through 2095 case Bytecodes::_invokestatic : // fall through 2096 case Bytecodes::_invokeinterface: entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke); break; 2097 case Bytecodes::_invokehandle : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokehandle); break; 2098 case Bytecodes::_invokedynamic : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic); break; 2099 default: 2100 fatal(err_msg("unexpected bytecode: %s", Bytecodes::name(bytecode()))); 2101 break; 2102 } 2103 __ movl(temp, (int)bytecode()); 2104 __ call_VM(noreg, entry, temp); 2105 // Update registers with resolved info 2106 __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size); 2107 __ bind(resolved); 2108 } 2109 2110 2111 // The cache and index registers must be set before call 2112 void TemplateTable::load_field_cp_cache_entry(Register obj, 2113 Register cache, 2114 Register index, 2115 Register off, 2116 Register flags, 2117 bool is_static = false) { 2118 assert_different_registers(cache, index, flags, off); 2119 2120 ByteSize cp_base_offset = ConstantPoolCache::base_offset(); 2121 // Field offset 2122 __ movptr(off, Address(cache, index, Address::times_ptr, 2123 in_bytes(cp_base_offset + ConstantPoolCacheEntry::f2_offset()))); 2124 // Flags 2125 __ movl(flags, Address(cache, index, Address::times_ptr, 2126 in_bytes(cp_base_offset + ConstantPoolCacheEntry::flags_offset()))); 2127 2128 // klass overwrite register 2129 if (is_static) { 2130 __ movptr(obj, Address(cache, index, Address::times_ptr, 2131 in_bytes(cp_base_offset + ConstantPoolCacheEntry::f1_offset()))); 2132 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 2133 __ movptr(obj, Address(obj, mirror_offset)); 2134 } 2135 } 2136 2137 void TemplateTable::load_invoke_cp_cache_entry(int byte_no, 2138 Register method, 2139 Register itable_index, 2140 Register flags, 2141 bool is_invokevirtual, 2142 bool is_invokevfinal, /*unused*/ 2143 bool is_invokedynamic) { 2144 // setup registers 2145 const Register cache = rcx; 2146 const Register index = rdx; 2147 assert_different_registers(method, flags); 2148 assert_different_registers(method, cache, index); 2149 assert_different_registers(itable_index, flags); 2150 assert_different_registers(itable_index, cache, index); 2151 // determine constant pool cache field offsets 2152 assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant"); 2153 const int method_offset = in_bytes( 2154 ConstantPoolCache::base_offset() + 2155 ((byte_no == f2_byte) 2156 ? ConstantPoolCacheEntry::f2_offset() 2157 : ConstantPoolCacheEntry::f1_offset())); 2158 const int flags_offset = in_bytes(ConstantPoolCache::base_offset() + 2159 ConstantPoolCacheEntry::flags_offset()); 2160 // access constant pool cache fields 2161 const int index_offset = in_bytes(ConstantPoolCache::base_offset() + 2162 ConstantPoolCacheEntry::f2_offset()); 2163 2164 size_t index_size = (is_invokedynamic ? sizeof(u4) : sizeof(u2)); 2165 resolve_cache_and_index(byte_no, cache, index, index_size); 2166 __ movptr(method, Address(cache, index, Address::times_ptr, method_offset)); 2167 2168 if (itable_index != noreg) { 2169 __ movptr(itable_index, Address(cache, index, Address::times_ptr, index_offset)); 2170 } 2171 __ movl(flags, Address(cache, index, Address::times_ptr, flags_offset)); 2172 } 2173 2174 2175 // The registers cache and index expected to be set before call. 2176 // Correct values of the cache and index registers are preserved. 2177 void TemplateTable::jvmti_post_field_access(Register cache, 2178 Register index, 2179 bool is_static, 2180 bool has_tos) { 2181 if (JvmtiExport::can_post_field_access()) { 2182 // Check to see if a field access watch has been set before we take 2183 // the time to call into the VM. 2184 Label L1; 2185 assert_different_registers(cache, index, rax); 2186 __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr())); 2187 __ testl(rax,rax); 2188 __ jcc(Assembler::zero, L1); 2189 2190 // cache entry pointer 2191 __ addptr(cache, in_bytes(ConstantPoolCache::base_offset())); 2192 __ shll(index, LogBytesPerWord); 2193 __ addptr(cache, index); 2194 if (is_static) { 2195 __ xorptr(rax, rax); // NULL object reference 2196 } else { 2197 __ pop(atos); // Get the object 2198 __ verify_oop(rax); 2199 __ push(atos); // Restore stack state 2200 } 2201 // rax,: object pointer or NULL 2202 // cache: cache entry pointer 2203 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), 2204 rax, cache); 2205 __ get_cache_and_index_at_bcp(cache, index, 1); 2206 __ bind(L1); 2207 } 2208 } 2209 2210 void TemplateTable::pop_and_check_object(Register r) { 2211 __ pop_ptr(r); 2212 __ null_check(r); // for field access must check obj. 2213 __ verify_oop(r); 2214 } 2215 2216 void TemplateTable::getfield_or_static(int byte_no, bool is_static) { 2217 transition(vtos, vtos); 2218 2219 const Register cache = rcx; 2220 const Register index = rdx; 2221 const Register obj = rcx; 2222 const Register off = rbx; 2223 const Register flags = rax; 2224 2225 resolve_cache_and_index(byte_no, cache, index, sizeof(u2)); 2226 jvmti_post_field_access(cache, index, is_static, false); 2227 load_field_cp_cache_entry(obj, cache, index, off, flags, is_static); 2228 2229 if (!is_static) pop_and_check_object(obj); 2230 2231 const Address lo(obj, off, Address::times_1, 0*wordSize); 2232 const Address hi(obj, off, Address::times_1, 1*wordSize); 2233 2234 Label Done, notByte, notInt, notShort, notChar, notLong, notFloat, notObj, notDouble; 2235 2236 __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift); 2237 assert(btos == 0, "change code, btos != 0"); 2238 // btos 2239 __ andptr(flags, ConstantPoolCacheEntry::tos_state_mask); 2240 __ jcc(Assembler::notZero, notByte); 2241 2242 __ load_signed_byte(rax, lo ); 2243 __ push(btos); 2244 // Rewrite bytecode to be faster 2245 if (!is_static) { 2246 patch_bytecode(Bytecodes::_fast_bgetfield, rcx, rbx); 2247 } 2248 __ jmp(Done); 2249 2250 __ bind(notByte); 2251 // itos 2252 __ cmpl(flags, itos ); 2253 __ jcc(Assembler::notEqual, notInt); 2254 2255 __ movl(rax, lo ); 2256 __ push(itos); 2257 // Rewrite bytecode to be faster 2258 if (!is_static) { 2259 patch_bytecode(Bytecodes::_fast_igetfield, rcx, rbx); 2260 } 2261 __ jmp(Done); 2262 2263 __ bind(notInt); 2264 // atos 2265 __ cmpl(flags, atos ); 2266 __ jcc(Assembler::notEqual, notObj); 2267 2268 __ movl(rax, lo ); 2269 __ push(atos); 2270 if (!is_static) { 2271 patch_bytecode(Bytecodes::_fast_agetfield, rcx, rbx); 2272 } 2273 __ jmp(Done); 2274 2275 __ bind(notObj); 2276 // ctos 2277 __ cmpl(flags, ctos ); 2278 __ jcc(Assembler::notEqual, notChar); 2279 2280 __ load_unsigned_short(rax, lo ); 2281 __ push(ctos); 2282 if (!is_static) { 2283 patch_bytecode(Bytecodes::_fast_cgetfield, rcx, rbx); 2284 } 2285 __ jmp(Done); 2286 2287 __ bind(notChar); 2288 // stos 2289 __ cmpl(flags, stos ); 2290 __ jcc(Assembler::notEqual, notShort); 