rev 56556 : 8232151: Minimal VM build broken after JDK-8232050 Reviewed-by: dholmes, clanger, redestad
1 /* 2 * Copyright (c) 2003, 2019, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #ifndef _WINDOWS 27 #include "alloca.h" 28 #endif 29 #include "asm/macroAssembler.hpp" 30 #include "asm/macroAssembler.inline.hpp" 31 #include "code/debugInfoRec.hpp" 32 #include "code/icBuffer.hpp" 33 #include "code/nativeInst.hpp" 34 #include "code/vtableStubs.hpp" 35 #include "gc/shared/collectedHeap.hpp" 36 #include "gc/shared/gcLocker.hpp" 37 #include "gc/shared/barrierSet.hpp" 38 #include "gc/shared/barrierSetAssembler.hpp" 39 #include "interpreter/interpreter.hpp" 40 #include "logging/log.hpp" 41 #include "memory/resourceArea.hpp" 42 #include "memory/universe.hpp" 43 #include "oops/compiledICHolder.hpp" 44 #include "runtime/safepointMechanism.hpp" 45 #include "runtime/sharedRuntime.hpp" 46 #include "runtime/vframeArray.hpp" 47 #include "utilities/align.hpp" 48 #include "utilities/formatBuffer.hpp" 49 #include "vm_version_x86.hpp" 50 #include "vmreg_x86.inline.hpp" 51 #ifdef COMPILER1 52 #include "c1/c1_Runtime1.hpp" 53 #endif 54 #ifdef COMPILER2 55 #include "opto/runtime.hpp" 56 #endif 57 #if INCLUDE_JVMCI 58 #include "jvmci/jvmciJavaClasses.hpp" 59 #endif 60 61 #define __ masm-> 62 63 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size; 64 65 class SimpleRuntimeFrame { 66 67 public: 68 69 // Most of the runtime stubs have this simple frame layout. 70 // This class exists to make the layout shared in one place. 71 // Offsets are for compiler stack slots, which are jints. 72 enum layout { 73 // The frame sender code expects that rbp will be in the "natural" place and 74 // will override any oopMap setting for it. We must therefore force the layout 75 // so that it agrees with the frame sender code. 76 rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt, 77 rbp_off2, 78 return_off, return_off2, 79 framesize 80 }; 81 }; 82 83 class RegisterSaver { 84 // Capture info about frame layout. Layout offsets are in jint 85 // units because compiler frame slots are jints. 86 #define XSAVE_AREA_BEGIN 160 87 #define XSAVE_AREA_YMM_BEGIN 576 88 #define XSAVE_AREA_ZMM_BEGIN 1152 89 #define XSAVE_AREA_UPPERBANK 1664 90 #define DEF_XMM_OFFS(regnum) xmm ## regnum ## _off = xmm_off + (regnum)*16/BytesPerInt, xmm ## regnum ## H_off 91 #define DEF_YMM_OFFS(regnum) ymm ## regnum ## _off = ymm_off + (regnum)*16/BytesPerInt, ymm ## regnum ## H_off 92 #define DEF_ZMM_OFFS(regnum) zmm ## regnum ## _off = zmm_off + (regnum-16)*64/BytesPerInt, zmm ## regnum ## H_off 93 enum layout { 94 fpu_state_off = frame::arg_reg_save_area_bytes/BytesPerInt, // fxsave save area 95 xmm_off = fpu_state_off + XSAVE_AREA_BEGIN/BytesPerInt, // offset in fxsave save area 96 DEF_XMM_OFFS(0), 97 DEF_XMM_OFFS(1), 98 // 2..15 are implied in range usage 99 ymm_off = xmm_off + (XSAVE_AREA_YMM_BEGIN - XSAVE_AREA_BEGIN)/BytesPerInt, 100 DEF_YMM_OFFS(0), 101 DEF_YMM_OFFS(1), 102 // 2..15 are implied in range usage 103 zmm_high = xmm_off + (XSAVE_AREA_ZMM_BEGIN - XSAVE_AREA_BEGIN)/BytesPerInt, 104 zmm_off = xmm_off + (XSAVE_AREA_UPPERBANK - XSAVE_AREA_BEGIN)/BytesPerInt, 105 DEF_ZMM_OFFS(16), 106 DEF_ZMM_OFFS(17), 107 // 18..31 are implied in range usage 108 fpu_state_end = fpu_state_off + ((FPUStateSizeInWords-1)*wordSize / BytesPerInt), 109 fpu_stateH_end, 110 r15_off, r15H_off, 111 r14_off, r14H_off, 112 r13_off, r13H_off, 113 r12_off, r12H_off, 114 r11_off, r11H_off, 115 r10_off, r10H_off, 116 r9_off, r9H_off, 117 r8_off, r8H_off, 118 rdi_off, rdiH_off, 119 rsi_off, rsiH_off, 120 ignore_off, ignoreH_off, // extra copy of rbp 121 rsp_off, rspH_off, 122 rbx_off, rbxH_off, 123 rdx_off, rdxH_off, 124 rcx_off, rcxH_off, 125 rax_off, raxH_off, 126 // 16-byte stack alignment fill word: see MacroAssembler::push/pop_IU_state 127 align_off, alignH_off, 128 flags_off, flagsH_off, 129 // The frame sender code expects that rbp will be in the "natural" place and 130 // will override any oopMap setting for it. We must therefore force the layout 131 // so that it agrees with the frame sender code. 132 rbp_off, rbpH_off, // copy of rbp we will restore 133 return_off, returnH_off, // slot for return address 134 reg_save_size // size in compiler stack slots 135 }; 136 137 public: 138 static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words, bool save_vectors = false); 139 static void restore_live_registers(MacroAssembler* masm, bool restore_vectors = false); 140 141 // Offsets into the register save area 142 // Used by deoptimization when it is managing result register 143 // values on its own 144 145 static int rax_offset_in_bytes(void) { return BytesPerInt * rax_off; } 146 static int rdx_offset_in_bytes(void) { return BytesPerInt * rdx_off; } 147 static int rbx_offset_in_bytes(void) { return BytesPerInt * rbx_off; } 148 static int xmm0_offset_in_bytes(void) { return BytesPerInt * xmm0_off; } 149 static int return_offset_in_bytes(void) { return BytesPerInt * return_off; } 150 151 // During deoptimization only the result registers need to be restored, 152 // all the other values have already been extracted. 153 static void restore_result_registers(MacroAssembler* masm); 154 }; 155 156 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words, bool save_vectors) { 157 int off = 0; 158 int num_xmm_regs = XMMRegisterImpl::number_of_registers; 159 if (UseAVX < 3) { 160 num_xmm_regs = num_xmm_regs/2; 161 } 162 #if COMPILER2_OR_JVMCI 163 if (save_vectors) { 164 assert(UseAVX > 0, "Vectors larger than 16 byte long are supported only with AVX"); 165 assert(MaxVectorSize <= 64, "Only up to 64 byte long vectors are supported"); 166 } 167 #else 168 assert(!save_vectors, "vectors are generated only by C2 and JVMCI"); 169 #endif 170 171 // Always make the frame size 16-byte aligned, both vector and non vector stacks are always allocated 172 int frame_size_in_bytes = align_up(reg_save_size*BytesPerInt, num_xmm_regs); 173 // OopMap frame size is in compiler stack slots (jint's) not bytes or words 174 int frame_size_in_slots = frame_size_in_bytes / BytesPerInt; 175 // CodeBlob frame size is in words. 176 int frame_size_in_words = frame_size_in_bytes / wordSize; 177 *total_frame_words = frame_size_in_words; 178 179 // Save registers, fpu state, and flags. 180 // We assume caller has already pushed the return address onto the 181 // stack, so rsp is 8-byte aligned here. 182 // We push rpb twice in this sequence because we want the real rbp 183 // to be under the return like a normal enter. 184 185 __ enter(); // rsp becomes 16-byte aligned here 186 __ push_CPU_state(); // Push a multiple of 16 bytes 187 188 // push cpu state handles this on EVEX enabled targets 189 if (save_vectors) { 190 // Save upper half of YMM registers(0..15) 191 int base_addr = XSAVE_AREA_YMM_BEGIN; 192 for (int n = 0; n < 16; n++) { 193 __ vextractf128_high(Address(rsp, base_addr+n*16), as_XMMRegister(n)); 194 } 195 if (VM_Version::supports_evex()) { 196 // Save upper half of ZMM registers(0..15) 197 base_addr = XSAVE_AREA_ZMM_BEGIN; 198 for (int n = 0; n < 16; n++) { 199 __ vextractf64x4_high(Address(rsp, base_addr+n*32), as_XMMRegister(n)); 200 } 201 // Save full ZMM registers(16..num_xmm_regs) 202 base_addr = XSAVE_AREA_UPPERBANK; 203 off = 0; 204 int vector_len = Assembler::AVX_512bit; 205 for (int n = 16; n < num_xmm_regs; n++) { 206 __ evmovdqul(Address(rsp, base_addr+(off++*64)), as_XMMRegister(n), vector_len); 207 } 208 } 209 } else { 210 if (VM_Version::supports_evex()) { 211 // Save upper bank of ZMM registers(16..31) for double/float usage 212 int base_addr = XSAVE_AREA_UPPERBANK; 213 off = 0; 214 for (int n = 16; n < num_xmm_regs; n++) { 215 __ movsd(Address(rsp, base_addr+(off++*64)), as_XMMRegister(n)); 216 } 217 } 218 } 219 __ vzeroupper(); 220 if (frame::arg_reg_save_area_bytes != 0) { 221 // Allocate argument register save area 222 __ subptr(rsp, frame::arg_reg_save_area_bytes); 223 } 224 225 // Set an oopmap for the call site. This oopmap will map all 226 // oop-registers and debug-info registers as callee-saved. This 227 // will allow deoptimization at this safepoint to find all possible 228 // debug-info recordings, as well as let GC find all oops. 229 230 OopMapSet *oop_maps = new OopMapSet(); 231 OopMap* map = new OopMap(frame_size_in_slots, 0); 232 233 #define STACK_OFFSET(x) VMRegImpl::stack2reg((x)) 234 235 map->set_callee_saved(STACK_OFFSET( rax_off ), rax->as_VMReg()); 236 map->set_callee_saved(STACK_OFFSET( rcx_off ), rcx->as_VMReg()); 237 map->set_callee_saved(STACK_OFFSET( rdx_off ), rdx->as_VMReg()); 238 map->set_callee_saved(STACK_OFFSET( rbx_off ), rbx->as_VMReg()); 239 // rbp location is known implicitly by the frame sender code, needs no oopmap 240 // and the location where rbp was saved by is ignored 241 map->set_callee_saved(STACK_OFFSET( rsi_off ), rsi->as_VMReg()); 242 map->set_callee_saved(STACK_OFFSET( rdi_off ), rdi->as_VMReg()); 243 map->set_callee_saved(STACK_OFFSET( r8_off ), r8->as_VMReg()); 244 map->set_callee_saved(STACK_OFFSET( r9_off ), r9->as_VMReg()); 245 map->set_callee_saved(STACK_OFFSET( r10_off ), r10->as_VMReg()); 246 map->set_callee_saved(STACK_OFFSET( r11_off ), r11->as_VMReg()); 247 map->set_callee_saved(STACK_OFFSET( r12_off ), r12->as_VMReg()); 248 map->set_callee_saved(STACK_OFFSET( r13_off ), r13->as_VMReg()); 249 map->set_callee_saved(STACK_OFFSET( r14_off ), r14->as_VMReg()); 250 map->set_callee_saved(STACK_OFFSET( r15_off ), r15->as_VMReg()); 251 // For both AVX and EVEX we will use the legacy FXSAVE area for xmm0..xmm15, 252 // on EVEX enabled targets, we get it included in the xsave area 253 off = xmm0_off; 254 int delta = xmm1_off - off; 255 for (int n = 0; n < 16; n++) { 256 XMMRegister xmm_name = as_XMMRegister(n); 257 map->set_callee_saved(STACK_OFFSET(off), xmm_name->as_VMReg()); 258 off += delta; 259 } 260 if(UseAVX > 2) { 261 // Obtain xmm16..xmm31 from the XSAVE area on EVEX enabled targets 262 off = zmm16_off; 263 delta = zmm17_off - off; 264 for (int n = 16; n < num_xmm_regs; n++) { 265 XMMRegister zmm_name = as_XMMRegister(n); 266 map->set_callee_saved(STACK_OFFSET(off), zmm_name->as_VMReg()); 267 off += delta; 268 } 269 } 270 271 #if COMPILER2_OR_JVMCI 272 if (save_vectors) { 273 off = ymm0_off; 274 int delta = ymm1_off - off; 275 for (int n = 0; n < 16; n++) { 276 XMMRegister ymm_name = as_XMMRegister(n); 277 map->set_callee_saved(STACK_OFFSET(off), ymm_name->as_VMReg()->next(4)); 278 off += delta; 279 } 280 } 281 #endif // COMPILER2_OR_JVMCI 282 283 // %%% These should all be a waste but we'll keep things as they were for now 284 if (true) { 285 map->set_callee_saved(STACK_OFFSET( raxH_off ), rax->as_VMReg()->next()); 286 map->set_callee_saved(STACK_OFFSET( rcxH_off ), rcx->as_VMReg()->next()); 287 map->set_callee_saved(STACK_OFFSET( rdxH_off ), rdx->as_VMReg()->next()); 288 map->set_callee_saved(STACK_OFFSET( rbxH_off ), rbx->as_VMReg()->next()); 289 // rbp location is known implicitly by the frame sender code, needs no oopmap 290 map->set_callee_saved(STACK_OFFSET( rsiH_off ), rsi->as_VMReg()->next()); 291 map->set_callee_saved(STACK_OFFSET( rdiH_off ), rdi->as_VMReg()->next()); 292 map->set_callee_saved(STACK_OFFSET( r8H_off ), r8->as_VMReg()->next()); 293 map->set_callee_saved(STACK_OFFSET( r9H_off ), r9->as_VMReg()->next()); 294 map->set_callee_saved(STACK_OFFSET( r10H_off ), r10->as_VMReg()->next()); 295 map->set_callee_saved(STACK_OFFSET( r11H_off ), r11->as_VMReg()->next()); 296 map->set_callee_saved(STACK_OFFSET( r12H_off ), r12->as_VMReg()->next()); 297 map->set_callee_saved(STACK_OFFSET( r13H_off ), r13->as_VMReg()->next()); 298 map->set_callee_saved(STACK_OFFSET( r14H_off ), r14->as_VMReg()->next()); 299 map->set_callee_saved(STACK_OFFSET( r15H_off ), r15->as_VMReg()->next()); 300 // For both AVX and EVEX we will use the legacy FXSAVE area for xmm0..xmm15, 301 // on EVEX enabled targets, we get it included in the xsave area 302 off = xmm0H_off; 303 delta = xmm1H_off - off; 304 for (int n = 0; n < 16; n++) { 305 XMMRegister xmm_name = as_XMMRegister(n); 306 map->set_callee_saved(STACK_OFFSET(off), xmm_name->as_VMReg()->next()); 307 off += delta; 308 } 309 if (UseAVX > 2) { 310 // Obtain xmm16..xmm31 from the XSAVE area on EVEX enabled targets 311 off = zmm16H_off; 312 delta = zmm17H_off - off; 313 for (int n = 16; n < num_xmm_regs; n++) { 314 XMMRegister zmm_name = as_XMMRegister(n); 315 map->set_callee_saved(STACK_OFFSET(off), zmm_name->as_VMReg()->next()); 316 off += delta; 317 } 318 } 319 } 320 321 return map; 322 } 323 324 void RegisterSaver::restore_live_registers(MacroAssembler* masm, bool restore_vectors) { 325 int num_xmm_regs = XMMRegisterImpl::number_of_registers; 326 if (UseAVX < 3) { 327 num_xmm_regs = num_xmm_regs/2; 328 } 329 if (frame::arg_reg_save_area_bytes != 0) { 330 // Pop arg register save area 331 __ addptr(rsp, frame::arg_reg_save_area_bytes); 332 } 333 334 #if COMPILER2_OR_JVMCI 335 if (restore_vectors) { 336 assert(UseAVX > 0, "Vectors larger than 16 byte long are supported only with AVX"); 337 assert(MaxVectorSize <= 64, "Only up to 64 byte long vectors are supported"); 338 } 339 #else 340 assert(!restore_vectors, "vectors are generated only by C2"); 341 #endif 342 343 __ vzeroupper(); 344 345 // On EVEX enabled targets everything is handled in pop fpu state 346 if (restore_vectors) { 347 // Restore upper half of YMM registers (0..15) 348 int base_addr = XSAVE_AREA_YMM_BEGIN; 349 for (int n = 0; n < 16; n++) { 350 __ vinsertf128_high(as_XMMRegister(n), Address(rsp, base_addr+n*16)); 351 } 352 if (VM_Version::supports_evex()) { 353 // Restore upper half of ZMM registers (0..15) 354 base_addr = XSAVE_AREA_ZMM_BEGIN; 355 for (int n = 0; n < 16; n++) { 356 __ vinsertf64x4_high(as_XMMRegister(n), Address(rsp, base_addr+n*32)); 357 } 358 // Restore full ZMM registers(16..num_xmm_regs) 359 base_addr = XSAVE_AREA_UPPERBANK; 360 int vector_len = Assembler::AVX_512bit; 361 int off = 0; 362 for (int n = 16; n < num_xmm_regs; n++) { 363 __ evmovdqul(as_XMMRegister(n), Address(rsp, base_addr+(off++*64)), vector_len); 364 } 365 } 366 } else { 367 if (VM_Version::supports_evex()) { 368 // Restore upper bank of ZMM registers(16..31) for double/float usage 369 int base_addr = XSAVE_AREA_UPPERBANK; 370 int off = 0; 371 for (int n = 16; n < num_xmm_regs; n++) { 372 __ movsd(as_XMMRegister(n), Address(rsp, base_addr+(off++*64))); 373 } 374 } 375 } 376 377 // Recover CPU state 378 __ pop_CPU_state(); 379 // Get the rbp described implicitly by the calling convention (no oopMap) 380 __ pop(rbp); 381 } 382 383 void RegisterSaver::restore_result_registers(MacroAssembler* masm) { 384 385 // Just restore result register. Only used by deoptimization. By 386 // now any callee save register that needs to be restored to a c2 387 // caller of the deoptee has been extracted into the vframeArray 388 // and will be stuffed into the c2i adapter we create for later 389 // restoration so only result registers need to be restored here. 390 391 // Restore fp result register 392 __ movdbl(xmm0, Address(rsp, xmm0_offset_in_bytes())); 393 // Restore integer result register 394 __ movptr(rax, Address(rsp, rax_offset_in_bytes())); 395 __ movptr(rdx, Address(rsp, rdx_offset_in_bytes())); 396 397 // Pop all of the register save are off the stack except the return address 398 __ addptr(rsp, return_offset_in_bytes()); 399 } 400 401 // Is vector's size (in bytes) bigger than a size saved by default? 402 // 16 bytes XMM registers are saved by default using fxsave/fxrstor instructions. 403 bool SharedRuntime::is_wide_vector(int size) { 404 return size > 16; 405 } 406 407 size_t SharedRuntime::trampoline_size() { 408 return 16; 409 } 410 411 void SharedRuntime::generate_trampoline(MacroAssembler *masm, address destination) { 412 __ jump(RuntimeAddress(destination)); 413 } 414 415 // The java_calling_convention describes stack locations as ideal slots on 416 // a frame with no abi restrictions. Since we must observe abi restrictions 417 // (like the placement of the register window) the slots must be biased by 418 // the following value. 419 static int reg2offset_in(VMReg r) { 420 // Account for saved rbp and return address 421 // This should really be in_preserve_stack_slots 422 return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size; 423 } 424 425 static int reg2offset_out(VMReg r) { 426 return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size; 427 } 428 429 // --------------------------------------------------------------------------- 430 // Read the array of BasicTypes from a signature, and compute where the 431 // arguments should go. Values in the VMRegPair regs array refer to 4-byte 432 // quantities. Values less than VMRegImpl::stack0 are registers, those above 433 // refer to 4-byte stack slots. All stack slots are based off of the stack pointer 434 // as framesizes are fixed. 435 // VMRegImpl::stack0 refers to the first slot 0(sp). 436 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher. Register 437 // up to RegisterImpl::number_of_registers) are the 64-bit 438 // integer registers. 439 440 // Note: the INPUTS in sig_bt are in units of Java argument words, which are 441 // either 32-bit or 64-bit depending on the build. The OUTPUTS are in 32-bit 442 // units regardless of build. Of course for i486 there is no 64 bit build 443 444 // The Java calling convention is a "shifted" version of the C ABI. 445 // By skipping the first C ABI register we can call non-static jni methods 446 // with small numbers of arguments without having to shuffle the arguments 447 // at all. Since we control the java ABI we ought to at least get some 448 // advantage out of it. 449 450 int SharedRuntime::java_calling_convention(const BasicType *sig_bt, 451 VMRegPair *regs, 452 int total_args_passed, 453 int is_outgoing) { 454 455 // Create the mapping between argument positions and 456 // registers. 