1 /* 2 * Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved. 3 * Copyright 2013, 2015 SAP AG. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "precompiled.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "interpreter/interpreter.hpp" 29 #include "interpreter/interpreterRuntime.hpp" 30 #include "interpreter/interp_masm.hpp" 31 #include "interpreter/templateInterpreter.hpp" 32 #include "interpreter/templateTable.hpp" 33 #include "memory/universe.inline.hpp" 34 #include "oops/objArrayKlass.hpp" 35 #include "oops/oop.inline.hpp" 36 #include "prims/methodHandles.hpp" 37 #include "runtime/sharedRuntime.hpp" 38 #include "runtime/stubRoutines.hpp" 39 #include "runtime/synchronizer.hpp" 40 #include "utilities/macros.hpp" 41 42 #ifndef CC_INTERP 43 44 #undef __ 45 #define __ _masm-> 46 47 // ============================================================================ 48 // Misc helpers 49 50 // Do an oop store like *(base + index) = val OR *(base + offset) = val 51 // (only one of both variants is possible at the same time). 52 // Index can be noreg. 53 // Kills: 54 // Rbase, Rtmp 55 static void do_oop_store(InterpreterMacroAssembler* _masm, 56 Register Rbase, 57 RegisterOrConstant offset, 58 Register Rval, // Noreg means always null. 59 Register Rtmp1, 60 Register Rtmp2, 61 Register Rtmp3, 62 BarrierSet::Name barrier, 63 bool precise, 64 bool check_null) { 65 assert_different_registers(Rtmp1, Rtmp2, Rtmp3, Rval, Rbase); 66 67 switch (barrier) { 68 #if INCLUDE_ALL_GCS 69 case BarrierSet::G1SATBCT: 70 case BarrierSet::G1SATBCTLogging: 71 { 72 // Load and record the previous value. 73 __ g1_write_barrier_pre(Rbase, offset, 74 Rtmp3, /* holder of pre_val ? */ 75 Rtmp1, Rtmp2, false /* frame */); 76 77 Label Lnull, Ldone; 78 if (Rval != noreg) { 79 if (check_null) { 80 __ cmpdi(CCR0, Rval, 0); 81 __ beq(CCR0, Lnull); 82 } 83 __ store_heap_oop_not_null(Rval, offset, Rbase, /*Rval must stay uncompressed.*/ Rtmp1); 84 // Mark the card. 85 if (!(offset.is_constant() && offset.as_constant() == 0) && precise) { 86 __ add(Rbase, offset, Rbase); 87 } 88 __ g1_write_barrier_post(Rbase, Rval, Rtmp1, Rtmp2, Rtmp3, /*filtered (fast path)*/ &Ldone); 89 if (check_null) { __ b(Ldone); } 90 } 91 92 if (Rval == noreg || check_null) { // Store null oop. 93 Register Rnull = Rval; 94 __ bind(Lnull); 95 if (Rval == noreg) { 96 Rnull = Rtmp1; 97 __ li(Rnull, 0); 98 } 99 if (UseCompressedOops) { 100 __ stw(Rnull, offset, Rbase); 101 } else { 102 __ std(Rnull, offset, Rbase); 103 } 104 } 105 __ bind(Ldone); 106 } 107 break; 108 #endif // INCLUDE_ALL_GCS 109 case BarrierSet::CardTableModRef: 110 case BarrierSet::CardTableExtension: 111 { 112 Label Lnull, Ldone; 113 if (Rval != noreg) { 114 if (check_null) { 115 __ cmpdi(CCR0, Rval, 0); 116 __ beq(CCR0, Lnull); 117 } 118 __ store_heap_oop_not_null(Rval, offset, Rbase, /*Rval should better stay uncompressed.*/ Rtmp1); 119 // Mark the card. 120 if (!(offset.is_constant() && offset.as_constant() == 0) && precise) { 121 __ add(Rbase, offset, Rbase); 122 } 123 __ card_write_barrier_post(Rbase, Rval, Rtmp1); 124 if (check_null) { 125 __ b(Ldone); 126 } 127 } 128 129 if (Rval == noreg || check_null) { // Store null oop. 130 Register Rnull = Rval; 131 __ bind(Lnull); 132 if (Rval == noreg) { 133 Rnull = Rtmp1; 134 __ li(Rnull, 0); 135 } 136 if (UseCompressedOops) { 137 __ stw(Rnull, offset, Rbase); 138 } else { 139 __ std(Rnull, offset, Rbase); 140 } 141 } 142 __ bind(Ldone); 143 } 144 break; 145 case BarrierSet::ModRef: 146 ShouldNotReachHere(); 147 break; 148 default: 149 ShouldNotReachHere(); 150 } 151 } 152 153 // ============================================================================ 154 // Platform-dependent initialization 155 156 void TemplateTable::pd_initialize() { 157 // No ppc64 specific initialization. 158 } 159 160 Address TemplateTable::at_bcp(int offset) { 161 // Not used on ppc. 162 ShouldNotReachHere(); 163 return Address(); 164 } 165 166 // Patches the current bytecode (ptr to it located in bcp) 167 // in the bytecode stream with a new one. 168 void TemplateTable::patch_bytecode(Bytecodes::Code new_bc, Register Rnew_bc, Register Rtemp, bool load_bc_into_bc_reg /*=true*/, int byte_no) { 169 // With sharing on, may need to test method flag. 170 if (!RewriteBytecodes) return; 171 Label L_patch_done; 172 173 switch (new_bc) { 174 case Bytecodes::_fast_aputfield: 175 case Bytecodes::_fast_bputfield: 176 case Bytecodes::_fast_cputfield: 177 case Bytecodes::_fast_dputfield: 178 case Bytecodes::_fast_fputfield: 179 case Bytecodes::_fast_iputfield: 180 case Bytecodes::_fast_lputfield: 181 case Bytecodes::_fast_sputfield: 182 { 183 // We skip bytecode quickening for putfield instructions when 184 // the put_code written to the constant pool cache is zero. 185 // This is required so that every execution of this instruction 186 // calls out to InterpreterRuntime::resolve_get_put to do 187 // additional, required work. 188 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 189 assert(load_bc_into_bc_reg, "we use bc_reg as temp"); 190 __ get_cache_and_index_at_bcp(Rtemp /* dst = cache */, 1); 191 // ((*(cache+indices))>>((1+byte_no)*8))&0xFF: 192 #if defined(VM_LITTLE_ENDIAN) 193 __ lbz(Rnew_bc, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()) + 1 + byte_no, Rtemp); 194 #else 195 __ lbz(Rnew_bc, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()) + 7 - (1 + byte_no), Rtemp); 196 #endif 197 __ cmpwi(CCR0, Rnew_bc, 0); 198 __ li(Rnew_bc, (unsigned int)(unsigned char)new_bc); 199 __ beq(CCR0, L_patch_done); 200 // __ isync(); // acquire not needed 201 break; 202 } 203 204 default: 205 assert(byte_no == -1, "sanity"); 206 if (load_bc_into_bc_reg) { 207 __ li(Rnew_bc, (unsigned int)(unsigned char)new_bc); 208 } 209 } 210 211 if (JvmtiExport::can_post_breakpoint()) { 212 Label L_fast_patch; 213 __ lbz(Rtemp, 0, R14_bcp); 214 __ cmpwi(CCR0, Rtemp, (unsigned int)(unsigned char)Bytecodes::_breakpoint); 215 __ bne(CCR0, L_fast_patch); 216 // Perform the quickening, slowly, in the bowels of the breakpoint table. 217 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), R19_method, R14_bcp, Rnew_bc); 218 __ b(L_patch_done); 219 __ bind(L_fast_patch); 220 } 221 222 // Patch bytecode. 223 __ stb(Rnew_bc, 0, R14_bcp); 224 225 __ bind(L_patch_done); 226 } 227 228 // ============================================================================ 229 // Individual instructions 230 231 void TemplateTable::nop() { 232 transition(vtos, vtos); 233 // Nothing to do. 234 } 235 236 void TemplateTable::shouldnotreachhere() { 237 transition(vtos, vtos); 238 __ stop("shouldnotreachhere bytecode"); 239 } 240 241 void TemplateTable::aconst_null() { 242 transition(vtos, atos); 243 __ li(R17_tos, 0); 244 } 245 246 void TemplateTable::iconst(int value) { 247 transition(vtos, itos); 248 assert(value >= -1 && value <= 5, ""); 249 __ li(R17_tos, value); 250 } 251 252 void TemplateTable::lconst(int value) { 253 transition(vtos, ltos); 254 assert(value >= -1 && value <= 5, ""); 255 __ li(R17_tos, value); 256 } 257 258 void TemplateTable::fconst(int value) { 259 transition(vtos, ftos); 260 static float zero = 0.0; 261 static float one = 1.0; 262 static float two = 2.0; 263 switch (value) { 264 default: ShouldNotReachHere(); 265 case 0: { 266 int simm16_offset = __ load_const_optimized(R11_scratch1, (address*)&zero, R0, true); 267 __ lfs(F15_ftos, simm16_offset, R11_scratch1); 268 break; 269 } 270 case 1: { 271 int simm16_offset = __ load_const_optimized(R11_scratch1, (address*)&one, R0, true); 272 __ lfs(F15_ftos, simm16_offset, R11_scratch1); 273 break; 274 } 275 case 2: { 276 int simm16_offset = __ load_const_optimized(R11_scratch1, (address*)&two, R0, true); 277 __ lfs(F15_ftos, simm16_offset, R11_scratch1); 278 break; 279 } 280 } 281 } 282 283 void TemplateTable::dconst(int value) { 284 transition(vtos, dtos); 285 static double zero = 0.0; 286 static double one = 1.0; 287 switch (value) { 288 case 0: { 289 int simm16_offset = __ load_const_optimized(R11_scratch1, (address*)&zero, R0, true); 290 __ lfd(F15_ftos, simm16_offset, R11_scratch1); 291 break; 292 } 293 case 1: { 294 int simm16_offset = __ load_const_optimized(R11_scratch1, (address*)&one, R0, true); 295 __ lfd(F15_ftos, simm16_offset, R11_scratch1); 296 break; 297 } 298 default: ShouldNotReachHere(); 299 } 300 } 301 302 void TemplateTable::bipush() { 303 transition(vtos, itos); 304 __ lbz(R17_tos, 1, R14_bcp); 305 __ extsb(R17_tos, R17_tos); 306 } 307 308 void TemplateTable::sipush() { 309 transition(vtos, itos); 310 __ get_2_byte_integer_at_bcp(1, R17_tos, InterpreterMacroAssembler::Signed); 311 } 312 313 void TemplateTable::ldc(bool wide) { 314 Register Rscratch1 = R11_scratch1, 315 Rscratch2 = R12_scratch2, 316 Rcpool = R3_ARG1; 317 318 transition(vtos, vtos); 319 Label notInt, notClass, exit; 320 321 __ get_cpool_and_tags(Rcpool, Rscratch2); // Set Rscratch2 = &tags. 322 if (wide) { // Read index. 323 __ get_2_byte_integer_at_bcp(1, Rscratch1, InterpreterMacroAssembler::Unsigned); 324 } else { 325 __ lbz(Rscratch1, 1, R14_bcp); 326 } 327 328 const int base_offset = ConstantPool::header_size() * wordSize; 329 const int tags_offset = Array<u1>::base_offset_in_bytes(); 330 331 // Get type from tags. 332 __ addi(Rscratch2, Rscratch2, tags_offset); 333 __ lbzx(Rscratch2, Rscratch2, Rscratch1); 334 335 __ cmpwi(CCR0, Rscratch2, JVM_CONSTANT_UnresolvedClass); // Unresolved class? 336 __ cmpwi(CCR1, Rscratch2, JVM_CONSTANT_UnresolvedClassInError); // Unresolved class in error state? 337 __ cror(CCR0, Assembler::equal, CCR1, Assembler::equal); 338 339 // Resolved class - need to call vm to get java mirror of the class. 340 __ cmpwi(CCR1, Rscratch2, JVM_CONSTANT_Class); 341 __ crnor(CCR0, Assembler::equal, CCR1, Assembler::equal); // Neither resolved class nor unresolved case from above? 342 __ beq(CCR0, notClass); 343 344 __ li(R4, wide ? 1 : 0); 345 call_VM(R17_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), R4); 346 __ push(atos); 347 __ b(exit); 348 349 __ align(32, 12); 350 __ bind(notClass); 351 __ addi(Rcpool, Rcpool, base_offset); 352 __ sldi(Rscratch1, Rscratch1, LogBytesPerWord); 353 __ cmpdi(CCR0, Rscratch2, JVM_CONSTANT_Integer); 354 __ bne(CCR0, notInt); 355 __ lwax(R17_tos, Rcpool, Rscratch1); 356 __ push(itos); 357 __ b(exit); 358 359 __ align(32, 12); 360 __ bind(notInt); 361 #ifdef ASSERT 362 // String and Object are rewritten to fast_aldc 363 __ cmpdi(CCR0, Rscratch2, JVM_CONSTANT_Float); 364 __ asm_assert_eq("unexpected type", 0x8765); 365 #endif 366 __ lfsx(F15_ftos, Rcpool, Rscratch1); 367 __ push(ftos); 368 369 __ align(32, 12); 370 __ bind(exit); 371 } 372 373 // Fast path for caching oop constants. 374 void TemplateTable::fast_aldc(bool wide) { 375 transition(vtos, atos); 376 377 int index_size = wide ? sizeof(u2) : sizeof(u1); 378 const Register Rscratch = R11_scratch1; 379 Label resolved; 380 381 // We are resolved if the resolved reference cache entry contains a 382 // non-null object (CallSite, etc.) 383 __ get_cache_index_at_bcp(Rscratch, 1, index_size); // Load index. 384 __ load_resolved_reference_at_index(R17_tos, Rscratch); 385 __ cmpdi(CCR0, R17_tos, 0); 386 __ bne(CCR0, resolved); 387 __ load_const_optimized(R3_ARG1, (int)bytecode()); 388 389 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc); 390 391 // First time invocation - must resolve first. 392 __ call_VM(R17_tos, entry, R3_ARG1); 393 394 __ align(32, 12); 395 __ bind(resolved); 396 __ verify_oop(R17_tos); 397 } 398 399 void TemplateTable::ldc2_w() { 400 transition(vtos, vtos); 401 Label Llong, Lexit; 402 403 Register Rindex = R11_scratch1, 404 Rcpool = R12_scratch2, 405 Rtag = R3_ARG1; 406 __ get_cpool_and_tags(Rcpool, Rtag); 407 __ get_2_byte_integer_at_bcp(1, Rindex, InterpreterMacroAssembler::Unsigned); 408 409 const int base_offset = ConstantPool::header_size() * wordSize; 410 const int tags_offset = Array<u1>::base_offset_in_bytes(); 411 // Get type from tags. 412 __ addi(Rcpool, Rcpool, base_offset); 413 __ addi(Rtag, Rtag, tags_offset); 414 415 __ lbzx(Rtag, Rtag, Rindex); 416 417 __ sldi(Rindex, Rindex, LogBytesPerWord); 418 __ cmpdi(CCR0, Rtag, JVM_CONSTANT_Double); 419 __ bne(CCR0, Llong); 420 // A double can be placed at word-aligned locations in the constant pool. 421 // Check out Conversions.java for an example. 422 // Also ConstantPool::header_size() is 20, which makes it very difficult 423 // to double-align double on the constant pool. SG, 11/7/97 424 __ lfdx(F15_ftos, Rcpool, Rindex); 425 __ push(dtos); 426 __ b(Lexit); 427 428 __ bind(Llong); 429 __ ldx(R17_tos, Rcpool, Rindex); 430 __ push(ltos); 431 432 __ bind(Lexit); 433 } 434 435 // Get the locals index located in the bytecode stream at bcp + offset. 436 void TemplateTable::locals_index(Register Rdst, int offset) { 437 __ lbz(Rdst, offset, R14_bcp); 438 } 439 440 void TemplateTable::iload() { 441 transition(vtos, itos); 442 443 // Get the local value into tos 444 const Register Rindex = R22_tmp2; 445 locals_index(Rindex); 446 447 // Rewrite iload,iload pair into fast_iload2 448 // iload,caload pair into fast_icaload 449 if (RewriteFrequentPairs) { 450 Label Lrewrite, Ldone; 451 Register Rnext_byte = R3_ARG1, 452 Rrewrite_to = R6_ARG4, 453 Rscratch = R11_scratch1; 454 455 // get next byte 456 __ lbz(Rnext_byte, Bytecodes::length_for(Bytecodes::_iload), R14_bcp); 457 458 // if _iload, wait to rewrite to iload2. We only want to rewrite the 459 // last two iloads in a pair. Comparing against fast_iload means that 460 // the next bytecode is neither an iload or a caload, and therefore 461 // an iload pair. 462 __ cmpwi(CCR0, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_iload); 463 __ beq(CCR0, Ldone); 464 465 __ cmpwi(CCR1, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_fast_iload); 466 __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_iload2); 467 __ beq(CCR1, Lrewrite); 468 469 __ cmpwi(CCR0, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_caload); 470 __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_icaload); 471 __ beq(CCR0, Lrewrite); 472 473 __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_iload); 474 475 __ bind(Lrewrite); 476 patch_bytecode(Bytecodes::_iload, Rrewrite_to, Rscratch, false); 477 __ bind(Ldone); 478 } 479 480 __ load_local_int(R17_tos, Rindex, Rindex); 481 } 482 483 // Load 2 integers in a row without dispatching 484 void TemplateTable::fast_iload2() { 485 transition(vtos, itos); 486 487 __ lbz(R3_ARG1, 1, R14_bcp); 488 __ lbz(R17_tos, Bytecodes::length_for(Bytecodes::_iload) + 1, R14_bcp); 489 490 __ load_local_int(R3_ARG1, R11_scratch1, R3_ARG1); 491 __ load_local_int(R17_tos, R12_scratch2, R17_tos); 492 __ push_i(R3_ARG1); 493 } 494 495 void TemplateTable::fast_iload() { 496 transition(vtos, itos); 497 // Get the local value into tos 498 499 const Register Rindex = R11_scratch1; 500 locals_index(Rindex); 501 __ load_local_int(R17_tos, Rindex, Rindex); 502 } 503 504 // Load a local variable type long from locals area to TOS cache register. 505 // Local index resides in bytecodestream. 506 void TemplateTable::lload() { 507 transition(vtos, ltos); 508 509 const Register Rindex = R11_scratch1; 510 locals_index(Rindex); 511 __ load_local_long(R17_tos, Rindex, Rindex); 512 } 513 514 void TemplateTable::fload() { 515 transition(vtos, ftos); 516 517 const Register Rindex = R11_scratch1; 518 locals_index(Rindex); 519 __ load_local_float(F15_ftos, Rindex, Rindex); 520 } 521 522 void TemplateTable::dload() { 523 transition(vtos, dtos); 524 525 const Register Rindex = R11_scratch1; 526 locals_index(Rindex); 527 __ load_local_double(F15_ftos, Rindex, Rindex); 528 } 529 530 void TemplateTable::aload() { 531 transition(vtos, atos); 532 533 const Register Rindex = R11_scratch1; 534 locals_index(Rindex); 535 __ load_local_ptr(R17_tos, Rindex, Rindex); 536 } 537 538 void TemplateTable::locals_index_wide(Register Rdst) { 539 // Offset is 2, not 1, because Lbcp points to wide prefix code. 540 __ get_2_byte_integer_at_bcp(2, Rdst, InterpreterMacroAssembler::Unsigned); 541 } 542 543 void TemplateTable::wide_iload() { 544 // Get the local value into tos. 545 546 const Register Rindex = R11_scratch1; 547 locals_index_wide(Rindex); 548 __ load_local_int(R17_tos, Rindex, Rindex); 549 } 550 551 void TemplateTable::wide_lload() { 552 transition(vtos, ltos); 553 554 const Register Rindex = R11_scratch1; 555 locals_index_wide(Rindex); 556 __ load_local_long(R17_tos, Rindex, Rindex); 557 } 558 559 void TemplateTable::wide_fload() { 560 transition(vtos, ftos); 561 562 const Register Rindex = R11_scratch1; 563 locals_index_wide(Rindex); 564 __ load_local_float(F15_ftos, Rindex, Rindex); 565 } 566 567 void TemplateTable::wide_dload() { 568 transition(vtos, dtos); 569 570 const Register Rindex = R11_scratch1; 571 locals_index_wide(Rindex); 572 __ load_local_double(F15_ftos, Rindex, Rindex); 573 } 574 575 void TemplateTable::wide_aload() { 576 transition(vtos, atos); 577 578 const Register Rindex = R11_scratch1; 579 locals_index_wide(Rindex); 580 __ load_local_ptr(R17_tos, Rindex, Rindex); 581 } 582 583 void TemplateTable::iaload() { 584 transition(itos, itos); 585 586 const Register Rload_addr = R3_ARG1, 587 Rarray = R4_ARG2, 588 Rtemp = R5_ARG3; 589 __ index_check(Rarray, R17_tos /* index */, LogBytesPerInt, Rtemp, Rload_addr); 590 __ lwa(R17_tos, arrayOopDesc::base_offset_in_bytes(T_INT), Rload_addr); 591 } 592 593 void TemplateTable::laload() { 594 transition(itos, ltos); 595 596 const Register Rload_addr = R3_ARG1, 597 Rarray = R4_ARG2, 598 Rtemp = R5_ARG3; 599 __ index_check(Rarray, R17_tos /* index */, LogBytesPerLong, Rtemp, Rload_addr); 600 __ ld(R17_tos, arrayOopDesc::base_offset_in_bytes(T_LONG), Rload_addr); 601 } 602 603 void TemplateTable::faload() { 604 transition(itos, ftos); 605 606 const Register Rload_addr = R3_ARG1, 607 Rarray = R4_ARG2, 608 Rtemp = R5_ARG3; 609 __ index_check(Rarray, R17_tos /* index */, LogBytesPerInt, Rtemp, Rload_addr); 610 __ lfs(F15_ftos, arrayOopDesc::base_offset_in_bytes(T_FLOAT), Rload_addr); 611 } 612 613 void TemplateTable::daload() { 614 transition(itos, dtos); 615 616 const Register Rload_addr = R3_ARG1, 617 Rarray = R4_ARG2, 618 Rtemp = R5_ARG3; 619 __ index_check(Rarray, R17_tos /* index */, LogBytesPerLong, Rtemp, Rload_addr); 620 __ lfd(F15_ftos, arrayOopDesc::base_offset_in_bytes(T_DOUBLE), Rload_addr); 621 } 622 623 void TemplateTable::aaload() { 624 transition(itos, atos); 625 626 // tos: index 627 // result tos: array 628 const Register Rload_addr = R3_ARG1, 629 Rarray = R4_ARG2, 630 Rtemp = R5_ARG3; 631 __ index_check(Rarray, R17_tos /* index */, UseCompressedOops ? 