1 /* 2 * Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved. 3 * Copyright 2013, 2015 SAP AG. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "precompiled.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "interpreter/interpreter.hpp" 29 #include "interpreter/interpreterRuntime.hpp" 30 #include "interpreter/interp_masm.hpp" 31 #include "interpreter/templateInterpreter.hpp" 32 #include "interpreter/templateTable.hpp" 33 #include "memory/universe.inline.hpp" 34 #include "oops/objArrayKlass.hpp" 35 #include "oops/oop.inline.hpp" 36 #include "prims/methodHandles.hpp" 37 #include "runtime/sharedRuntime.hpp" 38 #include "runtime/stubRoutines.hpp" 39 #include "runtime/synchronizer.hpp" 40 #include "utilities/macros.hpp" 41 42 #ifndef CC_INTERP 43 44 #undef __ 45 #define __ _masm-> 46 47 // ============================================================================ 48 // Misc helpers 49 50 // Do an oop store like *(base + index) = val OR *(base + offset) = val 51 // (only one of both variants is possible at the same time). 52 // Index can be noreg. 53 // Kills: 54 // Rbase, Rtmp 55 static void do_oop_store(InterpreterMacroAssembler* _masm, 56 Register Rbase, 57 RegisterOrConstant offset, 58 Register Rval, // Noreg means always null. 59 Register Rtmp1, 60 Register Rtmp2, 61 Register Rtmp3, 62 BarrierSet::Name barrier, 63 bool precise, 64 bool check_null) { 65 assert_different_registers(Rtmp1, Rtmp2, Rtmp3, Rval, Rbase); 66 67 switch (barrier) { 68 #if INCLUDE_ALL_GCS 69 case BarrierSet::G1SATBCT: 70 case BarrierSet::G1SATBCTLogging: 71 { 72 // Load and record the previous value. 73 __ g1_write_barrier_pre(Rbase, offset, 74 Rtmp3, /* holder of pre_val ? */ 75 Rtmp1, Rtmp2, false /* frame */); 76 77 Label Lnull, Ldone; 78 if (Rval != noreg) { 79 if (check_null) { 80 __ cmpdi(CCR0, Rval, 0); 81 __ beq(CCR0, Lnull); 82 } 83 __ store_heap_oop_not_null(Rval, offset, Rbase, /*Rval must stay uncompressed.*/ Rtmp1); 84 // Mark the card. 85 if (!(offset.is_constant() && offset.as_constant() == 0) && precise) { 86 __ add(Rbase, offset, Rbase); 87 } 88 __ g1_write_barrier_post(Rbase, Rval, Rtmp1, Rtmp2, Rtmp3, /*filtered (fast path)*/ &Ldone); 89 if (check_null) { __ b(Ldone); } 90 } 91 92 if (Rval == noreg || check_null) { // Store null oop. 93 Register Rnull = Rval; 94 __ bind(Lnull); 95 if (Rval == noreg) { 96 Rnull = Rtmp1; 97 __ li(Rnull, 0); 98 } 99 if (UseCompressedOops) { 100 __ stw(Rnull, offset, Rbase); 101 } else { 102 __ std(Rnull, offset, Rbase); 103 } 104 } 105 __ bind(Ldone); 106 } 107 break; 108 #endif // INCLUDE_ALL_GCS 109 case BarrierSet::CardTableModRef: 110 case BarrierSet::CardTableExtension: 111 { 112 Label Lnull, Ldone; 113 if (Rval != noreg) { 114 if (check_null) { 115 __ cmpdi(CCR0, Rval, 0); 116 __ beq(CCR0, Lnull); 117 } 118 __ store_heap_oop_not_null(Rval, offset, Rbase, /*Rval should better stay uncompressed.*/ Rtmp1); 119 // Mark the card. 120 if (!(offset.is_constant() && offset.as_constant() == 0) && precise) { 121 __ add(Rbase, offset, Rbase); 122 } 123 __ card_write_barrier_post(Rbase, Rval, Rtmp1); 124 if (check_null) { 125 __ b(Ldone); 126 } 127 } 128 129 if (Rval == noreg || check_null) { // Store null oop. 130 Register Rnull = Rval; 131 __ bind(Lnull); 132 if (Rval == noreg) { 133 Rnull = Rtmp1; 134 __ li(Rnull, 0); 135 } 136 if (UseCompressedOops) { 137 __ stw(Rnull, offset, Rbase); 138 } else { 139 __ std(Rnull, offset, Rbase); 140 } 141 } 142 __ bind(Ldone); 143 } 144 break; 145 case BarrierSet::ModRef: 146 case BarrierSet::Other: 147 ShouldNotReachHere(); 148 break; 149 default: 150 ShouldNotReachHere(); 151 } 152 } 153 154 // ============================================================================ 155 // Platform-dependent initialization 156 157 void TemplateTable::pd_initialize() { 158 // No ppc64 specific initialization. 159 } 160 161 Address TemplateTable::at_bcp(int offset) { 162 // Not used on ppc. 163 ShouldNotReachHere(); 164 return Address(); 165 } 166 167 // Patches the current bytecode (ptr to it located in bcp) 168 // in the bytecode stream with a new one. 169 void TemplateTable::patch_bytecode(Bytecodes::Code new_bc, Register Rnew_bc, Register Rtemp, bool load_bc_into_bc_reg /*=true*/, int byte_no) { 170 // With sharing on, may need to test method flag. 171 if (!RewriteBytecodes) return; 172 Label L_patch_done; 173 174 switch (new_bc) { 175 case Bytecodes::_fast_aputfield: 176 case Bytecodes::_fast_bputfield: 177 case Bytecodes::_fast_cputfield: 178 case Bytecodes::_fast_dputfield: 179 case Bytecodes::_fast_fputfield: 180 case Bytecodes::_fast_iputfield: 181 case Bytecodes::_fast_lputfield: 182 case Bytecodes::_fast_sputfield: 183 { 184 // We skip bytecode quickening for putfield instructions when 185 // the put_code written to the constant pool cache is zero. 186 // This is required so that every execution of this instruction 187 // calls out to InterpreterRuntime::resolve_get_put to do 188 // additional, required work. 189 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 190 assert(load_bc_into_bc_reg, "we use bc_reg as temp"); 191 __ get_cache_and_index_at_bcp(Rtemp /* dst = cache */, 1); 192 // ((*(cache+indices))>>((1+byte_no)*8))&0xFF: 193 #if defined(VM_LITTLE_ENDIAN) 194 __ lbz(Rnew_bc, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()) + 1 + byte_no, Rtemp); 195 #else 196 __ lbz(Rnew_bc, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()) + 7 - (1 + byte_no), Rtemp); 197 #endif 198 __ cmpwi(CCR0, Rnew_bc, 0); 199 __ li(Rnew_bc, (unsigned int)(unsigned char)new_bc); 200 __ beq(CCR0, L_patch_done); 201 // __ isync(); // acquire not needed 202 break; 203 } 204 205 default: 206 assert(byte_no == -1, "sanity"); 207 if (load_bc_into_bc_reg) { 208 __ li(Rnew_bc, (unsigned int)(unsigned char)new_bc); 209 } 210 } 211 212 if (JvmtiExport::can_post_breakpoint()) { 213 Label L_fast_patch; 214 __ lbz(Rtemp, 0, R14_bcp); 215 __ cmpwi(CCR0, Rtemp, (unsigned int)(unsigned char)Bytecodes::_breakpoint); 216 __ bne(CCR0, L_fast_patch); 217 // Perform the quickening, slowly, in the bowels of the breakpoint table. 218 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), R19_method, R14_bcp, Rnew_bc); 219 __ b(L_patch_done); 220 __ bind(L_fast_patch); 221 } 222 223 // Patch bytecode. 224 __ stb(Rnew_bc, 0, R14_bcp); 225 226 __ bind(L_patch_done); 227 } 228 229 // ============================================================================ 230 // Individual instructions 231 232 void TemplateTable::nop() { 233 transition(vtos, vtos); 234 // Nothing to do. 235 } 236 237 void TemplateTable::shouldnotreachhere() { 238 transition(vtos, vtos); 239 __ stop("shouldnotreachhere bytecode"); 240 } 241 242 void TemplateTable::aconst_null() { 243 transition(vtos, atos); 244 __ li(R17_tos, 0); 245 } 246 247 void TemplateTable::iconst(int value) { 248 transition(vtos, itos); 249 assert(value >= -1 && value <= 5, ""); 250 __ li(R17_tos, value); 251 } 252 253 void TemplateTable::lconst(int value) { 254 transition(vtos, ltos); 255 assert(value >= -1 && value <= 5, ""); 256 __ li(R17_tos, value); 257 } 258 259 void TemplateTable::fconst(int value) { 260 transition(vtos, ftos); 261 static float zero = 0.0; 262 static float one = 1.0; 263 static float two = 2.0; 264 switch (value) { 265 default: ShouldNotReachHere(); 266 case 0: { 267 int simm16_offset = __ load_const_optimized(R11_scratch1, (address*)&zero, R0, true); 268 __ lfs(F15_ftos, simm16_offset, R11_scratch1); 269 break; 270 } 271 case 1: { 272 int simm16_offset = __ load_const_optimized(R11_scratch1, (address*)&one, R0, true); 273 __ lfs(F15_ftos, simm16_offset, R11_scratch1); 274 break; 275 } 276 case 2: { 277 int simm16_offset = __ load_const_optimized(R11_scratch1, (address*)&two, R0, true); 278 __ lfs(F15_ftos, simm16_offset, R11_scratch1); 279 break; 280 } 281 } 282 } 283 284 void TemplateTable::dconst(int value) { 285 transition(vtos, dtos); 286 static double zero = 0.0; 287 static double one = 1.0; 288 switch (value) { 289 case 0: { 290 int simm16_offset = __ load_const_optimized(R11_scratch1, (address*)&zero, R0, true); 291 __ lfd(F15_ftos, simm16_offset, R11_scratch1); 292 break; 293 } 294 case 1: { 295 int simm16_offset = __ load_const_optimized(R11_scratch1, (address*)&one, R0, true); 296 __ lfd(F15_ftos, simm16_offset, R11_scratch1); 297 break; 298 } 299 default: ShouldNotReachHere(); 300 } 301 } 302 303 void TemplateTable::bipush() { 304 transition(vtos, itos); 305 __ lbz(R17_tos, 1, R14_bcp); 306 __ extsb(R17_tos, R17_tos); 307 } 308 309 void TemplateTable::sipush() { 310 transition(vtos, itos); 311 __ get_2_byte_integer_at_bcp(1, R17_tos, InterpreterMacroAssembler::Signed); 312 } 313 314 void TemplateTable::ldc(bool wide) { 315 Register Rscratch1 = R11_scratch1, 316 Rscratch2 = R12_scratch2, 317 Rcpool = R3_ARG1; 318 319 transition(vtos, vtos); 320 Label notInt, notClass, exit; 321 322 __ get_cpool_and_tags(Rcpool, Rscratch2); // Set Rscratch2 = &tags. 323 if (wide) { // Read index. 324 __ get_2_byte_integer_at_bcp(1, Rscratch1, InterpreterMacroAssembler::Unsigned); 325 } else { 326 __ lbz(Rscratch1, 1, R14_bcp); 327 } 328 329 const int base_offset = ConstantPool::header_size() * wordSize; 330 const int tags_offset = Array<u1>::base_offset_in_bytes(); 331 332 // Get type from tags. 333 __ addi(Rscratch2, Rscratch2, tags_offset); 334 __ lbzx(Rscratch2, Rscratch2, Rscratch1); 335 336 __ cmpwi(CCR0, Rscratch2, JVM_CONSTANT_UnresolvedClass); // Unresolved class? 337 __ cmpwi(CCR1, Rscratch2, JVM_CONSTANT_UnresolvedClassInError); // Unresolved class in error state? 338 __ cror(CCR0, Assembler::equal, CCR1, Assembler::equal); 339 340 // Resolved class - need to call vm to get java mirror of the class. 341 __ cmpwi(CCR1, Rscratch2, JVM_CONSTANT_Class); 342 __ crnor(CCR0, Assembler::equal, CCR1, Assembler::equal); // Neither resolved class nor unresolved case from above? 343 __ beq(CCR0, notClass); 344 345 __ li(R4, wide ? 1 : 0); 346 call_VM(R17_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), R4); 347 __ push(atos); 348 __ b(exit); 349 350 __ align(32, 12); 351 __ bind(notClass); 352 __ addi(Rcpool, Rcpool, base_offset); 353 __ sldi(Rscratch1, Rscratch1, LogBytesPerWord); 354 __ cmpdi(CCR0, Rscratch2, JVM_CONSTANT_Integer); 355 __ bne(CCR0, notInt); 356 __ lwax(R17_tos, Rcpool, Rscratch1); 357 __ push(itos); 358 __ b(exit); 359 360 __ align(32, 12); 361 __ bind(notInt); 362 #ifdef ASSERT 363 // String and Object are rewritten to fast_aldc 364 __ cmpdi(CCR0, Rscratch2, JVM_CONSTANT_Float); 365 __ asm_assert_eq("unexpected type", 0x8765); 366 #endif 367 __ lfsx(F15_ftos, Rcpool, Rscratch1); 368 __ push(ftos); 369 370 __ align(32, 12); 371 __ bind(exit); 372 } 373 374 // Fast path for caching oop constants. 375 void TemplateTable::fast_aldc(bool wide) { 376 transition(vtos, atos); 377 378 int index_size = wide ? sizeof(u2) : sizeof(u1); 379 const Register Rscratch = R11_scratch1; 380 Label resolved; 381 382 // We are resolved if the resolved reference cache entry contains a 383 // non-null object (CallSite, etc.) 384 __ get_cache_index_at_bcp(Rscratch, 1, index_size); // Load index. 385 __ load_resolved_reference_at_index(R17_tos, Rscratch); 386 __ cmpdi(CCR0, R17_tos, 0); 387 __ bne(CCR0, resolved); 388 __ load_const_optimized(R3_ARG1, (int)bytecode()); 389 390 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc); 391 392 // First time invocation - must resolve first. 393 __ call_VM(R17_tos, entry, R3_ARG1); 394 395 __ align(32, 12); 396 __ bind(resolved); 397 __ verify_oop(R17_tos); 398 } 399 400 void TemplateTable::ldc2_w() { 401 transition(vtos, vtos); 402 Label Llong, Lexit; 403 404 Register Rindex = R11_scratch1, 405 Rcpool = R12_scratch2, 406 Rtag = R3_ARG1; 407 __ get_cpool_and_tags(Rcpool, Rtag); 408 __ get_2_byte_integer_at_bcp(1, Rindex, InterpreterMacroAssembler::Unsigned); 409 410 const int base_offset = ConstantPool::header_size() * wordSize; 411 const int tags_offset = Array<u1>::base_offset_in_bytes(); 412 // Get type from tags. 413 __ addi(Rcpool, Rcpool, base_offset); 414 __ addi(Rtag, Rtag, tags_offset); 415 416 __ lbzx(Rtag, Rtag, Rindex); 417 418 __ sldi(Rindex, Rindex, LogBytesPerWord); 419 __ cmpdi(CCR0, Rtag, JVM_CONSTANT_Double); 420 __ bne(CCR0, Llong); 421 // A double can be placed at word-aligned locations in the constant pool. 422 // Check out Conversions.java for an example. 423 // Also ConstantPool::header_size() is 20, which makes it very difficult 424 // to double-align double on the constant pool. SG, 11/7/97 425 __ lfdx(F15_ftos, Rcpool, Rindex); 426 __ push(dtos); 427 __ b(Lexit); 428 429 __ bind(Llong); 430 __ ldx(R17_tos, Rcpool, Rindex); 431 __ push(ltos); 432 433 __ bind(Lexit); 434 } 435 436 // Get the locals index located in the bytecode stream at bcp + offset. 437 void TemplateTable::locals_index(Register Rdst, int offset) { 438 __ lbz(Rdst, offset, R14_bcp); 439 } 440 441 void TemplateTable::iload() { 442 transition(vtos, itos); 443 444 // Get the local value into tos 445 const Register Rindex = R22_tmp2; 446 locals_index(Rindex); 447 448 // Rewrite iload,iload pair into fast_iload2 449 // iload,caload pair into fast_icaload 450 if (RewriteFrequentPairs) { 451 Label Lrewrite, Ldone; 452 Register Rnext_byte = R3_ARG1, 453 Rrewrite_to = R6_ARG4, 454 Rscratch = R11_scratch1; 455 456 // get next byte 457 __ lbz(Rnext_byte, Bytecodes::length_for(Bytecodes::_iload), R14_bcp); 458 459 // if _iload, wait to rewrite to iload2. We only want to rewrite the 460 // last two iloads in a pair. Comparing against fast_iload means that 461 // the next bytecode is neither an iload or a caload, and therefore 462 // an iload pair. 463 __ cmpwi(CCR0, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_iload); 464 __ beq(CCR0, Ldone); 465 466 __ cmpwi(CCR1, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_fast_iload); 467 __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_iload2); 468 __ beq(CCR1, Lrewrite); 469 470 __ cmpwi(CCR0, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_caload); 471 __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_icaload); 472 __ beq(CCR0, Lrewrite); 473 474 __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_iload); 475 476 __ bind(Lrewrite); 477 patch_bytecode(Bytecodes::_iload, Rrewrite_to, Rscratch, false); 478 __ bind(Ldone); 479 } 480 481 __ load_local_int(R17_tos, Rindex, Rindex); 482 } 483 484 // Load 2 integers in a row without dispatching 485 void TemplateTable::fast_iload2() { 486 transition(vtos, itos); 487 488 __ lbz(R3_ARG1, 1, R14_bcp); 489 __ lbz(R17_tos, Bytecodes::length_for(Bytecodes::_iload) + 1, R14_bcp); 490 491 __ load_local_int(R3_ARG1, R11_scratch1, R3_ARG1); 492 __ load_local_int(R17_tos, R12_scratch2, R17_tos); 493 __ push_i(R3_ARG1); 494 } 495 496 void TemplateTable::fast_iload() { 497 transition(vtos, itos); 498 // Get the local value into tos 499 500 const Register Rindex = R11_scratch1; 501 locals_index(Rindex); 502 __ load_local_int(R17_tos, Rindex, Rindex); 503 } 504 505 // Load a local variable type long from locals area to TOS cache register. 506 // Local index resides in bytecodestream. 507 void TemplateTable::lload() { 508 transition(vtos, ltos); 509 510 const Register Rindex = R11_scratch1; 511 locals_index(Rindex); 512 __ load_local_long(R17_tos, Rindex, Rindex); 513 } 514 515 void TemplateTable::fload() { 516 transition(vtos, ftos); 517 518 const Register Rindex = R11_scratch1; 519 locals_index(Rindex); 520 __ load_local_float(F15_ftos, Rindex, Rindex); 521 } 522 523 void TemplateTable::dload() { 524 transition(vtos, dtos); 525 526 const Register Rindex = R11_scratch1; 527 locals_index(Rindex); 528 __ load_local_double(F15_ftos, Rindex, Rindex); 529 } 530 531 void TemplateTable::aload() { 532 transition(vtos, atos); 533 534 const Register Rindex = R11_scratch1; 535 locals_index(Rindex); 536 __ load_local_ptr(R17_tos, Rindex, Rindex); 537 } 538 539 void TemplateTable::locals_index_wide(Register Rdst) { 540 // Offset is 2, not 1, because Lbcp points to wide prefix code. 541 __ get_2_byte_integer_at_bcp(2, Rdst, InterpreterMacroAssembler::Unsigned); 542 } 543 544 void TemplateTable::wide_iload() { 545 // Get the local value into tos. 546 547 const Register Rindex = R11_scratch1; 548 locals_index_wide(Rindex); 549 __ load_local_int(R17_tos, Rindex, Rindex); 550 } 551 552 void TemplateTable::wide_lload() { 553 transition(vtos, ltos); 554 555 const Register Rindex = R11_scratch1; 556 locals_index_wide(Rindex); 557 __ load_local_long(R17_tos, Rindex, Rindex); 558 } 559 560 void TemplateTable::wide_fload() { 561 transition(vtos, ftos); 562 563 const Register Rindex = R11_scratch1; 564 locals_index_wide(Rindex); 565 __ load_local_float(F15_ftos, Rindex, Rindex); 566 } 567 568 void TemplateTable::wide_dload() { 569 transition(vtos, dtos); 570 571 const Register Rindex = R11_scratch1; 572 locals_index_wide(Rindex); 573 __ load_local_double(F15_ftos, Rindex, Rindex); 574 } 575 576 void TemplateTable::wide_aload() { 577 transition(vtos, atos); 578 579 const Register Rindex = R11_scratch1; 580 locals_index_wide(Rindex); 581 __ load_local_ptr(R17_tos, Rindex, Rindex); 582 } 583 584 void TemplateTable::iaload() { 585 transition(itos, itos); 586 587 const Register Rload_addr = R3_ARG1, 588 Rarray = R4_ARG2, 589 Rtemp = R5_ARG3; 590 __ index_check(Rarray, R17_tos /* index */, LogBytesPerInt, Rtemp, Rload_addr); 591 __ lwa(R17_tos, arrayOopDesc::base_offset_in_bytes(T_INT), Rload_addr); 592 } 593 594 void TemplateTable::laload() { 595 transition(itos, ltos); 596 597 const Register Rload_addr = R3_ARG1, 598 Rarray = R4_ARG2, 599 Rtemp = R5_ARG3; 600 __ index_check(Rarray, R17_tos /* index */, LogBytesPerLong, Rtemp, Rload_addr); 601 __ ld(R17_tos, arrayOopDesc::base_offset_in_bytes(T_LONG), Rload_addr); 602 } 603 604 void TemplateTable::faload() { 605 transition(itos, ftos); 606 607 const Register Rload_addr = R3_ARG1, 608 Rarray = R4_ARG2, 609 Rtemp = R5_ARG3; 610 __ index_check(Rarray, R17_tos /* index */, LogBytesPerInt, Rtemp, Rload_addr); 611 __ lfs(F15_ftos, arrayOopDesc::base_offset_in_bytes(T_FLOAT), Rload_addr); 612 } 613 614 void TemplateTable::daload() { 615 transition(itos, dtos); 616 617 const Register Rload_addr = R3_ARG1, 618 Rarray = R4_ARG2, 619 Rtemp = R5_ARG3; 620 __ index_check(Rarray, R17_tos /* index */, LogBytesPerLong, Rtemp, Rload_addr); 621 __ lfd(F15_ftos, arrayOopDesc::base_offset_in_bytes(T_DOUBLE), Rload_addr); 622 } 623 624 void TemplateTable::aaload() { 625 transition(itos, atos); 626 627 // tos: index 628 // result tos: array 629 const Register Rload_addr = R3_ARG1, 630 Rarray = R4_ARG2, 631 Rtemp = R5_ARG3; 632 __ index_check(Rarray, R17_tos /* index */, UseCompressedOops ? 