457 static const Register INT_ArgReg[Argument::n_int_register_parameters_j] = { 458 j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5 459 }; 460 static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_j] = { 461 j_farg0, j_farg1, j_farg2, j_farg3, 462 j_farg4, j_farg5, j_farg6, j_farg7 463 }; 464 465 466 uint int_args = 0; 467 uint fp_args = 0; 468 uint stk_args = 0; // inc by 2 each time 469 470 for (int i = 0; i < total_args_passed; i++) { 471 switch (sig_bt[i]) { 472 case T_BOOLEAN: 473 case T_CHAR: 474 case T_BYTE: 475 case T_SHORT: 476 case T_INT: 477 if (int_args < Argument::n_int_register_parameters_j) { 478 regs[i].set1(INT_ArgReg[int_args++]->as_VMReg()); 479 } else { 480 regs[i].set1(VMRegImpl::stack2reg(stk_args)); 481 stk_args += 2; 482 } 483 break; 484 case T_VOID: 485 // halves of T_LONG or T_DOUBLE 486 assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half"); 487 regs[i].set_bad(); 488 break; 489 case T_LONG: 490 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 491 // fall through 492 case T_OBJECT: 493 case T_ARRAY: 494 case T_ADDRESS: 495 if (int_args < Argument::n_int_register_parameters_j) { 496 regs[i].set2(INT_ArgReg[int_args++]->as_VMReg()); 497 } else { 498 regs[i].set2(VMRegImpl::stack2reg(stk_args)); 499 stk_args += 2; 500 } 501 break; 502 case T_FLOAT: 503 if (fp_args < Argument::n_float_register_parameters_j) { 504 regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg()); 505 } else { 506 regs[i].set1(VMRegImpl::stack2reg(stk_args)); 507 stk_args += 2; 508 } 509 break; 510 case T_DOUBLE: 511 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 512 if (fp_args < Argument::n_float_register_parameters_j) { 513 regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg()); 514 } else { 515 regs[i].set2(VMRegImpl::stack2reg(stk_args)); 516 stk_args += 2; 517 } 518 break; 519 default: 520 ShouldNotReachHere(); 521 break; 522 } 523 } 524 525 return align_up(stk_args, 2); 526 } 527 528 // Patch the callers callsite with entry to compiled code if it exists. 529 static void patch_callers_callsite(MacroAssembler *masm) { 530 Label L; 531 __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD); 532 __ jcc(Assembler::equal, L); 533 534 // Save the current stack pointer 535 __ mov(r13, rsp); 536 // Schedule the branch target address early. 537 // Call into the VM to patch the caller, then jump to compiled callee 538 // rax isn't live so capture return address while we easily can 539 __ movptr(rax, Address(rsp, 0)); 540 541 // align stack so push_CPU_state doesn't fault 542 __ andptr(rsp, -(StackAlignmentInBytes)); 543 __ push_CPU_state(); 544 __ vzeroupper(); 545 // VM needs caller's callsite 546 // VM needs target method 547 // This needs to be a long call since we will relocate this adapter to 548 // the codeBuffer and it may not reach 549 550 // Allocate argument register save area 551 if (frame::arg_reg_save_area_bytes != 0) { 552 __ subptr(rsp, frame::arg_reg_save_area_bytes); 553 } 554 __ mov(c_rarg0, rbx); 555 __ mov(c_rarg1, rax); 556 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite))); 557 558 // De-allocate argument register save area 559 if (frame::arg_reg_save_area_bytes != 0) { 560 __ addptr(rsp, frame::arg_reg_save_area_bytes); 561 } 562 563 __ vzeroupper(); 564 __ pop_CPU_state(); 565 // restore sp 566 __ mov(rsp, r13); 567 __ bind(L); 568 } 569 570 571 static void gen_c2i_adapter(MacroAssembler *masm, 572 int total_args_passed, 573 int comp_args_on_stack, 574 const BasicType *sig_bt, 575 const VMRegPair *regs, 576 Label& skip_fixup) { 577 // Before we get into the guts of the C2I adapter, see if we should be here 578 // at all. We've come from compiled code and are attempting to jump to the 579 // interpreter, which means the caller made a static call to get here 580 // (vcalls always get a compiled target if there is one). Check for a 581 // compiled target. If there is one, we need to patch the caller's call. 582 patch_callers_callsite(masm); 583 584 __ bind(skip_fixup); 585 586 // Since all args are passed on the stack, total_args_passed * 587 // Interpreter::stackElementSize is the space we need. Plus 1 because 588 // we also account for the return address location since 589 // we store it first rather than hold it in rax across all the shuffling 590 591 int extraspace = (total_args_passed * Interpreter::stackElementSize) + wordSize; 592 593 // stack is aligned, keep it that way 594 extraspace = align_up(extraspace, 2*wordSize); 595 596 // Get return address 597 __ pop(rax); 598 599 // set senderSP value 600 __ mov(r13, rsp); 601 602 __ subptr(rsp, extraspace); 603 604 // Store the return address in the expected location 605 __ movptr(Address(rsp, 0), rax); 606 607 // Now write the args into the outgoing interpreter space 608 for (int i = 0; i < total_args_passed; i++) { 609 if (sig_bt[i] == T_VOID) { 610 assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half"); 611 continue; 612 } 613 614 // offset to start parameters 615 int st_off = (total_args_passed - i) * Interpreter::stackElementSize; 616 int next_off = st_off - Interpreter::stackElementSize; 617 618 // Say 4 args: 619 // i st_off 620 // 0 32 T_LONG 621 // 1 24 T_VOID 622 // 2 16 T_OBJECT 623 // 3 8 T_BOOL 624 // - 0 return address 625 // 626 // However to make thing extra confusing. Because we can fit a long/double in 627 // a single slot on a 64 bt vm and it would be silly to break them up, the interpreter 628 // leaves one slot empty and only stores to a single slot. In this case the 629 // slot that is occupied is the T_VOID slot. See I said it was confusing. 630 631 VMReg r_1 = regs[i].first(); 632 VMReg r_2 = regs[i].second(); 633 if (!r_1->is_valid()) { 634 assert(!r_2->is_valid(), ""); 635 continue; 636 } 637 if (r_1->is_stack()) { 638 // memory to memory use rax 639 int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace; 640 if (!r_2->is_valid()) { 641 // sign extend?? 642 __ movl(rax, Address(rsp, ld_off)); 643 __ movptr(Address(rsp, st_off), rax); 644 645 } else { 646 647 __ movq(rax, Address(rsp, ld_off)); 648 649 // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG 650 // T_DOUBLE and T_LONG use two slots in the interpreter 651 if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) { 652 // ld_off == LSW, ld_off+wordSize == MSW 653 // st_off == MSW, next_off == LSW 654 __ movq(Address(rsp, next_off), rax); 655 #ifdef ASSERT 656 // Overwrite the unused slot with known junk 657 __ mov64(rax, CONST64(0xdeadffffdeadaaaa)); 658 __ movptr(Address(rsp, st_off), rax); 659 #endif /* ASSERT */ 660 } else { 661 __ movq(Address(rsp, st_off), rax); 662 } 663 } 664 } else if (r_1->is_Register()) { 665 Register r = r_1->as_Register(); 666 if (!r_2->is_valid()) { 667 // must be only an int (or less ) so move only 32bits to slot 668 // why not sign extend?? 669 __ movl(Address(rsp, st_off), r); 670 } else { 671 // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG 672 // T_DOUBLE and T_LONG use two slots in the interpreter 673 if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) { 674 // long/double in gpr 675 #ifdef ASSERT 676 // Overwrite the unused slot with known junk 677 __ mov64(rax, CONST64(0xdeadffffdeadaaab)); 678 __ movptr(Address(rsp, st_off), rax); 679 #endif /* ASSERT */ 680 __ movq(Address(rsp, next_off), r); 681 } else { 682 __ movptr(Address(rsp, st_off), r); 683 } 684 } 685 } else { 686 assert(r_1->is_XMMRegister(), ""); 687 if (!r_2->is_valid()) { 688 // only a float use just part of the slot 689 __ movflt(Address(rsp, st_off), r_1->as_XMMRegister()); 690 } else { 691 #ifdef ASSERT 692 // Overwrite the unused slot with known junk 693 __ mov64(rax, CONST64(0xdeadffffdeadaaac)); 694 __ movptr(Address(rsp, st_off), rax); 695 #endif /* ASSERT */ 696 __ movdbl(Address(rsp, next_off), r_1->as_XMMRegister()); 697 } 698 } 699 } 700 701 // Schedule the branch target address early. 702 __ movptr(rcx, Address(rbx, in_bytes(Method::interpreter_entry_offset()))); 703 __ jmp(rcx); 704 } 705 706 static void range_check(MacroAssembler* masm, Register pc_reg, Register temp_reg, 707 address code_start, address code_end, 708 Label& L_ok) { 709 Label L_fail; 710 __ lea(temp_reg, ExternalAddress(code_start)); 711 __ cmpptr(pc_reg, temp_reg); 712 __ jcc(Assembler::belowEqual, L_fail); 713 __ lea(temp_reg, ExternalAddress(code_end)); 714 __ cmpptr(pc_reg, temp_reg); 715 __ jcc(Assembler::below, L_ok); 716 __ bind(L_fail); 717 } 718 719 void SharedRuntime::gen_i2c_adapter(MacroAssembler *masm, 720 int total_args_passed, 721 int comp_args_on_stack, 722 const BasicType *sig_bt, 723 const VMRegPair *regs) { 724 725 // Note: r13 contains the senderSP on entry. We must preserve it since 726 // we may do a i2c -> c2i transition if we lose a race where compiled 727 // code goes non-entrant while we get args ready. 728 // In addition we use r13 to locate all the interpreter args as 729 // we must align the stack to 16 bytes on an i2c entry else we 730 // lose alignment we expect in all compiled code and register 731 // save code can segv when fxsave instructions find improperly 732 // aligned stack pointer. 733 734 // Adapters can be frameless because they do not require the caller 735 // to perform additional cleanup work, such as correcting the stack pointer. 736 // An i2c adapter is frameless because the *caller* frame, which is interpreted, 737 // routinely repairs its own stack pointer (from interpreter_frame_last_sp), 738 // even if a callee has modified the stack pointer. 739 // A c2i adapter is frameless because the *callee* frame, which is interpreted, 740 // routinely repairs its caller's stack pointer (from sender_sp, which is set 741 // up via the senderSP register). 742 // In other words, if *either* the caller or callee is interpreted, we can 743 // get the stack pointer repaired after a call. 744 // This is why c2i and i2c adapters cannot be indefinitely composed. 745 // In particular, if a c2i adapter were to somehow call an i2c adapter, 746 // both caller and callee would be compiled methods, and neither would 747 // clean up the stack pointer changes performed by the two adapters. 748 // If this happens, control eventually transfers back to the compiled 749 // caller, but with an uncorrected stack, causing delayed havoc. 750 751 // Pick up the return address 752 __ movptr(rax, Address(rsp, 0)); 753 754 if (VerifyAdapterCalls && 755 (Interpreter::code() != NULL || StubRoutines::code1() != NULL)) { 756 // So, let's test for cascading c2i/i2c adapters right now. 757 // assert(Interpreter::contains($return_addr) || 758 // StubRoutines::contains($return_addr), 759 // "i2c adapter must return to an interpreter frame"); 760 __ block_comment("verify_i2c { "); 761 Label L_ok; 762 if (Interpreter::code() != NULL) 763 range_check(masm, rax, r11, 764 Interpreter::code()->code_start(), Interpreter::code()->code_end(), 765 L_ok); 766 if (StubRoutines::code1() != NULL) 767 range_check(masm, rax, r11, 768 StubRoutines::code1()->code_begin(), StubRoutines::code1()->code_end(), 769 L_ok); 770 if (StubRoutines::code2() != NULL) 771 range_check(masm, rax, r11, 772 StubRoutines::code2()->code_begin(), StubRoutines::code2()->code_end(), 773 L_ok); 774 const char* msg = "i2c adapter must return to an interpreter frame"; 775 __ block_comment(msg); 776 __ stop(msg); 777 __ bind(L_ok); 778 __ block_comment("} verify_i2ce "); 779 } 780 781 // Must preserve original SP for loading incoming arguments because 782 // we need to align the outgoing SP for compiled code. 783 __ movptr(r11, rsp); 784 785 // Cut-out for having no stack args. Since up to 2 int/oop args are passed 786 // in registers, we will occasionally have no stack args. 787 int comp_words_on_stack = 0; 788 if (comp_args_on_stack) { 789 // Sig words on the stack are greater-than VMRegImpl::stack0. Those in 790 // registers are below. By subtracting stack0, we either get a negative 791 // number (all values in registers) or the maximum stack slot accessed. 792 793 // Convert 4-byte c2 stack slots to words. 794 comp_words_on_stack = align_up(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord; 795 // Round up to miminum stack alignment, in wordSize 796 comp_words_on_stack = align_up(comp_words_on_stack, 2); 797 __ subptr(rsp, comp_words_on_stack * wordSize); 798 } 799 800 801 // Ensure compiled code always sees stack at proper alignment 802 __ andptr(rsp, -16); 803 804 // push the return address and misalign the stack that youngest frame always sees 805 // as far as the placement of the call instruction 806 __ push(rax); 807 808 // Put saved SP in another register 809 const Register saved_sp = rax; 810 __ movptr(saved_sp, r11); 811 812 // Will jump to the compiled code just as if compiled code was doing it. 813 // Pre-load the register-jump target early, to schedule it better. 814 __ movptr(r11, Address(rbx, in_bytes(Method::from_compiled_offset()))); 815 816 #if INCLUDE_JVMCI 817 if (EnableJVMCI || UseAOT) { 818 // check if this call should be routed towards a specific entry point 819 __ cmpptr(Address(r15_thread, in_bytes(JavaThread::jvmci_alternate_call_target_offset())), 0); 820 Label no_alternative_target; 821 __ jcc(Assembler::equal, no_alternative_target); 822 __ movptr(r11, Address(r15_thread, in_bytes(JavaThread::jvmci_alternate_call_target_offset()))); 823 __ movptr(Address(r15_thread, in_bytes(JavaThread::jvmci_alternate_call_target_offset())), 0); 824 __ bind(no_alternative_target); 825 } 826 #endif // INCLUDE_JVMCI 827 828 // Now generate the shuffle code. Pick up all register args and move the 829 // rest through the floating point stack top. 830 for (int i = 0; i < total_args_passed; i++) { 831 if (sig_bt[i] == T_VOID) { 832 // Longs and doubles are passed in native word order, but misaligned 833 // in the 32-bit build. 834 assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half"); 835 continue; 836 } 837 838 // Pick up 0, 1 or 2 words from SP+offset. 839 840 assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(), 841 "scrambled load targets?"); 842 // Load in argument order going down. 843 int ld_off = (total_args_passed - i)*Interpreter::stackElementSize; 844 // Point to interpreter value (vs. tag) 845 int next_off = ld_off - Interpreter::stackElementSize; 846 // 847 // 848 // 849 VMReg r_1 = regs[i].first(); 850 VMReg r_2 = regs[i].second(); 851 if (!r_1->is_valid()) { 852 assert(!r_2->is_valid(), ""); 853 continue; 854 } 855 if (r_1->is_stack()) { 856 // Convert stack slot to an SP offset (+ wordSize to account for return address ) 857 int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize; 858 859 // We can use r13 as a temp here because compiled code doesn't need r13 as an input 860 // and if we end up going thru a c2i because of a miss a reasonable value of r13 861 // will be generated. 862 if (!r_2->is_valid()) { 863 // sign extend??? 864 __ movl(r13, Address(saved_sp, ld_off)); 865 __ movptr(Address(rsp, st_off), r13); 866 } else { 867 // 868 // We are using two optoregs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE 869 // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case 870 // So we must adjust where to pick up the data to match the interpreter. 871 // 872 // Interpreter local[n] == MSW, local[n+1] == LSW however locals 873 // are accessed as negative so LSW is at LOW address 874 875 // ld_off is MSW so get LSW 876 const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)? 877 next_off : ld_off; 878 __ movq(r13, Address(saved_sp, offset)); 879 // st_off is LSW (i.e. reg.first()) 880 __ movq(Address(rsp, st_off), r13); 881 } 882 } else if (r_1->is_Register()) { // Register argument 883 Register r = r_1->as_Register(); 884 assert(r != rax, "must be different"); 885 if (r_2->is_valid()) { 886 // 887 // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE 888 // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case 889 // So we must adjust where to pick up the data to match the interpreter. 890 891 const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)? 892 next_off : ld_off; 893 894 // this can be a misaligned move 895 __ movq(r, Address(saved_sp, offset)); 896 } else { 897 // sign extend and use a full word? 898 __ movl(r, Address(saved_sp, ld_off)); 899 } 900 } else { 901 if (!r_2->is_valid()) { 902 __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off)); 903 } else { 904 __ movdbl(r_1->as_XMMRegister(), Address(saved_sp, next_off)); 905 } 906 } 907 } 908 909 // 6243940 We might end up in handle_wrong_method if 910 // the callee is deoptimized as we race thru here. If that 911 // happens we don't want to take a safepoint because the 912 // caller frame will look interpreted and arguments are now 913 // "compiled" so it is much better to make this transition 914 // invisible to the stack walking code. Unfortunately if 915 // we try and find the callee by normal means a safepoint 916 // is possible. So we stash the desired callee in the thread 917 // and the vm will find there should this case occur. 918 919 __ movptr(Address(r15_thread, JavaThread::callee_target_offset()), rbx); 920 921 // put Method* where a c2i would expect should we end up there 922 // only needed becaus eof c2 resolve stubs return Method* as a result in 923 // rax 924 __ mov(rax, rbx); 925 __ jmp(r11); 926 } 927 928 // --------------------------------------------------------------- 929 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm, 930 int total_args_passed, 931 int comp_args_on_stack, 932 const BasicType *sig_bt, 933 const VMRegPair *regs, 934 AdapterFingerPrint* fingerprint) { 935 address i2c_entry = __ pc(); 936 937 gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs); 938 939 // ------------------------------------------------------------------------- 940 // Generate a C2I adapter. On entry we know rbx holds the Method* during calls 941 // to the interpreter. The args start out packed in the compiled layout. They 942 // need to be unpacked into the interpreter layout. This will almost always 943 // require some stack space. We grow the current (compiled) stack, then repack 944 // the args. We finally end in a jump to the generic interpreter entry point. 945 // On exit from the interpreter, the interpreter will restore our SP (lest the 946 // compiled code, which relys solely on SP and not RBP, get sick). 947 948 address c2i_unverified_entry = __ pc(); 949 Label skip_fixup; 950 Label ok; 951 952 Register holder = rax; 953 Register receiver = j_rarg0; 954 Register temp = rbx; 955 956 { 957 __ load_klass(temp, receiver); 958 __ cmpptr(temp, Address(holder, CompiledICHolder::holder_klass_offset())); 959 __ movptr(rbx, Address(holder, CompiledICHolder::holder_metadata_offset())); 960 __ jcc(Assembler::equal, ok); 961 __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 962 963 __ bind(ok); 964 // Method might have been compiled since the call site was patched to 965 // interpreted if that is the case treat it as a miss so we can get 966 // the call site corrected. 