2 : LogBytesPerWord, Rtemp, Rload_addr); 632 __ load_heap_oop(R17_tos, arrayOopDesc::base_offset_in_bytes(T_OBJECT), Rload_addr); 633 __ verify_oop(R17_tos); 634 //__ dcbt(R17_tos); // prefetch 635 } 636 637 void TemplateTable::baload() { 638 transition(itos, itos); 639 640 const Register Rload_addr = R3_ARG1, 641 Rarray = R4_ARG2, 642 Rtemp = R5_ARG3; 643 __ index_check(Rarray, R17_tos /* index */, 0, Rtemp, Rload_addr); 644 __ lbz(R17_tos, arrayOopDesc::base_offset_in_bytes(T_BYTE), Rload_addr); 645 __ extsb(R17_tos, R17_tos); 646 } 647 648 void TemplateTable::caload() { 649 transition(itos, itos); 650 651 const Register Rload_addr = R3_ARG1, 652 Rarray = R4_ARG2, 653 Rtemp = R5_ARG3; 654 __ index_check(Rarray, R17_tos /* index */, LogBytesPerShort, Rtemp, Rload_addr); 655 __ lhz(R17_tos, arrayOopDesc::base_offset_in_bytes(T_CHAR), Rload_addr); 656 } 657 658 // Iload followed by caload frequent pair. 659 void TemplateTable::fast_icaload() { 660 transition(vtos, itos); 661 662 const Register Rload_addr = R3_ARG1, 663 Rarray = R4_ARG2, 664 Rtemp = R11_scratch1; 665 666 locals_index(R17_tos); 667 __ load_local_int(R17_tos, Rtemp, R17_tos); 668 __ index_check(Rarray, R17_tos /* index */, LogBytesPerShort, Rtemp, Rload_addr); 669 __ lhz(R17_tos, arrayOopDesc::base_offset_in_bytes(T_CHAR), Rload_addr); 670 } 671 672 void TemplateTable::saload() { 673 transition(itos, itos); 674 675 const Register Rload_addr = R11_scratch1, 676 Rarray = R12_scratch2, 677 Rtemp = R3_ARG1; 678 __ index_check(Rarray, R17_tos /* index */, LogBytesPerShort, Rtemp, Rload_addr); 679 __ lha(R17_tos, arrayOopDesc::base_offset_in_bytes(T_SHORT), Rload_addr); 680 } 681 682 void TemplateTable::iload(int n) { 683 transition(vtos, itos); 684 685 __ lwz(R17_tos, Interpreter::local_offset_in_bytes(n), R18_locals); 686 } 687 688 void TemplateTable::lload(int n) { 689 transition(vtos, ltos); 690 691 __ ld(R17_tos, Interpreter::local_offset_in_bytes(n + 1), R18_locals); 692 } 693 694 void TemplateTable::fload(int n) { 695 transition(vtos, ftos); 696 697 __ lfs(F15_ftos, Interpreter::local_offset_in_bytes(n), R18_locals); 698 } 699 700 void TemplateTable::dload(int n) { 701 transition(vtos, dtos); 702 703 __ lfd(F15_ftos, Interpreter::local_offset_in_bytes(n + 1), R18_locals); 704 } 705 706 void TemplateTable::aload(int n) { 707 transition(vtos, atos); 708 709 __ ld(R17_tos, Interpreter::local_offset_in_bytes(n), R18_locals); 710 } 711 712 void TemplateTable::aload_0() { 713 transition(vtos, atos); 714 // According to bytecode histograms, the pairs: 715 // 716 // _aload_0, _fast_igetfield 717 // _aload_0, _fast_agetfield 718 // _aload_0, _fast_fgetfield 719 // 720 // occur frequently. If RewriteFrequentPairs is set, the (slow) 721 // _aload_0 bytecode checks if the next bytecode is either 722 // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then 723 // rewrites the current bytecode into a pair bytecode; otherwise it 724 // rewrites the current bytecode into _0 that doesn't do 725 // the pair check anymore. 726 // 727 // Note: If the next bytecode is _getfield, the rewrite must be 728 // delayed, otherwise we may miss an opportunity for a pair. 729 // 730 // Also rewrite frequent pairs 731 // aload_0, aload_1 732 // aload_0, iload_1 733 // These bytecodes with a small amount of code are most profitable 734 // to rewrite. 735 736 if (RewriteFrequentPairs) { 737 738 Label Lrewrite, Ldont_rewrite; 739 Register Rnext_byte = R3_ARG1, 740 Rrewrite_to = R6_ARG4, 741 Rscratch = R11_scratch1; 742 743 // Get next byte. 744 __ lbz(Rnext_byte, Bytecodes::length_for(Bytecodes::_aload_0), R14_bcp); 745 746 // If _getfield, wait to rewrite. We only want to rewrite the last two bytecodes in a pair. 747 __ cmpwi(CCR0, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_getfield); 748 __ beq(CCR0, Ldont_rewrite); 749 750 __ cmpwi(CCR1, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_fast_igetfield); 751 __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_iaccess_0); 752 __ beq(CCR1, Lrewrite); 753 754 __ cmpwi(CCR0, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_fast_agetfield); 755 __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_aaccess_0); 756 __ beq(CCR0, Lrewrite); 757 758 __ cmpwi(CCR1, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_fast_fgetfield); 759 __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_faccess_0); 760 __ beq(CCR1, Lrewrite); 761 762 __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_aload_0); 763 764 __ bind(Lrewrite); 765 patch_bytecode(Bytecodes::_aload_0, Rrewrite_to, Rscratch, false); 766 __ bind(Ldont_rewrite); 767 } 768 769 // Do actual aload_0 (must do this after patch_bytecode which might call VM and GC might change oop). 770 aload(0); 771 } 772 773 void TemplateTable::istore() { 774 transition(itos, vtos); 775 776 const Register Rindex = R11_scratch1; 777 locals_index(Rindex); 778 __ store_local_int(R17_tos, Rindex); 779 } 780 781 void TemplateTable::lstore() { 782 transition(ltos, vtos); 783 const Register Rindex = R11_scratch1; 784 locals_index(Rindex); 785 __ store_local_long(R17_tos, Rindex); 786 } 787 788 void TemplateTable::fstore() { 789 transition(ftos, vtos); 790 791 const Register Rindex = R11_scratch1; 792 locals_index(Rindex); 793 __ store_local_float(F15_ftos, Rindex); 794 } 795 796 void TemplateTable::dstore() { 797 transition(dtos, vtos); 798 799 const Register Rindex = R11_scratch1; 800 locals_index(Rindex); 801 __ store_local_double(F15_ftos, Rindex); 802 } 803 804 void TemplateTable::astore() { 805 transition(vtos, vtos); 806 807 const Register Rindex = R11_scratch1; 808 __ pop_ptr(); 809 __ verify_oop_or_return_address(R17_tos, Rindex); 810 locals_index(Rindex); 811 __ store_local_ptr(R17_tos, Rindex); 812 } 813 814 void TemplateTable::wide_istore() { 815 transition(vtos, vtos); 816 817 const Register Rindex = R11_scratch1; 818 __ pop_i(); 819 locals_index_wide(Rindex); 820 __ store_local_int(R17_tos, Rindex); 821 } 822 823 void TemplateTable::wide_lstore() { 824 transition(vtos, vtos); 825 826 const Register Rindex = R11_scratch1; 827 __ pop_l(); 828 locals_index_wide(Rindex); 829 __ store_local_long(R17_tos, Rindex); 830 } 831 832 void TemplateTable::wide_fstore() { 833 transition(vtos, vtos); 834 835 const Register Rindex = R11_scratch1; 836 __ pop_f(); 837 locals_index_wide(Rindex); 838 __ store_local_float(F15_ftos, Rindex); 839 } 840 841 void TemplateTable::wide_dstore() { 842 transition(vtos, vtos); 843 844 const Register Rindex = R11_scratch1; 845 __ pop_d(); 846 locals_index_wide(Rindex); 847 __ store_local_double(F15_ftos, Rindex); 848 } 849 850 void TemplateTable::wide_astore() { 851 transition(vtos, vtos); 852 853 const Register Rindex = R11_scratch1; 854 __ pop_ptr(); 855 __ verify_oop_or_return_address(R17_tos, Rindex); 856 locals_index_wide(Rindex); 857 __ store_local_ptr(R17_tos, Rindex); 858 } 859 860 void TemplateTable::iastore() { 861 transition(itos, vtos); 862 863 const Register Rindex = R3_ARG1, 864 Rstore_addr = R4_ARG2, 865 Rarray = R5_ARG3, 866 Rtemp = R6_ARG4; 867 __ pop_i(Rindex); 868 __ index_check(Rarray, Rindex, LogBytesPerInt, Rtemp, Rstore_addr); 869 __ stw(R17_tos, arrayOopDesc::base_offset_in_bytes(T_INT), Rstore_addr); 870 } 871 872 void TemplateTable::lastore() { 873 transition(ltos, vtos); 874 875 const Register Rindex = R3_ARG1, 876 Rstore_addr = R4_ARG2, 877 Rarray = R5_ARG3, 878 Rtemp = R6_ARG4; 879 __ pop_i(Rindex); 880 __ index_check(Rarray, Rindex, LogBytesPerLong, Rtemp, Rstore_addr); 881 __ std(R17_tos, arrayOopDesc::base_offset_in_bytes(T_LONG), Rstore_addr); 882 } 883 884 void TemplateTable::fastore() { 885 transition(ftos, vtos); 886 887 const Register Rindex = R3_ARG1, 888 Rstore_addr = R4_ARG2, 889 Rarray = R5_ARG3, 890 Rtemp = R6_ARG4; 891 __ pop_i(Rindex); 892 __ index_check(Rarray, Rindex, LogBytesPerInt, Rtemp, Rstore_addr); 893 __ stfs(F15_ftos, arrayOopDesc::base_offset_in_bytes(T_FLOAT), Rstore_addr); 894 } 895 896 void TemplateTable::dastore() { 897 transition(dtos, vtos); 898 899 const Register Rindex = R3_ARG1, 900 Rstore_addr = R4_ARG2, 901 Rarray = R5_ARG3, 902 Rtemp = R6_ARG4; 903 __ pop_i(Rindex); 904 __ index_check(Rarray, Rindex, LogBytesPerLong, Rtemp, Rstore_addr); 905 __ stfd(F15_ftos, arrayOopDesc::base_offset_in_bytes(T_DOUBLE), Rstore_addr); 906 } 907 908 // Pop 3 values from the stack and... 909 void TemplateTable::aastore() { 910 transition(vtos, vtos); 911 912 Label Lstore_ok, Lis_null, Ldone; 913 const Register Rindex = R3_ARG1, 914 Rarray = R4_ARG2, 915 Rscratch = R11_scratch1, 916 Rscratch2 = R12_scratch2, 917 Rarray_klass = R5_ARG3, 918 Rarray_element_klass = Rarray_klass, 919 Rvalue_klass = R6_ARG4, 920 Rstore_addr = R31; // Use register which survives VM call. 921 922 __ ld(R17_tos, Interpreter::expr_offset_in_bytes(0), R15_esp); // Get value to store. 923 __ lwz(Rindex, Interpreter::expr_offset_in_bytes(1), R15_esp); // Get index. 924 __ ld(Rarray, Interpreter::expr_offset_in_bytes(2), R15_esp); // Get array. 925 926 __ verify_oop(R17_tos); 927 __ index_check_without_pop(Rarray, Rindex, UseCompressedOops ? 2 : LogBytesPerWord, Rscratch, Rstore_addr); 928 // Rindex is dead! 929 Register Rscratch3 = Rindex; 930 931 // Do array store check - check for NULL value first. 932 __ cmpdi(CCR0, R17_tos, 0); 933 __ beq(CCR0, Lis_null); 934 935 __ load_klass(Rarray_klass, Rarray); 936 __ load_klass(Rvalue_klass, R17_tos); 937 938 // Do fast instanceof cache test. 939 __ ld(Rarray_element_klass, in_bytes(ObjArrayKlass::element_klass_offset()), Rarray_klass); 940 941 // Generate a fast subtype check. Branch to store_ok if no failure. Throw if failure. 942 __ gen_subtype_check(Rvalue_klass /*subklass*/, Rarray_element_klass /*superklass*/, Rscratch, Rscratch2, Rscratch3, Lstore_ok); 943 944 // Fell through: subtype check failed => throw an exception. 945 __ load_dispatch_table(R11_scratch1, (address*)Interpreter::_throw_ArrayStoreException_entry); 946 __ mtctr(R11_scratch1); 947 __ bctr(); 948 949 __ bind(Lis_null); 950 do_oop_store(_masm, Rstore_addr, arrayOopDesc::base_offset_in_bytes(T_OBJECT), noreg /* 0 */, 951 Rscratch, Rscratch2, Rscratch3, _bs->kind(), true /* precise */, false /* check_null */); 952 __ profile_null_seen(Rscratch, Rscratch2); 953 __ b(Ldone); 954 955 // Store is OK. 956 __ bind(Lstore_ok); 957 do_oop_store(_masm, Rstore_addr, arrayOopDesc::base_offset_in_bytes(T_OBJECT), R17_tos /* value */, 958 Rscratch, Rscratch2, Rscratch3, _bs->kind(), true /* precise */, false /* check_null */); 959 960 __ bind(Ldone); 961 // Adjust sp (pops array, index and value). 962 __ addi(R15_esp, R15_esp, 3 * Interpreter::stackElementSize); 963 } 964 965 void TemplateTable::bastore() { 966 transition(itos, vtos); 967 968 const Register Rindex = R11_scratch1, 969 Rarray = R12_scratch2, 970 Rscratch = R3_ARG1; 971 __ pop_i(Rindex); 972 // tos: val 973 // Rarray: array ptr (popped by index_check) 974 __ index_check(Rarray, Rindex, 0, Rscratch, Rarray); 975 __ stb(R17_tos, arrayOopDesc::base_offset_in_bytes(T_BYTE), Rarray); 976 } 977 978 void TemplateTable::castore() { 979 transition(itos, vtos); 980 981 const Register Rindex = R11_scratch1, 982 Rarray = R12_scratch2, 983 Rscratch = R3_ARG1; 984 __ pop_i(Rindex); 985 // tos: val 986 // Rarray: array ptr (popped by index_check) 987 __ index_check(Rarray, Rindex, LogBytesPerShort, Rscratch, Rarray); 988 __ sth(R17_tos, arrayOopDesc::base_offset_in_bytes(T_CHAR), Rarray); 989 } 990 991 void TemplateTable::sastore() { 992 castore(); 993 } 994 995 void TemplateTable::istore(int n) { 996 transition(itos, vtos); 997 __ stw(R17_tos, Interpreter::local_offset_in_bytes(n), R18_locals); 998 } 999 1000 void TemplateTable::lstore(int n) { 1001 transition(ltos, vtos); 1002 __ std(R17_tos, Interpreter::local_offset_in_bytes(n + 1), R18_locals); 1003 } 1004 1005 void TemplateTable::fstore(int n) { 1006 transition(ftos, vtos); 1007 __ stfs(F15_ftos, Interpreter::local_offset_in_bytes(n), R18_locals); 1008 } 1009 1010 void TemplateTable::dstore(int n) { 1011 transition(dtos, vtos); 1012 __ stfd(F15_ftos, Interpreter::local_offset_in_bytes(n + 1), R18_locals); 1013 } 1014 1015 void TemplateTable::astore(int n) { 1016 transition(vtos, vtos); 1017 1018 __ pop_ptr(); 1019 __ verify_oop_or_return_address(R17_tos, R11_scratch1); 1020 __ std(R17_tos, Interpreter::local_offset_in_bytes(n), R18_locals); 1021 } 1022 1023 void TemplateTable::pop() { 1024 transition(vtos, vtos); 1025 1026 __ addi(R15_esp, R15_esp, Interpreter::stackElementSize); 1027 } 1028 1029 void TemplateTable::pop2() { 1030 transition(vtos, vtos); 1031 1032 __ addi(R15_esp, R15_esp, Interpreter::stackElementSize * 2); 1033 } 1034 1035 void TemplateTable::dup() { 1036 transition(vtos, vtos); 1037 1038 __ ld(R11_scratch1, Interpreter::stackElementSize, R15_esp); 1039 __ push_ptr(R11_scratch1); 1040 } 1041 1042 void TemplateTable::dup_x1() { 1043 transition(vtos, vtos); 1044 1045 Register Ra = R11_scratch1, 1046 Rb = R12_scratch2; 1047 // stack: ..., a, b 1048 __ ld(Rb, Interpreter::stackElementSize, R15_esp); 1049 __ ld(Ra, Interpreter::stackElementSize * 2, R15_esp); 1050 __ std(Rb, Interpreter::stackElementSize * 2, R15_esp); 1051 __ std(Ra, Interpreter::stackElementSize, R15_esp); 1052 __ push_ptr(Rb); 1053 // stack: ..., b, a, b 1054 } 1055 1056 void TemplateTable::dup_x2() { 1057 transition(vtos, vtos); 1058 1059 Register Ra = R11_scratch1, 1060 Rb = R12_scratch2, 1061 Rc = R3_ARG1; 1062 1063 // stack: ..., a, b, c 1064 __ ld(Rc, Interpreter::stackElementSize, R15_esp); // load c 1065 __ ld(Ra, Interpreter::stackElementSize * 3, R15_esp); // load a 1066 __ std(Rc, Interpreter::stackElementSize * 3, R15_esp); // store c in a 1067 __ ld(Rb, Interpreter::stackElementSize * 2, R15_esp); // load b 1068 // stack: ..., c, b, c 1069 __ std(Ra, Interpreter::stackElementSize * 2, R15_esp); // store a in b 1070 // stack: ..., c, a, c 1071 __ std(Rb, Interpreter::stackElementSize, R15_esp); // store b in c 1072 __ push_ptr(Rc); // push c 1073 // stack: ..., c, a, b, c 1074 } 1075 1076 void TemplateTable::dup2() { 1077 transition(vtos, vtos); 1078 1079 Register Ra = R11_scratch1, 1080 Rb = R12_scratch2; 1081 // stack: ..., a, b 1082 __ ld(Rb, Interpreter::stackElementSize, R15_esp); 1083 __ ld(Ra, Interpreter::stackElementSize * 2, R15_esp); 1084 __ push_2ptrs(Ra, Rb); 1085 // stack: ..., a, b, a, b 1086 } 1087 1088 void TemplateTable::dup2_x1() { 1089 transition(vtos, vtos); 1090 1091 Register Ra = R11_scratch1, 1092 Rb = R12_scratch2, 1093 Rc = R3_ARG1; 1094 // stack: ..., a, b, c 1095 __ ld(Rc, Interpreter::stackElementSize, R15_esp); 1096 __ ld(Rb, Interpreter::stackElementSize * 2, R15_esp); 1097 __ std(Rc, Interpreter::stackElementSize * 2, R15_esp); 1098 __ ld(Ra, Interpreter::stackElementSize * 3, R15_esp); 1099 __ std(Ra, Interpreter::stackElementSize, R15_esp); 1100 __ std(Rb, Interpreter::stackElementSize * 3, R15_esp); 1101 // stack: ..., b, c, a 1102 __ push_2ptrs(Rb, Rc); 1103 // stack: ..., b, c, a, b, c 1104 } 1105 1106 void TemplateTable::dup2_x2() { 1107 transition(vtos, vtos); 1108 1109 Register Ra = R11_scratch1, 1110 Rb = R12_scratch2, 1111 Rc = R3_ARG1, 1112 Rd = R4_ARG2; 1113 // stack: ..., a, b, c, d 1114 __ ld(Rb, Interpreter::stackElementSize * 3, R15_esp); 1115 __ ld(Rd, Interpreter::stackElementSize, R15_esp); 1116 __ std(Rb, Interpreter::stackElementSize, R15_esp); // store b in d 1117 __ std(Rd, Interpreter::stackElementSize * 3, R15_esp); // store d in b 1118 __ ld(Ra, Interpreter::stackElementSize * 4, R15_esp); 1119 __ ld(Rc, Interpreter::stackElementSize * 2, R15_esp); 1120 __ std(Ra, Interpreter::stackElementSize * 2, R15_esp); // store a in c 1121 __ std(Rc, Interpreter::stackElementSize * 4, R15_esp); // store c in a 1122 // stack: ..., c, d, a, b 1123 __ push_2ptrs(Rc, Rd); 1124 // stack: ..., c, d, a, b, c, d 1125 } 1126 1127 void TemplateTable::swap() { 1128 transition(vtos, vtos); 1129 // stack: ..., a, b 1130 1131 Register Ra = R11_scratch1, 1132 Rb = R12_scratch2; 1133 // stack: ..., a, b 1134 __ ld(Rb, Interpreter::stackElementSize, R15_esp); 1135 __ ld(Ra, Interpreter::stackElementSize * 2, R15_esp); 1136 __ std(Rb, Interpreter::stackElementSize * 2, R15_esp); 1137 __ std(Ra, Interpreter::stackElementSize, R15_esp); 1138 // stack: ..., b, a 1139 } 1140 1141 void TemplateTable::iop2(Operation op) { 1142 transition(itos, itos); 1143 1144 Register Rscratch = R11_scratch1; 1145 1146 __ pop_i(Rscratch); 1147 // tos = number of bits to shift 1148 // Rscratch = value to shift 1149 switch (op) { 1150 case add: __ add(R17_tos, Rscratch, R17_tos); break; 1151 case sub: __ sub(R17_tos, Rscratch, R17_tos); break; 1152 case mul: __ mullw(R17_tos, Rscratch, R17_tos); break; 1153 case _and: __ andr(R17_tos, Rscratch, R17_tos); break; 1154 case _or: __ orr(R17_tos, Rscratch, R17_tos); break; 1155 case _xor: __ xorr(R17_tos, Rscratch, R17_tos); break; 1156 case shl: __ rldicl(R17_tos, R17_tos, 0, 64-5); __ slw(R17_tos, Rscratch, R17_tos); break; 1157 case shr: __ rldicl(R17_tos, R17_tos, 0, 64-5); __ sraw(R17_tos, Rscratch, R17_tos); break; 1158 case ushr: __ rldicl(R17_tos, R17_tos, 0, 64-5); __ srw(R17_tos, Rscratch, R17_tos); break; 1159 default: ShouldNotReachHere(); 1160 } 1161 } 1162 1163 void TemplateTable::lop2(Operation op) { 1164 transition(ltos, ltos); 1165 1166 Register Rscratch = R11_scratch1; 1167 __ pop_l(Rscratch); 1168 switch (op) { 1169 case add: __ add(R17_tos, Rscratch, R17_tos); break; 1170 case sub: __ sub(R17_tos, Rscratch, R17_tos); break; 1171 case _and: __ andr(R17_tos, Rscratch, R17_tos); break; 1172 case _or: __ orr(R17_tos, Rscratch, R17_tos); break; 1173 case _xor: __ xorr(R17_tos, Rscratch, R17_tos); break; 1174 default: ShouldNotReachHere(); 1175 } 1176 } 1177 1178 void TemplateTable::idiv() { 1179 transition(itos, itos); 1180 1181 Label Lnormal, Lexception, Ldone; 1182 Register Rdividend = R11_scratch1; // Used by irem. 1183 1184 __ addi(R0, R17_tos, 1); 1185 __ cmplwi(CCR0, R0, 2); 1186 __ bgt(CCR0, Lnormal); // divisor <-1 or >1 1187 1188 __ cmpwi(CCR1, R17_tos, 0); 1189 __ beq(CCR1, Lexception); // divisor == 0 1190 1191 __ pop_i(Rdividend); 1192 __ mullw(R17_tos, Rdividend, R17_tos); // div by +/-1 1193 __ b(Ldone); 1194 1195 __ bind(Lexception); 1196 __ load_dispatch_table(R11_scratch1, (address*)Interpreter::_throw_ArithmeticException_entry); 1197 __ mtctr(R11_scratch1); 1198 __ bctr(); 1199 1200 __ align(32, 12); 1201 __ bind(Lnormal); 1202 __ pop_i(Rdividend); 1203 __ divw(R17_tos, Rdividend, R17_tos); // Can't divide minint/-1. 