2 : LogBytesPerWord, Rtemp, Rload_addr); 633 __ load_heap_oop(R17_tos, arrayOopDesc::base_offset_in_bytes(T_OBJECT), Rload_addr); 634 __ verify_oop(R17_tos); 635 //__ dcbt(R17_tos); // prefetch 636 } 637 638 void TemplateTable::baload() { 639 transition(itos, itos); 640 641 const Register Rload_addr = R3_ARG1, 642 Rarray = R4_ARG2, 643 Rtemp = R5_ARG3; 644 __ index_check(Rarray, R17_tos /* index */, 0, Rtemp, Rload_addr); 645 __ lbz(R17_tos, arrayOopDesc::base_offset_in_bytes(T_BYTE), Rload_addr); 646 __ extsb(R17_tos, R17_tos); 647 } 648 649 void TemplateTable::caload() { 650 transition(itos, itos); 651 652 const Register Rload_addr = R3_ARG1, 653 Rarray = R4_ARG2, 654 Rtemp = R5_ARG3; 655 __ index_check(Rarray, R17_tos /* index */, LogBytesPerShort, Rtemp, Rload_addr); 656 __ lhz(R17_tos, arrayOopDesc::base_offset_in_bytes(T_CHAR), Rload_addr); 657 } 658 659 // Iload followed by caload frequent pair. 660 void TemplateTable::fast_icaload() { 661 transition(vtos, itos); 662 663 const Register Rload_addr = R3_ARG1, 664 Rarray = R4_ARG2, 665 Rtemp = R11_scratch1; 666 667 locals_index(R17_tos); 668 __ load_local_int(R17_tos, Rtemp, R17_tos); 669 __ index_check(Rarray, R17_tos /* index */, LogBytesPerShort, Rtemp, Rload_addr); 670 __ lhz(R17_tos, arrayOopDesc::base_offset_in_bytes(T_CHAR), Rload_addr); 671 } 672 673 void TemplateTable::saload() { 674 transition(itos, itos); 675 676 const Register Rload_addr = R11_scratch1, 677 Rarray = R12_scratch2, 678 Rtemp = R3_ARG1; 679 __ index_check(Rarray, R17_tos /* index */, LogBytesPerShort, Rtemp, Rload_addr); 680 __ lha(R17_tos, arrayOopDesc::base_offset_in_bytes(T_SHORT), Rload_addr); 681 } 682 683 void TemplateTable::iload(int n) { 684 transition(vtos, itos); 685 686 __ lwz(R17_tos, Interpreter::local_offset_in_bytes(n), R18_locals); 687 } 688 689 void TemplateTable::lload(int n) { 690 transition(vtos, ltos); 691 692 __ ld(R17_tos, Interpreter::local_offset_in_bytes(n + 1), R18_locals); 693 } 694 695 void TemplateTable::fload(int n) { 696 transition(vtos, ftos); 697 698 __ lfs(F15_ftos, Interpreter::local_offset_in_bytes(n), R18_locals); 699 } 700 701 void TemplateTable::dload(int n) { 702 transition(vtos, dtos); 703 704 __ lfd(F15_ftos, Interpreter::local_offset_in_bytes(n + 1), R18_locals); 705 } 706 707 void TemplateTable::aload(int n) { 708 transition(vtos, atos); 709 710 __ ld(R17_tos, Interpreter::local_offset_in_bytes(n), R18_locals); 711 } 712 713 void TemplateTable::aload_0() { 714 transition(vtos, atos); 715 // According to bytecode histograms, the pairs: 716 // 717 // _aload_0, _fast_igetfield 718 // _aload_0, _fast_agetfield 719 // _aload_0, _fast_fgetfield 720 // 721 // occur frequently. If RewriteFrequentPairs is set, the (slow) 722 // _aload_0 bytecode checks if the next bytecode is either 723 // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then 724 // rewrites the current bytecode into a pair bytecode; otherwise it 725 // rewrites the current bytecode into _0 that doesn't do 726 // the pair check anymore. 727 // 728 // Note: If the next bytecode is _getfield, the rewrite must be 729 // delayed, otherwise we may miss an opportunity for a pair. 730 // 731 // Also rewrite frequent pairs 732 // aload_0, aload_1 733 // aload_0, iload_1 734 // These bytecodes with a small amount of code are most profitable 735 // to rewrite. 736 737 if (RewriteFrequentPairs) { 738 739 Label Lrewrite, Ldont_rewrite; 740 Register Rnext_byte = R3_ARG1, 741 Rrewrite_to = R6_ARG4, 742 Rscratch = R11_scratch1; 743 744 // Get next byte. 745 __ lbz(Rnext_byte, Bytecodes::length_for(Bytecodes::_aload_0), R14_bcp); 746 747 // If _getfield, wait to rewrite. We only want to rewrite the last two bytecodes in a pair. 748 __ cmpwi(CCR0, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_getfield); 749 __ beq(CCR0, Ldont_rewrite); 750 751 __ cmpwi(CCR1, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_fast_igetfield); 752 __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_iaccess_0); 753 __ beq(CCR1, Lrewrite); 754 755 __ cmpwi(CCR0, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_fast_agetfield); 756 __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_aaccess_0); 757 __ beq(CCR0, Lrewrite); 758 759 __ cmpwi(CCR1, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_fast_fgetfield); 760 __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_faccess_0); 761 __ beq(CCR1, Lrewrite); 762 763 __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_aload_0); 764 765 __ bind(Lrewrite); 766 patch_bytecode(Bytecodes::_aload_0, Rrewrite_to, Rscratch, false); 767 __ bind(Ldont_rewrite); 768 } 769 770 // Do actual aload_0 (must do this after patch_bytecode which might call VM and GC might change oop). 771 aload(0); 772 } 773 774 void TemplateTable::istore() { 775 transition(itos, vtos); 776 777 const Register Rindex = R11_scratch1; 778 locals_index(Rindex); 779 __ store_local_int(R17_tos, Rindex); 780 } 781 782 void TemplateTable::lstore() { 783 transition(ltos, vtos); 784 const Register Rindex = R11_scratch1; 785 locals_index(Rindex); 786 __ store_local_long(R17_tos, Rindex); 787 } 788 789 void TemplateTable::fstore() { 790 transition(ftos, vtos); 791 792 const Register Rindex = R11_scratch1; 793 locals_index(Rindex); 794 __ store_local_float(F15_ftos, Rindex); 795 } 796 797 void TemplateTable::dstore() { 798 transition(dtos, vtos); 799 800 const Register Rindex = R11_scratch1; 801 locals_index(Rindex); 802 __ store_local_double(F15_ftos, Rindex); 803 } 804 805 void TemplateTable::astore() { 806 transition(vtos, vtos); 807 808 const Register Rindex = R11_scratch1; 809 __ pop_ptr(); 810 __ verify_oop_or_return_address(R17_tos, Rindex); 811 locals_index(Rindex); 812 __ store_local_ptr(R17_tos, Rindex); 813 } 814 815 void TemplateTable::wide_istore() { 816 transition(vtos, vtos); 817 818 const Register Rindex = R11_scratch1; 819 __ pop_i(); 820 locals_index_wide(Rindex); 821 __ store_local_int(R17_tos, Rindex); 822 } 823 824 void TemplateTable::wide_lstore() { 825 transition(vtos, vtos); 826 827 const Register Rindex = R11_scratch1; 828 __ pop_l(); 829 locals_index_wide(Rindex); 830 __ store_local_long(R17_tos, Rindex); 831 } 832 833 void TemplateTable::wide_fstore() { 834 transition(vtos, vtos); 835 836 const Register Rindex = R11_scratch1; 837 __ pop_f(); 838 locals_index_wide(Rindex); 839 __ store_local_float(F15_ftos, Rindex); 840 } 841 842 void TemplateTable::wide_dstore() { 843 transition(vtos, vtos); 844 845 const Register Rindex = R11_scratch1; 846 __ pop_d(); 847 locals_index_wide(Rindex); 848 __ store_local_double(F15_ftos, Rindex); 849 } 850 851 void TemplateTable::wide_astore() { 852 transition(vtos, vtos); 853 854 const Register Rindex = R11_scratch1; 855 __ pop_ptr(); 856 __ verify_oop_or_return_address(R17_tos, Rindex); 857 locals_index_wide(Rindex); 858 __ store_local_ptr(R17_tos, Rindex); 859 } 860 861 void TemplateTable::iastore() { 862 transition(itos, vtos); 863 864 const Register Rindex = R3_ARG1, 865 Rstore_addr = R4_ARG2, 866 Rarray = R5_ARG3, 867 Rtemp = R6_ARG4; 868 __ pop_i(Rindex); 869 __ index_check(Rarray, Rindex, LogBytesPerInt, Rtemp, Rstore_addr); 870 __ stw(R17_tos, arrayOopDesc::base_offset_in_bytes(T_INT), Rstore_addr); 871 } 872 873 void TemplateTable::lastore() { 874 transition(ltos, vtos); 875 876 const Register Rindex = R3_ARG1, 877 Rstore_addr = R4_ARG2, 878 Rarray = R5_ARG3, 879 Rtemp = R6_ARG4; 880 __ pop_i(Rindex); 881 __ index_check(Rarray, Rindex, LogBytesPerLong, Rtemp, Rstore_addr); 882 __ std(R17_tos, arrayOopDesc::base_offset_in_bytes(T_LONG), Rstore_addr); 883 } 884 885 void TemplateTable::fastore() { 886 transition(ftos, vtos); 887 888 const Register Rindex = R3_ARG1, 889 Rstore_addr = R4_ARG2, 890 Rarray = R5_ARG3, 891 Rtemp = R6_ARG4; 892 __ pop_i(Rindex); 893 __ index_check(Rarray, Rindex, LogBytesPerInt, Rtemp, Rstore_addr); 894 __ stfs(F15_ftos, arrayOopDesc::base_offset_in_bytes(T_FLOAT), Rstore_addr); 895 } 896 897 void TemplateTable::dastore() { 898 transition(dtos, vtos); 899 900 const Register Rindex = R3_ARG1, 901 Rstore_addr = R4_ARG2, 902 Rarray = R5_ARG3, 903 Rtemp = R6_ARG4; 904 __ pop_i(Rindex); 905 __ index_check(Rarray, Rindex, LogBytesPerLong, Rtemp, Rstore_addr); 906 __ stfd(F15_ftos, arrayOopDesc::base_offset_in_bytes(T_DOUBLE), Rstore_addr); 907 } 908 909 // Pop 3 values from the stack and... 910 void TemplateTable::aastore() { 911 transition(vtos, vtos); 912 913 Label Lstore_ok, Lis_null, Ldone; 914 const Register Rindex = R3_ARG1, 915 Rarray = R4_ARG2, 916 Rscratch = R11_scratch1, 917 Rscratch2 = R12_scratch2, 918 Rarray_klass = R5_ARG3, 919 Rarray_element_klass = Rarray_klass, 920 Rvalue_klass = R6_ARG4, 921 Rstore_addr = R31; // Use register which survives VM call. 922 923 __ ld(R17_tos, Interpreter::expr_offset_in_bytes(0), R15_esp); // Get value to store. 924 __ lwz(Rindex, Interpreter::expr_offset_in_bytes(1), R15_esp); // Get index. 925 __ ld(Rarray, Interpreter::expr_offset_in_bytes(2), R15_esp); // Get array. 926 927 __ verify_oop(R17_tos); 928 __ index_check_without_pop(Rarray, Rindex, UseCompressedOops ? 2 : LogBytesPerWord, Rscratch, Rstore_addr); 929 // Rindex is dead! 930 Register Rscratch3 = Rindex; 931 932 // Do array store check - check for NULL value first. 933 __ cmpdi(CCR0, R17_tos, 0); 934 __ beq(CCR0, Lis_null); 935 936 __ load_klass(Rarray_klass, Rarray); 937 __ load_klass(Rvalue_klass, R17_tos); 938 939 // Do fast instanceof cache test. 940 __ ld(Rarray_element_klass, in_bytes(ObjArrayKlass::element_klass_offset()), Rarray_klass); 941 942 // Generate a fast subtype check. Branch to store_ok if no failure. Throw if failure. 943 __ gen_subtype_check(Rvalue_klass /*subklass*/, Rarray_element_klass /*superklass*/, Rscratch, Rscratch2, Rscratch3, Lstore_ok); 944 945 // Fell through: subtype check failed => throw an exception. 946 __ load_dispatch_table(R11_scratch1, (address*)Interpreter::_throw_ArrayStoreException_entry); 947 __ mtctr(R11_scratch1); 948 __ bctr(); 949 950 __ bind(Lis_null); 951 do_oop_store(_masm, Rstore_addr, arrayOopDesc::base_offset_in_bytes(T_OBJECT), noreg /* 0 */, 952 Rscratch, Rscratch2, Rscratch3, _bs->kind(), true /* precise */, false /* check_null */); 953 __ profile_null_seen(Rscratch, Rscratch2); 954 __ b(Ldone); 955 956 // Store is OK. 957 __ bind(Lstore_ok); 958 do_oop_store(_masm, Rstore_addr, arrayOopDesc::base_offset_in_bytes(T_OBJECT), R17_tos /* value */, 959 Rscratch, Rscratch2, Rscratch3, _bs->kind(), true /* precise */, false /* check_null */); 960 961 __ bind(Ldone); 962 // Adjust sp (pops array, index and value). 963 __ addi(R15_esp, R15_esp, 3 * Interpreter::stackElementSize); 964 } 965 966 void TemplateTable::bastore() { 967 transition(itos, vtos); 968 969 const Register Rindex = R11_scratch1, 970 Rarray = R12_scratch2, 971 Rscratch = R3_ARG1; 972 __ pop_i(Rindex); 973 // tos: val 974 // Rarray: array ptr (popped by index_check) 975 __ index_check(Rarray, Rindex, 0, Rscratch, Rarray); 976 __ stb(R17_tos, arrayOopDesc::base_offset_in_bytes(T_BYTE), Rarray); 977 } 978 979 void TemplateTable::castore() { 980 transition(itos, vtos); 981 982 const Register Rindex = R11_scratch1, 983 Rarray = R12_scratch2, 984 Rscratch = R3_ARG1; 985 __ pop_i(Rindex); 986 // tos: val 987 // Rarray: array ptr (popped by index_check) 988 __ index_check(Rarray, Rindex, LogBytesPerShort, Rscratch, Rarray); 989 __ sth(R17_tos, arrayOopDesc::base_offset_in_bytes(T_CHAR), Rarray); 990 } 991 992 void TemplateTable::sastore() { 993 castore(); 994 } 995 996 void TemplateTable::istore(int n) { 997 transition(itos, vtos); 998 __ stw(R17_tos, Interpreter::local_offset_in_bytes(n), R18_locals); 999 } 1000 1001 void TemplateTable::lstore(int n) { 1002 transition(ltos, vtos); 1003 __ std(R17_tos, Interpreter::local_offset_in_bytes(n + 1), R18_locals); 1004 } 1005 1006 void TemplateTable::fstore(int n) { 1007 transition(ftos, vtos); 1008 __ stfs(F15_ftos, Interpreter::local_offset_in_bytes(n), R18_locals); 1009 } 1010 1011 void TemplateTable::dstore(int n) { 1012 transition(dtos, vtos); 1013 __ stfd(F15_ftos, Interpreter::local_offset_in_bytes(n + 1), R18_locals); 1014 } 1015 1016 void TemplateTable::astore(int n) { 1017 transition(vtos, vtos); 1018 1019 __ pop_ptr(); 1020 __ verify_oop_or_return_address(R17_tos, R11_scratch1); 1021 __ std(R17_tos, Interpreter::local_offset_in_bytes(n), R18_locals); 1022 } 1023 1024 void TemplateTable::pop() { 1025 transition(vtos, vtos); 1026 1027 __ addi(R15_esp, R15_esp, Interpreter::stackElementSize); 1028 } 1029 1030 void TemplateTable::pop2() { 1031 transition(vtos, vtos); 1032 1033 __ addi(R15_esp, R15_esp, Interpreter::stackElementSize * 2); 1034 } 1035 1036 void TemplateTable::dup() { 1037 transition(vtos, vtos); 1038 1039 __ ld(R11_scratch1, Interpreter::stackElementSize, R15_esp); 1040 __ push_ptr(R11_scratch1); 1041 } 1042 1043 void TemplateTable::dup_x1() { 1044 transition(vtos, vtos); 1045 1046 Register Ra = R11_scratch1, 1047 Rb = R12_scratch2; 1048 // stack: ..., a, b 1049 __ ld(Rb, Interpreter::stackElementSize, R15_esp); 1050 __ ld(Ra, Interpreter::stackElementSize * 2, R15_esp); 1051 __ std(Rb, Interpreter::stackElementSize * 2, R15_esp); 1052 __ std(Ra, Interpreter::stackElementSize, R15_esp); 1053 __ push_ptr(Rb); 1054 // stack: ..., b, a, b 1055 } 1056 1057 void TemplateTable::dup_x2() { 1058 transition(vtos, vtos); 1059 1060 Register Ra = R11_scratch1, 1061 Rb = R12_scratch2, 1062 Rc = R3_ARG1; 1063 1064 // stack: ..., a, b, c 1065 __ ld(Rc, Interpreter::stackElementSize, R15_esp); // load c 1066 __ ld(Ra, Interpreter::stackElementSize * 3, R15_esp); // load a 1067 __ std(Rc, Interpreter::stackElementSize * 3, R15_esp); // store c in a 1068 __ ld(Rb, Interpreter::stackElementSize * 2, R15_esp); // load b 1069 // stack: ..., c, b, c 1070 __ std(Ra, Interpreter::stackElementSize * 2, R15_esp); // store a in b 1071 // stack: ..., c, a, c 1072 __ std(Rb, Interpreter::stackElementSize, R15_esp); // store b in c 1073 __ push_ptr(Rc); // push c 1074 // stack: ..., c, a, b, c 1075 } 1076 1077 void TemplateTable::dup2() { 1078 transition(vtos, vtos); 1079 1080 Register Ra = R11_scratch1, 1081 Rb = R12_scratch2; 1082 // stack: ..., a, b 1083 __ ld(Rb, Interpreter::stackElementSize, R15_esp); 1084 __ ld(Ra, Interpreter::stackElementSize * 2, R15_esp); 1085 __ push_2ptrs(Ra, Rb); 1086 // stack: ..., a, b, a, b 1087 } 1088 1089 void TemplateTable::dup2_x1() { 1090 transition(vtos, vtos); 1091 1092 Register Ra = R11_scratch1, 1093 Rb = R12_scratch2, 1094 Rc = R3_ARG1; 1095 // stack: ..., a, b, c 1096 __ ld(Rc, Interpreter::stackElementSize, R15_esp); 1097 __ ld(Rb, Interpreter::stackElementSize * 2, R15_esp); 1098 __ std(Rc, Interpreter::stackElementSize * 2, R15_esp); 1099 __ ld(Ra, Interpreter::stackElementSize * 3, R15_esp); 1100 __ std(Ra, Interpreter::stackElementSize, R15_esp); 1101 __ std(Rb, Interpreter::stackElementSize * 3, R15_esp); 1102 // stack: ..., b, c, a 1103 __ push_2ptrs(Rb, Rc); 1104 // stack: ..., b, c, a, b, c 1105 } 1106 1107 void TemplateTable::dup2_x2() { 1108 transition(vtos, vtos); 1109 1110 Register Ra = R11_scratch1, 1111 Rb = R12_scratch2, 1112 Rc = R3_ARG1, 1113 Rd = R4_ARG2; 1114 // stack: ..., a, b, c, d 1115 __ ld(Rb, Interpreter::stackElementSize * 3, R15_esp); 1116 __ ld(Rd, Interpreter::stackElementSize, R15_esp); 1117 __ std(Rb, Interpreter::stackElementSize, R15_esp); // store b in d 1118 __ std(Rd, Interpreter::stackElementSize * 3, R15_esp); // store d in b 1119 __ ld(Ra, Interpreter::stackElementSize * 4, R15_esp); 1120 __ ld(Rc, Interpreter::stackElementSize * 2, R15_esp); 1121 __ std(Ra, Interpreter::stackElementSize * 2, R15_esp); // store a in c 1122 __ std(Rc, Interpreter::stackElementSize * 4, R15_esp); // store c in a 1123 // stack: ..., c, d, a, b 1124 __ push_2ptrs(Rc, Rd); 1125 // stack: ..., c, d, a, b, c, d 1126 } 1127 1128 void TemplateTable::swap() { 1129 transition(vtos, vtos); 1130 // stack: ..., a, b 1131 1132 Register Ra = R11_scratch1, 1133 Rb = R12_scratch2; 1134 // stack: ..., a, b 1135 __ ld(Rb, Interpreter::stackElementSize, R15_esp); 1136 __ ld(Ra, Interpreter::stackElementSize * 2, R15_esp); 1137 __ std(Rb, Interpreter::stackElementSize * 2, R15_esp); 1138 __ std(Ra, Interpreter::stackElementSize, R15_esp); 1139 // stack: ..., b, a 1140 } 1141 1142 void TemplateTable::iop2(Operation op) { 1143 transition(itos, itos); 1144 1145 Register Rscratch = R11_scratch1; 1146 1147 __ pop_i(Rscratch); 1148 // tos = number of bits to shift 1149 // Rscratch = value to shift 1150 switch (op) { 1151 case add: __ add(R17_tos, Rscratch, R17_tos); break; 1152 case sub: __ sub(R17_tos, Rscratch, R17_tos); break; 1153 case mul: __ mullw(R17_tos, Rscratch, R17_tos); break; 1154 case _and: __ andr(R17_tos, Rscratch, R17_tos); break; 1155 case _or: __ orr(R17_tos, Rscratch, R17_tos); break; 1156 case _xor: __ xorr(R17_tos, Rscratch, R17_tos); break; 1157 case shl: __ rldicl(R17_tos, R17_tos, 0, 64-5); __ slw(R17_tos, Rscratch, R17_tos); break; 1158 case shr: __ rldicl(R17_tos, R17_tos, 0, 64-5); __ sraw(R17_tos, Rscratch, R17_tos); break; 1159 case ushr: __ rldicl(R17_tos, R17_tos, 0, 64-5); __ srw(R17_tos, Rscratch, R17_tos); break; 1160 default: ShouldNotReachHere(); 1161 } 1162 } 1163 1164 void TemplateTable::lop2(Operation op) { 1165 transition(ltos, ltos); 1166 1167 Register Rscratch = R11_scratch1; 1168 __ pop_l(Rscratch); 1169 switch (op) { 1170 case add: __ add(R17_tos, Rscratch, R17_tos); break; 1171 case sub: __ sub(R17_tos, Rscratch, R17_tos); break; 1172 case _and: __ andr(R17_tos, Rscratch, R17_tos); break; 1173 case _or: __ orr(R17_tos, Rscratch, R17_tos); break; 1174 case _xor: __ xorr(R17_tos, Rscratch, R17_tos); break; 1175 default: ShouldNotReachHere(); 1176 } 1177 } 1178 1179 void TemplateTable::idiv() { 1180 transition(itos, itos); 1181 1182 Label Lnormal, Lexception, Ldone; 1183 Register Rdividend = R11_scratch1; // Used by irem. 1184 1185 __ addi(R0, R17_tos, 1); 1186 __ cmplwi(CCR0, R0, 2); 1187 __ bgt(CCR0, Lnormal); // divisor <-1 or >1 1188 1189 __ cmpwi(CCR1, R17_tos, 0); 1190 __ beq(CCR1, Lexception); // divisor == 0 1191 1192 __ pop_i(Rdividend); 1193 __ mullw(R17_tos, Rdividend, R17_tos); // div by +/-1 1194 __ b(Ldone); 1195 1196 __ bind(Lexception); 1197 __ load_dispatch_table(R11_scratch1, (address*)Interpreter::_throw_ArithmeticException_entry); 1198 __ mtctr(R11_scratch1); 1199 __ bctr(); 1200 1201 __ align(32, 12); 1202 __ bind(Lnormal); 1203 __ pop_i(Rdividend); 1204 __ divw(R17_tos, Rdividend, R17_tos); // Can't divide minint/-1. 