2291 2292 __ load_signed_short(rax, lo ); 2293 __ push(stos); 2294 if (!is_static) { 2295 patch_bytecode(Bytecodes::_fast_sgetfield, rcx, rbx); 2296 } 2297 __ jmp(Done); 2298 2299 __ bind(notShort); 2300 // ltos 2301 __ cmpl(flags, ltos ); 2302 __ jcc(Assembler::notEqual, notLong); 2303 2304 // Generate code as if volatile. There just aren't enough registers to 2305 // save that information and this code is faster than the test. 2306 __ fild_d(lo); // Must load atomically 2307 __ subptr(rsp,2*wordSize); // Make space for store 2308 __ fistp_d(Address(rsp,0)); 2309 __ pop(rax); 2310 __ pop(rdx); 2311 2312 __ push(ltos); 2313 // Don't rewrite to _fast_lgetfield for potential volatile case. 2314 __ jmp(Done); 2315 2316 __ bind(notLong); 2317 // ftos 2318 __ cmpl(flags, ftos ); 2319 __ jcc(Assembler::notEqual, notFloat); 2320 2321 __ fld_s(lo); 2322 __ push(ftos); 2323 if (!is_static) { 2324 patch_bytecode(Bytecodes::_fast_fgetfield, rcx, rbx); 2325 } 2326 __ jmp(Done); 2327 2328 __ bind(notFloat); 2329 // dtos 2330 __ cmpl(flags, dtos ); 2331 __ jcc(Assembler::notEqual, notDouble); 2332 2333 __ fld_d(lo); 2334 __ push(dtos); 2335 if (!is_static) { 2336 patch_bytecode(Bytecodes::_fast_dgetfield, rcx, rbx); 2337 } 2338 __ jmpb(Done); 2339 2340 __ bind(notDouble); 2341 2342 __ stop("Bad state"); 2343 2344 __ bind(Done); 2345 // Doug Lea believes this is not needed with current Sparcs (TSO) and Intel (PSO). 2346 // volatile_barrier( ); 2347 } 2348 2349 2350 void TemplateTable::getfield(int byte_no) { 2351 getfield_or_static(byte_no, false); 2352 } 2353 2354 2355 void TemplateTable::getstatic(int byte_no) { 2356 getfield_or_static(byte_no, true); 2357 } 2358 2359 // The registers cache and index expected to be set before call. 2360 // The function may destroy various registers, just not the cache and index registers. 2361 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) { 2362 2363 ByteSize cp_base_offset = ConstantPoolCache::base_offset(); 2364 2365 if (JvmtiExport::can_post_field_modification()) { 2366 // Check to see if a field modification watch has been set before we take 2367 // the time to call into the VM. 2368 Label L1; 2369 assert_different_registers(cache, index, rax); 2370 __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr())); 2371 __ testl(rax, rax); 2372 __ jcc(Assembler::zero, L1); 2373 2374 // The cache and index registers have been already set. 2375 // This allows to eliminate this call but the cache and index 2376 // registers have to be correspondingly used after this line. 2377 __ get_cache_and_index_at_bcp(rax, rdx, 1); 2378 2379 if (is_static) { 2380 // Life is simple. Null out the object pointer. 2381 __ xorptr(rbx, rbx); 2382 } else { 2383 // Life is harder. The stack holds the value on top, followed by the object. 2384 // We don't know the size of the value, though; it could be one or two words 2385 // depending on its type. As a result, we must find the type to determine where 2386 // the object is. 2387 Label two_word, valsize_known; 2388 __ movl(rcx, Address(rax, rdx, Address::times_ptr, in_bytes(cp_base_offset + 2389 ConstantPoolCacheEntry::flags_offset()))); 2390 __ mov(rbx, rsp); 2391 __ shrl(rcx, ConstantPoolCacheEntry::tos_state_shift); 2392 // Make sure we don't need to mask rcx after the above shift 2393 ConstantPoolCacheEntry::verify_tos_state_shift(); 2394 __ cmpl(rcx, ltos); 2395 __ jccb(Assembler::equal, two_word); 2396 __ cmpl(rcx, dtos); 2397 __ jccb(Assembler::equal, two_word); 2398 __ addptr(rbx, Interpreter::expr_offset_in_bytes(1)); // one word jvalue (not ltos, dtos) 2399 __ jmpb(valsize_known); 2400 2401 __ bind(two_word); 2402 __ addptr(rbx, Interpreter::expr_offset_in_bytes(2)); // two words jvalue 2403 2404 __ bind(valsize_known); 2405 // setup object pointer 2406 __ movptr(rbx, Address(rbx, 0)); 2407 } 2408 // cache entry pointer 2409 __ addptr(rax, in_bytes(cp_base_offset)); 2410 __ shll(rdx, LogBytesPerWord); 2411 __ addptr(rax, rdx); 2412 // object (tos) 2413 __ mov(rcx, rsp); 2414 // rbx,: object pointer set up above (NULL if static) 2415 // rax,: cache entry pointer 2416 // rcx: jvalue object on the stack 2417 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), 2418 rbx, rax, rcx); 2419 __ get_cache_and_index_at_bcp(cache, index, 1); 2420 __ bind(L1); 2421 } 2422 } 2423 2424 2425 void TemplateTable::putfield_or_static(int byte_no, bool is_static) { 2426 transition(vtos, vtos); 2427 2428 const Register cache = rcx; 2429 const Register index = rdx; 2430 const Register obj = rcx; 2431 const Register off = rbx; 2432 const Register flags = rax; 2433 2434 resolve_cache_and_index(byte_no, cache, index, sizeof(u2)); 2435 jvmti_post_field_mod(cache, index, is_static); 2436 load_field_cp_cache_entry(obj, cache, index, off, flags, is_static); 2437 2438 // Doug Lea believes this is not needed with current Sparcs (TSO) and Intel (PSO). 2439 // volatile_barrier( ); 2440 2441 Label notVolatile, Done; 2442 __ movl(rdx, flags); 2443 __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift); 2444 __ andl(rdx, 0x1); 2445 2446 // field addresses 2447 const Address lo(obj, off, Address::times_1, 0*wordSize); 2448 const Address hi(obj, off, Address::times_1, 1*wordSize); 2449 2450 Label notByte, notInt, notShort, notChar, notLong, notFloat, notObj, notDouble; 2451 2452 __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift); 2453 assert(btos == 0, "change code, btos != 0"); 2454 __ andl(flags, ConstantPoolCacheEntry::tos_state_mask); 2455 __ jcc(Assembler::notZero, notByte); 2456 2457 // btos 2458 { 2459 __ pop(btos); 2460 if (!is_static) pop_and_check_object(obj); 2461 __ movb(lo, rax); 2462 if (!is_static) { 2463 patch_bytecode(Bytecodes::_fast_bputfield, rcx, rbx, true, byte_no); 2464 } 2465 __ jmp(Done); 2466 } 2467 2468 __ bind(notByte); 2469 __ cmpl(flags, itos); 2470 __ jcc(Assembler::notEqual, notInt); 2471 2472 // itos 2473 { 2474 __ pop(itos); 2475 if (!is_static) pop_and_check_object(obj); 2476 __ movl(lo, rax); 2477 if (!is_static) { 2478 patch_bytecode(Bytecodes::_fast_iputfield, rcx, rbx, true, byte_no); 2479 } 2480 __ jmp(Done); 2481 } 2482 2483 __ bind(notInt); 2484 __ cmpl(flags, atos); 2485 __ jcc(Assembler::notEqual, notObj); 2486 2487 // atos 2488 { 2489 __ pop(atos); 2490 if (!is_static) pop_and_check_object(obj); 2491 do_oop_store(_masm, lo, rax, _bs->kind(), false); 2492 if (!is_static) { 2493 patch_bytecode(Bytecodes::_fast_aputfield, rcx, rbx, true, byte_no); 2494 } 2495 __ jmp(Done); 2496 } 2497 2498 __ bind(notObj); 2499 __ cmpl(flags, ctos); 2500 __ jcc(Assembler::notEqual, notChar); 2501 2502 // ctos 2503 { 2504 __ pop(ctos); 2505 if (!is_static) pop_and_check_object(obj); 2506 __ movw(lo, rax); 2507 if (!is_static) { 2508 patch_bytecode(Bytecodes::_fast_cputfield, rcx, rbx, true, byte_no); 2509 } 2510 __ jmp(Done); 2511 } 2512 2513 __ bind(notChar); 2514 __ cmpl(flags, stos); 2515 __ jcc(Assembler::notEqual, notShort); 2516 2517 // stos 2518 { 2519 __ pop(stos); 2520 if (!is_static) pop_and_check_object(obj); 2521 __ movw(lo, rax); 2522 if (!is_static) { 2523 patch_bytecode(Bytecodes::_fast_sputfield, rcx, rbx, true, byte_no); 2524 } 2525 __ jmp(Done); 2526 } 2527 2528 __ bind(notShort); 2529 __ cmpl(flags, ltos); 2530 __ jcc(Assembler::notEqual, notLong); 2531 2532 // ltos 2533 { 2534 Label notVolatileLong; 2535 __ testl(rdx, rdx); 2536 __ jcc(Assembler::zero, notVolatileLong); 2537 2538 __ pop(ltos); // overwrites rdx, do this after testing volatile. 