1 /*
   2  * Copyright (c) 2011, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 #include "precompiled.hpp"
  25 #include "gc/shared/collectedHeap.hpp"
  26 #include "gc/shared/collectorPolicy.hpp"
  27 #include "gc/shared/gcLocker.hpp"
  28 #include "logging/log.hpp"
  29 #include "memory/allocation.hpp"
  30 #include "memory/binaryTreeDictionary.hpp"
  31 #include "memory/filemap.hpp"
  32 #include "memory/freeList.hpp"
  33 #include "memory/metachunk.hpp"
  34 #include "memory/metaspace.hpp"
  35 #include "memory/metaspaceGCThresholdUpdater.hpp"
  36 #include "memory/metaspaceShared.hpp"
  37 #include "memory/metaspaceTracer.hpp"
  38 #include "memory/resourceArea.hpp"
  39 #include "memory/universe.hpp"
  40 #include "runtime/atomic.hpp"
  41 #include "runtime/globals.hpp"
  42 #include "runtime/init.hpp"
  43 #include "runtime/java.hpp"
  44 #include "runtime/mutex.hpp"
  45 #include "runtime/orderAccess.inline.hpp"
  46 #include "services/memTracker.hpp"
  47 #include "services/memoryService.hpp"
  48 #include "utilities/copy.hpp"
  49 #include "utilities/debug.hpp"
  50 #include "utilities/macros.hpp"
  51 
  52 typedef BinaryTreeDictionary<Metablock, FreeList<Metablock> > BlockTreeDictionary;
  53 typedef BinaryTreeDictionary<Metachunk, FreeList<Metachunk> > ChunkTreeDictionary;
  54 
  55 // Set this constant to enable slow integrity checking of the free chunk lists
  56 const bool metaspace_slow_verify = false;
  57 
  58 size_t const allocation_from_dictionary_limit = 4 * K;
  59 
  60 MetaWord* last_allocated = 0;
  61 
  62 size_t Metaspace::_compressed_class_space_size;
  63 const MetaspaceTracer* Metaspace::_tracer = NULL;
  64 
  65 // Used in declarations in SpaceManager and ChunkManager
  66 enum ChunkIndex {
  67   ZeroIndex = 0,
  68   SpecializedIndex = ZeroIndex,
  69   SmallIndex = SpecializedIndex + 1,
  70   MediumIndex = SmallIndex + 1,
  71   HumongousIndex = MediumIndex + 1,
  72   NumberOfFreeLists = 3,
  73   NumberOfInUseLists = 4
  74 };
  75 
  76 enum ChunkSizes {    // in words.
  77   ClassSpecializedChunk = 128,
  78   SpecializedChunk = 128,
  79   ClassSmallChunk = 256,
  80   SmallChunk = 512,
  81   ClassMediumChunk = 4 * K,
  82   MediumChunk = 8 * K
  83 };
  84 
  85 static ChunkIndex next_chunk_index(ChunkIndex i) {
  86   assert(i < NumberOfInUseLists, "Out of bound");
  87   return (ChunkIndex) (i+1);
  88 }
  89 
  90 volatile intptr_t MetaspaceGC::_capacity_until_GC = 0;
  91 uint MetaspaceGC::_shrink_factor = 0;
  92 bool MetaspaceGC::_should_concurrent_collect = false;
  93 
  94 typedef class FreeList<Metachunk> ChunkList;
  95 
  96 // Manages the global free lists of chunks.
  97 class ChunkManager : public CHeapObj<mtInternal> {
  98   friend class TestVirtualSpaceNodeTest;
  99 
 100   // Free list of chunks of different sizes.
 101   //   SpecializedChunk
 102   //   SmallChunk
 103   //   MediumChunk
 104   //   HumongousChunk
 105   ChunkList _free_chunks[NumberOfFreeLists];
 106 
 107   //   HumongousChunk
 108   ChunkTreeDictionary _humongous_dictionary;
 109 
 110   // ChunkManager in all lists of this type
 111   size_t _free_chunks_total;
 112   size_t _free_chunks_count;
 113 
 114   void dec_free_chunks_total(size_t v) {
 115     assert(_free_chunks_count > 0 &&
 116              _free_chunks_total > 0,
 117              "About to go negative");
 118     Atomic::add_ptr(-1, &_free_chunks_count);
 119     jlong minus_v = (jlong) - (jlong) v;
 120     Atomic::add_ptr(minus_v, &_free_chunks_total);
 121   }
 122 
 123   // Debug support
 124 
 125   size_t sum_free_chunks();
 126   size_t sum_free_chunks_count();
 127 
 128   void locked_verify_free_chunks_total();
 129   void slow_locked_verify_free_chunks_total() {
 130     if (metaspace_slow_verify) {
 131       locked_verify_free_chunks_total();
 132     }
 133   }
 134   void locked_verify_free_chunks_count();
 135   void slow_locked_verify_free_chunks_count() {
 136     if (metaspace_slow_verify) {
 137       locked_verify_free_chunks_count();
 138     }
 139   }
 140   void verify_free_chunks_count();
 141 
 142  public:
 143 
 144   ChunkManager(size_t specialized_size, size_t small_size, size_t medium_size)
 145       : _free_chunks_total(0), _free_chunks_count(0) {
 146     _free_chunks[SpecializedIndex].set_size(specialized_size);
 147     _free_chunks[SmallIndex].set_size(small_size);
 148     _free_chunks[MediumIndex].set_size(medium_size);
 149   }
 150 
 151   // add or delete (return) a chunk to the global freelist.
 152   Metachunk* chunk_freelist_allocate(size_t word_size);
 153 
 154   // Map a size to a list index assuming that there are lists
 155   // for special, small, medium, and humongous chunks.
 156   static ChunkIndex list_index(size_t size);
 157 
 158   // Remove the chunk from its freelist.  It is
 159   // expected to be on one of the _free_chunks[] lists.
 160   void remove_chunk(Metachunk* chunk);
 161 
 162   // Add the simple linked list of chunks to the freelist of chunks
 163   // of type index.
 164   void return_chunks(ChunkIndex index, Metachunk* chunks);
 165 
 166   // Total of the space in the free chunks list
 167   size_t free_chunks_total_words();
 168   size_t free_chunks_total_bytes();
 169 
 170   // Number of chunks in the free chunks list
 171   size_t free_chunks_count();
 172 
 173   void inc_free_chunks_total(size_t v, size_t count = 1) {
 174     Atomic::add_ptr(count, &_free_chunks_count);
 175     Atomic::add_ptr(v, &_free_chunks_total);
 176   }
 177   ChunkTreeDictionary* humongous_dictionary() {
 178     return &_humongous_dictionary;
 179   }
 180 
 181   ChunkList* free_chunks(ChunkIndex index);
 182 
 183   // Returns the list for the given chunk word size.
 184   ChunkList* find_free_chunks_list(size_t word_size);
 185 
 186   // Remove from a list by size.  Selects list based on size of chunk.
 187   Metachunk* free_chunks_get(size_t chunk_word_size);
 188 
 189 #define index_bounds_check(index)                                         \
 190   assert(index == SpecializedIndex ||                                     \
 191          index == SmallIndex ||                                           \
 192          index == MediumIndex ||                                          \
 193          index == HumongousIndex, "Bad index: %d", (int) index)
 194 
 195   size_t num_free_chunks(ChunkIndex index) const {
 196     index_bounds_check(index);
 197 
 198     if (index == HumongousIndex) {
 199       return _humongous_dictionary.total_free_blocks();
 200     }
 201 
 202     ssize_t count = _free_chunks[index].count();
 203     return count == -1 ? 0 : (size_t) count;
 204   }
 205 
 206   size_t size_free_chunks_in_bytes(ChunkIndex index) const {
 207     index_bounds_check(index);
 208 
 209     size_t word_size = 0;
 210     if (index == HumongousIndex) {
 211       word_size = _humongous_dictionary.total_size();
 212     } else {
 213       const size_t size_per_chunk_in_words = _free_chunks[index].size();
 214       word_size = size_per_chunk_in_words * num_free_chunks(index);
 215     }
 216 
 217     return word_size * BytesPerWord;
 218   }
 219 
 220   MetaspaceChunkFreeListSummary chunk_free_list_summary() const {
 221     return MetaspaceChunkFreeListSummary(num_free_chunks(SpecializedIndex),
 222                                          num_free_chunks(SmallIndex),
 223                                          num_free_chunks(MediumIndex),
 224                                          num_free_chunks(HumongousIndex),
 225                                          size_free_chunks_in_bytes(SpecializedIndex),
 226                                          size_free_chunks_in_bytes(SmallIndex),
 227                                          size_free_chunks_in_bytes(MediumIndex),
 228                                          size_free_chunks_in_bytes(HumongousIndex));
 229   }
 230 
 231   // Debug support
 232   void verify();
 233   void slow_verify() {
 234     if (metaspace_slow_verify) {
 235       verify();
 236     }
 237   }
 238   void locked_verify();
 239   void slow_locked_verify() {
 240     if (metaspace_slow_verify) {
 241       locked_verify();
 242     }
 243   }
 244   void verify_free_chunks_total();
 245 
 246   void locked_print_free_chunks(outputStream* st);
 247   void locked_print_sum_free_chunks(outputStream* st);
 248 
 249   void print_on(outputStream* st) const;
 250 };
 251 
 252 class SmallBlocks : public CHeapObj<mtClass> {
 253   const static uint _small_block_max_size = sizeof(TreeChunk<Metablock,  FreeList<Metablock> >)/HeapWordSize;
 254   const static uint _small_block_min_size = sizeof(Metablock)/HeapWordSize;
 255 
 256  private:
 257   FreeList<Metablock> _small_lists[_small_block_max_size - _small_block_min_size];
 258 
 259   FreeList<Metablock>& list_at(size_t word_size) {
 260     assert(word_size >= _small_block_min_size, "There are no metaspace objects less than %u words", _small_block_min_size);
 261     return _small_lists[word_size - _small_block_min_size];
 262   }
 263 
 264  public:
 265   SmallBlocks() {
 266     for (uint i = _small_block_min_size; i < _small_block_max_size; i++) {
 267       uint k = i - _small_block_min_size;
 268       _small_lists[k].set_size(i);
 269     }
 270   }
 271 
 272   size_t total_size() const {
 273     size_t result = 0;
 274     for (uint i = _small_block_min_size; i < _small_block_max_size; i++) {
 275       uint k = i - _small_block_min_size;
 276       result = result + _small_lists[k].count() * _small_lists[k].size();
 277     }
 278     return result;
 279   }
 280 
 281   static uint small_block_max_size() { return _small_block_max_size; }
 282   static uint small_block_min_size() { return _small_block_min_size; }
 283 
 284   MetaWord* get_block(size_t word_size) {
 285     if (list_at(word_size).count() > 0) {
 286       MetaWord* new_block = (MetaWord*) list_at(word_size).get_chunk_at_head();
 287       return new_block;
 288     } else {
 289       return NULL;
 290     }
 291   }
 292   void return_block(Metablock* free_chunk, size_t word_size) {
 293     list_at(word_size).return_chunk_at_head(free_chunk, false);
 294     assert(list_at(word_size).count() > 0, "Should have a chunk");
 295   }
 296 
 297   void print_on(outputStream* st) const {
 298     st->print_cr("SmallBlocks:");
 299     for (uint i = _small_block_min_size; i < _small_block_max_size; i++) {
 300       uint k = i - _small_block_min_size;
 301       st->print_cr("small_lists size " SIZE_FORMAT " count " SIZE_FORMAT, _small_lists[k].size(), _small_lists[k].count());
 302     }
 303   }
 304 };
 305 
 306 // Used to manage the free list of Metablocks (a block corresponds
 307 // to the allocation of a quantum of metadata).
 308 class BlockFreelist : public CHeapObj<mtClass> {
 309   BlockTreeDictionary* const _dictionary;
 310   SmallBlocks* _small_blocks;
 311 
 312   // Only allocate and split from freelist if the size of the allocation
 313   // is at least 1/4th the size of the available block.
 314   const static int WasteMultiplier = 4;
 315 
 316   // Accessors
 317   BlockTreeDictionary* dictionary() const { return _dictionary; }
 318   SmallBlocks* small_blocks() {
 319     if (_small_blocks == NULL) {
 320       _small_blocks = new SmallBlocks();
 321     }
 322     return _small_blocks;
 323   }
 324 
 325  public:
 326   BlockFreelist();
 327   ~BlockFreelist();
 328 
 329   // Get and return a block to the free list
 330   MetaWord* get_block(size_t word_size);
 331   void return_block(MetaWord* p, size_t word_size);
 332 
 333   size_t total_size() const  {
 334     size_t result = dictionary()->total_size();
 335     if (_small_blocks != NULL) {
 336       result = result + _small_blocks->total_size();
 337     }
 338     return result;
 339   }
 340 
 341   static size_t min_dictionary_size()   { return TreeChunk<Metablock, FreeList<Metablock> >::min_size(); }
 342   void print_on(outputStream* st) const;
 343 };
 344 
 345 // A VirtualSpaceList node.
 346 class VirtualSpaceNode : public CHeapObj<mtClass> {
 347   friend class VirtualSpaceList;
 348 
 349   // Link to next VirtualSpaceNode
 350   VirtualSpaceNode* _next;
 351 
 352   // total in the VirtualSpace
 353   MemRegion _reserved;
 354   ReservedSpace _rs;
 355   VirtualSpace _virtual_space;
 356   MetaWord* _top;
 357   // count of chunks contained in this VirtualSpace
 358   uintx _container_count;
 359 
 360   // Convenience functions to access the _virtual_space
 361   char* low()  const { return virtual_space()->low(); }
 362   char* high() const { return virtual_space()->high(); }
 363 
 364   // The first Metachunk will be allocated at the bottom of the
 365   // VirtualSpace
 366   Metachunk* first_chunk() { return (Metachunk*) bottom(); }
 367 
 368   // Committed but unused space in the virtual space
 369   size_t free_words_in_vs() const;
 370  public:
 371 
 372   VirtualSpaceNode(size_t byte_size);
 373   VirtualSpaceNode(ReservedSpace rs) : _top(NULL), _next(NULL), _rs(rs), _container_count(0) {}
 374   ~VirtualSpaceNode();
 375 
 376   // Convenience functions for logical bottom and end
 377   MetaWord* bottom() const { return (MetaWord*) _virtual_space.low(); }
 378   MetaWord* end() const { return (MetaWord*) _virtual_space.high(); }
 379 
 380   bool contains(const void* ptr) { return ptr >= low() && ptr < high(); }
 381 
 382   size_t reserved_words() const  { return _virtual_space.reserved_size() / BytesPerWord; }
 383   size_t committed_words() const { return _virtual_space.actual_committed_size() / BytesPerWord; }
 384 
 385   bool is_pre_committed() const { return _virtual_space.special(); }
 386 
 387   // address of next available space in _virtual_space;
 388   // Accessors
 389   VirtualSpaceNode* next() { return _next; }
 390   void set_next(VirtualSpaceNode* v) { _next = v; }
 391 
 392   void set_reserved(MemRegion const v) { _reserved = v; }
 393   void set_top(MetaWord* v) { _top = v; }
 394 
 395   // Accessors
 396   MemRegion* reserved() { return &_reserved; }
 397   VirtualSpace* virtual_space() const { return (VirtualSpace*) &_virtual_space; }
 398 
 399   // Returns true if "word_size" is available in the VirtualSpace
 400   bool is_available(size_t word_size) { return word_size <= pointer_delta(end(), _top, sizeof(MetaWord)); }
 401 
 402   MetaWord* top() const { return _top; }
 403   void inc_top(size_t word_size) { _top += word_size; }
 404 
 405   uintx container_count() { return _container_count; }
 406   void inc_container_count();
 407   void dec_container_count();
 408 #ifdef ASSERT
 409   uintx container_count_slow();
 410   void verify_container_count();
 411 #endif
 412 
 413   // used and capacity in this single entry in the list
 414   size_t used_words_in_vs() const;
 415   size_t capacity_words_in_vs() const;
 416 
 417   bool initialize();
 418 
 419   // get space from the virtual space
 420   Metachunk* take_from_committed(size_t chunk_word_size);
 421 
 422   // Allocate a chunk from the virtual space and return it.
 423   Metachunk* get_chunk_vs(size_t chunk_word_size);
 424 
 425   // Expands/shrinks the committed space in a virtual space.  Delegates
 426   // to Virtualspace
 427   bool expand_by(size_t min_words, size_t preferred_words);
 428 
 429   // In preparation for deleting this node, remove all the chunks
 430   // in the node from any freelist.
 431   void purge(ChunkManager* chunk_manager);
 432 
 433   // If an allocation doesn't fit in the current node a new node is created.
 434   // Allocate chunks out of the remaining committed space in this node
 435   // to avoid wasting that memory.
 436   // This always adds up because all the chunk sizes are multiples of
 437   // the smallest chunk size.
 438   void retire(ChunkManager* chunk_manager);
 439 
 440 #ifdef ASSERT
 441   // Debug support
 442   void mangle();
 443 #endif
 444 
 445   void print_on(outputStream* st) const;
 446 };
 447 
 448 #define assert_is_ptr_aligned(ptr, alignment) \
 449   assert(is_ptr_aligned(ptr, alignment),      \
 450          PTR_FORMAT " is not aligned to "     \
 451          SIZE_FORMAT, p2i(ptr), alignment)
 452 
 453 #define assert_is_size_aligned(size, alignment) \
 454   assert(is_size_aligned(size, alignment),      \
 455          SIZE_FORMAT " is not aligned to "      \
 456          SIZE_FORMAT, size, alignment)
 457 
 458 
 459 // Decide if large pages should be committed when the memory is reserved.
 460 static bool should_commit_large_pages_when_reserving(size_t bytes) {
 461   if (UseLargePages && UseLargePagesInMetaspace && !os::can_commit_large_page_memory()) {
 462     size_t words = bytes / BytesPerWord;
 463     bool is_class = false; // We never reserve large pages for the class space.
 464     if (MetaspaceGC::can_expand(words, is_class) &&
 465         MetaspaceGC::allowed_expansion() >= words) {
 466       return true;
 467     }
 468   }
 469 
 470   return false;
 471 }
 472 
 473   // byte_size is the size of the associated virtualspace.
 474 VirtualSpaceNode::VirtualSpaceNode(size_t bytes) : _top(NULL), _next(NULL), _rs(), _container_count(0) {
 475   assert_is_size_aligned(bytes, Metaspace::reserve_alignment());
 476 
 477 #if INCLUDE_CDS
 478   // This allocates memory with mmap.  For DumpSharedspaces, try to reserve
 479   // configurable address, generally at the top of the Java heap so other
 480   // memory addresses don't conflict.
 481   if (DumpSharedSpaces) {
 482     bool large_pages = false; // No large pages when dumping the CDS archive.
 483     char* shared_base = (char*)align_ptr_up((char*)SharedBaseAddress, Metaspace::reserve_alignment());
 484 
 485     _rs = ReservedSpace(bytes, Metaspace::reserve_alignment(), large_pages, shared_base);
 486     if (_rs.is_reserved()) {
 487       assert(shared_base == 0 || _rs.base() == shared_base, "should match");
 488     } else {
 489       // Get a mmap region anywhere if the SharedBaseAddress fails.
 490       _rs = ReservedSpace(bytes, Metaspace::reserve_alignment(), large_pages);
 491     }
 492     if (!_rs.is_reserved()) {
 493       vm_exit_during_initialization("Unable to allocate memory for shared space",
 494         err_msg(SIZE_FORMAT " bytes.", bytes));
 495     }
 496     MetaspaceShared::initialize_shared_rs(&_rs);
 497   } else
 498 #endif
 499   {
 500     bool large_pages = should_commit_large_pages_when_reserving(bytes);
 501 
 502     _rs = ReservedSpace(bytes, Metaspace::reserve_alignment(), large_pages);
 503   }
 504 
 505   if (_rs.is_reserved()) {
 506     assert(_rs.base() != NULL, "Catch if we get a NULL address");
 507     assert(_rs.size() != 0, "Catch if we get a 0 size");
 508     assert_is_ptr_aligned(_rs.base(), Metaspace::reserve_alignment());
 509     assert_is_size_aligned(_rs.size(), Metaspace::reserve_alignment());
 510 
 511     MemTracker::record_virtual_memory_type((address)_rs.base(), mtClass);
 512   }
 513 }
 514 
 515 void VirtualSpaceNode::purge(ChunkManager* chunk_manager) {
 516   Metachunk* chunk = first_chunk();
 517   Metachunk* invalid_chunk = (Metachunk*) top();
 518   while (chunk < invalid_chunk ) {
 519     assert(chunk->is_tagged_free(), "Should be tagged free");
 520     MetaWord* next = ((MetaWord*)chunk) + chunk->word_size();
 521     chunk_manager->remove_chunk(chunk);
 522     assert(chunk->next() == NULL &&
 523            chunk->prev() == NULL,
 524            "Was not removed from its list");
 525     chunk = (Metachunk*) next;
 526   }
 527 }
 528 
 529 #ifdef ASSERT
 530 uintx VirtualSpaceNode::container_count_slow() {
 531   uintx count = 0;
 532   Metachunk* chunk = first_chunk();
 533   Metachunk* invalid_chunk = (Metachunk*) top();
 534   while (chunk < invalid_chunk ) {
 535     MetaWord* next = ((MetaWord*)chunk) + chunk->word_size();
 536     // Don't count the chunks on the free lists.  Those are
 537     // still part of the VirtualSpaceNode but not currently
 538     // counted.
