1 /* 2 * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "interpreter/interpreter.hpp" 27 #include "interpreter/interpreterRuntime.hpp" 28 #include "interpreter/interp_masm.hpp" 29 #include "interpreter/templateTable.hpp" 30 #include "memory/universe.inline.hpp" 31 #include "oops/methodData.hpp" 32 #include "oops/objArrayKlass.hpp" 33 #include "oops/oop.inline.hpp" 34 #include "prims/methodHandles.hpp" 35 #include "runtime/sharedRuntime.hpp" 36 #include "runtime/stubRoutines.hpp" 37 #include "runtime/synchronizer.hpp" 38 #include "utilities/macros.hpp" 39 40 #ifndef CC_INTERP 41 #define __ _masm-> 42 43 // Misc helpers 44 45 // Do an oop store like *(base + index + offset) = val 46 // index can be noreg, 47 static void do_oop_store(InterpreterMacroAssembler* _masm, 48 Register base, 49 Register index, 50 int offset, 51 Register val, 52 Register tmp, 53 BarrierSet::Name barrier, 54 bool precise) { 55 assert(tmp != val && tmp != base && tmp != index, "register collision"); 56 assert(index == noreg || offset == 0, "only one offset"); 57 switch (barrier) { 58 #if INCLUDE_ALL_GCS 59 case BarrierSet::G1SATBCT: 60 case BarrierSet::G1SATBCTLogging: 61 { 62 // Load and record the previous value. 63 __ g1_write_barrier_pre(base, index, offset, 64 noreg /* pre_val */, 65 tmp, true /*preserve_o_regs*/); 66 67 // G1 barrier needs uncompressed oop for region cross check. 68 Register new_val = val; 69 if (UseCompressedOops && val != G0) { 70 new_val = tmp; 71 __ mov(val, new_val); 72 } 73 74 if (index == noreg ) { 75 assert(Assembler::is_simm13(offset), "fix this code"); 76 __ store_heap_oop(val, base, offset); 77 } else { 78 __ store_heap_oop(val, base, index); 79 } 80 81 // No need for post barrier if storing NULL 82 if (val != G0) { 83 if (precise) { 84 if (index == noreg) { 85 __ add(base, offset, base); 86 } else { 87 __ add(base, index, base); 88 } 89 } 90 __ g1_write_barrier_post(base, new_val, tmp); 91 } 92 } 93 break; 94 #endif // INCLUDE_ALL_GCS 95 case BarrierSet::CardTableModRef: 96 case BarrierSet::CardTableExtension: 97 { 98 if (index == noreg ) { 99 assert(Assembler::is_simm13(offset), "fix this code"); 100 __ store_heap_oop(val, base, offset); 101 } else { 102 __ store_heap_oop(val, base, index); 103 } 104 // No need for post barrier if storing NULL 105 if (val != G0) { 106 if (precise) { 107 if (index == noreg) { 108 __ add(base, offset, base); 109 } else { 110 __ add(base, index, base); 111 } 112 } 113 __ card_write_barrier_post(base, val, tmp); 114 } 115 } 116 break; 117 case BarrierSet::ModRef: 118 ShouldNotReachHere(); 119 break; 120 default : 121 ShouldNotReachHere(); 122 123 } 124 } 125 126 127 //---------------------------------------------------------------------------------------------------- 128 // Platform-dependent initialization 129 130 void TemplateTable::pd_initialize() { 131 // (none) 132 } 133 134 135 //---------------------------------------------------------------------------------------------------- 136 // Condition conversion 137 Assembler::Condition ccNot(TemplateTable::Condition cc) { 138 switch (cc) { 139 case TemplateTable::equal : return Assembler::notEqual; 140 case TemplateTable::not_equal : return Assembler::equal; 141 case TemplateTable::less : return Assembler::greaterEqual; 142 case TemplateTable::less_equal : return Assembler::greater; 143 case TemplateTable::greater : return Assembler::lessEqual; 144 case TemplateTable::greater_equal: return Assembler::less; 145 } 146 ShouldNotReachHere(); 147 return Assembler::zero; 148 } 149 150 //---------------------------------------------------------------------------------------------------- 151 // Miscelaneous helper routines 152 153 154 Address TemplateTable::at_bcp(int offset) { 155 assert(_desc->uses_bcp(), "inconsistent uses_bcp information"); 156 return Address(Lbcp, offset); 157 } 158 159 160 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg, 161 Register temp_reg, bool load_bc_into_bc_reg/*=true*/, 162 int byte_no) { 163 // With sharing on, may need to test Method* flag. 164 if (!RewriteBytecodes) return; 165 Label L_patch_done; 166 167 switch (bc) { 168 case Bytecodes::_fast_aputfield: 169 case Bytecodes::_fast_bputfield: 170 case Bytecodes::_fast_cputfield: 171 case Bytecodes::_fast_dputfield: 172 case Bytecodes::_fast_fputfield: 173 case Bytecodes::_fast_iputfield: 174 case Bytecodes::_fast_lputfield: 175 case Bytecodes::_fast_sputfield: 176 { 177 // We skip bytecode quickening for putfield instructions when 178 // the put_code written to the constant pool cache is zero. 179 // This is required so that every execution of this instruction 180 // calls out to InterpreterRuntime::resolve_get_put to do 181 // additional, required work. 182 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 183 assert(load_bc_into_bc_reg, "we use bc_reg as temp"); 184 __ get_cache_and_index_and_bytecode_at_bcp(bc_reg, temp_reg, temp_reg, byte_no, 1); 185 __ set(bc, bc_reg); 186 __ cmp_and_br_short(temp_reg, 0, Assembler::equal, Assembler::pn, L_patch_done); // don't patch 187 } 188 break; 189 default: 190 assert(byte_no == -1, "sanity"); 191 if (load_bc_into_bc_reg) { 192 __ set(bc, bc_reg); 193 } 194 } 195 196 if (JvmtiExport::can_post_breakpoint()) { 197 Label L_fast_patch; 198 __ ldub(at_bcp(0), temp_reg); 199 __ cmp_and_br_short(temp_reg, Bytecodes::_breakpoint, Assembler::notEqual, Assembler::pt, L_fast_patch); 200 // perform the quickening, slowly, in the bowels of the breakpoint table 201 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), Lmethod, Lbcp, bc_reg); 202 __ ba_short(L_patch_done); 203 __ bind(L_fast_patch); 204 } 205 206 #ifdef ASSERT 207 Bytecodes::Code orig_bytecode = Bytecodes::java_code(bc); 208 Label L_okay; 209 __ ldub(at_bcp(0), temp_reg); 210 __ cmp(temp_reg, orig_bytecode); 211 __ br(Assembler::equal, false, Assembler::pt, L_okay); 212 __ delayed()->cmp(temp_reg, bc_reg); 213 __ br(Assembler::equal, false, Assembler::pt, L_okay); 214 __ delayed()->nop(); 215 __ stop("patching the wrong bytecode"); 216 __ bind(L_okay); 217 #endif 218 219 // patch bytecode 220 __ stb(bc_reg, at_bcp(0)); 221 __ bind(L_patch_done); 222 } 223 224 //---------------------------------------------------------------------------------------------------- 225 // Individual instructions 226 227 void TemplateTable::nop() { 228 transition(vtos, vtos); 229 // nothing to do 230 } 231 232 void TemplateTable::shouldnotreachhere() { 233 transition(vtos, vtos); 234 __ stop("shouldnotreachhere bytecode"); 235 } 236 237 void TemplateTable::aconst_null() { 238 transition(vtos, atos); 239 __ clr(Otos_i); 240 } 241 242 243 void TemplateTable::iconst(int value) { 244 transition(vtos, itos); 245 __ set(value, Otos_i); 246 } 247 248 249 void TemplateTable::lconst(int value) { 250 transition(vtos, ltos); 251 assert(value >= 0, "check this code"); 252 #ifdef _LP64 253 __ set(value, Otos_l); 254 #else 255 __ set(value, Otos_l2); 256 __ clr( Otos_l1); 257 #endif 258 } 259 260 261 void TemplateTable::fconst(int value) { 262 transition(vtos, ftos); 263 static float zero = 0.0, one = 1.0, two = 2.0; 264 float* p; 265 switch( value ) { 266 default: ShouldNotReachHere(); 267 case 0: p = &zero; break; 268 case 1: p = &one; break; 269 case 2: p = &two; break; 270 } 271 AddressLiteral a(p); 272 __ sethi(a, G3_scratch); 273 __ ldf(FloatRegisterImpl::S, G3_scratch, a.low10(), Ftos_f); 274 } 275 276 277 void TemplateTable::dconst(int value) { 278 transition(vtos, dtos); 279 static double zero = 0.0, one = 1.0; 280 double* p; 281 switch( value ) { 282 default: ShouldNotReachHere(); 283 case 0: p = &zero; break; 284 case 1: p = &one; break; 285 } 286 AddressLiteral a(p); 287 __ sethi(a, G3_scratch); 288 __ ldf(FloatRegisterImpl::D, G3_scratch, a.low10(), Ftos_d); 289 } 290 291 292 // %%%%% Should factore most snippet templates across platforms 293 294 void TemplateTable::bipush() { 295 transition(vtos, itos); 296 __ ldsb( at_bcp(1), Otos_i ); 297 } 298 299 void TemplateTable::sipush() { 300 transition(vtos, itos); 301 __ get_2_byte_integer_at_bcp(1, G3_scratch, Otos_i, InterpreterMacroAssembler::Signed); 302 } 303 304 void TemplateTable::ldc(bool wide) { 305 transition(vtos, vtos); 306 Label call_ldc, notInt, isString, notString, notClass, exit; 307 308 if (wide) { 309 __ get_2_byte_integer_at_bcp(1, G3_scratch, O1, InterpreterMacroAssembler::Unsigned); 310 } else { 311 __ ldub(Lbcp, 1, O1); 312 } 313 __ get_cpool_and_tags(O0, O2); 314 315 const int base_offset = ConstantPool::header_size() * wordSize; 316 const int tags_offset = Array<u1>::base_offset_in_bytes(); 317 318 // get type from tags 319 __ add(O2, tags_offset, O2); 320 __ ldub(O2, O1, O2); 321 322 // unresolved class? If so, must resolve 323 __ cmp_and_brx_short(O2, JVM_CONSTANT_UnresolvedClass, Assembler::equal, Assembler::pt, call_ldc); 324 325 // unresolved class in error state 326 __ cmp_and_brx_short(O2, JVM_CONSTANT_UnresolvedClassInError, Assembler::equal, Assembler::pn, call_ldc); 327 328 __ cmp(O2, JVM_CONSTANT_Class); // need to call vm to get java mirror of the class 329 __ brx(Assembler::notEqual, true, Assembler::pt, notClass); 330 __ delayed()->add(O0, base_offset, O0); 331 332 __ bind(call_ldc); 333 __ set(wide, O1); 334 call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), O1); 335 __ push(atos); 336 __ ba_short(exit); 337 338 __ bind(notClass); 339 // __ add(O0, base_offset, O0); 340 __ sll(O1, LogBytesPerWord, O1); 341 __ cmp(O2, JVM_CONSTANT_Integer); 342 __ brx(Assembler::notEqual, true, Assembler::pt, notInt); 343 __ delayed()->cmp(O2, JVM_CONSTANT_String); 344 __ ld(O0, O1, Otos_i); 345 __ push(itos); 346 __ ba_short(exit); 347 348 __ bind(notInt); 349 // __ cmp(O2, JVM_CONSTANT_String); 350 __ brx(Assembler::notEqual, true, Assembler::pt, notString); 351 __ delayed()->ldf(FloatRegisterImpl::S, O0, O1, Ftos_f); 352 __ bind(isString); 353 __ stop("string should be rewritten to fast_aldc"); 354 __ ba_short(exit); 355 356 __ bind(notString); 357 // __ ldf(FloatRegisterImpl::S, O0, O1, Ftos_f); 358 __ push(ftos); 359 360 __ bind(exit); 361 } 362 363 // Fast path for caching oop constants. 364 // %%% We should use this to handle Class and String constants also. 365 // %%% It will simplify the ldc/primitive path considerably. 366 void TemplateTable::fast_aldc(bool wide) { 367 transition(vtos, atos); 368 369 int index_size = wide ? sizeof(u2) : sizeof(u1); 370 Label resolved; 371 372 // We are resolved if the resolved reference cache entry contains a 373 // non-null object (CallSite, etc.) 374 assert_different_registers(Otos_i, G3_scratch); 375 __ get_cache_index_at_bcp(Otos_i, G3_scratch, 1, index_size); // load index => G3_scratch 376 __ load_resolved_reference_at_index(Otos_i, G3_scratch); 377 __ tst(Otos_i); 378 __ br(Assembler::notEqual, false, Assembler::pt, resolved); 379 __ delayed()->set((int)bytecode(), O1); 380 381 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc); 382 383 // first time invocation - must resolve first 384 __ call_VM(Otos_i, entry, O1); 385 __ bind(resolved); 386 __ verify_oop(Otos_i); 387 } 388 389 390 void TemplateTable::ldc2_w() { 391 transition(vtos, vtos); 392 Label Long, exit; 393 394 __ get_2_byte_integer_at_bcp(1, G3_scratch, O1, InterpreterMacroAssembler::Unsigned); 395 __ get_cpool_and_tags(O0, O2); 396 397 const int base_offset = ConstantPool::header_size() * wordSize; 398 const int tags_offset = Array<u1>::base_offset_in_bytes(); 399 // get type from tags 400 __ add(O2, tags_offset, O2); 401 __ ldub(O2, O1, O2); 402 403 __ sll(O1, LogBytesPerWord, O1); 404 __ add(O0, O1, G3_scratch); 405 406 __ cmp_and_brx_short(O2, JVM_CONSTANT_Double, Assembler::notEqual, Assembler::pt, Long); 407 // A double can be placed at word-aligned locations in the constant pool. 408 // Check out Conversions.java for an example. 409 // Also ConstantPool::header_size() is 20, which makes it very difficult 410 // to double-align double on the constant pool. SG, 11/7/97 411 #ifdef _LP64 412 __ ldf(FloatRegisterImpl::D, G3_scratch, base_offset, Ftos_d); 413 #else 414 FloatRegister f = Ftos_d; 415 __ ldf(FloatRegisterImpl::S, G3_scratch, base_offset, f); 416 __ ldf(FloatRegisterImpl::S, G3_scratch, base_offset + sizeof(jdouble)/2, 417 f->successor()); 418 #endif 419 __ push(dtos); 420 __ ba_short(exit); 421 422 __ bind(Long); 423 #ifdef _LP64 424 __ ldx(G3_scratch, base_offset, Otos_l); 425 #else 426 __ ld(G3_scratch, base_offset, Otos_l); 427 __ ld(G3_scratch, base_offset + sizeof(jlong)/2, Otos_l->successor()); 428 #endif 429 __ push(ltos); 430 431 __ bind(exit); 432 } 433 434 435 void TemplateTable::locals_index(Register reg, int offset) { 436 __ ldub( at_bcp(offset), reg ); 437 } 438 439 440 void TemplateTable::locals_index_wide(Register reg) { 441 // offset is 2, not 1, because Lbcp points to wide prefix code 442 __ get_2_byte_integer_at_bcp(2, G4_scratch, reg, InterpreterMacroAssembler::Unsigned); 443 } 444 445 void TemplateTable::iload() { 446 transition(vtos, itos); 447 // Rewrite iload,iload pair into fast_iload2 448 // iload,caload pair into fast_icaload 449 if (RewriteFrequentPairs) { 450 Label rewrite, done; 451 452 // get next byte 453 __ ldub(at_bcp(Bytecodes::length_for(Bytecodes::_iload)), G3_scratch); 454 455 // if _iload, wait to rewrite to iload2. We only want to rewrite the 456 // last two iloads in a pair. Comparing against fast_iload means that 457 // the next bytecode is neither an iload or a caload, and therefore 458 // an iload pair. 459 __ cmp_and_br_short(G3_scratch, (int)Bytecodes::_iload, Assembler::equal, Assembler::pn, done); 460 461 __ cmp(G3_scratch, (int)Bytecodes::_fast_iload); 462 __ br(Assembler::equal, false, Assembler::pn, rewrite); 463 __ delayed()->set(Bytecodes::_fast_iload2, G4_scratch); 464 465 __ cmp(G3_scratch, (int)Bytecodes::_caload); 466 __ br(Assembler::equal, false, Assembler::pn, rewrite); 467 __ delayed()->set(Bytecodes::_fast_icaload, G4_scratch); 468 469 __ set(Bytecodes::_fast_iload, G4_scratch); // don't check again 470 // rewrite 471 // G4_scratch: fast bytecode 472 __ bind(rewrite); 473 patch_bytecode(Bytecodes::_iload, G4_scratch, G3_scratch, false); 474 __ bind(done); 475 } 476 477 // Get the local value into tos 478 locals_index(G3_scratch); 479 __ access_local_int( G3_scratch, Otos_i ); 480 } 481 482 void TemplateTable::fast_iload2() { 483 transition(vtos, itos); 484 locals_index(G3_scratch); 485 __ access_local_int( G3_scratch, Otos_i ); 486 __ push_i(); 487 locals_index(G3_scratch, 3); // get next bytecode's local index. 