2539 if (!is_static) pop_and_check_object(obj); 2540 2541 // Replace with real volatile test 2542 __ push(rdx); 2543 __ push(rax); // Must update atomically with FIST 2544 __ fild_d(Address(rsp,0)); // So load into FPU register 2545 __ fistp_d(lo); // and put into memory atomically 2546 __ addptr(rsp, 2*wordSize); 2547 // volatile_barrier(); 2548 volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad | 2549 Assembler::StoreStore)); 2550 // Don't rewrite volatile version 2551 __ jmp(notVolatile); 2552 2553 __ bind(notVolatileLong); 2554 2555 __ pop(ltos); // overwrites rdx 2556 if (!is_static) pop_and_check_object(obj); 2557 NOT_LP64(__ movptr(hi, rdx)); 2558 __ movptr(lo, rax); 2559 if (!is_static) { 2560 patch_bytecode(Bytecodes::_fast_lputfield, rcx, rbx, true, byte_no); 2561 } 2562 __ jmp(notVolatile); 2563 } 2564 2565 __ bind(notLong); 2566 __ cmpl(flags, ftos); 2567 __ jcc(Assembler::notEqual, notFloat); 2568 2569 // ftos 2570 { 2571 __ pop(ftos); 2572 if (!is_static) pop_and_check_object(obj); 2573 __ fstp_s(lo); 2574 if (!is_static) { 2575 patch_bytecode(Bytecodes::_fast_fputfield, rcx, rbx, true, byte_no); 2576 } 2577 __ jmp(Done); 2578 } 2579 2580 __ bind(notFloat); 2581 #ifdef ASSERT 2582 __ cmpl(flags, dtos); 2583 __ jcc(Assembler::notEqual, notDouble); 2584 #endif 2585 2586 // dtos 2587 { 2588 __ pop(dtos); 2589 if (!is_static) pop_and_check_object(obj); 2590 __ fstp_d(lo); 2591 if (!is_static) { 2592 patch_bytecode(Bytecodes::_fast_dputfield, rcx, rbx, true, byte_no); 2593 } 2594 __ jmp(Done); 2595 } 2596 2597 #ifdef ASSERT 2598 __ bind(notDouble); 2599 __ stop("Bad state"); 2600 #endif 2601 2602 __ bind(Done); 2603 2604 // Check for volatile store 2605 __ testl(rdx, rdx); 2606 __ jcc(Assembler::zero, notVolatile); 2607 volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad | 2608 Assembler::StoreStore)); 2609 __ bind(notVolatile); 2610 } 2611 2612 2613 void TemplateTable::putfield(int byte_no) { 2614 putfield_or_static(byte_no, false); 2615 } 2616 2617 2618 void TemplateTable::putstatic(int byte_no) { 2619 putfield_or_static(byte_no, true); 2620 } 2621 2622 void TemplateTable::jvmti_post_fast_field_mod() { 2623 if (JvmtiExport::can_post_field_modification()) { 2624 // Check to see if a field modification watch has been set before we take 2625 // the time to call into the VM. 2626 Label L2; 2627 __ mov32(rcx, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr())); 2628 __ testl(rcx,rcx); 2629 __ jcc(Assembler::zero, L2); 2630 __ pop_ptr(rbx); // copy the object pointer from tos 2631 __ verify_oop(rbx); 2632 __ push_ptr(rbx); // put the object pointer back on tos 2633 2634 // Save tos values before call_VM() clobbers them. Since we have 2635 // to do it for every data type, we use the saved values as the 2636 // jvalue object. 2637 switch (bytecode()) { // load values into the jvalue object 2638 case Bytecodes::_fast_aputfield: __ push_ptr(rax); break; 2639 case Bytecodes::_fast_bputfield: // fall through 2640 case Bytecodes::_fast_sputfield: // fall through 2641 case Bytecodes::_fast_cputfield: // fall through 2642 case Bytecodes::_fast_iputfield: __ push_i(rax); break; 2643 case Bytecodes::_fast_dputfield: __ push_d(); break; 2644 case Bytecodes::_fast_fputfield: __ push_f(); break; 2645 case Bytecodes::_fast_lputfield: __ push_l(rax); break; 2646 2647 default: 2648 ShouldNotReachHere(); 2649 } 2650 __ mov(rcx, rsp); // points to jvalue on the stack 2651 // access constant pool cache entry 2652 __ get_cache_entry_pointer_at_bcp(rax, rdx, 1); 2653 __ verify_oop(rbx); 2654 // rbx,: object pointer copied above 2655 // rax,: cache entry pointer 2656 // rcx: jvalue object on the stack 2657 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), rbx, rax, rcx); 2658 2659 switch (bytecode()) { // restore tos values 2660 case Bytecodes::_fast_aputfield: __ pop_ptr(rax); break; 2661 case Bytecodes::_fast_bputfield: // fall through 2662 case Bytecodes::_fast_sputfield: // fall through 2663 case Bytecodes::_fast_cputfield: // fall through 2664 case Bytecodes::_fast_iputfield: __ pop_i(rax); break; 2665 case Bytecodes::_fast_dputfield: __ pop_d(); break; 2666 case Bytecodes::_fast_fputfield: __ pop_f(); break; 2667 case Bytecodes::_fast_lputfield: __ pop_l(rax); break; 2668 } 2669 __ bind(L2); 2670 } 2671 } 2672 2673 void TemplateTable::fast_storefield(TosState state) { 2674 transition(state, vtos); 2675 2676 ByteSize base = ConstantPoolCache::base_offset(); 2677 2678 jvmti_post_fast_field_mod(); 2679 2680 // access constant pool cache 2681 __ get_cache_and_index_at_bcp(rcx, rbx, 1); 2682 2683 // test for volatile with rdx but rdx is tos register for lputfield. 2684 if (bytecode() == Bytecodes::_fast_lputfield) __ push(rdx); 2685 __ movl(rdx, Address(rcx, rbx, Address::times_ptr, in_bytes(base + 2686 ConstantPoolCacheEntry::flags_offset()))); 2687 2688 // replace index with field offset from cache entry 2689 __ movptr(rbx, Address(rcx, rbx, Address::times_ptr, in_bytes(base + ConstantPoolCacheEntry::f2_offset()))); 2690 2691 // Doug Lea believes this is not needed with current Sparcs (TSO) and Intel (PSO). 2692 // volatile_barrier( ); 2693 2694 Label notVolatile, Done; 2695 __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift); 2696 __ andl(rdx, 0x1); 2697 // Check for volatile store 2698 __ testl(rdx, rdx); 2699 __ jcc(Assembler::zero, notVolatile); 2700 2701 if (bytecode() == Bytecodes::_fast_lputfield) __ pop(rdx); 2702 2703 // Get object from stack 2704 pop_and_check_object(rcx); 2705 2706 // field addresses 2707 const Address lo(rcx, rbx, Address::times_1, 0*wordSize); 2708 const Address hi(rcx, rbx, Address::times_1, 1*wordSize); 2709 2710 // access field 2711 switch (bytecode()) { 2712 case Bytecodes::_fast_bputfield: __ movb(lo, rax); break; 2713 case Bytecodes::_fast_sputfield: // fall through 2714 case Bytecodes::_fast_cputfield: __ movw(lo, rax); break; 2715 case Bytecodes::_fast_iputfield: __ movl(lo, rax); break; 2716 case Bytecodes::_fast_lputfield: 2717 NOT_LP64(__ movptr(hi, rdx)); 2718 __ movptr(lo, rax); 2719 break; 2720 case Bytecodes::_fast_fputfield: __ fstp_s(lo); break; 2721 case Bytecodes::_fast_dputfield: __ fstp_d(lo); break; 2722 case Bytecodes::_fast_aputfield: { 2723 do_oop_store(_masm, lo, rax, _bs->kind(), false); 2724 break; 2725 } 2726 default: 2727 ShouldNotReachHere(); 2728 } 2729 2730 Label done; 2731 volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad | 2732 Assembler::StoreStore)); 2733 // Barriers are so large that short branch doesn't reach! 