1205 __ bind(Ldone); 1206 } 1207 1208 void TemplateTable::irem() { 1209 transition(itos, itos); 1210 1211 __ mr(R12_scratch2, R17_tos); 1212 idiv(); 1213 __ mullw(R17_tos, R17_tos, R12_scratch2); 1214 __ subf(R17_tos, R17_tos, R11_scratch1); // Dividend set by idiv. 1215 } 1216 1217 void TemplateTable::lmul() { 1218 transition(ltos, ltos); 1219 1220 __ pop_l(R11_scratch1); 1221 __ mulld(R17_tos, R11_scratch1, R17_tos); 1222 } 1223 1224 void TemplateTable::ldiv() { 1225 transition(ltos, ltos); 1226 1227 Label Lnormal, Lexception, Ldone; 1228 Register Rdividend = R11_scratch1; // Used by lrem. 1229 1230 __ addi(R0, R17_tos, 1); 1231 __ cmpldi(CCR0, R0, 2); 1232 __ bgt(CCR0, Lnormal); // divisor <-1 or >1 1233 1234 __ cmpdi(CCR1, R17_tos, 0); 1235 __ beq(CCR1, Lexception); // divisor == 0 1236 1237 __ pop_l(Rdividend); 1238 __ mulld(R17_tos, Rdividend, R17_tos); // div by +/-1 1239 __ b(Ldone); 1240 1241 __ bind(Lexception); 1242 __ load_dispatch_table(R11_scratch1, (address*)Interpreter::_throw_ArithmeticException_entry); 1243 __ mtctr(R11_scratch1); 1244 __ bctr(); 1245 1246 __ align(32, 12); 1247 __ bind(Lnormal); 1248 __ pop_l(Rdividend); 1249 __ divd(R17_tos, Rdividend, R17_tos); // Can't divide minint/-1. 1250 __ bind(Ldone); 1251 } 1252 1253 void TemplateTable::lrem() { 1254 transition(ltos, ltos); 1255 1256 __ mr(R12_scratch2, R17_tos); 1257 ldiv(); 1258 __ mulld(R17_tos, R17_tos, R12_scratch2); 1259 __ subf(R17_tos, R17_tos, R11_scratch1); // Dividend set by ldiv. 1260 } 1261 1262 void TemplateTable::lshl() { 1263 transition(itos, ltos); 1264 1265 __ rldicl(R17_tos, R17_tos, 0, 64-6); // Extract least significant bits. 1266 __ pop_l(R11_scratch1); 1267 __ sld(R17_tos, R11_scratch1, R17_tos); 1268 } 1269 1270 void TemplateTable::lshr() { 1271 transition(itos, ltos); 1272 1273 __ rldicl(R17_tos, R17_tos, 0, 64-6); // Extract least significant bits. 1274 __ pop_l(R11_scratch1); 1275 __ srad(R17_tos, R11_scratch1, R17_tos); 1276 } 1277 1278 void TemplateTable::lushr() { 1279 transition(itos, ltos); 1280 1281 __ rldicl(R17_tos, R17_tos, 0, 64-6); // Extract least significant bits. 1282 __ pop_l(R11_scratch1); 1283 __ srd(R17_tos, R11_scratch1, R17_tos); 1284 } 1285 1286 void TemplateTable::fop2(Operation op) { 1287 transition(ftos, ftos); 1288 1289 switch (op) { 1290 case add: __ pop_f(F0_SCRATCH); __ fadds(F15_ftos, F0_SCRATCH, F15_ftos); break; 1291 case sub: __ pop_f(F0_SCRATCH); __ fsubs(F15_ftos, F0_SCRATCH, F15_ftos); break; 1292 case mul: __ pop_f(F0_SCRATCH); __ fmuls(F15_ftos, F0_SCRATCH, F15_ftos); break; 1293 case div: __ pop_f(F0_SCRATCH); __ fdivs(F15_ftos, F0_SCRATCH, F15_ftos); break; 1294 case rem: 1295 __ pop_f(F1_ARG1); 1296 __ fmr(F2_ARG2, F15_ftos); 1297 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem)); 1298 __ fmr(F15_ftos, F1_RET); 1299 break; 1300 1301 default: ShouldNotReachHere(); 1302 } 1303 } 1304 1305 void TemplateTable::dop2(Operation op) { 1306 transition(dtos, dtos); 1307 1308 switch (op) { 1309 case add: __ pop_d(F0_SCRATCH); __ fadd(F15_ftos, F0_SCRATCH, F15_ftos); break; 1310 case sub: __ pop_d(F0_SCRATCH); __ fsub(F15_ftos, F0_SCRATCH, F15_ftos); break; 1311 case mul: __ pop_d(F0_SCRATCH); __ fmul(F15_ftos, F0_SCRATCH, F15_ftos); break; 1312 case div: __ pop_d(F0_SCRATCH); __ fdiv(F15_ftos, F0_SCRATCH, F15_ftos); break; 1313 case rem: 1314 __ pop_d(F1_ARG1); 1315 __ fmr(F2_ARG2, F15_ftos); 1316 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem)); 1317 __ fmr(F15_ftos, F1_RET); 1318 break; 1319 1320 default: ShouldNotReachHere(); 1321 } 1322 } 1323 1324 // Negate the value in the TOS cache. 1325 void TemplateTable::ineg() { 1326 transition(itos, itos); 1327 1328 __ neg(R17_tos, R17_tos); 1329 } 1330 1331 // Negate the value in the TOS cache. 1332 void TemplateTable::lneg() { 1333 transition(ltos, ltos); 1334 1335 __ neg(R17_tos, R17_tos); 1336 } 1337 1338 void TemplateTable::fneg() { 1339 transition(ftos, ftos); 1340 1341 __ fneg(F15_ftos, F15_ftos); 1342 } 1343 1344 void TemplateTable::dneg() { 1345 transition(dtos, dtos); 1346 1347 __ fneg(F15_ftos, F15_ftos); 1348 } 1349 1350 // Increments a local variable in place. 1351 void TemplateTable::iinc() { 1352 transition(vtos, vtos); 1353 1354 const Register Rindex = R11_scratch1, 1355 Rincrement = R0, 1356 Rvalue = R12_scratch2; 1357 1358 locals_index(Rindex); // Load locals index from bytecode stream. 1359 __ lbz(Rincrement, 2, R14_bcp); // Load increment from the bytecode stream. 1360 __ extsb(Rincrement, Rincrement); 1361 1362 __ load_local_int(Rvalue, Rindex, Rindex); // Puts address of local into Rindex. 1363 1364 __ add(Rvalue, Rincrement, Rvalue); 1365 __ stw(Rvalue, 0, Rindex); 1366 } 1367 1368 void TemplateTable::wide_iinc() { 1369 transition(vtos, vtos); 1370 1371 Register Rindex = R11_scratch1, 1372 Rlocals_addr = Rindex, 1373 Rincr = R12_scratch2; 1374 locals_index_wide(Rindex); 1375 __ get_2_byte_integer_at_bcp(4, Rincr, InterpreterMacroAssembler::Signed); 1376 __ load_local_int(R17_tos, Rlocals_addr, Rindex); 1377 __ add(R17_tos, Rincr, R17_tos); 1378 __ stw(R17_tos, 0, Rlocals_addr); 1379 } 1380 1381 void TemplateTable::convert() { 1382 // %%%%% Factor this first part accross platforms 1383 #ifdef ASSERT 1384 TosState tos_in = ilgl; 1385 TosState tos_out = ilgl; 1386 switch (bytecode()) { 1387 case Bytecodes::_i2l: // fall through 1388 case Bytecodes::_i2f: // fall through 1389 case Bytecodes::_i2d: // fall through 1390 case Bytecodes::_i2b: // fall through 1391 case Bytecodes::_i2c: // fall through 1392 case Bytecodes::_i2s: tos_in = itos; break; 1393 case Bytecodes::_l2i: // fall through 1394 case Bytecodes::_l2f: // fall through 1395 case Bytecodes::_l2d: tos_in = ltos; break; 1396 case Bytecodes::_f2i: // fall through 1397 case Bytecodes::_f2l: // fall through 1398 case Bytecodes::_f2d: tos_in = ftos; break; 1399 case Bytecodes::_d2i: // fall through 1400 case Bytecodes::_d2l: // fall through 1401 case Bytecodes::_d2f: tos_in = dtos; break; 1402 default : ShouldNotReachHere(); 1403 } 1404 switch (bytecode()) { 1405 case Bytecodes::_l2i: // fall through 1406 case Bytecodes::_f2i: // fall through 1407 case Bytecodes::_d2i: // fall through 1408 case Bytecodes::_i2b: // fall through 1409 case Bytecodes::_i2c: // fall through 1410 case Bytecodes::_i2s: tos_out = itos; break; 1411 case Bytecodes::_i2l: // fall through 1412 case Bytecodes::_f2l: // fall through 1413 case Bytecodes::_d2l: tos_out = ltos; break; 1414 case Bytecodes::_i2f: // fall through 1415 case Bytecodes::_l2f: // fall through 1416 case Bytecodes::_d2f: tos_out = ftos; break; 1417 case Bytecodes::_i2d: // fall through 1418 case Bytecodes::_l2d: // fall through 1419 case Bytecodes::_f2d: tos_out = dtos; break; 1420 default : ShouldNotReachHere(); 1421 } 1422 transition(tos_in, tos_out); 1423 #endif 1424 1425 // Conversion 1426 Label done; 1427 switch (bytecode()) { 1428 case Bytecodes::_i2l: 1429 __ extsw(R17_tos, R17_tos); 1430 break; 1431 1432 case Bytecodes::_l2i: 1433 // Nothing to do, we'll continue to work with the lower bits. 1434 break; 1435 1436 case Bytecodes::_i2b: 1437 __ extsb(R17_tos, R17_tos); 1438 break; 1439 1440 case Bytecodes::_i2c: 1441 __ rldicl(R17_tos, R17_tos, 0, 64-2*8); 1442 break; 1443 1444 case Bytecodes::_i2s: 1445 __ extsh(R17_tos, R17_tos); 1446 break; 1447 1448 case Bytecodes::_i2d: 1449 __ extsw(R17_tos, R17_tos); 1450 case Bytecodes::_l2d: 1451 __ push_l_pop_d(); 1452 __ fcfid(F15_ftos, F15_ftos); 1453 break; 1454 1455 case Bytecodes::_i2f: 1456 __ extsw(R17_tos, R17_tos); 1457 __ push_l_pop_d(); 1458 if (VM_Version::has_fcfids()) { // fcfids is >= Power7 only 1459 // Comment: alternatively, load with sign extend could be done by lfiwax. 1460 __ fcfids(F15_ftos, F15_ftos); 1461 } else { 1462 __ fcfid(F15_ftos, F15_ftos); 1463 __ frsp(F15_ftos, F15_ftos); 1464 } 1465 break; 1466 1467 case Bytecodes::_l2f: 1468 if (VM_Version::has_fcfids()) { // fcfids is >= Power7 only 1469 __ push_l_pop_d(); 1470 __ fcfids(F15_ftos, F15_ftos); 1471 } else { 1472 // Avoid rounding problem when result should be 0x3f800001: need fixup code before fcfid+frsp. 1473 __ mr(R3_ARG1, R17_tos); 1474 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::l2f)); 1475 __ fmr(F15_ftos, F1_RET); 1476 } 1477 break; 1478 1479 case Bytecodes::_f2d: 1480 // empty 1481 break; 1482 1483 case Bytecodes::_d2f: 1484 __ frsp(F15_ftos, F15_ftos); 1485 break; 1486 1487 case Bytecodes::_d2i: 1488 case Bytecodes::_f2i: 1489 __ fcmpu(CCR0, F15_ftos, F15_ftos); 1490 __ li(R17_tos, 0); // 0 in case of NAN 1491 __ bso(CCR0, done); 1492 __ fctiwz(F15_ftos, F15_ftos); 1493 __ push_d_pop_l(); 1494 break; 1495 1496 case Bytecodes::_d2l: 1497 case Bytecodes::_f2l: 1498 __ fcmpu(CCR0, F15_ftos, F15_ftos); 1499 __ li(R17_tos, 0); // 0 in case of NAN 1500 __ bso(CCR0, done); 1501 __ fctidz(F15_ftos, F15_ftos); 1502 __ push_d_pop_l(); 1503 break; 1504 1505 default: ShouldNotReachHere(); 1506 } 1507 __ bind(done); 1508 } 1509 1510 // Long compare 1511 void TemplateTable::lcmp() { 1512 transition(ltos, itos); 1513 1514 const Register Rscratch = R11_scratch1; 1515 __ pop_l(Rscratch); // first operand, deeper in stack 1516 1517 __ cmpd(CCR0, Rscratch, R17_tos); // compare 1518 __ mfcr(R17_tos); // set bit 32..33 as follows: <: 0b10, =: 0b00, >: 0b01 1519 __ srwi(Rscratch, R17_tos, 30); 1520 __ srawi(R17_tos, R17_tos, 31); 1521 __ orr(R17_tos, Rscratch, R17_tos); // set result as follows: <: -1, =: 0, >: 1 1522 } 1523 1524 // fcmpl/fcmpg and dcmpl/dcmpg bytecodes 1525 // unordered_result == -1 => fcmpl or dcmpl 1526 // unordered_result == 1 => fcmpg or dcmpg 1527 void TemplateTable::float_cmp(bool is_float, int unordered_result) { 1528 const FloatRegister Rfirst = F0_SCRATCH, 1529 Rsecond = F15_ftos; 1530 const Register Rscratch = R11_scratch1; 1531 1532 if (is_float) { 1533 __ pop_f(Rfirst); 1534 } else { 1535 __ pop_d(Rfirst); 1536 } 1537 1538 Label Lunordered, Ldone; 1539 __ fcmpu(CCR0, Rfirst, Rsecond); // compare 1540 if (unordered_result) { 1541 __ bso(CCR0, Lunordered); 1542 } 1543 __ mfcr(R17_tos); // set bit 32..33 as follows: <: 0b10, =: 0b00, >: 0b01 1544 __ srwi(Rscratch, R17_tos, 30); 1545 __ srawi(R17_tos, R17_tos, 31); 1546 __ orr(R17_tos, Rscratch, R17_tos); // set result as follows: <: -1, =: 0, >: 1 1547 if (unordered_result) { 1548 __ b(Ldone); 1549 __ bind(Lunordered); 1550 __ load_const_optimized(R17_tos, unordered_result); 1551 } 1552 __ bind(Ldone); 1553 } 1554 1555 // Branch_conditional which takes TemplateTable::Condition. 1556 void TemplateTable::branch_conditional(ConditionRegister crx, TemplateTable::Condition cc, Label& L, bool invert) { 1557 bool positive = false; 1558 Assembler::Condition cond = Assembler::equal; 1559 switch (cc) { 1560 case TemplateTable::equal: positive = true ; cond = Assembler::equal ; break; 1561 case TemplateTable::not_equal: positive = false; cond = Assembler::equal ; break; 1562 case TemplateTable::less: positive = true ; cond = Assembler::less ; break; 1563 case TemplateTable::less_equal: positive = false; cond = Assembler::greater; break; 1564 case TemplateTable::greater: positive = true ; cond = Assembler::greater; break; 1565 case TemplateTable::greater_equal: positive = false; cond = Assembler::less ; break; 1566 default: ShouldNotReachHere(); 1567 } 1568 int bo = (positive != invert) ? Assembler::bcondCRbiIs1 : Assembler::bcondCRbiIs0; 1569 int bi = Assembler::bi0(crx, cond); 1570 __ bc(bo, bi, L); 1571 } 1572 1573 void TemplateTable::branch(bool is_jsr, bool is_wide) { 1574 1575 // Note: on SPARC, we use InterpreterMacroAssembler::if_cmp also. 1576 __ verify_thread(); 1577 1578 const Register Rscratch1 = R11_scratch1, 1579 Rscratch2 = R12_scratch2, 1580 Rscratch3 = R3_ARG1, 1581 R4_counters = R4_ARG2, 1582 bumped_count = R31, 1583 Rdisp = R22_tmp2; 1584 1585 __ profile_taken_branch(Rscratch1, bumped_count); 1586 1587 // Get (wide) offset. 1588 if (is_wide) { 1589 __ get_4_byte_integer_at_bcp(1, Rdisp, InterpreterMacroAssembler::Signed); 1590 } else { 1591 __ get_2_byte_integer_at_bcp(1, Rdisp, InterpreterMacroAssembler::Signed); 1592 } 1593 1594 // -------------------------------------------------------------------------- 1595 // Handle all the JSR stuff here, then exit. 1596 // It's much shorter and cleaner than intermingling with the 1597 // non-JSR normal-branch stuff occurring below. 1598 if (is_jsr) { 1599 // Compute return address as bci in Otos_i. 1600 __ ld(Rscratch1, in_bytes(Method::const_offset()), R19_method); 1601 __ addi(Rscratch2, R14_bcp, -in_bytes(ConstMethod::codes_offset()) + (is_wide ? 5 : 3)); 1602 __ subf(R17_tos, Rscratch1, Rscratch2); 1603 1604 // Bump bcp to target of JSR. 1605 __ add(R14_bcp, Rdisp, R14_bcp); 1606 // Push returnAddress for "ret" on stack. 1607 __ push_ptr(R17_tos); 1608 // And away we go! 1609 __ dispatch_next(vtos); 1610 return; 1611 } 1612 1613 // -------------------------------------------------------------------------- 1614 // Normal (non-jsr) branch handling 1615 1616 const bool increment_invocation_counter_for_backward_branches = UseCompiler && UseLoopCounter; 1617 if (increment_invocation_counter_for_backward_branches) { 1618 //__ unimplemented("branch invocation counter"); 1619 1620 Label Lforward; 1621 __ add(R14_bcp, Rdisp, R14_bcp); // Add to bc addr. 1622 1623 // Check branch direction. 1624 __ cmpdi(CCR0, Rdisp, 0); 1625 __ bgt(CCR0, Lforward); 1626 1627 __ get_method_counters(R19_method, R4_counters, Lforward); 1628 1629 if (TieredCompilation) { 1630 Label Lno_mdo, Loverflow; 1631 const int increment = InvocationCounter::count_increment; 1632 const int mask = ((1 << Tier0BackedgeNotifyFreqLog) - 1) << InvocationCounter::count_shift; 1633 if (ProfileInterpreter) { 1634 Register Rmdo = Rscratch1; 1635 1636 // If no method data exists, go to profile_continue. 1637 __ ld(Rmdo, in_bytes(Method::method_data_offset()), R19_method); 1638 __ cmpdi(CCR0, Rmdo, 0); 1639 __ beq(CCR0, Lno_mdo); 1640 1641 // Increment backedge counter in the MDO. 1642 const int mdo_bc_offs = in_bytes(MethodData::backedge_counter_offset()) + in_bytes(InvocationCounter::counter_offset()); 1643 __ lwz(Rscratch2, mdo_bc_offs, Rmdo); 1644 __ load_const_optimized(Rscratch3, mask, R0); 1645 __ addi(Rscratch2, Rscratch2, increment); 1646 __ stw(Rscratch2, mdo_bc_offs, Rmdo); 1647 __ and_(Rscratch3, Rscratch2, Rscratch3); 1648 __ bne(CCR0, Lforward); 1649 __ b(Loverflow); 1650 } 1651 1652 // If there's no MDO, increment counter in method. 1653 const int mo_bc_offs = in_bytes(MethodCounters::backedge_counter_offset()) + in_bytes(InvocationCounter::counter_offset()); 1654 __ bind(Lno_mdo); 1655 __ lwz(Rscratch2, mo_bc_offs, R4_counters); 1656 __ load_const_optimized(Rscratch3, mask, R0); 1657 __ addi(Rscratch2, Rscratch2, increment); 1658 __ stw(Rscratch2, mo_bc_offs, R19_method); 1659 __ and_(Rscratch3, Rscratch2, Rscratch3); 1660 __ bne(CCR0, Lforward); 1661 1662 __ bind(Loverflow); 1663 1664 // Notify point for loop, pass branch bytecode. 1665 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), R14_bcp, true); 1666 1667 // Was an OSR adapter generated? 1668 // O0 = osr nmethod 1669 __ cmpdi(CCR0, R3_RET, 0); 1670 __ beq(CCR0, Lforward); 1671 1672 // Has the nmethod been invalidated already? 1673 __ lbz(R0, nmethod::state_offset(), R3_RET); 1674 __ cmpwi(CCR0, R0, nmethod::in_use); 1675 __ bne(CCR0, Lforward); 1676 1677 // Migrate the interpreter frame off of the stack. 1678 // We can use all registers because we will not return to interpreter from this point. 1679 1680 // Save nmethod. 1681 const Register osr_nmethod = R31; 1682 __ mr(osr_nmethod, R3_RET); 1683 __ set_top_ijava_frame_at_SP_as_last_Java_frame(R1_SP, R11_scratch1); 1684 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), R16_thread); 1685 __ reset_last_Java_frame(); 1686 // OSR buffer is in ARG1. 1687 1688 // Remove the interpreter frame. 1689 __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ R0, R11_scratch1, R12_scratch2); 1690 1691 // Jump to the osr code. 1692 __ ld(R11_scratch1, nmethod::osr_entry_point_offset(), osr_nmethod); 1693 __ mtlr(R0); 1694 __ mtctr(R11_scratch1); 1695 __ bctr(); 1696 1697 } else { 1698 1699 const Register invoke_ctr = Rscratch1; 1700 // Update Backedge branch separately from invocations. 1701 __ increment_backedge_counter(R4_counters, invoke_ctr, Rscratch2, Rscratch3); 1702 1703 if (ProfileInterpreter) { 1704 __ test_invocation_counter_for_mdp(invoke_ctr, Rscratch2, Lforward); 1705 if (UseOnStackReplacement) { 1706 __ test_backedge_count_for_osr(bumped_count, R14_bcp, Rscratch2); 1707 } 1708 } else { 1709 if (UseOnStackReplacement) { 1710 __ test_backedge_count_for_osr(invoke_ctr, R14_bcp, Rscratch2); 1711 } 1712 } 1713 } 1714 1715 __ bind(Lforward); 1716 1717 } else { 1718 // Bump bytecode pointer by displacement (take the branch). 1719 __ add(R14_bcp, Rdisp, R14_bcp); // Add to bc addr. 1720 } 1721 // Continue with bytecode @ target. 1722 // %%%%% Like Intel, could speed things up by moving bytecode fetch to code above, 1723 // %%%%% and changing dispatch_next to dispatch_only. 1724 __ dispatch_next(vtos); 1725 } 1726 1727 // Helper function for if_cmp* methods below. 