488 __ access_local_int( G3_scratch, Otos_i ); 489 } 490 491 void TemplateTable::fast_iload() { 492 transition(vtos, itos); 493 locals_index(G3_scratch); 494 __ access_local_int( G3_scratch, Otos_i ); 495 } 496 497 void TemplateTable::lload() { 498 transition(vtos, ltos); 499 locals_index(G3_scratch); 500 __ access_local_long( G3_scratch, Otos_l ); 501 } 502 503 504 void TemplateTable::fload() { 505 transition(vtos, ftos); 506 locals_index(G3_scratch); 507 __ access_local_float( G3_scratch, Ftos_f ); 508 } 509 510 511 void TemplateTable::dload() { 512 transition(vtos, dtos); 513 locals_index(G3_scratch); 514 __ access_local_double( G3_scratch, Ftos_d ); 515 } 516 517 518 void TemplateTable::aload() { 519 transition(vtos, atos); 520 locals_index(G3_scratch); 521 __ access_local_ptr( G3_scratch, Otos_i); 522 } 523 524 525 void TemplateTable::wide_iload() { 526 transition(vtos, itos); 527 locals_index_wide(G3_scratch); 528 __ access_local_int( G3_scratch, Otos_i ); 529 } 530 531 532 void TemplateTable::wide_lload() { 533 transition(vtos, ltos); 534 locals_index_wide(G3_scratch); 535 __ access_local_long( G3_scratch, Otos_l ); 536 } 537 538 539 void TemplateTable::wide_fload() { 540 transition(vtos, ftos); 541 locals_index_wide(G3_scratch); 542 __ access_local_float( G3_scratch, Ftos_f ); 543 } 544 545 546 void TemplateTable::wide_dload() { 547 transition(vtos, dtos); 548 locals_index_wide(G3_scratch); 549 __ access_local_double( G3_scratch, Ftos_d ); 550 } 551 552 553 void TemplateTable::wide_aload() { 554 transition(vtos, atos); 555 locals_index_wide(G3_scratch); 556 __ access_local_ptr( G3_scratch, Otos_i ); 557 __ verify_oop(Otos_i); 558 } 559 560 561 void TemplateTable::iaload() { 562 transition(itos, itos); 563 // Otos_i: index 564 // tos: array 565 __ index_check(O2, Otos_i, LogBytesPerInt, G3_scratch, O3); 566 __ ld(O3, arrayOopDesc::base_offset_in_bytes(T_INT), Otos_i); 567 } 568 569 570 void TemplateTable::laload() { 571 transition(itos, ltos); 572 // Otos_i: index 573 // O2: array 574 __ index_check(O2, Otos_i, LogBytesPerLong, G3_scratch, O3); 575 __ ld_long(O3, arrayOopDesc::base_offset_in_bytes(T_LONG), Otos_l); 576 } 577 578 579 void TemplateTable::faload() { 580 transition(itos, ftos); 581 // Otos_i: index 582 // O2: array 583 __ index_check(O2, Otos_i, LogBytesPerInt, G3_scratch, O3); 584 __ ldf(FloatRegisterImpl::S, O3, arrayOopDesc::base_offset_in_bytes(T_FLOAT), Ftos_f); 585 } 586 587 588 void TemplateTable::daload() { 589 transition(itos, dtos); 590 // Otos_i: index 591 // O2: array 592 __ index_check(O2, Otos_i, LogBytesPerLong, G3_scratch, O3); 593 __ ldf(FloatRegisterImpl::D, O3, arrayOopDesc::base_offset_in_bytes(T_DOUBLE), Ftos_d); 594 } 595 596 597 void TemplateTable::aaload() { 598 transition(itos, atos); 599 // Otos_i: index 600 // tos: array 601 __ index_check(O2, Otos_i, UseCompressedOops ? 2 : LogBytesPerWord, G3_scratch, O3); 602 __ load_heap_oop(O3, arrayOopDesc::base_offset_in_bytes(T_OBJECT), Otos_i); 603 __ verify_oop(Otos_i); 604 } 605 606 607 void TemplateTable::baload() { 608 transition(itos, itos); 609 // Otos_i: index 610 // tos: array 611 __ index_check(O2, Otos_i, 0, G3_scratch, O3); 612 __ ldsb(O3, arrayOopDesc::base_offset_in_bytes(T_BYTE), Otos_i); 613 } 614 615 616 void TemplateTable::caload() { 617 transition(itos, itos); 618 // Otos_i: index 619 // tos: array 620 __ index_check(O2, Otos_i, LogBytesPerShort, G3_scratch, O3); 621 __ lduh(O3, arrayOopDesc::base_offset_in_bytes(T_CHAR), Otos_i); 622 } 623 624 void TemplateTable::fast_icaload() { 625 transition(vtos, itos); 626 // Otos_i: index 627 // tos: array 628 locals_index(G3_scratch); 629 __ access_local_int( G3_scratch, Otos_i ); 630 __ index_check(O2, Otos_i, LogBytesPerShort, G3_scratch, O3); 631 __ lduh(O3, arrayOopDesc::base_offset_in_bytes(T_CHAR), Otos_i); 632 } 633 634 635 void TemplateTable::saload() { 636 transition(itos, itos); 637 // Otos_i: index 638 // tos: array 639 __ index_check(O2, Otos_i, LogBytesPerShort, G3_scratch, O3); 640 __ ldsh(O3, arrayOopDesc::base_offset_in_bytes(T_SHORT), Otos_i); 641 } 642 643 644 void TemplateTable::iload(int n) { 645 transition(vtos, itos); 646 __ ld( Llocals, Interpreter::local_offset_in_bytes(n), Otos_i ); 647 } 648 649 650 void TemplateTable::lload(int n) { 651 transition(vtos, ltos); 652 assert(n+1 < Argument::n_register_parameters, "would need more code"); 653 __ load_unaligned_long(Llocals, Interpreter::local_offset_in_bytes(n+1), Otos_l); 654 } 655 656 657 void TemplateTable::fload(int n) { 658 transition(vtos, ftos); 659 assert(n < Argument::n_register_parameters, "would need more code"); 660 __ ldf( FloatRegisterImpl::S, Llocals, Interpreter::local_offset_in_bytes(n), Ftos_f ); 661 } 662 663 664 void TemplateTable::dload(int n) { 665 transition(vtos, dtos); 666 FloatRegister dst = Ftos_d; 667 __ load_unaligned_double(Llocals, Interpreter::local_offset_in_bytes(n+1), dst); 668 } 669 670 671 void TemplateTable::aload(int n) { 672 transition(vtos, atos); 673 __ ld_ptr( Llocals, Interpreter::local_offset_in_bytes(n), Otos_i ); 674 } 675 676 677 void TemplateTable::aload_0() { 678 transition(vtos, atos); 679 680 // According to bytecode histograms, the pairs: 681 // 682 // _aload_0, _fast_igetfield (itos) 683 // _aload_0, _fast_agetfield (atos) 684 // _aload_0, _fast_fgetfield (ftos) 685 // 686 // occur frequently. If RewriteFrequentPairs is set, the (slow) _aload_0 687 // bytecode checks the next bytecode and then rewrites the current 688 // bytecode into a pair bytecode; otherwise it rewrites the current 689 // bytecode into _fast_aload_0 that doesn't do the pair check anymore. 690 // 691 if (RewriteFrequentPairs) { 692 Label rewrite, done; 693 694 // get next byte 695 __ ldub(at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)), G3_scratch); 696 697 // do actual aload_0 698 aload(0); 699 700 // if _getfield then wait with rewrite 701 __ cmp_and_br_short(G3_scratch, (int)Bytecodes::_getfield, Assembler::equal, Assembler::pn, done); 702 703 // if _igetfield then rewrite to _fast_iaccess_0 704 assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "adjust fast bytecode def"); 705 __ cmp(G3_scratch, (int)Bytecodes::_fast_igetfield); 706 __ br(Assembler::equal, false, Assembler::pn, rewrite); 707 __ delayed()->set(Bytecodes::_fast_iaccess_0, G4_scratch); 708 709 // if _agetfield then rewrite to _fast_aaccess_0 710 assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "adjust fast bytecode def"); 711 __ cmp(G3_scratch, (int)Bytecodes::_fast_agetfield); 712 __ br(Assembler::equal, false, Assembler::pn, rewrite); 713 __ delayed()->set(Bytecodes::_fast_aaccess_0, G4_scratch); 714 715 // if _fgetfield then rewrite to _fast_faccess_0 716 assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "adjust fast bytecode def"); 717 __ cmp(G3_scratch, (int)Bytecodes::_fast_fgetfield); 718 __ br(Assembler::equal, false, Assembler::pn, rewrite); 719 __ delayed()->set(Bytecodes::_fast_faccess_0, G4_scratch); 720 721 // else rewrite to _fast_aload0 722 assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "adjust fast bytecode def"); 723 __ set(Bytecodes::_fast_aload_0, G4_scratch); 724 725 // rewrite 726 // G4_scratch: fast bytecode 727 __ bind(rewrite); 728 patch_bytecode(Bytecodes::_aload_0, G4_scratch, G3_scratch, false); 729 __ bind(done); 730 } else { 731 aload(0); 732 } 733 } 734 735 736 void TemplateTable::istore() { 737 transition(itos, vtos); 738 locals_index(G3_scratch); 739 __ store_local_int( G3_scratch, Otos_i ); 740 } 741 742 743 void TemplateTable::lstore() { 744 transition(ltos, vtos); 745 locals_index(G3_scratch); 746 __ store_local_long( G3_scratch, Otos_l ); 747 } 748 749 750 void TemplateTable::fstore() { 751 transition(ftos, vtos); 752 locals_index(G3_scratch); 753 __ store_local_float( G3_scratch, Ftos_f ); 754 } 755 756 757 void TemplateTable::dstore() { 758 transition(dtos, vtos); 759 locals_index(G3_scratch); 760 __ store_local_double( G3_scratch, Ftos_d ); 761 } 762 763 764 void TemplateTable::astore() { 765 transition(vtos, vtos); 766 __ load_ptr(0, Otos_i); 767 __ inc(Lesp, Interpreter::stackElementSize); 768 __ verify_oop_or_return_address(Otos_i, G3_scratch); 769 locals_index(G3_scratch); 770 __ store_local_ptr(G3_scratch, Otos_i); 771 } 772 773 774 void TemplateTable::wide_istore() { 775 transition(vtos, vtos); 776 __ pop_i(); 777 locals_index_wide(G3_scratch); 778 __ store_local_int( G3_scratch, Otos_i ); 779 } 780 781 782 void TemplateTable::wide_lstore() { 783 transition(vtos, vtos); 784 __ pop_l(); 785 locals_index_wide(G3_scratch); 786 __ store_local_long( G3_scratch, Otos_l ); 787 } 788 789 790 void TemplateTable::wide_fstore() { 791 transition(vtos, vtos); 792 __ pop_f(); 793 locals_index_wide(G3_scratch); 794 __ store_local_float( G3_scratch, Ftos_f ); 795 } 796 797 798 void TemplateTable::wide_dstore() { 799 transition(vtos, vtos); 800 __ pop_d(); 801 locals_index_wide(G3_scratch); 802 __ store_local_double( G3_scratch, Ftos_d ); 803 } 804 805 806 void TemplateTable::wide_astore() { 807 transition(vtos, vtos); 808 __ load_ptr(0, Otos_i); 809 __ inc(Lesp, Interpreter::stackElementSize); 810 __ verify_oop_or_return_address(Otos_i, G3_scratch); 811 locals_index_wide(G3_scratch); 812 __ store_local_ptr(G3_scratch, Otos_i); 813 } 814 815 816 void TemplateTable::iastore() { 817 transition(itos, vtos); 818 __ pop_i(O2); // index 819 // Otos_i: val 820 // O3: array 821 __ index_check(O3, O2, LogBytesPerInt, G3_scratch, O2); 822 __ st(Otos_i, O2, arrayOopDesc::base_offset_in_bytes(T_INT)); 823 } 824 825 826 void TemplateTable::lastore() { 827 transition(ltos, vtos); 828 __ pop_i(O2); // index 829 // Otos_l: val 830 // O3: array 831 __ index_check(O3, O2, LogBytesPerLong, G3_scratch, O2); 832 __ st_long(Otos_l, O2, arrayOopDesc::base_offset_in_bytes(T_LONG)); 833 } 834 835 836 void TemplateTable::fastore() { 837 transition(ftos, vtos); 838 __ pop_i(O2); // index 839 // Ftos_f: val 840 // O3: array 841 __ index_check(O3, O2, LogBytesPerInt, G3_scratch, O2); 842 __ stf(FloatRegisterImpl::S, Ftos_f, O2, arrayOopDesc::base_offset_in_bytes(T_FLOAT)); 843 } 844 845 846 void TemplateTable::dastore() { 847 transition(dtos, vtos); 848 __ pop_i(O2); // index 849 // Fos_d: val 850 // O3: array 851 __ index_check(O3, O2, LogBytesPerLong, G3_scratch, O2); 852 __ stf(FloatRegisterImpl::D, Ftos_d, O2, arrayOopDesc::base_offset_in_bytes(T_DOUBLE)); 853 } 854 855 856 void TemplateTable::aastore() { 857 Label store_ok, is_null, done; 858 transition(vtos, vtos); 859 __ ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), Otos_i); 860 __ ld(Lesp, Interpreter::expr_offset_in_bytes(1), O2); // get index 861 __ ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(2), O3); // get array 862 // Otos_i: val 863 // O2: index 864 // O3: array 865 __ verify_oop(Otos_i); 866 __ index_check_without_pop(O3, O2, UseCompressedOops ? 2 : LogBytesPerWord, G3_scratch, O1); 867 868 // do array store check - check for NULL value first 869 __ br_null_short( Otos_i, Assembler::pn, is_null ); 870 871 __ load_klass(O3, O4); // get array klass 872 __ load_klass(Otos_i, O5); // get value klass 873 874 // do fast instanceof cache test 875 876 __ ld_ptr(O4, in_bytes(ObjArrayKlass::element_klass_offset()), O4); 877 878 assert(Otos_i == O0, "just checking"); 879 880 // Otos_i: value 881 // O1: addr - offset 882 // O2: index 883 // O3: array 884 // O4: array element klass 885 // O5: value klass 886 887 // Address element(O1, 0, arrayOopDesc::base_offset_in_bytes(T_OBJECT)); 888 889 // Generate a fast subtype check. Branch to store_ok if no 890 // failure. Throw if failure. 891 __ gen_subtype_check( O5, O4, G3_scratch, G4_scratch, G1_scratch, store_ok ); 892 893 // Not a subtype; so must throw exception 894 __ throw_if_not_x( Assembler::never, Interpreter::_throw_ArrayStoreException_entry, G3_scratch ); 895 896 // Store is OK. 897 __ bind(store_ok); 898 do_oop_store(_masm, O1, noreg, arrayOopDesc::base_offset_in_bytes(T_OBJECT), Otos_i, G3_scratch, _bs->kind(), true); 899 900 __ ba(done); 901 __ delayed()->inc(Lesp, 3* Interpreter::stackElementSize); // adj sp (pops array, index and value) 902 903 __ bind(is_null); 904 do_oop_store(_masm, O1, noreg, arrayOopDesc::base_offset_in_bytes(T_OBJECT), G0, G4_scratch, _bs->kind(), true); 905 906 __ profile_null_seen(G3_scratch); 907 __ inc(Lesp, 3* Interpreter::stackElementSize); // adj sp (pops array, index and value) 908 __ bind(done); 909 } 910 911 912 void TemplateTable::bastore() { 913 transition(itos, vtos); 914 __ pop_i(O2); // index 915 // Otos_i: val 916 // O3: array 917 __ index_check(O3, O2, 0, G3_scratch, O2); 918 __ stb(Otos_i, O2, arrayOopDesc::base_offset_in_bytes(T_BYTE)); 919 } 920 921 922 void TemplateTable::castore() { 923 transition(itos, vtos); 924 __ pop_i(O2); // index 925 // Otos_i: val 926 // O3: array 927 __ index_check(O3, O2, LogBytesPerShort, G3_scratch, O2); 928 __ sth(Otos_i, O2, arrayOopDesc::base_offset_in_bytes(T_CHAR)); 929 } 930 931 932 void TemplateTable::sastore() { 933 // %%%%% Factor across platform 934 castore(); 935 } 936 937 938 void TemplateTable::istore(int n) { 939 transition(itos, vtos); 940 __ st(Otos_i, Llocals, Interpreter::local_offset_in_bytes(n)); 941 } 942 943 944 void TemplateTable::lstore(int n) { 945 transition(ltos, vtos); 946 assert(n+1 < Argument::n_register_parameters, "only handle register cases"); 947 __ store_unaligned_long(Otos_l, Llocals, Interpreter::local_offset_in_bytes(n+1)); 948 949 } 950 951 952 void TemplateTable::fstore(int n) { 953 transition(ftos, vtos); 954 assert(n < Argument::n_register_parameters, "only handle register cases"); 955 __ stf(FloatRegisterImpl::S, Ftos_f, Llocals, Interpreter::local_offset_in_bytes(n)); 956 } 957 958 959 void TemplateTable::dstore(int n) { 960 transition(dtos, vtos); 961 FloatRegister src = Ftos_d; 962 __ store_unaligned_double(src, Llocals, Interpreter::local_offset_in_bytes(n+1)); 963 } 964 965 966 void TemplateTable::astore(int n) { 967 transition(vtos, vtos); 968 __ load_ptr(0, Otos_i); 969 __ inc(Lesp, Interpreter::stackElementSize); 970 __ verify_oop_or_return_address(Otos_i, G3_scratch); 971 __ store_local_ptr(n, Otos_i); 972 } 973 974 975 void TemplateTable::pop() { 976 transition(vtos, vtos); 977 __ inc(Lesp, Interpreter::stackElementSize); 978 } 979 980 981 void TemplateTable::pop2() { 982 transition(vtos, vtos); 983 __ inc(Lesp, 2 * Interpreter::stackElementSize); 984 } 985 986 987 void TemplateTable::dup() { 988 transition(vtos, vtos); 989 // stack: ..., a 990 // load a and tag 991 __ load_ptr(0, Otos_i); 992 __ push_ptr(Otos_i); 993 // stack: ..., a, a 994 } 995 996 997 void TemplateTable::dup_x1() { 998 transition(vtos, vtos); 999 // stack: ..., a, b 1000 __ load_ptr( 1, G3_scratch); // get a 1001 __ load_ptr( 0, Otos_l1); // get b 1002 __ store_ptr(1, Otos_l1); // put b 1003 __ store_ptr(0, G3_scratch); // put a - like swap 1004 __ push_ptr(Otos_l1); // push b 1005 // stack: ..., b, a, b 1006 } 1007 1008 1009 void TemplateTable::dup_x2() { 1010 transition(vtos, vtos); 1011 // stack: ..., a, b, c 1012 // get c and push on stack, reuse registers 1013 __ load_ptr( 0, G3_scratch); // get c 1014 __ push_ptr(G3_scratch); // push c with tag 1015 // stack: ..., a, b, c, c (c in reg) (Lesp - 4) 1016 // (stack offsets n+1 now) 1017 __ load_ptr( 3, Otos_l1); // get a 1018 __ store_ptr(3, G3_scratch); // put c at 3 1019 // stack: ..., c, b, c, c (a in reg) 1020 __ load_ptr( 2, G3_scratch); // get b 1021 __ store_ptr(2, Otos_l1); // put a at 2 1022 // stack: ..., c, a, c, c (b in reg) 1023 __ store_ptr(1, G3_scratch); // put b at 1 1024 // stack: ..., c, a, b, c 1025 } 1026 1027 1028 void TemplateTable::dup2() { 1029 transition(vtos, vtos); 1030 __ load_ptr(1, G3_scratch); // get a 1031 __ load_ptr(0, Otos_l1); // get b 1032 __ push_ptr(G3_scratch); // push a 1033 __ push_ptr(Otos_l1); // push b 1034 // stack: ..., a, b, a, b 1035 } 1036 1037 1038 void TemplateTable::dup2_x1() { 1039 transition(vtos, vtos); 1040 // stack: ..., a, b, c 1041 __ load_ptr( 1, Lscratch); // get b 1042 __ load_ptr( 2, Otos_l1); // get a 1043 __ store_ptr(2, Lscratch); // put b at a 1044 // stack: ..., b, b, c 1045 __ load_ptr( 0, G3_scratch); // get c 1046 __ store_ptr(1, G3_scratch); // put c at b 1047 // stack: ..., b, c, c 1048 __ store_ptr(0, Otos_l1); // put a at c 1049 // stack: ..., b, c, a 1050 __ push_ptr(Lscratch); // push b 1051 __ push_ptr(G3_scratch); // push c 1052 // stack: ..., b, c, a, b, c 1053 } 1054 1055 1056 // The spec says that these types can be a mixture of category 1 (1 word) 1057 // types and/or category 2 types (long and doubles) 1058 void TemplateTable::dup2_x2() { 1059 transition(vtos, vtos); 1060 // stack: ..., a, b, c, d 1061 __ load_ptr( 1, Lscratch); // get c 1062 __ load_ptr( 3, Otos_l1); // get a 1063 __ store_ptr(3, Lscratch); // put c at 3 1064 __ store_ptr(1, Otos_l1); // put