 539     if (!chunk->is_tagged_free()) {
 540       count++;
 541     }
 542     chunk = (Metachunk*) next;
 543   }
 544   return count;
 545 }
 546 #endif
 547 
 548 // List of VirtualSpaces for metadata allocation.
 549 class VirtualSpaceList : public CHeapObj<mtClass> {
 550   friend class VirtualSpaceNode;
 551 
 552   enum VirtualSpaceSizes {
 553     VirtualSpaceSize = 256 * K
 554   };
 555 
 556   // Head of the list
 557   VirtualSpaceNode* _virtual_space_list;
 558   // virtual space currently being used for allocations
 559   VirtualSpaceNode* _current_virtual_space;
 560 
 561   // Is this VirtualSpaceList used for the compressed class space
 562   bool _is_class;
 563 
 564   // Sum of reserved and committed memory in the virtual spaces
 565   size_t _reserved_words;
 566   size_t _committed_words;
 567 
 568   // Number of virtual spaces
 569   size_t _virtual_space_count;
 570 
 571   ~VirtualSpaceList();
 572 
 573   VirtualSpaceNode* virtual_space_list() const { return _virtual_space_list; }
 574 
 575   void set_virtual_space_list(VirtualSpaceNode* v) {
 576     _virtual_space_list = v;
 577   }
 578   void set_current_virtual_space(VirtualSpaceNode* v) {
 579     _current_virtual_space = v;
 580   }
 581 
 582   void link_vs(VirtualSpaceNode* new_entry);
 583 
 584   // Get another virtual space and add it to the list.  This
 585   // is typically prompted by a failed attempt to allocate a chunk
 586   // and is typically followed by the allocation of a chunk.
 587   bool create_new_virtual_space(size_t vs_word_size);
 588 
 589   // Chunk up the unused committed space in the current
 590   // virtual space and add the chunks to the free list.
 591   void retire_current_virtual_space();
 592 
 593  public:
 594   VirtualSpaceList(size_t word_size);
 595   VirtualSpaceList(ReservedSpace rs);
 596 
 597   size_t free_bytes();
 598 
 599   Metachunk* get_new_chunk(size_t word_size,
 600                            size_t grow_chunks_by_words,
 601                            size_t medium_chunk_bunch);
 602 
 603   bool expand_node_by(VirtualSpaceNode* node,
 604                       size_t min_words,
 605                       size_t preferred_words);
 606 
 607   bool expand_by(size_t min_words,
 608                  size_t preferred_words);
 609 
 610   VirtualSpaceNode* current_virtual_space() {
 611     return _current_virtual_space;
 612   }
 613 
 614   bool is_class() const { return _is_class; }
 615 
 616   bool initialization_succeeded() { return _virtual_space_list != NULL; }
 617 
 618   size_t reserved_words()  { return _reserved_words; }
 619   size_t reserved_bytes()  { return reserved_words() * BytesPerWord; }
 620   size_t committed_words() { return _committed_words; }
 621   size_t committed_bytes() { return committed_words() * BytesPerWord; }
 622 
 623   void inc_reserved_words(size_t v);
 624   void dec_reserved_words(size_t v);
 625   void inc_committed_words(size_t v);
 626   void dec_committed_words(size_t v);
 627   void inc_virtual_space_count();
 628   void dec_virtual_space_count();
 629 
 630   bool contains(const void* ptr);
 631 
 632   // Unlink empty VirtualSpaceNodes and free it.
 633   void purge(ChunkManager* chunk_manager);
 634 
 635   void print_on(outputStream* st) const;
 636 
 637   class VirtualSpaceListIterator : public StackObj {
 638     VirtualSpaceNode* _virtual_spaces;
 639    public:
 640     VirtualSpaceListIterator(VirtualSpaceNode* virtual_spaces) :
 641       _virtual_spaces(virtual_spaces) {}
 642 
 643     bool repeat() {
 644       return _virtual_spaces != NULL;
 645     }
 646 
 647     VirtualSpaceNode* get_next() {
 648       VirtualSpaceNode* result = _virtual_spaces;
 649       if (_virtual_spaces != NULL) {
 650         _virtual_spaces = _virtual_spaces->next();
 651       }
 652       return result;
 653     }
 654   };
 655 };
 656 
 657 class Metadebug : AllStatic {
 658   // Debugging support for Metaspaces
 659   static int _allocation_fail_alot_count;
 660 
 661  public:
 662 
 663   static void init_allocation_fail_alot_count();
 664 #ifdef ASSERT
 665   static bool test_metadata_failure();
 666 #endif
 667 };
 668 
 669 int Metadebug::_allocation_fail_alot_count = 0;
 670 
 671 //  SpaceManager - used by Metaspace to handle allocations
 672 class SpaceManager : public CHeapObj<mtClass> {
 673   friend class Metaspace;
 674   friend class Metadebug;
 675 
 676  private:
 677 
 678   // protects allocations
 679   Mutex* const _lock;
 680 
 681   // Type of metadata allocated.
 682   Metaspace::MetadataType _mdtype;
 683 
 684   // List of chunks in use by this SpaceManager.  Allocations
 685   // are done from the current chunk.  The list is used for deallocating
 686   // chunks when the SpaceManager is freed.
 687   Metachunk* _chunks_in_use[NumberOfInUseLists];
 688   Metachunk* _current_chunk;
 689 
 690   // Maximum number of small chunks to allocate to a SpaceManager
 691   static uint const _small_chunk_limit;
 692 
 693   // Sum of all space in allocated chunks
 694   size_t _allocated_blocks_words;
 695 
 696   // Sum of all allocated chunks
 697   size_t _allocated_chunks_words;
 698   size_t _allocated_chunks_count;
 699 
 700   // Free lists of blocks are per SpaceManager since they
 701   // are assumed to be in chunks in use by the SpaceManager
 702   // and all chunks in use by a SpaceManager are freed when
 703   // the class loader using the SpaceManager is collected.
 704   BlockFreelist* _block_freelists;
 705 
 706   // protects virtualspace and chunk expansions
 707   static const char*  _expand_lock_name;
 708   static const int    _expand_lock_rank;
 709   static Mutex* const _expand_lock;
 710 
 711  private:
 712   // Accessors
 713   Metachunk* chunks_in_use(ChunkIndex index) const { return _chunks_in_use[index]; }
 714   void set_chunks_in_use(ChunkIndex index, Metachunk* v) {
 715     _chunks_in_use[index] = v;
 716   }
 717 
 718   BlockFreelist* block_freelists() const { return _block_freelists; }
 719 
 720   Metaspace::MetadataType mdtype() { return _mdtype; }
 721 
 722   VirtualSpaceList* vs_list()   const { return Metaspace::get_space_list(_mdtype); }
 723   ChunkManager* chunk_manager() const { return Metaspace::get_chunk_manager(_mdtype); }
 724 
 725   Metachunk* current_chunk() const { return _current_chunk; }
 726   void set_current_chunk(Metachunk* v) {
 727     _current_chunk = v;
 728   }
 729 
 730   Metachunk* find_current_chunk(size_t word_size);
 731 
 732   // Add chunk to the list of chunks in use
 733   void add_chunk(Metachunk* v, bool make_current);
 734   void retire_current_chunk();
 735 
 736   Mutex* lock() const { return _lock; }
 737 
 738   const char* chunk_size_name(ChunkIndex index) const;
 739 
 740  protected:
 741   void initialize();
 742 
 743  public:
 744   SpaceManager(Metaspace::MetadataType mdtype,
 745                Mutex* lock);
 746   ~SpaceManager();
 747 
 748   enum ChunkMultiples {
 749     MediumChunkMultiple = 4
 750   };
 751 
 752   bool is_class() { return _mdtype == Metaspace::ClassType; }
 753 
 754   // Accessors
 755   size_t specialized_chunk_size() { return (size_t) is_class() ? ClassSpecializedChunk : SpecializedChunk; }
 756   size_t small_chunk_size()       { return (size_t) is_class() ? ClassSmallChunk : SmallChunk; }
 757   size_t medium_chunk_size()      { return (size_t) is_class() ? ClassMediumChunk : MediumChunk; }
 758   size_t medium_chunk_bunch()     { return medium_chunk_size() * MediumChunkMultiple; }
 759 
 760   size_t smallest_chunk_size()  { return specialized_chunk_size(); }
 761 
 762   size_t allocated_blocks_words() const { return _allocated_blocks_words; }
 763   size_t allocated_blocks_bytes() const { return _allocated_blocks_words * BytesPerWord; }
 764   size_t allocated_chunks_words() const { return _allocated_chunks_words; }
 765   size_t allocated_chunks_bytes() const { return _allocated_chunks_words * BytesPerWord; }
 766   size_t allocated_chunks_count() const { return _allocated_chunks_count; }
 767 
 768   bool is_humongous(size_t word_size) { return word_size > medium_chunk_size(); }
 769 
 770   static Mutex* expand_lock() { return _expand_lock; }
 771 
 772   // Increment the per Metaspace and global running sums for Metachunks
 773   // by the given size.  This is used when a Metachunk to added to
 774   // the in-use list.
 775   void inc_size_metrics(size_t words);
 776   // Increment the per Metaspace and global running sums Metablocks by the given
 777   // size.  This is used when a Metablock is allocated.
 778   void inc_used_metrics(size_t words);
 779   // Delete the portion of the running sums for this SpaceManager. That is,
 780   // the globals running sums for the Metachunks and Metablocks are
 781   // decremented for all the Metachunks in-use by this SpaceManager.
 782   void dec_total_from_size_metrics();
 783 
 784   // Set the sizes for the initial chunks.
 785   void get_initial_chunk_sizes(Metaspace::MetaspaceType type,
 786                                size_t* chunk_word_size,
 787                                size_t* class_chunk_word_size);
 788 
 789   size_t sum_capacity_in_chunks_in_use() const;
 790   size_t sum_used_in_chunks_in_use() const;
 791   size_t sum_free_in_chunks_in_use() const;
 792   size_t sum_waste_in_chunks_in_use() const;
 793   size_t sum_waste_in_chunks_in_use(ChunkIndex index ) const;
 794 
 795   size_t sum_count_in_chunks_in_use();
 796   size_t sum_count_in_chunks_in_use(ChunkIndex i);
 797 
 798   Metachunk* get_new_chunk(size_t word_size, size_t grow_chunks_by_words);
 799 
 800   // Block allocation and deallocation.
 801   // Allocates a block from the current chunk
 802   MetaWord* allocate(size_t word_size);
 803   // Allocates a block from a small chunk
 804   MetaWord* get_small_chunk_and_allocate(size_t word_size);
 805 
 806   // Helper for allocations
 807   MetaWord* allocate_work(size_t word_size);
 808 
 809   // Returns a block to the per manager freelist
 810   void deallocate(MetaWord* p, size_t word_size);
 811 
 812   // Based on the allocation size and a minimum chunk size,
 813   // returned chunk size (for expanding space for chunk allocation).
 814   size_t calc_chunk_size(size_t allocation_word_size);
 815 
 816   // Called when an allocation from the current chunk fails.
 817   // Gets a new chunk (may require getting a new virtual space),
 818   // and allocates from that chunk.
 819   MetaWord* grow_and_allocate(size_t word_size);
 820 
 821   // Notify memory usage to MemoryService.
 822   void track_metaspace_memory_usage();
 823 
 824   // debugging support.
 825 
 826   void dump(outputStream* const out) const;
 827   void print_on(outputStream* st) const;
 828   void locked_print_chunks_in_use_on(outputStream* st) const;
 829 
 830   void verify();
 831   void verify_chunk_size(Metachunk* chunk);
 832 #ifdef ASSERT
 833   void verify_allocated_blocks_words();
 834 #endif
 835 
 836   // This adjusts the size given to be greater than the minimum allocation size in
 837   // words for data in metaspace.  Esentially the minimum size is currently 3 words.
 838   size_t get_allocation_word_size(size_t word_size) {
 839     size_t byte_size = word_size * BytesPerWord;
 840 
 841     size_t raw_bytes_size = MAX2(byte_size, sizeof(Metablock));
 842     raw_bytes_size = align_size_up(raw_bytes_size, Metachunk::object_alignment());
 843 
 844     size_t raw_word_size = raw_bytes_size / BytesPerWord;
 845     assert(raw_word_size * BytesPerWord == raw_bytes_size, "Size problem");
 846 
 847     return raw_word_size;
 848   }
 849 };
 850 
 851 uint const SpaceManager::_small_chunk_limit = 4;
 852 
 853 const char* SpaceManager::_expand_lock_name =
 854   "SpaceManager chunk allocation lock";
 855 const int SpaceManager::_expand_lock_rank = Monitor::leaf - 1;
 856 Mutex* const SpaceManager::_expand_lock =
 857   new Mutex(SpaceManager::_expand_lock_rank,
 858             SpaceManager::_expand_lock_name,
 859             Mutex::_allow_vm_block_flag,
 860             Monitor::_safepoint_check_never);
 861 
 862 void VirtualSpaceNode::inc_container_count() {
 863   assert_lock_strong(SpaceManager::expand_lock());
 864   _container_count++;
 865 }
 866 
 867 void VirtualSpaceNode::dec_container_count() {
 868   assert_lock_strong(SpaceManager::expand_lock());
 869   _container_count--;
 870 }
 871 
 872 #ifdef ASSERT
 873 void VirtualSpaceNode::verify_container_count() {
 874   assert(_container_count == container_count_slow(),
 875          "Inconsistency in container_count _container_count " UINTX_FORMAT
 876          " container_count_slow() " UINTX_FORMAT, _container_count, container_count_slow());
 877 }
 878 #endif
 879 
 880 // BlockFreelist methods
 881 
 882 BlockFreelist::BlockFreelist() : _dictionary(new BlockTreeDictionary()), _small_blocks(NULL) {}
 883 
 884 BlockFreelist::~BlockFreelist() {
 885   delete _dictionary;
 886   if (_small_blocks != NULL) {
 887     delete _small_blocks;
 888   }
 889 }
 890 
 891 void BlockFreelist::return_block(MetaWord* p, size_t word_size) {
 892   assert(word_size >= SmallBlocks::small_block_min_size(), "never return dark matter");
 893 
 894   Metablock* free_chunk = ::new (p) Metablock(word_size);
 895   if (word_size < SmallBlocks::small_block_max_size()) {
 896     small_blocks()->return_block(free_chunk, word_size);
 897   } else {
 898   dictionary()->return_chunk(free_chunk);
 899 }
 900   log_trace(gc, metaspace, freelist, blocks)("returning block at " INTPTR_FORMAT " size = "
 901             SIZE_FORMAT, p2i(free_chunk), word_size);
 902 }
 903 
 904 MetaWord* BlockFreelist::get_block(size_t word_size) {
 905   assert(word_size >= SmallBlocks::small_block_min_size(), "never get dark matter");
 906 
 907   // Try small_blocks first.
 908   if (word_size < SmallBlocks::small_block_max_size()) {
 909     // Don't create small_blocks() until needed.  small_blocks() allocates the small block list for
 910     // this space manager.
 911     MetaWord* new_block = (MetaWord*) small_blocks()->get_block(word_size);
 912     if (new_block != NULL) {
 913       log_trace(gc, metaspace, freelist, blocks)("getting block at " INTPTR_FORMAT " size = " SIZE_FORMAT,
 914               p2i(new_block), word_size);
 915       return new_block;
 916     }
 917   }
 918 
 919   if (word_size < BlockFreelist::min_dictionary_size()) {
 920     // If allocation in small blocks fails, this is Dark Matter.  Too small for dictionary.
 921     return NULL;
 922   }
 923 
 924   Metablock* free_block =
 925     dictionary()->get_chunk(word_size, FreeBlockDictionary<Metablock>::atLeast);
 926   if (free_block == NULL) {
 927     return NULL;
 928   }
 929 
 930   const size_t block_size = free_block->size();
 931   if (block_size > WasteMultiplier * word_size) {
 932     return_block((MetaWord*)free_block, block_size);
 933     return NULL;
 934   }
 935 
 936   MetaWord* new_block = (MetaWord*)free_block;
 937   assert(block_size >= word_size, "Incorrect size of block from freelist");
 938   const size_t unused = block_size - word_size;
 939   if (unused >= SmallBlocks::small_block_min_size()) {
 940     return_block(new_block + word_size, unused);
 941   }
 942 
 943   log_trace(gc, metaspace, freelist, blocks)("getting block at " INTPTR_FORMAT " size = " SIZE_FORMAT,
 944             p2i(new_block), word_size);
 945   return new_block;
 946 }
 947 
 948 void BlockFreelist::print_on(outputStream* st) const {
 949   dictionary()->print_free_lists(st);
 950   if (_small_blocks != NULL) {
 951     _small_blocks->print_on(st);
 952   }
 953 }
 954 
 955 // VirtualSpaceNode methods
 956 
 957 VirtualSpaceNode::~VirtualSpaceNode() {
 958   _rs.release();
 959 #ifdef ASSERT
 960   size_t word_size = sizeof(*this) / BytesPerWord;
 961   Copy::fill_to_words((HeapWord*) this, word_size, 0xf1f1f1f1);
 962 #endif
 963 }
 964 
 965 size_t VirtualSpaceNode::used_words_in_vs() const {
 966   return pointer_delta(top(), bottom(), sizeof(MetaWord));
 967 }
 968 
 969 // Space committed in the VirtualSpace
 970 size_t VirtualSpaceNode::capacity_words_in_vs() const {
 971   return pointer_delta(end(), bottom(), sizeof(MetaWord));
 972 }
 973 
 974 size_t VirtualSpaceNode::free_words_in_vs() const {
 975   return pointer_delta(end(), top(), sizeof(MetaWord));
 976 }
 977 
 978 // Allocates the chunk from the virtual space only.
 979 // This interface is also used internally for debugging.  Not all
 980 // chunks removed here are necessarily used for allocation.
 981 Metachunk* VirtualSpaceNode::take_from_committed(size_t chunk_word_size) {
 982   // Bottom of the new chunk
 983   MetaWord* chunk_limit = top();
 984   assert(chunk_limit != NULL, "Not safe to call this method");
 985 
 986   // The virtual spaces are always expanded by the
 987   // commit granularity to enforce the following condition.
 988   // Without this the is_available check will not work correctly.
 989   assert(_virtual_space.committed_size() == _virtual_space.actual_committed_size(),
 990       "The committed memory doesn't match the expanded memory.");
 991 
 992   if (!is_available(chunk_word_size)) {
 993     Log(gc, metaspace, freelist) log;
 994     log.debug("VirtualSpaceNode::take_from_committed() not available " SIZE_FORMAT " words ", chunk_word_size);
 995     // Dump some information about the virtual space that is nearly full
 996     ResourceMark rm;
 997     print_on(log.debug_stream());
 998     return NULL;
 999   }
1000 
1001   // Take the space  (bump top on the current virtual space).
1002   inc_top(chunk_word_size);
1003 
1004   // Initialize the chunk
1005   Metachunk* result = ::new (chunk_limit) Metachunk(chunk_word_size, this);
1006   return result;
1007 }
1008 
1009 
1010 // Expand the virtual space (commit more of the reserved space)
1011 bool VirtualSpaceNode::expand_by(size_t min_words, size_t preferred_words) {
1012   size_t min_bytes = min_words * BytesPerWord;
1013   size_t preferred_bytes = preferred_words * BytesPerWord;
1014 
1015   size_t uncommitted = virtual_space()->reserved_size() - virtual_space()->actual_committed_size();
1016 
1017   if (uncommitted < min_bytes) {
1018     return false;
1019   }
1020 
1021   size_t commit = MIN2(preferred_bytes, uncommitted);
1022   bool result = virtual_space()->expand_by(commit, false);
1023 
1024   assert(result, "Failed to commit memory");
1025 
1026   return result;
1027 }
1028 
1029 Metachunk* VirtualSpaceNode::get_chunk_vs(size_t chunk_word_size) {
1030   assert_lock_strong(SpaceManager::expand_lock());
1031   Metachunk* result = take_from_committed(chunk_word_size);
1032   if (result != NULL) {
1033     inc_container_count();
1034   }
1035   return result;
1036 }
1037 
1038 bool VirtualSpaceNode::initialize() {
1039 
1040   if (!_rs.is_reserved()) {
1041     return false;
1042   }
1043 
1044   // These are necessary restriction to make sure that the virtual space always
1045   // grows in steps of Metaspace::commit_alignment(). If both base and size are
1046   // aligned only the middle alignment of the VirtualSpace is used.
1047   assert_is_ptr_aligned(_rs.base(), Metaspace::commit_alignment());
1048   assert_is_size_aligned(_rs.size(), Metaspace::commit_alignment());
1049 
1050   // ReservedSpaces marked as special will have the entire memory
1051   // pre-committed. Setting a committed size will make sure that
1052   // committed_size and actual_committed_size agrees.