967 __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD); 968 __ jcc(Assembler::equal, skip_fixup); 969 __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 970 } 971 972 address c2i_entry = __ pc(); 973 974 // Class initialization barrier for static methods 975 address c2i_no_clinit_check_entry = NULL; 976 if (VM_Version::supports_fast_class_init_checks()) { 977 Label L_skip_barrier; 978 Register method = rbx; 979 980 { // Bypass the barrier for non-static methods 981 Register flags = rscratch1; 982 __ movl(flags, Address(method, Method::access_flags_offset())); 983 __ testl(flags, JVM_ACC_STATIC); 984 __ jcc(Assembler::zero, L_skip_barrier); // non-static 985 } 986 987 Register klass = rscratch1; 988 __ load_method_holder(klass, method); 989 __ clinit_barrier(klass, r15_thread, &L_skip_barrier /*L_fast_path*/); 990 991 __ jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); // slow path 992 993 __ bind(L_skip_barrier); 994 c2i_no_clinit_check_entry = __ pc(); 995 } 996 997 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 998 bs->c2i_entry_barrier(masm); 999 1000 gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup); 1001 1002 __ flush(); 1003 return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry, c2i_no_clinit_check_entry); 1004 } 1005 1006 int SharedRuntime::c_calling_convention(const BasicType *sig_bt, 1007 VMRegPair *regs, 1008 VMRegPair *regs2, 1009 int total_args_passed) { 1010 assert(regs2 == NULL, "not needed on x86"); 1011 // We return the amount of VMRegImpl stack slots we need to reserve for all 1012 // the arguments NOT counting out_preserve_stack_slots. 1013 1014 // NOTE: These arrays will have to change when c1 is ported 1015 #ifdef _WIN64 1016 static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = { 1017 c_rarg0, c_rarg1, c_rarg2, c_rarg3 1018 }; 1019 static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = { 1020 c_farg0, c_farg1, c_farg2, c_farg3 1021 }; 1022 #else 1023 static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = { 1024 c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, c_rarg5 1025 }; 1026 static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = { 1027 c_farg0, c_farg1, c_farg2, c_farg3, 1028 c_farg4, c_farg5, c_farg6, c_farg7 1029 }; 1030 #endif // _WIN64 1031 1032 1033 uint int_args = 0; 1034 uint fp_args = 0; 1035 uint stk_args = 0; // inc by 2 each time 1036 1037 for (int i = 0; i < total_args_passed; i++) { 1038 switch (sig_bt[i]) { 1039 case T_BOOLEAN: 1040 case T_CHAR: 1041 case T_BYTE: 1042 case T_SHORT: 1043 case T_INT: 1044 if (int_args < Argument::n_int_register_parameters_c) { 1045 regs[i].set1(INT_ArgReg[int_args++]->as_VMReg()); 1046 #ifdef _WIN64 1047 fp_args++; 1048 // Allocate slots for callee to stuff register args the stack. 1049 stk_args += 2; 1050 #endif 1051 } else { 1052 regs[i].set1(VMRegImpl::stack2reg(stk_args)); 1053 stk_args += 2; 1054 } 1055 break; 1056 case T_LONG: 1057 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 1058 // fall through 1059 case T_OBJECT: 1060 case T_ARRAY: 1061 case T_ADDRESS: 1062 case T_METADATA: 1063 if (int_args < Argument::n_int_register_parameters_c) { 1064 regs[i].set2(INT_ArgReg[int_args++]->as_VMReg()); 1065 #ifdef _WIN64 1066 fp_args++; 1067 stk_args += 2; 1068 #endif 1069 } else { 1070 regs[i].set2(VMRegImpl::stack2reg(stk_args)); 1071 stk_args += 2; 1072 } 1073 break; 1074 case T_FLOAT: 1075 if (fp_args < Argument::n_float_register_parameters_c) { 1076 regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg()); 1077 #ifdef _WIN64 1078 int_args++; 1079 // Allocate slots for callee to stuff register args the stack. 1080 stk_args += 2; 1081 #endif 1082 } else { 1083 regs[i].set1(VMRegImpl::stack2reg(stk_args)); 1084 stk_args += 2; 1085 } 1086 break; 1087 case T_DOUBLE: 1088 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 1089 if (fp_args < Argument::n_float_register_parameters_c) { 1090 regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg()); 1091 #ifdef _WIN64 1092 int_args++; 1093 // Allocate slots for callee to stuff register args the stack. 1094 stk_args += 2; 1095 #endif 1096 } else { 1097 regs[i].set2(VMRegImpl::stack2reg(stk_args)); 1098 stk_args += 2; 1099 } 1100 break; 1101 case T_VOID: // Halves of longs and doubles 1102 assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half"); 1103 regs[i].set_bad(); 1104 break; 1105 default: 1106 ShouldNotReachHere(); 1107 break; 1108 } 1109 } 1110 #ifdef _WIN64 1111 // windows abi requires that we always allocate enough stack space 1112 // for 4 64bit registers to be stored down. 1113 if (stk_args < 8) { 1114 stk_args = 8; 1115 } 1116 #endif // _WIN64 1117 1118 return stk_args; 1119 } 1120 1121 // On 64 bit we will store integer like items to the stack as 1122 // 64 bits items (sparc abi) even though java would only store 1123 // 32bits for a parameter. On 32bit it will simply be 32 bits 1124 // So this routine will do 32->32 on 32bit and 32->64 on 64bit 1125 static void move32_64(MacroAssembler* masm, VMRegPair src, VMRegPair dst) { 1126 if (src.first()->is_stack()) { 1127 if (dst.first()->is_stack()) { 1128 // stack to stack 1129 __ movslq(rax, Address(rbp, reg2offset_in(src.first()))); 1130 __ movq(Address(rsp, reg2offset_out(dst.first())), rax); 1131 } else { 1132 // stack to reg 1133 __ movslq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first()))); 1134 } 1135 } else if (dst.first()->is_stack()) { 1136 // reg to stack 1137 // Do we really have to sign extend??? 1138 // __ movslq(src.first()->as_Register(), src.first()->as_Register()); 1139 __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register()); 1140 } else { 1141 // Do we really have to sign extend??? 1142 // __ movslq(dst.first()->as_Register(), src.first()->as_Register()); 1143 if (dst.first() != src.first()) { 1144 __ movq(dst.first()->as_Register(), src.first()->as_Register()); 1145 } 1146 } 1147 } 1148 1149 static void move_ptr(MacroAssembler* masm, VMRegPair src, VMRegPair dst) { 1150 if (src.first()->is_stack()) { 1151 if (dst.first()->is_stack()) { 1152 // stack to stack 1153 __ movq(rax, Address(rbp, reg2offset_in(src.first()))); 1154 __ movq(Address(rsp, reg2offset_out(dst.first())), rax); 1155 } else { 1156 // stack to reg 1157 __ movq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first()))); 1158 } 1159 } else if (dst.first()->is_stack()) { 1160 // reg to stack 1161 __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register()); 1162 } else { 1163 if (dst.first() != src.first()) { 1164 __ movq(dst.first()->as_Register(), src.first()->as_Register()); 1165 } 1166 } 1167 } 1168 1169 // An oop arg. Must pass a handle not the oop itself 1170 static void object_move(MacroAssembler* masm, 1171 OopMap* map, 1172 int oop_handle_offset, 1173 int framesize_in_slots, 1174 VMRegPair src, 1175 VMRegPair dst, 1176 bool is_receiver, 1177 int* receiver_offset) { 1178 1179 // must pass a handle. First figure out the location we use as a handle 1180 1181 Register rHandle = dst.first()->is_stack() ? rax : dst.first()->as_Register(); 1182 1183 // See if oop is NULL if it is we need no handle 1184 1185 if (src.first()->is_stack()) { 1186 1187 // Oop is already on the stack as an argument 1188 int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots(); 1189 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots)); 1190 if (is_receiver) { 1191 *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size; 1192 } 1193 1194 __ cmpptr(Address(rbp, reg2offset_in(src.first())), (int32_t)NULL_WORD); 1195 __ lea(rHandle, Address(rbp, reg2offset_in(src.first()))); 1196 // conditionally move a NULL 1197 __ cmovptr(Assembler::equal, rHandle, Address(rbp, reg2offset_in(src.first()))); 1198 } else { 1199 1200 // Oop is in an a register we must store it to the space we reserve 1201 // on the stack for oop_handles and pass a handle if oop is non-NULL 1202 1203 const Register rOop = src.first()->as_Register(); 1204 int oop_slot; 1205 if (rOop == j_rarg0) 1206 oop_slot = 0; 1207 else if (rOop == j_rarg1) 1208 oop_slot = 1; 1209 else if (rOop == j_rarg2) 1210 oop_slot = 2; 1211 else if (rOop == j_rarg3) 1212 oop_slot = 3; 1213 else if (rOop == j_rarg4) 1214 oop_slot = 4; 1215 else { 1216 assert(rOop == j_rarg5, "wrong register"); 1217 oop_slot = 5; 1218 } 1219 1220 oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset; 1221 int offset = oop_slot*VMRegImpl::stack_slot_size; 1222 1223 map->set_oop(VMRegImpl::stack2reg(oop_slot)); 1224 // Store oop in handle area, may be NULL 1225 __ movptr(Address(rsp, offset), rOop); 1226 if (is_receiver) { 1227 *receiver_offset = offset; 1228 } 1229 1230 __ cmpptr(rOop, (int32_t)NULL_WORD); 1231 __ lea(rHandle, Address(rsp, offset)); 1232 // conditionally move a NULL from the handle area where it was just stored 1233 __ cmovptr(Assembler::equal, rHandle, Address(rsp, offset)); 1234 } 1235 1236 // If arg is on the stack then place it otherwise it is already in correct reg. 1237 if (dst.first()->is_stack()) { 1238 __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle); 1239 } 1240 } 1241 1242 // A float arg may have to do float reg int reg conversion 1243 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) { 1244 assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move"); 1245 1246 // The calling conventions assures us that each VMregpair is either 1247 // all really one physical register or adjacent stack slots. 1248 // This greatly simplifies the cases here compared to sparc. 1249 1250 if (src.first()->is_stack()) { 1251 if (dst.first()->is_stack()) { 1252 __ movl(rax, Address(rbp, reg2offset_in(src.first()))); 1253 __ movptr(Address(rsp, reg2offset_out(dst.first())), rax); 1254 } else { 1255 // stack to reg 1256 assert(dst.first()->is_XMMRegister(), "only expect xmm registers as parameters"); 1257 __ movflt(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first()))); 1258 } 1259 } else if (dst.first()->is_stack()) { 1260 // reg to stack 1261 assert(src.first()->is_XMMRegister(), "only expect xmm registers as parameters"); 1262 __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister()); 1263 } else { 1264 // reg to reg 1265 // In theory these overlap but the ordering is such that this is likely a nop 1266 if ( src.first() != dst.first()) { 1267 __ movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister()); 1268 } 1269 } 1270 } 1271 1272 // A long move 1273 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) { 1274 1275 // The calling conventions assures us that each VMregpair is either 1276 // all really one physical register or adjacent stack slots. 1277 // This greatly simplifies the cases here compared to sparc. 1278 1279 if (src.is_single_phys_reg() ) { 1280 if (dst.is_single_phys_reg()) { 1281 if (dst.first() != src.first()) { 1282 __ mov(dst.first()->as_Register(), src.first()->as_Register()); 1283 } 1284 } else { 1285 assert(dst.is_single_reg(), "not a stack pair"); 1286 __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register()); 1287 } 1288 } else if (dst.is_single_phys_reg()) { 1289 assert(src.is_single_reg(), "not a stack pair"); 1290 __ movq(dst.first()->as_Register(), Address(rbp, reg2offset_out(src.first()))); 1291 } else { 1292 assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs"); 1293 __ movq(rax, Address(rbp, reg2offset_in(src.first()))); 1294 __ movq(Address(rsp, reg2offset_out(dst.first())), rax); 1295 } 1296 } 1297 1298 // A double move 1299 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) { 1300 1301 // The calling conventions assures us that each VMregpair is either 1302 // all really one physical register or adjacent stack slots. 1303 // This greatly simplifies the cases here compared to sparc. 1304 1305 if (src.is_single_phys_reg() ) { 1306 if (dst.is_single_phys_reg()) { 1307 // In theory these overlap but the ordering is such that this is likely a nop 1308 if ( src.first() != dst.first()) { 1309 __ movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister()); 1310 } 1311 } else { 1312 assert(dst.is_single_reg(), "not a stack pair"); 1313 __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister()); 1314 } 1315 } else if (dst.is_single_phys_reg()) { 1316 assert(src.is_single_reg(), "not a stack pair"); 1317 __ movdbl(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_out(src.first()))); 1318 } else { 1319 assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs"); 1320 __ movq(rax, Address(rbp, reg2offset_in(src.first()))); 1321 __ movq(Address(rsp, reg2offset_out(dst.first())), rax); 1322 } 1323 } 1324 1325 1326 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) { 1327 // We always ignore the frame_slots arg and just use the space just below frame pointer 1328 // which by this time is free to use 1329 switch (ret_type) { 1330 case T_FLOAT: 1331 __ movflt(Address(rbp, -wordSize), xmm0); 1332 break; 1333 case T_DOUBLE: 1334 __ movdbl(Address(rbp, -wordSize), xmm0); 1335 break; 1336 case T_VOID: break; 1337 default: { 1338 __ movptr(Address(rbp, -wordSize), rax); 1339 } 1340 } 1341 } 1342 1343 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) { 1344 // We always ignore the frame_slots arg and just use the space just below frame pointer 1345 // which by this time is free to use 1346 switch (ret_type) { 1347 case T_FLOAT: 1348 __ movflt(xmm0, Address(rbp, -wordSize)); 1349 break; 1350 case T_DOUBLE: 1351 __ movdbl(xmm0, Address(rbp, -wordSize)); 1352 break; 1353 case T_VOID: break; 1354 default: { 1355 __ movptr(rax, Address(rbp, -wordSize)); 1356 } 1357 } 1358 } 1359 1360 static void save_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) { 1361 for ( int i = first_arg ; i < arg_count ; i++ ) { 1362 if (args[i].first()->is_Register()) { 1363 __ push(args[i].first()->as_Register()); 1364 } else if (args[i].first()->is_XMMRegister()) { 1365 __ subptr(rsp, 2*wordSize); 1366 __ movdbl(Address(rsp, 0), args[i].first()->as_XMMRegister()); 1367 } 1368 } 1369 } 1370 1371 static void restore_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) { 1372 for ( int i = arg_count - 1 ; i >= first_arg ; i-- ) { 1373 if (args[i].first()->is_Register()) { 1374 __ pop(args[i].first()->as_Register()); 1375 } else if (args[i].first()->is_XMMRegister()) { 1376 __ movdbl(args[i].first()->as_XMMRegister(), Address(rsp, 0)); 1377 __ addptr(rsp, 2*wordSize); 1378 } 1379 } 1380 } 1381 1382 1383 static void save_or_restore_arguments(MacroAssembler* masm, 1384 const int stack_slots, 1385 const int total_in_args, 1386 const int arg_save_area, 1387 OopMap* map, 1388 VMRegPair* in_regs, 1389 BasicType* in_sig_bt) { 1390 // if map is non-NULL then the code should store the values, 1391 // otherwise it should load them. 1392 int slot = arg_save_area; 1393 // Save down double word first 1394 for ( int i = 0; i < total_in_args; i++) { 1395 if (in_regs[i].first()->is_XMMRegister() && in_sig_bt[i] == T_DOUBLE) { 1396 int offset = slot * VMRegImpl::stack_slot_size; 1397 slot += VMRegImpl::slots_per_word; 1398 assert(slot <= stack_slots, "overflow"); 1399 if (map != NULL) { 1400 __ movdbl(Address(rsp, offset), in_regs[i].first()->as_XMMRegister()); 1401 } else { 1402 __ movdbl(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset)); 1403 } 1404 } 1405 if (in_regs[i].first()->is_Register() && 1406 (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_ARRAY)) { 1407 int offset = slot * VMRegImpl::stack_slot_size; 1408 if (map != NULL) { 1409 __ movq(Address(rsp, offset), in_regs[i].first()->as_Register()); 1410 if (in_sig_bt[i] == T_ARRAY) { 1411 map->set_oop(VMRegImpl::stack2reg(slot));; 1412 } 1413 } else { 1414 __ movq(in_regs[i].first()->as_Register(), Address(rsp, offset)); 1415 } 1416 slot += VMRegImpl::slots_per_word; 1417 } 1418 } 1419 // Save or restore single word registers 1420 for ( int i = 0; i < total_in_args; i++) { 1421 if (in_regs[i].first()->is_Register()) { 1422 int offset = slot * VMRegImpl::stack_slot_size; 1423 slot++; 1424 assert(slot <= stack_slots, "overflow"); 1425 1426 // Value is in an input register pass we must flush it to the stack 1427 const Register reg = in_regs[i].first()->as_Register(); 1428 switch (in_sig_bt[i]) { 1429 case T_BOOLEAN: 1430 case T_CHAR: 1431 case T_BYTE: 1432 case T_SHORT: 1433 case T_INT: 1434 if (map != NULL) { 1435 __ movl(Address(rsp, offset), reg); 1436 } else { 1437 __ movl(reg, Address(rsp, offset)); 1438 } 1439 break; 1440 case T_ARRAY: 1441 case T_LONG: 1442 // handled above 1443 break; 1444 case T_OBJECT: 1445 default: ShouldNotReachHere(); 1446 } 1447 } else if (in_regs[i].first()->is_XMMRegister()) { 1448 if (in_sig_bt[i] == T_FLOAT) { 1449 int offset = slot * VMRegImpl::stack_slot_size; 1450 slot++; 1451 assert(slot <= stack_slots, "overflow"); 1452 if (map != NULL) { 1453 __ movflt(Address(rsp, offset), in_regs[i].first()->as_XMMRegister()); 1454 } else { 1455 __ movflt(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset)); 1456 } 1457 } 1458 } else if (in_regs[i].first()->is_stack()) { 1459 if (in_sig_bt[i] == T_ARRAY && map != NULL) { 1460 int offset_in_older_frame = in_regs[i].first()->reg2stack() + SharedRuntime::out_preserve_stack_slots(); 1461 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots)); 1462 } 1463 } 1464 } 1465 } 1466 1467 // Pin object, return pinned object or null in rax 1468 static void gen_pin_object(MacroAssembler* masm, 1469 VMRegPair reg) { 1470 __ block_comment("gen_pin_object {"); 1471 1472 // rax always contains oop, either incoming or 1473 // pinned. 1474 Register tmp_reg = rax; 1475 1476 Label is_null; 1477 VMRegPair tmp; 1478 VMRegPair in_reg = reg; 1479 1480 tmp.set_ptr(tmp_reg->as_VMReg()); 1481 if (reg.first()->is_stack()) { 1482 // Load the arg up from the stack 1483 move_ptr(masm, reg, tmp); 1484 reg = tmp; 1485 } else { 1486 __ movptr(rax, reg.first()->as_Register()); 1487 } 1488 __ testptr(reg.first()->as_Register(), reg.first()->as_Register()); 1489 __ jccb(Assembler::equal, is_null); 1490 1491 if (reg.first()->as_Register() != c_rarg1) { 1492 __ movptr(c_rarg1, reg.first()->as_Register()); 1493 } 1494 1495 __ call_VM_leaf( 1496 CAST_FROM_FN_PTR(address, SharedRuntime::pin_object), 1497 r15_thread, c_rarg1); 1498 1499 __ bind(is_null); 1500 __ block_comment("} gen_pin_object"); 1501 } 1502 1503 // Unpin object 1504 static void gen_unpin_object(MacroAssembler* masm, 1505 VMRegPair reg) { 1506 __ block_comment("gen_unpin_object {"); 1507 Label is_null; 1508 1509 if (reg.first()->is_stack()) { 1510 __ movptr(c_rarg1, Address(rbp, reg2offset_in(reg.first()))); 1511 } else if (reg.first()->as_Register() != c_rarg1) { 1512 __ movptr(c_rarg1, reg.first()->as_Register()); 1513 } 1514 1515 __ testptr(c_rarg1, c_rarg1); 1516 __ jccb(Assembler::equal, is_null); 1517 1518 __ call_VM_leaf( 1519 CAST_FROM_FN_PTR(address, SharedRuntime::unpin_object), 1520 r15_thread, c_rarg1); 1521 1522 __ bind(is_null); 1523 __ block_comment("} gen_unpin_object"); 1524 } 1525 1526 // Check GCLocker::needs_gc and enter the runtime if it's true. This 1527 // keeps a new JNI critical region from starting until a GC has been 1528 // forced. Save down any oops in registers and describe them in an 1529 // OopMap. 