1204 __ bind(Ldone); 1205 } 1206 1207 void TemplateTable::irem() { 1208 transition(itos, itos); 1209 1210 __ mr(R12_scratch2, R17_tos); 1211 idiv(); 1212 __ mullw(R17_tos, R17_tos, R12_scratch2); 1213 __ subf(R17_tos, R17_tos, R11_scratch1); // Dividend set by idiv. 1214 } 1215 1216 void TemplateTable::lmul() { 1217 transition(ltos, ltos); 1218 1219 __ pop_l(R11_scratch1); 1220 __ mulld(R17_tos, R11_scratch1, R17_tos); 1221 } 1222 1223 void TemplateTable::ldiv() { 1224 transition(ltos, ltos); 1225 1226 Label Lnormal, Lexception, Ldone; 1227 Register Rdividend = R11_scratch1; // Used by lrem. 1228 1229 __ addi(R0, R17_tos, 1); 1230 __ cmpldi(CCR0, R0, 2); 1231 __ bgt(CCR0, Lnormal); // divisor <-1 or >1 1232 1233 __ cmpdi(CCR1, R17_tos, 0); 1234 __ beq(CCR1, Lexception); // divisor == 0 1235 1236 __ pop_l(Rdividend); 1237 __ mulld(R17_tos, Rdividend, R17_tos); // div by +/-1 1238 __ b(Ldone); 1239 1240 __ bind(Lexception); 1241 __ load_dispatch_table(R11_scratch1, (address*)Interpreter::_throw_ArithmeticException_entry); 1242 __ mtctr(R11_scratch1); 1243 __ bctr(); 1244 1245 __ align(32, 12); 1246 __ bind(Lnormal); 1247 __ pop_l(Rdividend); 1248 __ divd(R17_tos, Rdividend, R17_tos); // Can't divide minint/-1. 1249 __ bind(Ldone); 1250 } 1251 1252 void TemplateTable::lrem() { 1253 transition(ltos, ltos); 1254 1255 __ mr(R12_scratch2, R17_tos); 1256 ldiv(); 1257 __ mulld(R17_tos, R17_tos, R12_scratch2); 1258 __ subf(R17_tos, R17_tos, R11_scratch1); // Dividend set by ldiv. 1259 } 1260 1261 void TemplateTable::lshl() { 1262 transition(itos, ltos); 1263 1264 __ rldicl(R17_tos, R17_tos, 0, 64-6); // Extract least significant bits. 1265 __ pop_l(R11_scratch1); 1266 __ sld(R17_tos, R11_scratch1, R17_tos); 1267 } 1268 1269 void TemplateTable::lshr() { 1270 transition(itos, ltos); 1271 1272 __ rldicl(R17_tos, R17_tos, 0, 64-6); // Extract least significant bits. 1273 __ pop_l(R11_scratch1); 1274 __ srad(R17_tos, R11_scratch1, R17_tos); 1275 } 1276 1277 void TemplateTable::lushr() { 1278 transition(itos, ltos); 1279 1280 __ rldicl(R17_tos, R17_tos, 0, 64-6); // Extract least significant bits. 1281 __ pop_l(R11_scratch1); 1282 __ srd(R17_tos, R11_scratch1, R17_tos); 1283 } 1284 1285 void TemplateTable::fop2(Operation op) { 1286 transition(ftos, ftos); 1287 1288 switch (op) { 1289 case add: __ pop_f(F0_SCRATCH); __ fadds(F15_ftos, F0_SCRATCH, F15_ftos); break; 1290 case sub: __ pop_f(F0_SCRATCH); __ fsubs(F15_ftos, F0_SCRATCH, F15_ftos); break; 1291 case mul: __ pop_f(F0_SCRATCH); __ fmuls(F15_ftos, F0_SCRATCH, F15_ftos); break; 1292 case div: __ pop_f(F0_SCRATCH); __ fdivs(F15_ftos, F0_SCRATCH, F15_ftos); break; 1293 case rem: 1294 __ pop_f(F1_ARG1); 1295 __ fmr(F2_ARG2, F15_ftos); 1296 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem)); 1297 __ fmr(F15_ftos, F1_RET); 1298 break; 1299 1300 default: ShouldNotReachHere(); 1301 } 1302 } 1303 1304 void TemplateTable::dop2(Operation op) { 1305 transition(dtos, dtos); 1306 1307 switch (op) { 1308 case add: __ pop_d(F0_SCRATCH); __ fadd(F15_ftos, F0_SCRATCH, F15_ftos); break; 1309 case sub: __ pop_d(F0_SCRATCH); __ fsub(F15_ftos, F0_SCRATCH, F15_ftos); break; 1310 case mul: __ pop_d(F0_SCRATCH); __ fmul(F15_ftos, F0_SCRATCH, F15_ftos); break; 1311 case div: __ pop_d(F0_SCRATCH); __ fdiv(F15_ftos, F0_SCRATCH, F15_ftos); break; 1312 case rem: 1313 __ pop_d(F1_ARG1); 1314 __ fmr(F2_ARG2, F15_ftos); 1315 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem)); 1316 __ fmr(F15_ftos, F1_RET); 1317 break; 1318 1319 default: ShouldNotReachHere(); 1320 } 1321 } 1322 1323 // Negate the value in the TOS cache. 1324 void TemplateTable::ineg() { 1325 transition(itos, itos); 1326 1327 __ neg(R17_tos, R17_tos); 1328 } 1329 1330 // Negate the value in the TOS cache. 1331 void TemplateTable::lneg() { 1332 transition(ltos, ltos); 1333 1334 __ neg(R17_tos, R17_tos); 1335 } 1336 1337 void TemplateTable::fneg() { 1338 transition(ftos, ftos); 1339 1340 __ fneg(F15_ftos, F15_ftos); 1341 } 1342 1343 void TemplateTable::dneg() { 1344 transition(dtos, dtos); 1345 1346 __ fneg(F15_ftos, F15_ftos); 1347 } 1348 1349 // Increments a local variable in place. 1350 void TemplateTable::iinc() { 1351 transition(vtos, vtos); 1352 1353 const Register Rindex = R11_scratch1, 1354 Rincrement = R0, 1355 Rvalue = R12_scratch2; 1356 1357 locals_index(Rindex); // Load locals index from bytecode stream. 1358 __ lbz(Rincrement, 2, R14_bcp); // Load increment from the bytecode stream. 1359 __ extsb(Rincrement, Rincrement); 1360 1361 __ load_local_int(Rvalue, Rindex, Rindex); // Puts address of local into Rindex. 1362 1363 __ add(Rvalue, Rincrement, Rvalue); 1364 __ stw(Rvalue, 0, Rindex); 1365 } 1366 1367 void TemplateTable::wide_iinc() { 1368 transition(vtos, vtos); 1369 1370 Register Rindex = R11_scratch1, 1371 Rlocals_addr = Rindex, 1372 Rincr = R12_scratch2; 1373 locals_index_wide(Rindex); 1374 __ get_2_byte_integer_at_bcp(4, Rincr, InterpreterMacroAssembler::Signed); 1375 __ load_local_int(R17_tos, Rlocals_addr, Rindex); 1376 __ add(R17_tos, Rincr, R17_tos); 1377 __ stw(R17_tos, 0, Rlocals_addr); 1378 } 1379 1380 void TemplateTable::convert() { 1381 // %%%%% Factor this first part accross platforms 1382 #ifdef ASSERT 1383 TosState tos_in = ilgl; 1384 TosState tos_out = ilgl; 1385 switch (bytecode()) { 1386 case Bytecodes::_i2l: // fall through 1387 case Bytecodes::_i2f: // fall through 1388 case Bytecodes::_i2d: // fall through 1389 case Bytecodes::_i2b: // fall through 1390 case Bytecodes::_i2c: // fall through 1391 case Bytecodes::_i2s: tos_in = itos; break; 1392 case Bytecodes::_l2i: // fall through 1393 case Bytecodes::_l2f: // fall through 1394 case Bytecodes::_l2d: tos_in = ltos; break; 1395 case Bytecodes::_f2i: // fall through 1396 case Bytecodes::_f2l: // fall through 1397 case Bytecodes::_f2d: tos_in = ftos; break; 1398 case Bytecodes::_d2i: // fall through 1399 case Bytecodes::_d2l: // fall through 1400 case Bytecodes::_d2f: tos_in = dtos; break; 1401 default : ShouldNotReachHere(); 1402 } 1403 switch (bytecode()) { 1404 case Bytecodes::_l2i: // fall through 1405 case Bytecodes::_f2i: // fall through 1406 case Bytecodes::_d2i: // fall through 1407 case Bytecodes::_i2b: // fall through 1408 case Bytecodes::_i2c: // fall through 1409 case Bytecodes::_i2s: tos_out = itos; break; 1410 case Bytecodes::_i2l: // fall through 1411 case Bytecodes::_f2l: // fall through 1412 case Bytecodes::_d2l: tos_out = ltos; break; 1413 case Bytecodes::_i2f: // fall through 1414 case Bytecodes::_l2f: // fall through 1415 case Bytecodes::_d2f: tos_out = ftos; break; 1416 case Bytecodes::_i2d: // fall through 1417 case Bytecodes::_l2d: // fall through 1418 case Bytecodes::_f2d: tos_out = dtos; break; 1419 default : ShouldNotReachHere(); 1420 } 1421 transition(tos_in, tos_out); 1422 #endif 1423 1424 // Conversion 1425 Label done; 1426 switch (bytecode()) { 1427 case Bytecodes::_i2l: 1428 __ extsw(R17_tos, R17_tos); 1429 break; 1430 1431 case Bytecodes::_l2i: 1432 // Nothing to do, we'll continue to work with the lower bits. 1433 break; 1434 1435 case Bytecodes::_i2b: 1436 __ extsb(R17_tos, R17_tos); 1437 break; 1438 1439 case Bytecodes::_i2c: 1440 __ rldicl(R17_tos, R17_tos, 0, 64-2*8); 1441 break; 1442 1443 case Bytecodes::_i2s: 1444 __ extsh(R17_tos, R17_tos); 1445 break; 1446 1447 case Bytecodes::_i2d: 1448 __ extsw(R17_tos, R17_tos); 1449 case Bytecodes::_l2d: 1450 __ push_l_pop_d(); 1451 __ fcfid(F15_ftos, F15_ftos); 1452 break; 1453 1454 case Bytecodes::_i2f: 1455 __ extsw(R17_tos, R17_tos); 1456 __ push_l_pop_d(); 1457 if (VM_Version::has_fcfids()) { // fcfids is >= Power7 only 1458 // Comment: alternatively, load with sign extend could be done by lfiwax. 1459 __ fcfids(F15_ftos, F15_ftos); 1460 } else { 1461 __ fcfid(F15_ftos, F15_ftos); 1462 __ frsp(F15_ftos, F15_ftos); 1463 } 1464 break; 1465 1466 case Bytecodes::_l2f: 1467 if (VM_Version::has_fcfids()) { // fcfids is >= Power7 only 1468 __ push_l_pop_d(); 1469 __ fcfids(F15_ftos, F15_ftos); 1470 } else { 1471 // Avoid rounding problem when result should be 0x3f800001: need fixup code before fcfid+frsp. 1472 __ mr(R3_ARG1, R17_tos); 1473 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::l2f)); 1474 __ fmr(F15_ftos, F1_RET); 1475 } 1476 break; 1477 1478 case Bytecodes::_f2d: 1479 // empty 1480 break; 1481 1482 case Bytecodes::_d2f: 1483 __ frsp(F15_ftos, F15_ftos); 1484 break; 1485 1486 case Bytecodes::_d2i: 1487 case Bytecodes::_f2i: 1488 __ fcmpu(CCR0, F15_ftos, F15_ftos); 1489 __ li(R17_tos, 0); // 0 in case of NAN 1490 __ bso(CCR0, done); 1491 __ fctiwz(F15_ftos, F15_ftos); 1492 __ push_d_pop_l(); 1493 break; 1494 1495 case Bytecodes::_d2l: 1496 case Bytecodes::_f2l: 1497 __ fcmpu(CCR0, F15_ftos, F15_ftos); 1498 __ li(R17_tos, 0); // 0 in case of NAN 1499 __ bso(CCR0, done); 1500 __ fctidz(F15_ftos, F15_ftos); 1501 __ push_d_pop_l(); 1502 break; 1503 1504 default: ShouldNotReachHere(); 1505 } 1506 __ bind(done); 1507 } 1508 1509 // Long compare 1510 void TemplateTable::lcmp() { 1511 transition(ltos, itos); 1512 1513 const Register Rscratch = R11_scratch1; 1514 __ pop_l(Rscratch); // first operand, deeper in stack 1515 1516 __ cmpd(CCR0, Rscratch, R17_tos); // compare 1517 __ mfcr(R17_tos); // set bit 32..33 as follows: <: 0b10, =: 0b00, >: 0b01 1518 __ srwi(Rscratch, R17_tos, 30); 1519 __ srawi(R17_tos, R17_tos, 31); 1520 __ orr(R17_tos, Rscratch, R17_tos); // set result as follows: <: -1, =: 0, >: 1 1521 } 1522 1523 // fcmpl/fcmpg and dcmpl/dcmpg bytecodes 1524 // unordered_result == -1 => fcmpl or dcmpl 1525 // unordered_result == 1 => fcmpg or dcmpg 1526 void TemplateTable::float_cmp(bool is_float, int unordered_result) { 1527 const FloatRegister Rfirst = F0_SCRATCH, 1528 Rsecond = F15_ftos; 1529 const Register Rscratch = R11_scratch1; 1530 1531 if (is_float) { 1532 __ pop_f(Rfirst); 1533 } else { 1534 __ pop_d(Rfirst); 1535 } 1536 1537 Label Lunordered, Ldone; 1538 __ fcmpu(CCR0, Rfirst, Rsecond); // compare 1539 if (unordered_result) { 1540 __ bso(CCR0, Lunordered); 1541 } 1542 __ mfcr(R17_tos); // set bit 32..33 as follows: <: 0b10, =: 0b00, >: 0b01 1543 __ srwi(Rscratch, R17_tos, 30); 1544 __ srawi(R17_tos, R17_tos, 31); 1545 __ orr(R17_tos, Rscratch, R17_tos); // set result as follows: <: -1, =: 0, >: 1 1546 if (unordered_result) { 1547 __ b(Ldone); 1548 __ bind(Lunordered); 1549 __ load_const_optimized(R17_tos, unordered_result); 1550 } 1551 __ bind(Ldone); 1552 } 1553 1554 // Branch_conditional which takes TemplateTable::Condition. 1555 void TemplateTable::branch_conditional(ConditionRegister crx, TemplateTable::Condition cc, Label& L, bool invert) { 1556 bool positive = false; 1557 Assembler::Condition cond = Assembler::equal; 1558 switch (cc) { 1559 case TemplateTable::equal: positive = true ; cond = Assembler::equal ; break; 1560 case TemplateTable::not_equal: positive = false; cond = Assembler::equal ; break; 1561 case TemplateTable::less: positive = true ; cond = Assembler::less ; break; 1562 case TemplateTable::less_equal: positive = false; cond = Assembler::greater; break; 1563 case TemplateTable::greater: positive = true ; cond = Assembler::greater; break; 1564 case TemplateTable::greater_equal: positive = false; cond = Assembler::less ; break; 1565 default: ShouldNotReachHere(); 1566 } 1567 int bo = (positive != invert) ? Assembler::bcondCRbiIs1 : Assembler::bcondCRbiIs0; 1568 int bi = Assembler::bi0(crx, cond); 1569 __ bc(bo, bi, L); 1570 } 1571 1572 void TemplateTable::branch(bool is_jsr, bool is_wide) { 1573 1574 // Note: on SPARC, we use InterpreterMacroAssembler::if_cmp also. 1575 __ verify_thread(); 1576 1577 const Register Rscratch1 = R11_scratch1, 1578 Rscratch2 = R12_scratch2, 1579 Rscratch3 = R3_ARG1, 1580 R4_counters = R4_ARG2, 1581 bumped_count = R31, 1582 Rdisp = R22_tmp2; 1583 1584 __ profile_taken_branch(Rscratch1, bumped_count); 1585 1586 // Get (wide) offset. 1587 if (is_wide) { 1588 __ get_4_byte_integer_at_bcp(1, Rdisp, InterpreterMacroAssembler::Signed); 1589 } else { 1590 __ get_2_byte_integer_at_bcp(1, Rdisp, InterpreterMacroAssembler::Signed); 1591 } 1592 1593 // -------------------------------------------------------------------------- 1594 // Handle all the JSR stuff here, then exit. 1595 // It's much shorter and cleaner than intermingling with the 1596 // non-JSR normal-branch stuff occurring below. 1597 if (is_jsr) { 1598 // Compute return address as bci in Otos_i. 1599 __ ld(Rscratch1, in_bytes(Method::const_offset()), R19_method); 1600 __ addi(Rscratch2, R14_bcp, -in_bytes(ConstMethod::codes_offset()) + (is_wide ? 5 : 3)); 1601 __ subf(R17_tos, Rscratch1, Rscratch2); 1602 1603 // Bump bcp to target of JSR. 1604 __ add(R14_bcp, Rdisp, R14_bcp); 1605 // Push returnAddress for "ret" on stack. 1606 __ push_ptr(R17_tos); 1607 // And away we go! 1608 __ dispatch_next(vtos); 1609 return; 1610 } 1611 1612 // -------------------------------------------------------------------------- 1613 // Normal (non-jsr) branch handling 1614 1615 const bool increment_invocation_counter_for_backward_branches = UseCompiler && UseLoopCounter; 1616 if (increment_invocation_counter_for_backward_branches) { 1617 //__ unimplemented("branch invocation counter"); 1618 1619 Label Lforward; 1620 __ add(R14_bcp, Rdisp, R14_bcp); // Add to bc addr. 1621 1622 // Check branch direction. 1623 __ cmpdi(CCR0, Rdisp, 0); 1624 __ bgt(CCR0, Lforward); 1625 1626 __ get_method_counters(R19_method, R4_counters, Lforward); 1627 1628 if (TieredCompilation) { 1629 Label Lno_mdo, Loverflow; 1630 const int increment = InvocationCounter::count_increment; 1631 const int mask = ((1 << Tier0BackedgeNotifyFreqLog) - 1) << InvocationCounter::count_shift; 1632 if (ProfileInterpreter) { 1633 Register Rmdo = Rscratch1; 1634 1635 // If no method data exists, go to profile_continue. 1636 __ ld(Rmdo, in_bytes(Method::method_data_offset()), R19_method); 1637 __ cmpdi(CCR0, Rmdo, 0); 1638 __ beq(CCR0, Lno_mdo); 1639 1640 // Increment backedge counter in the MDO. 1641 const int mdo_bc_offs = in_bytes(MethodData::backedge_counter_offset()) + in_bytes(InvocationCounter::counter_offset()); 1642 __ lwz(Rscratch2, mdo_bc_offs, Rmdo); 1643 __ load_const_optimized(Rscratch3, mask, R0); 1644 __ addi(Rscratch2, Rscratch2, increment); 1645 __ stw(Rscratch2, mdo_bc_offs, Rmdo); 1646 __ and_(Rscratch3, Rscratch2, Rscratch3); 1647 __ bne(CCR0, Lforward); 1648 __ b(Loverflow); 1649 } 1650 1651 // If there's no MDO, increment counter in method. 1652 const int mo_bc_offs = in_bytes(MethodCounters::backedge_counter_offset()) + in_bytes(InvocationCounter::counter_offset()); 1653 __ bind(Lno_mdo); 1654 __ lwz(Rscratch2, mo_bc_offs, R4_counters); 1655 __ load_const_optimized(Rscratch3, mask, R0); 1656 __ addi(Rscratch2, Rscratch2, increment); 1657 __ stw(Rscratch2, mo_bc_offs, R19_method); 1658 __ and_(Rscratch3, Rscratch2, Rscratch3); 1659 __ bne(CCR0, Lforward); 1660 1661 __ bind(Loverflow); 1662 1663 // Notify point for loop, pass branch bytecode. 1664 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), R14_bcp, true); 1665 1666 // Was an OSR adapter generated? 1667 // O0 = osr nmethod 1668 __ cmpdi(CCR0, R3_RET, 0); 1669 __ beq(CCR0, Lforward); 1670 1671 // Has the nmethod been invalidated already? 1672 __ lbz(R0, nmethod::state_offset(), R3_RET); 1673 __ cmpwi(CCR0, R0, nmethod::in_use); 1674 __ bne(CCR0, Lforward); 1675 1676 // Migrate the interpreter frame off of the stack. 1677 // We can use all registers because we will not return to interpreter from this point. 1678 1679 // Save nmethod. 1680 const Register osr_nmethod = R31; 1681 __ mr(osr_nmethod, R3_RET); 1682 __ set_top_ijava_frame_at_SP_as_last_Java_frame(R1_SP, R11_scratch1); 1683 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), R16_thread); 1684 __ reset_last_Java_frame(); 1685 // OSR buffer is in ARG1. 1686 1687 // Remove the interpreter frame. 1688 __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ R0, R11_scratch1, R12_scratch2); 1689 1690 // Jump to the osr code. 1691 __ ld(R11_scratch1, nmethod::osr_entry_point_offset(), osr_nmethod); 1692 __ mtlr(R0); 1693 __ mtctr(R11_scratch1); 1694 __ bctr(); 1695 1696 } else { 1697 1698 const Register invoke_ctr = Rscratch1; 1699 // Update Backedge branch separately from invocations. 1700 __ increment_backedge_counter(R4_counters, invoke_ctr, Rscratch2, Rscratch3); 1701 1702 if (ProfileInterpreter) { 1703 __ test_invocation_counter_for_mdp(invoke_ctr, Rscratch2, Lforward); 1704 if (UseOnStackReplacement) { 1705 __ test_backedge_count_for_osr(bumped_count, R14_bcp, Rscratch2); 1706 } 1707 } else { 1708 if (UseOnStackReplacement) { 1709 __ test_backedge_count_for_osr(invoke_ctr, R14_bcp, Rscratch2); 1710 } 1711 } 1712 } 1713 1714 __ bind(Lforward); 1715 1716 } else { 1717 // Bump bytecode pointer by displacement (take the branch). 1718 __ add(R14_bcp, Rdisp, R14_bcp); // Add to bc addr. 1719 } 1720 // Continue with bytecode @ target. 1721 // %%%%% Like Intel, could speed things up by moving bytecode fetch to code above, 1722 // %%%%% and changing dispatch_next to dispatch_only. 1723 __ dispatch_next(vtos); 1724 } 1725 1726 // Helper function for if_cmp* methods below. 