1053   size_t pre_committed_size = _rs.special() ? _rs.size() : 0;
1054 
1055   bool result = virtual_space()->initialize_with_granularity(_rs, pre_committed_size,
1056                                             Metaspace::commit_alignment());
1057   if (result) {
1058     assert(virtual_space()->committed_size() == virtual_space()->actual_committed_size(),
1059         "Checking that the pre-committed memory was registered by the VirtualSpace");
1060 
1061     set_top((MetaWord*)virtual_space()->low());
1062     set_reserved(MemRegion((HeapWord*)_rs.base(),
1063                  (HeapWord*)(_rs.base() + _rs.size())));
1064 
1065     assert(reserved()->start() == (HeapWord*) _rs.base(),
1066            "Reserved start was not set properly " PTR_FORMAT
1067            " != " PTR_FORMAT, p2i(reserved()->start()), p2i(_rs.base()));
1068     assert(reserved()->word_size() == _rs.size() / BytesPerWord,
1069            "Reserved size was not set properly " SIZE_FORMAT
1070            " != " SIZE_FORMAT, reserved()->word_size(),
1071            _rs.size() / BytesPerWord);
1072   }
1073 
1074   return result;
1075 }
1076 
1077 void VirtualSpaceNode::print_on(outputStream* st) const {
1078   size_t used = used_words_in_vs();
1079   size_t capacity = capacity_words_in_vs();
1080   VirtualSpace* vs = virtual_space();
1081   st->print_cr("   space @ " PTR_FORMAT " " SIZE_FORMAT "K, " SIZE_FORMAT_W(3) "%% used "
1082            "[" PTR_FORMAT ", " PTR_FORMAT ", "
1083            PTR_FORMAT ", " PTR_FORMAT ")",
1084            p2i(vs), capacity / K,
1085            capacity == 0 ? 0 : used * 100 / capacity,
1086            p2i(bottom()), p2i(top()), p2i(end()),
1087            p2i(vs->high_boundary()));
1088 }
1089 
1090 #ifdef ASSERT
1091 void VirtualSpaceNode::mangle() {
1092   size_t word_size = capacity_words_in_vs();
1093   Copy::fill_to_words((HeapWord*) low(), word_size, 0xf1f1f1f1);
1094 }
1095 #endif // ASSERT
1096 
1097 // VirtualSpaceList methods
1098 // Space allocated from the VirtualSpace
1099 
1100 VirtualSpaceList::~VirtualSpaceList() {
1101   VirtualSpaceListIterator iter(virtual_space_list());
1102   while (iter.repeat()) {
1103     VirtualSpaceNode* vsl = iter.get_next();
1104     delete vsl;
1105   }
1106 }
1107 
1108 void VirtualSpaceList::inc_reserved_words(size_t v) {
1109   assert_lock_strong(SpaceManager::expand_lock());
1110   _reserved_words = _reserved_words + v;
1111 }
1112 void VirtualSpaceList::dec_reserved_words(size_t v) {
1113   assert_lock_strong(SpaceManager::expand_lock());
1114   _reserved_words = _reserved_words - v;
1115 }
1116 
1117 #define assert_committed_below_limit()                        \
1118   assert(MetaspaceAux::committed_bytes() <= MaxMetaspaceSize, \
1119          "Too much committed memory. Committed: " SIZE_FORMAT \
1120          " limit (MaxMetaspaceSize): " SIZE_FORMAT,           \
1121          MetaspaceAux::committed_bytes(), MaxMetaspaceSize);
1122 
1123 void VirtualSpaceList::inc_committed_words(size_t v) {
1124   assert_lock_strong(SpaceManager::expand_lock());
1125   _committed_words = _committed_words + v;
1126 
1127   assert_committed_below_limit();
1128 }
1129 void VirtualSpaceList::dec_committed_words(size_t v) {
1130   assert_lock_strong(SpaceManager::expand_lock());
1131   _committed_words = _committed_words - v;
1132 
1133   assert_committed_below_limit();
1134 }
1135 
1136 void VirtualSpaceList::inc_virtual_space_count() {
1137   assert_lock_strong(SpaceManager::expand_lock());
1138   _virtual_space_count++;
1139 }
1140 void VirtualSpaceList::dec_virtual_space_count() {
1141   assert_lock_strong(SpaceManager::expand_lock());
1142   _virtual_space_count--;
1143 }
1144 
1145 void ChunkManager::remove_chunk(Metachunk* chunk) {
1146   size_t word_size = chunk->word_size();
1147   ChunkIndex index = list_index(word_size);
1148   if (index != HumongousIndex) {
1149     free_chunks(index)->remove_chunk(chunk);
1150   } else {
1151     humongous_dictionary()->remove_chunk(chunk);
1152   }
1153 
1154   // Chunk is being removed from the chunks free list.
1155   dec_free_chunks_total(chunk->word_size());
1156 }
1157 
1158 // Walk the list of VirtualSpaceNodes and delete
1159 // nodes with a 0 container_count.  Remove Metachunks in
1160 // the node from their respective freelists.
1161 void VirtualSpaceList::purge(ChunkManager* chunk_manager) {
1162   assert(SafepointSynchronize::is_at_safepoint(), "must be called at safepoint for contains to work");
1163   assert_lock_strong(SpaceManager::expand_lock());
1164   // Don't use a VirtualSpaceListIterator because this
1165   // list is being changed and a straightforward use of an iterator is not safe.
1166   VirtualSpaceNode* purged_vsl = NULL;
1167   VirtualSpaceNode* prev_vsl = virtual_space_list();
1168   VirtualSpaceNode* next_vsl = prev_vsl;
1169   while (next_vsl != NULL) {
1170     VirtualSpaceNode* vsl = next_vsl;
1171     DEBUG_ONLY(vsl->verify_container_count();)
1172     next_vsl = vsl->next();
1173     // Don't free the current virtual space since it will likely
1174     // be needed soon.
1175     if (vsl->container_count() == 0 && vsl != current_virtual_space()) {
1176       // Unlink it from the list
1177       if (prev_vsl == vsl) {
1178         // This is the case of the current node being the first node.
1179         assert(vsl == virtual_space_list(), "Expected to be the first node");
1180         set_virtual_space_list(vsl->next());
1181       } else {
1182         prev_vsl->set_next(vsl->next());
1183       }
1184 
1185       vsl->purge(chunk_manager);
1186       dec_reserved_words(vsl->reserved_words());
1187       dec_committed_words(vsl->committed_words());
1188       dec_virtual_space_count();
1189       purged_vsl = vsl;
1190       delete vsl;
1191     } else {
1192       prev_vsl = vsl;
1193     }
1194   }
1195 #ifdef ASSERT
1196   if (purged_vsl != NULL) {
1197     // List should be stable enough to use an iterator here.
1198     VirtualSpaceListIterator iter(virtual_space_list());
1199     while (iter.repeat()) {
1200       VirtualSpaceNode* vsl = iter.get_next();
1201       assert(vsl != purged_vsl, "Purge of vsl failed");
1202     }
1203   }
1204 #endif
1205 }
1206 
1207 
1208 // This function looks at the mmap regions in the metaspace without locking.
1209 // The chunks are added with store ordering and not deleted except for at
1210 // unloading time during a safepoint.
1211 bool VirtualSpaceList::contains(const void* ptr) {
1212   // List should be stable enough to use an iterator here because removing virtual
1213   // space nodes is only allowed at a safepoint.
1214   VirtualSpaceListIterator iter(virtual_space_list());
1215   while (iter.repeat()) {
1216     VirtualSpaceNode* vsn = iter.get_next();
1217     if (vsn->contains(ptr)) {
1218       return true;
1219     }
1220   }
1221   return false;
1222 }
1223 
1224 void VirtualSpaceList::retire_current_virtual_space() {
1225   assert_lock_strong(SpaceManager::expand_lock());
1226 
1227   VirtualSpaceNode* vsn = current_virtual_space();
1228 
1229   ChunkManager* cm = is_class() ? Metaspace::chunk_manager_class() :
1230                                   Metaspace::chunk_manager_metadata();
1231 
1232   vsn->retire(cm);
1233 }
1234 
1235 void VirtualSpaceNode::retire(ChunkManager* chunk_manager) {
1236   DEBUG_ONLY(verify_container_count();)
1237   for (int i = (int)MediumIndex; i >= (int)ZeroIndex; --i) {
1238     ChunkIndex index = (ChunkIndex)i;
1239     size_t chunk_size = chunk_manager->free_chunks(index)->size();
1240 
1241     while (free_words_in_vs() >= chunk_size) {
1242       Metachunk* chunk = get_chunk_vs(chunk_size);
1243       assert(chunk != NULL, "allocation should have been successful");
1244 
1245       chunk_manager->return_chunks(index, chunk);
1246       chunk_manager->inc_free_chunks_total(chunk_size);
1247     }
1248     DEBUG_ONLY(verify_container_count();)
1249   }
1250   assert(free_words_in_vs() == 0, "should be empty now");
1251 }
1252 
1253 VirtualSpaceList::VirtualSpaceList(size_t word_size) :
1254                                    _is_class(false),
1255                                    _virtual_space_list(NULL),
1256                                    _current_virtual_space(NULL),
1257                                    _reserved_words(0),
1258                                    _committed_words(0),
1259                                    _virtual_space_count(0) {
1260   MutexLockerEx cl(SpaceManager::expand_lock(),
1261                    Mutex::_no_safepoint_check_flag);
1262   create_new_virtual_space(word_size);
1263 }
1264 
1265 VirtualSpaceList::VirtualSpaceList(ReservedSpace rs) :
1266                                    _is_class(true),
1267                                    _virtual_space_list(NULL),
1268                                    _current_virtual_space(NULL),
1269                                    _reserved_words(0),
1270                                    _committed_words(0),
1271                                    _virtual_space_count(0) {
1272   MutexLockerEx cl(SpaceManager::expand_lock(),
1273                    Mutex::_no_safepoint_check_flag);
1274   VirtualSpaceNode* class_entry = new VirtualSpaceNode(rs);
1275   bool succeeded = class_entry->initialize();
1276   if (succeeded) {
1277     link_vs(class_entry);
1278   }
1279 }
1280 
1281 size_t VirtualSpaceList::free_bytes() {
1282   return virtual_space_list()->free_words_in_vs() * BytesPerWord;
1283 }
1284 
1285 // Allocate another meta virtual space and add it to the list.
1286 bool VirtualSpaceList::create_new_virtual_space(size_t vs_word_size) {
1287   assert_lock_strong(SpaceManager::expand_lock());
1288 
1289   if (is_class()) {
1290     assert(false, "We currently don't support more than one VirtualSpace for"
1291                   " the compressed class space. The initialization of the"
1292                   " CCS uses another code path and should not hit this path.");
1293     return false;
1294   }
1295 
1296   if (vs_word_size == 0) {
1297     assert(false, "vs_word_size should always be at least _reserve_alignment large.");
1298     return false;
1299   }
1300 
1301   // Reserve the space
1302   size_t vs_byte_size = vs_word_size * BytesPerWord;
1303   assert_is_size_aligned(vs_byte_size, Metaspace::reserve_alignment());
1304 
1305   // Allocate the meta virtual space and initialize it.
1306   VirtualSpaceNode* new_entry = new VirtualSpaceNode(vs_byte_size);
1307   if (!new_entry->initialize()) {
1308     delete new_entry;
1309     return false;
1310   } else {
1311     assert(new_entry->reserved_words() == vs_word_size,
1312         "Reserved memory size differs from requested memory size");
1313     // ensure lock-free iteration sees fully initialized node
1314     OrderAccess::storestore();
1315     link_vs(new_entry);
1316     return true;
1317   }
1318 }
1319 
1320 void VirtualSpaceList::link_vs(VirtualSpaceNode* new_entry) {
1321   if (virtual_space_list() == NULL) {
1322       set_virtual_space_list(new_entry);
1323   } else {
1324     current_virtual_space()->set_next(new_entry);
1325   }
1326   set_current_virtual_space(new_entry);
1327   inc_reserved_words(new_entry->reserved_words());
1328   inc_committed_words(new_entry->committed_words());
1329   inc_virtual_space_count();
1330 #ifdef ASSERT
1331   new_entry->mangle();
1332 #endif
1333   if (log_is_enabled(Trace, gc, metaspace)) {
1334     Log(gc, metaspace) log;
1335     VirtualSpaceNode* vsl = current_virtual_space();
1336     ResourceMark rm;
1337     vsl->print_on(log.trace_stream());
1338   }
1339 }
1340 
1341 bool VirtualSpaceList::expand_node_by(VirtualSpaceNode* node,
1342                                       size_t min_words,
1343                                       size_t preferred_words) {
1344   size_t before = node->committed_words();
1345 
1346   bool result = node->expand_by(min_words, preferred_words);
1347 
1348   size_t after = node->committed_words();
1349 
1350   // after and before can be the same if the memory was pre-committed.
1351   assert(after >= before, "Inconsistency");
1352   inc_committed_words(after - before);
1353 
1354   return result;
1355 }
1356 
1357 bool VirtualSpaceList::expand_by(size_t min_words, size_t preferred_words) {
1358   assert_is_size_aligned(min_words,       Metaspace::commit_alignment_words());
1359   assert_is_size_aligned(preferred_words, Metaspace::commit_alignment_words());
1360   assert(min_words <= preferred_words, "Invalid arguments");
1361 
1362   if (!MetaspaceGC::can_expand(min_words, this->is_class())) {
1363     return  false;
1364   }
1365 
1366   size_t allowed_expansion_words = MetaspaceGC::allowed_expansion();
1367   if (allowed_expansion_words < min_words) {
1368     return false;
1369   }
1370 
1371   size_t max_expansion_words = MIN2(preferred_words, allowed_expansion_words);
1372 
1373   // Commit more memory from the the current virtual space.
1374   bool vs_expanded = expand_node_by(current_virtual_space(),
1375                                     min_words,
1376                                     max_expansion_words);
1377   if (vs_expanded) {
1378     return true;
1379   }
1380   retire_current_virtual_space();
1381 
1382   // Get another virtual space.
1383   size_t grow_vs_words = MAX2((size_t)VirtualSpaceSize, preferred_words);
1384   grow_vs_words = align_size_up(grow_vs_words, Metaspace::reserve_alignment_words());
1385 
1386   if (create_new_virtual_space(grow_vs_words)) {
1387     if (current_virtual_space()->is_pre_committed()) {
1388       // The memory was pre-committed, so we are done here.
1389       assert(min_words <= current_virtual_space()->committed_words(),
1390           "The new VirtualSpace was pre-committed, so it"
1391           "should be large enough to fit the alloc request.");
1392       return true;
1393     }
1394 
1395     return expand_node_by(current_virtual_space(),
1396                           min_words,
1397                           max_expansion_words);
1398   }
1399 
1400   return false;
1401 }
1402 
1403 Metachunk* VirtualSpaceList::get_new_chunk(size_t word_size,
1404                                            size_t grow_chunks_by_words,
1405                                            size_t medium_chunk_bunch) {
1406 
1407   // Allocate a chunk out of the current virtual space.
1408   Metachunk* next = current_virtual_space()->get_chunk_vs(grow_chunks_by_words);
1409 
1410   if (next != NULL) {
1411     return next;
1412   }
1413 
1414   // The expand amount is currently only determined by the requested sizes
1415   // and not how much committed memory is left in the current virtual space.
1416 
1417   size_t min_word_size       = align_size_up(grow_chunks_by_words, Metaspace::commit_alignment_words());
1418   size_t preferred_word_size = align_size_up(medium_chunk_bunch,   Metaspace::commit_alignment_words());
1419   if (min_word_size >= preferred_word_size) {
1420     // Can happen when humongous chunks are allocated.
1421     preferred_word_size = min_word_size;
1422   }
1423 
1424   bool expanded = expand_by(min_word_size, preferred_word_size);
1425   if (expanded) {
1426     next = current_virtual_space()->get_chunk_vs(grow_chunks_by_words);
1427     assert(next != NULL, "The allocation was expected to succeed after the expansion");
1428   }
1429 
1430    return next;
1431 }
1432 
1433 void VirtualSpaceList::print_on(outputStream* st) const {
1434   VirtualSpaceListIterator iter(virtual_space_list());
1435   while (iter.repeat()) {
1436     VirtualSpaceNode* node = iter.get_next();
1437     node->print_on(st);
1438   }
1439 }
1440 
1441 // MetaspaceGC methods
1442 
1443 // VM_CollectForMetadataAllocation is the vm operation used to GC.
1444 // Within the VM operation after the GC the attempt to allocate the metadata
1445 // should succeed.  If the GC did not free enough space for the metaspace
1446 // allocation, the HWM is increased so that another virtualspace will be
1447 // allocated for the metadata.  With perm gen the increase in the perm
1448 // gen had bounds, MinMetaspaceExpansion and MaxMetaspaceExpansion.  The
1449 // metaspace policy uses those as the small and large steps for the HWM.
1450 //
1451 // After the GC the compute_new_size() for MetaspaceGC is called to
1452 // resize the capacity of the metaspaces.  The current implementation
1453 // is based on the flags MinMetaspaceFreeRatio and MaxMetaspaceFreeRatio used
1454 // to resize the Java heap by some GC's.  New flags can be implemented
1455 // if really needed.  MinMetaspaceFreeRatio is used to calculate how much
1456 // free space is desirable in the metaspace capacity to decide how much
1457 // to increase the HWM.  MaxMetaspaceFreeRatio is used to decide how much
1458 // free space is desirable in the metaspace capacity before decreasing
1459 // the HWM.
1460 
1461 // Calculate the amount to increase the high water mark (HWM).
1462 // Increase by a minimum amount (MinMetaspaceExpansion) so that
1463 // another expansion is not requested too soon.  If that is not
1464 // enough to satisfy the allocation, increase by MaxMetaspaceExpansion.
1465 // If that is still not enough, expand by the size of the allocation
1466 // plus some.
1467 size_t MetaspaceGC::delta_capacity_until_GC(size_t bytes) {
1468   size_t min_delta = MinMetaspaceExpansion;
1469   size_t max_delta = MaxMetaspaceExpansion;
1470   size_t delta = align_size_up(bytes, Metaspace::commit_alignment());
1471 
1472   if (delta <= min_delta) {
1473     delta = min_delta;
1474   } else if (delta <= max_delta) {
1475     // Don't want to hit the high water mark on the next
1476     // allocation so make the delta greater than just enough
1477     // for this allocation.
1478     delta = max_delta;
1479   } else {
1480     // This allocation is large but the next ones are probably not
1481     // so increase by the minimum.
1482     delta = delta + min_delta;
1483   }
1484 
1485   assert_is_size_aligned(delta, Metaspace::commit_alignment());
1486 
1487   return delta;
1488 }
1489 
1490 size_t MetaspaceGC::capacity_until_GC() {
1491   size_t value = (size_t)OrderAccess::load_ptr_acquire(&_capacity_until_GC);
1492   assert(value >= MetaspaceSize, "Not initialized properly?");
1493   return value;
1494 }
1495 
1496 bool MetaspaceGC::inc_capacity_until_GC(size_t v, size_t* new_cap_until_GC, size_t* old_cap_until_GC) {
1497   assert_is_size_aligned(v, Metaspace::commit_alignment());
1498 
1499   size_t capacity_until_GC = (size_t) _capacity_until_GC;
1500   size_t new_value = capacity_until_GC + v;
1501 
1502   if (new_value < capacity_until_GC) {
1503     // The addition wrapped around, set new_value to aligned max value.
1504     new_value = align_size_down(max_uintx, Metaspace::commit_alignment());
1505   }
1506 
1507   intptr_t expected = (intptr_t) capacity_until_GC;
1508   intptr_t actual = Atomic::cmpxchg_ptr((intptr_t) new_value, &_capacity_until_GC, expected);
1509 
1510   if (expected != actual) {
1511     return false;
1512   }
1513 
1514   if (new_cap_until_GC != NULL) {
1515     *new_cap_until_GC = new_value;
1516   }
1517   if (old_cap_until_GC != NULL) {
1518     *old_cap_until_GC = capacity_until_GC;
1519   }
1520   return true;
1521 }
1522 
1523 size_t MetaspaceGC::dec_capacity_until_GC(size_t v) {
1524   assert_is_size_aligned(v, Metaspace::commit_alignment());
1525 
1526   return (size_t)Atomic::add_ptr(-(intptr_t)v, &_capacity_until_GC);
1527 }
1528 
1529 void MetaspaceGC::initialize() {
1530   // Set the high-water mark to MaxMetapaceSize during VM initializaton since
1531   // we can't do a GC during initialization.
1532   _capacity_until_GC = MaxMetaspaceSize;
1533 }
1534 
1535 void MetaspaceGC::post_initialize() {
1536   // Reset the high-water mark once the VM initialization is done.
1537   _capacity_until_GC = MAX2(MetaspaceAux::committed_bytes(), MetaspaceSize);
1538 }
1539 
1540 bool MetaspaceGC::can_expand(size_t word_size, bool is_class) {
1541   // Check if the compressed class space is full.