2734 __ jmp(done); 2735 2736 // Same code as above, but don't need rdx to test for volatile. 2737 __ bind(notVolatile); 2738 2739 if (bytecode() == Bytecodes::_fast_lputfield) __ pop(rdx); 2740 2741 // Get object from stack 2742 pop_and_check_object(rcx); 2743 2744 // access field 2745 switch (bytecode()) { 2746 case Bytecodes::_fast_bputfield: __ movb(lo, rax); break; 2747 case Bytecodes::_fast_sputfield: // fall through 2748 case Bytecodes::_fast_cputfield: __ movw(lo, rax); break; 2749 case Bytecodes::_fast_iputfield: __ movl(lo, rax); break; 2750 case Bytecodes::_fast_lputfield: 2751 NOT_LP64(__ movptr(hi, rdx)); 2752 __ movptr(lo, rax); 2753 break; 2754 case Bytecodes::_fast_fputfield: __ fstp_s(lo); break; 2755 case Bytecodes::_fast_dputfield: __ fstp_d(lo); break; 2756 case Bytecodes::_fast_aputfield: { 2757 do_oop_store(_masm, lo, rax, _bs->kind(), false); 2758 break; 2759 } 2760 default: 2761 ShouldNotReachHere(); 2762 } 2763 __ bind(done); 2764 } 2765 2766 2767 void TemplateTable::fast_accessfield(TosState state) { 2768 transition(atos, state); 2769 2770 // do the JVMTI work here to avoid disturbing the register state below 2771 if (JvmtiExport::can_post_field_access()) { 2772 // Check to see if a field access watch has been set before we take 2773 // the time to call into the VM. 2774 Label L1; 2775 __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr())); 2776 __ testl(rcx,rcx); 2777 __ jcc(Assembler::zero, L1); 2778 // access constant pool cache entry 2779 __ get_cache_entry_pointer_at_bcp(rcx, rdx, 1); 2780 __ push_ptr(rax); // save object pointer before call_VM() clobbers it 2781 __ verify_oop(rax); 2782 // rax,: object pointer copied above 2783 // rcx: cache entry pointer 2784 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), rax, rcx); 2785 __ pop_ptr(rax); // restore object pointer 2786 __ bind(L1); 2787 } 2788 2789 // access constant pool cache 2790 __ get_cache_and_index_at_bcp(rcx, rbx, 1); 2791 // replace index with field offset from cache entry 2792 __ movptr(rbx, Address(rcx, 2793 rbx, 2794 Address::times_ptr, 2795 in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::f2_offset()))); 2796 2797 2798 // rax,: object 2799 __ verify_oop(rax); 2800 __ null_check(rax); 2801 // field addresses 2802 const Address lo = Address(rax, rbx, Address::times_1, 0*wordSize); 2803 const Address hi = Address(rax, rbx, Address::times_1, 1*wordSize); 2804 2805 // access field 2806 switch (bytecode()) { 2807 case Bytecodes::_fast_bgetfield: __ movsbl(rax, lo ); break; 2808 case Bytecodes::_fast_sgetfield: __ load_signed_short(rax, lo ); break; 2809 case Bytecodes::_fast_cgetfield: __ load_unsigned_short(rax, lo ); break; 2810 case Bytecodes::_fast_igetfield: __ movl(rax, lo); break; 2811 case Bytecodes::_fast_lgetfield: __ stop("should not be rewritten"); break; 2812 case Bytecodes::_fast_fgetfield: __ fld_s(lo); break; 2813 case Bytecodes::_fast_dgetfield: __ fld_d(lo); break; 2814 case Bytecodes::_fast_agetfield: __ movptr(rax, lo); __ verify_oop(rax); break; 2815 default: 2816 ShouldNotReachHere(); 2817 } 2818 2819 // Doug Lea believes this is not needed with current Sparcs(TSO) and Intel(PSO) 2820 // volatile_barrier( ); 2821 } 2822 2823 void TemplateTable::fast_xaccess(TosState state) { 2824 transition(vtos, state); 2825 // get receiver 2826 __ movptr(rax, aaddress(0)); 2827 // access constant pool cache 2828 __ get_cache_and_index_at_bcp(rcx, rdx, 2); 2829 __ movptr(rbx, Address(rcx, 2830 rdx, 2831 Address::times_ptr, 2832 in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::f2_offset()))); 2833 // make sure exception is reported in correct bcp range (getfield is next instruction) 2834 __ increment(rsi); 2835 __ null_check(rax); 2836 const Address lo = Address(rax, rbx, Address::times_1, 0*wordSize); 2837 if (state == itos) { 2838 __ movl(rax, lo); 2839 } else if (state == atos) { 2840 __ movptr(rax, lo); 2841 __ verify_oop(rax); 2842 } else if (state == ftos) { 2843 __ fld_s(lo); 2844 } else { 2845 ShouldNotReachHere(); 2846 } 2847 __ decrement(rsi); 2848 } 2849 2850 2851 2852 //---------------------------------------------------------------------------------------------------- 2853 // Calls 2854 2855 void TemplateTable::count_calls(Register method, Register temp) { 2856 // implemented elsewhere 2857 ShouldNotReachHere(); 2858 } 2859 2860 2861 void TemplateTable::prepare_invoke(int byte_no, 2862 Register method, // linked method (or i-klass) 2863 Register index, // itable index, MethodType, etc. 2864 Register recv, // if caller wants to see it 2865 Register flags // if caller wants to test it 2866 ) { 2867 // determine flags 2868 const Bytecodes::Code code = bytecode(); 2869 const bool is_invokeinterface = code == Bytecodes::_invokeinterface; 2870 const bool is_invokedynamic = code == Bytecodes::_invokedynamic; 2871 const bool is_invokehandle = code == Bytecodes::_invokehandle; 2872 const bool is_invokevirtual = code == Bytecodes::_invokevirtual; 2873 const bool is_invokespecial = code == Bytecodes::_invokespecial; 2874 const bool load_receiver = (recv != noreg); 2875 const bool save_flags = (flags != noreg); 2876 assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), ""); 2877 assert(save_flags == (is_invokeinterface || is_invokevirtual), "need flags for vfinal"); 2878 assert(flags == noreg || flags == rdx, ""); 2879 assert(recv == noreg || recv == rcx, ""); 2880 2881 // setup registers & access constant pool cache 2882 if (recv == noreg) recv = rcx; 2883 if (flags == noreg) flags = rdx; 2884 assert_different_registers(method, index, recv, flags); 2885 2886 // save 'interpreter return address' 2887 __ save_bcp(); 2888 2889 load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic); 2890 2891 // maybe push appendix to arguments (just before return address) 2892 if (is_invokedynamic || is_invokehandle) { 2893 Label L_no_push; 2894 __ testl(flags, (1 << ConstantPoolCacheEntry::has_appendix_shift)); 2895 __ jccb(Assembler::zero, L_no_push); 2896 // Push the appendix as a trailing parameter. 