1530 static void check_needs_gc_for_critical_native(MacroAssembler* masm, 1531 int stack_slots, 1532 int total_c_args, 1533 int total_in_args, 1534 int arg_save_area, 1535 OopMapSet* oop_maps, 1536 VMRegPair* in_regs, 1537 BasicType* in_sig_bt) { 1538 __ block_comment("check GCLocker::needs_gc"); 1539 Label cont; 1540 __ cmp8(ExternalAddress((address)GCLocker::needs_gc_address()), false); 1541 __ jcc(Assembler::equal, cont); 1542 1543 // Save down any incoming oops and call into the runtime to halt for a GC 1544 1545 OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/); 1546 save_or_restore_arguments(masm, stack_slots, total_in_args, 1547 arg_save_area, map, in_regs, in_sig_bt); 1548 1549 address the_pc = __ pc(); 1550 oop_maps->add_gc_map( __ offset(), map); 1551 __ set_last_Java_frame(rsp, noreg, the_pc); 1552 1553 __ block_comment("block_for_jni_critical"); 1554 __ movptr(c_rarg0, r15_thread); 1555 __ mov(r12, rsp); // remember sp 1556 __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows 1557 __ andptr(rsp, -16); // align stack as required by ABI 1558 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::block_for_jni_critical))); 1559 __ mov(rsp, r12); // restore sp 1560 __ reinit_heapbase(); 1561 1562 __ reset_last_Java_frame(false); 1563 1564 save_or_restore_arguments(masm, stack_slots, total_in_args, 1565 arg_save_area, NULL, in_regs, in_sig_bt); 1566 __ bind(cont); 1567 #ifdef ASSERT 1568 if (StressCriticalJNINatives) { 1569 // Stress register saving 1570 OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/); 1571 save_or_restore_arguments(masm, stack_slots, total_in_args, 1572 arg_save_area, map, in_regs, in_sig_bt); 1573 // Destroy argument registers 1574 for (int i = 0; i < total_in_args - 1; i++) { 1575 if (in_regs[i].first()->is_Register()) { 1576 const Register reg = in_regs[i].first()->as_Register(); 1577 __ xorptr(reg, reg); 1578 } else if (in_regs[i].first()->is_XMMRegister()) { 1579 __ xorpd(in_regs[i].first()->as_XMMRegister(), in_regs[i].first()->as_XMMRegister()); 1580 } else if (in_regs[i].first()->is_FloatRegister()) { 1581 ShouldNotReachHere(); 1582 } else if (in_regs[i].first()->is_stack()) { 1583 // Nothing to do 1584 } else { 1585 ShouldNotReachHere(); 1586 } 1587 if (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_DOUBLE) { 1588 i++; 1589 } 1590 } 1591 1592 save_or_restore_arguments(masm, stack_slots, total_in_args, 1593 arg_save_area, NULL, in_regs, in_sig_bt); 1594 } 1595 #endif 1596 } 1597 1598 // Unpack an array argument into a pointer to the body and the length 1599 // if the array is non-null, otherwise pass 0 for both. 1600 static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type, VMRegPair body_arg, VMRegPair length_arg) { 1601 Register tmp_reg = rax; 1602 assert(!body_arg.first()->is_Register() || body_arg.first()->as_Register() != tmp_reg, 1603 "possible collision"); 1604 assert(!length_arg.first()->is_Register() || length_arg.first()->as_Register() != tmp_reg, 1605 "possible collision"); 1606 1607 __ block_comment("unpack_array_argument {"); 1608 1609 // Pass the length, ptr pair 1610 Label is_null, done; 1611 VMRegPair tmp; 1612 tmp.set_ptr(tmp_reg->as_VMReg()); 1613 if (reg.first()->is_stack()) { 1614 // Load the arg up from the stack 1615 move_ptr(masm, reg, tmp); 1616 reg = tmp; 1617 } 1618 __ testptr(reg.first()->as_Register(), reg.first()->as_Register()); 1619 __ jccb(Assembler::equal, is_null); 1620 __ lea(tmp_reg, Address(reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type))); 1621 move_ptr(masm, tmp, body_arg); 1622 // load the length relative to the body. 1623 __ movl(tmp_reg, Address(tmp_reg, arrayOopDesc::length_offset_in_bytes() - 1624 arrayOopDesc::base_offset_in_bytes(in_elem_type))); 1625 move32_64(masm, tmp, length_arg); 1626 __ jmpb(done); 1627 __ bind(is_null); 1628 // Pass zeros 1629 __ xorptr(tmp_reg, tmp_reg); 1630 move_ptr(masm, tmp, body_arg); 1631 move32_64(masm, tmp, length_arg); 1632 __ bind(done); 1633 1634 __ block_comment("} unpack_array_argument"); 1635 } 1636 1637 1638 // Different signatures may require very different orders for the move 1639 // to avoid clobbering other arguments. There's no simple way to 1640 // order them safely. Compute a safe order for issuing stores and 1641 // break any cycles in those stores. This code is fairly general but 1642 // it's not necessary on the other platforms so we keep it in the 1643 // platform dependent code instead of moving it into a shared file. 1644 // (See bugs 7013347 & 7145024.) 1645 // Note that this code is specific to LP64. 1646 class ComputeMoveOrder: public StackObj { 1647 class MoveOperation: public ResourceObj { 1648 friend class ComputeMoveOrder; 1649 private: 1650 VMRegPair _src; 1651 VMRegPair _dst; 1652 int _src_index; 1653 int _dst_index; 1654 bool _processed; 1655 MoveOperation* _next; 1656 MoveOperation* _prev; 1657 1658 static int get_id(VMRegPair r) { 1659 return r.first()->value(); 1660 } 1661 1662 public: 1663 MoveOperation(int src_index, VMRegPair src, int dst_index, VMRegPair dst): 1664 _src(src) 1665 , _dst(dst) 1666 , _src_index(src_index) 1667 , _dst_index(dst_index) 1668 , _processed(false) 1669 , _next(NULL) 1670 , _prev(NULL) { 1671 } 1672 1673 VMRegPair src() const { return _src; } 1674 int src_id() const { return get_id(src()); } 1675 int src_index() const { return _src_index; } 1676 VMRegPair dst() const { return _dst; } 1677 void set_dst(int i, VMRegPair dst) { _dst_index = i, _dst = dst; } 1678 int dst_index() const { return _dst_index; } 1679 int dst_id() const { return get_id(dst()); } 1680 MoveOperation* next() const { return _next; } 1681 MoveOperation* prev() const { return _prev; } 1682 void set_processed() { _processed = true; } 1683 bool is_processed() const { return _processed; } 1684 1685 // insert 1686 void break_cycle(VMRegPair temp_register) { 1687 // create a new store following the last store 1688 // to move from the temp_register to the original 1689 MoveOperation* new_store = new MoveOperation(-1, temp_register, dst_index(), dst()); 1690 1691 // break the cycle of links and insert new_store at the end 1692 // break the reverse link. 1693 MoveOperation* p = prev(); 1694 assert(p->next() == this, "must be"); 1695 _prev = NULL; 1696 p->_next = new_store; 1697 new_store->_prev = p; 1698 1699 // change the original store to save it's value in the temp. 1700 set_dst(-1, temp_register); 1701 } 1702 1703 void link(GrowableArray<MoveOperation*>& killer) { 1704 // link this store in front the store that it depends on 1705 MoveOperation* n = killer.at_grow(src_id(), NULL); 1706 if (n != NULL) { 1707 assert(_next == NULL && n->_prev == NULL, "shouldn't have been set yet"); 1708 _next = n; 1709 n->_prev = this; 1710 } 1711 } 1712 }; 1713 1714 private: 1715 GrowableArray<MoveOperation*> edges; 1716 1717 public: 1718 ComputeMoveOrder(int total_in_args, VMRegPair* in_regs, int total_c_args, VMRegPair* out_regs, 1719 BasicType* in_sig_bt, GrowableArray<int>& arg_order, VMRegPair tmp_vmreg) { 1720 // Move operations where the dest is the stack can all be 1721 // scheduled first since they can't interfere with the other moves. 1722 for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) { 1723 if (in_sig_bt[i] == T_ARRAY) { 1724 c_arg--; 1725 if (out_regs[c_arg].first()->is_stack() && 1726 out_regs[c_arg + 1].first()->is_stack()) { 1727 arg_order.push(i); 1728 arg_order.push(c_arg); 1729 } else { 1730 if (out_regs[c_arg].first()->is_stack() || 1731 in_regs[i].first() == out_regs[c_arg].first()) { 1732 add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg + 1]); 1733 } else { 1734 add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg]); 1735 } 1736 } 1737 } else if (in_sig_bt[i] == T_VOID) { 1738 arg_order.push(i); 1739 arg_order.push(c_arg); 1740 } else { 1741 if (out_regs[c_arg].first()->is_stack() || 1742 in_regs[i].first() == out_regs[c_arg].first()) { 1743 arg_order.push(i); 1744 arg_order.push(c_arg); 1745 } else { 1746 add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg]); 1747 } 1748 } 1749 } 1750 // Break any cycles in the register moves and emit the in the 1751 // proper order. 1752 GrowableArray<MoveOperation*>* stores = get_store_order(tmp_vmreg); 1753 for (int i = 0; i < stores->length(); i++) { 1754 arg_order.push(stores->at(i)->src_index()); 1755 arg_order.push(stores->at(i)->dst_index()); 1756 } 1757 } 1758 1759 // Collected all the move operations 1760 void add_edge(int src_index, VMRegPair src, int dst_index, VMRegPair dst) { 1761 if (src.first() == dst.first()) return; 1762 edges.append(new MoveOperation(src_index, src, dst_index, dst)); 1763 } 1764 1765 // Walk the edges breaking cycles between moves. The result list 1766 // can be walked in order to produce the proper set of loads 1767 GrowableArray<MoveOperation*>* get_store_order(VMRegPair temp_register) { 1768 // Record which moves kill which values 1769 GrowableArray<MoveOperation*> killer; 1770 for (int i = 0; i < edges.length(); i++) { 1771 MoveOperation* s = edges.at(i); 1772 assert(killer.at_grow(s->dst_id(), NULL) == NULL, "only one killer"); 1773 killer.at_put_grow(s->dst_id(), s, NULL); 1774 } 1775 assert(killer.at_grow(MoveOperation::get_id(temp_register), NULL) == NULL, 1776 "make sure temp isn't in the registers that are killed"); 1777 1778 // create links between loads and stores 1779 for (int i = 0; i < edges.length(); i++) { 1780 edges.at(i)->link(killer); 1781 } 1782 1783 // at this point, all the move operations are chained together 1784 // in a doubly linked list. Processing it backwards finds 1785 // the beginning of the chain, forwards finds the end. If there's 1786 // a cycle it can be broken at any point, so pick an edge and walk 1787 // backward until the list ends or we end where we started. 1788 GrowableArray<MoveOperation*>* stores = new GrowableArray<MoveOperation*>(); 1789 for (int e = 0; e < edges.length(); e++) { 1790 MoveOperation* s = edges.at(e); 1791 if (!s->is_processed()) { 1792 MoveOperation* start = s; 1793 // search for the beginning of the chain or cycle 1794 while (start->prev() != NULL && start->prev() != s) { 1795 start = start->prev(); 1796 } 1797 if (start->prev() == s) { 1798 start->break_cycle(temp_register); 1799 } 1800 // walk the chain forward inserting to store list 1801 while (start != NULL) { 1802 stores->append(start); 1803 start->set_processed(); 1804 start = start->next(); 1805 } 1806 } 1807 } 1808 return stores; 1809 } 1810 }; 1811 1812 static void verify_oop_args(MacroAssembler* masm, 1813 const methodHandle& method, 1814 const BasicType* sig_bt, 1815 const VMRegPair* regs) { 1816 Register temp_reg = rbx; // not part of any compiled calling seq 1817 if (VerifyOops) { 1818 for (int i = 0; i < method->size_of_parameters(); i++) { 1819 if (is_reference_type(sig_bt[i])) { 1820 VMReg r = regs[i].first(); 1821 assert(r->is_valid(), "bad oop arg"); 1822 if (r->is_stack()) { 1823 __ movptr(temp_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize)); 1824 __ verify_oop(temp_reg); 1825 } else { 1826 __ verify_oop(r->as_Register()); 1827 } 1828 } 1829 } 1830 } 1831 } 1832 1833 static void gen_special_dispatch(MacroAssembler* masm, 1834 const methodHandle& method, 1835 const BasicType* sig_bt, 1836 const VMRegPair* regs) { 1837 verify_oop_args(masm, method, sig_bt, regs); 1838 vmIntrinsics::ID iid = method->intrinsic_id(); 1839 1840 // Now write the args into the outgoing interpreter space 1841 bool has_receiver = false; 1842 Register receiver_reg = noreg; 1843 int member_arg_pos = -1; 1844 Register member_reg = noreg; 1845 int ref_kind = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid); 1846 if (ref_kind != 0) { 1847 member_arg_pos = method->size_of_parameters() - 1; // trailing MemberName argument 1848 member_reg = rbx; // known to be free at this point 1849 has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind); 1850 } else if (iid == vmIntrinsics::_invokeBasic) { 1851 has_receiver = true; 1852 } else { 1853 fatal("unexpected intrinsic id %d", iid); 1854 } 1855 1856 if (member_reg != noreg) { 1857 // Load the member_arg into register, if necessary. 1858 SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs); 1859 VMReg r = regs[member_arg_pos].first(); 1860 if (r->is_stack()) { 1861 __ movptr(member_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize)); 1862 } else { 1863 // no data motion is needed 1864 member_reg = r->as_Register(); 1865 } 1866 } 1867 1868 if (has_receiver) { 1869 // Make sure the receiver is loaded into a register. 1870 assert(method->size_of_parameters() > 0, "oob"); 1871 assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object"); 1872 VMReg r = regs[0].first(); 1873 assert(r->is_valid(), "bad receiver arg"); 1874 if (r->is_stack()) { 1875 // Porting note: This assumes that compiled calling conventions always 1876 // pass the receiver oop in a register. If this is not true on some 1877 // platform, pick a temp and load the receiver from stack. 1878 fatal("receiver always in a register"); 1879 receiver_reg = j_rarg0; // known to be free at this point 1880 __ movptr(receiver_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize)); 1881 } else { 1882 // no data motion is needed 1883 receiver_reg = r->as_Register(); 1884 } 1885 } 1886 1887 // Figure out which address we are really jumping to: 1888 MethodHandles::generate_method_handle_dispatch(masm, iid, 1889 receiver_reg, member_reg, /*for_compiler_entry:*/ true); 1890 } 1891 1892 // --------------------------------------------------------------------------- 1893 // Generate a native wrapper for a given method. The method takes arguments 1894 // in the Java compiled code convention, marshals them to the native 1895 // convention (handlizes oops, etc), transitions to native, makes the call, 1896 // returns to java state (possibly blocking), unhandlizes any result and 1897 // returns. 1898 // 1899 // Critical native functions are a shorthand for the use of 1900 // GetPrimtiveArrayCritical and disallow the use of any other JNI 1901 // functions. The wrapper is expected to unpack the arguments before 1902 // passing them to the callee and perform checks before and after the 1903 // native call to ensure that they GCLocker 1904 // lock_critical/unlock_critical semantics are followed. Some other 1905 // parts of JNI setup are skipped like the tear down of the JNI handle 1906 // block and the check for pending exceptions it's impossible for them 1907 // to be thrown. 1908 // 1909 // They are roughly structured like this: 1910 // if (GCLocker::needs_gc()) 1911 // SharedRuntime::block_for_jni_critical(); 1912 // tranistion to thread_in_native 1913 // unpack arrray arguments and call native entry point 1914 // check for safepoint in progress 1915 // check if any thread suspend flags are set 1916 // call into JVM and possible unlock the JNI critical 1917 // if a GC was suppressed while in the critical native. 1918 // transition back to thread_in_Java 1919 // return to caller 1920 // 1921 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm, 1922 const methodHandle& method, 1923 int compile_id, 1924 BasicType* in_sig_bt, 1925 VMRegPair* in_regs, 1926 BasicType ret_type, 1927 address critical_entry) { 1928 if (method->is_method_handle_intrinsic()) { 1929 vmIntrinsics::ID iid = method->intrinsic_id(); 1930 intptr_t start = (intptr_t)__ pc(); 1931 int vep_offset = ((intptr_t)__ pc()) - start; 1932 gen_special_dispatch(masm, 1933 method, 1934 in_sig_bt, 1935 in_regs); 1936 int frame_complete = ((intptr_t)__ pc()) - start; // not complete, period 1937 __ flush(); 1938 int stack_slots = SharedRuntime::out_preserve_stack_slots(); // no out slots at all, actually 1939 return nmethod::new_native_nmethod(method, 1940 compile_id, 1941 masm->code(), 1942 vep_offset, 1943 frame_complete, 1944 stack_slots / VMRegImpl::slots_per_word, 1945 in_ByteSize(-1), 1946 in_ByteSize(-1), 1947 (OopMapSet*)NULL); 1948 } 1949 bool is_critical_native = true; 1950 address native_func = critical_entry; 1951 if (native_func == NULL) { 1952 native_func = method->native_function(); 1953 is_critical_native = false; 1954 } 1955 assert(native_func != NULL, "must have function"); 1956 1957 // An OopMap for lock (and class if static) 1958 OopMapSet *oop_maps = new OopMapSet(); 1959 intptr_t start = (intptr_t)__ pc(); 1960 1961 // We have received a description of where all the java arg are located 1962 // on entry to the wrapper. We need to convert these args to where 1963 // the jni function will expect them. To figure out where they go 1964 // we convert the java signature to a C signature by inserting 1965 // the hidden arguments as arg[0] and possibly arg[1] (static method) 1966 1967 const int total_in_args = method->size_of_parameters(); 1968 int total_c_args = total_in_args; 1969 if (!is_critical_native) { 1970 total_c_args += 1; 1971 if (method->is_static()) { 1972 total_c_args++; 1973 } 1974 } else { 1975 for (int i = 0; i < total_in_args; i++) { 1976 if (in_sig_bt[i] == T_ARRAY) { 1977 total_c_args++; 1978 } 1979 } 1980 } 1981 1982 BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args); 1983 VMRegPair* out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args); 1984 BasicType* in_elem_bt = NULL; 1985 1986 int argc = 0; 1987 if (!is_critical_native) { 1988 out_sig_bt[argc++] = T_ADDRESS; 1989 if (method->is_static()) { 1990 out_sig_bt[argc++] = T_OBJECT; 1991 } 1992 1993 for (int i = 0; i < total_in_args ; i++ ) { 1994 out_sig_bt[argc++] = in_sig_bt[i]; 1995 } 1996 } else { 1997 in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_in_args); 1998 SignatureStream ss(method->signature()); 1999 for (int i = 0; i < total_in_args ; i++ ) { 2000 if (in_sig_bt[i] == T_ARRAY) { 2001 // Arrays are passed as int, elem* pair 2002 out_sig_bt[argc++] = T_INT; 2003 out_sig_bt[argc++] = T_ADDRESS; 2004 Symbol* atype = ss.as_symbol(); 2005 const char* at = atype->as_C_string(); 2006 if (strlen(at) == 2) { 2007 assert(at[0] == '[', "must be"); 2008 switch (at[1]) { 2009 case 'B': in_elem_bt[i] = T_BYTE; break; 2010 case 'C': in_elem_bt[i] = T_CHAR; break; 2011 case 'D': in_elem_bt[i] = T_DOUBLE; break; 2012 case 'F': in_elem_bt[i] = T_FLOAT; break; 2013 case 'I': in_elem_bt[i] = T_INT; break; 2014 case 'J': in_elem_bt[i] = T_LONG; break; 2015 case 'S': in_elem_bt[i] = T_SHORT; break; 2016 case 'Z': in_elem_bt[i] = T_BOOLEAN; break; 2017 default: ShouldNotReachHere(); 2018 } 2019 } 2020 } else { 2021 out_sig_bt[argc++] = in_sig_bt[i]; 2022 in_elem_bt[i] = T_VOID; 2023 } 2024 if (in_sig_bt[i] != T_VOID) { 2025 assert(in_sig_bt[i] == ss.type(), "must match"); 2026 ss.next(); 2027 } 2028 } 2029 } 2030 2031 // Now figure out where the args must be stored and how much stack space 2032 // they require. 