1542   if (is_class && Metaspace::using_class_space()) {
1543     size_t class_committed = MetaspaceAux::committed_bytes(Metaspace::ClassType);
1544     if (class_committed + word_size * BytesPerWord > CompressedClassSpaceSize) {
1545       return false;
1546     }
1547   }
1548 
1549   // Check if the user has imposed a limit on the metaspace memory.
1550   size_t committed_bytes = MetaspaceAux::committed_bytes();
1551   if (committed_bytes + word_size * BytesPerWord > MaxMetaspaceSize) {
1552     return false;
1553   }
1554 
1555   return true;
1556 }
1557 
1558 size_t MetaspaceGC::allowed_expansion() {
1559   size_t committed_bytes = MetaspaceAux::committed_bytes();
1560   size_t capacity_until_gc = capacity_until_GC();
1561 
1562   assert(capacity_until_gc >= committed_bytes,
1563          "capacity_until_gc: " SIZE_FORMAT " < committed_bytes: " SIZE_FORMAT,
1564          capacity_until_gc, committed_bytes);
1565 
1566   size_t left_until_max  = MaxMetaspaceSize - committed_bytes;
1567   size_t left_until_GC = capacity_until_gc - committed_bytes;
1568   size_t left_to_commit = MIN2(left_until_GC, left_until_max);
1569 
1570   return left_to_commit / BytesPerWord;
1571 }
1572 
1573 void MetaspaceGC::compute_new_size() {
1574   assert(_shrink_factor <= 100, "invalid shrink factor");
1575   uint current_shrink_factor = _shrink_factor;
1576   _shrink_factor = 0;
1577 
1578   // Using committed_bytes() for used_after_gc is an overestimation, since the
1579   // chunk free lists are included in committed_bytes() and the memory in an
1580   // un-fragmented chunk free list is available for future allocations.
1581   // However, if the chunk free lists becomes fragmented, then the memory may
1582   // not be available for future allocations and the memory is therefore "in use".
1583   // Including the chunk free lists in the definition of "in use" is therefore
1584   // necessary. Not including the chunk free lists can cause capacity_until_GC to
1585   // shrink below committed_bytes() and this has caused serious bugs in the past.
1586   const size_t used_after_gc = MetaspaceAux::committed_bytes();
1587   const size_t capacity_until_GC = MetaspaceGC::capacity_until_GC();
1588 
1589   const double minimum_free_percentage = MinMetaspaceFreeRatio / 100.0;
1590   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1591 
1592   const double min_tmp = used_after_gc / maximum_used_percentage;
1593   size_t minimum_desired_capacity =
1594     (size_t)MIN2(min_tmp, double(max_uintx));
1595   // Don't shrink less than the initial generation size
1596   minimum_desired_capacity = MAX2(minimum_desired_capacity,
1597                                   MetaspaceSize);
1598 
1599   log_trace(gc, metaspace)("MetaspaceGC::compute_new_size: ");
1600   log_trace(gc, metaspace)("    minimum_free_percentage: %6.2f  maximum_used_percentage: %6.2f",
1601                            minimum_free_percentage, maximum_used_percentage);
1602   log_trace(gc, metaspace)("     used_after_gc       : %6.1fKB", used_after_gc / (double) K);
1603 
1604 
1605   size_t shrink_bytes = 0;
1606   if (capacity_until_GC < minimum_desired_capacity) {
1607     // If we have less capacity below the metaspace HWM, then
1608     // increment the HWM.
1609     size_t expand_bytes = minimum_desired_capacity - capacity_until_GC;
1610     expand_bytes = align_size_up(expand_bytes, Metaspace::commit_alignment());
1611     // Don't expand unless it's significant
1612     if (expand_bytes >= MinMetaspaceExpansion) {
1613       size_t new_capacity_until_GC = 0;
1614       bool succeeded = MetaspaceGC::inc_capacity_until_GC(expand_bytes, &new_capacity_until_GC);
1615       assert(succeeded, "Should always succesfully increment HWM when at safepoint");
1616 
1617       Metaspace::tracer()->report_gc_threshold(capacity_until_GC,
1618                                                new_capacity_until_GC,
1619                                                MetaspaceGCThresholdUpdater::ComputeNewSize);
1620       log_trace(gc, metaspace)("    expanding:  minimum_desired_capacity: %6.1fKB  expand_bytes: %6.1fKB  MinMetaspaceExpansion: %6.1fKB  new metaspace HWM:  %6.1fKB",
1621                                minimum_desired_capacity / (double) K,
1622                                expand_bytes / (double) K,
1623                                MinMetaspaceExpansion / (double) K,
1624                                new_capacity_until_GC / (double) K);
1625     }
1626     return;
1627   }
1628 
1629   // No expansion, now see if we want to shrink
1630   // We would never want to shrink more than this
1631   assert(capacity_until_GC >= minimum_desired_capacity,
1632          SIZE_FORMAT " >= " SIZE_FORMAT,
1633          capacity_until_GC, minimum_desired_capacity);
1634   size_t max_shrink_bytes = capacity_until_GC - minimum_desired_capacity;
1635 
1636   // Should shrinking be considered?
1637   if (MaxMetaspaceFreeRatio < 100) {
1638     const double maximum_free_percentage = MaxMetaspaceFreeRatio / 100.0;
1639     const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1640     const double max_tmp = used_after_gc / minimum_used_percentage;
1641     size_t maximum_desired_capacity = (size_t)MIN2(max_tmp, double(max_uintx));
1642     maximum_desired_capacity = MAX2(maximum_desired_capacity,
1643                                     MetaspaceSize);
1644     log_trace(gc, metaspace)("    maximum_free_percentage: %6.2f  minimum_used_percentage: %6.2f",
1645                              maximum_free_percentage, minimum_used_percentage);
1646     log_trace(gc, metaspace)("    minimum_desired_capacity: %6.1fKB  maximum_desired_capacity: %6.1fKB",
1647                              minimum_desired_capacity / (double) K, maximum_desired_capacity / (double) K);
1648 
1649     assert(minimum_desired_capacity <= maximum_desired_capacity,
1650            "sanity check");
1651 
1652     if (capacity_until_GC > maximum_desired_capacity) {
1653       // Capacity too large, compute shrinking size
1654       shrink_bytes = capacity_until_GC - maximum_desired_capacity;
1655       // We don't want shrink all the way back to initSize if people call
1656       // System.gc(), because some programs do that between "phases" and then
1657       // we'd just have to grow the heap up again for the next phase.  So we
1658       // damp the shrinking: 0% on the first call, 10% on the second call, 40%
1659       // on the third call, and 100% by the fourth call.  But if we recompute
1660       // size without shrinking, it goes back to 0%.
1661       shrink_bytes = shrink_bytes / 100 * current_shrink_factor;
1662 
1663       shrink_bytes = align_size_down(shrink_bytes, Metaspace::commit_alignment());
1664 
1665       assert(shrink_bytes <= max_shrink_bytes,
1666              "invalid shrink size " SIZE_FORMAT " not <= " SIZE_FORMAT,
1667              shrink_bytes, max_shrink_bytes);
1668       if (current_shrink_factor == 0) {
1669         _shrink_factor = 10;
1670       } else {
1671         _shrink_factor = MIN2(current_shrink_factor * 4, (uint) 100);
1672       }
1673       log_trace(gc, metaspace)("    shrinking:  initThreshold: %.1fK  maximum_desired_capacity: %.1fK",
1674                                MetaspaceSize / (double) K, maximum_desired_capacity / (double) K);
1675       log_trace(gc, metaspace)("    shrink_bytes: %.1fK  current_shrink_factor: %d  new shrink factor: %d  MinMetaspaceExpansion: %.1fK",
1676                                shrink_bytes / (double) K, current_shrink_factor, _shrink_factor, MinMetaspaceExpansion / (double) K);
1677     }
1678   }
1679 
1680   // Don't shrink unless it's significant
1681   if (shrink_bytes >= MinMetaspaceExpansion &&
1682       ((capacity_until_GC - shrink_bytes) >= MetaspaceSize)) {
1683     size_t new_capacity_until_GC = MetaspaceGC::dec_capacity_until_GC(shrink_bytes);
1684     Metaspace::tracer()->report_gc_threshold(capacity_until_GC,
1685                                              new_capacity_until_GC,
1686                                              MetaspaceGCThresholdUpdater::ComputeNewSize);
1687   }
1688 }
1689 
1690 // Metadebug methods
1691 
1692 void Metadebug::init_allocation_fail_alot_count() {
1693   if (MetadataAllocationFailALot) {
1694     _allocation_fail_alot_count =
1695       1+(long)((double)MetadataAllocationFailALotInterval*os::random()/(max_jint+1.0));
1696   }
1697 }
1698 
1699 #ifdef ASSERT
1700 bool Metadebug::test_metadata_failure() {
1701   if (MetadataAllocationFailALot &&
1702       Threads::is_vm_complete()) {
1703     if (_allocation_fail_alot_count > 0) {
1704       _allocation_fail_alot_count--;
1705     } else {
1706       log_trace(gc, metaspace, freelist)("Metadata allocation failing for MetadataAllocationFailALot");
1707       init_allocation_fail_alot_count();
1708       return true;
1709     }
1710   }
1711   return false;
1712 }
1713 #endif
1714 
1715 // ChunkManager methods
1716 
1717 size_t ChunkManager::free_chunks_total_words() {
1718   return _free_chunks_total;
1719 }
1720 
1721 size_t ChunkManager::free_chunks_total_bytes() {
1722   return free_chunks_total_words() * BytesPerWord;
1723 }
1724 
1725 size_t ChunkManager::free_chunks_count() {
1726 #ifdef ASSERT
1727   if (!UseConcMarkSweepGC && !SpaceManager::expand_lock()->is_locked()) {
1728     MutexLockerEx cl(SpaceManager::expand_lock(),
1729                      Mutex::_no_safepoint_check_flag);
1730     // This lock is only needed in debug because the verification
1731     // of the _free_chunks_totals walks the list of free chunks
1732     slow_locked_verify_free_chunks_count();
1733   }
1734 #endif
1735   return _free_chunks_count;
1736 }
1737 
1738 void ChunkManager::locked_verify_free_chunks_total() {
1739   assert_lock_strong(SpaceManager::expand_lock());
1740   assert(sum_free_chunks() == _free_chunks_total,
1741          "_free_chunks_total " SIZE_FORMAT " is not the"
1742          " same as sum " SIZE_FORMAT, _free_chunks_total,
1743          sum_free_chunks());
1744 }
1745 
1746 void ChunkManager::verify_free_chunks_total() {
1747   MutexLockerEx cl(SpaceManager::expand_lock(),
1748                      Mutex::_no_safepoint_check_flag);
1749   locked_verify_free_chunks_total();
1750 }
1751 
1752 void ChunkManager::locked_verify_free_chunks_count() {
1753   assert_lock_strong(SpaceManager::expand_lock());
1754   assert(sum_free_chunks_count() == _free_chunks_count,
1755          "_free_chunks_count " SIZE_FORMAT " is not the"
1756          " same as sum " SIZE_FORMAT, _free_chunks_count,
1757          sum_free_chunks_count());
1758 }
1759 
1760 void ChunkManager::verify_free_chunks_count() {
1761 #ifdef ASSERT
1762   MutexLockerEx cl(SpaceManager::expand_lock(),
1763                      Mutex::_no_safepoint_check_flag);
1764   locked_verify_free_chunks_count();
1765 #endif
1766 }
1767 
1768 void ChunkManager::verify() {
1769   MutexLockerEx cl(SpaceManager::expand_lock(),
1770                      Mutex::_no_safepoint_check_flag);
1771   locked_verify();
1772 }
1773 
1774 void ChunkManager::locked_verify() {
1775   locked_verify_free_chunks_count();
1776   locked_verify_free_chunks_total();
1777 }
1778 
1779 void ChunkManager::locked_print_free_chunks(outputStream* st) {
1780   assert_lock_strong(SpaceManager::expand_lock());
1781   st->print_cr("Free chunk total " SIZE_FORMAT "  count " SIZE_FORMAT,
1782                 _free_chunks_total, _free_chunks_count);
1783 }
1784 
1785 void ChunkManager::locked_print_sum_free_chunks(outputStream* st) {
1786   assert_lock_strong(SpaceManager::expand_lock());
1787   st->print_cr("Sum free chunk total " SIZE_FORMAT "  count " SIZE_FORMAT,
1788                 sum_free_chunks(), sum_free_chunks_count());
1789 }
1790 ChunkList* ChunkManager::free_chunks(ChunkIndex index) {
1791   return &_free_chunks[index];
1792 }
1793 
1794 // These methods that sum the free chunk lists are used in printing
1795 // methods that are used in product builds.
1796 size_t ChunkManager::sum_free_chunks() {
1797   assert_lock_strong(SpaceManager::expand_lock());
1798   size_t result = 0;
1799   for (ChunkIndex i = ZeroIndex; i < NumberOfFreeLists; i = next_chunk_index(i)) {
1800     ChunkList* list = free_chunks(i);
1801 
1802     if (list == NULL) {
1803       continue;
1804     }
1805 
1806     result = result + list->count() * list->size();
1807   }
1808   result = result + humongous_dictionary()->total_size();
1809   return result;
1810 }
1811 
1812 size_t ChunkManager::sum_free_chunks_count() {
1813   assert_lock_strong(SpaceManager::expand_lock());
1814   size_t count = 0;
1815   for (ChunkIndex i = ZeroIndex; i < NumberOfFreeLists; i = next_chunk_index(i)) {
1816     ChunkList* list = free_chunks(i);
1817     if (list == NULL) {
1818       continue;
1819     }
1820     count = count + list->count();
1821   }
1822   count = count + humongous_dictionary()->total_free_blocks();
1823   return count;
1824 }
1825 
1826 ChunkList* ChunkManager::find_free_chunks_list(size_t word_size) {
1827   ChunkIndex index = list_index(word_size);
1828   assert(index < HumongousIndex, "No humongous list");
1829   return free_chunks(index);
1830 }
1831 
1832 Metachunk* ChunkManager::free_chunks_get(size_t word_size) {
1833   assert_lock_strong(SpaceManager::expand_lock());
1834 
1835   slow_locked_verify();
1836 
1837   Metachunk* chunk = NULL;
1838   if (list_index(word_size) != HumongousIndex) {
1839     ChunkList* free_list = find_free_chunks_list(word_size);
1840     assert(free_list != NULL, "Sanity check");
1841 
1842     chunk = free_list->head();
1843 
1844     if (chunk == NULL) {
1845       return NULL;
1846     }
1847 
1848     // Remove the chunk as the head of the list.
1849     free_list->remove_chunk(chunk);
1850 
1851     log_trace(gc, metaspace, freelist)("ChunkManager::free_chunks_get: free_list " PTR_FORMAT " head " PTR_FORMAT " size " SIZE_FORMAT,
1852                                        p2i(free_list), p2i(chunk), chunk->word_size());
1853   } else {
1854     chunk = humongous_dictionary()->get_chunk(
1855       word_size,
1856       FreeBlockDictionary<Metachunk>::atLeast);
1857 
1858     if (chunk == NULL) {
1859       return NULL;
1860     }
1861 
1862     log_debug(gc, metaspace, alloc)("Free list allocate humongous chunk size " SIZE_FORMAT " for requested size " SIZE_FORMAT " waste " SIZE_FORMAT,
1863                                     chunk->word_size(), word_size, chunk->word_size() - word_size);
1864   }
1865 
1866   // Chunk is being removed from the chunks free list.
1867   dec_free_chunks_total(chunk->word_size());
1868 
1869   // Remove it from the links to this freelist
1870   chunk->set_next(NULL);
1871   chunk->set_prev(NULL);
1872 #ifdef ASSERT
1873   // Chunk is no longer on any freelist. Setting to false make container_count_slow()
1874   // work.
1875   chunk->set_is_tagged_free(false);
1876 #endif
1877   chunk->container()->inc_container_count();
1878 
1879   slow_locked_verify();
1880   return chunk;
1881 }
1882 
1883 Metachunk* ChunkManager::chunk_freelist_allocate(size_t word_size) {
1884   assert_lock_strong(SpaceManager::expand_lock());
1885   slow_locked_verify();
1886 
1887   // Take from the beginning of the list
1888   Metachunk* chunk = free_chunks_get(word_size);
1889   if (chunk == NULL) {
1890     return NULL;
1891   }
1892 
1893   assert((word_size <= chunk->word_size()) ||
1894          list_index(chunk->word_size() == HumongousIndex),
1895          "Non-humongous variable sized chunk");
1896   Log(gc, metaspace, freelist) log;
1897   if (log.is_debug()) {
1898     size_t list_count;
1899     if (list_index(word_size) < HumongousIndex) {
1900       ChunkList* list = find_free_chunks_list(word_size);
1901       list_count = list->count();
1902     } else {
1903       list_count = humongous_dictionary()->total_count();
1904     }
1905     log.debug("ChunkManager::chunk_freelist_allocate: " PTR_FORMAT " chunk " PTR_FORMAT "  size " SIZE_FORMAT " count " SIZE_FORMAT " ",
1906                p2i(this), p2i(chunk), chunk->word_size(), list_count);
1907     ResourceMark rm;
1908     locked_print_free_chunks(log.debug_stream());
1909   }
1910 
1911   return chunk;
1912 }
1913 
1914 void ChunkManager::print_on(outputStream* out) const {
1915   const_cast<ChunkManager *>(this)->humongous_dictionary()->report_statistics(out);
1916 }
1917 
1918 // SpaceManager methods
1919 
1920 void SpaceManager::get_initial_chunk_sizes(Metaspace::MetaspaceType type,
1921                                            size_t* chunk_word_size,
1922                                            size_t* class_chunk_word_size) {
1923   switch (type) {
1924   case Metaspace::BootMetaspaceType:
1925     *chunk_word_size = Metaspace::first_chunk_word_size();
1926     *class_chunk_word_size = Metaspace::first_class_chunk_word_size();
1927     break;
1928   case Metaspace::ROMetaspaceType:
1929     *chunk_word_size = SharedReadOnlySize / wordSize;
1930     *class_chunk_word_size = ClassSpecializedChunk;
1931     break;
1932   case Metaspace::ReadWriteMetaspaceType:
1933     *chunk_word_size = SharedReadWriteSize / wordSize;
1934     *class_chunk_word_size = ClassSpecializedChunk;
1935     break;
1936   case Metaspace::AnonymousMetaspaceType:
1937   case Metaspace::ReflectionMetaspaceType:
1938     *chunk_word_size = SpecializedChunk;
1939     *class_chunk_word_size = ClassSpecializedChunk;
1940     break;
1941   default:
1942     *chunk_word_size = SmallChunk;
1943     *class_chunk_word_size = ClassSmallChunk;
1944     break;
1945   }
1946   assert(*chunk_word_size != 0 && *class_chunk_word_size != 0,
1947          "Initial chunks sizes bad: data  " SIZE_FORMAT
1948          " class " SIZE_FORMAT,
1949          *chunk_word_size, *class_chunk_word_size);
1950 }
1951 
1952 size_t SpaceManager::sum_free_in_chunks_in_use() const {
1953   MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
1954   size_t free = 0;
1955   for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
1956     Metachunk* chunk = chunks_in_use(i);
1957     while (chunk != NULL) {
1958       free += chunk->free_word_size();
1959       chunk = chunk->next();
1960     }
1961   }
1962   return free;
1963 }
1964 
1965 size_t SpaceManager::sum_waste_in_chunks_in_use() const {
1966   MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
1967   size_t result = 0;
1968   for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
1969    result += sum_waste_in_chunks_in_use(i);
1970   }
1971 
1972   return result;
1973 }
1974 
1975 size_t SpaceManager::sum_waste_in_chunks_in_use(ChunkIndex index) const {
1976   size_t result = 0;
1977   Metachunk* chunk = chunks_in_use(index);
1978   // Count the free space in all the chunk but not the
1979   // current chunk from which allocations are still being done.
1980   while (chunk != NULL) {
1981     if (chunk != current_chunk()) {
1982       result += chunk->free_word_size();
1983     }
1984     chunk = chunk->next();
1985   }
1986   return result;
1987 }
1988 
1989 size_t SpaceManager::sum_capacity_in_chunks_in_use() const {
1990   // For CMS use "allocated_chunks_words()" which does not need the
1991   // Metaspace lock.  For the other collectors sum over the
1992   // lists.  Use both methods as a check that "allocated_chunks_words()"
1993   // is correct.  That is, sum_capacity_in_chunks() is too expensive
1994   // to use in the product and allocated_chunks_words() should be used
1995   // but allow for  checking that allocated_chunks_words() returns the same
1996   // value as sum_capacity_in_chunks_in_use() which is the definitive
1997   // answer.