1728 // Factored out common compare and branch code. 1729 void TemplateTable::if_cmp_common(Register Rfirst, Register Rsecond, Register Rscratch1, Register Rscratch2, Condition cc, bool is_jint, bool cmp0) { 1730 Label Lnot_taken; 1731 // Note: The condition code we get is the condition under which we 1732 // *fall through*! So we have to inverse the CC here. 1733 1734 if (is_jint) { 1735 if (cmp0) { 1736 __ cmpwi(CCR0, Rfirst, 0); 1737 } else { 1738 __ cmpw(CCR0, Rfirst, Rsecond); 1739 } 1740 } else { 1741 if (cmp0) { 1742 __ cmpdi(CCR0, Rfirst, 0); 1743 } else { 1744 __ cmpd(CCR0, Rfirst, Rsecond); 1745 } 1746 } 1747 branch_conditional(CCR0, cc, Lnot_taken, /*invert*/ true); 1748 1749 // Conition is false => Jump! 1750 branch(false, false); 1751 1752 // Condition is not true => Continue. 1753 __ align(32, 12); 1754 __ bind(Lnot_taken); 1755 __ profile_not_taken_branch(Rscratch1, Rscratch2); 1756 } 1757 1758 // Compare integer values with zero and fall through if CC holds, branch away otherwise. 1759 void TemplateTable::if_0cmp(Condition cc) { 1760 transition(itos, vtos); 1761 1762 if_cmp_common(R17_tos, noreg, R11_scratch1, R12_scratch2, cc, true, true); 1763 } 1764 1765 // Compare integer values and fall through if CC holds, branch away otherwise. 1766 // 1767 // Interface: 1768 // - Rfirst: First operand (older stack value) 1769 // - tos: Second operand (younger stack value) 1770 void TemplateTable::if_icmp(Condition cc) { 1771 transition(itos, vtos); 1772 1773 const Register Rfirst = R0, 1774 Rsecond = R17_tos; 1775 1776 __ pop_i(Rfirst); 1777 if_cmp_common(Rfirst, Rsecond, R11_scratch1, R12_scratch2, cc, true, false); 1778 } 1779 1780 void TemplateTable::if_nullcmp(Condition cc) { 1781 transition(atos, vtos); 1782 1783 if_cmp_common(R17_tos, noreg, R11_scratch1, R12_scratch2, cc, false, true); 1784 } 1785 1786 void TemplateTable::if_acmp(Condition cc) { 1787 transition(atos, vtos); 1788 1789 const Register Rfirst = R0, 1790 Rsecond = R17_tos; 1791 1792 __ pop_ptr(Rfirst); 1793 if_cmp_common(Rfirst, Rsecond, R11_scratch1, R12_scratch2, cc, false, false); 1794 } 1795 1796 void TemplateTable::ret() { 1797 locals_index(R11_scratch1); 1798 __ load_local_ptr(R17_tos, R11_scratch1, R11_scratch1); 1799 1800 __ profile_ret(vtos, R17_tos, R11_scratch1, R12_scratch2); 1801 1802 __ ld(R11_scratch1, in_bytes(Method::const_offset()), R19_method); 1803 __ add(R11_scratch1, R17_tos, R11_scratch1); 1804 __ addi(R14_bcp, R11_scratch1, in_bytes(ConstMethod::codes_offset())); 1805 __ dispatch_next(vtos); 1806 } 1807 1808 void TemplateTable::wide_ret() { 1809 transition(vtos, vtos); 1810 1811 const Register Rindex = R3_ARG1, 1812 Rscratch1 = R11_scratch1, 1813 Rscratch2 = R12_scratch2; 1814 1815 locals_index_wide(Rindex); 1816 __ load_local_ptr(R17_tos, R17_tos, Rindex); 1817 __ profile_ret(vtos, R17_tos, Rscratch1, R12_scratch2); 1818 // Tos now contains the bci, compute the bcp from that. 1819 __ ld(Rscratch1, in_bytes(Method::const_offset()), R19_method); 1820 __ addi(Rscratch2, R17_tos, in_bytes(ConstMethod::codes_offset())); 1821 __ add(R14_bcp, Rscratch1, Rscratch2); 1822 __ dispatch_next(vtos); 1823 } 1824 1825 void TemplateTable::tableswitch() { 1826 transition(itos, vtos); 1827 1828 Label Ldispatch, Ldefault_case; 1829 Register Rlow_byte = R3_ARG1, 1830 Rindex = Rlow_byte, 1831 Rhigh_byte = R4_ARG2, 1832 Rdef_offset_addr = R5_ARG3, // is going to contain address of default offset 1833 Rscratch1 = R11_scratch1, 1834 Rscratch2 = R12_scratch2, 1835 Roffset = R6_ARG4; 1836 1837 // Align bcp. 1838 __ addi(Rdef_offset_addr, R14_bcp, BytesPerInt); 1839 __ clrrdi(Rdef_offset_addr, Rdef_offset_addr, log2_long((jlong)BytesPerInt)); 1840 1841 // Load lo & hi. 1842 __ get_u4(Rlow_byte, Rdef_offset_addr, BytesPerInt, InterpreterMacroAssembler::Unsigned); 1843 __ get_u4(Rhigh_byte, Rdef_offset_addr, 2 *BytesPerInt, InterpreterMacroAssembler::Unsigned); 1844 1845 // Check for default case (=index outside [low,high]). 1846 __ cmpw(CCR0, R17_tos, Rlow_byte); 1847 __ cmpw(CCR1, R17_tos, Rhigh_byte); 1848 __ blt(CCR0, Ldefault_case); 1849 __ bgt(CCR1, Ldefault_case); 1850 1851 // Lookup dispatch offset. 1852 __ sub(Rindex, R17_tos, Rlow_byte); 1853 __ extsw(Rindex, Rindex); 1854 __ profile_switch_case(Rindex, Rhigh_byte /* scratch */, Rscratch1, Rscratch2); 1855 __ sldi(Rindex, Rindex, LogBytesPerInt); 1856 __ addi(Rindex, Rindex, 3 * BytesPerInt); 1857 #if defined(VM_LITTLE_ENDIAN) 1858 __ lwbrx(Roffset, Rdef_offset_addr, Rindex); 1859 __ extsw(Roffset, Roffset); 1860 #else 1861 __ lwax(Roffset, Rdef_offset_addr, Rindex); 1862 #endif 1863 __ b(Ldispatch); 1864 1865 __ bind(Ldefault_case); 1866 __ profile_switch_default(Rhigh_byte, Rscratch1); 1867 __ get_u4(Roffset, Rdef_offset_addr, 0, InterpreterMacroAssembler::Signed); 1868 1869 __ bind(Ldispatch); 1870 1871 __ add(R14_bcp, Roffset, R14_bcp); 1872 __ dispatch_next(vtos); 1873 } 1874 1875 void TemplateTable::lookupswitch() { 1876 transition(itos, itos); 1877 __ stop("lookupswitch bytecode should have been rewritten"); 1878 } 1879 1880 // Table switch using linear search through cases. 1881 // Bytecode stream format: 1882 // Bytecode (1) | 4-byte padding | default offset (4) | count (4) | value/offset pair1 (8) | value/offset pair2 (8) | ... 1883 // Note: Everything is big-endian format here. 1884 void TemplateTable::fast_linearswitch() { 1885 transition(itos, vtos); 1886 1887 Label Lloop_entry, Lsearch_loop, Lcontinue_execution, Ldefault_case; 1888 Register Rcount = R3_ARG1, 1889 Rcurrent_pair = R4_ARG2, 1890 Rdef_offset_addr = R5_ARG3, // Is going to contain address of default offset. 1891 Roffset = R31, // Might need to survive C call. 1892 Rvalue = R12_scratch2, 1893 Rscratch = R11_scratch1, 1894 Rcmp_value = R17_tos; 1895 1896 // Align bcp. 1897 __ addi(Rdef_offset_addr, R14_bcp, BytesPerInt); 1898 __ clrrdi(Rdef_offset_addr, Rdef_offset_addr, log2_long((jlong)BytesPerInt)); 1899 1900 // Setup loop counter and limit. 1901 __ get_u4(Rcount, Rdef_offset_addr, BytesPerInt, InterpreterMacroAssembler::Unsigned); 1902 __ addi(Rcurrent_pair, Rdef_offset_addr, 2 * BytesPerInt); // Rcurrent_pair now points to first pair. 1903 1904 __ mtctr(Rcount); 1905 __ cmpwi(CCR0, Rcount, 0); 1906 __ bne(CCR0, Lloop_entry); 1907 1908 // Default case 1909 __ bind(Ldefault_case); 1910 __ get_u4(Roffset, Rdef_offset_addr, 0, InterpreterMacroAssembler::Signed); 1911 if (ProfileInterpreter) { 1912 __ profile_switch_default(Rdef_offset_addr, Rcount/* scratch */); 1913 } 1914 __ b(Lcontinue_execution); 1915 1916 // Next iteration 1917 __ bind(Lsearch_loop); 1918 __ bdz(Ldefault_case); 1919 __ addi(Rcurrent_pair, Rcurrent_pair, 2 * BytesPerInt); 1920 __ bind(Lloop_entry); 1921 __ get_u4(Rvalue, Rcurrent_pair, 0, InterpreterMacroAssembler::Unsigned); 1922 __ cmpw(CCR0, Rvalue, Rcmp_value); 1923 __ bne(CCR0, Lsearch_loop); 1924 1925 // Found, load offset. 1926 __ get_u4(Roffset, Rcurrent_pair, BytesPerInt, InterpreterMacroAssembler::Signed); 1927 // Calculate case index and profile 1928 __ mfctr(Rcurrent_pair); 1929 if (ProfileInterpreter) { 1930 __ sub(Rcurrent_pair, Rcount, Rcurrent_pair); 1931 __ profile_switch_case(Rcurrent_pair, Rcount /*scratch*/, Rdef_offset_addr/*scratch*/, Rscratch); 1932 } 1933 1934 __ bind(Lcontinue_execution); 1935 __ add(R14_bcp, Roffset, R14_bcp); 1936 __ dispatch_next(vtos); 1937 } 1938 1939 // Table switch using binary search (value/offset pairs are ordered). 1940 // Bytecode stream format: 1941 // Bytecode (1) | 4-byte padding | default offset (4) | count (4) | value/offset pair1 (8) | value/offset pair2 (8) | ... 1942 // Note: Everything is big-endian format here. So on little endian machines, we have to revers offset and count and cmp value. 1943 void TemplateTable::fast_binaryswitch() { 1944 1945 transition(itos, vtos); 1946 // Implementation using the following core algorithm: (copied from Intel) 1947 // 1948 // int binary_search(int key, LookupswitchPair* array, int n) { 1949 // // Binary search according to "Methodik des Programmierens" by 1950 // // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985. 1951 // int i = 0; 1952 // int j = n; 1953 // while (i+1 < j) { 1954 // // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q) 1955 // // with Q: for all i: 0 <= i < n: key < a[i] 1956 // // where a stands for the array and assuming that the (inexisting) 1957 // // element a[n] is infinitely big. 1958 // int h = (i + j) >> 1; 1959 // // i < h < j 1960 // if (key < array[h].fast_match()) { 1961 // j = h; 1962 // } else { 1963 // i = h; 1964 // } 1965 // } 1966 // // R: a[i] <= key < a[i+1] or Q 1967 // // (i.e., if key is within array, i is the correct index) 1968 // return i; 1969 // } 1970 1971 // register allocation 1972 const Register Rkey = R17_tos; // already set (tosca) 1973 const Register Rarray = R3_ARG1; 1974 const Register Ri = R4_ARG2; 1975 const Register Rj = R5_ARG3; 1976 const Register Rh = R6_ARG4; 1977 const Register Rscratch = R11_scratch1; 1978 1979 const int log_entry_size = 3; 1980 const int entry_size = 1 << log_entry_size; 1981 1982 Label found; 1983 1984 // Find Array start, 1985 __ addi(Rarray, R14_bcp, 3 * BytesPerInt); 1986 __ clrrdi(Rarray, Rarray, log2_long((jlong)BytesPerInt)); 1987 1988 // initialize i & j 1989 __ li(Ri,0); 1990 __ get_u4(Rj, Rarray, -BytesPerInt, InterpreterMacroAssembler::Unsigned); 1991 1992 // and start. 1993 Label entry; 1994 __ b(entry); 1995 1996 // binary search loop 1997 { Label loop; 1998 __ bind(loop); 1999 // int h = (i + j) >> 1; 2000 __ srdi(Rh, Rh, 1); 2001 // if (key < array[h].fast_match()) { 2002 // j = h; 2003 // } else { 2004 // i = h; 2005 // } 2006 __ sldi(Rscratch, Rh, log_entry_size); 2007 #if defined(VM_LITTLE_ENDIAN) 2008 __ lwbrx(Rscratch, Rscratch, Rarray); 2009 #else 2010 __ lwzx(Rscratch, Rscratch, Rarray); 2011 #endif 2012 2013 // if (key < current value) 2014 // Rh = Rj 2015 // else 2016 // Rh = Ri 2017 Label Lgreater; 2018 __ cmpw(CCR0, Rkey, Rscratch); 2019 __ bge(CCR0, Lgreater); 2020 __ mr(Rj, Rh); 2021 __ b(entry); 2022 __ bind(Lgreater); 2023 __ mr(Ri, Rh); 2024 2025 // while (i+1 < j) 2026 __ bind(entry); 2027 __ addi(Rscratch, Ri, 1); 2028 __ cmpw(CCR0, Rscratch, Rj); 2029 __ add(Rh, Ri, Rj); // start h = i + j >> 1; 2030 2031 __ blt(CCR0, loop); 2032 } 2033 2034 // End of binary search, result index is i (must check again!). 2035 Label default_case; 2036 Label continue_execution; 2037 if (ProfileInterpreter) { 2038 __ mr(Rh, Ri); // Save index in i for profiling. 2039 } 2040 // Ri = value offset 2041 __ sldi(Ri, Ri, log_entry_size); 2042 __ add(Ri, Ri, Rarray); 2043 __ get_u4(Rscratch, Ri, 0, InterpreterMacroAssembler::Unsigned); 2044 2045 Label not_found; 2046 // Ri = offset offset 2047 __ cmpw(CCR0, Rkey, Rscratch); 2048 __ beq(CCR0, not_found); 2049 // entry not found -> j = default offset 2050 __ get_u4(Rj, Rarray, -2 * BytesPerInt, InterpreterMacroAssembler::Unsigned); 2051 __ b(default_case); 2052 2053 __ bind(not_found); 2054 // entry found -> j = offset 2055 __ profile_switch_case(Rh, Rj, Rscratch, Rkey); 2056 __ get_u4(Rj, Ri, BytesPerInt, InterpreterMacroAssembler::Unsigned); 2057 2058 if (ProfileInterpreter) { 2059 __ b(continue_execution); 2060 } 2061 2062 __ bind(default_case); // fall through (if not profiling) 2063 __ profile_switch_default(Ri, Rscratch); 2064 2065 __ bind(continue_execution); 2066 2067 __ extsw(Rj, Rj); 2068 __ add(R14_bcp, Rj, R14_bcp); 2069 __ dispatch_next(vtos); 2070 } 2071 2072 void TemplateTable::_return(TosState state) { 2073 transition(state, state); 2074 assert(_desc->calls_vm(), 2075 "inconsistent calls_vm information"); // call in remove_activation 2076 2077 if (_desc->bytecode() == Bytecodes::_return_register_finalizer) { 2078 2079 Register Rscratch = R11_scratch1, 2080 Rklass = R12_scratch2, 2081 Rklass_flags = Rklass; 2082 Label Lskip_register_finalizer; 2083 2084 // Check if the method has the FINALIZER flag set and call into the VM to finalize in this case. 2085 assert(state == vtos, "only valid state"); 2086 __ ld(R17_tos, 0, R18_locals); 2087 2088 // Load klass of this obj. 2089 __ load_klass(Rklass, R17_tos); 2090 __ lwz(Rklass_flags, in_bytes(Klass::access_flags_offset()), Rklass); 2091 __ testbitdi(CCR0, R0, Rklass_flags, exact_log2(JVM_ACC_HAS_FINALIZER)); 2092 __ bfalse(CCR0, Lskip_register_finalizer); 2093 2094 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), R17_tos /* obj */); 2095 2096 __ align(32, 12); 2097 __ bind(Lskip_register_finalizer); 2098 } 2099 2100 // Move the result value into the correct register and remove memory stack frame. 2101 __ remove_activation(state, /* throw_monitor_exception */ true); 2102 // Restoration of lr done by remove_activation. 2103 switch (state) { 2104 case ltos: 2105 case btos: 2106 case ctos: 2107 case stos: 2108 case atos: 2109 case itos: __ mr(R3_RET, R17_tos); break; 2110 case ftos: 2111 case dtos: __ fmr(F1_RET, F15_ftos); break; 2112 case vtos: // This might be a constructor. Final fields (and volatile fields on PPC64) need 2113 // to get visible before the reference to the object gets stored anywhere. 2114 __ membar(Assembler::StoreStore); break; 2115 default : ShouldNotReachHere(); 2116 } 2117 __ blr(); 2118 } 2119 2120 // ============================================================================ 2121 // Constant pool cache access 2122 // 2123 // Memory ordering: 2124 // 2125 // Like done in C++ interpreter, we load the fields 2126 // - _indices 2127 // - _f12_oop 2128 // acquired, because these are asked if the cache is already resolved. We don't 2129 // want to float loads above this check. 2130 // See also comments in ConstantPoolCacheEntry::bytecode_1(), 2131 // ConstantPoolCacheEntry::bytecode_2() and ConstantPoolCacheEntry::f1(); 2132 2133 // Call into the VM if call site is not yet resolved 2134 // 2135 // Input regs: 2136 // - None, all passed regs are outputs. 2137 // 2138 // Returns: 2139 // - Rcache: The const pool cache entry that contains the resolved result. 2140 // - Rresult: Either noreg or output for f1/f2. 2141 // 2142 // Kills: 2143 // - Rscratch 2144 void TemplateTable::resolve_cache_and_index(int byte_no, Register Rcache, Register Rscratch, size_t index_size) { 2145 2146 __ get_cache_and_index_at_bcp(Rcache, 1, index_size); 2147 Label Lresolved, Ldone; 2148 2149 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 2150 // We are resolved if the indices offset contains the current bytecode. 2151 #if defined(VM_LITTLE_ENDIAN) 2152 __ lbz(Rscratch, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()) + byte_no + 1, Rcache); 2153 #else 2154 __ lbz(Rscratch, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()) + 7 - (byte_no + 1), Rcache); 2155 #endif 2156 // Acquire by cmp-br-isync (see below). 2157 __ cmpdi(CCR0, Rscratch, (int)bytecode()); 2158 __ beq(CCR0, Lresolved); 2159 2160 address entry = NULL; 2161 switch (bytecode()) { 2162 case Bytecodes::_getstatic : // fall through 2163 case Bytecodes::_putstatic : // fall through 2164 case Bytecodes::_getfield : // fall through 2165 case Bytecodes::_putfield : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put); break; 2166 case Bytecodes::_invokevirtual : // fall through 2167 case Bytecodes::_invokespecial : // fall through 2168 case Bytecodes::_invokestatic : // fall through 2169 case Bytecodes::_invokeinterface: entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke); break; 2170 case Bytecodes::_invokehandle : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokehandle); break; 2171 case Bytecodes::_invokedynamic : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic); break; 2172 default : ShouldNotReachHere(); break; 2173 } 2174 __ li(R4_ARG2, (int)bytecode()); 2175 __ call_VM(noreg, entry, R4_ARG2, true); 2176 2177 // Update registers with resolved info. 2178 __ get_cache_and_index_at_bcp(Rcache, 1, index_size); 2179 __ b(Ldone); 2180 2181 __ bind(Lresolved); 2182 __ isync(); // Order load wrt. succeeding loads. 2183 __ bind(Ldone); 2184 } 2185 2186 // Load the constant pool cache entry at field accesses into registers. 2187 // The Rcache and Rindex registers must be set before call. 2188 // Input: 2189 // - Rcache, Rindex 2190 // Output: 2191 // - Robj, Roffset, Rflags 2192 void TemplateTable::load_field_cp_cache_entry(Register Robj, 2193 Register Rcache, 2194 Register Rindex /* unused on PPC64 */, 2195 Register Roffset, 2196 Register Rflags, 2197 bool is_static = false) { 2198 assert_different_registers(Rcache, Rflags, Roffset); 2199 // assert(Rindex == noreg, "parameter not used on PPC64"); 2200 2201 ByteSize cp_base_offset = ConstantPoolCache::base_offset(); 2202 __ ld(Rflags, in_bytes(cp_base_offset) + in_bytes(ConstantPoolCacheEntry::flags_offset()), Rcache); 2203 __ ld(Roffset, in_bytes(cp_base_offset) + in_bytes(ConstantPoolCacheEntry::f2_offset()), Rcache); 2204 if (is_static) { 2205 __ ld(Robj, in_bytes(cp_base_offset) + in_bytes(ConstantPoolCacheEntry::f1_offset()), Rcache); 2206 __ ld(Robj, in_bytes(Klass::java_mirror_offset()), Robj); 2207 // Acquire not needed here. Following access has an address dependency on this value. 2208 } 2209 } 2210 2211 // Load the constant pool cache entry at invokes into registers. 2212 // Resolve if necessary. 2213 2214 // Input Registers: 2215 // - None, bcp is used, though 2216 // 2217 // Return registers: 2218 // - Rmethod (f1 field or f2 if invokevirtual) 2219 // - Ritable_index (f2 field) 2220 // - Rflags (flags field) 2221 // 2222 // Kills: 2223 // - R21 2224 // 2225 void TemplateTable::load_invoke_cp_cache_entry(int byte_no, 2226 Register Rmethod, 2227 Register Ritable_index, 2228 Register Rflags, 2229 bool is_invokevirtual, 2230 bool is_invokevfinal, 2231 bool is_invokedynamic) { 2232 2233 ByteSize cp_base_offset = ConstantPoolCache::base_offset(); 2234 // Determine constant pool cache field offsets. 2235 assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant"); 2236 const int method_offset = in_bytes(cp_base_offset + (is_invokevirtual ? ConstantPoolCacheEntry::f2_offset() : ConstantPoolCacheEntry::f1_offset())); 2237 const int flags_offset = in_bytes(cp_base_offset + ConstantPoolCacheEntry::flags_offset()); 2238 // Access constant pool cache fields. 