1727 // Factored out common compare and branch code. 1728 void TemplateTable::if_cmp_common(Register Rfirst, Register Rsecond, Register Rscratch1, Register Rscratch2, Condition cc, bool is_jint, bool cmp0) { 1729 Label Lnot_taken; 1730 // Note: The condition code we get is the condition under which we 1731 // *fall through*! So we have to inverse the CC here. 1732 1733 if (is_jint) { 1734 if (cmp0) { 1735 __ cmpwi(CCR0, Rfirst, 0); 1736 } else { 1737 __ cmpw(CCR0, Rfirst, Rsecond); 1738 } 1739 } else { 1740 if (cmp0) { 1741 __ cmpdi(CCR0, Rfirst, 0); 1742 } else { 1743 __ cmpd(CCR0, Rfirst, Rsecond); 1744 } 1745 } 1746 branch_conditional(CCR0, cc, Lnot_taken, /*invert*/ true); 1747 1748 // Conition is false => Jump! 1749 branch(false, false); 1750 1751 // Condition is not true => Continue. 1752 __ align(32, 12); 1753 __ bind(Lnot_taken); 1754 __ profile_not_taken_branch(Rscratch1, Rscratch2); 1755 } 1756 1757 // Compare integer values with zero and fall through if CC holds, branch away otherwise. 1758 void TemplateTable::if_0cmp(Condition cc) { 1759 transition(itos, vtos); 1760 1761 if_cmp_common(R17_tos, noreg, R11_scratch1, R12_scratch2, cc, true, true); 1762 } 1763 1764 // Compare integer values and fall through if CC holds, branch away otherwise. 1765 // 1766 // Interface: 1767 // - Rfirst: First operand (older stack value) 1768 // - tos: Second operand (younger stack value) 1769 void TemplateTable::if_icmp(Condition cc) { 1770 transition(itos, vtos); 1771 1772 const Register Rfirst = R0, 1773 Rsecond = R17_tos; 1774 1775 __ pop_i(Rfirst); 1776 if_cmp_common(Rfirst, Rsecond, R11_scratch1, R12_scratch2, cc, true, false); 1777 } 1778 1779 void TemplateTable::if_nullcmp(Condition cc) { 1780 transition(atos, vtos); 1781 1782 if_cmp_common(R17_tos, noreg, R11_scratch1, R12_scratch2, cc, false, true); 1783 } 1784 1785 void TemplateTable::if_acmp(Condition cc) { 1786 transition(atos, vtos); 1787 1788 const Register Rfirst = R0, 1789 Rsecond = R17_tos; 1790 1791 __ pop_ptr(Rfirst); 1792 if_cmp_common(Rfirst, Rsecond, R11_scratch1, R12_scratch2, cc, false, false); 1793 } 1794 1795 void TemplateTable::ret() { 1796 locals_index(R11_scratch1); 1797 __ load_local_ptr(R17_tos, R11_scratch1, R11_scratch1); 1798 1799 __ profile_ret(vtos, R17_tos, R11_scratch1, R12_scratch2); 1800 1801 __ ld(R11_scratch1, in_bytes(Method::const_offset()), R19_method); 1802 __ add(R11_scratch1, R17_tos, R11_scratch1); 1803 __ addi(R14_bcp, R11_scratch1, in_bytes(ConstMethod::codes_offset())); 1804 __ dispatch_next(vtos); 1805 } 1806 1807 void TemplateTable::wide_ret() { 1808 transition(vtos, vtos); 1809 1810 const Register Rindex = R3_ARG1, 1811 Rscratch1 = R11_scratch1, 1812 Rscratch2 = R12_scratch2; 1813 1814 locals_index_wide(Rindex); 1815 __ load_local_ptr(R17_tos, R17_tos, Rindex); 1816 __ profile_ret(vtos, R17_tos, Rscratch1, R12_scratch2); 1817 // Tos now contains the bci, compute the bcp from that. 1818 __ ld(Rscratch1, in_bytes(Method::const_offset()), R19_method); 1819 __ addi(Rscratch2, R17_tos, in_bytes(ConstMethod::codes_offset())); 1820 __ add(R14_bcp, Rscratch1, Rscratch2); 1821 __ dispatch_next(vtos); 1822 } 1823 1824 void TemplateTable::tableswitch() { 1825 transition(itos, vtos); 1826 1827 Label Ldispatch, Ldefault_case; 1828 Register Rlow_byte = R3_ARG1, 1829 Rindex = Rlow_byte, 1830 Rhigh_byte = R4_ARG2, 1831 Rdef_offset_addr = R5_ARG3, // is going to contain address of default offset 1832 Rscratch1 = R11_scratch1, 1833 Rscratch2 = R12_scratch2, 1834 Roffset = R6_ARG4; 1835 1836 // Align bcp. 1837 __ addi(Rdef_offset_addr, R14_bcp, BytesPerInt); 1838 __ clrrdi(Rdef_offset_addr, Rdef_offset_addr, log2_long((jlong)BytesPerInt)); 1839 1840 // Load lo & hi. 1841 __ get_u4(Rlow_byte, Rdef_offset_addr, BytesPerInt, InterpreterMacroAssembler::Unsigned); 1842 __ get_u4(Rhigh_byte, Rdef_offset_addr, 2 *BytesPerInt, InterpreterMacroAssembler::Unsigned); 1843 1844 // Check for default case (=index outside [low,high]). 1845 __ cmpw(CCR0, R17_tos, Rlow_byte); 1846 __ cmpw(CCR1, R17_tos, Rhigh_byte); 1847 __ blt(CCR0, Ldefault_case); 1848 __ bgt(CCR1, Ldefault_case); 1849 1850 // Lookup dispatch offset. 1851 __ sub(Rindex, R17_tos, Rlow_byte); 1852 __ extsw(Rindex, Rindex); 1853 __ profile_switch_case(Rindex, Rhigh_byte /* scratch */, Rscratch1, Rscratch2); 1854 __ sldi(Rindex, Rindex, LogBytesPerInt); 1855 __ addi(Rindex, Rindex, 3 * BytesPerInt); 1856 #if defined(VM_LITTLE_ENDIAN) 1857 __ lwbrx(Roffset, Rdef_offset_addr, Rindex); 1858 __ extsw(Roffset, Roffset); 1859 #else 1860 __ lwax(Roffset, Rdef_offset_addr, Rindex); 1861 #endif 1862 __ b(Ldispatch); 1863 1864 __ bind(Ldefault_case); 1865 __ profile_switch_default(Rhigh_byte, Rscratch1); 1866 __ get_u4(Roffset, Rdef_offset_addr, 0, InterpreterMacroAssembler::Signed); 1867 1868 __ bind(Ldispatch); 1869 1870 __ add(R14_bcp, Roffset, R14_bcp); 1871 __ dispatch_next(vtos); 1872 } 1873 1874 void TemplateTable::lookupswitch() { 1875 transition(itos, itos); 1876 __ stop("lookupswitch bytecode should have been rewritten"); 1877 } 1878 1879 // Table switch using linear search through cases. 1880 // Bytecode stream format: 1881 // Bytecode (1) | 4-byte padding | default offset (4) | count (4) | value/offset pair1 (8) | value/offset pair2 (8) | ... 1882 // Note: Everything is big-endian format here. 1883 void TemplateTable::fast_linearswitch() { 1884 transition(itos, vtos); 1885 1886 Label Lloop_entry, Lsearch_loop, Lcontinue_execution, Ldefault_case; 1887 Register Rcount = R3_ARG1, 1888 Rcurrent_pair = R4_ARG2, 1889 Rdef_offset_addr = R5_ARG3, // Is going to contain address of default offset. 1890 Roffset = R31, // Might need to survive C call. 1891 Rvalue = R12_scratch2, 1892 Rscratch = R11_scratch1, 1893 Rcmp_value = R17_tos; 1894 1895 // Align bcp. 1896 __ addi(Rdef_offset_addr, R14_bcp, BytesPerInt); 1897 __ clrrdi(Rdef_offset_addr, Rdef_offset_addr, log2_long((jlong)BytesPerInt)); 1898 1899 // Setup loop counter and limit. 1900 __ get_u4(Rcount, Rdef_offset_addr, BytesPerInt, InterpreterMacroAssembler::Unsigned); 1901 __ addi(Rcurrent_pair, Rdef_offset_addr, 2 * BytesPerInt); // Rcurrent_pair now points to first pair. 1902 1903 __ mtctr(Rcount); 1904 __ cmpwi(CCR0, Rcount, 0); 1905 __ bne(CCR0, Lloop_entry); 1906 1907 // Default case 1908 __ bind(Ldefault_case); 1909 __ get_u4(Roffset, Rdef_offset_addr, 0, InterpreterMacroAssembler::Signed); 1910 if (ProfileInterpreter) { 1911 __ profile_switch_default(Rdef_offset_addr, Rcount/* scratch */); 1912 } 1913 __ b(Lcontinue_execution); 1914 1915 // Next iteration 1916 __ bind(Lsearch_loop); 1917 __ bdz(Ldefault_case); 1918 __ addi(Rcurrent_pair, Rcurrent_pair, 2 * BytesPerInt); 1919 __ bind(Lloop_entry); 1920 __ get_u4(Rvalue, Rcurrent_pair, 0, InterpreterMacroAssembler::Unsigned); 1921 __ cmpw(CCR0, Rvalue, Rcmp_value); 1922 __ bne(CCR0, Lsearch_loop); 1923 1924 // Found, load offset. 1925 __ get_u4(Roffset, Rcurrent_pair, BytesPerInt, InterpreterMacroAssembler::Signed); 1926 // Calculate case index and profile 1927 __ mfctr(Rcurrent_pair); 1928 if (ProfileInterpreter) { 1929 __ sub(Rcurrent_pair, Rcount, Rcurrent_pair); 1930 __ profile_switch_case(Rcurrent_pair, Rcount /*scratch*/, Rdef_offset_addr/*scratch*/, Rscratch); 1931 } 1932 1933 __ bind(Lcontinue_execution); 1934 __ add(R14_bcp, Roffset, R14_bcp); 1935 __ dispatch_next(vtos); 1936 } 1937 1938 // Table switch using binary search (value/offset pairs are ordered). 1939 // Bytecode stream format: 1940 // Bytecode (1) | 4-byte padding | default offset (4) | count (4) | value/offset pair1 (8) | value/offset pair2 (8) | ... 1941 // Note: Everything is big-endian format here. So on little endian machines, we have to revers offset and count and cmp value. 1942 void TemplateTable::fast_binaryswitch() { 1943 1944 transition(itos, vtos); 1945 // Implementation using the following core algorithm: (copied from Intel) 1946 // 1947 // int binary_search(int key, LookupswitchPair* array, int n) { 1948 // // Binary search according to "Methodik des Programmierens" by 1949 // // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985. 1950 // int i = 0; 1951 // int j = n; 1952 // while (i+1 < j) { 1953 // // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q) 1954 // // with Q: for all i: 0 <= i < n: key < a[i] 1955 // // where a stands for the array and assuming that the (inexisting) 1956 // // element a[n] is infinitely big. 1957 // int h = (i + j) >> 1; 1958 // // i < h < j 1959 // if (key < array[h].fast_match()) { 1960 // j = h; 1961 // } else { 1962 // i = h; 1963 // } 1964 // } 1965 // // R: a[i] <= key < a[i+1] or Q 1966 // // (i.e., if key is within array, i is the correct index) 1967 // return i; 1968 // } 1969 1970 // register allocation 1971 const Register Rkey = R17_tos; // already set (tosca) 1972 const Register Rarray = R3_ARG1; 1973 const Register Ri = R4_ARG2; 1974 const Register Rj = R5_ARG3; 1975 const Register Rh = R6_ARG4; 1976 const Register Rscratch = R11_scratch1; 1977 1978 const int log_entry_size = 3; 1979 const int entry_size = 1 << log_entry_size; 1980 1981 Label found; 1982 1983 // Find Array start, 1984 __ addi(Rarray, R14_bcp, 3 * BytesPerInt); 1985 __ clrrdi(Rarray, Rarray, log2_long((jlong)BytesPerInt)); 1986 1987 // initialize i & j 1988 __ li(Ri,0); 1989 __ get_u4(Rj, Rarray, -BytesPerInt, InterpreterMacroAssembler::Unsigned); 1990 1991 // and start. 1992 Label entry; 1993 __ b(entry); 1994 1995 // binary search loop 1996 { Label loop; 1997 __ bind(loop); 1998 // int h = (i + j) >> 1; 1999 __ srdi(Rh, Rh, 1); 2000 // if (key < array[h].fast_match()) { 2001 // j = h; 2002 // } else { 2003 // i = h; 2004 // } 2005 __ sldi(Rscratch, Rh, log_entry_size); 2006 #if defined(VM_LITTLE_ENDIAN) 2007 __ lwbrx(Rscratch, Rscratch, Rarray); 2008 #else 2009 __ lwzx(Rscratch, Rscratch, Rarray); 2010 #endif 2011 2012 // if (key < current value) 2013 // Rh = Rj 2014 // else 2015 // Rh = Ri 2016 Label Lgreater; 2017 __ cmpw(CCR0, Rkey, Rscratch); 2018 __ bge(CCR0, Lgreater); 2019 __ mr(Rj, Rh); 2020 __ b(entry); 2021 __ bind(Lgreater); 2022 __ mr(Ri, Rh); 2023 2024 // while (i+1 < j) 2025 __ bind(entry); 2026 __ addi(Rscratch, Ri, 1); 2027 __ cmpw(CCR0, Rscratch, Rj); 2028 __ add(Rh, Ri, Rj); // start h = i + j >> 1; 2029 2030 __ blt(CCR0, loop); 2031 } 2032 2033 // End of binary search, result index is i (must check again!). 2034 Label default_case; 2035 Label continue_execution; 2036 if (ProfileInterpreter) { 2037 __ mr(Rh, Ri); // Save index in i for profiling. 2038 } 2039 // Ri = value offset 2040 __ sldi(Ri, Ri, log_entry_size); 2041 __ add(Ri, Ri, Rarray); 2042 __ get_u4(Rscratch, Ri, 0, InterpreterMacroAssembler::Unsigned); 2043 2044 Label not_found; 2045 // Ri = offset offset 2046 __ cmpw(CCR0, Rkey, Rscratch); 2047 __ beq(CCR0, not_found); 2048 // entry not found -> j = default offset 2049 __ get_u4(Rj, Rarray, -2 * BytesPerInt, InterpreterMacroAssembler::Unsigned); 2050 __ b(default_case); 2051 2052 __ bind(not_found); 2053 // entry found -> j = offset 2054 __ profile_switch_case(Rh, Rj, Rscratch, Rkey); 2055 __ get_u4(Rj, Ri, BytesPerInt, InterpreterMacroAssembler::Unsigned); 2056 2057 if (ProfileInterpreter) { 2058 __ b(continue_execution); 2059 } 2060 2061 __ bind(default_case); // fall through (if not profiling) 2062 __ profile_switch_default(Ri, Rscratch); 2063 2064 __ bind(continue_execution); 2065 2066 __ extsw(Rj, Rj); 2067 __ add(R14_bcp, Rj, R14_bcp); 2068 __ dispatch_next(vtos); 2069 } 2070 2071 void TemplateTable::_return(TosState state) { 2072 transition(state, state); 2073 assert(_desc->calls_vm(), 2074 "inconsistent calls_vm information"); // call in remove_activation 2075 2076 if (_desc->bytecode() == Bytecodes::_return_register_finalizer) { 2077 2078 Register Rscratch = R11_scratch1, 2079 Rklass = R12_scratch2, 2080 Rklass_flags = Rklass; 2081 Label Lskip_register_finalizer; 2082 2083 // Check if the method has the FINALIZER flag set and call into the VM to finalize in this case. 2084 assert(state == vtos, "only valid state"); 2085 __ ld(R17_tos, 0, R18_locals); 2086 2087 // Load klass of this obj. 2088 __ load_klass(Rklass, R17_tos); 2089 __ lwz(Rklass_flags, in_bytes(Klass::access_flags_offset()), Rklass); 2090 __ testbitdi(CCR0, R0, Rklass_flags, exact_log2(JVM_ACC_HAS_FINALIZER)); 2091 __ bfalse(CCR0, Lskip_register_finalizer); 2092 2093 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), R17_tos /* obj */); 2094 2095 __ align(32, 12); 2096 __ bind(Lskip_register_finalizer); 2097 } 2098 2099 // Move the result value into the correct register and remove memory stack frame. 2100 __ remove_activation(state, /* throw_monitor_exception */ true); 2101 // Restoration of lr done by remove_activation. 2102 switch (state) { 2103 case ltos: 2104 case btos: 2105 case ctos: 2106 case stos: 2107 case atos: 2108 case itos: __ mr(R3_RET, R17_tos); break; 2109 case ftos: 2110 case dtos: __ fmr(F1_RET, F15_ftos); break; 2111 case vtos: // This might be a constructor. Final fields (and volatile fields on PPC64) need 2112 // to get visible before the reference to the object gets stored anywhere. 2113 __ membar(Assembler::StoreStore); break; 2114 default : ShouldNotReachHere(); 2115 } 2116 __ blr(); 2117 } 2118 2119 // ============================================================================ 2120 // Constant pool cache access 2121 // 2122 // Memory ordering: 2123 // 2124 // Like done in C++ interpreter, we load the fields 2125 // - _indices 2126 // - _f12_oop 2127 // acquired, because these are asked if the cache is already resolved. We don't 2128 // want to float loads above this check. 2129 // See also comments in ConstantPoolCacheEntry::bytecode_1(), 2130 // ConstantPoolCacheEntry::bytecode_2() and ConstantPoolCacheEntry::f1(); 2131 2132 // Call into the VM if call site is not yet resolved 2133 // 2134 // Input regs: 2135 // - None, all passed regs are outputs. 2136 // 2137 // Returns: 2138 // - Rcache: The const pool cache entry that contains the resolved result. 2139 // - Rresult: Either noreg or output for f1/f2. 2140 // 2141 // Kills: 2142 // - Rscratch 2143 void TemplateTable::resolve_cache_and_index(int byte_no, Register Rcache, Register Rscratch, size_t index_size) { 2144 2145 __ get_cache_and_index_at_bcp(Rcache, 1, index_size); 2146 Label Lresolved, Ldone; 2147 2148 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 2149 // We are resolved if the indices offset contains the current bytecode. 2150 #if defined(VM_LITTLE_ENDIAN) 2151 __ lbz(Rscratch, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()) + byte_no + 1, Rcache); 2152 #else 2153 __ lbz(Rscratch, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()) + 7 - (byte_no + 1), Rcache); 2154 #endif 2155 // Acquire by cmp-br-isync (see below). 2156 __ cmpdi(CCR0, Rscratch, (int)bytecode()); 2157 __ beq(CCR0, Lresolved); 2158 2159 address entry = NULL; 2160 switch (bytecode()) { 2161 case Bytecodes::_getstatic : // fall through 2162 case Bytecodes::_putstatic : // fall through 2163 case Bytecodes::_getfield : // fall through 2164 case Bytecodes::_putfield : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put); break; 2165 case Bytecodes::_invokevirtual : // fall through 2166 case Bytecodes::_invokespecial : // fall through 2167 case Bytecodes::_invokestatic : // fall through 2168 case Bytecodes::_invokeinterface: entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke); break; 2169 case Bytecodes::_invokehandle : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokehandle); break; 2170 case Bytecodes::_invokedynamic : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic); break; 2171 default : ShouldNotReachHere(); break; 2172 } 2173 __ li(R4_ARG2, (int)bytecode()); 2174 __ call_VM(noreg, entry, R4_ARG2, true); 2175 2176 // Update registers with resolved info. 2177 __ get_cache_and_index_at_bcp(Rcache, 1, index_size); 2178 __ b(Ldone); 2179 2180 __ bind(Lresolved); 2181 __ isync(); // Order load wrt. succeeding loads. 2182 __ bind(Ldone); 2183 } 2184 2185 // Load the constant pool cache entry at field accesses into registers. 2186 // The Rcache and Rindex registers must be set before call. 2187 // Input: 2188 // - Rcache, Rindex 2189 // Output: 2190 // - Robj, Roffset, Rflags 2191 void TemplateTable::load_field_cp_cache_entry(Register Robj, 2192 Register Rcache, 2193 Register Rindex /* unused on PPC64 */, 2194 Register Roffset, 2195 Register Rflags, 2196 bool is_static = false) { 2197 assert_different_registers(Rcache, Rflags, Roffset); 2198 // assert(Rindex == noreg, "parameter not used on PPC64"); 2199 2200 ByteSize cp_base_offset = ConstantPoolCache::base_offset(); 2201 __ ld(Rflags, in_bytes(cp_base_offset) + in_bytes(ConstantPoolCacheEntry::flags_offset()), Rcache); 2202 __ ld(Roffset, in_bytes(cp_base_offset) + in_bytes(ConstantPoolCacheEntry::f2_offset()), Rcache); 2203 if (is_static) { 2204 __ ld(Robj, in_bytes(cp_base_offset) + in_bytes(ConstantPoolCacheEntry::f1_offset()), Rcache); 2205 __ ld(Robj, in_bytes(Klass::java_mirror_offset()), Robj); 2206 // Acquire not needed here. Following access has an address dependency on this value. 2207 } 2208 } 2209 2210 // Load the constant pool cache entry at invokes into registers. 2211 // Resolve if necessary. 2212 2213 // Input Registers: 2214 // - None, bcp is used, though 2215 // 2216 // Return registers: 2217 // - Rmethod (f1 field or f2 if invokevirtual) 2218 // - Ritable_index (f2 field) 2219 // - Rflags (flags field) 2220 // 2221 // Kills: 2222 // - R21 2223 // 2224 void TemplateTable::load_invoke_cp_cache_entry(int byte_no, 2225 Register Rmethod, 2226 Register Ritable_index, 2227 Register Rflags, 2228 bool is_invokevirtual, 2229 bool is_invokevfinal, 2230 bool is_invokedynamic) { 2231 2232 ByteSize cp_base_offset = ConstantPoolCache::base_offset(); 2233 // Determine constant pool cache field offsets. 2234 assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant"); 2235 const int method_offset = in_bytes(cp_base_offset + (is_invokevirtual ? ConstantPoolCacheEntry::f2_offset() : ConstantPoolCacheEntry::f1_offset())); 2236 const int flags_offset = in_bytes(cp_base_offset + ConstantPoolCacheEntry::flags_offset()); 2237 // Access constant pool cache fields. 