1998   if (UseConcMarkSweepGC) {
1999     return allocated_chunks_words();
2000   } else {
2001     MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
2002     size_t sum = 0;
2003     for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
2004       Metachunk* chunk = chunks_in_use(i);
2005       while (chunk != NULL) {
2006         sum += chunk->word_size();
2007         chunk = chunk->next();
2008       }
2009     }
2010   return sum;
2011   }
2012 }
2013 
2014 size_t SpaceManager::sum_count_in_chunks_in_use() {
2015   size_t count = 0;
2016   for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
2017     count = count + sum_count_in_chunks_in_use(i);
2018   }
2019 
2020   return count;
2021 }
2022 
2023 size_t SpaceManager::sum_count_in_chunks_in_use(ChunkIndex i) {
2024   size_t count = 0;
2025   Metachunk* chunk = chunks_in_use(i);
2026   while (chunk != NULL) {
2027     count++;
2028     chunk = chunk->next();
2029   }
2030   return count;
2031 }
2032 
2033 
2034 size_t SpaceManager::sum_used_in_chunks_in_use() const {
2035   MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
2036   size_t used = 0;
2037   for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
2038     Metachunk* chunk = chunks_in_use(i);
2039     while (chunk != NULL) {
2040       used += chunk->used_word_size();
2041       chunk = chunk->next();
2042     }
2043   }
2044   return used;
2045 }
2046 
2047 void SpaceManager::locked_print_chunks_in_use_on(outputStream* st) const {
2048 
2049   for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
2050     Metachunk* chunk = chunks_in_use(i);
2051     st->print("SpaceManager: %s " PTR_FORMAT,
2052                  chunk_size_name(i), p2i(chunk));
2053     if (chunk != NULL) {
2054       st->print_cr(" free " SIZE_FORMAT,
2055                    chunk->free_word_size());
2056     } else {
2057       st->cr();
2058     }
2059   }
2060 
2061   chunk_manager()->locked_print_free_chunks(st);
2062   chunk_manager()->locked_print_sum_free_chunks(st);
2063 }
2064 
2065 size_t SpaceManager::calc_chunk_size(size_t word_size) {
2066 
2067   // Decide between a small chunk and a medium chunk.  Up to
2068   // _small_chunk_limit small chunks can be allocated.
2069   // After that a medium chunk is preferred.
2070   size_t chunk_word_size;
2071   if (chunks_in_use(MediumIndex) == NULL &&
2072       sum_count_in_chunks_in_use(SmallIndex) < _small_chunk_limit) {
2073     chunk_word_size = (size_t) small_chunk_size();
2074     if (word_size + Metachunk::overhead() > small_chunk_size()) {
2075       chunk_word_size = medium_chunk_size();
2076     }
2077   } else {
2078     chunk_word_size = medium_chunk_size();
2079   }
2080 
2081   // Might still need a humongous chunk.  Enforce
2082   // humongous allocations sizes to be aligned up to
2083   // the smallest chunk size.
2084   size_t if_humongous_sized_chunk =
2085     align_size_up(word_size + Metachunk::overhead(),
2086                   smallest_chunk_size());
2087   chunk_word_size =
2088     MAX2((size_t) chunk_word_size, if_humongous_sized_chunk);
2089 
2090   assert(!SpaceManager::is_humongous(word_size) ||
2091          chunk_word_size == if_humongous_sized_chunk,
2092          "Size calculation is wrong, word_size " SIZE_FORMAT
2093          " chunk_word_size " SIZE_FORMAT,
2094          word_size, chunk_word_size);
2095   Log(gc, metaspace, alloc) log;
2096   if (log.is_debug() && SpaceManager::is_humongous(word_size)) {
2097     log.debug("Metadata humongous allocation:");
2098     log.debug("  word_size " PTR_FORMAT, word_size);
2099     log.debug("  chunk_word_size " PTR_FORMAT, chunk_word_size);
2100     log.debug("    chunk overhead " PTR_FORMAT, Metachunk::overhead());
2101   }
2102   return chunk_word_size;
2103 }
2104 
2105 void SpaceManager::track_metaspace_memory_usage() {
2106   if (is_init_completed()) {
2107     if (is_class()) {
2108       MemoryService::track_compressed_class_memory_usage();
2109     }
2110     MemoryService::track_metaspace_memory_usage();
2111   }
2112 }
2113 
2114 MetaWord* SpaceManager::grow_and_allocate(size_t word_size) {
2115   assert(vs_list()->current_virtual_space() != NULL,
2116          "Should have been set");
2117   assert(current_chunk() == NULL ||
2118          current_chunk()->allocate(word_size) == NULL,
2119          "Don't need to expand");
2120   MutexLockerEx cl(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag);
2121 
2122   if (log_is_enabled(Trace, gc, metaspace, freelist)) {
2123     size_t words_left = 0;
2124     size_t words_used = 0;
2125     if (current_chunk() != NULL) {
2126       words_left = current_chunk()->free_word_size();
2127       words_used = current_chunk()->used_word_size();
2128     }
2129     log_trace(gc, metaspace, freelist)("SpaceManager::grow_and_allocate for " SIZE_FORMAT " words " SIZE_FORMAT " words used " SIZE_FORMAT " words left",
2130                                        word_size, words_used, words_left);
2131   }
2132 
2133   // Get another chunk
2134   size_t grow_chunks_by_words = calc_chunk_size(word_size);
2135   Metachunk* next = get_new_chunk(word_size, grow_chunks_by_words);
2136 
2137   MetaWord* mem = NULL;
2138 
2139   // If a chunk was available, add it to the in-use chunk list
2140   // and do an allocation from it.
2141   if (next != NULL) {
2142     // Add to this manager's list of chunks in use.
2143     add_chunk(next, false);
2144     mem = next->allocate(word_size);
2145   }
2146 
2147   // Track metaspace memory usage statistic.
2148   track_metaspace_memory_usage();
2149 
2150   return mem;
2151 }
2152 
2153 void SpaceManager::print_on(outputStream* st) const {
2154 
2155   for (ChunkIndex i = ZeroIndex;
2156        i < NumberOfInUseLists ;
2157        i = next_chunk_index(i) ) {
2158     st->print_cr("  chunks_in_use " PTR_FORMAT " chunk size " SIZE_FORMAT,
2159                  p2i(chunks_in_use(i)),
2160                  chunks_in_use(i) == NULL ? 0 : chunks_in_use(i)->word_size());
2161   }
2162   st->print_cr("    waste:  Small " SIZE_FORMAT " Medium " SIZE_FORMAT
2163                " Humongous " SIZE_FORMAT,
2164                sum_waste_in_chunks_in_use(SmallIndex),
2165                sum_waste_in_chunks_in_use(MediumIndex),
2166                sum_waste_in_chunks_in_use(HumongousIndex));
2167   // block free lists
2168   if (block_freelists() != NULL) {
2169     st->print_cr("total in block free lists " SIZE_FORMAT,
2170       block_freelists()->total_size());
2171   }
2172 }
2173 
2174 SpaceManager::SpaceManager(Metaspace::MetadataType mdtype,
2175                            Mutex* lock) :
2176   _mdtype(mdtype),
2177   _allocated_blocks_words(0),
2178   _allocated_chunks_words(0),
2179   _allocated_chunks_count(0),
2180   _block_freelists(NULL),
2181   _lock(lock)
2182 {
2183   initialize();
2184 }
2185 
2186 void SpaceManager::inc_size_metrics(size_t words) {
2187   assert_lock_strong(SpaceManager::expand_lock());
2188   // Total of allocated Metachunks and allocated Metachunks count
2189   // for each SpaceManager
2190   _allocated_chunks_words = _allocated_chunks_words + words;
2191   _allocated_chunks_count++;
2192   // Global total of capacity in allocated Metachunks
2193   MetaspaceAux::inc_capacity(mdtype(), words);
2194   // Global total of allocated Metablocks.
2195   // used_words_slow() includes the overhead in each
2196   // Metachunk so include it in the used when the
2197   // Metachunk is first added (so only added once per
2198   // Metachunk).
2199   MetaspaceAux::inc_used(mdtype(), Metachunk::overhead());
2200 }
2201 
2202 void SpaceManager::inc_used_metrics(size_t words) {
2203   // Add to the per SpaceManager total
2204   Atomic::add_ptr(words, &_allocated_blocks_words);
2205   // Add to the global total
2206   MetaspaceAux::inc_used(mdtype(), words);
2207 }
2208 
2209 void SpaceManager::dec_total_from_size_metrics() {
2210   MetaspaceAux::dec_capacity(mdtype(), allocated_chunks_words());
2211   MetaspaceAux::dec_used(mdtype(), allocated_blocks_words());
2212   // Also deduct the overhead per Metachunk
2213   MetaspaceAux::dec_used(mdtype(), allocated_chunks_count() * Metachunk::overhead());
2214 }
2215 
2216 void SpaceManager::initialize() {
2217   Metadebug::init_allocation_fail_alot_count();
2218   for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
2219     _chunks_in_use[i] = NULL;
2220   }
2221   _current_chunk = NULL;
2222   log_trace(gc, metaspace, freelist)("SpaceManager(): " PTR_FORMAT, p2i(this));
2223 }
2224 
2225 void ChunkManager::return_chunks(ChunkIndex index, Metachunk* chunks) {
2226   if (chunks == NULL) {
2227     return;
2228   }
2229   ChunkList* list = free_chunks(index);
2230   assert(list->size() == chunks->word_size(), "Mismatch in chunk sizes");
2231   assert_lock_strong(SpaceManager::expand_lock());
2232   Metachunk* cur = chunks;
2233 
2234   // This returns chunks one at a time.  If a new
2235   // class List can be created that is a base class
2236   // of FreeList then something like FreeList::prepend()
2237   // can be used in place of this loop
2238   while (cur != NULL) {
2239     assert(cur->container() != NULL, "Container should have been set");
2240     cur->container()->dec_container_count();
2241     // Capture the next link before it is changed
2242     // by the call to return_chunk_at_head();
2243     Metachunk* next = cur->next();
2244     DEBUG_ONLY(cur->set_is_tagged_free(true);)
2245     NOT_PRODUCT(cur->mangle(badMetaWordVal);)
2246     list->return_chunk_at_head(cur);
2247     cur = next;
2248   }
2249 }
2250 
2251 SpaceManager::~SpaceManager() {
2252   // This call this->_lock which can't be done while holding expand_lock()
2253   assert(sum_capacity_in_chunks_in_use() == allocated_chunks_words(),
2254          "sum_capacity_in_chunks_in_use() " SIZE_FORMAT
2255          " allocated_chunks_words() " SIZE_FORMAT,
2256          sum_capacity_in_chunks_in_use(), allocated_chunks_words());
2257 
2258   MutexLockerEx fcl(SpaceManager::expand_lock(),
2259                     Mutex::_no_safepoint_check_flag);
2260 
2261   chunk_manager()->slow_locked_verify();
2262 
2263   dec_total_from_size_metrics();
2264 
2265   Log(gc, metaspace, freelist) log;
2266   if (log.is_trace()) {
2267     log.trace("~SpaceManager(): " PTR_FORMAT, p2i(this));
2268     ResourceMark rm;
2269     locked_print_chunks_in_use_on(log.trace_stream());
2270     if (block_freelists() != NULL) {
2271     block_freelists()->print_on(log.trace_stream());
2272   }
2273   }
2274 
2275   // Have to update before the chunks_in_use lists are emptied
2276   // below.
2277   chunk_manager()->inc_free_chunks_total(allocated_chunks_words(),
2278                                          sum_count_in_chunks_in_use());
2279 
2280   // Add all the chunks in use by this space manager
2281   // to the global list of free chunks.
2282 
2283   // Follow each list of chunks-in-use and add them to the
2284   // free lists.  Each list is NULL terminated.
2285 
2286   for (ChunkIndex i = ZeroIndex; i < HumongousIndex; i = next_chunk_index(i)) {
2287     log.trace("returned " SIZE_FORMAT " %s chunks to freelist", sum_count_in_chunks_in_use(i), chunk_size_name(i));
2288     Metachunk* chunks = chunks_in_use(i);
2289     chunk_manager()->return_chunks(i, chunks);
2290     set_chunks_in_use(i, NULL);
2291     log.trace("updated freelist count " SSIZE_FORMAT " %s", chunk_manager()->free_chunks(i)->count(), chunk_size_name(i));
2292     assert(i != HumongousIndex, "Humongous chunks are handled explicitly later");
2293   }
2294 
2295   // The medium chunk case may be optimized by passing the head and
2296   // tail of the medium chunk list to add_at_head().  The tail is often
2297   // the current chunk but there are probably exceptions.
2298 
2299   // Humongous chunks
2300   log.trace("returned " SIZE_FORMAT " %s humongous chunks to dictionary",
2301             sum_count_in_chunks_in_use(HumongousIndex), chunk_size_name(HumongousIndex));
2302   log.trace("Humongous chunk dictionary: ");
2303   // Humongous chunks are never the current chunk.
2304   Metachunk* humongous_chunks = chunks_in_use(HumongousIndex);
2305 
2306   while (humongous_chunks != NULL) {
2307     DEBUG_ONLY(humongous_chunks->set_is_tagged_free(true);)
2308     NOT_PRODUCT(humongous_chunks->mangle(badMetaWordVal);)
2309     log.trace(PTR_FORMAT " (" SIZE_FORMAT ") ", p2i(humongous_chunks), humongous_chunks->word_size());
2310     assert(humongous_chunks->word_size() == (size_t)
2311            align_size_up(humongous_chunks->word_size(),
2312                              smallest_chunk_size()),
2313            "Humongous chunk size is wrong: word size " SIZE_FORMAT
2314            " granularity " SIZE_FORMAT,
2315            humongous_chunks->word_size(), smallest_chunk_size());
2316     Metachunk* next_humongous_chunks = humongous_chunks->next();
2317     humongous_chunks->container()->dec_container_count();
2318     chunk_manager()->humongous_dictionary()->return_chunk(humongous_chunks);
2319     humongous_chunks = next_humongous_chunks;
2320   }
2321   log.trace("updated dictionary count " SIZE_FORMAT " %s", chunk_manager()->humongous_dictionary()->total_count(), chunk_size_name(HumongousIndex));
2322   chunk_manager()->slow_locked_verify();
2323 
2324   if (_block_freelists != NULL) {
2325     delete _block_freelists;
2326   }
2327 }
2328 
2329 const char* SpaceManager::chunk_size_name(ChunkIndex index) const {
2330   switch (index) {
2331     case SpecializedIndex:
2332       return "Specialized";
2333     case SmallIndex:
2334       return "Small";
2335     case MediumIndex:
2336       return "Medium";
2337     case HumongousIndex:
2338       return "Humongous";
2339     default:
2340       return NULL;
2341   }
2342 }
2343 
2344 ChunkIndex ChunkManager::list_index(size_t size) {
2345   switch (size) {
2346     case SpecializedChunk:
2347       assert(SpecializedChunk == ClassSpecializedChunk,
2348              "Need branch for ClassSpecializedChunk");
2349       return SpecializedIndex;
2350     case SmallChunk:
2351     case ClassSmallChunk:
2352       return SmallIndex;
2353     case MediumChunk:
2354     case ClassMediumChunk:
2355       return MediumIndex;
2356     default:
2357       assert(size > MediumChunk || size > ClassMediumChunk,
2358              "Not a humongous chunk");
2359       return HumongousIndex;
2360   }
2361 }
2362 
2363 void SpaceManager::deallocate(MetaWord* p, size_t word_size) {
2364   assert_lock_strong(_lock);
2365   // Allocations and deallocations are in raw_word_size
2366   size_t raw_word_size = get_allocation_word_size(word_size);
2367   // Lazily create a block_freelist
2368   if (block_freelists() == NULL) {
2369     _block_freelists = new BlockFreelist();
2370   }
2371   block_freelists()->return_block(p, raw_word_size);
2372 }
2373 
2374 // Adds a chunk to the list of chunks in use.
2375 void SpaceManager::add_chunk(Metachunk* new_chunk, bool make_current) {
2376 
2377   assert(new_chunk != NULL, "Should not be NULL");
2378   assert(new_chunk->next() == NULL, "Should not be on a list");
2379 
2380   new_chunk->reset_empty();
2381 
2382   // Find the correct list and and set the current
2383   // chunk for that list.
2384   ChunkIndex index = ChunkManager::list_index(new_chunk->word_size());
2385 
2386   if (index != HumongousIndex) {
2387     retire_current_chunk();
2388     set_current_chunk(new_chunk);
2389     new_chunk->set_next(chunks_in_use(index));
2390     set_chunks_in_use(index, new_chunk);
2391   } else {
2392     // For null class loader data and DumpSharedSpaces, the first chunk isn't
2393     // small, so small will be null.  Link this first chunk as the current
2394     // chunk.
2395     if (make_current) {
2396       // Set as the current chunk but otherwise treat as a humongous chunk.
2397       set_current_chunk(new_chunk);
2398     }
2399     // Link at head.  The _current_chunk only points to a humongous chunk for
2400     // the null class loader metaspace (class and data virtual space managers)
2401     // any humongous chunks so will not point to the tail
2402     // of the humongous chunks list.
2403     new_chunk->set_next(chunks_in_use(HumongousIndex));
2404     set_chunks_in_use(HumongousIndex, new_chunk);
2405 
2406     assert(new_chunk->word_size() > medium_chunk_size(), "List inconsistency");
2407   }
2408 
2409   // Add to the running sum of capacity
2410   inc_size_metrics(new_chunk->word_size());
2411 
2412   assert(new_chunk->is_empty(), "Not ready for reuse");
2413   Log(gc, metaspace, freelist) log;
2414   if (log.is_trace()) {
2415     log.trace("SpaceManager::add_chunk: " SIZE_FORMAT ") ", sum_count_in_chunks_in_use());
2416     ResourceMark rm;
2417     outputStream* out = log.trace_stream();
2418     new_chunk->print_on(out);
2419     chunk_manager()->locked_print_free_chunks(out);
2420   }
2421 }
2422 
2423 void SpaceManager::retire_current_chunk() {
2424   if (current_chunk() != NULL) {
2425     size_t remaining_words = current_chunk()->free_word_size();
2426     if (remaining_words >= BlockFreelist::min_dictionary_size()) {
2427       MetaWord* ptr = current_chunk()->allocate(remaining_words);
2428       deallocate(ptr, remaining_words);
2429       inc_used_metrics(remaining_words);
2430     }
2431   }
2432 }
2433 
2434 Metachunk* SpaceManager::get_new_chunk(size_t word_size,
2435                                        size_t grow_chunks_by_words) {
2436   // Get a chunk from the chunk freelist
2437   Metachunk* next = chunk_manager()->chunk_freelist_allocate(grow_chunks_by_words);
2438 
2439   if (next == NULL) {
2440     next = vs_list()->get_new_chunk(word_size,
2441                                     grow_chunks_by_words,
2442                                     medium_chunk_bunch());
2443   }
2444 
2445   Log(gc, metaspace, alloc) log;
2446   if (log.is_debug() && next != NULL &&
2447       SpaceManager::is_humongous(next->word_size())) {
2448     log.debug("  new humongous chunk word size " PTR_FORMAT, next->word_size());
2449   }
2450 
2451   return next;
2452 }
2453 
2454 /*
2455  * The policy is to allocate up to _small_chunk_limit small chunks
2456  * after which only medium chunks are allocated.  This is done to
2457  * reduce fragmentation.  In some cases, this can result in a lot
2458  * of small chunks being allocated to the point where it's not
2459  * possible to expand.  If this happens, there may be no medium chunks
2460  * available and OOME would be thrown.  Instead of doing that,
2461  * if the allocation request size fits in a small chunk, an attempt
2462  * will be made to allocate a small chunk.
2463  */
2464 MetaWord* SpaceManager::get_small_chunk_and_allocate(size_t word_size) {
2465   size_t raw_word_size = get_allocation_word_size(word_size);
2466 
2467   if (raw_word_size + Metachunk::overhead() > small_chunk_size()) {
2468     return NULL;
2469   }
2470 
2471   MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
2472   MutexLockerEx cl1(expand_lock(), Mutex::_no_safepoint_check_flag);
2473 
2474   Metachunk* chunk = chunk_manager()->chunk_freelist_allocate(small_chunk_size());
2475 
2476   MetaWord* mem = NULL;
2477 
2478   if (chunk != NULL) {
2479     // Add chunk to the in-use chunk list and do an allocation from it.
2480     // Add to this manager's list of chunks in use.
2481     add_chunk(chunk, false);
2482     mem = chunk->allocate(raw_word_size);
2483 
2484     inc_used_metrics(raw_word_size);
2485 
2486     // Track metaspace memory usage statistic.
2487     track_metaspace_memory_usage();
2488   }
2489 
2490   return mem;
2491 }
2492 
2493 MetaWord* SpaceManager::allocate(size_t word_size) {
2494   MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
2495   size_t raw_word_size = get_allocation_word_size(word_size);
2496   BlockFreelist* fl =  block_freelists();
2497   MetaWord* p = NULL;
2498   // Allocation from the dictionary is expensive in the sense that
2499   // the dictionary has to be searched for a size.  Don't allocate
2500   // from the dictionary until it starts to get fat.  Is this
2501   // a reasonable policy?  Maybe an skinny dictionary is fast enough
2502   // for allocations.  Do some profiling.  JJJ
2503   if (fl != NULL && fl->total_size() > allocation_from_dictionary_limit) {
2504     p = fl->get_block(raw_word_size);
2505   }
2506   if (p == NULL) {
2507     p = allocate_work(raw_word_size);
2508   }
2509 
2510   return p;
2511 }
2512 
2513 // Returns the address of spaced allocated for "word_size".