2239 const int index_offset = in_bytes(cp_base_offset + ConstantPoolCacheEntry::f2_offset()); 2240 2241 Register Rcache = R21_tmp1; // Note: same register as R21_sender_SP. 2242 2243 if (is_invokevfinal) { 2244 assert(Ritable_index == noreg, "register not used"); 2245 // Already resolved. 2246 __ get_cache_and_index_at_bcp(Rcache, 1); 2247 } else { 2248 resolve_cache_and_index(byte_no, Rcache, R0, is_invokedynamic ? sizeof(u4) : sizeof(u2)); 2249 } 2250 2251 __ ld(Rmethod, method_offset, Rcache); 2252 __ ld(Rflags, flags_offset, Rcache); 2253 2254 if (Ritable_index != noreg) { 2255 __ ld(Ritable_index, index_offset, Rcache); 2256 } 2257 } 2258 2259 // ============================================================================ 2260 // Field access 2261 2262 // Volatile variables demand their effects be made known to all CPU's 2263 // in order. Store buffers on most chips allow reads & writes to 2264 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode 2265 // without some kind of memory barrier (i.e., it's not sufficient that 2266 // the interpreter does not reorder volatile references, the hardware 2267 // also must not reorder them). 2268 // 2269 // According to the new Java Memory Model (JMM): 2270 // (1) All volatiles are serialized wrt to each other. ALSO reads & 2271 // writes act as aquire & release, so: 2272 // (2) A read cannot let unrelated NON-volatile memory refs that 2273 // happen after the read float up to before the read. It's OK for 2274 // non-volatile memory refs that happen before the volatile read to 2275 // float down below it. 2276 // (3) Similar a volatile write cannot let unrelated NON-volatile 2277 // memory refs that happen BEFORE the write float down to after the 2278 // write. It's OK for non-volatile memory refs that happen after the 2279 // volatile write to float up before it. 2280 // 2281 // We only put in barriers around volatile refs (they are expensive), 2282 // not _between_ memory refs (that would require us to track the 2283 // flavor of the previous memory refs). Requirements (2) and (3) 2284 // require some barriers before volatile stores and after volatile 2285 // loads. These nearly cover requirement (1) but miss the 2286 // volatile-store-volatile-load case. This final case is placed after 2287 // volatile-stores although it could just as well go before 2288 // volatile-loads. 2289 2290 // The registers cache and index expected to be set before call. 2291 // Correct values of the cache and index registers are preserved. 2292 // Kills: 2293 // Rcache (if has_tos) 2294 // Rscratch 2295 void TemplateTable::jvmti_post_field_access(Register Rcache, Register Rscratch, bool is_static, bool has_tos) { 2296 2297 assert_different_registers(Rcache, Rscratch); 2298 2299 if (JvmtiExport::can_post_field_access()) { 2300 ByteSize cp_base_offset = ConstantPoolCache::base_offset(); 2301 Label Lno_field_access_post; 2302 2303 // Check if post field access in enabled. 2304 int offs = __ load_const_optimized(Rscratch, JvmtiExport::get_field_access_count_addr(), R0, true); 2305 __ lwz(Rscratch, offs, Rscratch); 2306 2307 __ cmpwi(CCR0, Rscratch, 0); 2308 __ beq(CCR0, Lno_field_access_post); 2309 2310 // Post access enabled - do it! 2311 __ addi(Rcache, Rcache, in_bytes(cp_base_offset)); 2312 if (is_static) { 2313 __ li(R17_tos, 0); 2314 } else { 2315 if (has_tos) { 2316 // The fast bytecode versions have obj ptr in register. 2317 // Thus, save object pointer before call_VM() clobbers it 2318 // put object on tos where GC wants it. 2319 __ push_ptr(R17_tos); 2320 } else { 2321 // Load top of stack (do not pop the value off the stack). 2322 __ ld(R17_tos, Interpreter::expr_offset_in_bytes(0), R15_esp); 2323 } 2324 __ verify_oop(R17_tos); 2325 } 2326 // tos: object pointer or NULL if static 2327 // cache: cache entry pointer 2328 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), R17_tos, Rcache); 2329 if (!is_static && has_tos) { 2330 // Restore object pointer. 2331 __ pop_ptr(R17_tos); 2332 __ verify_oop(R17_tos); 2333 } else { 2334 // Cache is still needed to get class or obj. 2335 __ get_cache_and_index_at_bcp(Rcache, 1); 2336 } 2337 2338 __ align(32, 12); 2339 __ bind(Lno_field_access_post); 2340 } 2341 } 2342 2343 // kills R11_scratch1 2344 void TemplateTable::pop_and_check_object(Register Roop) { 2345 Register Rtmp = R11_scratch1; 2346 2347 assert_different_registers(Rtmp, Roop); 2348 __ pop_ptr(Roop); 2349 // For field access must check obj. 2350 __ null_check_throw(Roop, -1, Rtmp); 2351 __ verify_oop(Roop); 2352 } 2353 2354 // PPC64: implement volatile loads as fence-store-acquire. 2355 void TemplateTable::getfield_or_static(int byte_no, bool is_static) { 2356 transition(vtos, vtos); 2357 2358 Label Lacquire, Lisync; 2359 2360 const Register Rcache = R3_ARG1, 2361 Rclass_or_obj = R22_tmp2, 2362 Roffset = R23_tmp3, 2363 Rflags = R31, 2364 Rbtable = R5_ARG3, 2365 Rbc = R6_ARG4, 2366 Rscratch = R12_scratch2; 2367 2368 static address field_branch_table[number_of_states], 2369 static_branch_table[number_of_states]; 2370 2371 address* branch_table = is_static ? static_branch_table : field_branch_table; 2372 2373 // Get field offset. 2374 resolve_cache_and_index(byte_no, Rcache, Rscratch, sizeof(u2)); 2375 2376 // JVMTI support 2377 jvmti_post_field_access(Rcache, Rscratch, is_static, false); 2378 2379 // Load after possible GC. 2380 load_field_cp_cache_entry(Rclass_or_obj, Rcache, noreg, Roffset, Rflags, is_static); 2381 2382 // Load pointer to branch table. 2383 __ load_const_optimized(Rbtable, (address)branch_table, Rscratch); 2384 2385 // Get volatile flag. 2386 __ rldicl(Rscratch, Rflags, 64-ConstantPoolCacheEntry::is_volatile_shift, 63); // Extract volatile bit. 2387 // Note: sync is needed before volatile load on PPC64. 2388 2389 // Check field type. 2390 __ rldicl(Rflags, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits); 2391 2392 #ifdef ASSERT 2393 Label LFlagInvalid; 2394 __ cmpldi(CCR0, Rflags, number_of_states); 2395 __ bge(CCR0, LFlagInvalid); 2396 #endif 2397 2398 // Load from branch table and dispatch (volatile case: one instruction ahead). 2399 __ sldi(Rflags, Rflags, LogBytesPerWord); 2400 __ cmpwi(CCR6, Rscratch, 1); // Volatile? 2401 if (support_IRIW_for_not_multiple_copy_atomic_cpu) { 2402 __ sldi(Rscratch, Rscratch, exact_log2(BytesPerInstWord)); // Volatile ? size of 1 instruction : 0. 2403 } 2404 __ ldx(Rbtable, Rbtable, Rflags); 2405 2406 // Get the obj from stack. 2407 if (!is_static) { 2408 pop_and_check_object(Rclass_or_obj); // Kills R11_scratch1. 2409 } else { 2410 __ verify_oop(Rclass_or_obj); 2411 } 2412 2413 if (support_IRIW_for_not_multiple_copy_atomic_cpu) { 2414 __ subf(Rbtable, Rscratch, Rbtable); // Point to volatile/non-volatile entry point. 2415 } 2416 __ mtctr(Rbtable); 2417 __ bctr(); 2418 2419 #ifdef ASSERT 2420 __ bind(LFlagInvalid); 2421 __ stop("got invalid flag", 0x654); 2422 2423 // __ bind(Lvtos); 2424 address pc_before_fence = __ pc(); 2425 __ fence(); // Volatile entry point (one instruction before non-volatile_entry point). 2426 assert(__ pc() - pc_before_fence == (ptrdiff_t)BytesPerInstWord, "must be single instruction"); 2427 assert(branch_table[vtos] == 0, "can't compute twice"); 2428 branch_table[vtos] = __ pc(); // non-volatile_entry point 2429 __ stop("vtos unexpected", 0x655); 2430 #endif 2431 2432 __ align(32, 28, 28); // Align load. 2433 // __ bind(Ldtos); 2434 __ fence(); // Volatile entry point (one instruction before non-volatile_entry point). 2435 assert(branch_table[dtos] == 0, "can't compute twice"); 2436 branch_table[dtos] = __ pc(); // non-volatile_entry point 2437 __ lfdx(F15_ftos, Rclass_or_obj, Roffset); 2438 __ push(dtos); 2439 if (!is_static) patch_bytecode(Bytecodes::_fast_dgetfield, Rbc, Rscratch); 2440 { 2441 Label acquire_double; 2442 __ beq(CCR6, acquire_double); // Volatile? 2443 __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode())); 2444 2445 __ bind(acquire_double); 2446 __ fcmpu(CCR0, F15_ftos, F15_ftos); // Acquire by cmp-br-isync. 2447 __ beq_predict_taken(CCR0, Lisync); 2448 __ b(Lisync); // In case of NAN. 2449 } 2450 2451 __ align(32, 28, 28); // Align load. 2452 // __ bind(Lftos); 2453 __ fence(); // Volatile entry point (one instruction before non-volatile_entry point). 2454 assert(branch_table[ftos] == 0, "can't compute twice"); 2455 branch_table[ftos] = __ pc(); // non-volatile_entry point 2456 __ lfsx(F15_ftos, Rclass_or_obj, Roffset); 2457 __ push(ftos); 2458 if (!is_static) { patch_bytecode(Bytecodes::_fast_fgetfield, Rbc, Rscratch); } 2459 { 2460 Label acquire_float; 2461 __ beq(CCR6, acquire_float); // Volatile? 2462 __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode())); 2463 2464 __ bind(acquire_float); 2465 __ fcmpu(CCR0, F15_ftos, F15_ftos); // Acquire by cmp-br-isync. 2466 __ beq_predict_taken(CCR0, Lisync); 2467 __ b(Lisync); // In case of NAN. 2468 } 2469 2470 __ align(32, 28, 28); // Align load. 2471 // __ bind(Litos); 2472 __ fence(); // Volatile entry point (one instruction before non-volatile_entry point). 2473 assert(branch_table[itos] == 0, "can't compute twice"); 2474 branch_table[itos] = __ pc(); // non-volatile_entry point 2475 __ lwax(R17_tos, Rclass_or_obj, Roffset); 2476 __ push(itos); 2477 if (!is_static) patch_bytecode(Bytecodes::_fast_igetfield, Rbc, Rscratch); 2478 __ beq(CCR6, Lacquire); // Volatile? 2479 __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode())); 2480 2481 __ align(32, 28, 28); // Align load. 2482 // __ bind(Lltos); 2483 __ fence(); // Volatile entry point (one instruction before non-volatile_entry point). 2484 assert(branch_table[ltos] == 0, "can't compute twice"); 2485 branch_table[ltos] = __ pc(); // non-volatile_entry point 2486 __ ldx(R17_tos, Rclass_or_obj, Roffset); 2487 __ push(ltos); 2488 if (!is_static) patch_bytecode(Bytecodes::_fast_lgetfield, Rbc, Rscratch); 2489 __ beq(CCR6, Lacquire); // Volatile? 2490 __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode())); 2491 2492 __ align(32, 28, 28); // Align load. 2493 // __ bind(Lbtos); 2494 __ fence(); // Volatile entry point (one instruction before non-volatile_entry point). 2495 assert(branch_table[btos] == 0, "can't compute twice"); 2496 branch_table[btos] = __ pc(); // non-volatile_entry point 2497 __ lbzx(R17_tos, Rclass_or_obj, Roffset); 2498 __ extsb(R17_tos, R17_tos); 2499 __ push(btos); 2500 if (!is_static) patch_bytecode(Bytecodes::_fast_bgetfield, Rbc, Rscratch); 2501 __ beq(CCR6, Lacquire); // Volatile? 2502 __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode())); 2503 2504 __ align(32, 28, 28); // Align load. 2505 // __ bind(Lctos); 2506 __ fence(); // Volatile entry point (one instruction before non-volatile_entry point). 2507 assert(branch_table[ctos] == 0, "can't compute twice"); 2508 branch_table[ctos] = __ pc(); // non-volatile_entry point 2509 __ lhzx(R17_tos, Rclass_or_obj, Roffset); 2510 __ push(ctos); 2511 if (!is_static) patch_bytecode(Bytecodes::_fast_cgetfield, Rbc, Rscratch); 2512 __ beq(CCR6, Lacquire); // Volatile? 2513 __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode())); 2514 2515 __ align(32, 28, 28); // Align load. 2516 // __ bind(Lstos); 2517 __ fence(); // Volatile entry point (one instruction before non-volatile_entry point). 2518 assert(branch_table[stos] == 0, "can't compute twice"); 2519 branch_table[stos] = __ pc(); // non-volatile_entry point 2520 __ lhax(R17_tos, Rclass_or_obj, Roffset); 2521 __ push(stos); 2522 if (!is_static) patch_bytecode(Bytecodes::_fast_sgetfield, Rbc, Rscratch); 2523 __ beq(CCR6, Lacquire); // Volatile? 2524 __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode())); 2525 2526 __ align(32, 28, 28); // Align load. 2527 // __ bind(Latos); 2528 __ fence(); // Volatile entry point (one instruction before non-volatile_entry point). 2529 assert(branch_table[atos] == 0, "can't compute twice"); 2530 branch_table[atos] = __ pc(); // non-volatile_entry point 2531 __ load_heap_oop(R17_tos, (RegisterOrConstant)Roffset, Rclass_or_obj); 2532 __ verify_oop(R17_tos); 2533 __ push(atos); 2534 //__ dcbt(R17_tos); // prefetch 2535 if (!is_static) patch_bytecode(Bytecodes::_fast_agetfield, Rbc, Rscratch); 2536 __ beq(CCR6, Lacquire); // Volatile? 2537 __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode())); 2538 2539 __ align(32, 12); 2540 __ bind(Lacquire); 2541 __ twi_0(R17_tos); 2542 __ bind(Lisync); 2543 __ isync(); // acquire 2544 2545 #ifdef ASSERT 2546 for (int i = 0; i<number_of_states; ++i) { 2547 assert(branch_table[i], "get initialization"); 2548 //tty->print_cr("get: %s_branch_table[%d] = 0x%llx (opcode 0x%llx)", 2549 // is_static ? "static" : "field", i, branch_table[i], *((unsigned int*)branch_table[i])); 2550 } 2551 #endif 2552 } 2553 2554 void TemplateTable::getfield(int byte_no) { 2555 getfield_or_static(byte_no, false); 2556 } 2557 2558 void TemplateTable::getstatic(int byte_no) { 2559 getfield_or_static(byte_no, true); 2560 } 2561 2562 // The registers cache and index expected to be set before call. 2563 // The function may destroy various registers, just not the cache and index registers. 2564 void TemplateTable::jvmti_post_field_mod(Register Rcache, Register Rscratch, bool is_static) { 2565 2566 assert_different_registers(Rcache, Rscratch, R6_ARG4); 2567 2568 if (JvmtiExport::can_post_field_modification()) { 2569 Label Lno_field_mod_post; 2570 2571 // Check if post field access in enabled. 2572 int offs = __ load_const_optimized(Rscratch, JvmtiExport::get_field_modification_count_addr(), R0, true); 2573 __ lwz(Rscratch, offs, Rscratch); 2574 2575 __ cmpwi(CCR0, Rscratch, 0); 2576 __ beq(CCR0, Lno_field_mod_post); 2577 2578 // Do the post 2579 ByteSize cp_base_offset = ConstantPoolCache::base_offset(); 2580 const Register Robj = Rscratch; 2581 2582 __ addi(Rcache, Rcache, in_bytes(cp_base_offset)); 2583 if (is_static) { 2584 // Life is simple. Null out the object pointer. 2585 __ li(Robj, 0); 2586 } else { 2587 // In case of the fast versions, value lives in registers => put it back on tos. 2588 int offs = Interpreter::expr_offset_in_bytes(0); 2589 Register base = R15_esp; 2590 switch(bytecode()) { 2591 case Bytecodes::_fast_aputfield: __ push_ptr(); offs+= Interpreter::stackElementSize; break; 2592 case Bytecodes::_fast_iputfield: // Fall through 2593 case Bytecodes::_fast_bputfield: // Fall through 2594 case Bytecodes::_fast_cputfield: // Fall through 2595 case Bytecodes::_fast_sputfield: __ push_i(); offs+= Interpreter::stackElementSize; break; 2596 case Bytecodes::_fast_lputfield: __ push_l(); offs+=2*Interpreter::stackElementSize; break; 2597 case Bytecodes::_fast_fputfield: __ push_f(); offs+= Interpreter::stackElementSize; break; 2598 case Bytecodes::_fast_dputfield: __ push_d(); offs+=2*Interpreter::stackElementSize; break; 2599 default: { 2600 offs = 0; 2601 base = Robj; 2602 const Register Rflags = Robj; 2603 Label is_one_slot; 2604 // Life is harder. The stack holds the value on top, followed by the 2605 // object. We don't know the size of the value, though; it could be 2606 // one or two words depending on its type. As a result, we must find 2607 // the type to determine where the object is. 2608 __ ld(Rflags, in_bytes(ConstantPoolCacheEntry::flags_offset()), Rcache); // Big Endian 2609 __ rldicl(Rflags, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits); 2610 2611 __ cmpwi(CCR0, Rflags, ltos); 2612 __ cmpwi(CCR1, Rflags, dtos); 2613 __ addi(base, R15_esp, Interpreter::expr_offset_in_bytes(1)); 2614 __ crnor(CCR0, Assembler::equal, CCR1, Assembler::equal); 2615 __ beq(CCR0, is_one_slot); 2616 __ addi(base, R15_esp, Interpreter::expr_offset_in_bytes(2)); 2617 __ bind(is_one_slot); 2618 break; 2619 } 2620 } 2621 __ ld(Robj, offs, base); 2622 __ verify_oop(Robj); 2623 } 2624 2625 __ addi(R6_ARG4, R15_esp, Interpreter::expr_offset_in_bytes(0)); 2626 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), Robj, Rcache, R6_ARG4); 2627 __ get_cache_and_index_at_bcp(Rcache, 1); 2628 2629 // In case of the fast versions, value lives in registers => put it back on tos. 2630 switch(bytecode()) { 2631 case Bytecodes::_fast_aputfield: __ pop_ptr(); break; 2632 case Bytecodes::_fast_iputfield: // Fall through 2633 case Bytecodes::_fast_bputfield: // Fall through 2634 case Bytecodes::_fast_cputfield: // Fall through 2635 case Bytecodes::_fast_sputfield: __ pop_i(); break; 2636 case Bytecodes::_fast_lputfield: __ pop_l(); break; 2637 case Bytecodes::_fast_fputfield: __ pop_f(); break; 2638 case Bytecodes::_fast_dputfield: __ pop_d(); break; 2639 default: break; // Nothin' to do. 2640 } 2641 2642 __ align(32, 12); 2643 __ bind(Lno_field_mod_post); 2644 } 2645 } 2646 2647 // PPC64: implement volatile stores as release-store (return bytecode contains an additional release). 2648 void TemplateTable::putfield_or_static(int byte_no, bool is_static) { 2649 Label Lvolatile; 2650 2651 const Register Rcache = R5_ARG3, // Do not use ARG1/2 (causes trouble in jvmti_post_field_mod). 2652 Rclass_or_obj = R31, // Needs to survive C call. 2653 Roffset = R22_tmp2, // Needs to survive C call. 2654 Rflags = R3_ARG1, 2655 Rbtable = R4_ARG2, 2656 Rscratch = R11_scratch1, 2657 Rscratch2 = R12_scratch2, 2658 Rscratch3 = R6_ARG4, 2659 Rbc = Rscratch3; 2660 const ConditionRegister CR_is_vol = CCR2; // Non-volatile condition register (survives runtime call in do_oop_store). 2661 2662 static address field_branch_table[number_of_states], 2663 static_branch_table[number_of_states]; 2664 2665 address* branch_table = is_static ? static_branch_table : field_branch_table; 2666 2667 // Stack (grows up): 2668 // value 2669 // obj 2670 2671 // Load the field offset. 2672 resolve_cache_and_index(byte_no, Rcache, Rscratch, sizeof(u2)); 2673 jvmti_post_field_mod(Rcache, Rscratch, is_static); 2674 load_field_cp_cache_entry(Rclass_or_obj, Rcache, noreg, Roffset, Rflags, is_static); 2675 2676 // Load pointer to branch table. 2677 __ load_const_optimized(Rbtable, (address)branch_table, Rscratch); 2678 2679 // Get volatile flag. 2680 __ rldicl(Rscratch, Rflags, 64-ConstantPoolCacheEntry::is_volatile_shift, 63); // Extract volatile bit. 2681 2682 // Check the field type. 2683 __ rldicl(Rflags, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits); 2684 2685 #ifdef ASSERT 2686 Label LFlagInvalid; 2687 __ cmpldi(CCR0, Rflags, number_of_states); 2688 __ bge(CCR0, LFlagInvalid); 2689 #endif 2690 2691 // Load from branch table and dispatch (volatile case: one instruction ahead). 