2897 // This must be done before we get the receiver, 2898 // since the parameter_size includes it. 2899 __ push(rbx); 2900 __ mov(rbx, index); 2901 assert(ConstantPoolCacheEntry::_indy_resolved_references_appendix_offset == 0, "appendix expected at index+0"); 2902 __ load_resolved_reference_at_index(index, rbx); 2903 __ pop(rbx); 2904 __ push(index); // push appendix (MethodType, CallSite, etc.) 2905 __ bind(L_no_push); 2906 } 2907 2908 // load receiver if needed (note: no return address pushed yet) 2909 if (load_receiver) { 2910 __ movl(recv, flags); 2911 __ andl(recv, ConstantPoolCacheEntry::parameter_size_mask); 2912 const int no_return_pc_pushed_yet = -1; // argument slot correction before we push return address 2913 const int receiver_is_at_end = -1; // back off one slot to get receiver 2914 Address recv_addr = __ argument_address(recv, no_return_pc_pushed_yet + receiver_is_at_end); 2915 __ movptr(recv, recv_addr); 2916 __ verify_oop(recv); 2917 } 2918 2919 if (save_flags) { 2920 __ mov(rsi, flags); 2921 } 2922 2923 // compute return type 2924 __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift); 2925 // Make sure we don't need to mask flags after the above shift 2926 ConstantPoolCacheEntry::verify_tos_state_shift(); 2927 // load return address 2928 { 2929 const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code); 2930 ExternalAddress table(table_addr); 2931 __ movptr(flags, ArrayAddress(table, Address(noreg, flags, Address::times_ptr))); 2932 } 2933 2934 // push return address 2935 __ push(flags); 2936 2937 // Restore flags value from the constant pool cache, and restore rsi 2938 // for later null checks. rsi is the bytecode pointer 2939 if (save_flags) { 2940 __ mov(flags, rsi); 2941 __ restore_bcp(); 2942 } 2943 } 2944 2945 2946 void TemplateTable::invokevirtual_helper(Register index, 2947 Register recv, 2948 Register flags) { 2949 // Uses temporary registers rax, rdx 2950 assert_different_registers(index, recv, rax, rdx); 2951 assert(index == rbx, ""); 2952 assert(recv == rcx, ""); 2953 2954 // Test for an invoke of a final method 2955 Label notFinal; 2956 __ movl(rax, flags); 2957 __ andl(rax, (1 << ConstantPoolCacheEntry::is_vfinal_shift)); 2958 __ jcc(Assembler::zero, notFinal); 2959 2960 const Register method = index; // method must be rbx 2961 assert(method == rbx, 2962 "Method* must be rbx for interpreter calling convention"); 2963 2964 // do the call - the index is actually the method to call 2965 // that is, f2 is a vtable index if !is_vfinal, else f2 is a Method* 2966 2967 // It's final, need a null check here! 2968 __ null_check(recv); 2969 2970 // profile this call 2971 __ profile_final_call(rax); 2972 __ profile_arguments_type(rax, method, rsi, true); 2973 2974 __ jump_from_interpreted(method, rax); 2975 2976 __ bind(notFinal); 2977 2978 // get receiver klass 2979 __ null_check(recv, oopDesc::klass_offset_in_bytes()); 2980 __ load_klass(rax, recv); 2981 2982 // profile this call 2983 __ profile_virtual_call(rax, rdi, rdx); 2984 2985 // get target Method* & entry point 2986 __ lookup_virtual_method(rax, index, method); 2987 __ profile_arguments_type(rdx, method, rsi, true); 2988 __ jump_from_interpreted(method, rdx); 2989 } 2990 2991 2992 void TemplateTable::invokevirtual(int byte_no) { 2993 transition(vtos, vtos); 2994 assert(byte_no == f2_byte, "use this argument"); 2995 prepare_invoke(byte_no, 2996 rbx, // method or vtable index 2997 noreg, // unused itable index 2998 rcx, rdx); // recv, flags 2999 3000 // rbx: index 3001 // rcx: receiver 3002 // rdx: flags 3003 3004 invokevirtual_helper(rbx, rcx, rdx); 3005 } 3006 3007 3008 void TemplateTable::invokespecial(int byte_no) { 3009 transition(vtos, vtos); 3010 assert(byte_no == f1_byte, "use this argument"); 3011 prepare_invoke(byte_no, rbx, noreg, // get f1 Method* 3012 rcx); // get receiver also for null check 3013 __ verify_oop(rcx); 3014 __ null_check(rcx); 3015 // do the call 3016 __ profile_call(rax); 3017 __ profile_arguments_type(rax, rbx, rsi, false); 3018 __ jump_from_interpreted(rbx, rax); 3019 } 3020 3021 3022 void TemplateTable::invokestatic(int byte_no) { 3023 transition(vtos, vtos); 3024 assert(byte_no == f1_byte, "use this argument"); 3025 prepare_invoke(byte_no, rbx); // get f1 Method* 3026 // do the call 3027 __ profile_call(rax); 3028 __ profile_arguments_type(rax, rbx, rsi, false); 3029 __ jump_from_interpreted(rbx, rax); 3030 } 3031 3032 3033 void TemplateTable::fast_invokevfinal(int byte_no) { 3034 transition(vtos, vtos); 3035 assert(byte_no == f2_byte, "use this argument"); 3036 __ stop("fast_invokevfinal not used on x86"); 3037 } 3038 3039 3040 void TemplateTable::invokeinterface(int byte_no) { 3041 transition(vtos, vtos); 3042 assert(byte_no == f1_byte, "use this argument"); 3043 prepare_invoke(byte_no, rax, rbx, // get f1 Klass*, f2 itable index 3044 rcx, rdx); // recv, flags 3045 3046 // rax: interface klass (from f1) 3047 // rbx: itable index (from f2) 3048 // rcx: receiver 3049 // rdx: flags 3050 3051 // Special case of invokeinterface called for virtual method of 3052 // java.lang.Object. See cpCacheOop.cpp for details. 3053 // This code isn't produced by javac, but could be produced by 3054 // another compliant java compiler. 3055 Label notMethod; 3056 __ movl(rdi, rdx); 3057 __ andl(rdi, (1 << ConstantPoolCacheEntry::is_forced_virtual_shift)); 3058 __ jcc(Assembler::zero, notMethod); 3059 3060 invokevirtual_helper(rbx, rcx, rdx); 3061 __ bind(notMethod); 3062 3063 // Get receiver klass into rdx - also a null check 3064 __ restore_locals(); // restore rdi 3065 __ null_check(rcx, oopDesc::klass_offset_in_bytes()); 3066 __ load_klass(rdx, rcx); 3067 3068 // profile this call 3069 __ profile_virtual_call(rdx, rsi, rdi); 3070 3071 Label no_such_interface, no_such_method; 3072 3073 __ lookup_interface_method(// inputs: rec. class, interface, itable index 3074 rdx, rax, rbx, 3075 // outputs: method, scan temp. reg 3076 rbx, rsi, 3077 no_such_interface); 3078 3079 // rbx: Method* to call 3080 // rcx: receiver 3081 // Check for abstract method error 3082 // Note: This should be done more efficiently via a throw_abstract_method_error 3083 // interpreter entry point and a conditional jump to it in case of a null 3084 // method. 3085 __ testptr(rbx, rbx); 3086 __ jcc(Assembler::zero, no_such_method); 3087 3088 __ profile_arguments_type(rdx, rbx, rsi, true); 3089 3090 // do the call 3091 // rcx: receiver 3092 // rbx,: Method* 3093 __ jump_from_interpreted(rbx, rdx); 3094 __ should_not_reach_here(); 3095 3096 // exception handling code follows... 3097 // note: must restore interpreter registers to canonical 3098 // state for exception handling to work correctly! 