2238 const int index_offset = in_bytes(cp_base_offset + ConstantPoolCacheEntry::f2_offset()); 2239 2240 Register Rcache = R21_tmp1; // Note: same register as R21_sender_SP. 2241 2242 if (is_invokevfinal) { 2243 assert(Ritable_index == noreg, "register not used"); 2244 // Already resolved. 2245 __ get_cache_and_index_at_bcp(Rcache, 1); 2246 } else { 2247 resolve_cache_and_index(byte_no, Rcache, R0, is_invokedynamic ? sizeof(u4) : sizeof(u2)); 2248 } 2249 2250 __ ld(Rmethod, method_offset, Rcache); 2251 __ ld(Rflags, flags_offset, Rcache); 2252 2253 if (Ritable_index != noreg) { 2254 __ ld(Ritable_index, index_offset, Rcache); 2255 } 2256 } 2257 2258 // ============================================================================ 2259 // Field access 2260 2261 // Volatile variables demand their effects be made known to all CPU's 2262 // in order. Store buffers on most chips allow reads & writes to 2263 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode 2264 // without some kind of memory barrier (i.e., it's not sufficient that 2265 // the interpreter does not reorder volatile references, the hardware 2266 // also must not reorder them). 2267 // 2268 // According to the new Java Memory Model (JMM): 2269 // (1) All volatiles are serialized wrt to each other. ALSO reads & 2270 // writes act as aquire & release, so: 2271 // (2) A read cannot let unrelated NON-volatile memory refs that 2272 // happen after the read float up to before the read. It's OK for 2273 // non-volatile memory refs that happen before the volatile read to 2274 // float down below it. 2275 // (3) Similar a volatile write cannot let unrelated NON-volatile 2276 // memory refs that happen BEFORE the write float down to after the 2277 // write. It's OK for non-volatile memory refs that happen after the 2278 // volatile write to float up before it. 2279 // 2280 // We only put in barriers around volatile refs (they are expensive), 2281 // not _between_ memory refs (that would require us to track the 2282 // flavor of the previous memory refs). Requirements (2) and (3) 2283 // require some barriers before volatile stores and after volatile 2284 // loads. These nearly cover requirement (1) but miss the 2285 // volatile-store-volatile-load case. This final case is placed after 2286 // volatile-stores although it could just as well go before 2287 // volatile-loads. 2288 2289 // The registers cache and index expected to be set before call. 2290 // Correct values of the cache and index registers are preserved. 2291 // Kills: 2292 // Rcache (if has_tos) 2293 // Rscratch 2294 void TemplateTable::jvmti_post_field_access(Register Rcache, Register Rscratch, bool is_static, bool has_tos) { 2295 2296 assert_different_registers(Rcache, Rscratch); 2297 2298 if (JvmtiExport::can_post_field_access()) { 2299 ByteSize cp_base_offset = ConstantPoolCache::base_offset(); 2300 Label Lno_field_access_post; 2301 2302 // Check if post field access in enabled. 2303 int offs = __ load_const_optimized(Rscratch, JvmtiExport::get_field_access_count_addr(), R0, true); 2304 __ lwz(Rscratch, offs, Rscratch); 2305 2306 __ cmpwi(CCR0, Rscratch, 0); 2307 __ beq(CCR0, Lno_field_access_post); 2308 2309 // Post access enabled - do it! 2310 __ addi(Rcache, Rcache, in_bytes(cp_base_offset)); 2311 if (is_static) { 2312 __ li(R17_tos, 0); 2313 } else { 2314 if (has_tos) { 2315 // The fast bytecode versions have obj ptr in register. 2316 // Thus, save object pointer before call_VM() clobbers it 2317 // put object on tos where GC wants it. 2318 __ push_ptr(R17_tos); 2319 } else { 2320 // Load top of stack (do not pop the value off the stack). 2321 __ ld(R17_tos, Interpreter::expr_offset_in_bytes(0), R15_esp); 2322 } 2323 __ verify_oop(R17_tos); 2324 } 2325 // tos: object pointer or NULL if static 2326 // cache: cache entry pointer 2327 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), R17_tos, Rcache); 2328 if (!is_static && has_tos) { 2329 // Restore object pointer. 2330 __ pop_ptr(R17_tos); 2331 __ verify_oop(R17_tos); 2332 } else { 2333 // Cache is still needed to get class or obj. 2334 __ get_cache_and_index_at_bcp(Rcache, 1); 2335 } 2336 2337 __ align(32, 12); 2338 __ bind(Lno_field_access_post); 2339 } 2340 } 2341 2342 // kills R11_scratch1 2343 void TemplateTable::pop_and_check_object(Register Roop) { 2344 Register Rtmp = R11_scratch1; 2345 2346 assert_different_registers(Rtmp, Roop); 2347 __ pop_ptr(Roop); 2348 // For field access must check obj. 2349 __ null_check_throw(Roop, -1, Rtmp); 2350 __ verify_oop(Roop); 2351 } 2352 2353 // PPC64: implement volatile loads as fence-store-acquire. 2354 void TemplateTable::getfield_or_static(int byte_no, bool is_static) { 2355 transition(vtos, vtos); 2356 2357 Label Lacquire, Lisync; 2358 2359 const Register Rcache = R3_ARG1, 2360 Rclass_or_obj = R22_tmp2, 2361 Roffset = R23_tmp3, 2362 Rflags = R31, 2363 Rbtable = R5_ARG3, 2364 Rbc = R6_ARG4, 2365 Rscratch = R12_scratch2; 2366 2367 static address field_branch_table[number_of_states], 2368 static_branch_table[number_of_states]; 2369 2370 address* branch_table = is_static ? static_branch_table : field_branch_table; 2371 2372 // Get field offset. 2373 resolve_cache_and_index(byte_no, Rcache, Rscratch, sizeof(u2)); 2374 2375 // JVMTI support 2376 jvmti_post_field_access(Rcache, Rscratch, is_static, false); 2377 2378 // Load after possible GC. 2379 load_field_cp_cache_entry(Rclass_or_obj, Rcache, noreg, Roffset, Rflags, is_static); 2380 2381 // Load pointer to branch table. 2382 __ load_const_optimized(Rbtable, (address)branch_table, Rscratch); 2383 2384 // Get volatile flag. 2385 __ rldicl(Rscratch, Rflags, 64-ConstantPoolCacheEntry::is_volatile_shift, 63); // Extract volatile bit. 2386 // Note: sync is needed before volatile load on PPC64. 2387 2388 // Check field type. 2389 __ rldicl(Rflags, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits); 2390 2391 #ifdef ASSERT 2392 Label LFlagInvalid; 2393 __ cmpldi(CCR0, Rflags, number_of_states); 2394 __ bge(CCR0, LFlagInvalid); 2395 #endif 2396 2397 // Load from branch table and dispatch (volatile case: one instruction ahead). 2398 __ sldi(Rflags, Rflags, LogBytesPerWord); 2399 __ cmpwi(CCR6, Rscratch, 1); // Volatile? 2400 if (support_IRIW_for_not_multiple_copy_atomic_cpu) { 2401 __ sldi(Rscratch, Rscratch, exact_log2(BytesPerInstWord)); // Volatile ? size of 1 instruction : 0. 2402 } 2403 __ ldx(Rbtable, Rbtable, Rflags); 2404 2405 // Get the obj from stack. 2406 if (!is_static) { 2407 pop_and_check_object(Rclass_or_obj); // Kills R11_scratch1. 2408 } else { 2409 __ verify_oop(Rclass_or_obj); 2410 } 2411 2412 if (support_IRIW_for_not_multiple_copy_atomic_cpu) { 2413 __ subf(Rbtable, Rscratch, Rbtable); // Point to volatile/non-volatile entry point. 2414 } 2415 __ mtctr(Rbtable); 2416 __ bctr(); 2417 2418 #ifdef ASSERT 2419 __ bind(LFlagInvalid); 2420 __ stop("got invalid flag", 0x654); 2421 2422 // __ bind(Lvtos); 2423 address pc_before_fence = __ pc(); 2424 __ fence(); // Volatile entry point (one instruction before non-volatile_entry point). 2425 assert(__ pc() - pc_before_fence == (ptrdiff_t)BytesPerInstWord, "must be single instruction"); 2426 assert(branch_table[vtos] == 0, "can't compute twice"); 2427 branch_table[vtos] = __ pc(); // non-volatile_entry point 2428 __ stop("vtos unexpected", 0x655); 2429 #endif 2430 2431 __ align(32, 28, 28); // Align load. 2432 // __ bind(Ldtos); 2433 __ fence(); // Volatile entry point (one instruction before non-volatile_entry point). 2434 assert(branch_table[dtos] == 0, "can't compute twice"); 2435 branch_table[dtos] = __ pc(); // non-volatile_entry point 2436 __ lfdx(F15_ftos, Rclass_or_obj, Roffset); 2437 __ push(dtos); 2438 if (!is_static) patch_bytecode(Bytecodes::_fast_dgetfield, Rbc, Rscratch); 2439 { 2440 Label acquire_double; 2441 __ beq(CCR6, acquire_double); // Volatile? 2442 __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode())); 2443 2444 __ bind(acquire_double); 2445 __ fcmpu(CCR0, F15_ftos, F15_ftos); // Acquire by cmp-br-isync. 2446 __ beq_predict_taken(CCR0, Lisync); 2447 __ b(Lisync); // In case of NAN. 2448 } 2449 2450 __ align(32, 28, 28); // Align load. 2451 // __ bind(Lftos); 2452 __ fence(); // Volatile entry point (one instruction before non-volatile_entry point). 2453 assert(branch_table[ftos] == 0, "can't compute twice"); 2454 branch_table[ftos] = __ pc(); // non-volatile_entry point 2455 __ lfsx(F15_ftos, Rclass_or_obj, Roffset); 2456 __ push(ftos); 2457 if (!is_static) { patch_bytecode(Bytecodes::_fast_fgetfield, Rbc, Rscratch); } 2458 { 2459 Label acquire_float; 2460 __ beq(CCR6, acquire_float); // Volatile? 2461 __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode())); 2462 2463 __ bind(acquire_float); 2464 __ fcmpu(CCR0, F15_ftos, F15_ftos); // Acquire by cmp-br-isync. 2465 __ beq_predict_taken(CCR0, Lisync); 2466 __ b(Lisync); // In case of NAN. 2467 } 2468 2469 __ align(32, 28, 28); // Align load. 2470 // __ bind(Litos); 2471 __ fence(); // Volatile entry point (one instruction before non-volatile_entry point). 2472 assert(branch_table[itos] == 0, "can't compute twice"); 2473 branch_table[itos] = __ pc(); // non-volatile_entry point 2474 __ lwax(R17_tos, Rclass_or_obj, Roffset); 2475 __ push(itos); 2476 if (!is_static) patch_bytecode(Bytecodes::_fast_igetfield, Rbc, Rscratch); 2477 __ beq(CCR6, Lacquire); // Volatile? 2478 __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode())); 2479 2480 __ align(32, 28, 28); // Align load. 2481 // __ bind(Lltos); 2482 __ fence(); // Volatile entry point (one instruction before non-volatile_entry point). 2483 assert(branch_table[ltos] == 0, "can't compute twice"); 2484 branch_table[ltos] = __ pc(); // non-volatile_entry point 2485 __ ldx(R17_tos, Rclass_or_obj, Roffset); 2486 __ push(ltos); 2487 if (!is_static) patch_bytecode(Bytecodes::_fast_lgetfield, Rbc, Rscratch); 2488 __ beq(CCR6, Lacquire); // Volatile? 2489 __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode())); 2490 2491 __ align(32, 28, 28); // Align load. 2492 // __ bind(Lbtos); 2493 __ fence(); // Volatile entry point (one instruction before non-volatile_entry point). 2494 assert(branch_table[btos] == 0, "can't compute twice"); 2495 branch_table[btos] = __ pc(); // non-volatile_entry point 2496 __ lbzx(R17_tos, Rclass_or_obj, Roffset); 2497 __ extsb(R17_tos, R17_tos); 2498 __ push(btos); 2499 if (!is_static) patch_bytecode(Bytecodes::_fast_bgetfield, Rbc, Rscratch); 2500 __ beq(CCR6, Lacquire); // Volatile? 2501 __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode())); 2502 2503 __ align(32, 28, 28); // Align load. 2504 // __ bind(Lctos); 2505 __ fence(); // Volatile entry point (one instruction before non-volatile_entry point). 2506 assert(branch_table[ctos] == 0, "can't compute twice"); 2507 branch_table[ctos] = __ pc(); // non-volatile_entry point 2508 __ lhzx(R17_tos, Rclass_or_obj, Roffset); 2509 __ push(ctos); 2510 if (!is_static) patch_bytecode(Bytecodes::_fast_cgetfield, Rbc, Rscratch); 2511 __ beq(CCR6, Lacquire); // Volatile? 2512 __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode())); 2513 2514 __ align(32, 28, 28); // Align load. 2515 // __ bind(Lstos); 2516 __ fence(); // Volatile entry point (one instruction before non-volatile_entry point). 2517 assert(branch_table[stos] == 0, "can't compute twice"); 2518 branch_table[stos] = __ pc(); // non-volatile_entry point 2519 __ lhax(R17_tos, Rclass_or_obj, Roffset); 2520 __ push(stos); 2521 if (!is_static) patch_bytecode(Bytecodes::_fast_sgetfield, Rbc, Rscratch); 2522 __ beq(CCR6, Lacquire); // Volatile? 2523 __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode())); 2524 2525 __ align(32, 28, 28); // Align load. 2526 // __ bind(Latos); 2527 __ fence(); // Volatile entry point (one instruction before non-volatile_entry point). 2528 assert(branch_table[atos] == 0, "can't compute twice"); 2529 branch_table[atos] = __ pc(); // non-volatile_entry point 2530 __ load_heap_oop(R17_tos, (RegisterOrConstant)Roffset, Rclass_or_obj); 2531 __ verify_oop(R17_tos); 2532 __ push(atos); 2533 //__ dcbt(R17_tos); // prefetch 2534 if (!is_static) patch_bytecode(Bytecodes::_fast_agetfield, Rbc, Rscratch); 2535 __ beq(CCR6, Lacquire); // Volatile? 2536 __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode())); 2537 2538 __ align(32, 12); 2539 __ bind(Lacquire); 2540 __ twi_0(R17_tos); 2541 __ bind(Lisync); 2542 __ isync(); // acquire 2543 2544 #ifdef ASSERT 2545 for (int i = 0; i<number_of_states; ++i) { 2546 assert(branch_table[i], "get initialization"); 2547 //tty->print_cr("get: %s_branch_table[%d] = 0x%llx (opcode 0x%llx)", 2548 // is_static ? "static" : "field", i, branch_table[i], *((unsigned int*)branch_table[i])); 2549 } 2550 #endif 2551 } 2552 2553 void TemplateTable::getfield(int byte_no) { 2554 getfield_or_static(byte_no, false); 2555 } 2556 2557 void TemplateTable::getstatic(int byte_no) { 2558 getfield_or_static(byte_no, true); 2559 } 2560 2561 // The registers cache and index expected to be set before call. 2562 // The function may destroy various registers, just not the cache and index registers. 2563 void TemplateTable::jvmti_post_field_mod(Register Rcache, Register Rscratch, bool is_static) { 2564 2565 assert_different_registers(Rcache, Rscratch, R6_ARG4); 2566 2567 if (JvmtiExport::can_post_field_modification()) { 2568 Label Lno_field_mod_post; 2569 2570 // Check if post field access in enabled. 2571 int offs = __ load_const_optimized(Rscratch, JvmtiExport::get_field_modification_count_addr(), R0, true); 2572 __ lwz(Rscratch, offs, Rscratch); 2573 2574 __ cmpwi(CCR0, Rscratch, 0); 2575 __ beq(CCR0, Lno_field_mod_post); 2576 2577 // Do the post 2578 ByteSize cp_base_offset = ConstantPoolCache::base_offset(); 2579 const Register Robj = Rscratch; 2580 2581 __ addi(Rcache, Rcache, in_bytes(cp_base_offset)); 2582 if (is_static) { 2583 // Life is simple. Null out the object pointer. 2584 __ li(Robj, 0); 2585 } else { 2586 // In case of the fast versions, value lives in registers => put it back on tos. 2587 int offs = Interpreter::expr_offset_in_bytes(0); 2588 Register base = R15_esp; 2589 switch(bytecode()) { 2590 case Bytecodes::_fast_aputfield: __ push_ptr(); offs+= Interpreter::stackElementSize; break; 2591 case Bytecodes::_fast_iputfield: // Fall through 2592 case Bytecodes::_fast_bputfield: // Fall through 2593 case Bytecodes::_fast_cputfield: // Fall through 2594 case Bytecodes::_fast_sputfield: __ push_i(); offs+= Interpreter::stackElementSize; break; 2595 case Bytecodes::_fast_lputfield: __ push_l(); offs+=2*Interpreter::stackElementSize; break; 2596 case Bytecodes::_fast_fputfield: __ push_f(); offs+= Interpreter::stackElementSize; break; 2597 case Bytecodes::_fast_dputfield: __ push_d(); offs+=2*Interpreter::stackElementSize; break; 2598 default: { 2599 offs = 0; 2600 base = Robj; 2601 const Register Rflags = Robj; 2602 Label is_one_slot; 2603 // Life is harder. The stack holds the value on top, followed by the 2604 // object. We don't know the size of the value, though; it could be 2605 // one or two words depending on its type. As a result, we must find 2606 // the type to determine where the object is. 2607 __ ld(Rflags, in_bytes(ConstantPoolCacheEntry::flags_offset()), Rcache); // Big Endian 2608 __ rldicl(Rflags, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits); 2609 2610 __ cmpwi(CCR0, Rflags, ltos); 2611 __ cmpwi(CCR1, Rflags, dtos); 2612 __ addi(base, R15_esp, Interpreter::expr_offset_in_bytes(1)); 2613 __ crnor(CCR0, Assembler::equal, CCR1, Assembler::equal); 2614 __ beq(CCR0, is_one_slot); 2615 __ addi(base, R15_esp, Interpreter::expr_offset_in_bytes(2)); 2616 __ bind(is_one_slot); 2617 break; 2618 } 2619 } 2620 __ ld(Robj, offs, base); 2621 __ verify_oop(Robj); 2622 } 2623 2624 __ addi(R6_ARG4, R15_esp, Interpreter::expr_offset_in_bytes(0)); 2625 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), Robj, Rcache, R6_ARG4); 2626 __ get_cache_and_index_at_bcp(Rcache, 1); 2627 2628 // In case of the fast versions, value lives in registers => put it back on tos. 2629 switch(bytecode()) { 2630 case Bytecodes::_fast_aputfield: __ pop_ptr(); break; 2631 case Bytecodes::_fast_iputfield: // Fall through 2632 case Bytecodes::_fast_bputfield: // Fall through 2633 case Bytecodes::_fast_cputfield: // Fall through 2634 case Bytecodes::_fast_sputfield: __ pop_i(); break; 2635 case Bytecodes::_fast_lputfield: __ pop_l(); break; 2636 case Bytecodes::_fast_fputfield: __ pop_f(); break; 2637 case Bytecodes::_fast_dputfield: __ pop_d(); break; 2638 default: break; // Nothin' to do. 2639 } 2640 2641 __ align(32, 12); 2642 __ bind(Lno_field_mod_post); 2643 } 2644 } 2645 2646 // PPC64: implement volatile stores as release-store (return bytecode contains an additional release). 2647 void TemplateTable::putfield_or_static(int byte_no, bool is_static) { 2648 Label Lvolatile; 2649 2650 const Register Rcache = R5_ARG3, // Do not use ARG1/2 (causes trouble in jvmti_post_field_mod). 2651 Rclass_or_obj = R31, // Needs to survive C call. 2652 Roffset = R22_tmp2, // Needs to survive C call. 2653 Rflags = R3_ARG1, 2654 Rbtable = R4_ARG2, 2655 Rscratch = R11_scratch1, 2656 Rscratch2 = R12_scratch2, 2657 Rscratch3 = R6_ARG4, 2658 Rbc = Rscratch3; 2659 const ConditionRegister CR_is_vol = CCR2; // Non-volatile condition register (survives runtime call in do_oop_store). 2660 2661 static address field_branch_table[number_of_states], 2662 static_branch_table[number_of_states]; 2663 2664 address* branch_table = is_static ? static_branch_table : field_branch_table; 2665 2666 // Stack (grows up): 2667 // value 2668 // obj 2669 2670 // Load the field offset. 2671 resolve_cache_and_index(byte_no, Rcache, Rscratch, sizeof(u2)); 2672 jvmti_post_field_mod(Rcache, Rscratch, is_static); 2673 load_field_cp_cache_entry(Rclass_or_obj, Rcache, noreg, Roffset, Rflags, is_static); 2674 2675 // Load pointer to branch table. 2676 __ load_const_optimized(Rbtable, (address)branch_table, Rscratch); 2677 2678 // Get volatile flag. 2679 __ rldicl(Rscratch, Rflags, 64-ConstantPoolCacheEntry::is_volatile_shift, 63); // Extract volatile bit. 2680 2681 // Check the field type. 2682 __ rldicl(Rflags, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits); 2683 2684 #ifdef ASSERT 2685 Label LFlagInvalid; 2686 __ cmpldi(CCR0, Rflags, number_of_states); 2687 __ bge(CCR0, LFlagInvalid); 2688 #endif 2689 2690 // Load from branch table and dispatch (volatile case: one instruction ahead). 