2033 int out_arg_slots; 2034 out_arg_slots = c_calling_convention(out_sig_bt, out_regs, NULL, total_c_args); 2035 2036 // Compute framesize for the wrapper. We need to handlize all oops in 2037 // incoming registers 2038 2039 // Calculate the total number of stack slots we will need. 2040 2041 // First count the abi requirement plus all of the outgoing args 2042 int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots; 2043 2044 // Now the space for the inbound oop handle area 2045 int total_save_slots = 6 * VMRegImpl::slots_per_word; // 6 arguments passed in registers 2046 if (is_critical_native) { 2047 // Critical natives may have to call out so they need a save area 2048 // for register arguments. 2049 int double_slots = 0; 2050 int single_slots = 0; 2051 for ( int i = 0; i < total_in_args; i++) { 2052 if (in_regs[i].first()->is_Register()) { 2053 const Register reg = in_regs[i].first()->as_Register(); 2054 switch (in_sig_bt[i]) { 2055 case T_BOOLEAN: 2056 case T_BYTE: 2057 case T_SHORT: 2058 case T_CHAR: 2059 case T_INT: single_slots++; break; 2060 case T_ARRAY: // specific to LP64 (7145024) 2061 case T_LONG: double_slots++; break; 2062 default: ShouldNotReachHere(); 2063 } 2064 } else if (in_regs[i].first()->is_XMMRegister()) { 2065 switch (in_sig_bt[i]) { 2066 case T_FLOAT: single_slots++; break; 2067 case T_DOUBLE: double_slots++; break; 2068 default: ShouldNotReachHere(); 2069 } 2070 } else if (in_regs[i].first()->is_FloatRegister()) { 2071 ShouldNotReachHere(); 2072 } 2073 } 2074 total_save_slots = double_slots * 2 + single_slots; 2075 // align the save area 2076 if (double_slots != 0) { 2077 stack_slots = align_up(stack_slots, 2); 2078 } 2079 } 2080 2081 int oop_handle_offset = stack_slots; 2082 stack_slots += total_save_slots; 2083 2084 // Now any space we need for handlizing a klass if static method 2085 2086 int klass_slot_offset = 0; 2087 int klass_offset = -1; 2088 int lock_slot_offset = 0; 2089 bool is_static = false; 2090 2091 if (method->is_static()) { 2092 klass_slot_offset = stack_slots; 2093 stack_slots += VMRegImpl::slots_per_word; 2094 klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size; 2095 is_static = true; 2096 } 2097 2098 // Plus a lock if needed 2099 2100 if (method->is_synchronized()) { 2101 lock_slot_offset = stack_slots; 2102 stack_slots += VMRegImpl::slots_per_word; 2103 } 2104 2105 // Now a place (+2) to save return values or temp during shuffling 2106 // + 4 for return address (which we own) and saved rbp 2107 stack_slots += 6; 2108 2109 // Ok The space we have allocated will look like: 2110 // 2111 // 2112 // FP-> | | 2113 // |---------------------| 2114 // | 2 slots for moves | 2115 // |---------------------| 2116 // | lock box (if sync) | 2117 // |---------------------| <- lock_slot_offset 2118 // | klass (if static) | 2119 // |---------------------| <- klass_slot_offset 2120 // | oopHandle area | 2121 // |---------------------| <- oop_handle_offset (6 java arg registers) 2122 // | outbound memory | 2123 // | based arguments | 2124 // | | 2125 // |---------------------| 2126 // | | 2127 // SP-> | out_preserved_slots | 2128 // 2129 // 2130 2131 2132 // Now compute actual number of stack words we need rounding to make 2133 // stack properly aligned. 2134 stack_slots = align_up(stack_slots, StackAlignmentInSlots); 2135 2136 int stack_size = stack_slots * VMRegImpl::stack_slot_size; 2137 2138 // First thing make an ic check to see if we should even be here 2139 2140 // We are free to use all registers as temps without saving them and 2141 // restoring them except rbp. rbp is the only callee save register 2142 // as far as the interpreter and the compiler(s) are concerned. 2143 2144 2145 const Register ic_reg = rax; 2146 const Register receiver = j_rarg0; 2147 2148 Label hit; 2149 Label exception_pending; 2150 2151 assert_different_registers(ic_reg, receiver, rscratch1); 2152 __ verify_oop(receiver); 2153 __ load_klass(rscratch1, receiver); 2154 __ cmpq(ic_reg, rscratch1); 2155 __ jcc(Assembler::equal, hit); 2156 2157 __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 2158 2159 // Verified entry point must be aligned 2160 __ align(8); 2161 2162 __ bind(hit); 2163 2164 int vep_offset = ((intptr_t)__ pc()) - start; 2165 2166 if (VM_Version::supports_fast_class_init_checks() && method->needs_clinit_barrier()) { 2167 Label L_skip_barrier; 2168 Register klass = r10; 2169 __ mov_metadata(klass, method->method_holder()); // InstanceKlass* 2170 __ clinit_barrier(klass, r15_thread, &L_skip_barrier /*L_fast_path*/); 2171 2172 __ jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); // slow path 2173 2174 __ bind(L_skip_barrier); 2175 } 2176 2177 #ifdef COMPILER1 2178 // For Object.hashCode, System.identityHashCode try to pull hashCode from object header if available. 2179 if ((InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) || (method->intrinsic_id() == vmIntrinsics::_identityHashCode)) { 2180 inline_check_hashcode_from_object_header(masm, method, j_rarg0 /*obj_reg*/, rax /*result*/); 2181 } 2182 #endif // COMPILER1 2183 2184 // The instruction at the verified entry point must be 5 bytes or longer 2185 // because it can be patched on the fly by make_non_entrant. The stack bang 2186 // instruction fits that requirement. 2187 2188 // Generate stack overflow check 2189 2190 if (UseStackBanging) { 2191 __ bang_stack_with_offset((int)JavaThread::stack_shadow_zone_size()); 2192 } else { 2193 // need a 5 byte instruction to allow MT safe patching to non-entrant 2194 __ fat_nop(); 2195 } 2196 2197 // Generate a new frame for the wrapper. 2198 __ enter(); 2199 // -2 because return address is already present and so is saved rbp 2200 __ subptr(rsp, stack_size - 2*wordSize); 2201 2202 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 2203 bs->nmethod_entry_barrier(masm); 2204 2205 // Frame is now completed as far as size and linkage. 2206 int frame_complete = ((intptr_t)__ pc()) - start; 2207 2208 if (UseRTMLocking) { 2209 // Abort RTM transaction before calling JNI 2210 // because critical section will be large and will be 2211 // aborted anyway. Also nmethod could be deoptimized. 2212 __ xabort(0); 2213 } 2214 2215 #ifdef ASSERT 2216 { 2217 Label L; 2218 __ mov(rax, rsp); 2219 __ andptr(rax, -16); // must be 16 byte boundary (see amd64 ABI) 2220 __ cmpptr(rax, rsp); 2221 __ jcc(Assembler::equal, L); 2222 __ stop("improperly aligned stack"); 2223 __ bind(L); 2224 } 2225 #endif /* ASSERT */ 2226 2227 2228 // We use r14 as the oop handle for the receiver/klass 2229 // It is callee save so it survives the call to native 2230 2231 const Register oop_handle_reg = r14; 2232 2233 if (is_critical_native && !Universe::heap()->supports_object_pinning()) { 2234 check_needs_gc_for_critical_native(masm, stack_slots, total_c_args, total_in_args, 2235 oop_handle_offset, oop_maps, in_regs, in_sig_bt); 2236 } 2237 2238 // 2239 // We immediately shuffle the arguments so that any vm call we have to 2240 // make from here on out (sync slow path, jvmti, etc.) we will have 2241 // captured the oops from our caller and have a valid oopMap for 2242 // them. 2243 2244 // ----------------- 2245 // The Grand Shuffle 2246 2247 // The Java calling convention is either equal (linux) or denser (win64) than the 2248 // c calling convention. However the because of the jni_env argument the c calling 2249 // convention always has at least one more (and two for static) arguments than Java. 2250 // Therefore if we move the args from java -> c backwards then we will never have 2251 // a register->register conflict and we don't have to build a dependency graph 2252 // and figure out how to break any cycles. 2253 // 2254 2255 // Record esp-based slot for receiver on stack for non-static methods 2256 int receiver_offset = -1; 2257 2258 // This is a trick. We double the stack slots so we can claim 2259 // the oops in the caller's frame. Since we are sure to have 2260 // more args than the caller doubling is enough to make 2261 // sure we can capture all the incoming oop args from the 2262 // caller. 2263 // 2264 OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/); 2265 2266 // Mark location of rbp (someday) 2267 // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, vmreg(rbp)); 2268 2269 // Use eax, ebx as temporaries during any memory-memory moves we have to do 2270 // All inbound args are referenced based on rbp and all outbound args via rsp. 2271 2272 2273 #ifdef ASSERT 2274 bool reg_destroyed[RegisterImpl::number_of_registers]; 2275 bool freg_destroyed[XMMRegisterImpl::number_of_registers]; 2276 for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) { 2277 reg_destroyed[r] = false; 2278 } 2279 for ( int f = 0 ; f < XMMRegisterImpl::number_of_registers ; f++ ) { 2280 freg_destroyed[f] = false; 2281 } 2282 2283 #endif /* ASSERT */ 2284 2285 // This may iterate in two different directions depending on the 2286 // kind of native it is. The reason is that for regular JNI natives 2287 // the incoming and outgoing registers are offset upwards and for 2288 // critical natives they are offset down. 2289 GrowableArray<int> arg_order(2 * total_in_args); 2290 // Inbound arguments that need to be pinned for critical natives 2291 GrowableArray<int> pinned_args(total_in_args); 2292 // Current stack slot for storing register based array argument 2293 int pinned_slot = oop_handle_offset; 2294 2295 VMRegPair tmp_vmreg; 2296 tmp_vmreg.set2(rbx->as_VMReg()); 2297 2298 if (!is_critical_native) { 2299 for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) { 2300 arg_order.push(i); 2301 arg_order.push(c_arg); 2302 } 2303 } else { 2304 // Compute a valid move order, using tmp_vmreg to break any cycles 2305 ComputeMoveOrder cmo(total_in_args, in_regs, total_c_args, out_regs, in_sig_bt, arg_order, tmp_vmreg); 2306 } 2307 2308 int temploc = -1; 2309 for (int ai = 0; ai < arg_order.length(); ai += 2) { 2310 int i = arg_order.at(ai); 2311 int c_arg = arg_order.at(ai + 1); 2312 __ block_comment(err_msg("move %d -> %d", i, c_arg)); 2313 if (c_arg == -1) { 2314 assert(is_critical_native, "should only be required for critical natives"); 2315 // This arg needs to be moved to a temporary 2316 __ mov(tmp_vmreg.first()->as_Register(), in_regs[i].first()->as_Register()); 2317 in_regs[i] = tmp_vmreg; 2318 temploc = i; 2319 continue; 2320 } else if (i == -1) { 2321 assert(is_critical_native, "should only be required for critical natives"); 2322 // Read from the temporary location 2323 assert(temploc != -1, "must be valid"); 2324 i = temploc; 2325 temploc = -1; 2326 } 2327 #ifdef ASSERT 2328 if (in_regs[i].first()->is_Register()) { 2329 assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "destroyed reg!"); 2330 } else if (in_regs[i].first()->is_XMMRegister()) { 2331 assert(!freg_destroyed[in_regs[i].first()->as_XMMRegister()->encoding()], "destroyed reg!"); 2332 } 2333 if (out_regs[c_arg].first()->is_Register()) { 2334 reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true; 2335 } else if (out_regs[c_arg].first()->is_XMMRegister()) { 2336 freg_destroyed[out_regs[c_arg].first()->as_XMMRegister()->encoding()] = true; 2337 } 2338 #endif /* ASSERT */ 2339 switch (in_sig_bt[i]) { 2340 case T_ARRAY: 2341 if (is_critical_native) { 2342 // pin before unpack 2343 if (Universe::heap()->supports_object_pinning()) { 2344 save_args(masm, total_c_args, 0, out_regs); 2345 gen_pin_object(masm, in_regs[i]); 2346 pinned_args.append(i); 2347 restore_args(masm, total_c_args, 0, out_regs); 2348 2349 // rax has pinned array 2350 VMRegPair result_reg; 2351 result_reg.set_ptr(rax->as_VMReg()); 2352 move_ptr(masm, result_reg, in_regs[i]); 2353 if (!in_regs[i].first()->is_stack()) { 2354 assert(pinned_slot <= stack_slots, "overflow"); 2355 move_ptr(masm, result_reg, VMRegImpl::stack2reg(pinned_slot)); 2356 pinned_slot += VMRegImpl::slots_per_word; 2357 } 2358 } 2359 unpack_array_argument(masm, in_regs[i], in_elem_bt[i], out_regs[c_arg + 1], out_regs[c_arg]); 2360 c_arg++; 2361 #ifdef ASSERT 2362 if (out_regs[c_arg].first()->is_Register()) { 2363 reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true; 2364 } else if (out_regs[c_arg].first()->is_XMMRegister()) { 2365 freg_destroyed[out_regs[c_arg].first()->as_XMMRegister()->encoding()] = true; 2366 } 2367 #endif 2368 break; 2369 } 2370 case T_OBJECT: 2371 assert(!is_critical_native, "no oop arguments"); 2372 object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg], 2373 ((i == 0) && (!is_static)), 2374 &receiver_offset); 2375 break; 2376 case T_VOID: 2377 break; 2378 2379 case T_FLOAT: 2380 float_move(masm, in_regs[i], out_regs[c_arg]); 2381 break; 2382 2383 case T_DOUBLE: 2384 assert( i + 1 < total_in_args && 2385 in_sig_bt[i + 1] == T_VOID && 2386 out_sig_bt[c_arg+1] == T_VOID, "bad arg list"); 2387 double_move(masm, in_regs[i], out_regs[c_arg]); 2388 break; 2389 2390 case T_LONG : 2391 long_move(masm, in_regs[i], out_regs[c_arg]); 2392 break; 2393 2394 case T_ADDRESS: assert(false, "found T_ADDRESS in java args"); 2395 2396 default: 2397 move32_64(masm, in_regs[i], out_regs[c_arg]); 2398 } 2399 } 2400 2401 int c_arg; 2402 2403 // Pre-load a static method's oop into r14. Used both by locking code and 2404 // the normal JNI call code. 2405 if (!is_critical_native) { 2406 // point c_arg at the first arg that is already loaded in case we 2407 // need to spill before we call out 2408 c_arg = total_c_args - total_in_args; 2409 2410 if (method->is_static()) { 2411 2412 // load oop into a register 2413 __ movoop(oop_handle_reg, JNIHandles::make_local(method->method_holder()->java_mirror())); 2414 2415 // Now handlize the static class mirror it's known not-null. 2416 __ movptr(Address(rsp, klass_offset), oop_handle_reg); 2417 map->set_oop(VMRegImpl::stack2reg(klass_slot_offset)); 2418 2419 // Now get the handle 2420 __ lea(oop_handle_reg, Address(rsp, klass_offset)); 2421 // store the klass handle as second argument 2422 __ movptr(c_rarg1, oop_handle_reg); 2423 // and protect the arg if we must spill 2424 c_arg--; 2425 } 2426 } else { 2427 // For JNI critical methods we need to save all registers in save_args. 2428 c_arg = 0; 2429 } 2430 2431 // Change state to native (we save the return address in the thread, since it might not 2432 // be pushed on the stack when we do a a stack traversal). It is enough that the pc() 2433 // points into the right code segment. It does not have to be the correct return pc. 2434 // We use the same pc/oopMap repeatedly when we call out 2435 2436 intptr_t the_pc = (intptr_t) __ pc(); 2437 oop_maps->add_gc_map(the_pc - start, map); 2438 2439 __ set_last_Java_frame(rsp, noreg, (address)the_pc); 2440 2441 2442 // We have all of the arguments setup at this point. We must not touch any register 2443 // argument registers at this point (what if we save/restore them there are no oop? 2444 2445 { 2446 SkipIfEqual skip(masm, &DTraceMethodProbes, false); 2447 // protect the args we've loaded 2448 save_args(masm, total_c_args, c_arg, out_regs); 2449 __ mov_metadata(c_rarg1, method()); 2450 __ call_VM_leaf( 2451 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), 2452 r15_thread, c_rarg1); 2453 restore_args(masm, total_c_args, c_arg, out_regs); 2454 } 2455 2456 // RedefineClasses() tracing support for obsolete method entry 2457 if (log_is_enabled(Trace, redefine, class, obsolete)) { 2458 // protect the args we've loaded 2459 save_args(masm, total_c_args, c_arg, out_regs); 2460 __ mov_metadata(c_rarg1, method()); 2461 __ call_VM_leaf( 2462 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), 2463 r15_thread, c_rarg1); 2464 restore_args(masm, total_c_args, c_arg, out_regs); 2465 } 2466 2467 // Lock a synchronized method 2468 2469 // Register definitions used by locking and unlocking 2470 2471 const Register swap_reg = rax; // Must use rax for cmpxchg instruction 2472 const Register obj_reg = rbx; // Will contain the oop 2473 const Register lock_reg = r13; // Address of compiler lock object (BasicLock) 2474 const Register old_hdr = r13; // value of old header at unlock time 2475 2476 Label slow_path_lock; 2477 Label lock_done; 2478 2479 if (method->is_synchronized()) { 2480 assert(!is_critical_native, "unhandled"); 2481 2482 2483 const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes(); 2484 2485 // Get the handle (the 2nd argument) 2486 __ mov(oop_handle_reg, c_rarg1); 2487 2488 // Get address of the box 2489 2490 __ lea(lock_reg, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size)); 2491 2492 // Load the oop from the handle 2493 __ movptr(obj_reg, Address(oop_handle_reg, 0)); 2494 2495 __ resolve(IS_NOT_NULL, obj_reg); 2496 if (UseBiasedLocking) { 2497 __ biased_locking_enter(lock_reg, obj_reg, swap_reg, rscratch1, false, lock_done, &slow_path_lock); 2498 } 2499 2500 // Load immediate 1 into swap_reg %rax 2501 __ movl(swap_reg, 1); 2502 2503 // Load (object->mark() | 1) into swap_reg %rax 2504 __ orptr(swap_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 2505 2506 // Save (object->mark() | 1) into BasicLock's displaced header 2507 __ movptr(Address(lock_reg, mark_word_offset), swap_reg); 2508 2509 // src -> dest iff dest == rax else rax <- dest 2510 __ lock(); 2511 __ cmpxchgptr(lock_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 2512 __ jcc(Assembler::equal, lock_done); 2513 2514 // Hmm should this move to the slow path code area??? 2515 2516 // Test if the oopMark is an obvious stack pointer, i.e., 2517 // 1) (mark & 3) == 0, and 2518 // 2) rsp <= mark < mark + os::pagesize() 2519 // These 3 tests can be done by evaluating the following 2520 // expression: ((mark - rsp) & (3 - os::vm_page_size())), 2521 // assuming both stack pointer and pagesize have their 2522 // least significant 2 bits clear. 