a at 1 1065 // stack: ..., c, b, a, d 1066 __ load_ptr( 2, G3_scratch); // get b 1067 __ load_ptr( 0, Otos_l1); // get d 1068 __ store_ptr(0, G3_scratch); // put b at 0 1069 __ store_ptr(2, Otos_l1); // put d at 2 1070 // stack: ..., c, d, a, b 1071 __ push_ptr(Lscratch); // push c 1072 __ push_ptr(Otos_l1); // push d 1073 // stack: ..., c, d, a, b, c, d 1074 } 1075 1076 1077 void TemplateTable::swap() { 1078 transition(vtos, vtos); 1079 // stack: ..., a, b 1080 __ load_ptr( 1, G3_scratch); // get a 1081 __ load_ptr( 0, Otos_l1); // get b 1082 __ store_ptr(0, G3_scratch); // put b 1083 __ store_ptr(1, Otos_l1); // put a 1084 // stack: ..., b, a 1085 } 1086 1087 1088 void TemplateTable::iop2(Operation op) { 1089 transition(itos, itos); 1090 __ pop_i(O1); 1091 switch (op) { 1092 case add: __ add(O1, Otos_i, Otos_i); break; 1093 case sub: __ sub(O1, Otos_i, Otos_i); break; 1094 // %%%%% Mul may not exist: better to call .mul? 1095 case mul: __ smul(O1, Otos_i, Otos_i); break; 1096 case _and: __ and3(O1, Otos_i, Otos_i); break; 1097 case _or: __ or3(O1, Otos_i, Otos_i); break; 1098 case _xor: __ xor3(O1, Otos_i, Otos_i); break; 1099 case shl: __ sll(O1, Otos_i, Otos_i); break; 1100 case shr: __ sra(O1, Otos_i, Otos_i); break; 1101 case ushr: __ srl(O1, Otos_i, Otos_i); break; 1102 default: ShouldNotReachHere(); 1103 } 1104 } 1105 1106 1107 void TemplateTable::lop2(Operation op) { 1108 transition(ltos, ltos); 1109 __ pop_l(O2); 1110 switch (op) { 1111 #ifdef _LP64 1112 case add: __ add(O2, Otos_l, Otos_l); break; 1113 case sub: __ sub(O2, Otos_l, Otos_l); break; 1114 case _and: __ and3(O2, Otos_l, Otos_l); break; 1115 case _or: __ or3(O2, Otos_l, Otos_l); break; 1116 case _xor: __ xor3(O2, Otos_l, Otos_l); break; 1117 #else 1118 case add: __ addcc(O3, Otos_l2, Otos_l2); __ addc(O2, Otos_l1, Otos_l1); break; 1119 case sub: __ subcc(O3, Otos_l2, Otos_l2); __ subc(O2, Otos_l1, Otos_l1); break; 1120 case _and: __ and3(O3, Otos_l2, Otos_l2); __ and3(O2, Otos_l1, Otos_l1); break; 1121 case _or: __ or3(O3, Otos_l2, Otos_l2); __ or3(O2, Otos_l1, Otos_l1); break; 1122 case _xor: __ xor3(O3, Otos_l2, Otos_l2); __ xor3(O2, Otos_l1, Otos_l1); break; 1123 #endif 1124 default: ShouldNotReachHere(); 1125 } 1126 } 1127 1128 1129 void TemplateTable::idiv() { 1130 // %%%%% Later: ForSPARC/V7 call .sdiv library routine, 1131 // %%%%% Use ldsw...sdivx on pure V9 ABI. 64 bit safe. 1132 1133 transition(itos, itos); 1134 __ pop_i(O1); // get 1st op 1135 1136 // Y contains upper 32 bits of result, set it to 0 or all ones 1137 __ wry(G0); 1138 __ mov(~0, G3_scratch); 1139 1140 __ tst(O1); 1141 Label neg; 1142 __ br(Assembler::negative, true, Assembler::pn, neg); 1143 __ delayed()->wry(G3_scratch); 1144 __ bind(neg); 1145 1146 Label ok; 1147 __ tst(Otos_i); 1148 __ throw_if_not_icc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch ); 1149 1150 const int min_int = 0x80000000; 1151 Label regular; 1152 __ cmp(Otos_i, -1); 1153 __ br(Assembler::notEqual, false, Assembler::pt, regular); 1154 #ifdef _LP64 1155 // Don't put set in delay slot 1156 // Set will turn into multiple instructions in 64 bit mode 1157 __ delayed()->nop(); 1158 __ set(min_int, G4_scratch); 1159 #else 1160 __ delayed()->set(min_int, G4_scratch); 1161 #endif 1162 Label done; 1163 __ cmp(O1, G4_scratch); 1164 __ br(Assembler::equal, true, Assembler::pt, done); 1165 __ delayed()->mov(O1, Otos_i); // (mov only executed if branch taken) 1166 1167 __ bind(regular); 1168 __ sdiv(O1, Otos_i, Otos_i); // note: irem uses O1 after this instruction! 1169 __ bind(done); 1170 } 1171 1172 1173 void TemplateTable::irem() { 1174 transition(itos, itos); 1175 __ mov(Otos_i, O2); // save divisor 1176 idiv(); // %%%% Hack: exploits fact that idiv leaves dividend in O1 1177 __ smul(Otos_i, O2, Otos_i); 1178 __ sub(O1, Otos_i, Otos_i); 1179 } 1180 1181 1182 void TemplateTable::lmul() { 1183 transition(ltos, ltos); 1184 __ pop_l(O2); 1185 #ifdef _LP64 1186 __ mulx(Otos_l, O2, Otos_l); 1187 #else 1188 __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::lmul)); 1189 #endif 1190 1191 } 1192 1193 1194 void TemplateTable::ldiv() { 1195 transition(ltos, ltos); 1196 1197 // check for zero 1198 __ pop_l(O2); 1199 #ifdef _LP64 1200 __ tst(Otos_l); 1201 __ throw_if_not_xcc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch); 1202 __ sdivx(O2, Otos_l, Otos_l); 1203 #else 1204 __ orcc(Otos_l1, Otos_l2, G0); 1205 __ throw_if_not_icc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch); 1206 __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::ldiv)); 1207 #endif 1208 } 1209 1210 1211 void TemplateTable::lrem() { 1212 transition(ltos, ltos); 1213 1214 // check for zero 1215 __ pop_l(O2); 1216 #ifdef _LP64 1217 __ tst(Otos_l); 1218 __ throw_if_not_xcc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch); 1219 __ sdivx(O2, Otos_l, Otos_l2); 1220 __ mulx (Otos_l2, Otos_l, Otos_l2); 1221 __ sub (O2, Otos_l2, Otos_l); 1222 #else 1223 __ orcc(Otos_l1, Otos_l2, G0); 1224 __ throw_if_not_icc(Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch); 1225 __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::lrem)); 1226 #endif 1227 } 1228 1229 1230 void TemplateTable::lshl() { 1231 transition(itos, ltos); // %%%% could optimize, fill delay slot or opt for ultra 1232 1233 __ pop_l(O2); // shift value in O2, O3 1234 #ifdef _LP64 1235 __ sllx(O2, Otos_i, Otos_l); 1236 #else 1237 __ lshl(O2, O3, Otos_i, Otos_l1, Otos_l2, O4); 1238 #endif 1239 } 1240 1241 1242 void TemplateTable::lshr() { 1243 transition(itos, ltos); // %%%% see lshl comment 1244 1245 __ pop_l(O2); // shift value in O2, O3 1246 #ifdef _LP64 1247 __ srax(O2, Otos_i, Otos_l); 1248 #else 1249 __ lshr(O2, O3, Otos_i, Otos_l1, Otos_l2, O4); 1250 #endif 1251 } 1252 1253 1254 1255 void TemplateTable::lushr() { 1256 transition(itos, ltos); // %%%% see lshl comment 1257 1258 __ pop_l(O2); // shift value in O2, O3 1259 #ifdef _LP64 1260 __ srlx(O2, Otos_i, Otos_l); 1261 #else 1262 __ lushr(O2, O3, Otos_i, Otos_l1, Otos_l2, O4); 1263 #endif 1264 } 1265 1266 1267 void TemplateTable::fop2(Operation op) { 1268 transition(ftos, ftos); 1269 switch (op) { 1270 case add: __ pop_f(F4); __ fadd(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f); break; 1271 case sub: __ pop_f(F4); __ fsub(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f); break; 1272 case mul: __ pop_f(F4); __ fmul(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f); break; 1273 case div: __ pop_f(F4); __ fdiv(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f); break; 1274 case rem: 1275 assert(Ftos_f == F0, "just checking"); 1276 #ifdef _LP64 1277 // LP64 calling conventions use F1, F3 for passing 2 floats 1278 __ pop_f(F1); 1279 __ fmov(FloatRegisterImpl::S, Ftos_f, F3); 1280 #else 1281 __ pop_i(O0); 1282 __ stf(FloatRegisterImpl::S, Ftos_f, __ d_tmp); 1283 __ ld( __ d_tmp, O1 ); 1284 #endif 1285 __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::frem)); 1286 assert( Ftos_f == F0, "fix this code" ); 1287 break; 1288 1289 default: ShouldNotReachHere(); 1290 } 1291 } 1292 1293 1294 void TemplateTable::dop2(Operation op) { 1295 transition(dtos, dtos); 1296 switch (op) { 1297 case add: __ pop_d(F4); __ fadd(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d); break; 1298 case sub: __ pop_d(F4); __ fsub(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d); break; 1299 case mul: __ pop_d(F4); __ fmul(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d); break; 1300 case div: __ pop_d(F4); __ fdiv(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d); break; 1301 case rem: 1302 #ifdef _LP64 1303 // Pass arguments in D0, D2 1304 __ fmov(FloatRegisterImpl::D, Ftos_f, F2 ); 1305 __ pop_d( F0 ); 1306 #else 1307 // Pass arguments in O0O1, O2O3 1308 __ stf(FloatRegisterImpl::D, Ftos_f, __ d_tmp); 1309 __ ldd( __ d_tmp, O2 ); 1310 __ pop_d(Ftos_f); 1311 __ stf(FloatRegisterImpl::D, Ftos_f, __ d_tmp); 1312 __ ldd( __ d_tmp, O0 ); 1313 #endif 1314 __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::drem)); 1315 assert( Ftos_d == F0, "fix this code" ); 1316 break; 1317 1318 default: ShouldNotReachHere(); 1319 } 1320 } 1321 1322 1323 void TemplateTable::ineg() { 1324 transition(itos, itos); 1325 __ neg(Otos_i); 1326 } 1327 1328 1329 void TemplateTable::lneg() { 1330 transition(ltos, ltos); 1331 #ifdef _LP64 1332 __ sub(G0, Otos_l, Otos_l); 1333 #else 1334 __ lneg(Otos_l1, Otos_l2); 1335 #endif 1336 } 1337 1338 1339 void TemplateTable::fneg() { 1340 transition(ftos, ftos); 1341 __ fneg(FloatRegisterImpl::S, Ftos_f, Ftos_f); 1342 } 1343 1344 1345 void TemplateTable::dneg() { 1346 transition(dtos, dtos); 1347 __ fneg(FloatRegisterImpl::D, Ftos_f, Ftos_f); 1348 } 1349 1350 1351 void TemplateTable::iinc() { 1352 transition(vtos, vtos); 1353 locals_index(G3_scratch); 1354 __ ldsb(Lbcp, 2, O2); // load constant 1355 __ access_local_int(G3_scratch, Otos_i); 1356 __ add(Otos_i, O2, Otos_i); 1357 __ st(Otos_i, G3_scratch, 0); // access_local_int puts E.A. in G3_scratch 1358 } 1359 1360 1361 void TemplateTable::wide_iinc() { 1362 transition(vtos, vtos); 1363 locals_index_wide(G3_scratch); 1364 __ get_2_byte_integer_at_bcp( 4, O2, O3, InterpreterMacroAssembler::Signed); 1365 __ access_local_int(G3_scratch, Otos_i); 1366 __ add(Otos_i, O3, Otos_i); 1367 __ st(Otos_i, G3_scratch, 0); // access_local_int puts E.A. in G3_scratch 1368 } 1369 1370 1371 void TemplateTable::convert() { 1372 // %%%%% Factor this first part accross platforms 1373 #ifdef ASSERT 1374 TosState tos_in = ilgl; 1375 TosState tos_out = ilgl; 1376 switch (bytecode()) { 1377 case Bytecodes::_i2l: // fall through 1378 case Bytecodes::_i2f: // fall through 1379 case Bytecodes::_i2d: // fall through 1380 case Bytecodes::_i2b: // fall through 1381 case Bytecodes::_i2c: // fall through 1382 case Bytecodes::_i2s: tos_in = itos; break; 1383 case Bytecodes::_l2i: // fall through 1384 case Bytecodes::_l2f: // fall through 1385 case Bytecodes::_l2d: tos_in = ltos; break; 1386 case Bytecodes::_f2i: // fall through 1387 case Bytecodes::_f2l: // fall through 1388 case Bytecodes::_f2d: tos_in = ftos; break; 1389 case Bytecodes::_d2i: // fall through 1390 case Bytecodes::_d2l: // fall through 1391 case Bytecodes::_d2f: tos_in = dtos; break; 1392 default : ShouldNotReachHere(); 1393 } 1394 switch (bytecode()) { 1395 case Bytecodes::_l2i: // fall through 1396 case Bytecodes::_f2i: // fall through 1397 case Bytecodes::_d2i: // fall through 1398 case Bytecodes::_i2b: // fall through 1399 case Bytecodes::_i2c: // fall through 1400 case Bytecodes::_i2s: tos_out = itos; break; 1401 case Bytecodes::_i2l: // fall through 1402 case Bytecodes::_f2l: // fall through 1403 case Bytecodes::_d2l: tos_out = ltos; break; 1404 case Bytecodes::_i2f: // fall through 1405 case Bytecodes::_l2f: // fall through 1406 case Bytecodes::_d2f: tos_out = ftos; break; 1407 case Bytecodes::_i2d: // fall through 1408 case Bytecodes::_l2d: // fall through 1409 case Bytecodes::_f2d: tos_out = dtos; break; 1410 default : ShouldNotReachHere(); 1411 } 1412 transition(tos_in, tos_out); 1413 #endif 1414 1415 1416 // Conversion 1417 Label done; 1418 switch (bytecode()) { 1419 case Bytecodes::_i2l: 1420 #ifdef _LP64 1421 // Sign extend the 32 bits 1422 __ sra ( Otos_i, 0, Otos_l ); 1423 #else 1424 __ addcc(Otos_i, 0, Otos_l2); 1425 __ br(Assembler::greaterEqual, true, Assembler::pt, done); 1426 __ delayed()->clr(Otos_l1); 1427 __ set(~0, Otos_l1); 1428 #endif 1429 break; 1430 1431 case Bytecodes::_i2f: 1432 __ st(Otos_i, __ d_tmp ); 1433 __ ldf(FloatRegisterImpl::S, __ d_tmp, F0); 1434 __ fitof(FloatRegisterImpl::S, F0, Ftos_f); 1435 break; 1436 1437 case Bytecodes::_i2d: 1438 __ st(Otos_i, __ d_tmp); 1439 __ ldf(FloatRegisterImpl::S, __ d_tmp, F0); 1440 __ fitof(FloatRegisterImpl::D, F0, Ftos_f); 1441 break; 1442 1443 case Bytecodes::_i2b: 1444 __ sll(Otos_i, 24, Otos_i); 1445 __ sra(Otos_i, 24, Otos_i); 1446 break; 1447 1448 case Bytecodes::_i2c: 1449 __ sll(Otos_i, 16, Otos_i); 1450 __ srl(Otos_i, 16, Otos_i); 1451 break; 1452 1453 case Bytecodes::_i2s: 1454 __ sll(Otos_i, 16, Otos_i); 1455 __ sra(Otos_i, 16, Otos_i); 1456 break; 1457 1458 case Bytecodes::_l2i: 1459 #ifndef _LP64 1460 __ mov(Otos_l2, Otos_i); 1461 #else 1462 // Sign-extend into the high 32 bits 1463 __ sra(Otos_l, 0, Otos_i); 1464 #endif 1465 break; 1466 1467 case Bytecodes::_l2f: 1468 case Bytecodes::_l2d: 1469 __ st_long(Otos_l, __ d_tmp); 1470 __ ldf(FloatRegisterImpl::D, __ d_tmp, Ftos_d); 1471 1472 if (bytecode() == Bytecodes::_l2f) { 1473 __ fxtof(FloatRegisterImpl::S, Ftos_d, Ftos_f); 1474 } else { 1475 __ fxtof(FloatRegisterImpl::D, Ftos_d, Ftos_d); 1476 } 1477 break; 1478 1479 case Bytecodes::_f2i: { 1480 Label isNaN; 1481 // result must be 0 if value is NaN; test by comparing value to itself 1482 __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, Ftos_f, Ftos_f); 1483 __ fb(Assembler::f_unordered, true, Assembler::pn, isNaN); 1484 __ delayed()->clr(Otos_i); // NaN 1485 __ ftoi(FloatRegisterImpl::S, Ftos_f, F30); 1486 __ stf(FloatRegisterImpl::S, F30, __ d_tmp); 1487 __ ld(__ d_tmp, Otos_i); 1488 __ bind(isNaN); 1489 } 1490 break; 1491 1492 case Bytecodes::_f2l: 1493 // must uncache tos 1494 __ push_f(); 1495 #ifdef _LP64 1496 __ pop_f(F1); 1497 #else 1498 __ pop_i(O0); 1499 #endif 1500 __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::f2l)); 1501 break; 1502 1503 case Bytecodes::_f2d: 1504 __ ftof( FloatRegisterImpl::S, FloatRegisterImpl::D, Ftos_f, Ftos_f); 1505 break; 1506 1507 case Bytecodes::_d2i: 1508 case Bytecodes::_d2l: 1509 // must uncache tos 1510 __ push_d(); 1511 #ifdef _LP64 1512 // LP64 calling conventions pass first double arg in D0 1513 __ pop_d( Ftos_d ); 1514 #else 1515 __ pop_i( O0 ); 1516 __ pop_i( O1 ); 1517 #endif 1518 __ call_VM_leaf(Lscratch, 1519 bytecode() == Bytecodes::_d2i 1520 ? CAST_FROM_FN_PTR(address, SharedRuntime::d2i) 1521 : CAST_FROM_FN_PTR(address, SharedRuntime::d2l)); 1522 break; 1523 1524 case Bytecodes::_d2f: 1525 __ ftof( FloatRegisterImpl::D, FloatRegisterImpl::S, Ftos_d, Ftos_f); 1526 break; 1527 1528 default: ShouldNotReachHere(); 1529 } 1530 __ bind(done); 1531 } 1532 1533 1534 void TemplateTable::lcmp() { 1535 transition(ltos, itos); 1536 1537 #ifdef _LP64 1538 __ pop_l(O1); // pop off value 1, value 2 is in O0 1539 __ lcmp( O1, Otos_l, Otos_i ); 1540 #else 1541 __ pop_l(O2); // cmp O2,3 to O0,1 1542 __ lcmp( O2, O3, Otos_l1, Otos_l2, Otos_i ); 1543 #endif 1544 } 1545 1546 1547 void TemplateTable::float_cmp(bool is_float, int unordered_result) { 1548 1549 if (is_float) __ pop_f(F2); 1550 else __ pop_d(F2); 1551 1552 assert(Ftos_f == F0 && Ftos_d == F0, "alias checking:"); 1553 1554 __ float_cmp( is_float, unordered_result, F2, F0, Otos_i ); 1555 } 1556 1557 void TemplateTable::branch(bool is_jsr, bool is_wide) { 1558 // Note: on SPARC, we use InterpreterMacroAssembler::if_cmp also. 1559 __ verify_thread(); 1560 1561 const Register O2_bumped_count = O2; 1562 __ profile_taken_branch(G3_scratch, O2_bumped_count); 1563 1564 // get (wide) offset to O1_disp 1565 const Register O1_disp = O1; 1566 if (is_wide) __ get_4_byte_integer_at_bcp( 1, G4_scratch, O1_disp, InterpreterMacroAssembler::set_CC); 1567 else __ get_2_byte_integer_at_bcp( 1, G4_scratch, O1_disp, InterpreterMacroAssembler::Signed, InterpreterMacroAssembler::set_CC); 1568 1569 // Handle all the JSR stuff here, then exit. 1570 // It's much shorter and cleaner than intermingling with the 1571 // non-JSR normal-branch stuff occurring below. 1572 if( is_jsr ) { 1573 // compute return address as bci in Otos_i 1574 __ ld_ptr(Lmethod, Method::const_offset(), G3_scratch); 1575 __ sub(Lbcp, G3_scratch, G3_scratch); 1576 __ sub(G3_scratch, in_bytes(ConstMethod::codes_offset()) - (is_wide ? 