3099 3100 __ bind(no_such_method); 3101 // throw exception 3102 __ pop(rbx); // pop return address (pushed by prepare_invoke) 3103 __ restore_bcp(); // rsi must be correct for exception handler (was destroyed) 3104 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) 3105 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError)); 3106 // the call_VM checks for exception, so we should never return here. 3107 __ should_not_reach_here(); 3108 3109 __ bind(no_such_interface); 3110 // throw exception 3111 __ pop(rbx); // pop return address (pushed by prepare_invoke) 3112 __ restore_bcp(); // rsi must be correct for exception handler (was destroyed) 3113 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) 3114 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 3115 InterpreterRuntime::throw_IncompatibleClassChangeError)); 3116 // the call_VM checks for exception, so we should never return here. 3117 __ should_not_reach_here(); 3118 } 3119 3120 void TemplateTable::invokehandle(int byte_no) { 3121 transition(vtos, vtos); 3122 assert(byte_no == f1_byte, "use this argument"); 3123 const Register rbx_method = rbx; 3124 const Register rax_mtype = rax; 3125 const Register rcx_recv = rcx; 3126 const Register rdx_flags = rdx; 3127 3128 prepare_invoke(byte_no, rbx_method, rax_mtype, rcx_recv); 3129 __ verify_method_ptr(rbx_method); 3130 __ verify_oop(rcx_recv); 3131 __ null_check(rcx_recv); 3132 3133 // rax: MethodType object (from cpool->resolved_references[f1], if necessary) 3134 // rbx: MH.invokeExact_MT method (from f2) 3135 3136 // Note: rax_mtype is already pushed (if necessary) by prepare_invoke 3137 3138 // FIXME: profile the LambdaForm also 3139 __ profile_final_call(rax); 3140 __ profile_arguments_type(rdx, rbx_method, rsi, true); 3141 3142 __ jump_from_interpreted(rbx_method, rdx); 3143 } 3144 3145 3146 void TemplateTable::invokedynamic(int byte_no) { 3147 transition(vtos, vtos); 3148 assert(byte_no == f1_byte, "use this argument"); 3149 3150 const Register rbx_method = rbx; 3151 const Register rax_callsite = rax; 3152 3153 prepare_invoke(byte_no, rbx_method, rax_callsite); 3154 3155 // rax: CallSite object (from cpool->resolved_references[f1]) 3156 // rbx: MH.linkToCallSite method (from f2) 3157 3158 // Note: rax_callsite is already pushed by prepare_invoke 3159 3160 // %%% should make a type profile for any invokedynamic that takes a ref argument 3161 // profile this call 3162 __ profile_call(rsi); 3163 __ profile_arguments_type(rdx, rbx, rsi, false); 3164 3165 __ verify_oop(rax_callsite); 3166 3167 __ jump_from_interpreted(rbx_method, rdx); 3168 } 3169 3170 //---------------------------------------------------------------------------------------------------- 3171 // Allocation 3172 3173 void TemplateTable::_new() { 3174 transition(vtos, atos); 3175 __ get_unsigned_2_byte_index_at_bcp(rdx, 1); 3176 Label slow_case; 3177 Label slow_case_no_pop; 3178 Label done; 3179 Label initialize_header; 3180 Label initialize_object; // including clearing the fields 3181 Label allocate_shared; 3182 3183 __ get_cpool_and_tags(rcx, rax); 3184 3185 // Make sure the class we're about to instantiate has been resolved. 3186 // This is done before loading InstanceKlass to be consistent with the order 3187 // how Constant Pool is updated (see ConstantPool::klass_at_put) 3188 const int tags_offset = Array<u1>::base_offset_in_bytes(); 3189 __ cmpb(Address(rax, rdx, Address::times_1, tags_offset), JVM_CONSTANT_Class); 3190 __ jcc(Assembler::notEqual, slow_case_no_pop); 3191 3192 // get InstanceKlass 3193 __ movptr(rcx, Address(rcx, rdx, Address::times_ptr, sizeof(ConstantPool))); 3194 __ push(rcx); // save the contexts of klass for initializing the header 3195 3196 // make sure klass is initialized & doesn't have finalizer 3197 // make sure klass is fully initialized 3198 __ cmpb(Address(rcx, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized); 3199 __ jcc(Assembler::notEqual, slow_case); 3200 3201 // get instance_size in InstanceKlass (scaled to a count of bytes) 3202 __ movl(rdx, Address(rcx, Klass::layout_helper_offset())); 3203 // test to see if it has a finalizer or is malformed in some way 3204 __ testl(rdx, Klass::_lh_instance_slow_path_bit); 3205 __ jcc(Assembler::notZero, slow_case); 3206 3207 // 3208 // Allocate the instance 3209 // 1) Try to allocate in the TLAB 3210 // 2) if fail and the object is large allocate in the shared Eden 3211 // 3) if the above fails (or is not applicable), go to a slow case 3212 // (creates a new TLAB, etc.) 3213 3214 const bool allow_shared_alloc = 3215 Universe::heap()->supports_inline_contig_alloc(); 3216 3217 const Register thread = rcx; 3218 if (UseTLAB || allow_shared_alloc) { 3219 __ get_thread(thread); 3220 } 3221 3222 if (UseTLAB) { 3223 __ movptr(rax, Address(thread, in_bytes(JavaThread::tlab_top_offset()))); 3224 __ lea(rbx, Address(rax, rdx, Address::times_1)); 3225 __ cmpptr(rbx, Address(thread, in_bytes(JavaThread::tlab_end_offset()))); 3226 __ jcc(Assembler::above, allow_shared_alloc ? allocate_shared : slow_case); 3227 __ movptr(Address(thread, in_bytes(JavaThread::tlab_top_offset())), rbx); 3228 if (ZeroTLAB) { 3229 // the fields have been already cleared 3230 __ jmp(initialize_header); 3231 } else { 3232 // initialize both the header and fields 3233 __ jmp(initialize_object); 3234 } 3235 } 3236 3237 // Allocation in the shared Eden, if allowed. 3238 // 3239 // rdx: instance size in bytes 3240 if (allow_shared_alloc) { 3241 __ bind(allocate_shared); 3242 3243 ExternalAddress heap_top((address)Universe::heap()->top_addr()); 3244 3245 Label retry; 3246 __ bind(retry); 3247 __ movptr(rax, heap_top); 3248 __ lea(rbx, Address(rax, rdx, Address::times_1)); 3249 __ cmpptr(rbx, ExternalAddress((address)Universe::heap()->end_addr())); 3250 __ jcc(Assembler::above, slow_case); 3251 3252 // Compare rax, with the top addr, and if still equal, store the new 3253 // top addr in rbx, at the address of the top addr pointer. Sets ZF if was 3254 // equal, and clears it otherwise. Use lock prefix for atomicity on MPs. 3255 // 3256 // rax,: object begin 3257 // rbx,: object end 3258 // rdx: instance size in bytes 3259 __ locked_cmpxchgptr(rbx, heap_top); 3260 3261 // if someone beat us on the allocation, try again, otherwise continue 3262 __ jcc(Assembler::notEqual, retry); 3263 3264 __ incr_allocated_bytes(thread, rdx, 0); 3265 } 3266 3267 if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) { 3268 // The object is initialized before the header. If the object size is 3269 // zero, go directly to the header initialization. 3270 __ bind(initialize_object); 3271 __ decrement(rdx, sizeof(oopDesc)); 3272 __ jcc(Assembler::zero, initialize_header); 3273 3274 // Initialize topmost object field, divide rdx by 8, check if odd and 3275 // test if zero. 3276 __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code) 3277 __ shrl(rdx, LogBytesPerLong); // divide by 2*oopSize and set carry flag if odd 3278 3279 // rdx must have been multiple of 8 3280 #ifdef ASSERT 3281 // make sure rdx was multiple of 8 3282 Label L; 3283 // Ignore partial flag stall after shrl() since it is debug VM 3284 __ jccb(Assembler::carryClear, L); 3285 __ stop("object size is not multiple of 2 - adjust this code"); 3286 __ bind(L); 3287 // rdx must be > 0, no extra check needed here 3288 #endif 3289 3290 // initialize remaining object fields: rdx was a multiple of 8 3291 { Label loop; 3292 __ bind(loop); 3293 __ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 1*oopSize), rcx); 3294 NOT_LP64(__ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 2*oopSize), rcx)); 3295 __ decrement(rdx); 3296 __ jcc(Assembler::notZero, loop); 3297 } 3298 3299 // initialize object header only. 3300 __ bind(initialize_header); 3301 if (UseBiasedLocking) { 3302 __ pop(rcx); // get saved klass back in the register. 