2514 // This methods does not know about blocks (Metablocks)
2515 MetaWord* SpaceManager::allocate_work(size_t word_size) {
2516   assert_lock_strong(_lock);
2517 #ifdef ASSERT
2518   if (Metadebug::test_metadata_failure()) {
2519     return NULL;
2520   }
2521 #endif
2522   // Is there space in the current chunk?
2523   MetaWord* result = NULL;
2524 
2525   // For DumpSharedSpaces, only allocate out of the current chunk which is
2526   // never null because we gave it the size we wanted.   Caller reports out
2527   // of memory if this returns null.
2528   if (DumpSharedSpaces) {
2529     assert(current_chunk() != NULL, "should never happen");
2530     inc_used_metrics(word_size);
2531     return current_chunk()->allocate(word_size); // caller handles null result
2532   }
2533 
2534   if (current_chunk() != NULL) {
2535     result = current_chunk()->allocate(word_size);
2536   }
2537 
2538   if (result == NULL) {
2539     result = grow_and_allocate(word_size);
2540   }
2541 
2542   if (result != NULL) {
2543     inc_used_metrics(word_size);
2544     assert(result != (MetaWord*) chunks_in_use(MediumIndex),
2545            "Head of the list is being allocated");
2546   }
2547 
2548   return result;
2549 }
2550 
2551 void SpaceManager::verify() {
2552   // If there are blocks in the dictionary, then
2553   // verification of chunks does not work since
2554   // being in the dictionary alters a chunk.
2555   if (block_freelists() != NULL && block_freelists()->total_size() == 0) {
2556     for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
2557       Metachunk* curr = chunks_in_use(i);
2558       while (curr != NULL) {
2559         curr->verify();
2560         verify_chunk_size(curr);
2561         curr = curr->next();
2562       }
2563     }
2564   }
2565 }
2566 
2567 void SpaceManager::verify_chunk_size(Metachunk* chunk) {
2568   assert(is_humongous(chunk->word_size()) ||
2569          chunk->word_size() == medium_chunk_size() ||
2570          chunk->word_size() == small_chunk_size() ||
2571          chunk->word_size() == specialized_chunk_size(),
2572          "Chunk size is wrong");
2573   return;
2574 }
2575 
2576 #ifdef ASSERT
2577 void SpaceManager::verify_allocated_blocks_words() {
2578   // Verification is only guaranteed at a safepoint.
2579   assert(SafepointSynchronize::is_at_safepoint() || !Universe::is_fully_initialized(),
2580     "Verification can fail if the applications is running");
2581   assert(allocated_blocks_words() == sum_used_in_chunks_in_use(),
2582          "allocation total is not consistent " SIZE_FORMAT
2583          " vs " SIZE_FORMAT,
2584          allocated_blocks_words(), sum_used_in_chunks_in_use());
2585 }
2586 
2587 #endif
2588 
2589 void SpaceManager::dump(outputStream* const out) const {
2590   size_t curr_total = 0;
2591   size_t waste = 0;
2592   uint i = 0;
2593   size_t used = 0;
2594   size_t capacity = 0;
2595 
2596   // Add up statistics for all chunks in this SpaceManager.
2597   for (ChunkIndex index = ZeroIndex;
2598        index < NumberOfInUseLists;
2599        index = next_chunk_index(index)) {
2600     for (Metachunk* curr = chunks_in_use(index);
2601          curr != NULL;
2602          curr = curr->next()) {
2603       out->print("%d) ", i++);
2604       curr->print_on(out);
2605       curr_total += curr->word_size();
2606       used += curr->used_word_size();
2607       capacity += curr->word_size();
2608       waste += curr->free_word_size() + curr->overhead();;
2609     }
2610   }
2611 
2612   if (log_is_enabled(Trace, gc, metaspace, freelist)) {
2613     if (block_freelists() != NULL) block_freelists()->print_on(out);
2614   }
2615 
2616   size_t free = current_chunk() == NULL ? 0 : current_chunk()->free_word_size();
2617   // Free space isn't wasted.
2618   waste -= free;
2619 
2620   out->print_cr("total of all chunks "  SIZE_FORMAT " used " SIZE_FORMAT
2621                 " free " SIZE_FORMAT " capacity " SIZE_FORMAT
2622                 " waste " SIZE_FORMAT, curr_total, used, free, capacity, waste);
2623 }
2624 
2625 // MetaspaceAux
2626 
2627 
2628 size_t MetaspaceAux::_capacity_words[] = {0, 0};
2629 size_t MetaspaceAux::_used_words[] = {0, 0};
2630 
2631 size_t MetaspaceAux::free_bytes(Metaspace::MetadataType mdtype) {
2632   VirtualSpaceList* list = Metaspace::get_space_list(mdtype);
2633   return list == NULL ? 0 : list->free_bytes();
2634 }
2635 
2636 size_t MetaspaceAux::free_bytes() {
2637   return free_bytes(Metaspace::ClassType) + free_bytes(Metaspace::NonClassType);
2638 }
2639 
2640 void MetaspaceAux::dec_capacity(Metaspace::MetadataType mdtype, size_t words) {
2641   assert_lock_strong(SpaceManager::expand_lock());
2642   assert(words <= capacity_words(mdtype),
2643          "About to decrement below 0: words " SIZE_FORMAT
2644          " is greater than _capacity_words[%u] " SIZE_FORMAT,
2645          words, mdtype, capacity_words(mdtype));
2646   _capacity_words[mdtype] -= words;
2647 }
2648 
2649 void MetaspaceAux::inc_capacity(Metaspace::MetadataType mdtype, size_t words) {
2650   assert_lock_strong(SpaceManager::expand_lock());
2651   // Needs to be atomic
2652   _capacity_words[mdtype] += words;
2653 }
2654 
2655 void MetaspaceAux::dec_used(Metaspace::MetadataType mdtype, size_t words) {
2656   assert(words <= used_words(mdtype),
2657          "About to decrement below 0: words " SIZE_FORMAT
2658          " is greater than _used_words[%u] " SIZE_FORMAT,
2659          words, mdtype, used_words(mdtype));
2660   // For CMS deallocation of the Metaspaces occurs during the
2661   // sweep which is a concurrent phase.  Protection by the expand_lock()
2662   // is not enough since allocation is on a per Metaspace basis
2663   // and protected by the Metaspace lock.
2664   jlong minus_words = (jlong) - (jlong) words;
2665   Atomic::add_ptr(minus_words, &_used_words[mdtype]);
2666 }
2667 
2668 void MetaspaceAux::inc_used(Metaspace::MetadataType mdtype, size_t words) {
2669   // _used_words tracks allocations for
2670   // each piece of metadata.  Those allocations are
2671   // generally done concurrently by different application
2672   // threads so must be done atomically.
2673   Atomic::add_ptr(words, &_used_words[mdtype]);
2674 }
2675 
2676 size_t MetaspaceAux::used_bytes_slow(Metaspace::MetadataType mdtype) {
2677   size_t used = 0;
2678   ClassLoaderDataGraphMetaspaceIterator iter;
2679   while (iter.repeat()) {
2680     Metaspace* msp = iter.get_next();
2681     // Sum allocated_blocks_words for each metaspace
2682     if (msp != NULL) {
2683       used += msp->used_words_slow(mdtype);
2684     }
2685   }
2686   return used * BytesPerWord;
2687 }
2688 
2689 size_t MetaspaceAux::free_bytes_slow(Metaspace::MetadataType mdtype) {
2690   size_t free = 0;
2691   ClassLoaderDataGraphMetaspaceIterator iter;
2692   while (iter.repeat()) {
2693     Metaspace* msp = iter.get_next();
2694     if (msp != NULL) {
2695       free += msp->free_words_slow(mdtype);
2696     }
2697   }
2698   return free * BytesPerWord;
2699 }
2700 
2701 size_t MetaspaceAux::capacity_bytes_slow(Metaspace::MetadataType mdtype) {
2702   if ((mdtype == Metaspace::ClassType) && !Metaspace::using_class_space()) {
2703     return 0;
2704   }
2705   // Don't count the space in the freelists.  That space will be
2706   // added to the capacity calculation as needed.
2707   size_t capacity = 0;
2708   ClassLoaderDataGraphMetaspaceIterator iter;
2709   while (iter.repeat()) {
2710     Metaspace* msp = iter.get_next();
2711     if (msp != NULL) {
2712       capacity += msp->capacity_words_slow(mdtype);
2713     }
2714   }
2715   return capacity * BytesPerWord;
2716 }
2717 
2718 size_t MetaspaceAux::capacity_bytes_slow() {
2719 #ifdef PRODUCT
2720   // Use capacity_bytes() in PRODUCT instead of this function.
2721   guarantee(false, "Should not call capacity_bytes_slow() in the PRODUCT");
2722 #endif
2723   size_t class_capacity = capacity_bytes_slow(Metaspace::ClassType);
2724   size_t non_class_capacity = capacity_bytes_slow(Metaspace::NonClassType);
2725   assert(capacity_bytes() == class_capacity + non_class_capacity,
2726          "bad accounting: capacity_bytes() " SIZE_FORMAT
2727          " class_capacity + non_class_capacity " SIZE_FORMAT
2728          " class_capacity " SIZE_FORMAT " non_class_capacity " SIZE_FORMAT,
2729          capacity_bytes(), class_capacity + non_class_capacity,
2730          class_capacity, non_class_capacity);
2731 
2732   return class_capacity + non_class_capacity;
2733 }
2734 
2735 size_t MetaspaceAux::reserved_bytes(Metaspace::MetadataType mdtype) {
2736   VirtualSpaceList* list = Metaspace::get_space_list(mdtype);
2737   return list == NULL ? 0 : list->reserved_bytes();
2738 }
2739 
2740 size_t MetaspaceAux::committed_bytes(Metaspace::MetadataType mdtype) {
2741   VirtualSpaceList* list = Metaspace::get_space_list(mdtype);
2742   return list == NULL ? 0 : list->committed_bytes();
2743 }
2744 
2745 size_t MetaspaceAux::min_chunk_size_words() { return Metaspace::first_chunk_word_size(); }
2746 
2747 size_t MetaspaceAux::free_chunks_total_words(Metaspace::MetadataType mdtype) {
2748   ChunkManager* chunk_manager = Metaspace::get_chunk_manager(mdtype);
2749   if (chunk_manager == NULL) {
2750     return 0;
2751   }
2752   chunk_manager->slow_verify();
2753   return chunk_manager->free_chunks_total_words();
2754 }
2755 
2756 size_t MetaspaceAux::free_chunks_total_bytes(Metaspace::MetadataType mdtype) {
2757   return free_chunks_total_words(mdtype) * BytesPerWord;
2758 }
2759 
2760 size_t MetaspaceAux::free_chunks_total_words() {
2761   return free_chunks_total_words(Metaspace::ClassType) +
2762          free_chunks_total_words(Metaspace::NonClassType);
2763 }
2764 
2765 size_t MetaspaceAux::free_chunks_total_bytes() {
2766   return free_chunks_total_words() * BytesPerWord;
2767 }
2768 
2769 bool MetaspaceAux::has_chunk_free_list(Metaspace::MetadataType mdtype) {
2770   return Metaspace::get_chunk_manager(mdtype) != NULL;
2771 }
2772 
2773 MetaspaceChunkFreeListSummary MetaspaceAux::chunk_free_list_summary(Metaspace::MetadataType mdtype) {
2774   if (!has_chunk_free_list(mdtype)) {
2775     return MetaspaceChunkFreeListSummary();
2776   }
2777 
2778   const ChunkManager* cm = Metaspace::get_chunk_manager(mdtype);
2779   return cm->chunk_free_list_summary();
2780 }
2781 
2782 void MetaspaceAux::print_metaspace_change(size_t prev_metadata_used) {
2783   log_info(gc, metaspace)("Metaspace: "  SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
2784                           prev_metadata_used/K, used_bytes()/K, reserved_bytes()/K);
2785 }
2786 
2787 void MetaspaceAux::print_on(outputStream* out) {
2788   Metaspace::MetadataType nct = Metaspace::NonClassType;
2789 
2790   out->print_cr(" Metaspace       "
2791                 "used "      SIZE_FORMAT "K, "
2792                 "capacity "  SIZE_FORMAT "K, "
2793                 "committed " SIZE_FORMAT "K, "
2794                 "reserved "  SIZE_FORMAT "K",
2795                 used_bytes()/K,
2796                 capacity_bytes()/K,
2797                 committed_bytes()/K,
2798                 reserved_bytes()/K);
2799 
2800   if (Metaspace::using_class_space()) {
2801     Metaspace::MetadataType ct = Metaspace::ClassType;
2802     out->print_cr("  class space    "
2803                   "used "      SIZE_FORMAT "K, "
2804                   "capacity "  SIZE_FORMAT "K, "
2805                   "committed " SIZE_FORMAT "K, "
2806                   "reserved "  SIZE_FORMAT "K",
2807                   used_bytes(ct)/K,
2808                   capacity_bytes(ct)/K,
2809                   committed_bytes(ct)/K,
2810                   reserved_bytes(ct)/K);
2811   }
2812 }
2813 
2814 // Print information for class space and data space separately.
2815 // This is almost the same as above.
2816 void MetaspaceAux::print_on(outputStream* out, Metaspace::MetadataType mdtype) {
2817   size_t free_chunks_capacity_bytes = free_chunks_total_bytes(mdtype);
2818   size_t capacity_bytes = capacity_bytes_slow(mdtype);
2819   size_t used_bytes = used_bytes_slow(mdtype);
2820   size_t free_bytes = free_bytes_slow(mdtype);
2821   size_t used_and_free = used_bytes + free_bytes +
2822                            free_chunks_capacity_bytes;
2823   out->print_cr("  Chunk accounting: used in chunks " SIZE_FORMAT
2824              "K + unused in chunks " SIZE_FORMAT "K  + "
2825              " capacity in free chunks " SIZE_FORMAT "K = " SIZE_FORMAT
2826              "K  capacity in allocated chunks " SIZE_FORMAT "K",
2827              used_bytes / K,
2828              free_bytes / K,
2829              free_chunks_capacity_bytes / K,
2830              used_and_free / K,
2831              capacity_bytes / K);
2832   // Accounting can only be correct if we got the values during a safepoint
2833   assert(!SafepointSynchronize::is_at_safepoint() || used_and_free == capacity_bytes, "Accounting is wrong");
2834 }
2835 
2836 // Print total fragmentation for class metaspaces
2837 void MetaspaceAux::print_class_waste(outputStream* out) {
2838   assert(Metaspace::using_class_space(), "class metaspace not used");
2839   size_t cls_specialized_waste = 0, cls_small_waste = 0, cls_medium_waste = 0;
2840   size_t cls_specialized_count = 0, cls_small_count = 0, cls_medium_count = 0, cls_humongous_count = 0;
2841   ClassLoaderDataGraphMetaspaceIterator iter;
2842   while (iter.repeat()) {
2843     Metaspace* msp = iter.get_next();
2844     if (msp != NULL) {
2845       cls_specialized_waste += msp->class_vsm()->sum_waste_in_chunks_in_use(SpecializedIndex);
2846       cls_specialized_count += msp->class_vsm()->sum_count_in_chunks_in_use(SpecializedIndex);
2847       cls_small_waste += msp->class_vsm()->sum_waste_in_chunks_in_use(SmallIndex);
2848       cls_small_count += msp->class_vsm()->sum_count_in_chunks_in_use(SmallIndex);
2849       cls_medium_waste += msp->class_vsm()->sum_waste_in_chunks_in_use(MediumIndex);
2850       cls_medium_count += msp->class_vsm()->sum_count_in_chunks_in_use(MediumIndex);
2851       cls_humongous_count += msp->class_vsm()->sum_count_in_chunks_in_use(HumongousIndex);
2852     }
2853   }
2854   out->print_cr(" class: " SIZE_FORMAT " specialized(s) " SIZE_FORMAT ", "
2855                 SIZE_FORMAT " small(s) " SIZE_FORMAT ", "
2856                 SIZE_FORMAT " medium(s) " SIZE_FORMAT ", "
2857                 "large count " SIZE_FORMAT,
2858                 cls_specialized_count, cls_specialized_waste,
2859                 cls_small_count, cls_small_waste,
2860                 cls_medium_count, cls_medium_waste, cls_humongous_count);
2861 }
2862 
2863 // Print total fragmentation for data and class metaspaces separately
2864 void MetaspaceAux::print_waste(outputStream* out) {
2865   size_t specialized_waste = 0, small_waste = 0, medium_waste = 0;
2866   size_t specialized_count = 0, small_count = 0, medium_count = 0, humongous_count = 0;
2867 
2868   ClassLoaderDataGraphMetaspaceIterator iter;
2869   while (iter.repeat()) {
2870     Metaspace* msp = iter.get_next();
2871     if (msp != NULL) {
2872       specialized_waste += msp->vsm()->sum_waste_in_chunks_in_use(SpecializedIndex);
2873       specialized_count += msp->vsm()->sum_count_in_chunks_in_use(SpecializedIndex);
2874       small_waste += msp->vsm()->sum_waste_in_chunks_in_use(SmallIndex);
2875       small_count += msp->vsm()->sum_count_in_chunks_in_use(SmallIndex);
2876       medium_waste += msp->vsm()->sum_waste_in_chunks_in_use(MediumIndex);
2877       medium_count += msp->vsm()->sum_count_in_chunks_in_use(MediumIndex);
2878       humongous_count += msp->vsm()->sum_count_in_chunks_in_use(HumongousIndex);
2879     }
2880   }
2881   out->print_cr("Total fragmentation waste (words) doesn't count free space");
2882   out->print_cr("  data: " SIZE_FORMAT " specialized(s) " SIZE_FORMAT ", "
2883                         SIZE_FORMAT " small(s) " SIZE_FORMAT ", "
2884                         SIZE_FORMAT " medium(s) " SIZE_FORMAT ", "
2885                         "large count " SIZE_FORMAT,
2886              specialized_count, specialized_waste, small_count,
2887              small_waste, medium_count, medium_waste, humongous_count);
2888   if (Metaspace::using_class_space()) {
2889     print_class_waste(out);
2890   }
2891 }
2892 
2893 // Dump global metaspace things from the end of ClassLoaderDataGraph
2894 void MetaspaceAux::dump(outputStream* out) {
2895   out->print_cr("All Metaspace:");
2896   out->print("data space: "); print_on(out, Metaspace::NonClassType);
2897   out->print("class space: "); print_on(out, Metaspace::ClassType);
2898   print_waste(out);
2899 }
2900 
2901 void MetaspaceAux::verify_free_chunks() {
2902   Metaspace::chunk_manager_metadata()->verify();
2903   if (Metaspace::using_class_space()) {
2904     Metaspace::chunk_manager_class()->verify();
2905   }
2906 }
2907 
2908 void MetaspaceAux::verify_capacity() {
2909 #ifdef ASSERT
2910   size_t running_sum_capacity_bytes = capacity_bytes();
2911   // For purposes of the running sum of capacity, verify against capacity
2912   size_t capacity_in_use_bytes = capacity_bytes_slow();
2913   assert(running_sum_capacity_bytes == capacity_in_use_bytes,
2914          "capacity_words() * BytesPerWord " SIZE_FORMAT
2915          " capacity_bytes_slow()" SIZE_FORMAT,
2916          running_sum_capacity_bytes, capacity_in_use_bytes);
2917   for (Metaspace::MetadataType i = Metaspace::ClassType;
2918        i < Metaspace:: MetadataTypeCount;
2919        i = (Metaspace::MetadataType)(i + 1)) {
2920     size_t capacity_in_use_bytes = capacity_bytes_slow(i);
2921     assert(capacity_bytes(i) == capacity_in_use_bytes,
2922            "capacity_bytes(%u) " SIZE_FORMAT
2923            " capacity_bytes_slow(%u)" SIZE_FORMAT,
2924            i, capacity_bytes(i), i, capacity_in_use_bytes);
2925   }
2926 #endif
2927 }
2928 
2929 void MetaspaceAux::verify_used() {
2930 #ifdef ASSERT
2931   size_t running_sum_used_bytes = used_bytes();
2932   // For purposes of the running sum of used, verify against used
2933   size_t used_in_use_bytes = used_bytes_slow();
2934   assert(used_bytes() == used_in_use_bytes,
2935          "used_bytes() " SIZE_FORMAT
2936          " used_bytes_slow()" SIZE_FORMAT,
2937          used_bytes(), used_in_use_bytes);
2938   for (Metaspace::MetadataType i = Metaspace::ClassType;
2939        i < Metaspace:: MetadataTypeCount;
2940        i = (Metaspace::MetadataType)(i + 1)) {
2941     size_t used_in_use_bytes = used_bytes_slow(i);
2942     assert(used_bytes(i) == used_in_use_bytes,
2943            "used_bytes(%u) " SIZE_FORMAT
2944            " used_bytes_slow(%u)" SIZE_FORMAT,
2945            i, used_bytes(i), i, used_in_use_bytes);
2946   }
2947 #endif
2948 }
2949 
2950 void MetaspaceAux::verify_metrics() {
2951   verify_capacity();
2952   verify_used();
2953 }
2954 
2955 
2956 // Metaspace methods
2957 
2958 size_t Metaspace::_first_chunk_word_size = 0;
2959 size_t Metaspace::_first_class_chunk_word_size = 0;
2960 
2961 size_t Metaspace::_commit_alignment = 0;
2962 size_t Metaspace::_reserve_alignment = 0;
2963 
2964 Metaspace::Metaspace(Mutex* lock, MetaspaceType type) {
2965   initialize(lock, type);
2966 }
2967 
2968 Metaspace::~Metaspace() {
2969   delete _vsm;
2970   if (using_class_space()) {
2971     delete _class_vsm;
2972   }
2973 }
2974 
2975 VirtualSpaceList* Metaspace::_space_list = NULL;
2976 VirtualSpaceList* Metaspace::_class_space_list = NULL;
2977 
2978 ChunkManager* Metaspace::_chunk_manager_metadata = NULL;
2979 ChunkManager* Metaspace::_chunk_manager_class = NULL;
2980 
2981 #define VIRTUALSPACEMULTIPLIER 2
2982 
2983 #ifdef _LP64
2984 static const uint64_t UnscaledClassSpaceMax = (uint64_t(max_juint) + 1);
2985 
2986 void Metaspace::set_narrow_klass_base_and_shift(address metaspace_base, address cds_base) {
2987   // Figure out the narrow_klass_base and the narrow_klass_shift.  The
2988   // narrow_klass_base is the lower of the metaspace base and the cds base
2989   // (if cds is enabled).  The narrow_klass_shift depends on the distance
2990   // between the lower base and higher address.