5 : 3), Otos_i); 1577 1578 // Bump Lbcp to target of JSR 1579 __ add(Lbcp, O1_disp, Lbcp); 1580 // Push returnAddress for "ret" on stack 1581 __ push_ptr(Otos_i); 1582 // And away we go! 1583 __ dispatch_next(vtos); 1584 return; 1585 } 1586 1587 // Normal (non-jsr) branch handling 1588 1589 // Save the current Lbcp 1590 const Register l_cur_bcp = Lscratch; 1591 __ mov( Lbcp, l_cur_bcp ); 1592 1593 bool increment_invocation_counter_for_backward_branches = UseCompiler && UseLoopCounter; 1594 if ( increment_invocation_counter_for_backward_branches ) { 1595 Label Lforward; 1596 // check branch direction 1597 __ br( Assembler::positive, false, Assembler::pn, Lforward ); 1598 // Bump bytecode pointer by displacement (take the branch) 1599 __ delayed()->add( O1_disp, Lbcp, Lbcp ); // add to bc addr 1600 1601 const Register G3_method_counters = G3_scratch; 1602 __ get_method_counters(Lmethod, G3_method_counters, Lforward); 1603 1604 if (TieredCompilation) { 1605 Label Lno_mdo, Loverflow; 1606 int increment = InvocationCounter::count_increment; 1607 if (ProfileInterpreter) { 1608 // If no method data exists, go to profile_continue. 1609 __ ld_ptr(Lmethod, Method::method_data_offset(), G4_scratch); 1610 __ br_null_short(G4_scratch, Assembler::pn, Lno_mdo); 1611 1612 // Increment backedge counter in the MDO 1613 Address mdo_backedge_counter(G4_scratch, in_bytes(MethodData::backedge_counter_offset()) + 1614 in_bytes(InvocationCounter::counter_offset())); 1615 Address mask(G4_scratch, in_bytes(MethodData::backedge_mask_offset())); 1616 __ increment_mask_and_jump(mdo_backedge_counter, increment, mask, G3_scratch, O0, 1617 Assembler::notZero, &Lforward); 1618 __ ba_short(Loverflow); 1619 } 1620 1621 // If there's no MDO, increment counter in MethodCounters* 1622 __ bind(Lno_mdo); 1623 Address backedge_counter(G3_method_counters, 1624 in_bytes(MethodCounters::backedge_counter_offset()) + 1625 in_bytes(InvocationCounter::counter_offset())); 1626 Address mask(G3_method_counters, in_bytes(MethodCounters::backedge_mask_offset())); 1627 __ increment_mask_and_jump(backedge_counter, increment, mask, G4_scratch, O0, 1628 Assembler::notZero, &Lforward); 1629 __ bind(Loverflow); 1630 1631 // notify point for loop, pass branch bytecode 1632 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), l_cur_bcp); 1633 1634 // Was an OSR adapter generated? 1635 // O0 = osr nmethod 1636 __ br_null_short(O0, Assembler::pn, Lforward); 1637 1638 // Has the nmethod been invalidated already? 1639 __ ldub(O0, nmethod::state_offset(), O2); 1640 __ cmp_and_br_short(O2, nmethod::in_use, Assembler::notEqual, Assembler::pn, Lforward); 1641 1642 // migrate the interpreter frame off of the stack 1643 1644 __ mov(G2_thread, L7); 1645 // save nmethod 1646 __ mov(O0, L6); 1647 __ set_last_Java_frame(SP, noreg); 1648 __ call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), L7); 1649 __ reset_last_Java_frame(); 1650 __ mov(L7, G2_thread); 1651 1652 // move OSR nmethod to I1 1653 __ mov(L6, I1); 1654 1655 // OSR buffer to I0 1656 __ mov(O0, I0); 1657 1658 // remove the interpreter frame 1659 __ restore(I5_savedSP, 0, SP); 1660 1661 // Jump to the osr code. 1662 __ ld_ptr(O1, nmethod::osr_entry_point_offset(), O2); 1663 __ jmp(O2, G0); 1664 __ delayed()->nop(); 1665 1666 } else { // not TieredCompilation 1667 // Update Backedge branch separately from invocations 1668 const Register G4_invoke_ctr = G4; 1669 __ increment_backedge_counter(G3_method_counters, G4_invoke_ctr, G1_scratch); 1670 if (ProfileInterpreter) { 1671 __ test_invocation_counter_for_mdp(G4_invoke_ctr, G3_method_counters, G1_scratch, Lforward); 1672 if (UseOnStackReplacement) { 1673 1674 __ test_backedge_count_for_osr(O2_bumped_count, G3_method_counters, l_cur_bcp, G1_scratch); 1675 } 1676 } else { 1677 if (UseOnStackReplacement) { 1678 __ test_backedge_count_for_osr(G4_invoke_ctr, G3_method_counters, l_cur_bcp, G1_scratch); 1679 } 1680 } 1681 } 1682 1683 __ bind(Lforward); 1684 } else 1685 // Bump bytecode pointer by displacement (take the branch) 1686 __ add( O1_disp, Lbcp, Lbcp );// add to bc addr 1687 1688 // continue with bytecode @ target 1689 // %%%%% Like Intel, could speed things up by moving bytecode fetch to code above, 1690 // %%%%% and changing dispatch_next to dispatch_only 1691 __ dispatch_next(vtos); 1692 } 1693 1694 1695 // Note Condition in argument is TemplateTable::Condition 1696 // arg scope is within class scope 1697 1698 void TemplateTable::if_0cmp(Condition cc) { 1699 // no pointers, integer only! 1700 transition(itos, vtos); 1701 // assume branch is more often taken than not (loops use backward branches) 1702 __ cmp( Otos_i, 0); 1703 __ if_cmp(ccNot(cc), false); 1704 } 1705 1706 1707 void TemplateTable::if_icmp(Condition cc) { 1708 transition(itos, vtos); 1709 __ pop_i(O1); 1710 __ cmp(O1, Otos_i); 1711 __ if_cmp(ccNot(cc), false); 1712 } 1713 1714 1715 void TemplateTable::if_nullcmp(Condition cc) { 1716 transition(atos, vtos); 1717 __ tst(Otos_i); 1718 __ if_cmp(ccNot(cc), true); 1719 } 1720 1721 1722 void TemplateTable::if_acmp(Condition cc) { 1723 transition(atos, vtos); 1724 __ pop_ptr(O1); 1725 __ verify_oop(O1); 1726 __ verify_oop(Otos_i); 1727 __ cmp(O1, Otos_i); 1728 __ if_cmp(ccNot(cc), true); 1729 } 1730 1731 1732 1733 void TemplateTable::ret() { 1734 transition(vtos, vtos); 1735 locals_index(G3_scratch); 1736 __ access_local_returnAddress(G3_scratch, Otos_i); 1737 // Otos_i contains the bci, compute the bcp from that 1738 1739 #ifdef _LP64 1740 #ifdef ASSERT 1741 // jsr result was labeled as an 'itos' not an 'atos' because we cannot GC 1742 // the result. The return address (really a BCI) was stored with an 1743 // 'astore' because JVM specs claim it's a pointer-sized thing. Hence in 1744 // the 64-bit build the 32-bit BCI is actually in the low bits of a 64-bit 1745 // loaded value. 1746 { Label zzz ; 1747 __ set (65536, G3_scratch) ; 1748 __ cmp (Otos_i, G3_scratch) ; 1749 __ bp( Assembler::lessEqualUnsigned, false, Assembler::xcc, Assembler::pn, zzz); 1750 __ delayed()->nop(); 1751 __ stop("BCI is in the wrong register half?"); 1752 __ bind (zzz) ; 1753 } 1754 #endif 1755 #endif 1756 1757 __ profile_ret(vtos, Otos_i, G4_scratch); 1758 1759 __ ld_ptr(Lmethod, Method::const_offset(), G3_scratch); 1760 __ add(G3_scratch, Otos_i, G3_scratch); 1761 __ add(G3_scratch, in_bytes(ConstMethod::codes_offset()), Lbcp); 1762 __ dispatch_next(vtos); 1763 } 1764 1765 1766 void TemplateTable::wide_ret() { 1767 transition(vtos, vtos); 1768 locals_index_wide(G3_scratch); 1769 __ access_local_returnAddress(G3_scratch, Otos_i); 1770 // Otos_i contains the bci, compute the bcp from that 1771 1772 __ profile_ret(vtos, Otos_i, G4_scratch); 1773 1774 __ ld_ptr(Lmethod, Method::const_offset(), G3_scratch); 1775 __ add(G3_scratch, Otos_i, G3_scratch); 1776 __ add(G3_scratch, in_bytes(ConstMethod::codes_offset()), Lbcp); 1777 __ dispatch_next(vtos); 1778 } 1779 1780 1781 void TemplateTable::tableswitch() { 1782 transition(itos, vtos); 1783 Label default_case, continue_execution; 1784 1785 // align bcp 1786 __ add(Lbcp, BytesPerInt, O1); 1787 __ and3(O1, -BytesPerInt, O1); 1788 // load lo, hi 1789 __ ld(O1, 1 * BytesPerInt, O2); // Low Byte 1790 __ ld(O1, 2 * BytesPerInt, O3); // High Byte 1791 #ifdef _LP64 1792 // Sign extend the 32 bits 1793 __ sra ( Otos_i, 0, Otos_i ); 1794 #endif /* _LP64 */ 1795 1796 // check against lo & hi 1797 __ cmp( Otos_i, O2); 1798 __ br( Assembler::less, false, Assembler::pn, default_case); 1799 __ delayed()->cmp( Otos_i, O3 ); 1800 __ br( Assembler::greater, false, Assembler::pn, default_case); 1801 // lookup dispatch offset 1802 __ delayed()->sub(Otos_i, O2, O2); 1803 __ profile_switch_case(O2, O3, G3_scratch, G4_scratch); 1804 __ sll(O2, LogBytesPerInt, O2); 1805 __ add(O2, 3 * BytesPerInt, O2); 1806 __ ba(continue_execution); 1807 __ delayed()->ld(O1, O2, O2); 1808 // handle default 1809 __ bind(default_case); 1810 __ profile_switch_default(O3); 1811 __ ld(O1, 0, O2); // get default offset 1812 // continue execution 1813 __ bind(continue_execution); 1814 __ add(Lbcp, O2, Lbcp); 1815 __ dispatch_next(vtos); 1816 } 1817 1818 1819 void TemplateTable::lookupswitch() { 1820 transition(itos, itos); 1821 __ stop("lookupswitch bytecode should have been rewritten"); 1822 } 1823 1824 void TemplateTable::fast_linearswitch() { 1825 transition(itos, vtos); 1826 Label loop_entry, loop, found, continue_execution; 1827 // align bcp 1828 __ add(Lbcp, BytesPerInt, O1); 1829 __ and3(O1, -BytesPerInt, O1); 1830 // set counter 1831 __ ld(O1, BytesPerInt, O2); 1832 __ sll(O2, LogBytesPerInt + 1, O2); // in word-pairs 1833 __ add(O1, 2 * BytesPerInt, O3); // set first pair addr 1834 __ ba(loop_entry); 1835 __ delayed()->add(O3, O2, O2); // counter now points past last pair 1836 1837 // table search 1838 __ bind(loop); 1839 __ cmp(O4, Otos_i); 1840 __ br(Assembler::equal, true, Assembler::pn, found); 1841 __ delayed()->ld(O3, BytesPerInt, O4); // offset -> O4 1842 __ inc(O3, 2 * BytesPerInt); 1843 1844 __ bind(loop_entry); 1845 __ cmp(O2, O3); 1846 __ brx(Assembler::greaterUnsigned, true, Assembler::pt, loop); 1847 __ delayed()->ld(O3, 0, O4); 1848 1849 // default case 1850 __ ld(O1, 0, O4); // get default offset 1851 if (ProfileInterpreter) { 1852 __ profile_switch_default(O3); 1853 __ ba_short(continue_execution); 1854 } 1855 1856 // entry found -> get offset 1857 __ bind(found); 1858 if (ProfileInterpreter) { 1859 __ sub(O3, O1, O3); 1860 __ sub(O3, 2*BytesPerInt, O3); 1861 __ srl(O3, LogBytesPerInt + 1, O3); // in word-pairs 1862 __ profile_switch_case(O3, O1, O2, G3_scratch); 1863 1864 __ bind(continue_execution); 1865 } 1866 __ add(Lbcp, O4, Lbcp); 1867 __ dispatch_next(vtos); 1868 } 1869 1870 1871 void TemplateTable::fast_binaryswitch() { 1872 transition(itos, vtos); 1873 // Implementation using the following core algorithm: (copied from Intel) 1874 // 1875 // int binary_search(int key, LookupswitchPair* array, int n) { 1876 // // Binary search according to "Methodik des Programmierens" by 1877 // // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985. 1878 // int i = 0; 1879 // int j = n; 1880 // while (i+1 < j) { 1881 // // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q) 1882 // // with Q: for all i: 0 <= i < n: key < a[i] 1883 // // where a stands for the array and assuming that the (inexisting) 1884 // // element a[n] is infinitely big. 1885 // int h = (i + j) >> 1; 1886 // // i < h < j 1887 // if (key < array[h].fast_match()) { 1888 // j = h; 1889 // } else { 1890 // i = h; 1891 // } 1892 // } 1893 // // R: a[i] <= key < a[i+1] or Q 1894 // // (i.e., if key is within array, i is the correct index) 1895 // return i; 1896 // } 1897 1898 // register allocation 1899 assert(Otos_i == O0, "alias checking"); 1900 const Register Rkey = Otos_i; // already set (tosca) 1901 const Register Rarray = O1; 1902 const Register Ri = O2; 1903 const Register Rj = O3; 1904 const Register Rh = O4; 1905 const Register Rscratch = O5; 1906 1907 const int log_entry_size = 3; 1908 const int entry_size = 1 << log_entry_size; 1909 1910 Label found; 1911 // Find Array start 1912 __ add(Lbcp, 3 * BytesPerInt, Rarray); 1913 __ and3(Rarray, -BytesPerInt, Rarray); 1914 // initialize i & j (in delay slot) 1915 __ clr( Ri ); 1916 1917 // and start 1918 Label entry; 1919 __ ba(entry); 1920 __ delayed()->ld( Rarray, -BytesPerInt, Rj); 1921 // (Rj is already in the native byte-ordering.) 1922 1923 // binary search loop 1924 { Label loop; 1925 __ bind( loop ); 1926 // int h = (i + j) >> 1; 1927 __ sra( Rh, 1, Rh ); 1928 // if (key < array[h].fast_match()) { 1929 // j = h; 1930 // } else { 1931 // i = h; 1932 // } 1933 __ sll( Rh, log_entry_size, Rscratch ); 1934 __ ld( Rarray, Rscratch, Rscratch ); 1935 // (Rscratch is already in the native byte-ordering.) 1936 __ cmp( Rkey, Rscratch ); 1937 __ movcc( Assembler::less, false, Assembler::icc, Rh, Rj ); // j = h if (key < array[h].fast_match()) 1938 __ movcc( Assembler::greaterEqual, false, Assembler::icc, Rh, Ri ); // i = h if (key >= array[h].fast_match()) 1939 1940 // while (i+1 < j) 1941 __ bind( entry ); 1942 __ add( Ri, 1, Rscratch ); 1943 __ cmp(Rscratch, Rj); 1944 __ br( Assembler::less, true, Assembler::pt, loop ); 1945 __ delayed()->add( Ri, Rj, Rh ); // start h = i + j >> 1; 1946 } 1947 1948 // end of binary search, result index is i (must check again!) 1949 Label default_case; 1950 Label continue_execution; 1951 if (ProfileInterpreter) { 1952 __ mov( Ri, Rh ); // Save index in i for profiling 1953 } 1954 __ sll( Ri, log_entry_size, Ri ); 1955 __ ld( Rarray, Ri, Rscratch ); 1956 // (Rscratch is already in the native byte-ordering.) 1957 __ cmp( Rkey, Rscratch ); 1958 __ br( Assembler::notEqual, true, Assembler::pn, default_case ); 1959 __ delayed()->ld( Rarray, -2 * BytesPerInt, Rj ); // load default offset -> j 1960 1961 // entry found -> j = offset 1962 __ inc( Ri, BytesPerInt ); 1963 __ profile_switch_case(Rh, Rj, Rscratch, Rkey); 1964 __ ld( Rarray, Ri, Rj ); 1965 // (Rj is already in the native byte-ordering.) 1966 1967 if (ProfileInterpreter) { 1968 __ ba_short(continue_execution); 1969 } 1970 1971 __ bind(default_case); // fall through (if not profiling) 1972 __ profile_switch_default(Ri); 1973 1974 __ bind(continue_execution); 1975 __ add( Lbcp, Rj, Lbcp ); 1976 __ dispatch_next( vtos ); 1977 } 1978 1979 1980 void TemplateTable::_return(TosState state) { 1981 transition(state, state); 1982 assert(_desc->calls_vm(), "inconsistent calls_vm information"); 1983 1984 if (_desc->bytecode() == Bytecodes::_return_register_finalizer) { 1985 assert(state == vtos, "only valid state"); 1986 __ mov(G0, G3_scratch); 1987 __ access_local_ptr(G3_scratch, Otos_i); 1988 __ load_klass(Otos_i, O2); 1989 __ set(JVM_ACC_HAS_FINALIZER, G3); 1990 __ ld(O2, in_bytes(Klass::access_flags_offset()), O2); 1991 __ andcc(G3, O2, G0); 1992 Label skip_register_finalizer; 1993 __ br(Assembler::zero, false, Assembler::pn, skip_register_finalizer); 1994 __ delayed()->nop(); 1995 1996 // Call out to do finalizer registration 1997 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), Otos_i); 1998 1999 __ bind(skip_register_finalizer); 2000 } 2001 2002 __ remove_activation(state, /* throw_monitor_exception */ true); 2003 2004 // The caller's SP was adjusted upon method entry to accomodate 2005 // the callee's non-argument locals. Undo that adjustment. 2006 __ ret(); // return to caller 2007 __ delayed()->restore(I5_savedSP, G0, SP); 2008 } 2009 2010 2011 // ---------------------------------------------------------------------------- 2012 // Volatile variables demand their effects be made known to all CPU's in 2013 // order. Store buffers on most chips allow reads & writes to reorder; the 2014 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of 2015 // memory barrier (i.e., it's not sufficient that the interpreter does not 2016 // reorder volatile references, the hardware also must not reorder them). 2017 // 2018 // According to the new Java Memory Model (JMM): 2019 // (1) All volatiles are serialized wrt to each other. 2020 // ALSO reads & writes act as aquire & release, so: 2021 // (2) A read cannot let unrelated NON-volatile memory refs that happen after 2022 // the read float up to before the read. It's OK for non-volatile memory refs 2023 // that happen before the volatile read to float down below it. 2024 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs 2025 // that happen BEFORE the write float down to after the write. It's OK for 2026 // non-volatile memory refs that happen after the volatile write to float up 2027 // before it. 2028 // 2029 // We only put in barriers around volatile refs (they are expensive), not 2030 // _between_ memory refs (that would require us to track the flavor of the 2031 // previous memory refs). Requirements (2) and (3) require some barriers 2032 // before volatile stores and after volatile loads. These nearly cover 2033 // requirement (1) but miss the volatile-store-volatile-load case. This final 2034 // case is placed after volatile-stores although it could just as well go 2035 // before volatile-loads. 