2691 __ sldi(Rflags, Rflags, LogBytesPerWord); 2692 if (!support_IRIW_for_not_multiple_copy_atomic_cpu) { __ cmpwi(CR_is_vol, Rscratch, 1); } // Volatile? 2693 __ sldi(Rscratch, Rscratch, exact_log2(BytesPerInstWord)); // Volatile? size of instruction 1 : 0. 2694 __ ldx(Rbtable, Rbtable, Rflags); 2695 2696 __ subf(Rbtable, Rscratch, Rbtable); // Point to volatile/non-volatile entry point. 2697 __ mtctr(Rbtable); 2698 __ bctr(); 2699 2700 #ifdef ASSERT 2701 __ bind(LFlagInvalid); 2702 __ stop("got invalid flag", 0x656); 2703 2704 // __ bind(Lvtos); 2705 address pc_before_release = __ pc(); 2706 __ release(); // Volatile entry point (one instruction before non-volatile_entry point). 2707 assert(__ pc() - pc_before_release == (ptrdiff_t)BytesPerInstWord, "must be single instruction"); 2708 assert(branch_table[vtos] == 0, "can't compute twice"); 2709 branch_table[vtos] = __ pc(); // non-volatile_entry point 2710 __ stop("vtos unexpected", 0x657); 2711 #endif 2712 2713 __ align(32, 28, 28); // Align pop. 2714 // __ bind(Ldtos); 2715 __ release(); // Volatile entry point (one instruction before non-volatile_entry point). 2716 assert(branch_table[dtos] == 0, "can't compute twice"); 2717 branch_table[dtos] = __ pc(); // non-volatile_entry point 2718 __ pop(dtos); 2719 if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1. 2720 __ stfdx(F15_ftos, Rclass_or_obj, Roffset); 2721 if (!is_static) { patch_bytecode(Bytecodes::_fast_dputfield, Rbc, Rscratch, true, byte_no); } 2722 if (!support_IRIW_for_not_multiple_copy_atomic_cpu) { 2723 __ beq(CR_is_vol, Lvolatile); // Volatile? 2724 } 2725 __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode())); 2726 2727 __ align(32, 28, 28); // Align pop. 2728 // __ bind(Lftos); 2729 __ release(); // Volatile entry point (one instruction before non-volatile_entry point). 2730 assert(branch_table[ftos] == 0, "can't compute twice"); 2731 branch_table[ftos] = __ pc(); // non-volatile_entry point 2732 __ pop(ftos); 2733 if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1. 2734 __ stfsx(F15_ftos, Rclass_or_obj, Roffset); 2735 if (!is_static) { patch_bytecode(Bytecodes::_fast_fputfield, Rbc, Rscratch, true, byte_no); } 2736 if (!support_IRIW_for_not_multiple_copy_atomic_cpu) { 2737 __ beq(CR_is_vol, Lvolatile); // Volatile? 2738 } 2739 __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode())); 2740 2741 __ align(32, 28, 28); // Align pop. 2742 // __ bind(Litos); 2743 __ release(); // Volatile entry point (one instruction before non-volatile_entry point). 2744 assert(branch_table[itos] == 0, "can't compute twice"); 2745 branch_table[itos] = __ pc(); // non-volatile_entry point 2746 __ pop(itos); 2747 if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1. 2748 __ stwx(R17_tos, Rclass_or_obj, Roffset); 2749 if (!is_static) { patch_bytecode(Bytecodes::_fast_iputfield, Rbc, Rscratch, true, byte_no); } 2750 if (!support_IRIW_for_not_multiple_copy_atomic_cpu) { 2751 __ beq(CR_is_vol, Lvolatile); // Volatile? 2752 } 2753 __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode())); 2754 2755 __ align(32, 28, 28); // Align pop. 2756 // __ bind(Lltos); 2757 __ release(); // Volatile entry point (one instruction before non-volatile_entry point). 2758 assert(branch_table[ltos] == 0, "can't compute twice"); 2759 branch_table[ltos] = __ pc(); // non-volatile_entry point 2760 __ pop(ltos); 2761 if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1. 2762 __ stdx(R17_tos, Rclass_or_obj, Roffset); 2763 if (!is_static) { patch_bytecode(Bytecodes::_fast_lputfield, Rbc, Rscratch, true, byte_no); } 2764 if (!support_IRIW_for_not_multiple_copy_atomic_cpu) { 2765 __ beq(CR_is_vol, Lvolatile); // Volatile? 2766 } 2767 __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode())); 2768 2769 __ align(32, 28, 28); // Align pop. 2770 // __ bind(Lbtos); 2771 __ release(); // Volatile entry point (one instruction before non-volatile_entry point). 2772 assert(branch_table[btos] == 0, "can't compute twice"); 2773 branch_table[btos] = __ pc(); // non-volatile_entry point 2774 __ pop(btos); 2775 if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1. 2776 __ stbx(R17_tos, Rclass_or_obj, Roffset); 2777 if (!is_static) { patch_bytecode(Bytecodes::_fast_bputfield, Rbc, Rscratch, true, byte_no); } 2778 if (!support_IRIW_for_not_multiple_copy_atomic_cpu) { 2779 __ beq(CR_is_vol, Lvolatile); // Volatile? 2780 } 2781 __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode())); 2782 2783 __ align(32, 28, 28); // Align pop. 2784 // __ bind(Lctos); 2785 __ release(); // Volatile entry point (one instruction before non-volatile_entry point). 2786 assert(branch_table[ctos] == 0, "can't compute twice"); 2787 branch_table[ctos] = __ pc(); // non-volatile_entry point 2788 __ pop(ctos); 2789 if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1.. 2790 __ sthx(R17_tos, Rclass_or_obj, Roffset); 2791 if (!is_static) { patch_bytecode(Bytecodes::_fast_cputfield, Rbc, Rscratch, true, byte_no); } 2792 if (!support_IRIW_for_not_multiple_copy_atomic_cpu) { 2793 __ beq(CR_is_vol, Lvolatile); // Volatile? 2794 } 2795 __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode())); 2796 2797 __ align(32, 28, 28); // Align pop. 2798 // __ bind(Lstos); 2799 __ release(); // Volatile entry point (one instruction before non-volatile_entry point). 2800 assert(branch_table[stos] == 0, "can't compute twice"); 2801 branch_table[stos] = __ pc(); // non-volatile_entry point 2802 __ pop(stos); 2803 if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1. 2804 __ sthx(R17_tos, Rclass_or_obj, Roffset); 2805 if (!is_static) { patch_bytecode(Bytecodes::_fast_sputfield, Rbc, Rscratch, true, byte_no); } 2806 if (!support_IRIW_for_not_multiple_copy_atomic_cpu) { 2807 __ beq(CR_is_vol, Lvolatile); // Volatile? 2808 } 2809 __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode())); 2810 2811 __ align(32, 28, 28); // Align pop. 2812 // __ bind(Latos); 2813 __ release(); // Volatile entry point (one instruction before non-volatile_entry point). 2814 assert(branch_table[atos] == 0, "can't compute twice"); 2815 branch_table[atos] = __ pc(); // non-volatile_entry point 2816 __ pop(atos); 2817 if (!is_static) { pop_and_check_object(Rclass_or_obj); } // kills R11_scratch1 2818 do_oop_store(_masm, Rclass_or_obj, Roffset, R17_tos, Rscratch, Rscratch2, Rscratch3, _bs->kind(), false /* precise */, true /* check null */); 2819 if (!is_static) { patch_bytecode(Bytecodes::_fast_aputfield, Rbc, Rscratch, true, byte_no); } 2820 if (!support_IRIW_for_not_multiple_copy_atomic_cpu) { 2821 __ beq(CR_is_vol, Lvolatile); // Volatile? 2822 __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode())); 2823 2824 __ align(32, 12); 2825 __ bind(Lvolatile); 2826 __ fence(); 2827 } 2828 // fallthru: __ b(Lexit); 2829 2830 #ifdef ASSERT 2831 for (int i = 0; i<number_of_states; ++i) { 2832 assert(branch_table[i], "put initialization"); 2833 //tty->print_cr("put: %s_branch_table[%d] = 0x%llx (opcode 0x%llx)", 2834 // is_static ? "static" : "field", i, branch_table[i], *((unsigned int*)branch_table[i])); 2835 } 2836 #endif 2837 } 2838 2839 void TemplateTable::putfield(int byte_no) { 2840 putfield_or_static(byte_no, false); 2841 } 2842 2843 void TemplateTable::putstatic(int byte_no) { 2844 putfield_or_static(byte_no, true); 2845 } 2846 2847 // See SPARC. On PPC64, we have a different jvmti_post_field_mod which does the job. 2848 void TemplateTable::jvmti_post_fast_field_mod() { 2849 __ should_not_reach_here(); 2850 } 2851 2852 void TemplateTable::fast_storefield(TosState state) { 2853 transition(state, vtos); 2854 2855 const Register Rcache = R5_ARG3, // Do not use ARG1/2 (causes trouble in jvmti_post_field_mod). 2856 Rclass_or_obj = R31, // Needs to survive C call. 2857 Roffset = R22_tmp2, // Needs to survive C call. 2858 Rflags = R3_ARG1, 2859 Rscratch = R11_scratch1, 2860 Rscratch2 = R12_scratch2, 2861 Rscratch3 = R4_ARG2; 2862 const ConditionRegister CR_is_vol = CCR2; // Non-volatile condition register (survives runtime call in do_oop_store). 2863 2864 // Constant pool already resolved => Load flags and offset of field. 2865 __ get_cache_and_index_at_bcp(Rcache, 1); 2866 jvmti_post_field_mod(Rcache, Rscratch, false /* not static */); 2867 load_field_cp_cache_entry(noreg, Rcache, noreg, Roffset, Rflags, false); 2868 2869 // Get the obj and the final store addr. 2870 pop_and_check_object(Rclass_or_obj); // Kills R11_scratch1. 2871 2872 // Get volatile flag. 2873 __ rldicl_(Rscratch, Rflags, 64-ConstantPoolCacheEntry::is_volatile_shift, 63); // Extract volatile bit. 2874 if (!support_IRIW_for_not_multiple_copy_atomic_cpu) { __ cmpdi(CR_is_vol, Rscratch, 1); } 2875 { 2876 Label LnotVolatile; 2877 __ beq(CCR0, LnotVolatile); 2878 __ release(); 2879 __ align(32, 12); 2880 __ bind(LnotVolatile); 2881 } 2882 2883 // Do the store and fencing. 2884 switch(bytecode()) { 2885 case Bytecodes::_fast_aputfield: 2886 // Store into the field. 2887 do_oop_store(_masm, Rclass_or_obj, Roffset, R17_tos, Rscratch, Rscratch2, Rscratch3, _bs->kind(), false /* precise */, true /* check null */); 2888 break; 2889 2890 case Bytecodes::_fast_iputfield: 2891 __ stwx(R17_tos, Rclass_or_obj, Roffset); 2892 break; 2893 2894 case Bytecodes::_fast_lputfield: 2895 __ stdx(R17_tos, Rclass_or_obj, Roffset); 2896 break; 2897 2898 case Bytecodes::_fast_bputfield: 2899 __ stbx(R17_tos, Rclass_or_obj, Roffset); 2900 break; 2901 2902 case Bytecodes::_fast_cputfield: 2903 case Bytecodes::_fast_sputfield: 2904 __ sthx(R17_tos, Rclass_or_obj, Roffset); 2905 break; 2906 2907 case Bytecodes::_fast_fputfield: 2908 __ stfsx(F15_ftos, Rclass_or_obj, Roffset); 2909 break; 2910 2911 case Bytecodes::_fast_dputfield: 2912 __ stfdx(F15_ftos, Rclass_or_obj, Roffset); 2913 break; 2914 2915 default: ShouldNotReachHere(); 2916 } 2917 2918 if (!support_IRIW_for_not_multiple_copy_atomic_cpu) { 2919 Label LVolatile; 2920 __ beq(CR_is_vol, LVolatile); 2921 __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode())); 2922 2923 __ align(32, 12); 2924 __ bind(LVolatile); 2925 __ fence(); 2926 } 2927 } 2928 2929 void TemplateTable::fast_accessfield(TosState state) { 2930 transition(atos, state); 2931 2932 Label LisVolatile; 2933 ByteSize cp_base_offset = ConstantPoolCache::base_offset(); 2934 2935 const Register Rcache = R3_ARG1, 2936 Rclass_or_obj = R17_tos, 2937 Roffset = R22_tmp2, 2938 Rflags = R23_tmp3, 2939 Rscratch = R12_scratch2; 2940 2941 // Constant pool already resolved. Get the field offset. 2942 __ get_cache_and_index_at_bcp(Rcache, 1); 2943 load_field_cp_cache_entry(noreg, Rcache, noreg, Roffset, Rflags, false); 2944 2945 // JVMTI support 2946 jvmti_post_field_access(Rcache, Rscratch, false, true); 2947 2948 // Get the load address. 2949 __ null_check_throw(Rclass_or_obj, -1, Rscratch); 2950 2951 // Get volatile flag. 2952 __ rldicl_(Rscratch, Rflags, 64-ConstantPoolCacheEntry::is_volatile_shift, 63); // Extract volatile bit. 2953 __ bne(CCR0, LisVolatile); 2954 2955 switch(bytecode()) { 2956 case Bytecodes::_fast_agetfield: 2957 { 2958 __ load_heap_oop(R17_tos, (RegisterOrConstant)Roffset, Rclass_or_obj); 2959 __ verify_oop(R17_tos); 2960 __ dispatch_epilog(state, Bytecodes::length_for(bytecode())); 2961 2962 __ bind(LisVolatile); 2963 if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); } 2964 __ load_heap_oop(R17_tos, (RegisterOrConstant)Roffset, Rclass_or_obj); 2965 __ verify_oop(R17_tos); 2966 __ twi_0(R17_tos); 2967 __ isync(); 2968 break; 2969 } 2970 case Bytecodes::_fast_igetfield: 2971 { 2972 __ lwax(R17_tos, Rclass_or_obj, Roffset); 2973 __ dispatch_epilog(state, Bytecodes::length_for(bytecode())); 2974 2975 __ bind(LisVolatile); 2976 if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); } 2977 __ lwax(R17_tos, Rclass_or_obj, Roffset); 2978 __ twi_0(R17_tos); 2979 __ isync(); 2980 break; 2981 } 2982 case Bytecodes::_fast_lgetfield: 2983 { 2984 __ ldx(R17_tos, Rclass_or_obj, Roffset); 2985 __ dispatch_epilog(state, Bytecodes::length_for(bytecode())); 2986 2987 __ bind(LisVolatile); 2988 if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); } 2989 __ ldx(R17_tos, Rclass_or_obj, Roffset); 2990 __ twi_0(R17_tos); 2991 __ isync(); 2992 break; 2993 } 2994 case Bytecodes::_fast_bgetfield: 2995 { 2996 __ lbzx(R17_tos, Rclass_or_obj, Roffset); 2997 __ extsb(R17_tos, R17_tos); 2998 __ dispatch_epilog(state, Bytecodes::length_for(bytecode())); 2999 3000 __ bind(LisVolatile); 3001 if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); } 3002 __ lbzx(R17_tos, Rclass_or_obj, Roffset); 3003 __ twi_0(R17_tos); 3004 __ extsb(R17_tos, R17_tos); 3005 __ isync(); 3006 break; 3007 } 3008 case Bytecodes::_fast_cgetfield: 3009 { 3010 __ lhzx(R17_tos, Rclass_or_obj, Roffset); 3011 __ dispatch_epilog(state, Bytecodes::length_for(bytecode())); 3012 3013 __ bind(LisVolatile); 3014 if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); } 3015 __ lhzx(R17_tos, Rclass_or_obj, Roffset); 3016 __ twi_0(R17_tos); 3017 __ isync(); 3018 break; 3019 } 3020 case Bytecodes::_fast_sgetfield: 3021 { 3022 __ lhax(R17_tos, Rclass_or_obj, Roffset); 3023 __ dispatch_epilog(state, Bytecodes::length_for(bytecode())); 3024 3025 __ bind(LisVolatile); 3026 if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); } 3027 __ lhax(R17_tos, Rclass_or_obj, Roffset); 3028 __ twi_0(R17_tos); 3029 __ isync(); 3030 break; 3031 } 3032 case Bytecodes::_fast_fgetfield: 3033 { 3034 __ lfsx(F15_ftos, Rclass_or_obj, Roffset); 3035 __ dispatch_epilog(state, Bytecodes::length_for(bytecode())); 3036 3037 __ bind(LisVolatile); 3038 Label Ldummy; 3039 if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); } 3040 __ lfsx(F15_ftos, Rclass_or_obj, Roffset); 3041 __ fcmpu(CCR0, F15_ftos, F15_ftos); // Acquire by cmp-br-isync. 3042 __ bne_predict_not_taken(CCR0, Ldummy); 3043 __ bind(Ldummy); 3044 __ isync(); 3045 break; 3046 } 3047 case Bytecodes::_fast_dgetfield: 3048 { 3049 __ lfdx(F15_ftos, Rclass_or_obj, Roffset); 3050 __ dispatch_epilog(state, Bytecodes::length_for(bytecode())); 3051 3052 __ bind(LisVolatile); 3053 Label Ldummy; 3054 if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); } 3055 __ lfdx(F15_ftos, Rclass_or_obj, Roffset); 3056 __ fcmpu(CCR0, F15_ftos, F15_ftos); // Acquire by cmp-br-isync. 3057 __ bne_predict_not_taken(CCR0, Ldummy); 3058 __ bind(Ldummy); 3059 __ isync(); 3060 break; 3061 } 3062 default: ShouldNotReachHere(); 3063 } 3064 } 3065 3066 void TemplateTable::fast_xaccess(TosState state) { 3067 transition(vtos, state); 3068 3069 Label LisVolatile; 3070 ByteSize cp_base_offset = ConstantPoolCache::base_offset(); 3071 const Register Rcache = R3_ARG1, 3072 Rclass_or_obj = R17_tos, 3073 Roffset = R22_tmp2, 3074 Rflags = R23_tmp3, 3075 Rscratch = R12_scratch2; 3076 3077 __ ld(Rclass_or_obj, 0, R18_locals); 3078 3079 // Constant pool already resolved. Get the field offset. 3080 __ get_cache_and_index_at_bcp(Rcache, 2); 3081 load_field_cp_cache_entry(noreg, Rcache, noreg, Roffset, Rflags, false); 3082 3083 // JVMTI support not needed, since we switch back to single bytecode as soon as debugger attaches. 3084 3085 // Needed to report exception at the correct bcp. 3086 __ addi(R14_bcp, R14_bcp, 1); 3087 3088 // Get the load address. 3089 __ null_check_throw(Rclass_or_obj, -1, Rscratch); 3090 3091 // Get volatile flag. 3092 __ rldicl_(Rscratch, Rflags, 64-ConstantPoolCacheEntry::is_volatile_shift, 63); // Extract volatile bit. 3093 __ bne(CCR0, LisVolatile); 3094 3095 switch(state) { 3096 case atos: 3097 { 3098 __ load_heap_oop(R17_tos, (RegisterOrConstant)Roffset, Rclass_or_obj); 3099 __ verify_oop(R17_tos); 3100 __ dispatch_epilog(state, Bytecodes::length_for(bytecode()) - 1); // Undo bcp increment. 3101 3102 __ bind(LisVolatile); 3103 if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); } 3104 __ load_heap_oop(R17_tos, (RegisterOrConstant)Roffset, Rclass_or_obj); 3105 __ verify_oop(R17_tos); 3106 __ twi_0(R17_tos); 3107 __ isync(); 3108 break; 3109 } 3110 case itos: 3111 { 3112 __ lwax(R17_tos, Rclass_or_obj, Roffset); 3113 __ dispatch_epilog(state, Bytecodes::length_for(bytecode()) - 1); // Undo bcp increment. 3114 3115 __ bind(LisVolatile); 3116 if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); } 3117 __ lwax(R17_tos, Rclass_or_obj, Roffset); 3118 __ twi_0(R17_tos); 3119 __ isync(); 3120 break; 3121 } 3122 case ftos: 3123 { 3124 __ lfsx(F15_ftos, Rclass_or_obj, Roffset); 3125 __ dispatch_epilog(state, Bytecodes::length_for(bytecode()) - 1); // Undo bcp increment. 3126 3127 __ bind(LisVolatile); 3128 Label Ldummy; 3129 if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); } 3130 __ lfsx(F15_ftos, Rclass_or_obj, Roffset); 3131 __ fcmpu(CCR0, F15_ftos, F15_ftos); // Acquire by cmp-br-isync. 3132 __ bne_predict_not_taken(CCR0, Ldummy); 3133 __ bind(Ldummy); 3134 __ isync(); 3135 break; 3136 } 3137 default: ShouldNotReachHere(); 3138 } 3139 __ addi(R14_bcp, R14_bcp, -1); 3140 } 3141 3142 // ============================================================================ 3143 // Calls 3144 3145 // Common code for invoke 3146 // 3147 // Input: 3148 // - byte_no 3149 // 3150 // Output: 3151 // - Rmethod: The method to invoke next. 3152 // - Rret_addr: The return address to return to. 3153 // - Rindex: MethodType (invokehandle) or CallSite obj (invokedynamic) 3154 // - Rrecv: Cache for "this" pointer, might be noreg if static call. 3155 // - Rflags: Method flags from const pool cache. 3156 // 3157 // Kills: 3158 // - Rscratch1 3159 // 3160 void TemplateTable::prepare_invoke(int byte_no, 3161 Register Rmethod, // linked method (or i-klass) 3162 Register Rret_addr,// return address 3163 Register Rindex, // itable index, MethodType, etc. 3164 Register Rrecv, // If caller wants to see it. 3165 Register Rflags, // If caller wants to test it. 3166 Register Rscratch 3167 ) { 3168 // Determine flags. 