2991   address lower_base;
2992   address higher_address;
2993 #if INCLUDE_CDS
2994   if (UseSharedSpaces) {
2995     higher_address = MAX2((address)(cds_base + FileMapInfo::shared_spaces_size()),
2996                           (address)(metaspace_base + compressed_class_space_size()));
2997     lower_base = MIN2(metaspace_base, cds_base);
2998   } else
2999 #endif
3000   {
3001     higher_address = metaspace_base + compressed_class_space_size();
3002     lower_base = metaspace_base;
3003 
3004     uint64_t klass_encoding_max = UnscaledClassSpaceMax << LogKlassAlignmentInBytes;
3005     // If compressed class space fits in lower 32G, we don't need a base.
3006     if (higher_address <= (address)klass_encoding_max) {
3007       lower_base = 0; // Effectively lower base is zero.
3008     }
3009   }
3010 
3011   Universe::set_narrow_klass_base(lower_base);
3012 
3013   if ((uint64_t)(higher_address - lower_base) <= UnscaledClassSpaceMax) {
3014     Universe::set_narrow_klass_shift(0);
3015   } else {
3016     assert(!UseSharedSpaces, "Cannot shift with UseSharedSpaces");
3017     Universe::set_narrow_klass_shift(LogKlassAlignmentInBytes);
3018   }
3019 }
3020 
3021 #if INCLUDE_CDS
3022 // Return TRUE if the specified metaspace_base and cds_base are close enough
3023 // to work with compressed klass pointers.
3024 bool Metaspace::can_use_cds_with_metaspace_addr(char* metaspace_base, address cds_base) {
3025   assert(cds_base != 0 && UseSharedSpaces, "Only use with CDS");
3026   assert(UseCompressedClassPointers, "Only use with CompressedKlassPtrs");
3027   address lower_base = MIN2((address)metaspace_base, cds_base);
3028   address higher_address = MAX2((address)(cds_base + FileMapInfo::shared_spaces_size()),
3029                                 (address)(metaspace_base + compressed_class_space_size()));
3030   return ((uint64_t)(higher_address - lower_base) <= UnscaledClassSpaceMax);
3031 }
3032 #endif
3033 
3034 // Try to allocate the metaspace at the requested addr.
3035 void Metaspace::allocate_metaspace_compressed_klass_ptrs(char* requested_addr, address cds_base) {
3036   assert(using_class_space(), "called improperly");
3037   assert(UseCompressedClassPointers, "Only use with CompressedKlassPtrs");
3038   assert(compressed_class_space_size() < KlassEncodingMetaspaceMax,
3039          "Metaspace size is too big");
3040   assert_is_ptr_aligned(requested_addr, _reserve_alignment);
3041   assert_is_ptr_aligned(cds_base, _reserve_alignment);
3042   assert_is_size_aligned(compressed_class_space_size(), _reserve_alignment);
3043 
3044   // Don't use large pages for the class space.
3045   bool large_pages = false;
3046 
3047 #if !(defined(AARCH64) || defined(AIX))
3048   ReservedSpace metaspace_rs = ReservedSpace(compressed_class_space_size(),
3049                                              _reserve_alignment,
3050                                              large_pages,
3051                                              requested_addr);
3052 #else // AARCH64
3053   ReservedSpace metaspace_rs;
3054 
3055   // Our compressed klass pointers may fit nicely into the lower 32
3056   // bits.
3057   if ((uint64_t)requested_addr + compressed_class_space_size() < 4*G) {
3058     metaspace_rs = ReservedSpace(compressed_class_space_size(),
3059                                  _reserve_alignment,
3060                                  large_pages,
3061                                  requested_addr);
3062   }
3063 
3064   if (! metaspace_rs.is_reserved()) {
3065     // Aarch64: Try to align metaspace so that we can decode a compressed
3066     // klass with a single MOVK instruction.  We can do this iff the
3067     // compressed class base is a multiple of 4G.
3068     // Aix: Search for a place where we can find memory. If we need to load
3069     // the base, 4G alignment is helpful, too.
3070     size_t increment = AARCH64_ONLY(4*)G;
3071     for (char *a = (char*)align_ptr_up(requested_addr, increment);
3072          a < (char*)(1024*G);
3073          a += increment) {
3074       if (a == (char *)(32*G)) {
3075         // Go faster from here on. Zero-based is no longer possible.
3076         increment = 4*G;
3077       }
3078 
3079 #if INCLUDE_CDS
3080       if (UseSharedSpaces
3081           && ! can_use_cds_with_metaspace_addr(a, cds_base)) {
3082         // We failed to find an aligned base that will reach.  Fall
3083         // back to using our requested addr.
3084         metaspace_rs = ReservedSpace(compressed_class_space_size(),
3085                                      _reserve_alignment,
3086                                      large_pages,
3087                                      requested_addr);
3088         break;
3089       }
3090 #endif
3091 
3092       metaspace_rs = ReservedSpace(compressed_class_space_size(),
3093                                    _reserve_alignment,
3094                                    large_pages,
3095                                    a);
3096       if (metaspace_rs.is_reserved())
3097         break;
3098     }
3099   }
3100 
3101 #endif // AARCH64
3102 
3103   if (!metaspace_rs.is_reserved()) {
3104 #if INCLUDE_CDS
3105     if (UseSharedSpaces) {
3106       size_t increment = align_size_up(1*G, _reserve_alignment);
3107 
3108       // Keep trying to allocate the metaspace, increasing the requested_addr
3109       // by 1GB each time, until we reach an address that will no longer allow
3110       // use of CDS with compressed klass pointers.
3111       char *addr = requested_addr;
3112       while (!metaspace_rs.is_reserved() && (addr + increment > addr) &&
3113              can_use_cds_with_metaspace_addr(addr + increment, cds_base)) {
3114         addr = addr + increment;
3115         metaspace_rs = ReservedSpace(compressed_class_space_size(),
3116                                      _reserve_alignment, large_pages, addr);
3117       }
3118     }
3119 #endif
3120     // If no successful allocation then try to allocate the space anywhere.  If
3121     // that fails then OOM doom.  At this point we cannot try allocating the
3122     // metaspace as if UseCompressedClassPointers is off because too much
3123     // initialization has happened that depends on UseCompressedClassPointers.
3124     // So, UseCompressedClassPointers cannot be turned off at this point.
3125     if (!metaspace_rs.is_reserved()) {
3126       metaspace_rs = ReservedSpace(compressed_class_space_size(),
3127                                    _reserve_alignment, large_pages);
3128       if (!metaspace_rs.is_reserved()) {
3129         vm_exit_during_initialization(err_msg("Could not allocate metaspace: " SIZE_FORMAT " bytes",
3130                                               compressed_class_space_size()));
3131       }
3132     }
3133   }
3134 
3135   // If we got here then the metaspace got allocated.
3136   MemTracker::record_virtual_memory_type((address)metaspace_rs.base(), mtClass);
3137 
3138 #if INCLUDE_CDS
3139   // Verify that we can use shared spaces.  Otherwise, turn off CDS.
3140   if (UseSharedSpaces && !can_use_cds_with_metaspace_addr(metaspace_rs.base(), cds_base)) {
3141     FileMapInfo::stop_sharing_and_unmap(
3142         "Could not allocate metaspace at a compatible address");
3143   }
3144 #endif
3145   set_narrow_klass_base_and_shift((address)metaspace_rs.base(),
3146                                   UseSharedSpaces ? (address)cds_base : 0);
3147 
3148   initialize_class_space(metaspace_rs);
3149 
3150   if (log_is_enabled(Trace, gc, metaspace)) {
3151     Log(gc, metaspace) log;
3152     ResourceMark rm;
3153     print_compressed_class_space(log.trace_stream(), requested_addr);
3154   }
3155 }
3156 
3157 void Metaspace::print_compressed_class_space(outputStream* st, const char* requested_addr) {
3158   st->print_cr("Narrow klass base: " PTR_FORMAT ", Narrow klass shift: %d",
3159                p2i(Universe::narrow_klass_base()), Universe::narrow_klass_shift());
3160   if (_class_space_list != NULL) {
3161     address base = (address)_class_space_list->current_virtual_space()->bottom();
3162     st->print("Compressed class space size: " SIZE_FORMAT " Address: " PTR_FORMAT,
3163                  compressed_class_space_size(), p2i(base));
3164     if (requested_addr != 0) {
3165       st->print(" Req Addr: " PTR_FORMAT, p2i(requested_addr));
3166     }
3167     st->cr();
3168   }
3169 }
3170 
3171 // For UseCompressedClassPointers the class space is reserved above the top of
3172 // the Java heap.  The argument passed in is at the base of the compressed space.
3173 void Metaspace::initialize_class_space(ReservedSpace rs) {
3174   // The reserved space size may be bigger because of alignment, esp with UseLargePages
3175   assert(rs.size() >= CompressedClassSpaceSize,
3176          SIZE_FORMAT " != " SIZE_FORMAT, rs.size(), CompressedClassSpaceSize);
3177   assert(using_class_space(), "Must be using class space");
3178   _class_space_list = new VirtualSpaceList(rs);
3179   _chunk_manager_class = new ChunkManager(SpecializedChunk, ClassSmallChunk, ClassMediumChunk);
3180 
3181   if (!_class_space_list->initialization_succeeded()) {
3182     vm_exit_during_initialization("Failed to setup compressed class space virtual space list.");
3183   }
3184 }
3185 
3186 #endif
3187 
3188 void Metaspace::ergo_initialize() {
3189   if (DumpSharedSpaces) {
3190     // Using large pages when dumping the shared archive is currently not implemented.
3191     FLAG_SET_ERGO(bool, UseLargePagesInMetaspace, false);
3192   }
3193 
3194   size_t page_size = os::vm_page_size();
3195   if (UseLargePages && UseLargePagesInMetaspace) {
3196     page_size = os::large_page_size();
3197   }
3198 
3199   _commit_alignment  = page_size;
3200   _reserve_alignment = MAX2(page_size, (size_t)os::vm_allocation_granularity());
3201 
3202   // Do not use FLAG_SET_ERGO to update MaxMetaspaceSize, since this will
3203   // override if MaxMetaspaceSize was set on the command line or not.
3204   // This information is needed later to conform to the specification of the
3205   // java.lang.management.MemoryUsage API.
3206   //
3207   // Ideally, we would be able to set the default value of MaxMetaspaceSize in
3208   // globals.hpp to the aligned value, but this is not possible, since the
3209   // alignment depends on other flags being parsed.
3210   MaxMetaspaceSize = align_size_down_bounded(MaxMetaspaceSize, _reserve_alignment);
3211 
3212   if (MetaspaceSize > MaxMetaspaceSize) {
3213     MetaspaceSize = MaxMetaspaceSize;
3214   }
3215 
3216   MetaspaceSize = align_size_down_bounded(MetaspaceSize, _commit_alignment);
3217 
3218   assert(MetaspaceSize <= MaxMetaspaceSize, "MetaspaceSize should be limited by MaxMetaspaceSize");
3219 
3220   MinMetaspaceExpansion = align_size_down_bounded(MinMetaspaceExpansion, _commit_alignment);
3221   MaxMetaspaceExpansion = align_size_down_bounded(MaxMetaspaceExpansion, _commit_alignment);
3222 
3223   CompressedClassSpaceSize = align_size_down_bounded(CompressedClassSpaceSize, _reserve_alignment);
3224   set_compressed_class_space_size(CompressedClassSpaceSize);
3225 }
3226 
3227 void Metaspace::global_initialize() {
3228   MetaspaceGC::initialize();
3229 
3230   // Initialize the alignment for shared spaces.
3231   int max_alignment = os::vm_allocation_granularity();
3232   size_t cds_total = 0;
3233 
3234   MetaspaceShared::set_max_alignment(max_alignment);
3235 
3236   if (DumpSharedSpaces) {
3237 #if INCLUDE_CDS
3238     MetaspaceShared::estimate_regions_size();
3239 
3240     SharedReadOnlySize  = align_size_up(SharedReadOnlySize,  max_alignment);
3241     SharedReadWriteSize = align_size_up(SharedReadWriteSize, max_alignment);
3242     SharedMiscDataSize  = align_size_up(SharedMiscDataSize,  max_alignment);
3243     SharedMiscCodeSize  = align_size_up(SharedMiscCodeSize,  max_alignment);
3244 
3245     // Initialize with the sum of the shared space sizes.  The read-only
3246     // and read write metaspace chunks will be allocated out of this and the
3247     // remainder is the misc code and data chunks.
3248     cds_total = FileMapInfo::shared_spaces_size();
3249     cds_total = align_size_up(cds_total, _reserve_alignment);
3250     _space_list = new VirtualSpaceList(cds_total/wordSize);
3251     _chunk_manager_metadata = new ChunkManager(SpecializedChunk, SmallChunk, MediumChunk);
3252 
3253     if (!_space_list->initialization_succeeded()) {
3254       vm_exit_during_initialization("Unable to dump shared archive.", NULL);
3255     }
3256 
3257 #ifdef _LP64
3258     if (cds_total + compressed_class_space_size() > UnscaledClassSpaceMax) {
3259       vm_exit_during_initialization("Unable to dump shared archive.",
3260           err_msg("Size of archive (" SIZE_FORMAT ") + compressed class space ("
3261                   SIZE_FORMAT ") == total (" SIZE_FORMAT ") is larger than compressed "
3262                   "klass limit: " UINT64_FORMAT, cds_total, compressed_class_space_size(),
3263                   cds_total + compressed_class_space_size(), UnscaledClassSpaceMax));
3264     }
3265 
3266     // Set the compressed klass pointer base so that decoding of these pointers works
3267     // properly when creating the shared archive.
3268     assert(UseCompressedOops && UseCompressedClassPointers,
3269       "UseCompressedOops and UseCompressedClassPointers must be set");
3270     Universe::set_narrow_klass_base((address)_space_list->current_virtual_space()->bottom());
3271     log_develop_trace(gc, metaspace)("Setting_narrow_klass_base to Address: " PTR_FORMAT,
3272                                      p2i(_space_list->current_virtual_space()->bottom()));
3273 
3274     Universe::set_narrow_klass_shift(0);
3275 #endif // _LP64
3276 #endif // INCLUDE_CDS
3277   } else {
3278 #if INCLUDE_CDS
3279     if (UseSharedSpaces) {
3280       // If using shared space, open the file that contains the shared space
3281       // and map in the memory before initializing the rest of metaspace (so
3282       // the addresses don't conflict)
3283       address cds_address = NULL;
3284       FileMapInfo* mapinfo = new FileMapInfo();
3285 
3286       // Open the shared archive file, read and validate the header. If
3287       // initialization fails, shared spaces [UseSharedSpaces] are
3288       // disabled and the file is closed.
3289       // Map in spaces now also
3290       if (mapinfo->initialize() && MetaspaceShared::map_shared_spaces(mapinfo)) {
3291         cds_total = FileMapInfo::shared_spaces_size();
3292         cds_address = (address)mapinfo->header()->region_addr(0);
3293 #ifdef _LP64
3294         if (using_class_space()) {
3295           char* cds_end = (char*)(cds_address + cds_total);
3296           cds_end = (char *)align_ptr_up(cds_end, _reserve_alignment);
3297           // If UseCompressedClassPointers is set then allocate the metaspace area
3298           // above the heap and above the CDS area (if it exists).
3299           allocate_metaspace_compressed_klass_ptrs(cds_end, cds_address);
3300           // Map the shared string space after compressed pointers
3301           // because it relies on compressed class pointers setting to work
3302           mapinfo->map_string_regions();
3303         }
3304 #endif // _LP64
3305       } else {
3306         assert(!mapinfo->is_open() && !UseSharedSpaces,
3307                "archive file not closed or shared spaces not disabled.");
3308       }
3309     }
3310 #endif // INCLUDE_CDS
3311 
3312 #ifdef _LP64
3313     if (!UseSharedSpaces && using_class_space()) {
3314       char* base = (char*)align_ptr_up(Universe::heap()->reserved_region().end(), _reserve_alignment);
3315       allocate_metaspace_compressed_klass_ptrs(base, 0);
3316     }
3317 #endif // _LP64
3318 
3319     // Initialize these before initializing the VirtualSpaceList
3320     _first_chunk_word_size = InitialBootClassLoaderMetaspaceSize / BytesPerWord;
3321     _first_chunk_word_size = align_word_size_up(_first_chunk_word_size);
3322     // Make the first class chunk bigger than a medium chunk so it's not put
3323     // on the medium chunk list.   The next chunk will be small and progress
3324     // from there.  This size calculated by -version.
3325     _first_class_chunk_word_size = MIN2((size_t)MediumChunk*6,
3326                                        (CompressedClassSpaceSize/BytesPerWord)*2);
3327     _first_class_chunk_word_size = align_word_size_up(_first_class_chunk_word_size);
3328     // Arbitrarily set the initial virtual space to a multiple
3329     // of the boot class loader size.
3330     size_t word_size = VIRTUALSPACEMULTIPLIER * _first_chunk_word_size;
3331     word_size = align_size_up(word_size, Metaspace::reserve_alignment_words());
3332 
3333     // Initialize the list of virtual spaces.
3334     _space_list = new VirtualSpaceList(word_size);
3335     _chunk_manager_metadata = new ChunkManager(SpecializedChunk, SmallChunk, MediumChunk);
3336 
3337     if (!_space_list->initialization_succeeded()) {
3338       vm_exit_during_initialization("Unable to setup metadata virtual space list.", NULL);
3339     }
3340   }
3341 
3342   _tracer = new MetaspaceTracer();
3343 }
3344 
3345 void Metaspace::post_initialize() {
3346   MetaspaceGC::post_initialize();
3347 }
3348 
3349 Metachunk* Metaspace::get_initialization_chunk(MetadataType mdtype,
3350                                                size_t chunk_word_size,
3351                                                size_t chunk_bunch) {
3352   // Get a chunk from the chunk freelist
3353   Metachunk* chunk = get_chunk_manager(mdtype)->chunk_freelist_allocate(chunk_word_size);
3354   if (chunk != NULL) {
3355     return chunk;
3356   }
3357 
3358   return get_space_list(mdtype)->get_new_chunk(chunk_word_size, chunk_word_size, chunk_bunch);
3359 }
3360 
3361 void Metaspace::initialize(Mutex* lock, MetaspaceType type) {
3362 
3363   assert(space_list() != NULL,
3364     "Metadata VirtualSpaceList has not been initialized");
3365   assert(chunk_manager_metadata() != NULL,
3366     "Metadata ChunkManager has not been initialized");
3367 
3368   _vsm = new SpaceManager(NonClassType, lock);
3369   if (_vsm == NULL) {
3370     return;
3371   }
3372   size_t word_size;
3373   size_t class_word_size;
3374   vsm()->get_initial_chunk_sizes(type, &word_size, &class_word_size);
3375 
3376   if (using_class_space()) {
3377   assert(class_space_list() != NULL,
3378     "Class VirtualSpaceList has not been initialized");
3379   assert(chunk_manager_class() != NULL,
3380     "Class ChunkManager has not been initialized");
3381 
3382     // Allocate SpaceManager for classes.
3383     _class_vsm = new SpaceManager(ClassType, lock);
3384     if (_class_vsm == NULL) {
3385       return;
3386     }
3387   }
3388 
3389   MutexLockerEx cl(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag);
3390 
3391   // Allocate chunk for metadata objects
3392   Metachunk* new_chunk = get_initialization_chunk(NonClassType,
3393                                                   word_size,
3394                                                   vsm()->medium_chunk_bunch());
3395   // For dumping shared archive, report error if allocation has failed.