2036 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits order_constraint) { 2037 // Helper function to insert a is-volatile test and memory barrier 2038 // All current sparc implementations run in TSO, needing only StoreLoad 2039 if ((order_constraint & Assembler::StoreLoad) == 0) return; 2040 __ membar( order_constraint ); 2041 } 2042 2043 // ---------------------------------------------------------------------------- 2044 void TemplateTable::resolve_cache_and_index(int byte_no, 2045 Register Rcache, 2046 Register index, 2047 size_t index_size) { 2048 // Depends on cpCacheOop layout! 2049 Label resolved; 2050 2051 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 2052 __ get_cache_and_index_and_bytecode_at_bcp(Rcache, index, Lbyte_code, byte_no, 1, index_size); 2053 __ cmp(Lbyte_code, (int) bytecode()); // have we resolved this bytecode? 2054 __ br(Assembler::equal, false, Assembler::pt, resolved); 2055 __ delayed()->set((int)bytecode(), O1); 2056 2057 address entry; 2058 switch (bytecode()) { 2059 case Bytecodes::_getstatic : // fall through 2060 case Bytecodes::_putstatic : // fall through 2061 case Bytecodes::_getfield : // fall through 2062 case Bytecodes::_putfield : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put); break; 2063 case Bytecodes::_invokevirtual : // fall through 2064 case Bytecodes::_invokespecial : // fall through 2065 case Bytecodes::_invokestatic : // fall through 2066 case Bytecodes::_invokeinterface: entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke); break; 2067 case Bytecodes::_invokehandle : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokehandle); break; 2068 case Bytecodes::_invokedynamic : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic); break; 2069 default: 2070 fatal(err_msg("unexpected bytecode: %s", Bytecodes::name(bytecode()))); 2071 break; 2072 } 2073 // first time invocation - must resolve first 2074 __ call_VM(noreg, entry, O1); 2075 // Update registers with resolved info 2076 __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size); 2077 __ bind(resolved); 2078 } 2079 2080 void TemplateTable::load_invoke_cp_cache_entry(int byte_no, 2081 Register method, 2082 Register itable_index, 2083 Register flags, 2084 bool is_invokevirtual, 2085 bool is_invokevfinal, 2086 bool is_invokedynamic) { 2087 // Uses both G3_scratch and G4_scratch 2088 Register cache = G3_scratch; 2089 Register index = G4_scratch; 2090 assert_different_registers(cache, method, itable_index); 2091 2092 // determine constant pool cache field offsets 2093 assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant"); 2094 const int method_offset = in_bytes( 2095 ConstantPoolCache::base_offset() + 2096 ((byte_no == f2_byte) 2097 ? ConstantPoolCacheEntry::f2_offset() 2098 : ConstantPoolCacheEntry::f1_offset() 2099 ) 2100 ); 2101 const int flags_offset = in_bytes(ConstantPoolCache::base_offset() + 2102 ConstantPoolCacheEntry::flags_offset()); 2103 // access constant pool cache fields 2104 const int index_offset = in_bytes(ConstantPoolCache::base_offset() + 2105 ConstantPoolCacheEntry::f2_offset()); 2106 2107 if (is_invokevfinal) { 2108 __ get_cache_and_index_at_bcp(cache, index, 1); 2109 __ ld_ptr(Address(cache, method_offset), method); 2110 } else { 2111 size_t index_size = (is_invokedynamic ? sizeof(u4) : sizeof(u2)); 2112 resolve_cache_and_index(byte_no, cache, index, index_size); 2113 __ ld_ptr(Address(cache, method_offset), method); 2114 } 2115 2116 if (itable_index != noreg) { 2117 // pick up itable or appendix index from f2 also: 2118 __ ld_ptr(Address(cache, index_offset), itable_index); 2119 } 2120 __ ld_ptr(Address(cache, flags_offset), flags); 2121 } 2122 2123 // The Rcache register must be set before call 2124 void TemplateTable::load_field_cp_cache_entry(Register Robj, 2125 Register Rcache, 2126 Register index, 2127 Register Roffset, 2128 Register Rflags, 2129 bool is_static) { 2130 assert_different_registers(Rcache, Rflags, Roffset); 2131 2132 ByteSize cp_base_offset = ConstantPoolCache::base_offset(); 2133 2134 __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), Rflags); 2135 __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Roffset); 2136 if (is_static) { 2137 __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f1_offset(), Robj); 2138 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 2139 __ ld_ptr( Robj, mirror_offset, Robj); 2140 } 2141 } 2142 2143 // The registers Rcache and index expected to be set before call. 2144 // Correct values of the Rcache and index registers are preserved. 2145 void TemplateTable::jvmti_post_field_access(Register Rcache, 2146 Register index, 2147 bool is_static, 2148 bool has_tos) { 2149 ByteSize cp_base_offset = ConstantPoolCache::base_offset(); 2150 2151 if (JvmtiExport::can_post_field_access()) { 2152 // Check to see if a field access watch has been set before we take 2153 // the time to call into the VM. 2154 Label Label1; 2155 assert_different_registers(Rcache, index, G1_scratch); 2156 AddressLiteral get_field_access_count_addr(JvmtiExport::get_field_access_count_addr()); 2157 __ load_contents(get_field_access_count_addr, G1_scratch); 2158 __ cmp_and_br_short(G1_scratch, 0, Assembler::equal, Assembler::pt, Label1); 2159 2160 __ add(Rcache, in_bytes(cp_base_offset), Rcache); 2161 2162 if (is_static) { 2163 __ clr(Otos_i); 2164 } else { 2165 if (has_tos) { 2166 // save object pointer before call_VM() clobbers it 2167 __ push_ptr(Otos_i); // put object on tos where GC wants it. 2168 } else { 2169 // Load top of stack (do not pop the value off the stack); 2170 __ ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), Otos_i); 2171 } 2172 __ verify_oop(Otos_i); 2173 } 2174 // Otos_i: object pointer or NULL if static 2175 // Rcache: cache entry pointer 2176 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), 2177 Otos_i, Rcache); 2178 if (!is_static && has_tos) { 2179 __ pop_ptr(Otos_i); // restore object pointer 2180 __ verify_oop(Otos_i); 2181 } 2182 __ get_cache_and_index_at_bcp(Rcache, index, 1); 2183 __ bind(Label1); 2184 } 2185 } 2186 2187 void TemplateTable::getfield_or_static(int byte_no, bool is_static) { 2188 transition(vtos, vtos); 2189 2190 Register Rcache = G3_scratch; 2191 Register index = G4_scratch; 2192 Register Rclass = Rcache; 2193 Register Roffset= G4_scratch; 2194 Register Rflags = G1_scratch; 2195 ByteSize cp_base_offset = ConstantPoolCache::base_offset(); 2196 2197 resolve_cache_and_index(byte_no, Rcache, index, sizeof(u2)); 2198 jvmti_post_field_access(Rcache, index, is_static, false); 2199 load_field_cp_cache_entry(Rclass, Rcache, index, Roffset, Rflags, is_static); 2200 2201 if (!is_static) { 2202 pop_and_check_object(Rclass); 2203 } else { 2204 __ verify_oop(Rclass); 2205 } 2206 2207 Label exit; 2208 2209 Assembler::Membar_mask_bits membar_bits = 2210 Assembler::Membar_mask_bits(Assembler::LoadLoad | Assembler::LoadStore); 2211 2212 if (__ membar_has_effect(membar_bits)) { 2213 // Get volatile flag 2214 __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch); 2215 __ and3(Rflags, Lscratch, Lscratch); 2216 } 2217 2218 Label checkVolatile; 2219 2220 // compute field type 2221 Label notByte, notInt, notShort, notChar, notLong, notFloat, notObj; 2222 __ srl(Rflags, ConstantPoolCacheEntry::tos_state_shift, Rflags); 2223 // Make sure we don't need to mask Rflags after the above shift 2224 ConstantPoolCacheEntry::verify_tos_state_shift(); 2225 2226 // Check atos before itos for getstatic, more likely (in Queens at least) 2227 __ cmp(Rflags, atos); 2228 __ br(Assembler::notEqual, false, Assembler::pt, notObj); 2229 __ delayed() ->cmp(Rflags, itos); 2230 2231 // atos 2232 __ load_heap_oop(Rclass, Roffset, Otos_i); 2233 __ verify_oop(Otos_i); 2234 __ push(atos); 2235 if (!is_static) { 2236 patch_bytecode(Bytecodes::_fast_agetfield, G3_scratch, G4_scratch); 2237 } 2238 __ ba(checkVolatile); 2239 __ delayed()->tst(Lscratch); 2240 2241 __ bind(notObj); 2242 2243 // cmp(Rflags, itos); 2244 __ br(Assembler::notEqual, false, Assembler::pt, notInt); 2245 __ delayed() ->cmp(Rflags, ltos); 2246 2247 // itos 2248 __ ld(Rclass, Roffset, Otos_i); 2249 __ push(itos); 2250 if (!is_static) { 2251 patch_bytecode(Bytecodes::_fast_igetfield, G3_scratch, G4_scratch); 2252 } 2253 __ ba(checkVolatile); 2254 __ delayed()->tst(Lscratch); 2255 2256 __ bind(notInt); 2257 2258 // cmp(Rflags, ltos); 2259 __ br(Assembler::notEqual, false, Assembler::pt, notLong); 2260 __ delayed() ->cmp(Rflags, btos); 2261 2262 // ltos 2263 // load must be atomic 2264 __ ld_long(Rclass, Roffset, Otos_l); 2265 __ push(ltos); 2266 if (!is_static) { 2267 patch_bytecode(Bytecodes::_fast_lgetfield, G3_scratch, G4_scratch); 2268 } 2269 __ ba(checkVolatile); 2270 __ delayed()->tst(Lscratch); 2271 2272 __ bind(notLong); 2273 2274 // cmp(Rflags, btos); 2275 __ br(Assembler::notEqual, false, Assembler::pt, notByte); 2276 __ delayed() ->cmp(Rflags, ctos); 2277 2278 // btos 2279 __ ldsb(Rclass, Roffset, Otos_i); 2280 __ push(itos); 2281 if (!is_static) { 2282 patch_bytecode(Bytecodes::_fast_bgetfield, G3_scratch, G4_scratch); 2283 } 2284 __ ba(checkVolatile); 2285 __ delayed()->tst(Lscratch); 2286 2287 __ bind(notByte); 2288 2289 // cmp(Rflags, ctos); 2290 __ br(Assembler::notEqual, false, Assembler::pt, notChar); 2291 __ delayed() ->cmp(Rflags, stos); 2292 2293 // ctos 2294 __ lduh(Rclass, Roffset, Otos_i); 2295 __ push(itos); 2296 if (!is_static) { 2297 patch_bytecode(Bytecodes::_fast_cgetfield, G3_scratch, G4_scratch); 2298 } 2299 __ ba(checkVolatile); 2300 __ delayed()->tst(Lscratch); 2301 2302 __ bind(notChar); 2303 2304 // cmp(Rflags, stos); 2305 __ br(Assembler::notEqual, false, Assembler::pt, notShort); 2306 __ delayed() ->cmp(Rflags, ftos); 2307 2308 // stos 2309 __ ldsh(Rclass, Roffset, Otos_i); 2310 __ push(itos); 2311 if (!is_static) { 2312 patch_bytecode(Bytecodes::_fast_sgetfield, G3_scratch, G4_scratch); 2313 } 2314 __ ba(checkVolatile); 2315 __ delayed()->tst(Lscratch); 2316 2317 __ bind(notShort); 2318 2319 2320 // cmp(Rflags, ftos); 2321 __ br(Assembler::notEqual, false, Assembler::pt, notFloat); 2322 __ delayed() ->tst(Lscratch); 2323 2324 // ftos 2325 __ ldf(FloatRegisterImpl::S, Rclass, Roffset, Ftos_f); 2326 __ push(ftos); 2327 if (!is_static) { 2328 patch_bytecode(Bytecodes::_fast_fgetfield, G3_scratch, G4_scratch); 2329 } 2330 __ ba(checkVolatile); 2331 __ delayed()->tst(Lscratch); 2332 2333 __ bind(notFloat); 2334 2335 2336 // dtos 2337 __ ldf(FloatRegisterImpl::D, Rclass, Roffset, Ftos_d); 2338 __ push(dtos); 2339 if (!is_static) { 2340 patch_bytecode(Bytecodes::_fast_dgetfield, G3_scratch, G4_scratch); 2341 } 2342 2343 __ bind(checkVolatile); 2344 if (__ membar_has_effect(membar_bits)) { 2345 // __ tst(Lscratch); executed in delay slot 2346 __ br(Assembler::zero, false, Assembler::pt, exit); 2347 __ delayed()->nop(); 2348 volatile_barrier(membar_bits); 2349 } 2350 2351 __ bind(exit); 2352 } 2353 2354 2355 void TemplateTable::getfield(int byte_no) { 2356 getfield_or_static(byte_no, false); 2357 } 2358 2359 void TemplateTable::getstatic(int byte_no) { 2360 getfield_or_static(byte_no, true); 2361 } 2362 2363 2364 void TemplateTable::fast_accessfield(TosState state) { 2365 transition(atos, state); 2366 Register Rcache = G3_scratch; 2367 Register index = G4_scratch; 2368 Register Roffset = G4_scratch; 2369 Register Rflags = Rcache; 2370 ByteSize cp_base_offset = ConstantPoolCache::base_offset(); 2371 2372 __ get_cache_and_index_at_bcp(Rcache, index, 1); 2373 jvmti_post_field_access(Rcache, index, /*is_static*/false, /*has_tos*/true); 2374 2375 __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Roffset); 2376 2377 __ null_check(Otos_i); 2378 __ verify_oop(Otos_i); 2379 2380 Label exit; 2381 2382 Assembler::Membar_mask_bits membar_bits = 2383 Assembler::Membar_mask_bits(Assembler::LoadLoad | Assembler::LoadStore); 2384 if (__ membar_has_effect(membar_bits)) { 2385 // Get volatile flag 2386 __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Rflags); 2387 __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch); 2388 } 2389 2390 switch (bytecode()) { 2391 case Bytecodes::_fast_bgetfield: 2392 __ ldsb(Otos_i, Roffset, Otos_i); 2393 break; 2394 case Bytecodes::_fast_cgetfield: 2395 __ lduh(Otos_i, Roffset, Otos_i); 2396 break; 2397 case Bytecodes::_fast_sgetfield: 2398 __ ldsh(Otos_i, Roffset, Otos_i); 2399 break; 2400 case Bytecodes::_fast_igetfield: 2401 __ ld(Otos_i, Roffset, Otos_i); 2402 break; 2403 case Bytecodes::_fast_lgetfield: 2404 __ ld_long(Otos_i, Roffset, Otos_l); 2405 break; 2406 case Bytecodes::_fast_fgetfield: 2407 __ ldf(FloatRegisterImpl::S, Otos_i, Roffset, Ftos_f); 2408 break; 2409 case Bytecodes::_fast_dgetfield: 2410 __ ldf(FloatRegisterImpl::D, Otos_i, Roffset, Ftos_d); 2411 break; 2412 case Bytecodes::_fast_agetfield: 2413 __ load_heap_oop(Otos_i, Roffset, Otos_i); 2414 break; 2415 default: 2416 ShouldNotReachHere(); 2417 } 2418 2419 if (__ membar_has_effect(membar_bits)) { 2420 __ btst(Lscratch, Rflags); 2421 __ br(Assembler::zero, false, Assembler::pt, exit); 2422 __ delayed()->nop(); 2423 volatile_barrier(membar_bits); 2424 __ bind(exit); 2425 } 2426 2427 if (state == atos) { 2428 __ verify_oop(Otos_i); // does not blow flags! 2429 } 2430 } 2431 2432 void TemplateTable::jvmti_post_fast_field_mod() { 2433 if (JvmtiExport::can_post_field_modification()) { 2434 // Check to see if a field modification watch has been set before we take 2435 // the time to call into the VM. 2436 Label done; 2437 AddressLiteral get_field_modification_count_addr(JvmtiExport::get_field_modification_count_addr()); 2438 __ load_contents(get_field_modification_count_addr, G4_scratch); 2439 __ cmp_and_br_short(G4_scratch, 0, Assembler::equal, Assembler::pt, done); 2440 __ pop_ptr(G4_scratch); // copy the object pointer from tos 2441 __ verify_oop(G4_scratch); 2442 __ push_ptr(G4_scratch); // put the object pointer back on tos 2443 __ get_cache_entry_pointer_at_bcp(G1_scratch, G3_scratch, 1); 2444 // Save tos values before call_VM() clobbers them. Since we have 2445 // to do it for every data type, we use the saved values as the 2446 // jvalue object. 2447 switch (bytecode()) { // save tos values before call_VM() clobbers them 2448 case Bytecodes::_fast_aputfield: __ push_ptr(Otos_i); break; 2449 case Bytecodes::_fast_bputfield: // fall through 2450 case Bytecodes::_fast_sputfield: // fall through 2451 case Bytecodes::_fast_cputfield: // fall through 2452 case Bytecodes::_fast_iputfield: __ push_i(Otos_i); break; 2453 case Bytecodes::_fast_dputfield: __ push_d(Ftos_d); break; 2454 case Bytecodes::_fast_fputfield: __ push_f(Ftos_f); break; 2455 // get words in right order for use as jvalue object 2456 case Bytecodes::_fast_lputfield: __ push_l(Otos_l); break; 2457 } 2458 // setup pointer to jvalue object 2459 __ mov(Lesp, G3_scratch); __ inc(G3_scratch, wordSize); 2460 // G4_scratch: object pointer 2461 // G1_scratch: cache entry pointer 2462 // G3_scratch: jvalue object on the stack 2463 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), G4_scratch, G1_scratch, G3_scratch); 2464 switch (bytecode()) { // restore tos values 2465 case Bytecodes::_fast_aputfield: __ pop_ptr(Otos_i); break; 2466 case Bytecodes::_fast_bputfield: // fall through 2467 case Bytecodes::_fast_sputfield: // fall through 2468 case Bytecodes::_fast_cputfield: // fall through 2469 case Bytecodes::_fast_iputfield: __ pop_i(Otos_i); break; 2470 case Bytecodes::_fast_dputfield: __ pop_d(Ftos_d); break; 2471 case Bytecodes::_fast_fputfield: __ pop_f(Ftos_f); break; 2472 case Bytecodes::_fast_lputfield: __ pop_l(Otos_l); break; 2473 } 2474 __ bind(done); 2475 } 2476 } 2477 2478 // The registers Rcache and index expected to be set before call. 2479 // The function may destroy various registers, just not the Rcache and index registers. 