2692 __ sldi(Rflags, Rflags, LogBytesPerWord); 2693 if (!support_IRIW_for_not_multiple_copy_atomic_cpu) { __ cmpwi(CR_is_vol, Rscratch, 1); } // Volatile? 2694 __ sldi(Rscratch, Rscratch, exact_log2(BytesPerInstWord)); // Volatile? size of instruction 1 : 0. 2695 __ ldx(Rbtable, Rbtable, Rflags); 2696 2697 __ subf(Rbtable, Rscratch, Rbtable); // Point to volatile/non-volatile entry point. 2698 __ mtctr(Rbtable); 2699 __ bctr(); 2700 2701 #ifdef ASSERT 2702 __ bind(LFlagInvalid); 2703 __ stop("got invalid flag", 0x656); 2704 2705 // __ bind(Lvtos); 2706 address pc_before_release = __ pc(); 2707 __ release(); // Volatile entry point (one instruction before non-volatile_entry point). 2708 assert(__ pc() - pc_before_release == (ptrdiff_t)BytesPerInstWord, "must be single instruction"); 2709 assert(branch_table[vtos] == 0, "can't compute twice"); 2710 branch_table[vtos] = __ pc(); // non-volatile_entry point 2711 __ stop("vtos unexpected", 0x657); 2712 #endif 2713 2714 __ align(32, 28, 28); // Align pop. 2715 // __ bind(Ldtos); 2716 __ release(); // Volatile entry point (one instruction before non-volatile_entry point). 2717 assert(branch_table[dtos] == 0, "can't compute twice"); 2718 branch_table[dtos] = __ pc(); // non-volatile_entry point 2719 __ pop(dtos); 2720 if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1. 2721 __ stfdx(F15_ftos, Rclass_or_obj, Roffset); 2722 if (!is_static) { patch_bytecode(Bytecodes::_fast_dputfield, Rbc, Rscratch, true, byte_no); } 2723 if (!support_IRIW_for_not_multiple_copy_atomic_cpu) { 2724 __ beq(CR_is_vol, Lvolatile); // Volatile? 2725 } 2726 __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode())); 2727 2728 __ align(32, 28, 28); // Align pop. 2729 // __ bind(Lftos); 2730 __ release(); // Volatile entry point (one instruction before non-volatile_entry point). 2731 assert(branch_table[ftos] == 0, "can't compute twice"); 2732 branch_table[ftos] = __ pc(); // non-volatile_entry point 2733 __ pop(ftos); 2734 if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1. 2735 __ stfsx(F15_ftos, Rclass_or_obj, Roffset); 2736 if (!is_static) { patch_bytecode(Bytecodes::_fast_fputfield, Rbc, Rscratch, true, byte_no); } 2737 if (!support_IRIW_for_not_multiple_copy_atomic_cpu) { 2738 __ beq(CR_is_vol, Lvolatile); // Volatile? 2739 } 2740 __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode())); 2741 2742 __ align(32, 28, 28); // Align pop. 2743 // __ bind(Litos); 2744 __ release(); // Volatile entry point (one instruction before non-volatile_entry point). 2745 assert(branch_table[itos] == 0, "can't compute twice"); 2746 branch_table[itos] = __ pc(); // non-volatile_entry point 2747 __ pop(itos); 2748 if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1. 2749 __ stwx(R17_tos, Rclass_or_obj, Roffset); 2750 if (!is_static) { patch_bytecode(Bytecodes::_fast_iputfield, Rbc, Rscratch, true, byte_no); } 2751 if (!support_IRIW_for_not_multiple_copy_atomic_cpu) { 2752 __ beq(CR_is_vol, Lvolatile); // Volatile? 2753 } 2754 __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode())); 2755 2756 __ align(32, 28, 28); // Align pop. 2757 // __ bind(Lltos); 2758 __ release(); // Volatile entry point (one instruction before non-volatile_entry point). 2759 assert(branch_table[ltos] == 0, "can't compute twice"); 2760 branch_table[ltos] = __ pc(); // non-volatile_entry point 2761 __ pop(ltos); 2762 if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1. 2763 __ stdx(R17_tos, Rclass_or_obj, Roffset); 2764 if (!is_static) { patch_bytecode(Bytecodes::_fast_lputfield, Rbc, Rscratch, true, byte_no); } 2765 if (!support_IRIW_for_not_multiple_copy_atomic_cpu) { 2766 __ beq(CR_is_vol, Lvolatile); // Volatile? 2767 } 2768 __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode())); 2769 2770 __ align(32, 28, 28); // Align pop. 2771 // __ bind(Lbtos); 2772 __ release(); // Volatile entry point (one instruction before non-volatile_entry point). 2773 assert(branch_table[btos] == 0, "can't compute twice"); 2774 branch_table[btos] = __ pc(); // non-volatile_entry point 2775 __ pop(btos); 2776 if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1. 2777 __ stbx(R17_tos, Rclass_or_obj, Roffset); 2778 if (!is_static) { patch_bytecode(Bytecodes::_fast_bputfield, Rbc, Rscratch, true, byte_no); } 2779 if (!support_IRIW_for_not_multiple_copy_atomic_cpu) { 2780 __ beq(CR_is_vol, Lvolatile); // Volatile? 2781 } 2782 __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode())); 2783 2784 __ align(32, 28, 28); // Align pop. 2785 // __ bind(Lctos); 2786 __ release(); // Volatile entry point (one instruction before non-volatile_entry point). 2787 assert(branch_table[ctos] == 0, "can't compute twice"); 2788 branch_table[ctos] = __ pc(); // non-volatile_entry point 2789 __ pop(ctos); 2790 if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1.. 2791 __ sthx(R17_tos, Rclass_or_obj, Roffset); 2792 if (!is_static) { patch_bytecode(Bytecodes::_fast_cputfield, Rbc, Rscratch, true, byte_no); } 2793 if (!support_IRIW_for_not_multiple_copy_atomic_cpu) { 2794 __ beq(CR_is_vol, Lvolatile); // Volatile? 2795 } 2796 __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode())); 2797 2798 __ align(32, 28, 28); // Align pop. 2799 // __ bind(Lstos); 2800 __ release(); // Volatile entry point (one instruction before non-volatile_entry point). 2801 assert(branch_table[stos] == 0, "can't compute twice"); 2802 branch_table[stos] = __ pc(); // non-volatile_entry point 2803 __ pop(stos); 2804 if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1. 2805 __ sthx(R17_tos, Rclass_or_obj, Roffset); 2806 if (!is_static) { patch_bytecode(Bytecodes::_fast_sputfield, Rbc, Rscratch, true, byte_no); } 2807 if (!support_IRIW_for_not_multiple_copy_atomic_cpu) { 2808 __ beq(CR_is_vol, Lvolatile); // Volatile? 2809 } 2810 __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode())); 2811 2812 __ align(32, 28, 28); // Align pop. 2813 // __ bind(Latos); 2814 __ release(); // Volatile entry point (one instruction before non-volatile_entry point). 2815 assert(branch_table[atos] == 0, "can't compute twice"); 2816 branch_table[atos] = __ pc(); // non-volatile_entry point 2817 __ pop(atos); 2818 if (!is_static) { pop_and_check_object(Rclass_or_obj); } // kills R11_scratch1 2819 do_oop_store(_masm, Rclass_or_obj, Roffset, R17_tos, Rscratch, Rscratch2, Rscratch3, _bs->kind(), false /* precise */, true /* check null */); 2820 if (!is_static) { patch_bytecode(Bytecodes::_fast_aputfield, Rbc, Rscratch, true, byte_no); } 2821 if (!support_IRIW_for_not_multiple_copy_atomic_cpu) { 2822 __ beq(CR_is_vol, Lvolatile); // Volatile? 2823 __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode())); 2824 2825 __ align(32, 12); 2826 __ bind(Lvolatile); 2827 __ fence(); 2828 } 2829 // fallthru: __ b(Lexit); 2830 2831 #ifdef ASSERT 2832 for (int i = 0; i<number_of_states; ++i) { 2833 assert(branch_table[i], "put initialization"); 2834 //tty->print_cr("put: %s_branch_table[%d] = 0x%llx (opcode 0x%llx)", 2835 // is_static ? "static" : "field", i, branch_table[i], *((unsigned int*)branch_table[i])); 2836 } 2837 #endif 2838 } 2839 2840 void TemplateTable::putfield(int byte_no) { 2841 putfield_or_static(byte_no, false); 2842 } 2843 2844 void TemplateTable::putstatic(int byte_no) { 2845 putfield_or_static(byte_no, true); 2846 } 2847 2848 // See SPARC. On PPC64, we have a different jvmti_post_field_mod which does the job. 2849 void TemplateTable::jvmti_post_fast_field_mod() { 2850 __ should_not_reach_here(); 2851 } 2852 2853 void TemplateTable::fast_storefield(TosState state) { 2854 transition(state, vtos); 2855 2856 const Register Rcache = R5_ARG3, // Do not use ARG1/2 (causes trouble in jvmti_post_field_mod). 2857 Rclass_or_obj = R31, // Needs to survive C call. 2858 Roffset = R22_tmp2, // Needs to survive C call. 2859 Rflags = R3_ARG1, 2860 Rscratch = R11_scratch1, 2861 Rscratch2 = R12_scratch2, 2862 Rscratch3 = R4_ARG2; 2863 const ConditionRegister CR_is_vol = CCR2; // Non-volatile condition register (survives runtime call in do_oop_store). 2864 2865 // Constant pool already resolved => Load flags and offset of field. 2866 __ get_cache_and_index_at_bcp(Rcache, 1); 2867 jvmti_post_field_mod(Rcache, Rscratch, false /* not static */); 2868 load_field_cp_cache_entry(noreg, Rcache, noreg, Roffset, Rflags, false); 2869 2870 // Get the obj and the final store addr. 2871 pop_and_check_object(Rclass_or_obj); // Kills R11_scratch1. 2872 2873 // Get volatile flag. 2874 __ rldicl_(Rscratch, Rflags, 64-ConstantPoolCacheEntry::is_volatile_shift, 63); // Extract volatile bit. 2875 if (!support_IRIW_for_not_multiple_copy_atomic_cpu) { __ cmpdi(CR_is_vol, Rscratch, 1); } 2876 { 2877 Label LnotVolatile; 2878 __ beq(CCR0, LnotVolatile); 2879 __ release(); 2880 __ align(32, 12); 2881 __ bind(LnotVolatile); 2882 } 2883 2884 // Do the store and fencing. 2885 switch(bytecode()) { 2886 case Bytecodes::_fast_aputfield: 2887 // Store into the field. 2888 do_oop_store(_masm, Rclass_or_obj, Roffset, R17_tos, Rscratch, Rscratch2, Rscratch3, _bs->kind(), false /* precise */, true /* check null */); 2889 break; 2890 2891 case Bytecodes::_fast_iputfield: 2892 __ stwx(R17_tos, Rclass_or_obj, Roffset); 2893 break; 2894 2895 case Bytecodes::_fast_lputfield: 2896 __ stdx(R17_tos, Rclass_or_obj, Roffset); 2897 break; 2898 2899 case Bytecodes::_fast_bputfield: 2900 __ stbx(R17_tos, Rclass_or_obj, Roffset); 2901 break; 2902 2903 case Bytecodes::_fast_cputfield: 2904 case Bytecodes::_fast_sputfield: 2905 __ sthx(R17_tos, Rclass_or_obj, Roffset); 2906 break; 2907 2908 case Bytecodes::_fast_fputfield: 2909 __ stfsx(F15_ftos, Rclass_or_obj, Roffset); 2910 break; 2911 2912 case Bytecodes::_fast_dputfield: 2913 __ stfdx(F15_ftos, Rclass_or_obj, Roffset); 2914 break; 2915 2916 default: ShouldNotReachHere(); 2917 } 2918 2919 if (!support_IRIW_for_not_multiple_copy_atomic_cpu) { 2920 Label LVolatile; 2921 __ beq(CR_is_vol, LVolatile); 2922 __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode())); 2923 2924 __ align(32, 12); 2925 __ bind(LVolatile); 2926 __ fence(); 2927 } 2928 } 2929 2930 void TemplateTable::fast_accessfield(TosState state) { 2931 transition(atos, state); 2932 2933 Label LisVolatile; 2934 ByteSize cp_base_offset = ConstantPoolCache::base_offset(); 2935 2936 const Register Rcache = R3_ARG1, 2937 Rclass_or_obj = R17_tos, 2938 Roffset = R22_tmp2, 2939 Rflags = R23_tmp3, 2940 Rscratch = R12_scratch2; 2941 2942 // Constant pool already resolved. Get the field offset. 2943 __ get_cache_and_index_at_bcp(Rcache, 1); 2944 load_field_cp_cache_entry(noreg, Rcache, noreg, Roffset, Rflags, false); 2945 2946 // JVMTI support 2947 jvmti_post_field_access(Rcache, Rscratch, false, true); 2948 2949 // Get the load address. 2950 __ null_check_throw(Rclass_or_obj, -1, Rscratch); 2951 2952 // Get volatile flag. 2953 __ rldicl_(Rscratch, Rflags, 64-ConstantPoolCacheEntry::is_volatile_shift, 63); // Extract volatile bit. 2954 __ bne(CCR0, LisVolatile); 2955 2956 switch(bytecode()) { 2957 case Bytecodes::_fast_agetfield: 2958 { 2959 __ load_heap_oop(R17_tos, (RegisterOrConstant)Roffset, Rclass_or_obj); 2960 __ verify_oop(R17_tos); 2961 __ dispatch_epilog(state, Bytecodes::length_for(bytecode())); 2962 2963 __ bind(LisVolatile); 2964 if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); } 2965 __ load_heap_oop(R17_tos, (RegisterOrConstant)Roffset, Rclass_or_obj); 2966 __ verify_oop(R17_tos); 2967 __ twi_0(R17_tos); 2968 __ isync(); 2969 break; 2970 } 2971 case Bytecodes::_fast_igetfield: 2972 { 2973 __ lwax(R17_tos, Rclass_or_obj, Roffset); 2974 __ dispatch_epilog(state, Bytecodes::length_for(bytecode())); 2975 2976 __ bind(LisVolatile); 2977 if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); } 2978 __ lwax(R17_tos, Rclass_or_obj, Roffset); 2979 __ twi_0(R17_tos); 2980 __ isync(); 2981 break; 2982 } 2983 case Bytecodes::_fast_lgetfield: 2984 { 2985 __ ldx(R17_tos, Rclass_or_obj, Roffset); 2986 __ dispatch_epilog(state, Bytecodes::length_for(bytecode())); 2987 2988 __ bind(LisVolatile); 2989 if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); } 2990 __ ldx(R17_tos, Rclass_or_obj, Roffset); 2991 __ twi_0(R17_tos); 2992 __ isync(); 2993 break; 2994 } 2995 case Bytecodes::_fast_bgetfield: 2996 { 2997 __ lbzx(R17_tos, Rclass_or_obj, Roffset); 2998 __ extsb(R17_tos, R17_tos); 2999 __ dispatch_epilog(state, Bytecodes::length_for(bytecode())); 3000 3001 __ bind(LisVolatile); 3002 if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); } 3003 __ lbzx(R17_tos, Rclass_or_obj, Roffset); 3004 __ twi_0(R17_tos); 3005 __ extsb(R17_tos, R17_tos); 3006 __ isync(); 3007 break; 3008 } 3009 case Bytecodes::_fast_cgetfield: 3010 { 3011 __ lhzx(R17_tos, Rclass_or_obj, Roffset); 3012 __ dispatch_epilog(state, Bytecodes::length_for(bytecode())); 3013 3014 __ bind(LisVolatile); 3015 if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); } 3016 __ lhzx(R17_tos, Rclass_or_obj, Roffset); 3017 __ twi_0(R17_tos); 3018 __ isync(); 3019 break; 3020 } 3021 case Bytecodes::_fast_sgetfield: 3022 { 3023 __ lhax(R17_tos, Rclass_or_obj, Roffset); 3024 __ dispatch_epilog(state, Bytecodes::length_for(bytecode())); 3025 3026 __ bind(LisVolatile); 3027 if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); } 3028 __ lhax(R17_tos, Rclass_or_obj, Roffset); 3029 __ twi_0(R17_tos); 3030 __ isync(); 3031 break; 3032 } 3033 case Bytecodes::_fast_fgetfield: 3034 { 3035 __ lfsx(F15_ftos, Rclass_or_obj, Roffset); 3036 __ dispatch_epilog(state, Bytecodes::length_for(bytecode())); 3037 3038 __ bind(LisVolatile); 3039 Label Ldummy; 3040 if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); } 3041 __ lfsx(F15_ftos, Rclass_or_obj, Roffset); 3042 __ fcmpu(CCR0, F15_ftos, F15_ftos); // Acquire by cmp-br-isync. 3043 __ bne_predict_not_taken(CCR0, Ldummy); 3044 __ bind(Ldummy); 3045 __ isync(); 3046 break; 3047 } 3048 case Bytecodes::_fast_dgetfield: 3049 { 3050 __ lfdx(F15_ftos, Rclass_or_obj, Roffset); 3051 __ dispatch_epilog(state, Bytecodes::length_for(bytecode())); 3052 3053 __ bind(LisVolatile); 3054 Label Ldummy; 3055 if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); } 3056 __ lfdx(F15_ftos, Rclass_or_obj, Roffset); 3057 __ fcmpu(CCR0, F15_ftos, F15_ftos); // Acquire by cmp-br-isync. 3058 __ bne_predict_not_taken(CCR0, Ldummy); 3059 __ bind(Ldummy); 3060 __ isync(); 3061 break; 3062 } 3063 default: ShouldNotReachHere(); 3064 } 3065 } 3066 3067 void TemplateTable::fast_xaccess(TosState state) { 3068 transition(vtos, state); 3069 3070 Label LisVolatile; 3071 ByteSize cp_base_offset = ConstantPoolCache::base_offset(); 3072 const Register Rcache = R3_ARG1, 3073 Rclass_or_obj = R17_tos, 3074 Roffset = R22_tmp2, 3075 Rflags = R23_tmp3, 3076 Rscratch = R12_scratch2; 3077 3078 __ ld(Rclass_or_obj, 0, R18_locals); 3079 3080 // Constant pool already resolved. Get the field offset. 3081 __ get_cache_and_index_at_bcp(Rcache, 2); 3082 load_field_cp_cache_entry(noreg, Rcache, noreg, Roffset, Rflags, false); 3083 3084 // JVMTI support not needed, since we switch back to single bytecode as soon as debugger attaches. 3085 3086 // Needed to report exception at the correct bcp. 3087 __ addi(R14_bcp, R14_bcp, 1); 3088 3089 // Get the load address. 3090 __ null_check_throw(Rclass_or_obj, -1, Rscratch); 3091 3092 // Get volatile flag. 3093 __ rldicl_(Rscratch, Rflags, 64-ConstantPoolCacheEntry::is_volatile_shift, 63); // Extract volatile bit. 3094 __ bne(CCR0, LisVolatile); 3095 3096 switch(state) { 3097 case atos: 3098 { 3099 __ load_heap_oop(R17_tos, (RegisterOrConstant)Roffset, Rclass_or_obj); 3100 __ verify_oop(R17_tos); 3101 __ dispatch_epilog(state, Bytecodes::length_for(bytecode()) - 1); // Undo bcp increment. 3102 3103 __ bind(LisVolatile); 3104 if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); } 3105 __ load_heap_oop(R17_tos, (RegisterOrConstant)Roffset, Rclass_or_obj); 3106 __ verify_oop(R17_tos); 3107 __ twi_0(R17_tos); 3108 __ isync(); 3109 break; 3110 } 3111 case itos: 3112 { 3113 __ lwax(R17_tos, Rclass_or_obj, Roffset); 3114 __ dispatch_epilog(state, Bytecodes::length_for(bytecode()) - 1); // Undo bcp increment. 3115 3116 __ bind(LisVolatile); 3117 if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); } 3118 __ lwax(R17_tos, Rclass_or_obj, Roffset); 3119 __ twi_0(R17_tos); 3120 __ isync(); 3121 break; 3122 } 3123 case ftos: 3124 { 3125 __ lfsx(F15_ftos, Rclass_or_obj, Roffset); 3126 __ dispatch_epilog(state, Bytecodes::length_for(bytecode()) - 1); // Undo bcp increment. 3127 3128 __ bind(LisVolatile); 3129 Label Ldummy; 3130 if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); } 3131 __ lfsx(F15_ftos, Rclass_or_obj, Roffset); 3132 __ fcmpu(CCR0, F15_ftos, F15_ftos); // Acquire by cmp-br-isync. 3133 __ bne_predict_not_taken(CCR0, Ldummy); 3134 __ bind(Ldummy); 3135 __ isync(); 3136 break; 3137 } 3138 default: ShouldNotReachHere(); 3139 } 3140 __ addi(R14_bcp, R14_bcp, -1); 3141 } 3142 3143 // ============================================================================ 3144 // Calls 3145 3146 // Common code for invoke 3147 // 3148 // Input: 3149 // - byte_no 3150 // 3151 // Output: 3152 // - Rmethod: The method to invoke next. 3153 // - Rret_addr: The return address to return to. 3154 // - Rindex: MethodType (invokehandle) or CallSite obj (invokedynamic) 3155 // - Rrecv: Cache for "this" pointer, might be noreg if static call. 3156 // - Rflags: Method flags from const pool cache. 3157 // 3158 // Kills: 3159 // - Rscratch1 3160 // 3161 void TemplateTable::prepare_invoke(int byte_no, 3162 Register Rmethod, // linked method (or i-klass) 3163 Register Rret_addr,// return address 3164 Register Rindex, // itable index, MethodType, etc. 3165 Register Rrecv, // If caller wants to see it. 3166 Register Rflags, // If caller wants to test it. 3167 Register Rscratch 3168 ) { 3169 // Determine flags. 