3303 __ movptr(rbx, Address(rcx, Klass::prototype_header_offset())); 3304 __ movptr(Address(rax, oopDesc::mark_offset_in_bytes ()), rbx); 3305 } else { 3306 __ movptr(Address(rax, oopDesc::mark_offset_in_bytes ()), 3307 (int32_t)markOopDesc::prototype()); // header 3308 __ pop(rcx); // get saved klass back in the register. 3309 } 3310 __ store_klass(rax, rcx); // klass 3311 3312 { 3313 SkipIfEqual skip_if(_masm, &DTraceAllocProbes, 0); 3314 // Trigger dtrace event for fastpath 3315 __ push(atos); 3316 __ call_VM_leaf( 3317 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), rax); 3318 __ pop(atos); 3319 } 3320 3321 __ jmp(done); 3322 } 3323 3324 // slow case 3325 __ bind(slow_case); 3326 __ pop(rcx); // restore stack pointer to what it was when we came in. 3327 __ bind(slow_case_no_pop); 3328 __ get_constant_pool(rax); 3329 __ get_unsigned_2_byte_index_at_bcp(rdx, 1); 3330 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), rax, rdx); 3331 3332 // continue 3333 __ bind(done); 3334 } 3335 3336 3337 void TemplateTable::newarray() { 3338 transition(itos, atos); 3339 __ push_i(rax); // make sure everything is on the stack 3340 __ load_unsigned_byte(rdx, at_bcp(1)); 3341 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), rdx, rax); 3342 __ pop_i(rdx); // discard size 3343 } 3344 3345 3346 void TemplateTable::anewarray() { 3347 transition(itos, atos); 3348 __ get_unsigned_2_byte_index_at_bcp(rdx, 1); 3349 __ get_constant_pool(rcx); 3350 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), rcx, rdx, rax); 3351 } 3352 3353 3354 void TemplateTable::arraylength() { 3355 transition(atos, itos); 3356 __ null_check(rax, arrayOopDesc::length_offset_in_bytes()); 3357 __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes())); 3358 } 3359 3360 3361 void TemplateTable::checkcast() { 3362 transition(atos, atos); 3363 Label done, is_null, ok_is_subtype, quicked, resolved; 3364 __ testptr(rax, rax); // Object is in EAX 3365 __ jcc(Assembler::zero, is_null); 3366 3367 // Get cpool & tags index 3368 __ get_cpool_and_tags(rcx, rdx); // ECX=cpool, EDX=tags array 3369 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // EBX=index 3370 // See if bytecode has already been quicked 3371 __ cmpb(Address(rdx, rbx, Address::times_1, Array<u1>::base_offset_in_bytes()), JVM_CONSTANT_Class); 3372 __ jcc(Assembler::equal, quicked); 3373 3374 __ push(atos); 3375 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) ); 3376 // vm_result_2 has metadata result 3377 // borrow rdi from locals 3378 __ get_thread(rdi); 3379 __ get_vm_result_2(rax, rdi); 3380 __ restore_locals(); 3381 __ pop_ptr(rdx); 3382 __ jmpb(resolved); 3383 3384 // Get superklass in EAX and subklass in EBX 3385 __ bind(quicked); 3386 __ mov(rdx, rax); // Save object in EDX; EAX needed for subtype check 3387 __ movptr(rax, Address(rcx, rbx, Address::times_ptr, sizeof(ConstantPool))); 3388 3389 __ bind(resolved); 3390 __ load_klass(rbx, rdx); 3391 3392 // Generate subtype check. Blows ECX. Resets EDI. Object in EDX. 3393 // Superklass in EAX. Subklass in EBX. 3394 __ gen_subtype_check( rbx, ok_is_subtype ); 3395 3396 // Come here on failure 3397 __ push(rdx); 3398 // object is at TOS 3399 __ jump(ExternalAddress(Interpreter::_throw_ClassCastException_entry)); 3400 3401 // Come here on success 3402 __ bind(ok_is_subtype); 3403 __ mov(rax,rdx); // Restore object in EDX 3404 3405 // Collect counts on whether this check-cast sees NULLs a lot or not. 3406 if (ProfileInterpreter) { 3407 __ jmp(done); 3408 __ bind(is_null); 3409 __ profile_null_seen(rcx); 3410 } else { 3411 __ bind(is_null); // same as 'done' 3412 } 3413 __ bind(done); 3414 } 3415 3416 3417 void TemplateTable::instanceof() { 3418 transition(atos, itos); 3419 Label done, is_null, ok_is_subtype, quicked, resolved; 3420 __ testptr(rax, rax); 3421 __ jcc(Assembler::zero, is_null); 3422 3423 // Get cpool & tags index 3424 __ get_cpool_and_tags(rcx, rdx); // ECX=cpool, EDX=tags array 3425 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // EBX=index 3426 // See if bytecode has already been quicked 3427 __ cmpb(Address(rdx, rbx, Address::times_1, Array<u1>::base_offset_in_bytes()), JVM_CONSTANT_Class); 3428 __ jcc(Assembler::equal, quicked); 3429 3430 __ push(atos); 3431 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) ); 3432 // vm_result_2 has metadata result 3433 // borrow rdi from locals 3434 __ get_thread(rdi); 3435 __ get_vm_result_2(rax, rdi); 3436 __ restore_locals(); 3437 __ pop_ptr(rdx); 3438 __ load_klass(rdx, rdx); 3439 __ jmp(resolved); 3440 3441 // Get superklass in EAX and subklass in EDX 3442 __ bind(quicked); 3443 __ load_klass(rdx, rax); 3444 __ movptr(rax, Address(rcx, rbx, Address::times_ptr, sizeof(ConstantPool))); 3445 3446 __ bind(resolved); 3447 3448 // Generate subtype check. Blows ECX. Resets EDI. 3449 // Superklass in EAX. Subklass in EDX. 3450 __ gen_subtype_check( rdx, ok_is_subtype ); 3451 3452 // Come here on failure 3453 __ xorl(rax,rax); 3454 __ jmpb(done); 3455 // Come here on success 3456 __ bind(ok_is_subtype); 3457 __ movl(rax, 1); 3458 3459 // Collect counts on whether this test sees NULLs a lot or not. 3460 if (ProfileInterpreter) { 3461 __ jmp(done); 3462 __ bind(is_null); 3463 __ profile_null_seen(rcx); 3464 } else { 3465 __ bind(is_null); // same as 'done' 3466 } 3467 __ bind(done); 3468 // rax, = 0: obj == NULL or obj is not an instanceof the specified klass 3469 // rax, = 1: obj != NULL and obj is an instanceof the specified klass 3470 } 3471 3472 3473 //---------------------------------------------------------------------------------------------------- 3474 // Breakpoints 3475 void TemplateTable::_breakpoint() { 3476 3477 // Note: We get here even if we are single stepping.. 3478 // jbug inists on setting breakpoints at every bytecode 3479 // even if we are in single step mode. 3480 3481 transition(vtos, vtos); 3482 3483 // get the unpatched byte code 3484 __ get_method(rcx); 3485 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::get_original_bytecode_at), rcx, rsi); 3486 __ mov(rbx, rax); 3487 3488 // post the breakpoint event 3489 __ get_method(rcx); 3490 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), rcx, rsi); 3491 3492 // complete the execution of original bytecode 3493 __ dispatch_only_normal(vtos); 3494 } 3495 3496 3497 //---------------------------------------------------------------------------------------------------- 3498 // Exceptions 3499 3500 void TemplateTable::athrow() { 3501 transition(atos, vtos); 3502 __ null_check(rax); 3503 __ jump(ExternalAddress(Interpreter::throw_exception_entry())); 3504 } 3505 3506 3507 //---------------------------------------------------------------------------------------------------- 3508 // Synchronization 3509 // 3510 // Note: monitorenter & exit are symmetric routines; which is reflected 3511 // in the assembly code structure as well 3512 // 3513 // Stack layout: 3514 // 3515 // [expressions ] <--- rsp = expression stack top 3516 // .. 