2480 void TemplateTable::jvmti_post_field_mod(Register Rcache, Register index, bool is_static) { 2481 ByteSize cp_base_offset = ConstantPoolCache::base_offset(); 2482 2483 if (JvmtiExport::can_post_field_modification()) { 2484 // Check to see if a field modification watch has been set before we take 2485 // the time to call into the VM. 2486 Label Label1; 2487 assert_different_registers(Rcache, index, G1_scratch); 2488 AddressLiteral get_field_modification_count_addr(JvmtiExport::get_field_modification_count_addr()); 2489 __ load_contents(get_field_modification_count_addr, G1_scratch); 2490 __ cmp_and_br_short(G1_scratch, 0, Assembler::zero, Assembler::pt, Label1); 2491 2492 // The Rcache and index registers have been already set. 2493 // This allows to eliminate this call but the Rcache and index 2494 // registers must be correspondingly used after this line. 2495 __ get_cache_and_index_at_bcp(G1_scratch, G4_scratch, 1); 2496 2497 __ add(G1_scratch, in_bytes(cp_base_offset), G3_scratch); 2498 if (is_static) { 2499 // Life is simple. Null out the object pointer. 2500 __ clr(G4_scratch); 2501 } else { 2502 Register Rflags = G1_scratch; 2503 // Life is harder. The stack holds the value on top, followed by the 2504 // object. We don't know the size of the value, though; it could be 2505 // one or two words depending on its type. As a result, we must find 2506 // the type to determine where the object is. 2507 2508 Label two_word, valsizeknown; 2509 __ ld_ptr(G1_scratch, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), Rflags); 2510 __ mov(Lesp, G4_scratch); 2511 __ srl(Rflags, ConstantPoolCacheEntry::tos_state_shift, Rflags); 2512 // Make sure we don't need to mask Rflags after the above shift 2513 ConstantPoolCacheEntry::verify_tos_state_shift(); 2514 __ cmp(Rflags, ltos); 2515 __ br(Assembler::equal, false, Assembler::pt, two_word); 2516 __ delayed()->cmp(Rflags, dtos); 2517 __ br(Assembler::equal, false, Assembler::pt, two_word); 2518 __ delayed()->nop(); 2519 __ inc(G4_scratch, Interpreter::expr_offset_in_bytes(1)); 2520 __ ba_short(valsizeknown); 2521 __ bind(two_word); 2522 2523 __ inc(G4_scratch, Interpreter::expr_offset_in_bytes(2)); 2524 2525 __ bind(valsizeknown); 2526 // setup object pointer 2527 __ ld_ptr(G4_scratch, 0, G4_scratch); 2528 __ verify_oop(G4_scratch); 2529 } 2530 // setup pointer to jvalue object 2531 __ mov(Lesp, G1_scratch); __ inc(G1_scratch, wordSize); 2532 // G4_scratch: object pointer or NULL if static 2533 // G3_scratch: cache entry pointer 2534 // G1_scratch: jvalue object on the stack 2535 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), 2536 G4_scratch, G3_scratch, G1_scratch); 2537 __ get_cache_and_index_at_bcp(Rcache, index, 1); 2538 __ bind(Label1); 2539 } 2540 } 2541 2542 void TemplateTable::pop_and_check_object(Register r) { 2543 __ pop_ptr(r); 2544 __ null_check(r); // for field access must check obj. 2545 __ verify_oop(r); 2546 } 2547 2548 void TemplateTable::putfield_or_static(int byte_no, bool is_static) { 2549 transition(vtos, vtos); 2550 Register Rcache = G3_scratch; 2551 Register index = G4_scratch; 2552 Register Rclass = Rcache; 2553 Register Roffset= G4_scratch; 2554 Register Rflags = G1_scratch; 2555 ByteSize cp_base_offset = ConstantPoolCache::base_offset(); 2556 2557 resolve_cache_and_index(byte_no, Rcache, index, sizeof(u2)); 2558 jvmti_post_field_mod(Rcache, index, is_static); 2559 load_field_cp_cache_entry(Rclass, Rcache, index, Roffset, Rflags, is_static); 2560 2561 Assembler::Membar_mask_bits read_bits = 2562 Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore); 2563 Assembler::Membar_mask_bits write_bits = Assembler::StoreLoad; 2564 2565 Label notVolatile, checkVolatile, exit; 2566 if (__ membar_has_effect(read_bits) || __ membar_has_effect(write_bits)) { 2567 __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch); 2568 __ and3(Rflags, Lscratch, Lscratch); 2569 2570 if (__ membar_has_effect(read_bits)) { 2571 __ cmp_and_br_short(Lscratch, 0, Assembler::equal, Assembler::pt, notVolatile); 2572 volatile_barrier(read_bits); 2573 __ bind(notVolatile); 2574 } 2575 } 2576 2577 __ srl(Rflags, ConstantPoolCacheEntry::tos_state_shift, Rflags); 2578 // Make sure we don't need to mask Rflags after the above shift 2579 ConstantPoolCacheEntry::verify_tos_state_shift(); 2580 2581 // compute field type 2582 Label notInt, notShort, notChar, notObj, notByte, notLong, notFloat; 2583 2584 if (is_static) { 2585 // putstatic with object type most likely, check that first 2586 __ cmp(Rflags, atos); 2587 __ br(Assembler::notEqual, false, Assembler::pt, notObj); 2588 __ delayed()->cmp(Rflags, itos); 2589 2590 // atos 2591 { 2592 __ pop_ptr(); 2593 __ verify_oop(Otos_i); 2594 do_oop_store(_masm, Rclass, Roffset, 0, Otos_i, G1_scratch, _bs->kind(), false); 2595 __ ba(checkVolatile); 2596 __ delayed()->tst(Lscratch); 2597 } 2598 2599 __ bind(notObj); 2600 // cmp(Rflags, itos); 2601 __ br(Assembler::notEqual, false, Assembler::pt, notInt); 2602 __ delayed()->cmp(Rflags, btos); 2603 2604 // itos 2605 { 2606 __ pop_i(); 2607 __ st(Otos_i, Rclass, Roffset); 2608 __ ba(checkVolatile); 2609 __ delayed()->tst(Lscratch); 2610 } 2611 2612 __ bind(notInt); 2613 } else { 2614 // putfield with int type most likely, check that first 2615 __ cmp(Rflags, itos); 2616 __ br(Assembler::notEqual, false, Assembler::pt, notInt); 2617 __ delayed()->cmp(Rflags, atos); 2618 2619 // itos 2620 { 2621 __ pop_i(); 2622 pop_and_check_object(Rclass); 2623 __ st(Otos_i, Rclass, Roffset); 2624 patch_bytecode(Bytecodes::_fast_iputfield, G3_scratch, G4_scratch, true, byte_no); 2625 __ ba(checkVolatile); 2626 __ delayed()->tst(Lscratch); 2627 } 2628 2629 __ bind(notInt); 2630 // cmp(Rflags, atos); 2631 __ br(Assembler::notEqual, false, Assembler::pt, notObj); 2632 __ delayed()->cmp(Rflags, btos); 2633 2634 // atos 2635 { 2636 __ pop_ptr(); 2637 pop_and_check_object(Rclass); 2638 __ verify_oop(Otos_i); 2639 do_oop_store(_masm, Rclass, Roffset, 0, Otos_i, G1_scratch, _bs->kind(), false); 2640 patch_bytecode(Bytecodes::_fast_aputfield, G3_scratch, G4_scratch, true, byte_no); 2641 __ ba(checkVolatile); 2642 __ delayed()->tst(Lscratch); 2643 } 2644 2645 __ bind(notObj); 2646 } 2647 2648 // cmp(Rflags, btos); 2649 __ br(Assembler::notEqual, false, Assembler::pt, notByte); 2650 __ delayed()->cmp(Rflags, ltos); 2651 2652 // btos 2653 { 2654 __ pop_i(); 2655 if (!is_static) pop_and_check_object(Rclass); 2656 __ stb(Otos_i, Rclass, Roffset); 2657 if (!is_static) { 2658 patch_bytecode(Bytecodes::_fast_bputfield, G3_scratch, G4_scratch, true, byte_no); 2659 } 2660 __ ba(checkVolatile); 2661 __ delayed()->tst(Lscratch); 2662 } 2663 2664 __ bind(notByte); 2665 // cmp(Rflags, ltos); 2666 __ br(Assembler::notEqual, false, Assembler::pt, notLong); 2667 __ delayed()->cmp(Rflags, ctos); 2668 2669 // ltos 2670 { 2671 __ pop_l(); 2672 if (!is_static) pop_and_check_object(Rclass); 2673 __ st_long(Otos_l, Rclass, Roffset); 2674 if (!is_static) { 2675 patch_bytecode(Bytecodes::_fast_lputfield, G3_scratch, G4_scratch, true, byte_no); 2676 } 2677 __ ba(checkVolatile); 2678 __ delayed()->tst(Lscratch); 2679 } 2680 2681 __ bind(notLong); 2682 // cmp(Rflags, ctos); 2683 __ br(Assembler::notEqual, false, Assembler::pt, notChar); 2684 __ delayed()->cmp(Rflags, stos); 2685 2686 // ctos (char) 2687 { 2688 __ pop_i(); 2689 if (!is_static) pop_and_check_object(Rclass); 2690 __ sth(Otos_i, Rclass, Roffset); 2691 if (!is_static) { 2692 patch_bytecode(Bytecodes::_fast_cputfield, G3_scratch, G4_scratch, true, byte_no); 2693 } 2694 __ ba(checkVolatile); 2695 __ delayed()->tst(Lscratch); 2696 } 2697 2698 __ bind(notChar); 2699 // cmp(Rflags, stos); 2700 __ br(Assembler::notEqual, false, Assembler::pt, notShort); 2701 __ delayed()->cmp(Rflags, ftos); 2702 2703 // stos (short) 2704 { 2705 __ pop_i(); 2706 if (!is_static) pop_and_check_object(Rclass); 2707 __ sth(Otos_i, Rclass, Roffset); 2708 if (!is_static) { 2709 patch_bytecode(Bytecodes::_fast_sputfield, G3_scratch, G4_scratch, true, byte_no); 2710 } 2711 __ ba(checkVolatile); 2712 __ delayed()->tst(Lscratch); 2713 } 2714 2715 __ bind(notShort); 2716 // cmp(Rflags, ftos); 2717 __ br(Assembler::notZero, false, Assembler::pt, notFloat); 2718 __ delayed()->nop(); 2719 2720 // ftos 2721 { 2722 __ pop_f(); 2723 if (!is_static) pop_and_check_object(Rclass); 2724 __ stf(FloatRegisterImpl::S, Ftos_f, Rclass, Roffset); 2725 if (!is_static) { 2726 patch_bytecode(Bytecodes::_fast_fputfield, G3_scratch, G4_scratch, true, byte_no); 2727 } 2728 __ ba(checkVolatile); 2729 __ delayed()->tst(Lscratch); 2730 } 2731 2732 __ bind(notFloat); 2733 2734 // dtos 2735 { 2736 __ pop_d(); 2737 if (!is_static) pop_and_check_object(Rclass); 2738 __ stf(FloatRegisterImpl::D, Ftos_d, Rclass, Roffset); 2739 if (!is_static) { 2740 patch_bytecode(Bytecodes::_fast_dputfield, G3_scratch, G4_scratch, true, byte_no); 2741 } 2742 } 2743 2744 __ bind(checkVolatile); 2745 __ tst(Lscratch); 2746 2747 if (__ membar_has_effect(write_bits)) { 2748 // __ tst(Lscratch); in delay slot 2749 __ br(Assembler::zero, false, Assembler::pt, exit); 2750 __ delayed()->nop(); 2751 volatile_barrier(Assembler::StoreLoad); 2752 __ bind(exit); 2753 } 2754 } 2755 2756 void TemplateTable::fast_storefield(TosState state) { 2757 transition(state, vtos); 2758 Register Rcache = G3_scratch; 2759 Register Rclass = Rcache; 2760 Register Roffset= G4_scratch; 2761 Register Rflags = G1_scratch; 2762 ByteSize cp_base_offset = ConstantPoolCache::base_offset(); 2763 2764 jvmti_post_fast_field_mod(); 2765 2766 __ get_cache_and_index_at_bcp(Rcache, G4_scratch, 1); 2767 2768 Assembler::Membar_mask_bits read_bits = 2769 Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore); 2770 Assembler::Membar_mask_bits write_bits = Assembler::StoreLoad; 2771 2772 Label notVolatile, checkVolatile, exit; 2773 if (__ membar_has_effect(read_bits) || __ membar_has_effect(write_bits)) { 2774 __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), Rflags); 2775 __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch); 2776 __ and3(Rflags, Lscratch, Lscratch); 2777 if (__ membar_has_effect(read_bits)) { 2778 __ cmp_and_br_short(Lscratch, 0, Assembler::equal, Assembler::pt, notVolatile); 2779 volatile_barrier(read_bits); 2780 __ bind(notVolatile); 2781 } 2782 } 2783 2784 __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Roffset); 2785 pop_and_check_object(Rclass); 2786 2787 switch (bytecode()) { 2788 case Bytecodes::_fast_bputfield: __ stb(Otos_i, Rclass, Roffset); break; 2789 case Bytecodes::_fast_cputfield: /* fall through */ 2790 case Bytecodes::_fast_sputfield: __ sth(Otos_i, Rclass, Roffset); break; 2791 case Bytecodes::_fast_iputfield: __ st(Otos_i, Rclass, Roffset); break; 2792 case Bytecodes::_fast_lputfield: __ st_long(Otos_l, Rclass, Roffset); break; 2793 case Bytecodes::_fast_fputfield: 2794 __ stf(FloatRegisterImpl::S, Ftos_f, Rclass, Roffset); 2795 break; 2796 case Bytecodes::_fast_dputfield: 2797 __ stf(FloatRegisterImpl::D, Ftos_d, Rclass, Roffset); 2798 break; 2799 case Bytecodes::_fast_aputfield: 2800 do_oop_store(_masm, Rclass, Roffset, 0, Otos_i, G1_scratch, _bs->kind(), false); 2801 break; 2802 default: 2803 ShouldNotReachHere(); 2804 } 2805 2806 if (__ membar_has_effect(write_bits)) { 2807 __ cmp_and_br_short(Lscratch, 0, Assembler::equal, Assembler::pt, exit); 2808 volatile_barrier(Assembler::StoreLoad); 2809 __ bind(exit); 2810 } 2811 } 2812 2813 2814 void TemplateTable::putfield(int byte_no) { 2815 putfield_or_static(byte_no, false); 2816 } 2817 2818 void TemplateTable::putstatic(int byte_no) { 2819 putfield_or_static(byte_no, true); 2820 } 2821 2822 2823 void TemplateTable::fast_xaccess(TosState state) { 2824 transition(vtos, state); 2825 Register Rcache = G3_scratch; 2826 Register Roffset = G4_scratch; 2827 Register Rflags = G4_scratch; 2828 Register Rreceiver = Lscratch; 2829 2830 __ ld_ptr(Llocals, 0, Rreceiver); 2831 2832 // access constant pool cache (is resolved) 2833 __ get_cache_and_index_at_bcp(Rcache, G4_scratch, 2); 2834 __ ld_ptr(Rcache, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::f2_offset(), Roffset); 2835 __ add(Lbcp, 1, Lbcp); // needed to report exception at the correct bcp 2836 2837 __ verify_oop(Rreceiver); 2838 __ null_check(Rreceiver); 2839 if (state == atos) { 2840 __ load_heap_oop(Rreceiver, Roffset, Otos_i); 2841 } else if (state == itos) { 2842 __ ld (Rreceiver, Roffset, Otos_i) ; 2843 } else if (state == ftos) { 2844 __ ldf(FloatRegisterImpl::S, Rreceiver, Roffset, Ftos_f); 2845 } else { 2846 ShouldNotReachHere(); 2847 } 2848 2849 Assembler::Membar_mask_bits membar_bits = 2850 Assembler::Membar_mask_bits(Assembler::LoadLoad | Assembler::LoadStore); 2851 if (__ membar_has_effect(membar_bits)) { 2852 2853 // Get is_volatile value in Rflags and check if membar is needed 2854 __ ld_ptr(Rcache, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset(), Rflags); 2855 2856 // Test volatile 2857 Label notVolatile; 2858 __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch); 2859 __ btst(Rflags, Lscratch); 2860 __ br(Assembler::zero, false, Assembler::pt, notVolatile); 2861 __ delayed()->nop(); 2862 volatile_barrier(membar_bits); 2863 __ bind(notVolatile); 2864 } 2865 2866 __ interp_verify_oop(Otos_i, state, __FILE__, __LINE__); 2867 __ sub(Lbcp, 1, Lbcp); 2868 } 2869 2870 //---------------------------------------------------------------------------------------------------- 2871 // Calls 2872 2873 void TemplateTable::count_calls(Register method, Register temp) { 2874 // implemented elsewhere 2875 ShouldNotReachHere(); 2876 } 2877 2878 void TemplateTable::prepare_invoke(int byte_no, 2879 Register method, // linked method (or i-klass) 2880 Register ra, // return address 2881 Register index, // itable index, MethodType, etc. 2882 Register recv, // if caller wants to see it 2883 Register flags // if caller wants to test it 2884 ) { 2885 // determine flags 2886 const Bytecodes::Code code = bytecode(); 2887 const bool is_invokeinterface = code == Bytecodes::_invokeinterface; 2888 const bool is_invokedynamic = code == Bytecodes::_invokedynamic; 2889 const bool is_invokehandle = code == Bytecodes::_invokehandle; 2890 const bool is_invokevirtual = code == Bytecodes::_invokevirtual; 2891 const bool is_invokespecial = code == Bytecodes::_invokespecial; 2892 const bool load_receiver = (recv != noreg); 2893 assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), ""); 2894 assert(recv == noreg || recv == O0, ""); 2895 assert(flags == noreg || flags == O1, ""); 2896 2897 // setup registers & access constant pool cache 2898 if (recv == noreg) recv = O0; 2899 if (flags == noreg) flags = O1; 2900 const Register temp = O2; 2901 assert_different_registers(method, ra, index, recv, flags, temp); 2902 2903 load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic); 2904 2905 __ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore 2906 2907 // maybe push appendix to arguments 2908 if (is_invokedynamic || is_invokehandle) { 2909 Label L_no_push; 2910 __ set((1 << ConstantPoolCacheEntry::has_appendix_shift), temp); 2911 __ btst(flags, temp); 2912 __ br(Assembler::zero, false, Assembler::pt, L_no_push); 2913 __ delayed()->nop(); 2914 // Push the appendix as a trailing parameter. 