3170 const Bytecodes::Code code = bytecode(); 3171 const bool is_invokeinterface = code == Bytecodes::_invokeinterface; 3172 const bool is_invokedynamic = code == Bytecodes::_invokedynamic; 3173 const bool is_invokehandle = code == Bytecodes::_invokehandle; 3174 const bool is_invokevirtual = code == Bytecodes::_invokevirtual; 3175 const bool is_invokespecial = code == Bytecodes::_invokespecial; 3176 const bool load_receiver = (Rrecv != noreg); 3177 assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), ""); 3178 3179 assert_different_registers(Rmethod, Rindex, Rflags, Rscratch); 3180 assert_different_registers(Rmethod, Rrecv, Rflags, Rscratch); 3181 assert_different_registers(Rret_addr, Rscratch); 3182 3183 load_invoke_cp_cache_entry(byte_no, Rmethod, Rindex, Rflags, is_invokevirtual, false, is_invokedynamic); 3184 3185 // Saving of SP done in call_from_interpreter. 3186 3187 // Maybe push "appendix" to arguments. 3188 if (is_invokedynamic || is_invokehandle) { 3189 Label Ldone; 3190 __ rldicl_(R0, Rflags, 64-ConstantPoolCacheEntry::has_appendix_shift, 63); 3191 __ beq(CCR0, Ldone); 3192 // Push "appendix" (MethodType, CallSite, etc.). 3193 // This must be done before we get the receiver, 3194 // since the parameter_size includes it. 3195 __ load_resolved_reference_at_index(Rscratch, Rindex); 3196 __ verify_oop(Rscratch); 3197 __ push_ptr(Rscratch); 3198 __ bind(Ldone); 3199 } 3200 3201 // Load receiver if needed (after appendix is pushed so parameter size is correct). 3202 if (load_receiver) { 3203 const Register Rparam_count = Rscratch; 3204 __ andi(Rparam_count, Rflags, ConstantPoolCacheEntry::parameter_size_mask); 3205 __ load_receiver(Rparam_count, Rrecv); 3206 __ verify_oop(Rrecv); 3207 } 3208 3209 // Get return address. 3210 { 3211 Register Rtable_addr = Rscratch; 3212 Register Rret_type = Rret_addr; 3213 address table_addr = (address) Interpreter::invoke_return_entry_table_for(code); 3214 3215 // Get return type. It's coded into the upper 4 bits of the lower half of the 64 bit value. 3216 __ rldicl(Rret_type, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits); 3217 __ load_dispatch_table(Rtable_addr, (address*)table_addr); 3218 __ sldi(Rret_type, Rret_type, LogBytesPerWord); 3219 // Get return address. 3220 __ ldx(Rret_addr, Rtable_addr, Rret_type); 3221 } 3222 } 3223 3224 // Helper for virtual calls. Load target out of vtable and jump off! 3225 // Kills all passed registers. 3226 void TemplateTable::generate_vtable_call(Register Rrecv_klass, Register Rindex, Register Rret, Register Rtemp) { 3227 3228 assert_different_registers(Rrecv_klass, Rtemp, Rret); 3229 const Register Rtarget_method = Rindex; 3230 3231 // Get target method & entry point. 3232 const int base = InstanceKlass::vtable_start_offset() * wordSize; 3233 // Calc vtable addr scale the vtable index by 8. 3234 __ sldi(Rindex, Rindex, exact_log2(vtableEntry::size() * wordSize)); 3235 // Load target. 3236 __ addi(Rrecv_klass, Rrecv_klass, base + vtableEntry::method_offset_in_bytes()); 3237 __ ldx(Rtarget_method, Rindex, Rrecv_klass); 3238 // Argument and return type profiling. 3239 __ profile_arguments_type(Rtarget_method, Rrecv_klass /* scratch1 */, Rtemp /* scratch2 */, true); 3240 __ call_from_interpreter(Rtarget_method, Rret, Rrecv_klass /* scratch1 */, Rtemp /* scratch2 */); 3241 } 3242 3243 // Virtual or final call. Final calls are rewritten on the fly to run through "fast_finalcall" next time. 3244 void TemplateTable::invokevirtual(int byte_no) { 3245 transition(vtos, vtos); 3246 3247 Register Rtable_addr = R11_scratch1, 3248 Rret_type = R12_scratch2, 3249 Rret_addr = R5_ARG3, 3250 Rflags = R22_tmp2, // Should survive C call. 3251 Rrecv = R3_ARG1, 3252 Rrecv_klass = Rrecv, 3253 Rvtableindex_or_method = R31, // Should survive C call. 3254 Rnum_params = R4_ARG2, 3255 Rnew_bc = R6_ARG4; 3256 3257 Label LnotFinal; 3258 3259 load_invoke_cp_cache_entry(byte_no, Rvtableindex_or_method, noreg, Rflags, /*virtual*/ true, false, false); 3260 3261 __ testbitdi(CCR0, R0, Rflags, ConstantPoolCacheEntry::is_vfinal_shift); 3262 __ bfalse(CCR0, LnotFinal); 3263 3264 patch_bytecode(Bytecodes::_fast_invokevfinal, Rnew_bc, R12_scratch2); 3265 invokevfinal_helper(Rvtableindex_or_method, Rflags, R11_scratch1, R12_scratch2); 3266 3267 __ align(32, 12); 3268 __ bind(LnotFinal); 3269 // Load "this" pointer (receiver). 3270 __ rldicl(Rnum_params, Rflags, 64, 48); 3271 __ load_receiver(Rnum_params, Rrecv); 3272 __ verify_oop(Rrecv); 3273 3274 // Get return type. It's coded into the upper 4 bits of the lower half of the 64 bit value. 3275 __ rldicl(Rret_type, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits); 3276 __ load_dispatch_table(Rtable_addr, Interpreter::invoke_return_entry_table()); 3277 __ sldi(Rret_type, Rret_type, LogBytesPerWord); 3278 __ ldx(Rret_addr, Rret_type, Rtable_addr); 3279 __ null_check_throw(Rrecv, oopDesc::klass_offset_in_bytes(), R11_scratch1); 3280 __ load_klass(Rrecv_klass, Rrecv); 3281 __ verify_klass_ptr(Rrecv_klass); 3282 __ profile_virtual_call(Rrecv_klass, R11_scratch1, R12_scratch2, false); 3283 3284 generate_vtable_call(Rrecv_klass, Rvtableindex_or_method, Rret_addr, R11_scratch1); 3285 } 3286 3287 void TemplateTable::fast_invokevfinal(int byte_no) { 3288 transition(vtos, vtos); 3289 3290 assert(byte_no == f2_byte, "use this argument"); 3291 Register Rflags = R22_tmp2, 3292 Rmethod = R31; 3293 load_invoke_cp_cache_entry(byte_no, Rmethod, noreg, Rflags, /*virtual*/ true, /*is_invokevfinal*/ true, false); 3294 invokevfinal_helper(Rmethod, Rflags, R11_scratch1, R12_scratch2); 3295 } 3296 3297 void TemplateTable::invokevfinal_helper(Register Rmethod, Register Rflags, Register Rscratch1, Register Rscratch2) { 3298 3299 assert_different_registers(Rmethod, Rflags, Rscratch1, Rscratch2); 3300 3301 // Load receiver from stack slot. 3302 Register Rrecv = Rscratch2; 3303 Register Rnum_params = Rrecv; 3304 3305 __ ld(Rnum_params, in_bytes(Method::const_offset()), Rmethod); 3306 __ lhz(Rnum_params /* number of params */, in_bytes(ConstMethod::size_of_parameters_offset()), Rnum_params); 3307 3308 // Get return address. 3309 Register Rtable_addr = Rscratch1, 3310 Rret_addr = Rflags, 3311 Rret_type = Rret_addr; 3312 // Get return type. It's coded into the upper 4 bits of the lower half of the 64 bit value. 3313 __ rldicl(Rret_type, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits); 3314 __ load_dispatch_table(Rtable_addr, Interpreter::invoke_return_entry_table()); 3315 __ sldi(Rret_type, Rret_type, LogBytesPerWord); 3316 __ ldx(Rret_addr, Rret_type, Rtable_addr); 3317 3318 // Load receiver and receiver NULL check. 3319 __ load_receiver(Rnum_params, Rrecv); 3320 __ null_check_throw(Rrecv, -1, Rscratch1); 3321 3322 __ profile_final_call(Rrecv, Rscratch1); 3323 // Argument and return type profiling. 3324 __ profile_arguments_type(Rmethod, Rscratch1, Rscratch2, true); 3325 3326 // Do the call. 3327 __ call_from_interpreter(Rmethod, Rret_addr, Rscratch1, Rscratch2); 3328 } 3329 3330 void TemplateTable::invokespecial(int byte_no) { 3331 assert(byte_no == f1_byte, "use this argument"); 3332 transition(vtos, vtos); 3333 3334 Register Rtable_addr = R3_ARG1, 3335 Rret_addr = R4_ARG2, 3336 Rflags = R5_ARG3, 3337 Rreceiver = R6_ARG4, 3338 Rmethod = R31; 3339 3340 prepare_invoke(byte_no, Rmethod, Rret_addr, noreg, Rreceiver, Rflags, R11_scratch1); 3341 3342 // Receiver NULL check. 3343 __ null_check_throw(Rreceiver, -1, R11_scratch1); 3344 3345 __ profile_call(R11_scratch1, R12_scratch2); 3346 // Argument and return type profiling. 3347 __ profile_arguments_type(Rmethod, R11_scratch1, R12_scratch2, false); 3348 __ call_from_interpreter(Rmethod, Rret_addr, R11_scratch1, R12_scratch2); 3349 } 3350 3351 void TemplateTable::invokestatic(int byte_no) { 3352 assert(byte_no == f1_byte, "use this argument"); 3353 transition(vtos, vtos); 3354 3355 Register Rtable_addr = R3_ARG1, 3356 Rret_addr = R4_ARG2, 3357 Rflags = R5_ARG3; 3358 3359 prepare_invoke(byte_no, R19_method, Rret_addr, noreg, noreg, Rflags, R11_scratch1); 3360 3361 __ profile_call(R11_scratch1, R12_scratch2); 3362 // Argument and return type profiling. 3363 __ profile_arguments_type(R19_method, R11_scratch1, R12_scratch2, false); 3364 __ call_from_interpreter(R19_method, Rret_addr, R11_scratch1, R12_scratch2); 3365 } 3366 3367 void TemplateTable::invokeinterface_object_method(Register Rrecv_klass, 3368 Register Rret, 3369 Register Rflags, 3370 Register Rindex, 3371 Register Rtemp1, 3372 Register Rtemp2) { 3373 3374 assert_different_registers(Rindex, Rret, Rrecv_klass, Rflags, Rtemp1, Rtemp2); 3375 Label LnotFinal; 3376 3377 // Check for vfinal. 3378 __ testbitdi(CCR0, R0, Rflags, ConstantPoolCacheEntry::is_vfinal_shift); 3379 __ bfalse(CCR0, LnotFinal); 3380 3381 Register Rscratch = Rflags; // Rflags is dead now. 3382 3383 // Final call case. 3384 __ profile_final_call(Rtemp1, Rscratch); 3385 // Argument and return type profiling. 3386 __ profile_arguments_type(Rindex, Rscratch, Rrecv_klass /* scratch */, true); 3387 // Do the final call - the index (f2) contains the method. 3388 __ call_from_interpreter(Rindex, Rret, Rscratch, Rrecv_klass /* scratch */); 3389 3390 // Non-final callc case. 3391 __ bind(LnotFinal); 3392 __ profile_virtual_call(Rrecv_klass, Rtemp1, Rscratch, false); 3393 generate_vtable_call(Rrecv_klass, Rindex, Rret, Rscratch); 3394 } 3395 3396 void TemplateTable::invokeinterface(int byte_no) { 3397 assert(byte_no == f1_byte, "use this argument"); 3398 transition(vtos, vtos); 3399 3400 const Register Rscratch1 = R11_scratch1, 3401 Rscratch2 = R12_scratch2, 3402 Rscratch3 = R9_ARG7, 3403 Rscratch4 = R10_ARG8, 3404 Rtable_addr = Rscratch2, 3405 Rinterface_klass = R5_ARG3, 3406 Rret_type = R8_ARG6, 3407 Rret_addr = Rret_type, 3408 Rindex = R6_ARG4, 3409 Rreceiver = R4_ARG2, 3410 Rrecv_klass = Rreceiver, 3411 Rflags = R7_ARG5; 3412 3413 prepare_invoke(byte_no, Rinterface_klass, Rret_addr, Rindex, Rreceiver, Rflags, Rscratch1); 3414 3415 // Get receiver klass. 3416 __ null_check_throw(Rreceiver, oopDesc::klass_offset_in_bytes(), Rscratch3); 3417 __ load_klass(Rrecv_klass, Rreceiver); 3418 3419 // Check corner case object method. 3420 Label LobjectMethod; 3421 3422 __ testbitdi(CCR0, R0, Rflags, ConstantPoolCacheEntry::is_forced_virtual_shift); 3423 __ btrue(CCR0, LobjectMethod); 3424 3425 // Fallthrough: The normal invokeinterface case. 3426 __ profile_virtual_call(Rrecv_klass, Rscratch1, Rscratch2, false); 3427 3428 // Find entry point to call. 3429 Label Lthrow_icc, Lthrow_ame; 3430 // Result will be returned in Rindex. 3431 __ mr(Rscratch4, Rrecv_klass); 3432 __ mr(Rscratch3, Rindex); 3433 __ lookup_interface_method(Rrecv_klass, Rinterface_klass, Rindex, Rindex, Rscratch1, Rscratch2, Lthrow_icc); 3434 3435 __ cmpdi(CCR0, Rindex, 0); 3436 __ beq(CCR0, Lthrow_ame); 3437 // Found entry. Jump off! 3438 // Argument and return type profiling. 3439 __ profile_arguments_type(Rindex, Rscratch1, Rscratch2, true); 3440 __ call_from_interpreter(Rindex, Rret_addr, Rscratch1, Rscratch2); 3441 3442 // Vtable entry was NULL => Throw abstract method error. 3443 __ bind(Lthrow_ame); 3444 __ mr(Rrecv_klass, Rscratch4); 3445 __ mr(Rindex, Rscratch3); 3446 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError)); 3447 3448 // Interface was not found => Throw incompatible class change error. 3449 __ bind(Lthrow_icc); 3450 __ mr(Rrecv_klass, Rscratch4); 3451 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_IncompatibleClassChangeError)); 3452 3453 __ should_not_reach_here(); 3454 3455 // Special case of invokeinterface called for virtual method of 3456 // java.lang.Object. See ConstantPoolCacheEntry::set_method() for details: 3457 // The invokeinterface was rewritten to a invokevirtual, hence we have 3458 // to handle this corner case. This code isn't produced by javac, but could 3459 // be produced by another compliant java compiler. 3460 __ bind(LobjectMethod); 3461 invokeinterface_object_method(Rrecv_klass, Rret_addr, Rflags, Rindex, Rscratch1, Rscratch2); 3462 } 3463 3464 void TemplateTable::invokedynamic(int byte_no) { 3465 transition(vtos, vtos); 3466 3467 const Register Rret_addr = R3_ARG1, 3468 Rflags = R4_ARG2, 3469 Rmethod = R22_tmp2, 3470 Rscratch1 = R11_scratch1, 3471 Rscratch2 = R12_scratch2; 3472 3473 prepare_invoke(byte_no, Rmethod, Rret_addr, Rscratch1, noreg, Rflags, Rscratch2); 3474 3475 // Profile this call. 3476 __ profile_call(Rscratch1, Rscratch2); 3477 3478 // Off we go. With the new method handles, we don't jump to a method handle 3479 // entry any more. Instead, we pushed an "appendix" in prepare invoke, which happens 3480 // to be the callsite object the bootstrap method returned. This is passed to a 3481 // "link" method which does the dispatch (Most likely just grabs the MH stored 3482 // inside the callsite and does an invokehandle). 3483 // Argument and return type profiling. 3484 __ profile_arguments_type(Rmethod, Rscratch1, Rscratch2, false); 3485 __ call_from_interpreter(Rmethod, Rret_addr, Rscratch1 /* scratch1 */, Rscratch2 /* scratch2 */); 3486 } 3487 3488 void TemplateTable::invokehandle(int byte_no) { 3489 transition(vtos, vtos); 3490 3491 const Register Rret_addr = R3_ARG1, 3492 Rflags = R4_ARG2, 3493 Rrecv = R5_ARG3, 3494 Rmethod = R22_tmp2, 3495 Rscratch1 = R11_scratch1, 3496 Rscratch2 = R12_scratch2; 3497 3498 prepare_invoke(byte_no, Rmethod, Rret_addr, Rscratch1, Rrecv, Rflags, Rscratch2); 3499 __ verify_method_ptr(Rmethod); 3500 __ null_check_throw(Rrecv, -1, Rscratch2); 3501 3502 __ profile_final_call(Rrecv, Rscratch1); 3503 3504 // Still no call from handle => We call the method handle interpreter here. 3505 // Argument and return type profiling. 3506 __ profile_arguments_type(Rmethod, Rscratch1, Rscratch2, true); 3507 __ call_from_interpreter(Rmethod, Rret_addr, Rscratch1 /* scratch1 */, Rscratch2 /* scratch2 */); 3508 } 3509 3510 // ============================================================================= 3511 // Allocation 3512 3513 // Puts allocated obj ref onto the expression stack. 3514 void TemplateTable::_new() { 3515 transition(vtos, atos); 3516 3517 Label Lslow_case, 3518 Ldone, 3519 Linitialize_header, 3520 Lallocate_shared, 3521 Linitialize_object; // Including clearing the fields. 3522 3523 const Register RallocatedObject = R17_tos, 3524 RinstanceKlass = R9_ARG7, 3525 Rscratch = R11_scratch1, 3526 Roffset = R8_ARG6, 3527 Rinstance_size = Roffset, 3528 Rcpool = R4_ARG2, 3529 Rtags = R3_ARG1, 3530 Rindex = R5_ARG3; 3531 3532 const bool allow_shared_alloc = Universe::heap()->supports_inline_contig_alloc(); 3533 3534 // -------------------------------------------------------------------------- 3535 // Check if fast case is possible. 3536 3537 // Load pointers to const pool and const pool's tags array. 3538 __ get_cpool_and_tags(Rcpool, Rtags); 3539 // Load index of constant pool entry. 3540 __ get_2_byte_integer_at_bcp(1, Rindex, InterpreterMacroAssembler::Unsigned); 3541 3542 if (UseTLAB) { 3543 // Make sure the class we're about to instantiate has been resolved 3544 // This is done before loading instanceKlass to be consistent with the order 3545 // how Constant Pool is updated (see ConstantPoolCache::klass_at_put). 3546 __ addi(Rtags, Rtags, Array<u1>::base_offset_in_bytes()); 3547 __ lbzx(Rtags, Rindex, Rtags); 3548 3549 __ cmpdi(CCR0, Rtags, JVM_CONSTANT_Class); 3550 __ bne(CCR0, Lslow_case); 3551 3552 // Get instanceKlass (load from Rcpool + sizeof(ConstantPool) + Rindex*BytesPerWord). 3553 __ sldi(Roffset, Rindex, LogBytesPerWord); 3554 __ addi(Rscratch, Rcpool, sizeof(ConstantPool)); 3555 __ isync(); // Order load of instance Klass wrt. tags. 3556 __ ldx(RinstanceKlass, Roffset, Rscratch); 3557 3558 // Make sure klass is fully initialized and get instance_size. 3559 __ lbz(Rscratch, in_bytes(InstanceKlass::init_state_offset()), RinstanceKlass); 3560 __ lwz(Rinstance_size, in_bytes(Klass::layout_helper_offset()), RinstanceKlass); 3561 3562 __ cmpdi(CCR1, Rscratch, InstanceKlass::fully_initialized); 3563 // Make sure klass does not have has_finalizer, or is abstract, or interface or java/lang/Class. 3564 __ andi_(R0, Rinstance_size, Klass::_lh_instance_slow_path_bit); // slow path bit equals 0? 3565 3566 __ crnand(CCR0, Assembler::equal, CCR1, Assembler::equal); // slow path bit set or not fully initialized? 3567 __ beq(CCR0, Lslow_case); 3568 3569 // -------------------------------------------------------------------------- 3570 // Fast case: 3571 // Allocate the instance. 3572 // 1) Try to allocate in the TLAB. 3573 // 2) If fail, and the TLAB is not full enough to discard, allocate in the shared Eden. 3574 // 3) If the above fails (or is not applicable), go to a slow case (creates a new TLAB, etc.). 3575 3576 Register RoldTopValue = RallocatedObject; // Object will be allocated here if it fits. 3577 Register RnewTopValue = R6_ARG4; 3578 Register RendValue = R7_ARG5; 3579 3580 // Check if we can allocate in the TLAB. 3581 __ ld(RoldTopValue, in_bytes(JavaThread::tlab_top_offset()), R16_thread); 3582 __ ld(RendValue, in_bytes(JavaThread::tlab_end_offset()), R16_thread); 3583 3584 __ add(RnewTopValue, Rinstance_size, RoldTopValue); 3585 3586 // If there is enough space, we do not CAS and do not clear. 3587 __ cmpld(CCR0, RnewTopValue, RendValue); 3588 __ bgt(CCR0, allow_shared_alloc ? Lallocate_shared : Lslow_case); 3589 3590 __ std(RnewTopValue, in_bytes(JavaThread::tlab_top_offset()), R16_thread); 3591 3592 if (ZeroTLAB) { 3593 // The fields have already been cleared. 3594 __ b(Linitialize_header); 3595 } else { 3596 // Initialize both the header and fields. 3597 __ b(Linitialize_object); 3598 } 3599 3600 // Fall through: TLAB was too small. 3601 if (allow_shared_alloc) { 3602 Register RtlabWasteLimitValue = R10_ARG8; 3603 Register RfreeValue = RnewTopValue; 3604 3605 __ bind(Lallocate_shared); 3606 // Check if tlab should be discarded (refill_waste_limit >= free). 