3169 const Bytecodes::Code code = bytecode(); 3170 const bool is_invokeinterface = code == Bytecodes::_invokeinterface; 3171 const bool is_invokedynamic = code == Bytecodes::_invokedynamic; 3172 const bool is_invokehandle = code == Bytecodes::_invokehandle; 3173 const bool is_invokevirtual = code == Bytecodes::_invokevirtual; 3174 const bool is_invokespecial = code == Bytecodes::_invokespecial; 3175 const bool load_receiver = (Rrecv != noreg); 3176 assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), ""); 3177 3178 assert_different_registers(Rmethod, Rindex, Rflags, Rscratch); 3179 assert_different_registers(Rmethod, Rrecv, Rflags, Rscratch); 3180 assert_different_registers(Rret_addr, Rscratch); 3181 3182 load_invoke_cp_cache_entry(byte_no, Rmethod, Rindex, Rflags, is_invokevirtual, false, is_invokedynamic); 3183 3184 // Saving of SP done in call_from_interpreter. 3185 3186 // Maybe push "appendix" to arguments. 3187 if (is_invokedynamic || is_invokehandle) { 3188 Label Ldone; 3189 __ rldicl_(R0, Rflags, 64-ConstantPoolCacheEntry::has_appendix_shift, 63); 3190 __ beq(CCR0, Ldone); 3191 // Push "appendix" (MethodType, CallSite, etc.). 3192 // This must be done before we get the receiver, 3193 // since the parameter_size includes it. 3194 __ load_resolved_reference_at_index(Rscratch, Rindex); 3195 __ verify_oop(Rscratch); 3196 __ push_ptr(Rscratch); 3197 __ bind(Ldone); 3198 } 3199 3200 // Load receiver if needed (after appendix is pushed so parameter size is correct). 3201 if (load_receiver) { 3202 const Register Rparam_count = Rscratch; 3203 __ andi(Rparam_count, Rflags, ConstantPoolCacheEntry::parameter_size_mask); 3204 __ load_receiver(Rparam_count, Rrecv); 3205 __ verify_oop(Rrecv); 3206 } 3207 3208 // Get return address. 3209 { 3210 Register Rtable_addr = Rscratch; 3211 Register Rret_type = Rret_addr; 3212 address table_addr = (address) Interpreter::invoke_return_entry_table_for(code); 3213 3214 // Get return type. It's coded into the upper 4 bits of the lower half of the 64 bit value. 3215 __ rldicl(Rret_type, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits); 3216 __ load_dispatch_table(Rtable_addr, (address*)table_addr); 3217 __ sldi(Rret_type, Rret_type, LogBytesPerWord); 3218 // Get return address. 3219 __ ldx(Rret_addr, Rtable_addr, Rret_type); 3220 } 3221 } 3222 3223 // Helper for virtual calls. Load target out of vtable and jump off! 3224 // Kills all passed registers. 3225 void TemplateTable::generate_vtable_call(Register Rrecv_klass, Register Rindex, Register Rret, Register Rtemp) { 3226 3227 assert_different_registers(Rrecv_klass, Rtemp, Rret); 3228 const Register Rtarget_method = Rindex; 3229 3230 // Get target method & entry point. 3231 const int base = InstanceKlass::vtable_start_offset() * wordSize; 3232 // Calc vtable addr scale the vtable index by 8. 3233 __ sldi(Rindex, Rindex, exact_log2(vtableEntry::size() * wordSize)); 3234 // Load target. 3235 __ addi(Rrecv_klass, Rrecv_klass, base + vtableEntry::method_offset_in_bytes()); 3236 __ ldx(Rtarget_method, Rindex, Rrecv_klass); 3237 // Argument and return type profiling. 3238 __ profile_arguments_type(Rtarget_method, Rrecv_klass /* scratch1 */, Rtemp /* scratch2 */, true); 3239 __ call_from_interpreter(Rtarget_method, Rret, Rrecv_klass /* scratch1 */, Rtemp /* scratch2 */); 3240 } 3241 3242 // Virtual or final call. Final calls are rewritten on the fly to run through "fast_finalcall" next time. 3243 void TemplateTable::invokevirtual(int byte_no) { 3244 transition(vtos, vtos); 3245 3246 Register Rtable_addr = R11_scratch1, 3247 Rret_type = R12_scratch2, 3248 Rret_addr = R5_ARG3, 3249 Rflags = R22_tmp2, // Should survive C call. 3250 Rrecv = R3_ARG1, 3251 Rrecv_klass = Rrecv, 3252 Rvtableindex_or_method = R31, // Should survive C call. 3253 Rnum_params = R4_ARG2, 3254 Rnew_bc = R6_ARG4; 3255 3256 Label LnotFinal; 3257 3258 load_invoke_cp_cache_entry(byte_no, Rvtableindex_or_method, noreg, Rflags, /*virtual*/ true, false, false); 3259 3260 __ testbitdi(CCR0, R0, Rflags, ConstantPoolCacheEntry::is_vfinal_shift); 3261 __ bfalse(CCR0, LnotFinal); 3262 3263 patch_bytecode(Bytecodes::_fast_invokevfinal, Rnew_bc, R12_scratch2); 3264 invokevfinal_helper(Rvtableindex_or_method, Rflags, R11_scratch1, R12_scratch2); 3265 3266 __ align(32, 12); 3267 __ bind(LnotFinal); 3268 // Load "this" pointer (receiver). 3269 __ rldicl(Rnum_params, Rflags, 64, 48); 3270 __ load_receiver(Rnum_params, Rrecv); 3271 __ verify_oop(Rrecv); 3272 3273 // Get return type. It's coded into the upper 4 bits of the lower half of the 64 bit value. 3274 __ rldicl(Rret_type, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits); 3275 __ load_dispatch_table(Rtable_addr, Interpreter::invoke_return_entry_table()); 3276 __ sldi(Rret_type, Rret_type, LogBytesPerWord); 3277 __ ldx(Rret_addr, Rret_type, Rtable_addr); 3278 __ null_check_throw(Rrecv, oopDesc::klass_offset_in_bytes(), R11_scratch1); 3279 __ load_klass(Rrecv_klass, Rrecv); 3280 __ verify_klass_ptr(Rrecv_klass); 3281 __ profile_virtual_call(Rrecv_klass, R11_scratch1, R12_scratch2, false); 3282 3283 generate_vtable_call(Rrecv_klass, Rvtableindex_or_method, Rret_addr, R11_scratch1); 3284 } 3285 3286 void TemplateTable::fast_invokevfinal(int byte_no) { 3287 transition(vtos, vtos); 3288 3289 assert(byte_no == f2_byte, "use this argument"); 3290 Register Rflags = R22_tmp2, 3291 Rmethod = R31; 3292 load_invoke_cp_cache_entry(byte_no, Rmethod, noreg, Rflags, /*virtual*/ true, /*is_invokevfinal*/ true, false); 3293 invokevfinal_helper(Rmethod, Rflags, R11_scratch1, R12_scratch2); 3294 } 3295 3296 void TemplateTable::invokevfinal_helper(Register Rmethod, Register Rflags, Register Rscratch1, Register Rscratch2) { 3297 3298 assert_different_registers(Rmethod, Rflags, Rscratch1, Rscratch2); 3299 3300 // Load receiver from stack slot. 3301 Register Rrecv = Rscratch2; 3302 Register Rnum_params = Rrecv; 3303 3304 __ ld(Rnum_params, in_bytes(Method::const_offset()), Rmethod); 3305 __ lhz(Rnum_params /* number of params */, in_bytes(ConstMethod::size_of_parameters_offset()), Rnum_params); 3306 3307 // Get return address. 3308 Register Rtable_addr = Rscratch1, 3309 Rret_addr = Rflags, 3310 Rret_type = Rret_addr; 3311 // Get return type. It's coded into the upper 4 bits of the lower half of the 64 bit value. 3312 __ rldicl(Rret_type, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits); 3313 __ load_dispatch_table(Rtable_addr, Interpreter::invoke_return_entry_table()); 3314 __ sldi(Rret_type, Rret_type, LogBytesPerWord); 3315 __ ldx(Rret_addr, Rret_type, Rtable_addr); 3316 3317 // Load receiver and receiver NULL check. 3318 __ load_receiver(Rnum_params, Rrecv); 3319 __ null_check_throw(Rrecv, -1, Rscratch1); 3320 3321 __ profile_final_call(Rrecv, Rscratch1); 3322 // Argument and return type profiling. 3323 __ profile_arguments_type(Rmethod, Rscratch1, Rscratch2, true); 3324 3325 // Do the call. 3326 __ call_from_interpreter(Rmethod, Rret_addr, Rscratch1, Rscratch2); 3327 } 3328 3329 void TemplateTable::invokespecial(int byte_no) { 3330 assert(byte_no == f1_byte, "use this argument"); 3331 transition(vtos, vtos); 3332 3333 Register Rtable_addr = R3_ARG1, 3334 Rret_addr = R4_ARG2, 3335 Rflags = R5_ARG3, 3336 Rreceiver = R6_ARG4, 3337 Rmethod = R31; 3338 3339 prepare_invoke(byte_no, Rmethod, Rret_addr, noreg, Rreceiver, Rflags, R11_scratch1); 3340 3341 // Receiver NULL check. 3342 __ null_check_throw(Rreceiver, -1, R11_scratch1); 3343 3344 __ profile_call(R11_scratch1, R12_scratch2); 3345 // Argument and return type profiling. 3346 __ profile_arguments_type(Rmethod, R11_scratch1, R12_scratch2, false); 3347 __ call_from_interpreter(Rmethod, Rret_addr, R11_scratch1, R12_scratch2); 3348 } 3349 3350 void TemplateTable::invokestatic(int byte_no) { 3351 assert(byte_no == f1_byte, "use this argument"); 3352 transition(vtos, vtos); 3353 3354 Register Rtable_addr = R3_ARG1, 3355 Rret_addr = R4_ARG2, 3356 Rflags = R5_ARG3; 3357 3358 prepare_invoke(byte_no, R19_method, Rret_addr, noreg, noreg, Rflags, R11_scratch1); 3359 3360 __ profile_call(R11_scratch1, R12_scratch2); 3361 // Argument and return type profiling. 3362 __ profile_arguments_type(R19_method, R11_scratch1, R12_scratch2, false); 3363 __ call_from_interpreter(R19_method, Rret_addr, R11_scratch1, R12_scratch2); 3364 } 3365 3366 void TemplateTable::invokeinterface_object_method(Register Rrecv_klass, 3367 Register Rret, 3368 Register Rflags, 3369 Register Rindex, 3370 Register Rtemp1, 3371 Register Rtemp2) { 3372 3373 assert_different_registers(Rindex, Rret, Rrecv_klass, Rflags, Rtemp1, Rtemp2); 3374 Label LnotFinal; 3375 3376 // Check for vfinal. 3377 __ testbitdi(CCR0, R0, Rflags, ConstantPoolCacheEntry::is_vfinal_shift); 3378 __ bfalse(CCR0, LnotFinal); 3379 3380 Register Rscratch = Rflags; // Rflags is dead now. 3381 3382 // Final call case. 3383 __ profile_final_call(Rtemp1, Rscratch); 3384 // Argument and return type profiling. 3385 __ profile_arguments_type(Rindex, Rscratch, Rrecv_klass /* scratch */, true); 3386 // Do the final call - the index (f2) contains the method. 3387 __ call_from_interpreter(Rindex, Rret, Rscratch, Rrecv_klass /* scratch */); 3388 3389 // Non-final callc case. 3390 __ bind(LnotFinal); 3391 __ profile_virtual_call(Rrecv_klass, Rtemp1, Rscratch, false); 3392 generate_vtable_call(Rrecv_klass, Rindex, Rret, Rscratch); 3393 } 3394 3395 void TemplateTable::invokeinterface(int byte_no) { 3396 assert(byte_no == f1_byte, "use this argument"); 3397 transition(vtos, vtos); 3398 3399 const Register Rscratch1 = R11_scratch1, 3400 Rscratch2 = R12_scratch2, 3401 Rscratch3 = R9_ARG7, 3402 Rscratch4 = R10_ARG8, 3403 Rtable_addr = Rscratch2, 3404 Rinterface_klass = R5_ARG3, 3405 Rret_type = R8_ARG6, 3406 Rret_addr = Rret_type, 3407 Rindex = R6_ARG4, 3408 Rreceiver = R4_ARG2, 3409 Rrecv_klass = Rreceiver, 3410 Rflags = R7_ARG5; 3411 3412 prepare_invoke(byte_no, Rinterface_klass, Rret_addr, Rindex, Rreceiver, Rflags, Rscratch1); 3413 3414 // Get receiver klass. 3415 __ null_check_throw(Rreceiver, oopDesc::klass_offset_in_bytes(), Rscratch3); 3416 __ load_klass(Rrecv_klass, Rreceiver); 3417 3418 // Check corner case object method. 3419 Label LobjectMethod; 3420 3421 __ testbitdi(CCR0, R0, Rflags, ConstantPoolCacheEntry::is_forced_virtual_shift); 3422 __ btrue(CCR0, LobjectMethod); 3423 3424 // Fallthrough: The normal invokeinterface case. 3425 __ profile_virtual_call(Rrecv_klass, Rscratch1, Rscratch2, false); 3426 3427 // Find entry point to call. 3428 Label Lthrow_icc, Lthrow_ame; 3429 // Result will be returned in Rindex. 3430 __ mr(Rscratch4, Rrecv_klass); 3431 __ mr(Rscratch3, Rindex); 3432 __ lookup_interface_method(Rrecv_klass, Rinterface_klass, Rindex, Rindex, Rscratch1, Rscratch2, Lthrow_icc); 3433 3434 __ cmpdi(CCR0, Rindex, 0); 3435 __ beq(CCR0, Lthrow_ame); 3436 // Found entry. Jump off! 3437 // Argument and return type profiling. 3438 __ profile_arguments_type(Rindex, Rscratch1, Rscratch2, true); 3439 __ call_from_interpreter(Rindex, Rret_addr, Rscratch1, Rscratch2); 3440 3441 // Vtable entry was NULL => Throw abstract method error. 3442 __ bind(Lthrow_ame); 3443 __ mr(Rrecv_klass, Rscratch4); 3444 __ mr(Rindex, Rscratch3); 3445 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError)); 3446 3447 // Interface was not found => Throw incompatible class change error. 3448 __ bind(Lthrow_icc); 3449 __ mr(Rrecv_klass, Rscratch4); 3450 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_IncompatibleClassChangeError)); 3451 3452 __ should_not_reach_here(); 3453 3454 // Special case of invokeinterface called for virtual method of 3455 // java.lang.Object. See ConstantPoolCacheEntry::set_method() for details: 3456 // The invokeinterface was rewritten to a invokevirtual, hence we have 3457 // to handle this corner case. This code isn't produced by javac, but could 3458 // be produced by another compliant java compiler. 3459 __ bind(LobjectMethod); 3460 invokeinterface_object_method(Rrecv_klass, Rret_addr, Rflags, Rindex, Rscratch1, Rscratch2); 3461 } 3462 3463 void TemplateTable::invokedynamic(int byte_no) { 3464 transition(vtos, vtos); 3465 3466 const Register Rret_addr = R3_ARG1, 3467 Rflags = R4_ARG2, 3468 Rmethod = R22_tmp2, 3469 Rscratch1 = R11_scratch1, 3470 Rscratch2 = R12_scratch2; 3471 3472 prepare_invoke(byte_no, Rmethod, Rret_addr, Rscratch1, noreg, Rflags, Rscratch2); 3473 3474 // Profile this call. 3475 __ profile_call(Rscratch1, Rscratch2); 3476 3477 // Off we go. With the new method handles, we don't jump to a method handle 3478 // entry any more. Instead, we pushed an "appendix" in prepare invoke, which happens 3479 // to be the callsite object the bootstrap method returned. This is passed to a 3480 // "link" method which does the dispatch (Most likely just grabs the MH stored 3481 // inside the callsite and does an invokehandle). 3482 // Argument and return type profiling. 3483 __ profile_arguments_type(Rmethod, Rscratch1, Rscratch2, false); 3484 __ call_from_interpreter(Rmethod, Rret_addr, Rscratch1 /* scratch1 */, Rscratch2 /* scratch2 */); 3485 } 3486 3487 void TemplateTable::invokehandle(int byte_no) { 3488 transition(vtos, vtos); 3489 3490 const Register Rret_addr = R3_ARG1, 3491 Rflags = R4_ARG2, 3492 Rrecv = R5_ARG3, 3493 Rmethod = R22_tmp2, 3494 Rscratch1 = R11_scratch1, 3495 Rscratch2 = R12_scratch2; 3496 3497 prepare_invoke(byte_no, Rmethod, Rret_addr, Rscratch1, Rrecv, Rflags, Rscratch2); 3498 __ verify_method_ptr(Rmethod); 3499 __ null_check_throw(Rrecv, -1, Rscratch2); 3500 3501 __ profile_final_call(Rrecv, Rscratch1); 3502 3503 // Still no call from handle => We call the method handle interpreter here. 3504 // Argument and return type profiling. 3505 __ profile_arguments_type(Rmethod, Rscratch1, Rscratch2, true); 3506 __ call_from_interpreter(Rmethod, Rret_addr, Rscratch1 /* scratch1 */, Rscratch2 /* scratch2 */); 3507 } 3508 3509 // ============================================================================= 3510 // Allocation 3511 3512 // Puts allocated obj ref onto the expression stack. 3513 void TemplateTable::_new() { 3514 transition(vtos, atos); 3515 3516 Label Lslow_case, 3517 Ldone, 3518 Linitialize_header, 3519 Lallocate_shared, 3520 Linitialize_object; // Including clearing the fields. 3521 3522 const Register RallocatedObject = R17_tos, 3523 RinstanceKlass = R9_ARG7, 3524 Rscratch = R11_scratch1, 3525 Roffset = R8_ARG6, 3526 Rinstance_size = Roffset, 3527 Rcpool = R4_ARG2, 3528 Rtags = R3_ARG1, 3529 Rindex = R5_ARG3; 3530 3531 const bool allow_shared_alloc = Universe::heap()->supports_inline_contig_alloc(); 3532 3533 // -------------------------------------------------------------------------- 3534 // Check if fast case is possible. 3535 3536 // Load pointers to const pool and const pool's tags array. 3537 __ get_cpool_and_tags(Rcpool, Rtags); 3538 // Load index of constant pool entry. 3539 __ get_2_byte_integer_at_bcp(1, Rindex, InterpreterMacroAssembler::Unsigned); 3540 3541 if (UseTLAB) { 3542 // Make sure the class we're about to instantiate has been resolved 3543 // This is done before loading instanceKlass to be consistent with the order 3544 // how Constant Pool is updated (see ConstantPoolCache::klass_at_put). 3545 __ addi(Rtags, Rtags, Array<u1>::base_offset_in_bytes()); 3546 __ lbzx(Rtags, Rindex, Rtags); 3547 3548 __ cmpdi(CCR0, Rtags, JVM_CONSTANT_Class); 3549 __ bne(CCR0, Lslow_case); 3550 3551 // Get instanceKlass (load from Rcpool + sizeof(ConstantPool) + Rindex*BytesPerWord). 3552 __ sldi(Roffset, Rindex, LogBytesPerWord); 3553 __ addi(Rscratch, Rcpool, sizeof(ConstantPool)); 3554 __ isync(); // Order load of instance Klass wrt. tags. 3555 __ ldx(RinstanceKlass, Roffset, Rscratch); 3556 3557 // Make sure klass is fully initialized and get instance_size. 3558 __ lbz(Rscratch, in_bytes(InstanceKlass::init_state_offset()), RinstanceKlass); 3559 __ lwz(Rinstance_size, in_bytes(Klass::layout_helper_offset()), RinstanceKlass); 3560 3561 __ cmpdi(CCR1, Rscratch, InstanceKlass::fully_initialized); 3562 // Make sure klass does not have has_finalizer, or is abstract, or interface or java/lang/Class. 3563 __ andi_(R0, Rinstance_size, Klass::_lh_instance_slow_path_bit); // slow path bit equals 0? 3564 3565 __ crnand(CCR0, Assembler::equal, CCR1, Assembler::equal); // slow path bit set or not fully initialized? 3566 __ beq(CCR0, Lslow_case); 3567 3568 // -------------------------------------------------------------------------- 3569 // Fast case: 3570 // Allocate the instance. 3571 // 1) Try to allocate in the TLAB. 3572 // 2) If fail, and the TLAB is not full enough to discard, allocate in the shared Eden. 3573 // 3) If the above fails (or is not applicable), go to a slow case (creates a new TLAB, etc.). 3574 3575 Register RoldTopValue = RallocatedObject; // Object will be allocated here if it fits. 3576 Register RnewTopValue = R6_ARG4; 3577 Register RendValue = R7_ARG5; 3578 3579 // Check if we can allocate in the TLAB. 3580 __ ld(RoldTopValue, in_bytes(JavaThread::tlab_top_offset()), R16_thread); 3581 __ ld(RendValue, in_bytes(JavaThread::tlab_end_offset()), R16_thread); 3582 3583 __ add(RnewTopValue, Rinstance_size, RoldTopValue); 3584 3585 // If there is enough space, we do not CAS and do not clear. 3586 __ cmpld(CCR0, RnewTopValue, RendValue); 3587 __ bgt(CCR0, allow_shared_alloc ? Lallocate_shared : Lslow_case); 3588 3589 __ std(RnewTopValue, in_bytes(JavaThread::tlab_top_offset()), R16_thread); 3590 3591 if (ZeroTLAB) { 3592 // The fields have already been cleared. 3593 __ b(Linitialize_header); 3594 } else { 3595 // Initialize both the header and fields. 3596 __ b(Linitialize_object); 3597 } 3598 3599 // Fall through: TLAB was too small. 3600 if (allow_shared_alloc) { 3601 Register RtlabWasteLimitValue = R10_ARG8; 3602 Register RfreeValue = RnewTopValue; 3603 3604 __ bind(Lallocate_shared); 3605 // Check if tlab should be discarded (refill_waste_limit >= free). 