2915 // This must be done before we get the receiver, 2916 // since the parameter_size includes it. 2917 assert(ConstantPoolCacheEntry::_indy_resolved_references_appendix_offset == 0, "appendix expected at index+0"); 2918 __ load_resolved_reference_at_index(temp, index); 2919 __ verify_oop(temp); 2920 __ push_ptr(temp); // push appendix (MethodType, CallSite, etc.) 2921 __ bind(L_no_push); 2922 } 2923 2924 // load receiver if needed (after appendix is pushed so parameter size is correct) 2925 if (load_receiver) { 2926 __ and3(flags, ConstantPoolCacheEntry::parameter_size_mask, temp); // get parameter size 2927 __ load_receiver(temp, recv); // __ argument_address uses Gargs but we need Lesp 2928 __ verify_oop(recv); 2929 } 2930 2931 // compute return type 2932 __ srl(flags, ConstantPoolCacheEntry::tos_state_shift, ra); 2933 // Make sure we don't need to mask flags after the above shift 2934 ConstantPoolCacheEntry::verify_tos_state_shift(); 2935 // load return address 2936 { 2937 const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code); 2938 AddressLiteral table(table_addr); 2939 __ set(table, temp); 2940 __ sll(ra, LogBytesPerWord, ra); 2941 __ ld_ptr(Address(temp, ra), ra); 2942 } 2943 } 2944 2945 2946 void TemplateTable::generate_vtable_call(Register Rrecv, Register Rindex, Register Rret) { 2947 Register Rcall = Rindex; 2948 assert_different_registers(Rcall, G5_method, Gargs, Rret); 2949 2950 // get target Method* & entry point 2951 __ lookup_virtual_method(Rrecv, Rindex, G5_method); 2952 __ profile_arguments_type(G5_method, Rcall, Gargs, true); 2953 __ call_from_interpreter(Rcall, Gargs, Rret); 2954 } 2955 2956 void TemplateTable::invokevirtual(int byte_no) { 2957 transition(vtos, vtos); 2958 assert(byte_no == f2_byte, "use this argument"); 2959 2960 Register Rscratch = G3_scratch; 2961 Register Rtemp = G4_scratch; 2962 Register Rret = Lscratch; 2963 Register O0_recv = O0; 2964 Label notFinal; 2965 2966 load_invoke_cp_cache_entry(byte_no, G5_method, noreg, Rret, true, false, false); 2967 __ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore 2968 2969 // Check for vfinal 2970 __ set((1 << ConstantPoolCacheEntry::is_vfinal_shift), G4_scratch); 2971 __ btst(Rret, G4_scratch); 2972 __ br(Assembler::zero, false, Assembler::pt, notFinal); 2973 __ delayed()->and3(Rret, 0xFF, G4_scratch); // gets number of parameters 2974 2975 patch_bytecode(Bytecodes::_fast_invokevfinal, Rscratch, Rtemp); 2976 2977 invokevfinal_helper(Rscratch, Rret); 2978 2979 __ bind(notFinal); 2980 2981 __ mov(G5_method, Rscratch); // better scratch register 2982 __ load_receiver(G4_scratch, O0_recv); // gets receiverOop 2983 // receiver is in O0_recv 2984 __ verify_oop(O0_recv); 2985 2986 // get return address 2987 AddressLiteral table(Interpreter::invoke_return_entry_table()); 2988 __ set(table, Rtemp); 2989 __ srl(Rret, ConstantPoolCacheEntry::tos_state_shift, Rret); // get return type 2990 // Make sure we don't need to mask Rret after the above shift 2991 ConstantPoolCacheEntry::verify_tos_state_shift(); 2992 __ sll(Rret, LogBytesPerWord, Rret); 2993 __ ld_ptr(Rtemp, Rret, Rret); // get return address 2994 2995 // get receiver klass 2996 __ null_check(O0_recv, oopDesc::klass_offset_in_bytes()); 2997 __ load_klass(O0_recv, O0_recv); 2998 __ verify_klass_ptr(O0_recv); 2999 3000 __ profile_virtual_call(O0_recv, O4); 3001 3002 generate_vtable_call(O0_recv, Rscratch, Rret); 3003 } 3004 3005 void TemplateTable::fast_invokevfinal(int byte_no) { 3006 transition(vtos, vtos); 3007 assert(byte_no == f2_byte, "use this argument"); 3008 3009 load_invoke_cp_cache_entry(byte_no, G5_method, noreg, Lscratch, true, 3010 /*is_invokevfinal*/true, false); 3011 __ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore 3012 invokevfinal_helper(G3_scratch, Lscratch); 3013 } 3014 3015 void TemplateTable::invokevfinal_helper(Register Rscratch, Register Rret) { 3016 Register Rtemp = G4_scratch; 3017 3018 // Load receiver from stack slot 3019 __ ld_ptr(G5_method, in_bytes(Method::const_offset()), G4_scratch); 3020 __ lduh(G4_scratch, in_bytes(ConstMethod::size_of_parameters_offset()), G4_scratch); 3021 __ load_receiver(G4_scratch, O0); 3022 3023 // receiver NULL check 3024 __ null_check(O0); 3025 3026 __ profile_final_call(O4); 3027 __ profile_arguments_type(G5_method, Rscratch, Gargs, true); 3028 3029 // get return address 3030 AddressLiteral table(Interpreter::invoke_return_entry_table()); 3031 __ set(table, Rtemp); 3032 __ srl(Rret, ConstantPoolCacheEntry::tos_state_shift, Rret); // get return type 3033 // Make sure we don't need to mask Rret after the above shift 3034 ConstantPoolCacheEntry::verify_tos_state_shift(); 3035 __ sll(Rret, LogBytesPerWord, Rret); 3036 __ ld_ptr(Rtemp, Rret, Rret); // get return address 3037 3038 3039 // do the call 3040 __ call_from_interpreter(Rscratch, Gargs, Rret); 3041 } 3042 3043 3044 void TemplateTable::invokespecial(int byte_no) { 3045 transition(vtos, vtos); 3046 assert(byte_no == f1_byte, "use this argument"); 3047 3048 const Register Rret = Lscratch; 3049 const Register O0_recv = O0; 3050 const Register Rscratch = G3_scratch; 3051 3052 prepare_invoke(byte_no, G5_method, Rret, noreg, O0_recv); // get receiver also for null check 3053 __ null_check(O0_recv); 3054 3055 // do the call 3056 __ profile_call(O4); 3057 __ profile_arguments_type(G5_method, Rscratch, Gargs, false); 3058 __ call_from_interpreter(Rscratch, Gargs, Rret); 3059 } 3060 3061 3062 void TemplateTable::invokestatic(int byte_no) { 3063 transition(vtos, vtos); 3064 assert(byte_no == f1_byte, "use this argument"); 3065 3066 const Register Rret = Lscratch; 3067 const Register Rscratch = G3_scratch; 3068 3069 prepare_invoke(byte_no, G5_method, Rret); // get f1 Method* 3070 3071 // do the call 3072 __ profile_call(O4); 3073 __ profile_arguments_type(G5_method, Rscratch, Gargs, false); 3074 __ call_from_interpreter(Rscratch, Gargs, Rret); 3075 } 3076 3077 void TemplateTable::invokeinterface_object_method(Register RKlass, 3078 Register Rcall, 3079 Register Rret, 3080 Register Rflags) { 3081 Register Rscratch = G4_scratch; 3082 Register Rindex = Lscratch; 3083 3084 assert_different_registers(Rscratch, Rindex, Rret); 3085 3086 Label notFinal; 3087 3088 // Check for vfinal 3089 __ set((1 << ConstantPoolCacheEntry::is_vfinal_shift), Rscratch); 3090 __ btst(Rflags, Rscratch); 3091 __ br(Assembler::zero, false, Assembler::pt, notFinal); 3092 __ delayed()->nop(); 3093 3094 __ profile_final_call(O4); 3095 3096 // do the call - the index (f2) contains the Method* 3097 assert_different_registers(G5_method, Gargs, Rcall); 3098 __ mov(Rindex, G5_method); 3099 __ profile_arguments_type(G5_method, Rcall, Gargs, true); 3100 __ call_from_interpreter(Rcall, Gargs, Rret); 3101 __ bind(notFinal); 3102 3103 __ profile_virtual_call(RKlass, O4); 3104 generate_vtable_call(RKlass, Rindex, Rret); 3105 } 3106 3107 3108 void TemplateTable::invokeinterface(int byte_no) { 3109 transition(vtos, vtos); 3110 assert(byte_no == f1_byte, "use this argument"); 3111 3112 const Register Rinterface = G1_scratch; 3113 const Register Rret = G3_scratch; 3114 const Register Rindex = Lscratch; 3115 const Register O0_recv = O0; 3116 const Register O1_flags = O1; 3117 const Register O2_Klass = O2; 3118 const Register Rscratch = G4_scratch; 3119 assert_different_registers(Rscratch, G5_method); 3120 3121 prepare_invoke(byte_no, Rinterface, Rret, Rindex, O0_recv, O1_flags); 3122 3123 // get receiver klass 3124 __ null_check(O0_recv, oopDesc::klass_offset_in_bytes()); 3125 __ load_klass(O0_recv, O2_Klass); 3126 3127 // Special case of invokeinterface called for virtual method of 3128 // java.lang.Object. See cpCacheOop.cpp for details. 3129 // This code isn't produced by javac, but could be produced by 3130 // another compliant java compiler. 3131 Label notMethod; 3132 __ set((1 << ConstantPoolCacheEntry::is_forced_virtual_shift), Rscratch); 3133 __ btst(O1_flags, Rscratch); 3134 __ br(Assembler::zero, false, Assembler::pt, notMethod); 3135 __ delayed()->nop(); 3136 3137 invokeinterface_object_method(O2_Klass, Rinterface, Rret, O1_flags); 3138 3139 __ bind(notMethod); 3140 3141 __ profile_virtual_call(O2_Klass, O4); 3142 3143 // 3144 // find entry point to call 3145 // 3146 3147 // compute start of first itableOffsetEntry (which is at end of vtable) 3148 const int base = InstanceKlass::vtable_start_offset() * wordSize; 3149 Label search; 3150 Register Rtemp = O1_flags; 3151 3152 __ ld(O2_Klass, InstanceKlass::vtable_length_offset() * wordSize, Rtemp); 3153 if (align_object_offset(1) > 1) { 3154 __ round_to(Rtemp, align_object_offset(1)); 3155 } 3156 __ sll(Rtemp, LogBytesPerWord, Rtemp); // Rscratch *= 4; 3157 if (Assembler::is_simm13(base)) { 3158 __ add(Rtemp, base, Rtemp); 3159 } else { 3160 __ set(base, Rscratch); 3161 __ add(Rscratch, Rtemp, Rtemp); 3162 } 3163 __ add(O2_Klass, Rtemp, Rscratch); 3164 3165 __ bind(search); 3166 3167 __ ld_ptr(Rscratch, itableOffsetEntry::interface_offset_in_bytes(), Rtemp); 3168 { 3169 Label ok; 3170 3171 // Check that entry is non-null. Null entries are probably a bytecode 3172 // problem. If the interface isn't implemented by the receiver class, 3173 // the VM should throw IncompatibleClassChangeError. linkResolver checks 3174 // this too but that's only if the entry isn't already resolved, so we 3175 // need to check again. 3176 __ br_notnull_short( Rtemp, Assembler::pt, ok); 3177 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_IncompatibleClassChangeError)); 3178 __ should_not_reach_here(); 3179 __ bind(ok); 3180 } 3181 3182 __ cmp(Rinterface, Rtemp); 3183 __ brx(Assembler::notEqual, true, Assembler::pn, search); 3184 __ delayed()->add(Rscratch, itableOffsetEntry::size() * wordSize, Rscratch); 3185 3186 // entry found and Rscratch points to it 3187 __ ld(Rscratch, itableOffsetEntry::offset_offset_in_bytes(), Rscratch); 3188 3189 assert(itableMethodEntry::method_offset_in_bytes() == 0, "adjust instruction below"); 3190 __ sll(Rindex, exact_log2(itableMethodEntry::size() * wordSize), Rindex); // Rindex *= 8; 3191 __ add(Rscratch, Rindex, Rscratch); 3192 __ ld_ptr(O2_Klass, Rscratch, G5_method); 3193 3194 // Check for abstract method error. 3195 { 3196 Label ok; 3197 __ br_notnull_short(G5_method, Assembler::pt, ok); 3198 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError)); 3199 __ should_not_reach_here(); 3200 __ bind(ok); 3201 } 3202 3203 Register Rcall = Rinterface; 3204 assert_different_registers(Rcall, G5_method, Gargs, Rret); 3205 3206 __ profile_arguments_type(G5_method, Rcall, Gargs, true); 3207 __ call_from_interpreter(Rcall, Gargs, Rret); 3208 } 3209 3210 void TemplateTable::invokehandle(int byte_no) { 3211 transition(vtos, vtos); 3212 assert(byte_no == f1_byte, "use this argument"); 3213 3214 const Register Rret = Lscratch; 3215 const Register G4_mtype = G4_scratch; 3216 const Register O0_recv = O0; 3217 const Register Rscratch = G3_scratch; 3218 3219 prepare_invoke(byte_no, G5_method, Rret, G4_mtype, O0_recv); 3220 __ null_check(O0_recv); 3221 3222 // G4: MethodType object (from cpool->resolved_references[f1], if necessary) 3223 // G5: MH.invokeExact_MT method (from f2) 3224 3225 // Note: G4_mtype is already pushed (if necessary) by prepare_invoke 3226 3227 // do the call 3228 __ verify_oop(G4_mtype); 3229 __ profile_final_call(O4); // FIXME: profile the LambdaForm also 3230 __ profile_arguments_type(G5_method, Rscratch, Gargs, true); 3231 __ call_from_interpreter(Rscratch, Gargs, Rret); 3232 } 3233 3234 3235 void TemplateTable::invokedynamic(int byte_no) { 3236 transition(vtos, vtos); 3237 assert(byte_no == f1_byte, "use this argument"); 3238 3239 const Register Rret = Lscratch; 3240 const Register G4_callsite = G4_scratch; 3241 const Register Rscratch = G3_scratch; 3242 3243 prepare_invoke(byte_no, G5_method, Rret, G4_callsite); 3244 3245 // G4: CallSite object (from cpool->resolved_references[f1]) 3246 // G5: MH.linkToCallSite method (from f2) 3247 3248 // Note: G4_callsite is already pushed by prepare_invoke 3249 3250 // %%% should make a type profile for any invokedynamic that takes a ref argument 3251 // profile this call 3252 __ profile_call(O4); 3253 3254 // do the call 3255 __ verify_oop(G4_callsite); 3256 __ profile_arguments_type(G5_method, Rscratch, Gargs, false); 3257 __ call_from_interpreter(Rscratch, Gargs, Rret); 3258 } 3259 3260 3261 //---------------------------------------------------------------------------------------------------- 3262 // Allocation 3263 3264 void TemplateTable::_new() { 3265 transition(vtos, atos); 3266 3267 Label slow_case; 3268 Label done; 3269 Label initialize_header; 3270 Label initialize_object; // including clearing the fields 3271 3272 Register RallocatedObject = Otos_i; 3273 Register RinstanceKlass = O1; 3274 Register Roffset = O3; 3275 Register Rscratch = O4; 3276 3277 __ get_2_byte_integer_at_bcp(1, Rscratch, Roffset, InterpreterMacroAssembler::Unsigned); 3278 __ get_cpool_and_tags(Rscratch, G3_scratch); 3279 // make sure the class we're about to instantiate has been resolved 3280 // This is done before loading InstanceKlass to be consistent with the order 3281 // how Constant Pool is updated (see ConstantPool::klass_at_put) 3282 __ add(G3_scratch, Array<u1>::base_offset_in_bytes(), G3_scratch); 3283 __ ldub(G3_scratch, Roffset, G3_scratch); 3284 __ cmp(G3_scratch, JVM_CONSTANT_Class); 3285 __ br(Assembler::notEqual, false, Assembler::pn, slow_case); 3286 __ delayed()->sll(Roffset, LogBytesPerWord, Roffset); 3287 // get InstanceKlass 3288 //__ sll(Roffset, LogBytesPerWord, Roffset); // executed in delay slot 3289 __ add(Roffset, sizeof(ConstantPool), Roffset); 3290 __ ld_ptr(Rscratch, Roffset, RinstanceKlass); 3291 3292 // make sure klass is fully initialized: 3293 __ ldub(RinstanceKlass, in_bytes(InstanceKlass::init_state_offset()), G3_scratch); 3294 __ cmp(G3_scratch, InstanceKlass::fully_initialized); 3295 __ br(Assembler::notEqual, false, Assembler::pn, slow_case); 3296 __ delayed()->ld(RinstanceKlass, in_bytes(Klass::layout_helper_offset()), Roffset); 3297 3298 // get instance_size in InstanceKlass (already aligned) 3299 //__ ld(RinstanceKlass, in_bytes(Klass::layout_helper_offset()), Roffset); 3300 3301 // make sure klass does not have has_finalizer, or is abstract, or interface or java/lang/Class 3302 __ btst(Klass::_lh_instance_slow_path_bit, Roffset); 3303 __ br(Assembler::notZero, false, Assembler::pn, slow_case); 3304 __ delayed()->nop(); 3305 3306 // allocate the instance 3307 // 1) Try to allocate in the TLAB 3308 // 2) if fail, and the TLAB is not full enough to discard, allocate in the shared Eden 3309 // 3) if the above fails (or is not applicable), go to a slow case 3310 // (creates a new TLAB, etc.) 3311 3312 const bool allow_shared_alloc = 3313 Universe::heap()->supports_inline_contig_alloc(); 3314 3315 if(UseTLAB) { 3316 Register RoldTopValue = RallocatedObject; 3317 Register RtlabWasteLimitValue = G3_scratch; 3318 Register RnewTopValue = G1_scratch; 3319 Register RendValue = Rscratch; 3320 Register RfreeValue = RnewTopValue; 3321 3322 // check if we can allocate in the TLAB 3323 __ ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), RoldTopValue); // sets up RalocatedObject 3324 __ ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), RendValue); 3325 __ add(RoldTopValue, Roffset, RnewTopValue); 3326 3327 // if there is enough space, we do not CAS and do not clear 3328 __ cmp(RnewTopValue, RendValue); 3329 if(ZeroTLAB) { 3330 // the fields have already been cleared 3331 __ brx(Assembler::lessEqualUnsigned, true, Assembler::pt, initialize_header); 3332 } else { 3333 // initialize both the header and fields 3334 __ brx(Assembler::lessEqualUnsigned, true, Assembler::pt, initialize_object); 3335 } 3336 __ delayed()->st_ptr(RnewTopValue, G2_thread, in_bytes(JavaThread::tlab_top_offset())); 3337 3338 if (allow_shared_alloc) { 3339 // Check if tlab should be discarded (refill_waste_limit >= free) 3340 __ ld_ptr(G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), RtlabWasteLimitValue); 3341 __ sub(RendValue, RoldTopValue, RfreeValue); 3342 #ifdef _LP64 3343 __ srlx(RfreeValue, LogHeapWordSize, RfreeValue); 3344 #else 3345 __ srl(RfreeValue, LogHeapWordSize, RfreeValue); 3346 #endif 3347 __ cmp_and_brx_short(RtlabWasteLimitValue, RfreeValue, Assembler::greaterEqualUnsigned, Assembler::pt, slow_case); // tlab waste is small 3348 3349 // increment waste limit to prevent getting stuck on this slow path 3350 __ add(RtlabWasteLimitValue, ThreadLocalAllocBuffer::refill_waste_limit_increment(), RtlabWasteLimitValue); 3351 __ st_ptr(RtlabWasteLimitValue, G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset())); 3352 } else { 3353 // No allocation in the shared eden. 3354 __ ba_short(slow_case); 3355 } 3356 } 3357 3358 // Allocation in the shared Eden 3359 if (allow_shared_alloc) { 3360 Register RoldTopValue = G1_scratch; 3361 Register RtopAddr = G3_scratch; 3362 Register RnewTopValue = RallocatedObject; 3363 Register RendValue = Rscratch; 3364 3365 __ set((intptr_t)Universe::heap()->top_addr(), RtopAddr); 3366 3367 Label retry; 3368 __ bind(retry); 3369 __ set((intptr_t)Universe::heap()->end_addr(), RendValue); 3370 __ ld_ptr(RendValue, 0, RendValue); 3371 __ ld_ptr(RtopAddr, 0, RoldTopValue); 3372 __ add(RoldTopValue, Roffset, RnewTopValue); 3373 3374 // RnewTopValue contains the top address after the new object 3375 // has been allocated. 