3607 __ ld(RtlabWasteLimitValue, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), R16_thread); 3608 __ subf(RfreeValue, RoldTopValue, RendValue); 3609 __ srdi(RfreeValue, RfreeValue, LogHeapWordSize); // in dwords 3610 __ cmpld(CCR0, RtlabWasteLimitValue, RfreeValue); 3611 __ bge(CCR0, Lslow_case); 3612 3613 // Increment waste limit to prevent getting stuck on this slow path. 3614 __ addi(RtlabWasteLimitValue, RtlabWasteLimitValue, (int)ThreadLocalAllocBuffer::refill_waste_limit_increment()); 3615 __ std(RtlabWasteLimitValue, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), R16_thread); 3616 } 3617 // else: No allocation in the shared eden. // fallthru: __ b(Lslow_case); 3618 } 3619 // else: Always go the slow path. 3620 3621 // -------------------------------------------------------------------------- 3622 // slow case 3623 __ bind(Lslow_case); 3624 call_VM(R17_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), Rcpool, Rindex); 3625 3626 if (UseTLAB) { 3627 __ b(Ldone); 3628 // -------------------------------------------------------------------------- 3629 // Init1: Zero out newly allocated memory. 3630 3631 if (!ZeroTLAB || allow_shared_alloc) { 3632 // Clear object fields. 3633 __ bind(Linitialize_object); 3634 3635 // Initialize remaining object fields. 3636 Register Rbase = Rtags; 3637 __ addi(Rinstance_size, Rinstance_size, 7 - (int)sizeof(oopDesc)); 3638 __ addi(Rbase, RallocatedObject, sizeof(oopDesc)); 3639 __ srdi(Rinstance_size, Rinstance_size, 3); 3640 3641 // Clear out object skipping header. Takes also care of the zero length case. 3642 __ clear_memory_doubleword(Rbase, Rinstance_size); 3643 // fallthru: __ b(Linitialize_header); 3644 } 3645 3646 // -------------------------------------------------------------------------- 3647 // Init2: Initialize the header: mark, klass 3648 __ bind(Linitialize_header); 3649 3650 // Init mark. 3651 if (UseBiasedLocking) { 3652 __ ld(Rscratch, in_bytes(Klass::prototype_header_offset()), RinstanceKlass); 3653 } else { 3654 __ load_const_optimized(Rscratch, markOopDesc::prototype(), R0); 3655 } 3656 __ std(Rscratch, oopDesc::mark_offset_in_bytes(), RallocatedObject); 3657 3658 // Init klass. 3659 __ store_klass_gap(RallocatedObject); 3660 __ store_klass(RallocatedObject, RinstanceKlass, Rscratch); // klass (last for cms) 3661 3662 // Check and trigger dtrace event. 3663 { 3664 SkipIfEqualZero skip_if(_masm, Rscratch, &DTraceAllocProbes); 3665 __ push(atos); 3666 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc)); 3667 __ pop(atos); 3668 } 3669 } 3670 3671 // continue 3672 __ bind(Ldone); 3673 3674 // Must prevent reordering of stores for object initialization with stores that publish the new object. 3675 __ membar(Assembler::StoreStore); 3676 } 3677 3678 void TemplateTable::newarray() { 3679 transition(itos, atos); 3680 3681 __ lbz(R4, 1, R14_bcp); 3682 __ extsw(R5, R17_tos); 3683 call_VM(R17_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), R4, R5 /* size */); 3684 3685 // Must prevent reordering of stores for object initialization with stores that publish the new object. 3686 __ membar(Assembler::StoreStore); 3687 } 3688 3689 void TemplateTable::anewarray() { 3690 transition(itos, atos); 3691 3692 __ get_constant_pool(R4); 3693 __ get_2_byte_integer_at_bcp(1, R5, InterpreterMacroAssembler::Unsigned); 3694 __ extsw(R6, R17_tos); // size 3695 call_VM(R17_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), R4 /* pool */, R5 /* index */, R6 /* size */); 3696 3697 // Must prevent reordering of stores for object initialization with stores that publish the new object. 3698 __ membar(Assembler::StoreStore); 3699 } 3700 3701 // Allocate a multi dimensional array 3702 void TemplateTable::multianewarray() { 3703 transition(vtos, atos); 3704 3705 Register Rptr = R31; // Needs to survive C call. 3706 3707 // Put ndims * wordSize into frame temp slot 3708 __ lbz(Rptr, 3, R14_bcp); 3709 __ sldi(Rptr, Rptr, Interpreter::logStackElementSize); 3710 // Esp points past last_dim, so set to R4 to first_dim address. 3711 __ add(R4, Rptr, R15_esp); 3712 call_VM(R17_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), R4 /* first_size_address */); 3713 // Pop all dimensions off the stack. 3714 __ add(R15_esp, Rptr, R15_esp); 3715 3716 // Must prevent reordering of stores for object initialization with stores that publish the new object. 3717 __ membar(Assembler::StoreStore); 3718 } 3719 3720 void TemplateTable::arraylength() { 3721 transition(atos, itos); 3722 3723 Label LnoException; 3724 __ verify_oop(R17_tos); 3725 __ null_check_throw(R17_tos, arrayOopDesc::length_offset_in_bytes(), R11_scratch1); 3726 __ lwa(R17_tos, arrayOopDesc::length_offset_in_bytes(), R17_tos); 3727 } 3728 3729 // ============================================================================ 3730 // Typechecks 3731 3732 void TemplateTable::checkcast() { 3733 transition(atos, atos); 3734 3735 Label Ldone, Lis_null, Lquicked, Lresolved; 3736 Register Roffset = R6_ARG4, 3737 RobjKlass = R4_ARG2, 3738 RspecifiedKlass = R5_ARG3, // Generate_ClassCastException_verbose_handler will read value from this register. 3739 Rcpool = R11_scratch1, 3740 Rtags = R12_scratch2; 3741 3742 // Null does not pass. 3743 __ cmpdi(CCR0, R17_tos, 0); 3744 __ beq(CCR0, Lis_null); 3745 3746 // Get constant pool tag to find out if the bytecode has already been "quickened". 3747 __ get_cpool_and_tags(Rcpool, Rtags); 3748 3749 __ get_2_byte_integer_at_bcp(1, Roffset, InterpreterMacroAssembler::Unsigned); 3750 3751 __ addi(Rtags, Rtags, Array<u1>::base_offset_in_bytes()); 3752 __ lbzx(Rtags, Rtags, Roffset); 3753 3754 __ cmpdi(CCR0, Rtags, JVM_CONSTANT_Class); 3755 __ beq(CCR0, Lquicked); 3756 3757 // Call into the VM to "quicken" instanceof. 3758 __ push_ptr(); // for GC 3759 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc)); 3760 __ get_vm_result_2(RspecifiedKlass); 3761 __ pop_ptr(); // Restore receiver. 3762 __ b(Lresolved); 3763 3764 // Extract target class from constant pool. 3765 __ bind(Lquicked); 3766 __ sldi(Roffset, Roffset, LogBytesPerWord); 3767 __ addi(Rcpool, Rcpool, sizeof(ConstantPool)); 3768 __ isync(); // Order load of specified Klass wrt. tags. 3769 __ ldx(RspecifiedKlass, Rcpool, Roffset); 3770 3771 // Do the checkcast. 3772 __ bind(Lresolved); 3773 // Get value klass in RobjKlass. 3774 __ load_klass(RobjKlass, R17_tos); 3775 // Generate a fast subtype check. Branch to cast_ok if no failure. Return 0 if failure. 3776 __ gen_subtype_check(RobjKlass, RspecifiedKlass, /*3 temp regs*/ Roffset, Rcpool, Rtags, /*target if subtype*/ Ldone); 3777 3778 // Not a subtype; so must throw exception 3779 // Target class oop is in register R6_ARG4 == RspecifiedKlass by convention. 3780 __ load_dispatch_table(R11_scratch1, (address*)Interpreter::_throw_ClassCastException_entry); 3781 __ mtctr(R11_scratch1); 3782 __ bctr(); 3783 3784 // Profile the null case. 3785 __ align(32, 12); 3786 __ bind(Lis_null); 3787 __ profile_null_seen(R11_scratch1, Rtags); // Rtags used as scratch. 3788 3789 __ align(32, 12); 3790 __ bind(Ldone); 3791 } 3792 3793 // Output: 3794 // - tos == 0: Obj was null or not an instance of class. 3795 // - tos == 1: Obj was an instance of class. 3796 void TemplateTable::instanceof() { 3797 transition(atos, itos); 3798 3799 Label Ldone, Lis_null, Lquicked, Lresolved; 3800 Register Roffset = R5_ARG3, 3801 RobjKlass = R4_ARG2, 3802 RspecifiedKlass = R6_ARG4, // Generate_ClassCastException_verbose_handler will expect the value in this register. 3803 Rcpool = R11_scratch1, 3804 Rtags = R12_scratch2; 3805 3806 // Null does not pass. 3807 __ cmpdi(CCR0, R17_tos, 0); 3808 __ beq(CCR0, Lis_null); 3809 3810 // Get constant pool tag to find out if the bytecode has already been "quickened". 3811 __ get_cpool_and_tags(Rcpool, Rtags); 3812 3813 __ get_2_byte_integer_at_bcp(1, Roffset, InterpreterMacroAssembler::Unsigned); 3814 3815 __ addi(Rtags, Rtags, Array<u1>::base_offset_in_bytes()); 3816 __ lbzx(Rtags, Rtags, Roffset); 3817 3818 __ cmpdi(CCR0, Rtags, JVM_CONSTANT_Class); 3819 __ beq(CCR0, Lquicked); 3820 3821 // Call into the VM to "quicken" instanceof. 3822 __ push_ptr(); // for GC 3823 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc)); 3824 __ get_vm_result_2(RspecifiedKlass); 3825 __ pop_ptr(); // Restore receiver. 3826 __ b(Lresolved); 3827 3828 // Extract target class from constant pool. 3829 __ bind(Lquicked); 3830 __ sldi(Roffset, Roffset, LogBytesPerWord); 3831 __ addi(Rcpool, Rcpool, sizeof(ConstantPool)); 3832 __ isync(); // Order load of specified Klass wrt. tags. 3833 __ ldx(RspecifiedKlass, Rcpool, Roffset); 3834 3835 // Do the checkcast. 3836 __ bind(Lresolved); 3837 // Get value klass in RobjKlass. 3838 __ load_klass(RobjKlass, R17_tos); 3839 // Generate a fast subtype check. Branch to cast_ok if no failure. Return 0 if failure. 3840 __ li(R17_tos, 1); 3841 __ gen_subtype_check(RobjKlass, RspecifiedKlass, /*3 temp regs*/ Roffset, Rcpool, Rtags, /*target if subtype*/ Ldone); 3842 __ li(R17_tos, 0); 3843 3844 if (ProfileInterpreter) { 3845 __ b(Ldone); 3846 } 3847 3848 // Profile the null case. 3849 __ align(32, 12); 3850 __ bind(Lis_null); 3851 __ profile_null_seen(Rcpool, Rtags); // Rcpool and Rtags used as scratch. 3852 3853 __ align(32, 12); 3854 __ bind(Ldone); 3855 } 3856 3857 // ============================================================================= 3858 // Breakpoints 3859 3860 void TemplateTable::_breakpoint() { 3861 transition(vtos, vtos); 3862 3863 // Get the unpatched byte code. 3864 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::get_original_bytecode_at), R19_method, R14_bcp); 3865 __ mr(R31, R3_RET); 3866 3867 // Post the breakpoint event. 3868 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), R19_method, R14_bcp); 3869 3870 // Complete the execution of original bytecode. 3871 __ dispatch_Lbyte_code(vtos, R31, Interpreter::normal_table(vtos)); 3872 } 3873 3874 // ============================================================================= 3875 // Exceptions 3876 3877 void TemplateTable::athrow() { 3878 transition(atos, vtos); 3879 3880 // Exception oop is in tos 3881 __ verify_oop(R17_tos); 3882 3883 __ null_check_throw(R17_tos, -1, R11_scratch1); 3884 3885 // Throw exception interpreter entry expects exception oop to be in R3. 3886 __ mr(R3_RET, R17_tos); 3887 __ load_dispatch_table(R11_scratch1, (address*)Interpreter::throw_exception_entry()); 3888 __ mtctr(R11_scratch1); 3889 __ bctr(); 3890 } 3891 3892 // ============================================================================= 3893 // Synchronization 3894 // Searches the basic object lock list on the stack for a free slot 3895 // and uses it to lock the obect in tos. 3896 // 3897 // Recursive locking is enabled by exiting the search if the same 3898 // object is already found in the list. Thus, a new basic lock obj lock 3899 // is allocated "higher up" in the stack and thus is found first 3900 // at next monitor exit. 3901 void TemplateTable::monitorenter() { 3902 transition(atos, vtos); 3903 3904 __ verify_oop(R17_tos); 3905 3906 Register Rcurrent_monitor = R11_scratch1, 3907 Rcurrent_obj = R12_scratch2, 3908 Robj_to_lock = R17_tos, 3909 Rscratch1 = R3_ARG1, 3910 Rscratch2 = R4_ARG2, 3911 Rscratch3 = R5_ARG3, 3912 Rcurrent_obj_addr = R6_ARG4; 3913 3914 // ------------------------------------------------------------------------------ 3915 // Null pointer exception. 3916 __ null_check_throw(Robj_to_lock, -1, R11_scratch1); 3917 3918 // Try to acquire a lock on the object. 3919 // Repeat until succeeded (i.e., until monitorenter returns true). 3920 3921 // ------------------------------------------------------------------------------ 3922 // Find a free slot in the monitor block. 3923 Label Lfound, Lexit, Lallocate_new; 3924 ConditionRegister found_free_slot = CCR0, 3925 found_same_obj = CCR1, 3926 reached_limit = CCR6; 3927 { 3928 Label Lloop, Lentry; 3929 Register Rlimit = Rcurrent_monitor; 3930 3931 // Set up search loop - start with topmost monitor. 3932 __ add(Rcurrent_obj_addr, BasicObjectLock::obj_offset_in_bytes(), R26_monitor); 3933 3934 __ ld(Rlimit, 0, R1_SP); 3935 __ addi(Rlimit, Rlimit, - (frame::ijava_state_size + frame::interpreter_frame_monitor_size_in_bytes() - BasicObjectLock::obj_offset_in_bytes())); // Monitor base 3936 3937 // Check if any slot is present => short cut to allocation if not. 3938 __ cmpld(reached_limit, Rcurrent_obj_addr, Rlimit); 3939 __ bgt(reached_limit, Lallocate_new); 3940 3941 // Pre-load topmost slot. 3942 __ ld(Rcurrent_obj, 0, Rcurrent_obj_addr); 3943 __ addi(Rcurrent_obj_addr, Rcurrent_obj_addr, frame::interpreter_frame_monitor_size() * wordSize); 3944 // The search loop. 3945 __ bind(Lloop); 3946 // Found free slot? 3947 __ cmpdi(found_free_slot, Rcurrent_obj, 0); 3948 // Is this entry for same obj? If so, stop the search and take the found 3949 // free slot or allocate a new one to enable recursive locking. 3950 __ cmpd(found_same_obj, Rcurrent_obj, Robj_to_lock); 3951 __ cmpld(reached_limit, Rcurrent_obj_addr, Rlimit); 3952 __ beq(found_free_slot, Lexit); 3953 __ beq(found_same_obj, Lallocate_new); 3954 __ bgt(reached_limit, Lallocate_new); 3955 // Check if last allocated BasicLockObj reached. 3956 __ ld(Rcurrent_obj, 0, Rcurrent_obj_addr); 3957 __ addi(Rcurrent_obj_addr, Rcurrent_obj_addr, frame::interpreter_frame_monitor_size() * wordSize); 3958 // Next iteration if unchecked BasicObjectLocks exist on the stack. 3959 __ b(Lloop); 3960 } 3961 3962 // ------------------------------------------------------------------------------ 3963 // Check if we found a free slot. 3964 __ bind(Lexit); 3965 3966 __ addi(Rcurrent_monitor, Rcurrent_obj_addr, -(frame::interpreter_frame_monitor_size() * wordSize) - BasicObjectLock::obj_offset_in_bytes()); 3967 __ addi(Rcurrent_obj_addr, Rcurrent_obj_addr, - frame::interpreter_frame_monitor_size() * wordSize); 3968 __ b(Lfound); 3969 3970 // We didn't find a free BasicObjLock => allocate one. 3971 __ align(32, 12); 3972 __ bind(Lallocate_new); 3973 __ add_monitor_to_stack(false, Rscratch1, Rscratch2); 3974 __ mr(Rcurrent_monitor, R26_monitor); 3975 __ addi(Rcurrent_obj_addr, R26_monitor, BasicObjectLock::obj_offset_in_bytes()); 3976 3977 // ------------------------------------------------------------------------------ 3978 // We now have a slot to lock. 3979 __ bind(Lfound); 3980 3981 // Increment bcp to point to the next bytecode, so exception handling for async. exceptions work correctly. 3982 // The object has already been poped from the stack, so the expression stack looks correct. 3983 __ addi(R14_bcp, R14_bcp, 1); 3984 3985 __ std(Robj_to_lock, 0, Rcurrent_obj_addr); 3986 __ lock_object(Rcurrent_monitor, Robj_to_lock); 3987 3988 // Check if there's enough space on the stack for the monitors after locking. 3989 Label Lskip_stack_check; 3990 // Optimization: If the monitors stack section is less then a std page size (4K) don't run 3991 // the stack check. There should be enough shadow pages to fit that in. 3992 __ ld(Rscratch3, 0, R1_SP); 3993 __ sub(Rscratch3, Rscratch3, R26_monitor); 3994 __ cmpdi(CCR0, Rscratch3, 4*K); 3995 __ blt(CCR0, Lskip_stack_check); 3996 3997 DEBUG_ONLY(__ untested("stack overflow check during monitor enter");) 3998 __ li(Rscratch1, 0); 3999 __ generate_stack_overflow_check_with_compare_and_throw(Rscratch1, Rscratch2); 4000 4001 __ align(32, 12); 4002 __ bind(Lskip_stack_check); 4003 4004 // The bcp has already been incremented. Just need to dispatch to next instruction. 4005 __ dispatch_next(vtos); 4006 } 4007 4008 void TemplateTable::monitorexit() { 4009 transition(atos, vtos); 4010 __ verify_oop(R17_tos); 4011 4012 Register Rcurrent_monitor = R11_scratch1, 4013 Rcurrent_obj = R12_scratch2, 4014 Robj_to_lock = R17_tos, 4015 Rcurrent_obj_addr = R3_ARG1, 4016 Rlimit = R4_ARG2; 4017 Label Lfound, Lillegal_monitor_state; 4018 4019 // Check corner case: unbalanced monitorEnter / Exit. 4020 __ ld(Rlimit, 0, R1_SP); 4021 __ addi(Rlimit, Rlimit, - (frame::ijava_state_size + frame::interpreter_frame_monitor_size_in_bytes())); // Monitor base 4022 4023 // Null pointer check. 4024 __ null_check_throw(Robj_to_lock, -1, R11_scratch1); 4025 4026 __ cmpld(CCR0, R26_monitor, Rlimit); 4027 __ bgt(CCR0, Lillegal_monitor_state); 4028 4029 // Find the corresponding slot in the monitors stack section. 4030 { 4031 Label Lloop; 4032 4033 // Start with topmost monitor. 4034 __ addi(Rcurrent_obj_addr, R26_monitor, BasicObjectLock::obj_offset_in_bytes()); 4035 __ addi(Rlimit, Rlimit, BasicObjectLock::obj_offset_in_bytes()); 4036 __ ld(Rcurrent_obj, 0, Rcurrent_obj_addr); 4037 __ addi(Rcurrent_obj_addr, Rcurrent_obj_addr, frame::interpreter_frame_monitor_size() * wordSize); 4038 4039 __ bind(Lloop); 4040 // Is this entry for same obj? 4041 __ cmpd(CCR0, Rcurrent_obj, Robj_to_lock); 4042 __ beq(CCR0, Lfound); 4043 4044 // Check if last allocated BasicLockObj reached. 4045 4046 __ ld(Rcurrent_obj, 0, Rcurrent_obj_addr); 4047 __ cmpld(CCR0, Rcurrent_obj_addr, Rlimit); 4048 __ addi(Rcurrent_obj_addr, Rcurrent_obj_addr, frame::interpreter_frame_monitor_size() * wordSize); 4049 4050 // Next iteration if unchecked BasicObjectLocks exist on the stack. 4051 __ ble(CCR0, Lloop); 4052 } 4053 4054 // Fell through without finding the basic obj lock => throw up! 4055 __ bind(Lillegal_monitor_state); 4056 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception)); 4057 __ should_not_reach_here(); 4058 4059 __ align(32, 12); 4060 __ bind(Lfound); 4061 __ addi(Rcurrent_monitor, Rcurrent_obj_addr, 4062 -(frame::interpreter_frame_monitor_size() * wordSize) - BasicObjectLock::obj_offset_in_bytes()); 4063 __ unlock_object(Rcurrent_monitor); 4064 } 4065 4066 // ============================================================================ 4067 // Wide bytecodes 4068 4069 // Wide instructions. Simply redirects to the wide entry point for that instruction. 4070 void TemplateTable::wide() { 4071 transition(vtos, vtos); 4072 4073 const Register Rtable = R11_scratch1, 4074 Rindex = R12_scratch2, 4075 Rtmp = R0; 4076 4077 __ lbz(Rindex, 1, R14_bcp); 4078 4079 __ load_dispatch_table(Rtable, Interpreter::_wentry_point); 4080 4081 __ slwi(Rindex, Rindex, LogBytesPerWord); 4082 __ ldx(Rtmp, Rtable, Rindex); 4083 __ mtctr(Rtmp); 4084 __ bctr(); 4085 // Note: the bcp increment step is part of the individual wide bytecode implementations. 4086 } 4087 #endif // !CC_INTERP