2523 // NOTE: the oopMark is in swap_reg %rax as the result of cmpxchg 2524 2525 __ subptr(swap_reg, rsp); 2526 __ andptr(swap_reg, 3 - os::vm_page_size()); 2527 2528 // Save the test result, for recursive case, the result is zero 2529 __ movptr(Address(lock_reg, mark_word_offset), swap_reg); 2530 __ jcc(Assembler::notEqual, slow_path_lock); 2531 2532 // Slow path will re-enter here 2533 2534 __ bind(lock_done); 2535 } 2536 2537 2538 // Finally just about ready to make the JNI call 2539 2540 2541 // get JNIEnv* which is first argument to native 2542 if (!is_critical_native) { 2543 __ lea(c_rarg0, Address(r15_thread, in_bytes(JavaThread::jni_environment_offset()))); 2544 } 2545 2546 // Now set thread in native 2547 __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native); 2548 2549 __ call(RuntimeAddress(native_func)); 2550 2551 // Verify or restore cpu control state after JNI call 2552 __ restore_cpu_control_state_after_jni(); 2553 2554 // Unpack native results. 2555 switch (ret_type) { 2556 case T_BOOLEAN: __ c2bool(rax); break; 2557 case T_CHAR : __ movzwl(rax, rax); break; 2558 case T_BYTE : __ sign_extend_byte (rax); break; 2559 case T_SHORT : __ sign_extend_short(rax); break; 2560 case T_INT : /* nothing to do */ break; 2561 case T_DOUBLE : 2562 case T_FLOAT : 2563 // Result is in xmm0 we'll save as needed 2564 break; 2565 case T_ARRAY: // Really a handle 2566 case T_OBJECT: // Really a handle 2567 break; // can't de-handlize until after safepoint check 2568 case T_VOID: break; 2569 case T_LONG: break; 2570 default : ShouldNotReachHere(); 2571 } 2572 2573 // unpin pinned arguments 2574 pinned_slot = oop_handle_offset; 2575 if (pinned_args.length() > 0) { 2576 // save return value that may be overwritten otherwise. 2577 save_native_result(masm, ret_type, stack_slots); 2578 for (int index = 0; index < pinned_args.length(); index ++) { 2579 int i = pinned_args.at(index); 2580 assert(pinned_slot <= stack_slots, "overflow"); 2581 if (!in_regs[i].first()->is_stack()) { 2582 int offset = pinned_slot * VMRegImpl::stack_slot_size; 2583 __ movq(in_regs[i].first()->as_Register(), Address(rsp, offset)); 2584 pinned_slot += VMRegImpl::slots_per_word; 2585 } 2586 gen_unpin_object(masm, in_regs[i]); 2587 } 2588 restore_native_result(masm, ret_type, stack_slots); 2589 } 2590 2591 // Switch thread to "native transition" state before reading the synchronization state. 2592 // This additional state is necessary because reading and testing the synchronization 2593 // state is not atomic w.r.t. GC, as this scenario demonstrates: 2594 // Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted. 2595 // VM thread changes sync state to synchronizing and suspends threads for GC. 2596 // Thread A is resumed to finish this native method, but doesn't block here since it 2597 // didn't see any synchronization is progress, and escapes. 2598 __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native_trans); 2599 2600 // Force this write out before the read below 2601 __ membar(Assembler::Membar_mask_bits( 2602 Assembler::LoadLoad | Assembler::LoadStore | 2603 Assembler::StoreLoad | Assembler::StoreStore)); 2604 2605 Label after_transition; 2606 2607 // check for safepoint operation in progress and/or pending suspend requests 2608 { 2609 Label Continue; 2610 Label slow_path; 2611 2612 __ safepoint_poll(slow_path, r15_thread, rscratch1); 2613 2614 __ cmpl(Address(r15_thread, JavaThread::suspend_flags_offset()), 0); 2615 __ jcc(Assembler::equal, Continue); 2616 __ bind(slow_path); 2617 2618 // Don't use call_VM as it will see a possible pending exception and forward it 2619 // and never return here preventing us from clearing _last_native_pc down below. 2620 // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are 2621 // preserved and correspond to the bcp/locals pointers. So we do a runtime call 2622 // by hand. 2623 // 2624 __ vzeroupper(); 2625 save_native_result(masm, ret_type, stack_slots); 2626 __ mov(c_rarg0, r15_thread); 2627 __ mov(r12, rsp); // remember sp 2628 __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows 2629 __ andptr(rsp, -16); // align stack as required by ABI 2630 if (!is_critical_native) { 2631 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans))); 2632 } else { 2633 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans_and_transition))); 2634 } 2635 __ mov(rsp, r12); // restore sp 2636 __ reinit_heapbase(); 2637 // Restore any method result value 2638 restore_native_result(masm, ret_type, stack_slots); 2639 2640 if (is_critical_native) { 2641 // The call above performed the transition to thread_in_Java so 2642 // skip the transition logic below. 2643 __ jmpb(after_transition); 2644 } 2645 2646 __ bind(Continue); 2647 } 2648 2649 // change thread state 2650 __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_Java); 2651 __ bind(after_transition); 2652 2653 Label reguard; 2654 Label reguard_done; 2655 __ cmpl(Address(r15_thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_reserved_disabled); 2656 __ jcc(Assembler::equal, reguard); 2657 __ bind(reguard_done); 2658 2659 // native result if any is live 2660 2661 // Unlock 2662 Label unlock_done; 2663 Label slow_path_unlock; 2664 if (method->is_synchronized()) { 2665 2666 // Get locked oop from the handle we passed to jni 2667 __ movptr(obj_reg, Address(oop_handle_reg, 0)); 2668 __ resolve(IS_NOT_NULL, obj_reg); 2669 2670 Label done; 2671 2672 if (UseBiasedLocking) { 2673 __ biased_locking_exit(obj_reg, old_hdr, done); 2674 } 2675 2676 // Simple recursive lock? 2677 2678 __ cmpptr(Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size), (int32_t)NULL_WORD); 2679 __ jcc(Assembler::equal, done); 2680 2681 // Must save rax if if it is live now because cmpxchg must use it 2682 if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) { 2683 save_native_result(masm, ret_type, stack_slots); 2684 } 2685 2686 2687 // get address of the stack lock 2688 __ lea(rax, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size)); 2689 // get old displaced header 2690 __ movptr(old_hdr, Address(rax, 0)); 2691 2692 // Atomic swap old header if oop still contains the stack lock 2693 __ lock(); 2694 __ cmpxchgptr(old_hdr, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 2695 __ jcc(Assembler::notEqual, slow_path_unlock); 2696 2697 // slow path re-enters here 2698 __ bind(unlock_done); 2699 if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) { 2700 restore_native_result(masm, ret_type, stack_slots); 2701 } 2702 2703 __ bind(done); 2704 2705 } 2706 { 2707 SkipIfEqual skip(masm, &DTraceMethodProbes, false); 2708 save_native_result(masm, ret_type, stack_slots); 2709 __ mov_metadata(c_rarg1, method()); 2710 __ call_VM_leaf( 2711 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), 2712 r15_thread, c_rarg1); 2713 restore_native_result(masm, ret_type, stack_slots); 2714 } 2715 2716 __ reset_last_Java_frame(false); 2717 2718 // Unbox oop result, e.g. JNIHandles::resolve value. 2719 if (is_reference_type(ret_type)) { 2720 __ resolve_jobject(rax /* value */, 2721 r15_thread /* thread */, 2722 rcx /* tmp */); 2723 } 2724 2725 if (CheckJNICalls) { 2726 // clear_pending_jni_exception_check 2727 __ movptr(Address(r15_thread, JavaThread::pending_jni_exception_check_fn_offset()), NULL_WORD); 2728 } 2729 2730 if (!is_critical_native) { 2731 // reset handle block 2732 __ movptr(rcx, Address(r15_thread, JavaThread::active_handles_offset())); 2733 __ movl(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), (int32_t)NULL_WORD); 2734 } 2735 2736 // pop our frame 2737 2738 __ leave(); 2739 2740 if (!is_critical_native) { 2741 // Any exception pending? 2742 __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD); 2743 __ jcc(Assembler::notEqual, exception_pending); 2744 } 2745 2746 // Return 2747 2748 __ ret(0); 2749 2750 // Unexpected paths are out of line and go here 2751 2752 if (!is_critical_native) { 2753 // forward the exception 2754 __ bind(exception_pending); 2755 2756 // and forward the exception 2757 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 2758 } 2759 2760 // Slow path locking & unlocking 2761 if (method->is_synchronized()) { 2762 2763 // BEGIN Slow path lock 2764 __ bind(slow_path_lock); 2765 2766 // has last_Java_frame setup. No exceptions so do vanilla call not call_VM 2767 // args are (oop obj, BasicLock* lock, JavaThread* thread) 2768 2769 // protect the args we've loaded 2770 save_args(masm, total_c_args, c_arg, out_regs); 2771 2772 __ mov(c_rarg0, obj_reg); 2773 __ mov(c_rarg1, lock_reg); 2774 __ mov(c_rarg2, r15_thread); 2775 2776 // Not a leaf but we have last_Java_frame setup as we want 2777 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), 3); 2778 restore_args(masm, total_c_args, c_arg, out_regs); 2779 2780 #ifdef ASSERT 2781 { Label L; 2782 __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD); 2783 __ jcc(Assembler::equal, L); 2784 __ stop("no pending exception allowed on exit from monitorenter"); 2785 __ bind(L); 2786 } 2787 #endif 2788 __ jmp(lock_done); 2789 2790 // END Slow path lock 2791 2792 // BEGIN Slow path unlock 2793 __ bind(slow_path_unlock); 2794 2795 // If we haven't already saved the native result we must save it now as xmm registers 2796 // are still exposed. 2797 __ vzeroupper(); 2798 if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) { 2799 save_native_result(masm, ret_type, stack_slots); 2800 } 2801 2802 __ lea(c_rarg1, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size)); 2803 2804 __ mov(c_rarg0, obj_reg); 2805 __ mov(c_rarg2, r15_thread); 2806 __ mov(r12, rsp); // remember sp 2807 __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows 2808 __ andptr(rsp, -16); // align stack as required by ABI 2809 2810 // Save pending exception around call to VM (which contains an EXCEPTION_MARK) 2811 // NOTE that obj_reg == rbx currently 2812 __ movptr(rbx, Address(r15_thread, in_bytes(Thread::pending_exception_offset()))); 2813 __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD); 2814 2815 // args are (oop obj, BasicLock* lock, JavaThread* thread) 2816 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C))); 2817 __ mov(rsp, r12); // restore sp 2818 __ reinit_heapbase(); 2819 #ifdef ASSERT 2820 { 2821 Label L; 2822 __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD); 2823 __ jcc(Assembler::equal, L); 2824 __ stop("no pending exception allowed on exit complete_monitor_unlocking_C"); 2825 __ bind(L); 2826 } 2827 #endif /* ASSERT */ 2828 2829 __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), rbx); 2830 2831 if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) { 2832 restore_native_result(masm, ret_type, stack_slots); 2833 } 2834 __ jmp(unlock_done); 2835 2836 // END Slow path unlock 2837 2838 } // synchronized 2839 2840 // SLOW PATH Reguard the stack if needed 2841 2842 __ bind(reguard); 2843 __ vzeroupper(); 2844 save_native_result(masm, ret_type, stack_slots); 2845 __ mov(r12, rsp); // remember sp 2846 __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows 2847 __ andptr(rsp, -16); // align stack as required by ABI 2848 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages))); 2849 __ mov(rsp, r12); // restore sp 2850 __ reinit_heapbase(); 2851 restore_native_result(masm, ret_type, stack_slots); 2852 // and continue 2853 __ jmp(reguard_done); 2854 2855 2856 2857 __ flush(); 2858 2859 nmethod *nm = nmethod::new_native_nmethod(method, 2860 compile_id, 2861 masm->code(), 2862 vep_offset, 2863 frame_complete, 2864 stack_slots / VMRegImpl::slots_per_word, 2865 (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)), 2866 in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size), 2867 oop_maps); 2868 2869 if (is_critical_native) { 2870 nm->set_lazy_critical_native(true); 2871 } 2872 2873 return nm; 2874 2875 } 2876 2877 // this function returns the adjust size (in number of words) to a c2i adapter 2878 // activation for use during deoptimization 2879 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) { 2880 return (callee_locals - callee_parameters) * Interpreter::stackElementWords; 2881 } 2882 2883 2884 uint SharedRuntime::out_preserve_stack_slots() { 2885 return 0; 2886 } 2887 2888 //------------------------------generate_deopt_blob---------------------------- 2889 void SharedRuntime::generate_deopt_blob() { 2890 // Allocate space for the code 2891 ResourceMark rm; 2892 // Setup code generation tools 2893 int pad = 0; 2894 #if INCLUDE_JVMCI 2895 if (EnableJVMCI || UseAOT) { 2896 pad += 512; // Increase the buffer size when compiling for JVMCI 2897 } 2898 #endif 2899 CodeBuffer buffer("deopt_blob", 2048+pad, 1024); 2900 MacroAssembler* masm = new MacroAssembler(&buffer); 2901 int frame_size_in_words; 2902 OopMap* map = NULL; 2903 OopMapSet *oop_maps = new OopMapSet(); 2904 2905 // ------------- 2906 // This code enters when returning to a de-optimized nmethod. A return 2907 // address has been pushed on the the stack, and return values are in 2908 // registers. 2909 // If we are doing a normal deopt then we were called from the patched 2910 // nmethod from the point we returned to the nmethod. So the return 2911 // address on the stack is wrong by NativeCall::instruction_size 2912 // We will adjust the value so it looks like we have the original return 2913 // address on the stack (like when we eagerly deoptimized). 2914 // In the case of an exception pending when deoptimizing, we enter 2915 // with a return address on the stack that points after the call we patched 2916 // into the exception handler. We have the following register state from, 2917 // e.g., the forward exception stub (see stubGenerator_x86_64.cpp). 2918 // rax: exception oop 2919 // rbx: exception handler 2920 // rdx: throwing pc 2921 // So in this case we simply jam rdx into the useless return address and 2922 // the stack looks just like we want. 2923 // 2924 // At this point we need to de-opt. We save the argument return 2925 // registers. We call the first C routine, fetch_unroll_info(). This 2926 // routine captures the return values and returns a structure which 2927 // describes the current frame size and the sizes of all replacement frames. 2928 // The current frame is compiled code and may contain many inlined 2929 // functions, each with their own JVM state. We pop the current frame, then 2930 // push all the new frames. Then we call the C routine unpack_frames() to 2931 // populate these frames. Finally unpack_frames() returns us the new target 2932 // address. Notice that callee-save registers are BLOWN here; they have 2933 // already been captured in the vframeArray at the time the return PC was 2934 // patched. 2935 address start = __ pc(); 2936 Label cont; 2937 2938 // Prolog for non exception case! 2939 2940 // Save everything in sight. 2941 map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words); 2942 2943 // Normal deoptimization. Save exec mode for unpack_frames. 2944 __ movl(r14, Deoptimization::Unpack_deopt); // callee-saved 2945 __ jmp(cont); 2946 2947 int reexecute_offset = __ pc() - start; 2948 #if INCLUDE_JVMCI && !defined(COMPILER1) 2949 if (EnableJVMCI && UseJVMCICompiler) { 2950 // JVMCI does not use this kind of deoptimization 2951 __ should_not_reach_here(); 2952 } 2953 #endif 2954 2955 // Reexecute case 2956 // return address is the pc describes what bci to do re-execute at 2957 2958 // No need to update map as each call to save_live_registers will produce identical oopmap 2959 (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words); 2960 2961 __ movl(r14, Deoptimization::Unpack_reexecute); // callee-saved 2962 __ jmp(cont); 2963 2964 #if INCLUDE_JVMCI 2965 Label after_fetch_unroll_info_call; 2966 int implicit_exception_uncommon_trap_offset = 0; 2967 int uncommon_trap_offset = 0; 2968 2969 if (EnableJVMCI || UseAOT) { 2970 implicit_exception_uncommon_trap_offset = __ pc() - start; 2971 2972 __ pushptr(Address(r15_thread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset()))); 2973 __ movptr(Address(r15_thread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset())), (int32_t)NULL_WORD); 2974 2975 uncommon_trap_offset = __ pc() - start; 2976 2977 // Save everything in sight. 2978 RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words); 2979 // fetch_unroll_info needs to call last_java_frame() 2980 __ set_last_Java_frame(noreg, noreg, NULL); 2981 2982 __ movl(c_rarg1, Address(r15_thread, in_bytes(JavaThread::pending_deoptimization_offset()))); 2983 __ movl(Address(r15_thread, in_bytes(JavaThread::pending_deoptimization_offset())), -1); 2984 2985 __ movl(r14, (int32_t)Deoptimization::Unpack_reexecute); 2986 __ mov(c_rarg0, r15_thread); 2987 __ movl(c_rarg2, r14); // exec mode 2988 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap))); 2989 oop_maps->add_gc_map( __ pc()-start, map->deep_copy()); 2990 2991 __ reset_last_Java_frame(false); 2992 2993 __ jmp(after_fetch_unroll_info_call); 2994 } // EnableJVMCI 2995 #endif // INCLUDE_JVMCI 2996 2997 int exception_offset = __ pc() - start; 2998 2999 // Prolog for exception case 3000 3001 // all registers are dead at this entry point, except for rax, and 3002 // rdx which contain the exception oop and exception pc 3003 // respectively. Set them in TLS and fall thru to the 3004 // unpack_with_exception_in_tls entry point. 3005 3006 __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx); 3007 __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), rax); 3008 3009 int exception_in_tls_offset = __ pc() - start; 3010 3011 // new implementation because exception oop is now passed in JavaThread 3012 3013 // Prolog for exception case 3014 // All registers must be preserved because they might be used by LinearScan 3015 // Exceptiop oop and throwing PC are passed in JavaThread 3016 // tos: stack at point of call to method that threw the exception (i.e. only 3017 // args are on the stack, no return address) 3018 3019 // make room on stack for the return address 3020 // It will be patched later with the throwing pc. The correct value is not 3021 // available now because loading it from memory would destroy registers. 3022 __ push(0); 3023 3024 // Save everything in sight. 3025 map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words); 3026 3027 // Now it is safe to overwrite any register 3028 3029 // Deopt during an exception. Save exec mode for unpack_frames. 3030 __ movl(r14, Deoptimization::Unpack_exception); // callee-saved 3031 3032 // load throwing pc from JavaThread and patch it as the return address 3033 // of the current frame. Then clear the field in JavaThread 3034 3035 __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset())); 3036 __ movptr(Address(rbp, wordSize), rdx); 3037 __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD); 3038 3039 #ifdef ASSERT 3040 // verify that there is really an exception oop in JavaThread 3041 __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset())); 3042 __ verify_oop(rax); 3043 3044 // verify that there is no pending exception 3045 Label no_pending_exception; 3046 __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset())); 3047 __ testptr(rax, rax); 3048 __ jcc(Assembler::zero, no_pending_exception); 3049 __ stop("must not have pending exception here"); 3050 __ bind(no_pending_exception); 3051 #endif 3052 3053 __ bind(cont); 3054 3055 // Call C code. Need thread and this frame, but NOT official VM entry 3056 // crud. We cannot block on this call, no GC can happen. 