3376 __ cmp_and_brx_short(RnewTopValue, RendValue, Assembler::greaterUnsigned, Assembler::pn, slow_case); 3377 3378 __ cas_ptr(RtopAddr, RoldTopValue, RnewTopValue); 3379 3380 // if someone beat us on the allocation, try again, otherwise continue 3381 __ cmp_and_brx_short(RoldTopValue, RnewTopValue, Assembler::notEqual, Assembler::pn, retry); 3382 3383 // bump total bytes allocated by this thread 3384 // RoldTopValue and RtopAddr are dead, so can use G1 and G3 3385 __ incr_allocated_bytes(Roffset, G1_scratch, G3_scratch); 3386 } 3387 3388 if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) { 3389 // clear object fields 3390 __ bind(initialize_object); 3391 __ deccc(Roffset, sizeof(oopDesc)); 3392 __ br(Assembler::zero, false, Assembler::pt, initialize_header); 3393 __ delayed()->add(RallocatedObject, sizeof(oopDesc), G3_scratch); 3394 3395 // initialize remaining object fields 3396 if (UseBlockZeroing) { 3397 // Use BIS for zeroing 3398 __ bis_zeroing(G3_scratch, Roffset, G1_scratch, initialize_header); 3399 } else { 3400 Label loop; 3401 __ subcc(Roffset, wordSize, Roffset); 3402 __ bind(loop); 3403 //__ subcc(Roffset, wordSize, Roffset); // executed above loop or in delay slot 3404 __ st_ptr(G0, G3_scratch, Roffset); 3405 __ br(Assembler::notEqual, false, Assembler::pt, loop); 3406 __ delayed()->subcc(Roffset, wordSize, Roffset); 3407 } 3408 __ ba_short(initialize_header); 3409 } 3410 3411 // slow case 3412 __ bind(slow_case); 3413 __ get_2_byte_integer_at_bcp(1, G3_scratch, O2, InterpreterMacroAssembler::Unsigned); 3414 __ get_constant_pool(O1); 3415 3416 call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), O1, O2); 3417 3418 __ ba_short(done); 3419 3420 // Initialize the header: mark, klass 3421 __ bind(initialize_header); 3422 3423 if (UseBiasedLocking) { 3424 __ ld_ptr(RinstanceKlass, in_bytes(Klass::prototype_header_offset()), G4_scratch); 3425 } else { 3426 __ set((intptr_t)markOopDesc::prototype(), G4_scratch); 3427 } 3428 __ st_ptr(G4_scratch, RallocatedObject, oopDesc::mark_offset_in_bytes()); // mark 3429 __ store_klass_gap(G0, RallocatedObject); // klass gap if compressed 3430 __ store_klass(RinstanceKlass, RallocatedObject); // klass (last for cms) 3431 3432 { 3433 SkipIfEqual skip_if( 3434 _masm, G4_scratch, &DTraceAllocProbes, Assembler::zero); 3435 // Trigger dtrace event 3436 __ push(atos); 3437 __ call_VM_leaf(noreg, 3438 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), O0); 3439 __ pop(atos); 3440 } 3441 3442 // continue 3443 __ bind(done); 3444 } 3445 3446 3447 3448 void TemplateTable::newarray() { 3449 transition(itos, atos); 3450 __ ldub(Lbcp, 1, O1); 3451 call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), O1, Otos_i); 3452 } 3453 3454 3455 void TemplateTable::anewarray() { 3456 transition(itos, atos); 3457 __ get_constant_pool(O1); 3458 __ get_2_byte_integer_at_bcp(1, G4_scratch, O2, InterpreterMacroAssembler::Unsigned); 3459 call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), O1, O2, Otos_i); 3460 } 3461 3462 3463 void TemplateTable::arraylength() { 3464 transition(atos, itos); 3465 Label ok; 3466 __ verify_oop(Otos_i); 3467 __ tst(Otos_i); 3468 __ throw_if_not_1_x( Assembler::notZero, ok ); 3469 __ delayed()->ld(Otos_i, arrayOopDesc::length_offset_in_bytes(), Otos_i); 3470 __ throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ok); 3471 } 3472 3473 3474 void TemplateTable::checkcast() { 3475 transition(atos, atos); 3476 Label done, is_null, quicked, cast_ok, resolved; 3477 Register Roffset = G1_scratch; 3478 Register RobjKlass = O5; 3479 Register RspecifiedKlass = O4; 3480 3481 // Check for casting a NULL 3482 __ br_null_short(Otos_i, Assembler::pn, is_null); 3483 3484 // Get value klass in RobjKlass 3485 __ load_klass(Otos_i, RobjKlass); // get value klass 3486 3487 // Get constant pool tag 3488 __ get_2_byte_integer_at_bcp(1, Lscratch, Roffset, InterpreterMacroAssembler::Unsigned); 3489 3490 // See if the checkcast has been quickened 3491 __ get_cpool_and_tags(Lscratch, G3_scratch); 3492 __ add(G3_scratch, Array<u1>::base_offset_in_bytes(), G3_scratch); 3493 __ ldub(G3_scratch, Roffset, G3_scratch); 3494 __ cmp(G3_scratch, JVM_CONSTANT_Class); 3495 __ br(Assembler::equal, true, Assembler::pt, quicked); 3496 __ delayed()->sll(Roffset, LogBytesPerWord, Roffset); 3497 3498 __ push_ptr(); // save receiver for result, and for GC 3499 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) ); 3500 __ get_vm_result_2(RspecifiedKlass); 3501 __ pop_ptr(Otos_i, G3_scratch); // restore receiver 3502 3503 __ ba_short(resolved); 3504 3505 // Extract target class from constant pool 3506 __ bind(quicked); 3507 __ add(Roffset, sizeof(ConstantPool), Roffset); 3508 __ ld_ptr(Lscratch, Roffset, RspecifiedKlass); 3509 __ bind(resolved); 3510 __ load_klass(Otos_i, RobjKlass); // get value klass 3511 3512 // Generate a fast subtype check. Branch to cast_ok if no 3513 // failure. Throw exception if failure. 3514 __ gen_subtype_check( RobjKlass, RspecifiedKlass, G3_scratch, G4_scratch, G1_scratch, cast_ok ); 3515 3516 // Not a subtype; so must throw exception 3517 __ throw_if_not_x( Assembler::never, Interpreter::_throw_ClassCastException_entry, G3_scratch ); 3518 3519 __ bind(cast_ok); 3520 3521 if (ProfileInterpreter) { 3522 __ ba_short(done); 3523 } 3524 __ bind(is_null); 3525 __ profile_null_seen(G3_scratch); 3526 __ bind(done); 3527 } 3528 3529 3530 void TemplateTable::instanceof() { 3531 Label done, is_null, quicked, resolved; 3532 transition(atos, itos); 3533 Register Roffset = G1_scratch; 3534 Register RobjKlass = O5; 3535 Register RspecifiedKlass = O4; 3536 3537 // Check for casting a NULL 3538 __ br_null_short(Otos_i, Assembler::pt, is_null); 3539 3540 // Get value klass in RobjKlass 3541 __ load_klass(Otos_i, RobjKlass); // get value klass 3542 3543 // Get constant pool tag 3544 __ get_2_byte_integer_at_bcp(1, Lscratch, Roffset, InterpreterMacroAssembler::Unsigned); 3545 3546 // See if the checkcast has been quickened 3547 __ get_cpool_and_tags(Lscratch, G3_scratch); 3548 __ add(G3_scratch, Array<u1>::base_offset_in_bytes(), G3_scratch); 3549 __ ldub(G3_scratch, Roffset, G3_scratch); 3550 __ cmp(G3_scratch, JVM_CONSTANT_Class); 3551 __ br(Assembler::equal, true, Assembler::pt, quicked); 3552 __ delayed()->sll(Roffset, LogBytesPerWord, Roffset); 3553 3554 __ push_ptr(); // save receiver for result, and for GC 3555 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) ); 3556 __ get_vm_result_2(RspecifiedKlass); 3557 __ pop_ptr(Otos_i, G3_scratch); // restore receiver 3558 3559 __ ba_short(resolved); 3560 3561 // Extract target class from constant pool 3562 __ bind(quicked); 3563 __ add(Roffset, sizeof(ConstantPool), Roffset); 3564 __ get_constant_pool(Lscratch); 3565 __ ld_ptr(Lscratch, Roffset, RspecifiedKlass); 3566 __ bind(resolved); 3567 __ load_klass(Otos_i, RobjKlass); // get value klass 3568 3569 // Generate a fast subtype check. Branch to cast_ok if no 3570 // failure. Return 0 if failure. 3571 __ or3(G0, 1, Otos_i); // set result assuming quick tests succeed 3572 __ gen_subtype_check( RobjKlass, RspecifiedKlass, G3_scratch, G4_scratch, G1_scratch, done ); 3573 // Not a subtype; return 0; 3574 __ clr( Otos_i ); 3575 3576 if (ProfileInterpreter) { 3577 __ ba_short(done); 3578 } 3579 __ bind(is_null); 3580 __ profile_null_seen(G3_scratch); 3581 __ bind(done); 3582 } 3583 3584 void TemplateTable::_breakpoint() { 3585 3586 // Note: We get here even if we are single stepping.. 3587 // jbug inists on setting breakpoints at every bytecode 3588 // even if we are in single step mode. 3589 3590 transition(vtos, vtos); 3591 // get the unpatched byte code 3592 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::get_original_bytecode_at), Lmethod, Lbcp); 3593 __ mov(O0, Lbyte_code); 3594 3595 // post the breakpoint event 3596 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), Lmethod, Lbcp); 3597 3598 // complete the execution of original bytecode 3599 __ dispatch_normal(vtos); 3600 } 3601 3602 3603 //---------------------------------------------------------------------------------------------------- 3604 // Exceptions 3605 3606 void TemplateTable::athrow() { 3607 transition(atos, vtos); 3608 3609 // This works because exception is cached in Otos_i which is same as O0, 3610 // which is same as what throw_exception_entry_expects 3611 assert(Otos_i == Oexception, "see explanation above"); 3612 3613 __ verify_oop(Otos_i); 3614 __ null_check(Otos_i); 3615 __ throw_if_not_x(Assembler::never, Interpreter::throw_exception_entry(), G3_scratch); 3616 } 3617 3618 3619 //---------------------------------------------------------------------------------------------------- 3620 // Synchronization 3621 3622 3623 // See frame_sparc.hpp for monitor block layout. 3624 // Monitor elements are dynamically allocated by growing stack as needed. 3625 3626 void TemplateTable::monitorenter() { 3627 transition(atos, vtos); 3628 __ verify_oop(Otos_i); 3629 // Try to acquire a lock on the object 3630 // Repeat until succeeded (i.e., until 3631 // monitorenter returns true). 3632 3633 { Label ok; 3634 __ tst(Otos_i); 3635 __ throw_if_not_1_x( Assembler::notZero, ok); 3636 __ delayed()->mov(Otos_i, Lscratch); // save obj 3637 __ throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ok); 3638 } 3639 3640 assert(O0 == Otos_i, "Be sure where the object to lock is"); 3641 3642 // find a free slot in the monitor block 3643 3644 3645 // initialize entry pointer 3646 __ clr(O1); // points to free slot or NULL 3647 3648 { 3649 Label entry, loop, exit; 3650 __ add( __ top_most_monitor(), O2 ); // last one to check 3651 __ ba( entry ); 3652 __ delayed()->mov( Lmonitors, O3 ); // first one to check 3653 3654 3655 __ bind( loop ); 3656 3657 __ verify_oop(O4); // verify each monitor's oop 3658 __ tst(O4); // is this entry unused? 3659 __ movcc( Assembler::zero, false, Assembler::ptr_cc, O3, O1); 3660 3661 __ cmp(O4, O0); // check if current entry is for same object 3662 __ brx( Assembler::equal, false, Assembler::pn, exit ); 3663 __ delayed()->inc( O3, frame::interpreter_frame_monitor_size() * wordSize ); // check next one 3664 3665 __ bind( entry ); 3666 3667 __ cmp( O3, O2 ); 3668 __ brx( Assembler::lessEqualUnsigned, true, Assembler::pt, loop ); 3669 __ delayed()->ld_ptr(O3, BasicObjectLock::obj_offset_in_bytes(), O4); 3670 3671 __ bind( exit ); 3672 } 3673 3674 { Label allocated; 3675 3676 // found free slot? 3677 __ br_notnull_short(O1, Assembler::pn, allocated); 3678 3679 __ add_monitor_to_stack( false, O2, O3 ); 3680 __ mov(Lmonitors, O1); 3681 3682 __ bind(allocated); 3683 } 3684 3685 // Increment bcp to point to the next bytecode, so exception handling for async. exceptions work correctly. 3686 // The object has already been poped from the stack, so the expression stack looks correct. 3687 __ inc(Lbcp); 3688 3689 __ st_ptr(O0, O1, BasicObjectLock::obj_offset_in_bytes()); // store object 3690 __ lock_object(O1, O0); 3691 3692 // check if there's enough space on the stack for the monitors after locking 3693 __ generate_stack_overflow_check(0); 3694 3695 // The bcp has already been incremented. Just need to dispatch to next instruction. 3696 __ dispatch_next(vtos); 3697 } 3698 3699 3700 void TemplateTable::monitorexit() { 3701 transition(atos, vtos); 3702 __ verify_oop(Otos_i); 3703 __ tst(Otos_i); 3704 __ throw_if_not_x( Assembler::notZero, Interpreter::_throw_NullPointerException_entry, G3_scratch ); 3705 3706 assert(O0 == Otos_i, "just checking"); 3707 3708 { Label entry, loop, found; 3709 __ add( __ top_most_monitor(), O2 ); // last one to check 3710 __ ba(entry); 3711 // use Lscratch to hold monitor elem to check, start with most recent monitor, 3712 // By using a local it survives the call to the C routine. 3713 __ delayed()->mov( Lmonitors, Lscratch ); 3714 3715 __ bind( loop ); 3716 3717 __ verify_oop(O4); // verify each monitor's oop 3718 __ cmp(O4, O0); // check if current entry is for desired object 3719 __ brx( Assembler::equal, true, Assembler::pt, found ); 3720 __ delayed()->mov(Lscratch, O1); // pass found entry as argument to monitorexit 3721 3722 __ inc( Lscratch, frame::interpreter_frame_monitor_size() * wordSize ); // advance to next 3723 3724 __ bind( entry ); 3725 3726 __ cmp( Lscratch, O2 ); 3727 __ brx( Assembler::lessEqualUnsigned, true, Assembler::pt, loop ); 3728 __ delayed()->ld_ptr(Lscratch, BasicObjectLock::obj_offset_in_bytes(), O4); 3729 3730 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception)); 3731 __ should_not_reach_here(); 3732 3733 __ bind(found); 3734 } 3735 __ unlock_object(O1); 3736 } 3737 3738 3739 //---------------------------------------------------------------------------------------------------- 3740 // Wide instructions 3741 3742 void TemplateTable::wide() { 3743 transition(vtos, vtos); 3744 __ ldub(Lbcp, 1, G3_scratch);// get next bc 3745 __ sll(G3_scratch, LogBytesPerWord, G3_scratch); 3746 AddressLiteral ep(Interpreter::_wentry_point); 3747 __ set(ep, G4_scratch); 3748 __ ld_ptr(G4_scratch, G3_scratch, G3_scratch); 3749 __ jmp(G3_scratch, G0); 3750 __ delayed()->nop(); 3751 // Note: the Lbcp increment step is part of the individual wide bytecode implementations 3752 } 3753 3754 3755 //---------------------------------------------------------------------------------------------------- 3756 // Multi arrays 3757 3758 void TemplateTable::multianewarray() { 3759 transition(vtos, atos); 3760 // put ndims * wordSize into Lscratch 3761 __ ldub( Lbcp, 3, Lscratch); 3762 __ sll( Lscratch, Interpreter::logStackElementSize, Lscratch); 3763 // Lesp points past last_dim, so set to O1 to first_dim address 3764 __ add( Lesp, Lscratch, O1); 3765 call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), O1); 3766 __ add( Lesp, Lscratch, Lesp); // pop all dimensions off the stack 3767 } 3768 #endif /* !CC_INTERP */