3517 // [expressions ] 3518 // [monitor entry] <--- monitor block top = expression stack bot 3519 // .. 3520 // [monitor entry] 3521 // [frame data ] <--- monitor block bot 3522 // ... 3523 // [saved rbp, ] <--- rbp, 3524 3525 3526 void TemplateTable::monitorenter() { 3527 transition(atos, vtos); 3528 3529 // check for NULL object 3530 __ null_check(rax); 3531 3532 const Address monitor_block_top(rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 3533 const Address monitor_block_bot(rbp, frame::interpreter_frame_initial_sp_offset * wordSize); 3534 const int entry_size = ( frame::interpreter_frame_monitor_size() * wordSize); 3535 Label allocated; 3536 3537 // initialize entry pointer 3538 __ xorl(rdx, rdx); // points to free slot or NULL 3539 3540 // find a free slot in the monitor block (result in rdx) 3541 { Label entry, loop, exit; 3542 __ movptr(rcx, monitor_block_top); // points to current entry, starting with top-most entry 3543 3544 __ lea(rbx, monitor_block_bot); // points to word before bottom of monitor block 3545 __ jmpb(entry); 3546 3547 __ bind(loop); 3548 __ cmpptr(Address(rcx, BasicObjectLock::obj_offset_in_bytes()), (int32_t)NULL_WORD); // check if current entry is used 3549 __ cmovptr(Assembler::equal, rdx, rcx); // if not used then remember entry in rdx 3550 __ cmpptr(rax, Address(rcx, BasicObjectLock::obj_offset_in_bytes())); // check if current entry is for same object 3551 __ jccb(Assembler::equal, exit); // if same object then stop searching 3552 __ addptr(rcx, entry_size); // otherwise advance to next entry 3553 __ bind(entry); 3554 __ cmpptr(rcx, rbx); // check if bottom reached 3555 __ jcc(Assembler::notEqual, loop); // if not at bottom then check this entry 3556 __ bind(exit); 3557 } 3558 3559 __ testptr(rdx, rdx); // check if a slot has been found 3560 __ jccb(Assembler::notZero, allocated); // if found, continue with that one 3561 3562 // allocate one if there's no free slot 3563 { Label entry, loop; 3564 // 1. compute new pointers // rsp: old expression stack top 3565 __ movptr(rdx, monitor_block_bot); // rdx: old expression stack bottom 3566 __ subptr(rsp, entry_size); // move expression stack top 3567 __ subptr(rdx, entry_size); // move expression stack bottom 3568 __ mov(rcx, rsp); // set start value for copy loop 3569 __ movptr(monitor_block_bot, rdx); // set new monitor block top 3570 __ jmp(entry); 3571 // 2. move expression stack contents 3572 __ bind(loop); 3573 __ movptr(rbx, Address(rcx, entry_size)); // load expression stack word from old location 3574 __ movptr(Address(rcx, 0), rbx); // and store it at new location 3575 __ addptr(rcx, wordSize); // advance to next word 3576 __ bind(entry); 3577 __ cmpptr(rcx, rdx); // check if bottom reached 3578 __ jcc(Assembler::notEqual, loop); // if not at bottom then copy next word 3579 } 3580 3581 // call run-time routine 3582 // rdx: points to monitor entry 3583 __ bind(allocated); 3584 3585 // Increment bcp to point to the next bytecode, so exception handling for async. exceptions work correctly. 3586 // The object has already been poped from the stack, so the expression stack looks correct. 3587 __ increment(rsi); 3588 3589 __ movptr(Address(rdx, BasicObjectLock::obj_offset_in_bytes()), rax); // store object 3590 __ lock_object(rdx); 3591 3592 // check to make sure this monitor doesn't cause stack overflow after locking 3593 __ save_bcp(); // in case of exception 3594 __ generate_stack_overflow_check(0); 3595 3596 // The bcp has already been incremented. Just need to dispatch to next instruction. 3597 __ dispatch_next(vtos); 3598 } 3599 3600 3601 void TemplateTable::monitorexit() { 3602 transition(atos, vtos); 3603 3604 // check for NULL object 3605 __ null_check(rax); 3606 3607 const Address monitor_block_top(rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 3608 const Address monitor_block_bot(rbp, frame::interpreter_frame_initial_sp_offset * wordSize); 3609 const int entry_size = ( frame::interpreter_frame_monitor_size() * wordSize); 3610 Label found; 3611 3612 // find matching slot 3613 { Label entry, loop; 3614 __ movptr(rdx, monitor_block_top); // points to current entry, starting with top-most entry 3615 __ lea(rbx, monitor_block_bot); // points to word before bottom of monitor block 3616 __ jmpb(entry); 3617 3618 __ bind(loop); 3619 __ cmpptr(rax, Address(rdx, BasicObjectLock::obj_offset_in_bytes())); // check if current entry is for same object 3620 __ jcc(Assembler::equal, found); // if same object then stop searching 3621 __ addptr(rdx, entry_size); // otherwise advance to next entry 3622 __ bind(entry); 3623 __ cmpptr(rdx, rbx); // check if bottom reached 3624 __ jcc(Assembler::notEqual, loop); // if not at bottom then check this entry 3625 } 3626 3627 // error handling. Unlocking was not block-structured 3628 Label end; 3629 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception)); 3630 __ should_not_reach_here(); 3631 3632 // call run-time routine 3633 // rcx: points to monitor entry 3634 __ bind(found); 3635 __ push_ptr(rax); // make sure object is on stack (contract with oopMaps) 3636 __ unlock_object(rdx); 3637 __ pop_ptr(rax); // discard object 3638 __ bind(end); 3639 } 3640 3641 3642 //---------------------------------------------------------------------------------------------------- 3643 // Wide instructions 3644 3645 void TemplateTable::wide() { 3646 transition(vtos, vtos); 3647 __ load_unsigned_byte(rbx, at_bcp(1)); 3648 ExternalAddress wtable((address)Interpreter::_wentry_point); 3649 __ jump(ArrayAddress(wtable, Address(noreg, rbx, Address::times_ptr))); 3650 // Note: the rsi increment step is part of the individual wide bytecode implementations 3651 } 3652 3653 3654 //---------------------------------------------------------------------------------------------------- 3655 // Multi arrays 3656 3657 void TemplateTable::multianewarray() { 3658 transition(vtos, atos); 3659 __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions 3660 // last dim is on top of stack; we want address of first one: 3661 // first_addr = last_addr + (ndims - 1) * stackElementSize - 1*wordsize 3662 // the latter wordSize to point to the beginning of the array. 3663 __ lea( rax, Address(rsp, rax, Interpreter::stackElementScale(), -wordSize)); 3664 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), rax); // pass in rax, 3665 __ load_unsigned_byte(rbx, at_bcp(3)); 3666 __ lea(rsp, Address(rsp, rbx, Interpreter::stackElementScale())); // get rid of counts 3667 } 3668 3669 #endif /* !CC_INTERP */