3057 // 3058 // UnrollBlock* fetch_unroll_info(JavaThread* thread) 3059 3060 // fetch_unroll_info needs to call last_java_frame(). 3061 3062 __ set_last_Java_frame(noreg, noreg, NULL); 3063 #ifdef ASSERT 3064 { Label L; 3065 __ cmpptr(Address(r15_thread, 3066 JavaThread::last_Java_fp_offset()), 3067 (int32_t)0); 3068 __ jcc(Assembler::equal, L); 3069 __ stop("SharedRuntime::generate_deopt_blob: last_Java_fp not cleared"); 3070 __ bind(L); 3071 } 3072 #endif // ASSERT 3073 __ mov(c_rarg0, r15_thread); 3074 __ movl(c_rarg1, r14); // exec_mode 3075 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info))); 3076 3077 // Need to have an oopmap that tells fetch_unroll_info where to 3078 // find any register it might need. 3079 oop_maps->add_gc_map(__ pc() - start, map); 3080 3081 __ reset_last_Java_frame(false); 3082 3083 #if INCLUDE_JVMCI 3084 if (EnableJVMCI || UseAOT) { 3085 __ bind(after_fetch_unroll_info_call); 3086 } 3087 #endif 3088 3089 // Load UnrollBlock* into rdi 3090 __ mov(rdi, rax); 3091 3092 __ movl(r14, Address(rdi, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes())); 3093 Label noException; 3094 __ cmpl(r14, Deoptimization::Unpack_exception); // Was exception pending? 3095 __ jcc(Assembler::notEqual, noException); 3096 __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset())); 3097 // QQQ this is useless it was NULL above 3098 __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset())); 3099 __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD); 3100 __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD); 3101 3102 __ verify_oop(rax); 3103 3104 // Overwrite the result registers with the exception results. 3105 __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax); 3106 // I think this is useless 3107 __ movptr(Address(rsp, RegisterSaver::rdx_offset_in_bytes()), rdx); 3108 3109 __ bind(noException); 3110 3111 // Only register save data is on the stack. 3112 // Now restore the result registers. Everything else is either dead 3113 // or captured in the vframeArray. 3114 RegisterSaver::restore_result_registers(masm); 3115 3116 // All of the register save area has been popped of the stack. Only the 3117 // return address remains. 3118 3119 // Pop all the frames we must move/replace. 3120 // 3121 // Frame picture (youngest to oldest) 3122 // 1: self-frame (no frame link) 3123 // 2: deopting frame (no frame link) 3124 // 3: caller of deopting frame (could be compiled/interpreted). 3125 // 3126 // Note: by leaving the return address of self-frame on the stack 3127 // and using the size of frame 2 to adjust the stack 3128 // when we are done the return to frame 3 will still be on the stack. 3129 3130 // Pop deoptimized frame 3131 __ movl(rcx, Address(rdi, Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes())); 3132 __ addptr(rsp, rcx); 3133 3134 // rsp should be pointing at the return address to the caller (3) 3135 3136 // Pick up the initial fp we should save 3137 // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved) 3138 __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes())); 3139 3140 #ifdef ASSERT 3141 // Compilers generate code that bang the stack by as much as the 3142 // interpreter would need. So this stack banging should never 3143 // trigger a fault. Verify that it does not on non product builds. 3144 if (UseStackBanging) { 3145 __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes())); 3146 __ bang_stack_size(rbx, rcx); 3147 } 3148 #endif 3149 3150 // Load address of array of frame pcs into rcx 3151 __ movptr(rcx, Address(rdi, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes())); 3152 3153 // Trash the old pc 3154 __ addptr(rsp, wordSize); 3155 3156 // Load address of array of frame sizes into rsi 3157 __ movptr(rsi, Address(rdi, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes())); 3158 3159 // Load counter into rdx 3160 __ movl(rdx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes())); 3161 3162 // Now adjust the caller's stack to make up for the extra locals 3163 // but record the original sp so that we can save it in the skeletal interpreter 3164 // frame and the stack walking of interpreter_sender will get the unextended sp 3165 // value and not the "real" sp value. 3166 3167 const Register sender_sp = r8; 3168 3169 __ mov(sender_sp, rsp); 3170 __ movl(rbx, Address(rdi, 3171 Deoptimization::UnrollBlock:: 3172 caller_adjustment_offset_in_bytes())); 3173 __ subptr(rsp, rbx); 3174 3175 // Push interpreter frames in a loop 3176 Label loop; 3177 __ bind(loop); 3178 __ movptr(rbx, Address(rsi, 0)); // Load frame size 3179 __ subptr(rbx, 2*wordSize); // We'll push pc and ebp by hand 3180 __ pushptr(Address(rcx, 0)); // Save return address 3181 __ enter(); // Save old & set new ebp 3182 __ subptr(rsp, rbx); // Prolog 3183 // This value is corrected by layout_activation_impl 3184 __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD ); 3185 __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), sender_sp); // Make it walkable 3186 __ mov(sender_sp, rsp); // Pass sender_sp to next frame 3187 __ addptr(rsi, wordSize); // Bump array pointer (sizes) 3188 __ addptr(rcx, wordSize); // Bump array pointer (pcs) 3189 __ decrementl(rdx); // Decrement counter 3190 __ jcc(Assembler::notZero, loop); 3191 __ pushptr(Address(rcx, 0)); // Save final return address 3192 3193 // Re-push self-frame 3194 __ enter(); // Save old & set new ebp 3195 3196 // Allocate a full sized register save area. 3197 // Return address and rbp are in place, so we allocate two less words. 3198 __ subptr(rsp, (frame_size_in_words - 2) * wordSize); 3199 3200 // Restore frame locals after moving the frame 3201 __ movdbl(Address(rsp, RegisterSaver::xmm0_offset_in_bytes()), xmm0); 3202 __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax); 3203 3204 // Call C code. Need thread but NOT official VM entry 3205 // crud. We cannot block on this call, no GC can happen. Call should 3206 // restore return values to their stack-slots with the new SP. 3207 // 3208 // void Deoptimization::unpack_frames(JavaThread* thread, int exec_mode) 3209 3210 // Use rbp because the frames look interpreted now 3211 // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP. 3212 // Don't need the precise return PC here, just precise enough to point into this code blob. 3213 address the_pc = __ pc(); 3214 __ set_last_Java_frame(noreg, rbp, the_pc); 3215 3216 __ andptr(rsp, -(StackAlignmentInBytes)); // Fix stack alignment as required by ABI 3217 __ mov(c_rarg0, r15_thread); 3218 __ movl(c_rarg1, r14); // second arg: exec_mode 3219 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames))); 3220 // Revert SP alignment after call since we're going to do some SP relative addressing below 3221 __ movptr(rsp, Address(r15_thread, JavaThread::last_Java_sp_offset())); 3222 3223 // Set an oopmap for the call site 3224 // Use the same PC we used for the last java frame 3225 oop_maps->add_gc_map(the_pc - start, 3226 new OopMap( frame_size_in_words, 0 )); 3227 3228 // Clear fp AND pc 3229 __ reset_last_Java_frame(true); 3230 3231 // Collect return values 3232 __ movdbl(xmm0, Address(rsp, RegisterSaver::xmm0_offset_in_bytes())); 3233 __ movptr(rax, Address(rsp, RegisterSaver::rax_offset_in_bytes())); 3234 // I think this is useless (throwing pc?) 3235 __ movptr(rdx, Address(rsp, RegisterSaver::rdx_offset_in_bytes())); 3236 3237 // Pop self-frame. 3238 __ leave(); // Epilog 3239 3240 // Jump to interpreter 3241 __ ret(0); 3242 3243 // Make sure all code is generated 3244 masm->flush(); 3245 3246 _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words); 3247 _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset); 3248 #if INCLUDE_JVMCI 3249 if (EnableJVMCI || UseAOT) { 3250 _deopt_blob->set_uncommon_trap_offset(uncommon_trap_offset); 3251 _deopt_blob->set_implicit_exception_uncommon_trap_offset(implicit_exception_uncommon_trap_offset); 3252 } 3253 #endif 3254 } 3255 3256 #ifdef COMPILER2 3257 //------------------------------generate_uncommon_trap_blob-------------------- 3258 void SharedRuntime::generate_uncommon_trap_blob() { 3259 // Allocate space for the code 3260 ResourceMark rm; 3261 // Setup code generation tools 3262 CodeBuffer buffer("uncommon_trap_blob", 2048, 1024); 3263 MacroAssembler* masm = new MacroAssembler(&buffer); 3264 3265 assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned"); 3266 3267 address start = __ pc(); 3268 3269 if (UseRTMLocking) { 3270 // Abort RTM transaction before possible nmethod deoptimization. 3271 __ xabort(0); 3272 } 3273 3274 // Push self-frame. We get here with a return address on the 3275 // stack, so rsp is 8-byte aligned until we allocate our frame. 3276 __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog! 3277 3278 // No callee saved registers. rbp is assumed implicitly saved 3279 __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp); 3280 3281 // compiler left unloaded_class_index in j_rarg0 move to where the 3282 // runtime expects it. 3283 __ movl(c_rarg1, j_rarg0); 3284 3285 __ set_last_Java_frame(noreg, noreg, NULL); 3286 3287 // Call C code. Need thread but NOT official VM entry 3288 // crud. We cannot block on this call, no GC can happen. Call should 3289 // capture callee-saved registers as well as return values. 3290 // Thread is in rdi already. 3291 // 3292 // UnrollBlock* uncommon_trap(JavaThread* thread, jint unloaded_class_index); 3293 3294 __ mov(c_rarg0, r15_thread); 3295 __ movl(c_rarg2, Deoptimization::Unpack_uncommon_trap); 3296 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap))); 3297 3298 // Set an oopmap for the call site 3299 OopMapSet* oop_maps = new OopMapSet(); 3300 OopMap* map = new OopMap(SimpleRuntimeFrame::framesize, 0); 3301 3302 // location of rbp is known implicitly by the frame sender code 3303 3304 oop_maps->add_gc_map(__ pc() - start, map); 3305 3306 __ reset_last_Java_frame(false); 3307 3308 // Load UnrollBlock* into rdi 3309 __ mov(rdi, rax); 3310 3311 #ifdef ASSERT 3312 { Label L; 3313 __ cmpptr(Address(rdi, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes()), 3314 (int32_t)Deoptimization::Unpack_uncommon_trap); 3315 __ jcc(Assembler::equal, L); 3316 __ stop("SharedRuntime::generate_deopt_blob: expected Unpack_uncommon_trap"); 3317 __ bind(L); 3318 } 3319 #endif 3320 3321 // Pop all the frames we must move/replace. 3322 // 3323 // Frame picture (youngest to oldest) 3324 // 1: self-frame (no frame link) 3325 // 2: deopting frame (no frame link) 3326 // 3: caller of deopting frame (could be compiled/interpreted). 3327 3328 // Pop self-frame. We have no frame, and must rely only on rax and rsp. 3329 __ addptr(rsp, (SimpleRuntimeFrame::framesize - 2) << LogBytesPerInt); // Epilog! 3330 3331 // Pop deoptimized frame (int) 3332 __ movl(rcx, Address(rdi, 3333 Deoptimization::UnrollBlock:: 3334 size_of_deoptimized_frame_offset_in_bytes())); 3335 __ addptr(rsp, rcx); 3336 3337 // rsp should be pointing at the return address to the caller (3) 3338 3339 // Pick up the initial fp we should save 3340 // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved) 3341 __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes())); 3342 3343 #ifdef ASSERT 3344 // Compilers generate code that bang the stack by as much as the 3345 // interpreter would need. So this stack banging should never 3346 // trigger a fault. Verify that it does not on non product builds. 3347 if (UseStackBanging) { 3348 __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes())); 3349 __ bang_stack_size(rbx, rcx); 3350 } 3351 #endif 3352 3353 // Load address of array of frame pcs into rcx (address*) 3354 __ movptr(rcx, Address(rdi, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes())); 3355 3356 // Trash the return pc 3357 __ addptr(rsp, wordSize); 3358 3359 // Load address of array of frame sizes into rsi (intptr_t*) 3360 __ movptr(rsi, Address(rdi, Deoptimization::UnrollBlock:: frame_sizes_offset_in_bytes())); 3361 3362 // Counter 3363 __ movl(rdx, Address(rdi, Deoptimization::UnrollBlock:: number_of_frames_offset_in_bytes())); // (int) 3364 3365 // Now adjust the caller's stack to make up for the extra locals but 3366 // record the original sp so that we can save it in the skeletal 3367 // interpreter frame and the stack walking of interpreter_sender 3368 // will get the unextended sp value and not the "real" sp value. 3369 3370 const Register sender_sp = r8; 3371 3372 __ mov(sender_sp, rsp); 3373 __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock:: caller_adjustment_offset_in_bytes())); // (int) 3374 __ subptr(rsp, rbx); 3375 3376 // Push interpreter frames in a loop 3377 Label loop; 3378 __ bind(loop); 3379 __ movptr(rbx, Address(rsi, 0)); // Load frame size 3380 __ subptr(rbx, 2 * wordSize); // We'll push pc and rbp by hand 3381 __ pushptr(Address(rcx, 0)); // Save return address 3382 __ enter(); // Save old & set new rbp 3383 __ subptr(rsp, rbx); // Prolog 3384 __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), 3385 sender_sp); // Make it walkable 3386 // This value is corrected by layout_activation_impl 3387 __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD ); 3388 __ mov(sender_sp, rsp); // Pass sender_sp to next frame 3389 __ addptr(rsi, wordSize); // Bump array pointer (sizes) 3390 __ addptr(rcx, wordSize); // Bump array pointer (pcs) 3391 __ decrementl(rdx); // Decrement counter 3392 __ jcc(Assembler::notZero, loop); 3393 __ pushptr(Address(rcx, 0)); // Save final return address 3394 3395 // Re-push self-frame 3396 __ enter(); // Save old & set new rbp 3397 __ subptr(rsp, (SimpleRuntimeFrame::framesize - 4) << LogBytesPerInt); 3398 // Prolog 3399 3400 // Use rbp because the frames look interpreted now 3401 // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP. 3402 // Don't need the precise return PC here, just precise enough to point into this code blob. 3403 address the_pc = __ pc(); 3404 __ set_last_Java_frame(noreg, rbp, the_pc); 3405 3406 // Call C code. Need thread but NOT official VM entry 3407 // crud. We cannot block on this call, no GC can happen. Call should 3408 // restore return values to their stack-slots with the new SP. 3409 // Thread is in rdi already. 3410 // 3411 // BasicType unpack_frames(JavaThread* thread, int exec_mode); 3412 3413 __ andptr(rsp, -(StackAlignmentInBytes)); // Align SP as required by ABI 3414 __ mov(c_rarg0, r15_thread); 3415 __ movl(c_rarg1, Deoptimization::Unpack_uncommon_trap); 3416 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames))); 3417 3418 // Set an oopmap for the call site 3419 // Use the same PC we used for the last java frame 3420 oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0)); 3421 3422 // Clear fp AND pc 3423 __ reset_last_Java_frame(true); 3424 3425 // Pop self-frame. 3426 __ leave(); // Epilog 3427 3428 // Jump to interpreter 3429 __ ret(0); 3430 3431 // Make sure all code is generated 3432 masm->flush(); 3433 3434 _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, oop_maps, 3435 SimpleRuntimeFrame::framesize >> 1); 3436 } 3437 #endif // COMPILER2 3438 3439 3440 //------------------------------generate_handler_blob------ 3441 // 3442 // Generate a special Compile2Runtime blob that saves all registers, 3443 // and setup oopmap. 3444 // 3445 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) { 3446 assert(StubRoutines::forward_exception_entry() != NULL, 3447 "must be generated before"); 3448 3449 ResourceMark rm; 3450 OopMapSet *oop_maps = new OopMapSet(); 3451 OopMap* map; 3452 3453 // Allocate space for the code. Setup code generation tools. 3454 CodeBuffer buffer("handler_blob", 2048, 1024); 3455 MacroAssembler* masm = new MacroAssembler(&buffer); 3456 3457 address start = __ pc(); 3458 address call_pc = NULL; 3459 int frame_size_in_words; 3460 bool cause_return = (poll_type == POLL_AT_RETURN); 3461 bool save_vectors = (poll_type == POLL_AT_VECTOR_LOOP); 3462 3463 if (UseRTMLocking) { 3464 // Abort RTM transaction before calling runtime 3465 // because critical section will be large and will be 3466 // aborted anyway. Also nmethod could be deoptimized. 3467 __ xabort(0); 3468 } 3469 3470 // Make room for return address (or push it again) 3471 if (!cause_return) { 3472 __ push(rbx); 3473 } 3474 3475 // Save registers, fpu state, and flags 3476 map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words, save_vectors); 3477 3478 // The following is basically a call_VM. However, we need the precise 3479 // address of the call in order to generate an oopmap. Hence, we do all the 3480 // work outselves. 3481 3482 __ set_last_Java_frame(noreg, noreg, NULL); 3483 3484 // The return address must always be correct so that frame constructor never 3485 // sees an invalid pc. 3486 3487 if (!cause_return) { 3488 // Get the return pc saved by the signal handler and stash it in its appropriate place on the stack. 3489 // Additionally, rbx is a callee saved register and we can look at it later to determine 3490 // if someone changed the return address for us! 3491 __ movptr(rbx, Address(r15_thread, JavaThread::saved_exception_pc_offset())); 3492 __ movptr(Address(rbp, wordSize), rbx); 3493 } 3494 3495 // Do the call 3496 __ mov(c_rarg0, r15_thread); 3497 __ call(RuntimeAddress(call_ptr)); 3498 3499 // Set an oopmap for the call site. This oopmap will map all 3500 // oop-registers and debug-info registers as callee-saved. This 3501 // will allow deoptimization at this safepoint to find all possible 3502 // debug-info recordings, as well as let GC find all oops. 3503 3504 oop_maps->add_gc_map( __ pc() - start, map); 3505 3506 Label noException; 3507 3508 __ reset_last_Java_frame(false); 3509 3510 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD); 3511 __ jcc(Assembler::equal, noException); 3512 3513 // Exception pending 3514 3515 RegisterSaver::restore_live_registers(masm, save_vectors); 3516 3517 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 3518 3519 // No exception case 3520 __ bind(noException); 3521 3522 Label no_adjust; 3523 #ifdef ASSERT 3524 Label bail; 3525 #endif 3526 if (SafepointMechanism::uses_thread_local_poll() && !cause_return) { 3527 Label no_prefix, not_special; 3528 3529 // If our stashed return pc was modified by the runtime we avoid touching it 3530 __ cmpptr(rbx, Address(rbp, wordSize)); 3531 __ jccb(Assembler::notEqual, no_adjust); 3532 3533 // Skip over the poll instruction. 