3606 __ ld(RtlabWasteLimitValue, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), R16_thread); 3607 __ subf(RfreeValue, RoldTopValue, RendValue); 3608 __ srdi(RfreeValue, RfreeValue, LogHeapWordSize); // in dwords 3609 __ cmpld(CCR0, RtlabWasteLimitValue, RfreeValue); 3610 __ bge(CCR0, Lslow_case); 3611 3612 // Increment waste limit to prevent getting stuck on this slow path. 3613 __ addi(RtlabWasteLimitValue, RtlabWasteLimitValue, (int)ThreadLocalAllocBuffer::refill_waste_limit_increment()); 3614 __ std(RtlabWasteLimitValue, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), R16_thread); 3615 } 3616 // else: No allocation in the shared eden. // fallthru: __ b(Lslow_case); 3617 } 3618 // else: Always go the slow path. 3619 3620 // -------------------------------------------------------------------------- 3621 // slow case 3622 __ bind(Lslow_case); 3623 call_VM(R17_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), Rcpool, Rindex); 3624 3625 if (UseTLAB) { 3626 __ b(Ldone); 3627 // -------------------------------------------------------------------------- 3628 // Init1: Zero out newly allocated memory. 3629 3630 if (!ZeroTLAB || allow_shared_alloc) { 3631 // Clear object fields. 3632 __ bind(Linitialize_object); 3633 3634 // Initialize remaining object fields. 3635 Register Rbase = Rtags; 3636 __ addi(Rinstance_size, Rinstance_size, 7 - (int)sizeof(oopDesc)); 3637 __ addi(Rbase, RallocatedObject, sizeof(oopDesc)); 3638 __ srdi(Rinstance_size, Rinstance_size, 3); 3639 3640 // Clear out object skipping header. Takes also care of the zero length case. 3641 __ clear_memory_doubleword(Rbase, Rinstance_size); 3642 // fallthru: __ b(Linitialize_header); 3643 } 3644 3645 // -------------------------------------------------------------------------- 3646 // Init2: Initialize the header: mark, klass 3647 __ bind(Linitialize_header); 3648 3649 // Init mark. 3650 if (UseBiasedLocking) { 3651 __ ld(Rscratch, in_bytes(Klass::prototype_header_offset()), RinstanceKlass); 3652 } else { 3653 __ load_const_optimized(Rscratch, markOopDesc::prototype(), R0); 3654 } 3655 __ std(Rscratch, oopDesc::mark_offset_in_bytes(), RallocatedObject); 3656 3657 // Init klass. 3658 __ store_klass_gap(RallocatedObject); 3659 __ store_klass(RallocatedObject, RinstanceKlass, Rscratch); // klass (last for cms) 3660 3661 // Check and trigger dtrace event. 3662 { 3663 SkipIfEqualZero skip_if(_masm, Rscratch, &DTraceAllocProbes); 3664 __ push(atos); 3665 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc)); 3666 __ pop(atos); 3667 } 3668 } 3669 3670 // continue 3671 __ bind(Ldone); 3672 3673 // Must prevent reordering of stores for object initialization with stores that publish the new object. 3674 __ membar(Assembler::StoreStore); 3675 } 3676 3677 void TemplateTable::newarray() { 3678 transition(itos, atos); 3679 3680 __ lbz(R4, 1, R14_bcp); 3681 __ extsw(R5, R17_tos); 3682 call_VM(R17_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), R4, R5 /* size */); 3683 3684 // Must prevent reordering of stores for object initialization with stores that publish the new object. 3685 __ membar(Assembler::StoreStore); 3686 } 3687 3688 void TemplateTable::anewarray() { 3689 transition(itos, atos); 3690 3691 __ get_constant_pool(R4); 3692 __ get_2_byte_integer_at_bcp(1, R5, InterpreterMacroAssembler::Unsigned); 3693 __ extsw(R6, R17_tos); // size 3694 call_VM(R17_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), R4 /* pool */, R5 /* index */, R6 /* size */); 3695 3696 // Must prevent reordering of stores for object initialization with stores that publish the new object. 3697 __ membar(Assembler::StoreStore); 3698 } 3699 3700 // Allocate a multi dimensional array 3701 void TemplateTable::multianewarray() { 3702 transition(vtos, atos); 3703 3704 Register Rptr = R31; // Needs to survive C call. 3705 3706 // Put ndims * wordSize into frame temp slot 3707 __ lbz(Rptr, 3, R14_bcp); 3708 __ sldi(Rptr, Rptr, Interpreter::logStackElementSize); 3709 // Esp points past last_dim, so set to R4 to first_dim address. 3710 __ add(R4, Rptr, R15_esp); 3711 call_VM(R17_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), R4 /* first_size_address */); 3712 // Pop all dimensions off the stack. 3713 __ add(R15_esp, Rptr, R15_esp); 3714 3715 // Must prevent reordering of stores for object initialization with stores that publish the new object. 3716 __ membar(Assembler::StoreStore); 3717 } 3718 3719 void TemplateTable::arraylength() { 3720 transition(atos, itos); 3721 3722 Label LnoException; 3723 __ verify_oop(R17_tos); 3724 __ null_check_throw(R17_tos, arrayOopDesc::length_offset_in_bytes(), R11_scratch1); 3725 __ lwa(R17_tos, arrayOopDesc::length_offset_in_bytes(), R17_tos); 3726 } 3727 3728 // ============================================================================ 3729 // Typechecks 3730 3731 void TemplateTable::checkcast() { 3732 transition(atos, atos); 3733 3734 Label Ldone, Lis_null, Lquicked, Lresolved; 3735 Register Roffset = R6_ARG4, 3736 RobjKlass = R4_ARG2, 3737 RspecifiedKlass = R5_ARG3, // Generate_ClassCastException_verbose_handler will read value from this register. 3738 Rcpool = R11_scratch1, 3739 Rtags = R12_scratch2; 3740 3741 // Null does not pass. 3742 __ cmpdi(CCR0, R17_tos, 0); 3743 __ beq(CCR0, Lis_null); 3744 3745 // Get constant pool tag to find out if the bytecode has already been "quickened". 3746 __ get_cpool_and_tags(Rcpool, Rtags); 3747 3748 __ get_2_byte_integer_at_bcp(1, Roffset, InterpreterMacroAssembler::Unsigned); 3749 3750 __ addi(Rtags, Rtags, Array<u1>::base_offset_in_bytes()); 3751 __ lbzx(Rtags, Rtags, Roffset); 3752 3753 __ cmpdi(CCR0, Rtags, JVM_CONSTANT_Class); 3754 __ beq(CCR0, Lquicked); 3755 3756 // Call into the VM to "quicken" instanceof. 3757 __ push_ptr(); // for GC 3758 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc)); 3759 __ get_vm_result_2(RspecifiedKlass); 3760 __ pop_ptr(); // Restore receiver. 3761 __ b(Lresolved); 3762 3763 // Extract target class from constant pool. 3764 __ bind(Lquicked); 3765 __ sldi(Roffset, Roffset, LogBytesPerWord); 3766 __ addi(Rcpool, Rcpool, sizeof(ConstantPool)); 3767 __ isync(); // Order load of specified Klass wrt. tags. 3768 __ ldx(RspecifiedKlass, Rcpool, Roffset); 3769 3770 // Do the checkcast. 3771 __ bind(Lresolved); 3772 // Get value klass in RobjKlass. 3773 __ load_klass(RobjKlass, R17_tos); 3774 // Generate a fast subtype check. Branch to cast_ok if no failure. Return 0 if failure. 3775 __ gen_subtype_check(RobjKlass, RspecifiedKlass, /*3 temp regs*/ Roffset, Rcpool, Rtags, /*target if subtype*/ Ldone); 3776 3777 // Not a subtype; so must throw exception 3778 // Target class oop is in register R6_ARG4 == RspecifiedKlass by convention. 3779 __ load_dispatch_table(R11_scratch1, (address*)Interpreter::_throw_ClassCastException_entry); 3780 __ mtctr(R11_scratch1); 3781 __ bctr(); 3782 3783 // Profile the null case. 3784 __ align(32, 12); 3785 __ bind(Lis_null); 3786 __ profile_null_seen(R11_scratch1, Rtags); // Rtags used as scratch. 3787 3788 __ align(32, 12); 3789 __ bind(Ldone); 3790 } 3791 3792 // Output: 3793 // - tos == 0: Obj was null or not an instance of class. 3794 // - tos == 1: Obj was an instance of class. 3795 void TemplateTable::instanceof() { 3796 transition(atos, itos); 3797 3798 Label Ldone, Lis_null, Lquicked, Lresolved; 3799 Register Roffset = R5_ARG3, 3800 RobjKlass = R4_ARG2, 3801 RspecifiedKlass = R6_ARG4, // Generate_ClassCastException_verbose_handler will expect the value in this register. 3802 Rcpool = R11_scratch1, 3803 Rtags = R12_scratch2; 3804 3805 // Null does not pass. 3806 __ cmpdi(CCR0, R17_tos, 0); 3807 __ beq(CCR0, Lis_null); 3808 3809 // Get constant pool tag to find out if the bytecode has already been "quickened". 3810 __ get_cpool_and_tags(Rcpool, Rtags); 3811 3812 __ get_2_byte_integer_at_bcp(1, Roffset, InterpreterMacroAssembler::Unsigned); 3813 3814 __ addi(Rtags, Rtags, Array<u1>::base_offset_in_bytes()); 3815 __ lbzx(Rtags, Rtags, Roffset); 3816 3817 __ cmpdi(CCR0, Rtags, JVM_CONSTANT_Class); 3818 __ beq(CCR0, Lquicked); 3819 3820 // Call into the VM to "quicken" instanceof. 3821 __ push_ptr(); // for GC 3822 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc)); 3823 __ get_vm_result_2(RspecifiedKlass); 3824 __ pop_ptr(); // Restore receiver. 3825 __ b(Lresolved); 3826 3827 // Extract target class from constant pool. 3828 __ bind(Lquicked); 3829 __ sldi(Roffset, Roffset, LogBytesPerWord); 3830 __ addi(Rcpool, Rcpool, sizeof(ConstantPool)); 3831 __ isync(); // Order load of specified Klass wrt. tags. 3832 __ ldx(RspecifiedKlass, Rcpool, Roffset); 3833 3834 // Do the checkcast. 3835 __ bind(Lresolved); 3836 // Get value klass in RobjKlass. 3837 __ load_klass(RobjKlass, R17_tos); 3838 // Generate a fast subtype check. Branch to cast_ok if no failure. Return 0 if failure. 3839 __ li(R17_tos, 1); 3840 __ gen_subtype_check(RobjKlass, RspecifiedKlass, /*3 temp regs*/ Roffset, Rcpool, Rtags, /*target if subtype*/ Ldone); 3841 __ li(R17_tos, 0); 3842 3843 if (ProfileInterpreter) { 3844 __ b(Ldone); 3845 } 3846 3847 // Profile the null case. 3848 __ align(32, 12); 3849 __ bind(Lis_null); 3850 __ profile_null_seen(Rcpool, Rtags); // Rcpool and Rtags used as scratch. 3851 3852 __ align(32, 12); 3853 __ bind(Ldone); 3854 } 3855 3856 // ============================================================================= 3857 // Breakpoints 3858 3859 void TemplateTable::_breakpoint() { 3860 transition(vtos, vtos); 3861 3862 // Get the unpatched byte code. 3863 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::get_original_bytecode_at), R19_method, R14_bcp); 3864 __ mr(R31, R3_RET); 3865 3866 // Post the breakpoint event. 3867 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), R19_method, R14_bcp); 3868 3869 // Complete the execution of original bytecode. 3870 __ dispatch_Lbyte_code(vtos, R31, Interpreter::normal_table(vtos)); 3871 } 3872 3873 // ============================================================================= 3874 // Exceptions 3875 3876 void TemplateTable::athrow() { 3877 transition(atos, vtos); 3878 3879 // Exception oop is in tos 3880 __ verify_oop(R17_tos); 3881 3882 __ null_check_throw(R17_tos, -1, R11_scratch1); 3883 3884 // Throw exception interpreter entry expects exception oop to be in R3. 3885 __ mr(R3_RET, R17_tos); 3886 __ load_dispatch_table(R11_scratch1, (address*)Interpreter::throw_exception_entry()); 3887 __ mtctr(R11_scratch1); 3888 __ bctr(); 3889 } 3890 3891 // ============================================================================= 3892 // Synchronization 3893 // Searches the basic object lock list on the stack for a free slot 3894 // and uses it to lock the obect in tos. 3895 // 3896 // Recursive locking is enabled by exiting the search if the same 3897 // object is already found in the list. Thus, a new basic lock obj lock 3898 // is allocated "higher up" in the stack and thus is found first 3899 // at next monitor exit. 3900 void TemplateTable::monitorenter() { 3901 transition(atos, vtos); 3902 3903 __ verify_oop(R17_tos); 3904 3905 Register Rcurrent_monitor = R11_scratch1, 3906 Rcurrent_obj = R12_scratch2, 3907 Robj_to_lock = R17_tos, 3908 Rscratch1 = R3_ARG1, 3909 Rscratch2 = R4_ARG2, 3910 Rscratch3 = R5_ARG3, 3911 Rcurrent_obj_addr = R6_ARG4; 3912 3913 // ------------------------------------------------------------------------------ 3914 // Null pointer exception. 3915 __ null_check_throw(Robj_to_lock, -1, R11_scratch1); 3916 3917 // Try to acquire a lock on the object. 3918 // Repeat until succeeded (i.e., until monitorenter returns true). 3919 3920 // ------------------------------------------------------------------------------ 3921 // Find a free slot in the monitor block. 3922 Label Lfound, Lexit, Lallocate_new; 3923 ConditionRegister found_free_slot = CCR0, 3924 found_same_obj = CCR1, 3925 reached_limit = CCR6; 3926 { 3927 Label Lloop, Lentry; 3928 Register Rlimit = Rcurrent_monitor; 3929 3930 // Set up search loop - start with topmost monitor. 3931 __ add(Rcurrent_obj_addr, BasicObjectLock::obj_offset_in_bytes(), R26_monitor); 3932 3933 __ ld(Rlimit, 0, R1_SP); 3934 __ addi(Rlimit, Rlimit, - (frame::ijava_state_size + frame::interpreter_frame_monitor_size_in_bytes() - BasicObjectLock::obj_offset_in_bytes())); // Monitor base 3935 3936 // Check if any slot is present => short cut to allocation if not. 3937 __ cmpld(reached_limit, Rcurrent_obj_addr, Rlimit); 3938 __ bgt(reached_limit, Lallocate_new); 3939 3940 // Pre-load topmost slot. 3941 __ ld(Rcurrent_obj, 0, Rcurrent_obj_addr); 3942 __ addi(Rcurrent_obj_addr, Rcurrent_obj_addr, frame::interpreter_frame_monitor_size() * wordSize); 3943 // The search loop. 3944 __ bind(Lloop); 3945 // Found free slot? 3946 __ cmpdi(found_free_slot, Rcurrent_obj, 0); 3947 // Is this entry for same obj? If so, stop the search and take the found 3948 // free slot or allocate a new one to enable recursive locking. 3949 __ cmpd(found_same_obj, Rcurrent_obj, Robj_to_lock); 3950 __ cmpld(reached_limit, Rcurrent_obj_addr, Rlimit); 3951 __ beq(found_free_slot, Lexit); 3952 __ beq(found_same_obj, Lallocate_new); 3953 __ bgt(reached_limit, Lallocate_new); 3954 // Check if last allocated BasicLockObj reached. 3955 __ ld(Rcurrent_obj, 0, Rcurrent_obj_addr); 3956 __ addi(Rcurrent_obj_addr, Rcurrent_obj_addr, frame::interpreter_frame_monitor_size() * wordSize); 3957 // Next iteration if unchecked BasicObjectLocks exist on the stack. 3958 __ b(Lloop); 3959 } 3960 3961 // ------------------------------------------------------------------------------ 3962 // Check if we found a free slot. 3963 __ bind(Lexit); 3964 3965 __ addi(Rcurrent_monitor, Rcurrent_obj_addr, -(frame::interpreter_frame_monitor_size() * wordSize) - BasicObjectLock::obj_offset_in_bytes()); 3966 __ addi(Rcurrent_obj_addr, Rcurrent_obj_addr, - frame::interpreter_frame_monitor_size() * wordSize); 3967 __ b(Lfound); 3968 3969 // We didn't find a free BasicObjLock => allocate one. 3970 __ align(32, 12); 3971 __ bind(Lallocate_new); 3972 __ add_monitor_to_stack(false, Rscratch1, Rscratch2); 3973 __ mr(Rcurrent_monitor, R26_monitor); 3974 __ addi(Rcurrent_obj_addr, R26_monitor, BasicObjectLock::obj_offset_in_bytes()); 3975 3976 // ------------------------------------------------------------------------------ 3977 // We now have a slot to lock. 3978 __ bind(Lfound); 3979 3980 // Increment bcp to point to the next bytecode, so exception handling for async. exceptions work correctly. 3981 // The object has already been poped from the stack, so the expression stack looks correct. 3982 __ addi(R14_bcp, R14_bcp, 1); 3983 3984 __ std(Robj_to_lock, 0, Rcurrent_obj_addr); 3985 __ lock_object(Rcurrent_monitor, Robj_to_lock); 3986 3987 // Check if there's enough space on the stack for the monitors after locking. 3988 Label Lskip_stack_check; 3989 // Optimization: If the monitors stack section is less then a std page size (4K) don't run 3990 // the stack check. There should be enough shadow pages to fit that in. 3991 __ ld(Rscratch3, 0, R1_SP); 3992 __ sub(Rscratch3, Rscratch3, R26_monitor); 3993 __ cmpdi(CCR0, Rscratch3, 4*K); 3994 __ blt(CCR0, Lskip_stack_check); 3995 3996 DEBUG_ONLY(__ untested("stack overflow check during monitor enter");) 3997 __ li(Rscratch1, 0); 3998 __ generate_stack_overflow_check_with_compare_and_throw(Rscratch1, Rscratch2); 3999 4000 __ align(32, 12); 4001 __ bind(Lskip_stack_check); 4002 4003 // The bcp has already been incremented. Just need to dispatch to next instruction. 4004 __ dispatch_next(vtos); 4005 } 4006 4007 void TemplateTable::monitorexit() { 4008 transition(atos, vtos); 4009 __ verify_oop(R17_tos); 4010 4011 Register Rcurrent_monitor = R11_scratch1, 4012 Rcurrent_obj = R12_scratch2, 4013 Robj_to_lock = R17_tos, 4014 Rcurrent_obj_addr = R3_ARG1, 4015 Rlimit = R4_ARG2; 4016 Label Lfound, Lillegal_monitor_state; 4017 4018 // Check corner case: unbalanced monitorEnter / Exit. 4019 __ ld(Rlimit, 0, R1_SP); 4020 __ addi(Rlimit, Rlimit, - (frame::ijava_state_size + frame::interpreter_frame_monitor_size_in_bytes())); // Monitor base 4021 4022 // Null pointer check. 4023 __ null_check_throw(Robj_to_lock, -1, R11_scratch1); 4024 4025 __ cmpld(CCR0, R26_monitor, Rlimit); 4026 __ bgt(CCR0, Lillegal_monitor_state); 4027 4028 // Find the corresponding slot in the monitors stack section. 4029 { 4030 Label Lloop; 4031 4032 // Start with topmost monitor. 4033 __ addi(Rcurrent_obj_addr, R26_monitor, BasicObjectLock::obj_offset_in_bytes()); 4034 __ addi(Rlimit, Rlimit, BasicObjectLock::obj_offset_in_bytes()); 4035 __ ld(Rcurrent_obj, 0, Rcurrent_obj_addr); 4036 __ addi(Rcurrent_obj_addr, Rcurrent_obj_addr, frame::interpreter_frame_monitor_size() * wordSize); 4037 4038 __ bind(Lloop); 4039 // Is this entry for same obj? 4040 __ cmpd(CCR0, Rcurrent_obj, Robj_to_lock); 4041 __ beq(CCR0, Lfound); 4042 4043 // Check if last allocated BasicLockObj reached. 4044 4045 __ ld(Rcurrent_obj, 0, Rcurrent_obj_addr); 4046 __ cmpld(CCR0, Rcurrent_obj_addr, Rlimit); 4047 __ addi(Rcurrent_obj_addr, Rcurrent_obj_addr, frame::interpreter_frame_monitor_size() * wordSize); 4048 4049 // Next iteration if unchecked BasicObjectLocks exist on the stack. 4050 __ ble(CCR0, Lloop); 4051 } 4052 4053 // Fell through without finding the basic obj lock => throw up! 4054 __ bind(Lillegal_monitor_state); 4055 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception)); 4056 __ should_not_reach_here(); 4057 4058 __ align(32, 12); 4059 __ bind(Lfound); 4060 __ addi(Rcurrent_monitor, Rcurrent_obj_addr, 4061 -(frame::interpreter_frame_monitor_size() * wordSize) - BasicObjectLock::obj_offset_in_bytes()); 4062 __ unlock_object(Rcurrent_monitor); 4063 } 4064 4065 // ============================================================================ 4066 // Wide bytecodes 4067 4068 // Wide instructions. Simply redirects to the wide entry point for that instruction. 4069 void TemplateTable::wide() { 4070 transition(vtos, vtos); 4071 4072 const Register Rtable = R11_scratch1, 4073 Rindex = R12_scratch2, 4074 Rtmp = R0; 4075 4076 __ lbz(Rindex, 1, R14_bcp); 4077 4078 __ load_dispatch_table(Rtable, Interpreter::_wentry_point); 4079 4080 __ slwi(Rindex, Rindex, LogBytesPerWord); 4081 __ ldx(Rtmp, Rtable, Rindex); 4082 __ mtctr(Rtmp); 4083 __ bctr(); 4084 // Note: the bcp increment step is part of the individual wide bytecode implementations. 4085 } 4086 #endif // !CC_INTERP --- EOF ---