3534 // See NativeInstruction::is_safepoint_poll() 3535 // Possible encodings: 3536 // 85 00 test %eax,(%rax) 3537 // 85 01 test %eax,(%rcx) 3538 // 85 02 test %eax,(%rdx) 3539 // 85 03 test %eax,(%rbx) 3540 // 85 06 test %eax,(%rsi) 3541 // 85 07 test %eax,(%rdi) 3542 // 3543 // 41 85 00 test %eax,(%r8) 3544 // 41 85 01 test %eax,(%r9) 3545 // 41 85 02 test %eax,(%r10) 3546 // 41 85 03 test %eax,(%r11) 3547 // 41 85 06 test %eax,(%r14) 3548 // 41 85 07 test %eax,(%r15) 3549 // 3550 // 85 04 24 test %eax,(%rsp) 3551 // 41 85 04 24 test %eax,(%r12) 3552 // 85 45 00 test %eax,0x0(%rbp) 3553 // 41 85 45 00 test %eax,0x0(%r13) 3554 3555 __ cmpb(Address(rbx, 0), NativeTstRegMem::instruction_rex_b_prefix); 3556 __ jcc(Assembler::notEqual, no_prefix); 3557 __ addptr(rbx, 1); 3558 __ bind(no_prefix); 3559 #ifdef ASSERT 3560 __ movptr(rax, rbx); // remember where 0x85 should be, for verification below 3561 #endif 3562 // r12/r13/rsp/rbp base encoding takes 3 bytes with the following register values: 3563 // r12/rsp 0x04 3564 // r13/rbp 0x05 3565 __ movzbq(rcx, Address(rbx, 1)); 3566 __ andptr(rcx, 0x07); // looking for 0x04 .. 0x05 3567 __ subptr(rcx, 4); // looking for 0x00 .. 0x01 3568 __ cmpptr(rcx, 1); 3569 __ jcc(Assembler::above, not_special); 3570 __ addptr(rbx, 1); 3571 __ bind(not_special); 3572 #ifdef ASSERT 3573 // Verify the correct encoding of the poll we're about to skip. 3574 __ cmpb(Address(rax, 0), NativeTstRegMem::instruction_code_memXregl); 3575 __ jcc(Assembler::notEqual, bail); 3576 // Mask out the modrm bits 3577 __ testb(Address(rax, 1), NativeTstRegMem::modrm_mask); 3578 // rax encodes to 0, so if the bits are nonzero it's incorrect 3579 __ jcc(Assembler::notZero, bail); 3580 #endif 3581 // Adjust return pc forward to step over the safepoint poll instruction 3582 __ addptr(rbx, 2); 3583 __ movptr(Address(rbp, wordSize), rbx); 3584 } 3585 3586 __ bind(no_adjust); 3587 // Normal exit, restore registers and exit. 3588 RegisterSaver::restore_live_registers(masm, save_vectors); 3589 __ ret(0); 3590 3591 #ifdef ASSERT 3592 __ bind(bail); 3593 __ stop("Attempting to adjust pc to skip safepoint poll but the return point is not what we expected"); 3594 #endif 3595 3596 // Make sure all code is generated 3597 masm->flush(); 3598 3599 // Fill-out other meta info 3600 return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words); 3601 } 3602 3603 // 3604 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss 3605 // 3606 // Generate a stub that calls into vm to find out the proper destination 3607 // of a java call. All the argument registers are live at this point 3608 // but since this is generic code we don't know what they are and the caller 3609 // must do any gc of the args. 3610 // 3611 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) { 3612 assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before"); 3613 3614 // allocate space for the code 3615 ResourceMark rm; 3616 3617 CodeBuffer buffer(name, 1000, 512); 3618 MacroAssembler* masm = new MacroAssembler(&buffer); 3619 3620 int frame_size_in_words; 3621 3622 OopMapSet *oop_maps = new OopMapSet(); 3623 OopMap* map = NULL; 3624 3625 int start = __ offset(); 3626 3627 map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words); 3628 3629 int frame_complete = __ offset(); 3630 3631 __ set_last_Java_frame(noreg, noreg, NULL); 3632 3633 __ mov(c_rarg0, r15_thread); 3634 3635 __ call(RuntimeAddress(destination)); 3636 3637 3638 // Set an oopmap for the call site. 3639 // We need this not only for callee-saved registers, but also for volatile 3640 // registers that the compiler might be keeping live across a safepoint. 3641 3642 oop_maps->add_gc_map( __ offset() - start, map); 3643 3644 // rax contains the address we are going to jump to assuming no exception got installed 3645 3646 // clear last_Java_sp 3647 __ reset_last_Java_frame(false); 3648 // check for pending exceptions 3649 Label pending; 3650 __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD); 3651 __ jcc(Assembler::notEqual, pending); 3652 3653 // get the returned Method* 3654 __ get_vm_result_2(rbx, r15_thread); 3655 __ movptr(Address(rsp, RegisterSaver::rbx_offset_in_bytes()), rbx); 3656 3657 __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax); 3658 3659 RegisterSaver::restore_live_registers(masm); 3660 3661 // We are back the the original state on entry and ready to go. 3662 3663 __ jmp(rax); 3664 3665 // Pending exception after the safepoint 3666 3667 __ bind(pending); 3668 3669 RegisterSaver::restore_live_registers(masm); 3670 3671 // exception pending => remove activation and forward to exception handler 3672 3673 __ movptr(Address(r15_thread, JavaThread::vm_result_offset()), (int)NULL_WORD); 3674 3675 __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset())); 3676 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 3677 3678 // ------------- 3679 // make sure all code is generated 3680 masm->flush(); 3681 3682 // return the blob 3683 // frame_size_words or bytes?? 3684 return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_words, oop_maps, true); 3685 } 3686 3687 3688 //------------------------------Montgomery multiplication------------------------ 3689 // 3690 3691 #ifndef _WINDOWS 3692 3693 #define ASM_SUBTRACT 3694 3695 #ifdef ASM_SUBTRACT 3696 // Subtract 0:b from carry:a. Return carry. 3697 static unsigned long 3698 sub(unsigned long a[], unsigned long b[], unsigned long carry, long len) { 3699 long i = 0, cnt = len; 3700 unsigned long tmp; 3701 asm volatile("clc; " 3702 "0: ; " 3703 "mov (%[b], %[i], 8), %[tmp]; " 3704 "sbb %[tmp], (%[a], %[i], 8); " 3705 "inc %[i]; dec %[cnt]; " 3706 "jne 0b; " 3707 "mov %[carry], %[tmp]; sbb $0, %[tmp]; " 3708 : [i]"+r"(i), [cnt]"+r"(cnt), [tmp]"=&r"(tmp) 3709 : [a]"r"(a), [b]"r"(b), [carry]"r"(carry) 3710 : "memory"); 3711 return tmp; 3712 } 3713 #else // ASM_SUBTRACT 3714 typedef int __attribute__((mode(TI))) int128; 3715 3716 // Subtract 0:b from carry:a. Return carry. 3717 static unsigned long 3718 sub(unsigned long a[], unsigned long b[], unsigned long carry, int len) { 3719 int128 tmp = 0; 3720 int i; 3721 for (i = 0; i < len; i++) { 3722 tmp += a[i]; 3723 tmp -= b[i]; 3724 a[i] = tmp; 3725 tmp >>= 64; 3726 assert(-1 <= tmp && tmp <= 0, "invariant"); 3727 } 3728 return tmp + carry; 3729 } 3730 #endif // ! ASM_SUBTRACT 3731 3732 // Multiply (unsigned) Long A by Long B, accumulating the double- 3733 // length result into the accumulator formed of T0, T1, and T2. 3734 #define MACC(A, B, T0, T1, T2) \ 3735 do { \ 3736 unsigned long hi, lo; \ 3737 __asm__ ("mul %5; add %%rax, %2; adc %%rdx, %3; adc $0, %4" \ 3738 : "=&d"(hi), "=a"(lo), "+r"(T0), "+r"(T1), "+g"(T2) \ 3739 : "r"(A), "a"(B) : "cc"); \ 3740 } while(0) 3741 3742 // As above, but add twice the double-length result into the 3743 // accumulator. 3744 #define MACC2(A, B, T0, T1, T2) \ 3745 do { \ 3746 unsigned long hi, lo; \ 3747 __asm__ ("mul %5; add %%rax, %2; adc %%rdx, %3; adc $0, %4; " \ 3748 "add %%rax, %2; adc %%rdx, %3; adc $0, %4" \ 3749 : "=&d"(hi), "=a"(lo), "+r"(T0), "+r"(T1), "+g"(T2) \ 3750 : "r"(A), "a"(B) : "cc"); \ 3751 } while(0) 3752 3753 // Fast Montgomery multiplication. The derivation of the algorithm is 3754 // in A Cryptographic Library for the Motorola DSP56000, 3755 // Dusse and Kaliski, Proc. EUROCRYPT 90, pp. 230-237. 3756 3757 static void __attribute__((noinline)) 3758 montgomery_multiply(unsigned long a[], unsigned long b[], unsigned long n[], 3759 unsigned long m[], unsigned long inv, int len) { 3760 unsigned long t0 = 0, t1 = 0, t2 = 0; // Triple-precision accumulator 3761 int i; 3762 3763 assert(inv * n[0] == -1UL, "broken inverse in Montgomery multiply"); 3764 3765 for (i = 0; i < len; i++) { 3766 int j; 3767 for (j = 0; j < i; j++) { 3768 MACC(a[j], b[i-j], t0, t1, t2); 3769 MACC(m[j], n[i-j], t0, t1, t2); 3770 } 3771 MACC(a[i], b[0], t0, t1, t2); 3772 m[i] = t0 * inv; 3773 MACC(m[i], n[0], t0, t1, t2); 3774 3775 assert(t0 == 0, "broken Montgomery multiply"); 3776 3777 t0 = t1; t1 = t2; t2 = 0; 3778 } 3779 3780 for (i = len; i < 2*len; i++) { 3781 int j; 3782 for (j = i-len+1; j < len; j++) { 3783 MACC(a[j], b[i-j], t0, t1, t2); 3784 MACC(m[j], n[i-j], t0, t1, t2); 3785 } 3786 m[i-len] = t0; 3787 t0 = t1; t1 = t2; t2 = 0; 3788 } 3789 3790 while (t0) 3791 t0 = sub(m, n, t0, len); 3792 } 3793 3794 // Fast Montgomery squaring. This uses asymptotically 25% fewer 3795 // multiplies so it should be up to 25% faster than Montgomery 3796 // multiplication. However, its loop control is more complex and it 3797 // may actually run slower on some machines. 3798 3799 static void __attribute__((noinline)) 3800 montgomery_square(unsigned long a[], unsigned long n[], 3801 unsigned long m[], unsigned long inv, int len) { 3802 unsigned long t0 = 0, t1 = 0, t2 = 0; // Triple-precision accumulator 3803 int i; 3804 3805 assert(inv * n[0] == -1UL, "broken inverse in Montgomery multiply"); 3806 3807 for (i = 0; i < len; i++) { 3808 int j; 3809 int end = (i+1)/2; 3810 for (j = 0; j < end; j++) { 3811 MACC2(a[j], a[i-j], t0, t1, t2); 3812 MACC(m[j], n[i-j], t0, t1, t2); 3813 } 3814 if ((i & 1) == 0) { 3815 MACC(a[j], a[j], t0, t1, t2); 3816 } 3817 for (; j < i; j++) { 3818 MACC(m[j], n[i-j], t0, t1, t2); 3819 } 3820 m[i] = t0 * inv; 3821 MACC(m[i], n[0], t0, t1, t2); 3822 3823 assert(t0 == 0, "broken Montgomery square"); 3824 3825 t0 = t1; t1 = t2; t2 = 0; 3826 } 3827 3828 for (i = len; i < 2*len; i++) { 3829 int start = i-len+1; 3830 int end = start + (len - start)/2; 3831 int j; 3832 for (j = start; j < end; j++) { 3833 MACC2(a[j], a[i-j], t0, t1, t2); 3834 MACC(m[j], n[i-j], t0, t1, t2); 3835 } 3836 if ((i & 1) == 0) { 3837 MACC(a[j], a[j], t0, t1, t2); 3838 } 3839 for (; j < len; j++) { 3840 MACC(m[j], n[i-j], t0, t1, t2); 3841 } 3842 m[i-len] = t0; 3843 t0 = t1; t1 = t2; t2 = 0; 3844 } 3845 3846 while (t0) 3847 t0 = sub(m, n, t0, len); 3848 } 3849 3850 // Swap words in a longword. 3851 static unsigned long swap(unsigned long x) { 3852 return (x << 32) | (x >> 32); 3853 } 3854 3855 // Copy len longwords from s to d, word-swapping as we go. The 3856 // destination array is reversed. 3857 static void reverse_words(unsigned long *s, unsigned long *d, int len) { 3858 d += len; 3859 while(len-- > 0) { 3860 d--; 3861 *d = swap(*s); 3862 s++; 3863 } 3864 } 3865 3866 // The threshold at which squaring is advantageous was determined 3867 // experimentally on an i7-3930K (Ivy Bridge) CPU @ 3.5GHz. 3868 #define MONTGOMERY_SQUARING_THRESHOLD 64 3869 3870 void SharedRuntime::montgomery_multiply(jint *a_ints, jint *b_ints, jint *n_ints, 3871 jint len, jlong inv, 3872 jint *m_ints) { 3873 assert(len % 2 == 0, "array length in montgomery_multiply must be even"); 3874 int longwords = len/2; 3875 3876 // Make very sure we don't use so much space that the stack might 3877 // overflow. 512 jints corresponds to an 16384-bit integer and 3878 // will use here a total of 8k bytes of stack space. 3879 int total_allocation = longwords * sizeof (unsigned long) * 4; 3880 guarantee(total_allocation <= 8192, "must be"); 3881 unsigned long *scratch = (unsigned long *)alloca(total_allocation); 3882 3883 // Local scratch arrays 3884 unsigned long 3885 *a = scratch + 0 * longwords, 3886 *b = scratch + 1 * longwords, 3887 *n = scratch + 2 * longwords, 3888 *m = scratch + 3 * longwords; 3889 3890 reverse_words((unsigned long *)a_ints, a, longwords); 3891 reverse_words((unsigned long *)b_ints, b, longwords); 3892 reverse_words((unsigned long *)n_ints, n, longwords); 3893 3894 ::montgomery_multiply(a, b, n, m, (unsigned long)inv, longwords); 3895 3896 reverse_words(m, (unsigned long *)m_ints, longwords); 3897 } 3898 3899 void SharedRuntime::montgomery_square(jint *a_ints, jint *n_ints, 3900 jint len, jlong inv, 3901 jint *m_ints) { 3902 assert(len % 2 == 0, "array length in montgomery_square must be even"); 3903 int longwords = len/2; 3904 3905 // Make very sure we don't use so much space that the stack might 3906 // overflow. 512 jints corresponds to an 16384-bit integer and 3907 // will use here a total of 6k bytes of stack space. 3908 int total_allocation = longwords * sizeof (unsigned long) * 3; 3909 guarantee(total_allocation <= 8192, "must be"); 3910 unsigned long *scratch = (unsigned long *)alloca(total_allocation); 3911 3912 // Local scratch arrays 3913 unsigned long 3914 *a = scratch + 0 * longwords, 3915 *n = scratch + 1 * longwords, 3916 *m = scratch + 2 * longwords; 3917 3918 reverse_words((unsigned long *)a_ints, a, longwords); 3919 reverse_words((unsigned long *)n_ints, n, longwords); 3920 3921 if (len >= MONTGOMERY_SQUARING_THRESHOLD) { 3922 ::montgomery_square(a, n, m, (unsigned long)inv, longwords); 3923 } else { 3924 ::montgomery_multiply(a, a, n, m, (unsigned long)inv, longwords); 3925 } 3926 3927 reverse_words(m, (unsigned long *)m_ints, longwords); 3928 } 3929 3930 #endif // WINDOWS 3931 3932 #ifdef COMPILER2 3933 // This is here instead of runtime_x86_64.cpp because it uses SimpleRuntimeFrame 3934 // 3935 //------------------------------generate_exception_blob--------------------------- 3936 // creates exception blob at the end 3937 // Using exception blob, this code is jumped from a compiled method. 3938 // (see emit_exception_handler in x86_64.ad file) 3939 // 3940 // Given an exception pc at a call we call into the runtime for the 3941 // handler in this method. This handler might merely restore state 3942 // (i.e. callee save registers) unwind the frame and jump to the 3943 // exception handler for the nmethod if there is no Java level handler 3944 // for the nmethod. 3945 // 3946 // This code is entered with a jmp. 3947 // 3948 // Arguments: 3949 // rax: exception oop 3950 // rdx: exception pc 3951 // 3952 // Results: 3953 // rax: exception oop 3954 // rdx: exception pc in caller or ??? 3955 // destination: exception handler of caller 3956 // 3957 // Note: the exception pc MUST be at a call (precise debug information) 3958 // Registers rax, rdx, rcx, rsi, rdi, r8-r11 are not callee saved. 3959 // 3960 3961 void OptoRuntime::generate_exception_blob() { 3962 assert(!OptoRuntime::is_callee_saved_register(RDX_num), ""); 3963 assert(!OptoRuntime::is_callee_saved_register(RAX_num), ""); 3964 assert(!OptoRuntime::is_callee_saved_register(RCX_num), ""); 3965 3966 assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned"); 3967 3968 // Allocate space for the code 3969 ResourceMark rm; 3970 // Setup code generation tools 3971 CodeBuffer buffer("exception_blob", 2048, 1024); 3972 MacroAssembler* masm = new MacroAssembler(&buffer); 3973 3974 3975 address start = __ pc(); 3976 3977 // Exception pc is 'return address' for stack walker 3978 __ push(rdx); 3979 __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Prolog 3980 3981 // Save callee-saved registers. See x86_64.ad. 3982 3983 // rbp is an implicitly saved callee saved register (i.e., the calling 3984 // convention will save/restore it in the prolog/epilog). Other than that 3985 // there are no callee save registers now that adapter frames are gone. 3986 3987 __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp); 3988 3989 // Store exception in Thread object. We cannot pass any arguments to the 3990 // handle_exception call, since we do not want to make any assumption 3991 // about the size of the frame where the exception happened in. 3992 // c_rarg0 is either rdi (Linux) or rcx (Windows). 3993 __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()),rax); 3994 __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx); 3995 3996 // This call does all the hard work. It checks if an exception handler 3997 // exists in the method. 3998 // If so, it returns the handler address. 3999 // If not, it prepares for stack-unwinding, restoring the callee-save 4000 // registers of the frame being removed. 4001 // 4002 // address OptoRuntime::handle_exception_C(JavaThread* thread) 4003 4004 // At a method handle call, the stack may not be properly aligned 4005 // when returning with an exception. 4006 address the_pc = __ pc(); 4007 __ set_last_Java_frame(noreg, noreg, the_pc); 4008 __ mov(c_rarg0, r15_thread); 4009 __ andptr(rsp, -(StackAlignmentInBytes)); // Align stack 4010 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, OptoRuntime::handle_exception_C))); 4011 4012 // Set an oopmap for the call site. This oopmap will only be used if we 4013 // are unwinding the stack. Hence, all locations will be dead. 4014 // Callee-saved registers will be the same as the frame above (i.e., 4015 // handle_exception_stub), since they were restored when we got the 4016 // exception. 4017 4018 OopMapSet* oop_maps = new OopMapSet(); 4019 4020 oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0)); 4021 4022 __ reset_last_Java_frame(false); 4023 4024 // Restore callee-saved registers 4025 4026 // rbp is an implicitly saved callee-saved register (i.e., the calling 4027 // convention will save restore it in prolog/epilog) Other than that 4028 // there are no callee save registers now that adapter frames are gone. 4029 4030 __ movptr(rbp, Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt)); 4031 4032 __ addptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog 4033 __ pop(rdx); // No need for exception pc anymore 4034 4035 // rax: exception handler 4036 4037 // We have a handler in rax (could be deopt blob). 4038 __ mov(r8, rax); 4039 4040 // Get the exception oop 4041 __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset())); 4042 // Get the exception pc in case we are deoptimized 4043 __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset())); 4044 #ifdef ASSERT 4045 __ movptr(Address(r15_thread, JavaThread::exception_handler_pc_offset()), (int)NULL_WORD); 4046 __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int)NULL_WORD); 4047 #endif 4048 // Clear the exception oop so GC no longer processes it as a root. 4049 __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int)NULL_WORD); 4050 4051 // rax: exception oop 4052 // r8: exception handler 4053 // rdx: exception pc 4054 // Jump to handler 4055 4056 __ jmp(r8); 4057 4058 // Make sure all code is generated 4059 masm->flush(); 4060 4061 // Set exception blob 4062 _exception_blob = ExceptionBlob::create(&buffer, oop_maps, SimpleRuntimeFrame::framesize >> 1); 4063 } 4064 #endif // COMPILER2 --- EOF ---