3396   if (DumpSharedSpaces && new_chunk == NULL) {
3397     report_insufficient_metaspace(MetaspaceAux::committed_bytes() + word_size * BytesPerWord);
3398   }
3399   assert(!DumpSharedSpaces || new_chunk != NULL, "should have enough space for both chunks");
3400   if (new_chunk != NULL) {
3401     // Add to this manager's list of chunks in use and current_chunk().
3402     vsm()->add_chunk(new_chunk, true);
3403   }
3404 
3405   // Allocate chunk for class metadata objects
3406   if (using_class_space()) {
3407     Metachunk* class_chunk = get_initialization_chunk(ClassType,
3408                                                       class_word_size,
3409                                                       class_vsm()->medium_chunk_bunch());
3410     if (class_chunk != NULL) {
3411       class_vsm()->add_chunk(class_chunk, true);
3412     } else {
3413       // For dumping shared archive, report error if allocation has failed.
3414       if (DumpSharedSpaces) {
3415         report_insufficient_metaspace(MetaspaceAux::committed_bytes() + class_word_size * BytesPerWord);
3416       }
3417     }
3418   }
3419 
3420   _alloc_record_head = NULL;
3421   _alloc_record_tail = NULL;
3422 }
3423 
3424 size_t Metaspace::align_word_size_up(size_t word_size) {
3425   size_t byte_size = word_size * wordSize;
3426   return ReservedSpace::allocation_align_size_up(byte_size) / wordSize;
3427 }
3428 
3429 MetaWord* Metaspace::allocate(size_t word_size, MetadataType mdtype) {
3430   // DumpSharedSpaces doesn't use class metadata area (yet)
3431   // Also, don't use class_vsm() unless UseCompressedClassPointers is true.
3432   if (is_class_space_allocation(mdtype)) {
3433     return  class_vsm()->allocate(word_size);
3434   } else {
3435     return  vsm()->allocate(word_size);
3436   }
3437 }
3438 
3439 MetaWord* Metaspace::expand_and_allocate(size_t word_size, MetadataType mdtype) {
3440   size_t delta_bytes = MetaspaceGC::delta_capacity_until_GC(word_size * BytesPerWord);
3441   assert(delta_bytes > 0, "Must be");
3442 
3443   size_t before = 0;
3444   size_t after = 0;
3445   MetaWord* res;
3446   bool incremented;
3447 
3448   // Each thread increments the HWM at most once. Even if the thread fails to increment
3449   // the HWM, an allocation is still attempted. This is because another thread must then
3450   // have incremented the HWM and therefore the allocation might still succeed.
3451   do {
3452     incremented = MetaspaceGC::inc_capacity_until_GC(delta_bytes, &after, &before);
3453     res = allocate(word_size, mdtype);
3454   } while (!incremented && res == NULL);
3455 
3456   if (incremented) {
3457     tracer()->report_gc_threshold(before, after,
3458                                   MetaspaceGCThresholdUpdater::ExpandAndAllocate);
3459     log_trace(gc, metaspace)("Increase capacity to GC from " SIZE_FORMAT " to " SIZE_FORMAT, before, after);
3460   }
3461 
3462   return res;
3463 }
3464 
3465 // Space allocated in the Metaspace.  This may
3466 // be across several metadata virtual spaces.
3467 char* Metaspace::bottom() const {
3468   assert(DumpSharedSpaces, "only useful and valid for dumping shared spaces");
3469   return (char*)vsm()->current_chunk()->bottom();
3470 }
3471 
3472 size_t Metaspace::used_words_slow(MetadataType mdtype) const {
3473   if (mdtype == ClassType) {
3474     return using_class_space() ? class_vsm()->sum_used_in_chunks_in_use() : 0;
3475   } else {
3476     return vsm()->sum_used_in_chunks_in_use();  // includes overhead!
3477   }
3478 }
3479 
3480 size_t Metaspace::free_words_slow(MetadataType mdtype) const {
3481   if (mdtype == ClassType) {
3482     return using_class_space() ? class_vsm()->sum_free_in_chunks_in_use() : 0;
3483   } else {
3484     return vsm()->sum_free_in_chunks_in_use();
3485   }
3486 }
3487 
3488 // Space capacity in the Metaspace.  It includes
3489 // space in the list of chunks from which allocations
3490 // have been made. Don't include space in the global freelist and
3491 // in the space available in the dictionary which
3492 // is already counted in some chunk.
3493 size_t Metaspace::capacity_words_slow(MetadataType mdtype) const {
3494   if (mdtype == ClassType) {
3495     return using_class_space() ? class_vsm()->sum_capacity_in_chunks_in_use() : 0;
3496   } else {
3497     return vsm()->sum_capacity_in_chunks_in_use();
3498   }
3499 }
3500 
3501 size_t Metaspace::used_bytes_slow(MetadataType mdtype) const {
3502   return used_words_slow(mdtype) * BytesPerWord;
3503 }
3504 
3505 size_t Metaspace::capacity_bytes_slow(MetadataType mdtype) const {
3506   return capacity_words_slow(mdtype) * BytesPerWord;
3507 }
3508 
3509 size_t Metaspace::allocated_blocks_bytes() const {
3510   return vsm()->allocated_blocks_bytes() +
3511       (using_class_space() ? class_vsm()->allocated_blocks_bytes() : 0);
3512 }
3513 
3514 size_t Metaspace::allocated_chunks_bytes() const {
3515   return vsm()->allocated_chunks_bytes() +
3516       (using_class_space() ? class_vsm()->allocated_chunks_bytes() : 0);
3517 }
3518 
3519 void Metaspace::deallocate(MetaWord* ptr, size_t word_size, bool is_class) {
3520   assert(!SafepointSynchronize::is_at_safepoint()
3521          || Thread::current()->is_VM_thread(), "should be the VM thread");
3522 
3523   if (DumpSharedSpaces && PrintSharedSpaces) {
3524     record_deallocation(ptr, vsm()->get_allocation_word_size(word_size));
3525   }
3526 
3527   MutexLockerEx ml(vsm()->lock(), Mutex::_no_safepoint_check_flag);
3528 
3529   if (is_class && using_class_space()) {
3530     class_vsm()->deallocate(ptr, word_size);
3531   } else {
3532     vsm()->deallocate(ptr, word_size);
3533   }
3534 }
3535 
3536 
3537 MetaWord* Metaspace::allocate(ClassLoaderData* loader_data, size_t word_size,
3538                               bool read_only, MetaspaceObj::Type type, TRAPS) {
3539   if (HAS_PENDING_EXCEPTION) {
3540     assert(false, "Should not allocate with exception pending");
3541     return NULL;  // caller does a CHECK_NULL too
3542   }
3543 
3544   assert(loader_data != NULL, "Should never pass around a NULL loader_data. "
3545         "ClassLoaderData::the_null_class_loader_data() should have been used.");
3546 
3547   // Allocate in metaspaces without taking out a lock, because it deadlocks
3548   // with the SymbolTable_lock.  Dumping is single threaded for now.  We'll have
3549   // to revisit this for application class data sharing.
3550   if (DumpSharedSpaces) {
3551     assert(type > MetaspaceObj::UnknownType && type < MetaspaceObj::_number_of_types, "sanity");
3552     Metaspace* space = read_only ? loader_data->ro_metaspace() : loader_data->rw_metaspace();
3553     MetaWord* result = space->allocate(word_size, NonClassType);
3554     if (result == NULL) {
3555       report_out_of_shared_space(read_only ? SharedReadOnly : SharedReadWrite);
3556     }
3557     if (PrintSharedSpaces) {
3558       space->record_allocation(result, type, space->vsm()->get_allocation_word_size(word_size));
3559     }
3560 
3561     // Zero initialize.
3562     Copy::fill_to_words((HeapWord*)result, word_size, 0);
3563 
3564     return result;
3565   }
3566 
3567   MetadataType mdtype = (type == MetaspaceObj::ClassType) ? ClassType : NonClassType;
3568 
3569   // Try to allocate metadata.
3570   MetaWord* result = loader_data->metaspace_non_null()->allocate(word_size, mdtype);
3571 
3572   if (result == NULL) {
3573     tracer()->report_metaspace_allocation_failure(loader_data, word_size, type, mdtype);
3574 
3575     // Allocation failed.
3576     if (is_init_completed()) {
3577       // Only start a GC if the bootstrapping has completed.
3578 
3579       // Try to clean out some memory and retry.
3580       result = Universe::heap()->collector_policy()->satisfy_failed_metadata_allocation(
3581           loader_data, word_size, mdtype);
3582     }
3583   }
3584 
3585   if (result == NULL) {
3586     SpaceManager* sm;
3587     if (is_class_space_allocation(mdtype)) {
3588       sm = loader_data->metaspace_non_null()->class_vsm();
3589     } else {
3590       sm = loader_data->metaspace_non_null()->vsm();
3591     }
3592 
3593     result = sm->get_small_chunk_and_allocate(word_size);
3594 
3595     if (result == NULL) {
3596       report_metadata_oome(loader_data, word_size, type, mdtype, CHECK_NULL);
3597     }
3598   }
3599 
3600   // Zero initialize.
3601   Copy::fill_to_words((HeapWord*)result, word_size, 0);
3602 
3603   return result;
3604 }
3605 
3606 size_t Metaspace::class_chunk_size(size_t word_size) {
3607   assert(using_class_space(), "Has to use class space");
3608   return class_vsm()->calc_chunk_size(word_size);
3609 }
3610 
3611 void Metaspace::report_metadata_oome(ClassLoaderData* loader_data, size_t word_size, MetaspaceObj::Type type, MetadataType mdtype, TRAPS) {
3612   tracer()->report_metadata_oom(loader_data, word_size, type, mdtype);
3613 
3614   // If result is still null, we are out of memory.
3615   Log(gc, metaspace, freelist) log;
3616   if (log.is_info()) {
3617     log.info("Metaspace (%s) allocation failed for size " SIZE_FORMAT,
3618              is_class_space_allocation(mdtype) ? "class" : "data", word_size);
3619     ResourceMark rm;
3620     outputStream* out = log.info_stream();
3621     if (loader_data->metaspace_or_null() != NULL) {
3622       loader_data->dump(out);
3623     }
3624     MetaspaceAux::dump(out);
3625   }
3626 
3627   bool out_of_compressed_class_space = false;
3628   if (is_class_space_allocation(mdtype)) {
3629     Metaspace* metaspace = loader_data->metaspace_non_null();
3630     out_of_compressed_class_space =
3631       MetaspaceAux::committed_bytes(Metaspace::ClassType) +
3632       (metaspace->class_chunk_size(word_size) * BytesPerWord) >
3633       CompressedClassSpaceSize;
3634   }
3635 
3636   // -XX:+HeapDumpOnOutOfMemoryError and -XX:OnOutOfMemoryError support
3637   const char* space_string = out_of_compressed_class_space ?
3638     "Compressed class space" : "Metaspace";
3639 
3640   report_java_out_of_memory(space_string);
3641 
3642   if (JvmtiExport::should_post_resource_exhausted()) {
3643     JvmtiExport::post_resource_exhausted(
3644         JVMTI_RESOURCE_EXHAUSTED_OOM_ERROR,
3645         space_string);
3646   }
3647 
3648   if (!is_init_completed()) {
3649     vm_exit_during_initialization("OutOfMemoryError", space_string);
3650   }
3651 
3652   if (out_of_compressed_class_space) {
3653     THROW_OOP(Universe::out_of_memory_error_class_metaspace());
3654   } else {
3655     THROW_OOP(Universe::out_of_memory_error_metaspace());
3656   }
3657 }
3658 
3659 const char* Metaspace::metadata_type_name(Metaspace::MetadataType mdtype) {
3660   switch (mdtype) {
3661     case Metaspace::ClassType: return "Class";
3662     case Metaspace::NonClassType: return "Metadata";
3663     default:
3664       assert(false, "Got bad mdtype: %d", (int) mdtype);
3665       return NULL;
3666   }
3667 }
3668 
3669 void Metaspace::record_allocation(void* ptr, MetaspaceObj::Type type, size_t word_size) {
3670   assert(DumpSharedSpaces, "sanity");
3671 
3672   int byte_size = (int)word_size * wordSize;
3673   AllocRecord *rec = new AllocRecord((address)ptr, type, byte_size);
3674 
3675   if (_alloc_record_head == NULL) {
3676     _alloc_record_head = _alloc_record_tail = rec;
3677   } else if (_alloc_record_tail->_ptr + _alloc_record_tail->_byte_size == (address)ptr) {
3678     _alloc_record_tail->_next = rec;
3679     _alloc_record_tail = rec;
3680   } else {
3681     // slow linear search, but this doesn't happen that often, and only when dumping
3682     for (AllocRecord *old = _alloc_record_head; old; old = old->_next) {
3683       if (old->_ptr == ptr) {
3684         assert(old->_type == MetaspaceObj::DeallocatedType, "sanity");
3685         int remain_bytes = old->_byte_size - byte_size;
3686         assert(remain_bytes >= 0, "sanity");
3687         old->_type = type;
3688 
3689         if (remain_bytes == 0) {
3690           delete(rec);
3691         } else {
3692           address remain_ptr = address(ptr) + byte_size;
3693           rec->_ptr = remain_ptr;
3694           rec->_byte_size = remain_bytes;
3695           rec->_type = MetaspaceObj::DeallocatedType;
3696           rec->_next = old->_next;
3697           old->_byte_size = byte_size;
3698           old->_next = rec;
3699         }
3700         return;
3701       }
3702     }
3703     assert(0, "reallocating a freed pointer that was not recorded");
3704   }
3705 }
3706 
3707 void Metaspace::record_deallocation(void* ptr, size_t word_size) {
3708   assert(DumpSharedSpaces, "sanity");
3709 
3710   for (AllocRecord *rec = _alloc_record_head; rec; rec = rec->_next) {
3711     if (rec->_ptr == ptr) {
3712       assert(rec->_byte_size == (int)word_size * wordSize, "sanity");
3713       rec->_type = MetaspaceObj::DeallocatedType;
3714       return;
3715     }
3716   }
3717 
3718   assert(0, "deallocating a pointer that was not recorded");
3719 }
3720 
3721 void Metaspace::iterate(Metaspace::AllocRecordClosure *closure) {
3722   assert(DumpSharedSpaces, "unimplemented for !DumpSharedSpaces");
3723 
3724   address last_addr = (address)bottom();
3725 
3726   for (AllocRecord *rec = _alloc_record_head; rec; rec = rec->_next) {
3727     address ptr = rec->_ptr;
3728     if (last_addr < ptr) {
3729       closure->doit(last_addr, MetaspaceObj::UnknownType, ptr - last_addr);
3730     }
3731     closure->doit(ptr, rec->_type, rec->_byte_size);
3732     last_addr = ptr + rec->_byte_size;
3733   }
3734 
3735   address top = ((address)bottom()) + used_bytes_slow(Metaspace::NonClassType);
3736   if (last_addr < top) {
3737     closure->doit(last_addr, MetaspaceObj::UnknownType, top - last_addr);
3738   }
3739 }
3740 
3741 void Metaspace::purge(MetadataType mdtype) {
3742   get_space_list(mdtype)->purge(get_chunk_manager(mdtype));
3743 }
3744 
3745 void Metaspace::purge() {
3746   MutexLockerEx cl(SpaceManager::expand_lock(),
3747                    Mutex::_no_safepoint_check_flag);
3748   purge(NonClassType);
3749   if (using_class_space()) {
3750     purge(ClassType);
3751   }
3752 }
3753 
3754 void Metaspace::print_on(outputStream* out) const {
3755   // Print both class virtual space counts and metaspace.
3756   if (Verbose) {
3757     vsm()->print_on(out);
3758     if (using_class_space()) {
3759       class_vsm()->print_on(out);
3760     }
3761   }
3762 }
3763 
3764 bool Metaspace::contains(const void* ptr) {
3765   if (UseSharedSpaces && MetaspaceShared::is_in_shared_space(ptr)) {
3766     return true;
3767   }
3768 
3769   if (using_class_space() && get_space_list(ClassType)->contains(ptr)) {
3770      return true;
3771   }
3772 
3773   return get_space_list(NonClassType)->contains(ptr);
3774 }
3775 
3776 void Metaspace::verify() {
3777   vsm()->verify();
3778   if (using_class_space()) {
3779     class_vsm()->verify();
3780   }
3781 }
3782 
3783 void Metaspace::dump(outputStream* const out) const {
3784   out->print_cr("\nVirtual space manager: " INTPTR_FORMAT, p2i(vsm()));
3785   vsm()->dump(out);
3786   if (using_class_space()) {
3787     out->print_cr("\nClass space manager: " INTPTR_FORMAT, p2i(class_vsm()));
3788     class_vsm()->dump(out);
3789   }
3790 }
3791 
3792 /////////////// Unit tests ///////////////
3793 
3794 #ifndef PRODUCT
3795 
3796 class TestMetaspaceAuxTest : AllStatic {
3797  public:
3798   static void test_reserved() {
3799     size_t reserved = MetaspaceAux::reserved_bytes();
3800 
3801     assert(reserved > 0, "assert");
3802 
3803     size_t committed  = MetaspaceAux::committed_bytes();
3804     assert(committed <= reserved, "assert");
3805 
3806     size_t reserved_metadata = MetaspaceAux::reserved_bytes(Metaspace::NonClassType);
3807     assert(reserved_metadata > 0, "assert");
3808     assert(reserved_metadata <= reserved, "assert");
3809 
3810     if (UseCompressedClassPointers) {
3811       size_t reserved_class    = MetaspaceAux::reserved_bytes(Metaspace::ClassType);
3812       assert(reserved_class > 0, "assert");
3813       assert(reserved_class < reserved, "assert");
3814     }
3815   }
3816 
3817   static void test_committed() {
3818     size_t committed = MetaspaceAux::committed_bytes();
3819 
3820     assert(committed > 0, "assert");
3821 
3822     size_t reserved  = MetaspaceAux::reserved_bytes();
3823     assert(committed <= reserved, "assert");
3824 
3825     size_t committed_metadata = MetaspaceAux::committed_bytes(Metaspace::NonClassType);
3826     assert(committed_metadata > 0, "assert");
3827     assert(committed_metadata <= committed, "assert");
3828 
3829     if (UseCompressedClassPointers) {
3830       size_t committed_class    = MetaspaceAux::committed_bytes(Metaspace::ClassType);
3831       assert(committed_class > 0, "assert");
3832       assert(committed_class < committed, "assert");
3833     }
3834   }
3835 
3836   static void test_virtual_space_list_large_chunk() {
3837     VirtualSpaceList* vs_list = new VirtualSpaceList(os::vm_allocation_granularity());
3838     MutexLockerEx cl(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag);
3839     // A size larger than VirtualSpaceSize (256k) and add one page to make it _not_ be
3840     // vm_allocation_granularity aligned on Windows.
3841     size_t large_size = (size_t)(2*256*K + (os::vm_page_size()/BytesPerWord));
3842     large_size += (os::vm_page_size()/BytesPerWord);
3843     vs_list->get_new_chunk(large_size, large_size, 0);
3844   }
3845 
3846   static void test() {
3847     test_reserved();
3848     test_committed();
3849     test_virtual_space_list_large_chunk();
3850   }
3851 };
3852 
3853 void TestMetaspaceAux_test() {
3854   TestMetaspaceAuxTest::test();
3855 }
3856 
3857 class TestVirtualSpaceNodeTest {
3858   static void chunk_up(size_t words_left, size_t& num_medium_chunks,
3859                                           size_t& num_small_chunks,
3860                                           size_t& num_specialized_chunks) {
3861     num_medium_chunks = words_left / MediumChunk;
3862     words_left = words_left % MediumChunk;
3863 
3864     num_small_chunks = words_left / SmallChunk;
3865     words_left = words_left % SmallChunk;
3866     // how many specialized chunks can we get?
3867     num_specialized_chunks = words_left / SpecializedChunk;
3868     assert(words_left % SpecializedChunk == 0, "should be nothing left");
3869   }
3870 
3871  public:
3872   static void test() {
3873     MutexLockerEx ml(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag);
3874     const size_t vsn_test_size_words = MediumChunk  * 4;
3875     const size_t vsn_test_size_bytes = vsn_test_size_words * BytesPerWord;
3876 
3877     // The chunk sizes must be multiples of eachother, or this will fail
3878     STATIC_ASSERT(MediumChunk % SmallChunk == 0);
3879     STATIC_ASSERT(SmallChunk % SpecializedChunk == 0);
3880 
3881     { // No committed memory in VSN
3882       ChunkManager cm(SpecializedChunk, SmallChunk, MediumChunk);
3883       VirtualSpaceNode vsn(vsn_test_size_bytes);
3884       vsn.initialize();
3885       vsn.retire(&cm);
3886       assert(cm.sum_free_chunks_count() == 0, "did not commit any memory in the VSN");
3887     }
3888 
3889     { // All of VSN is committed, half is used by chunks
3890       ChunkManager cm(SpecializedChunk, SmallChunk, MediumChunk);
3891       VirtualSpaceNode vsn(vsn_test_size_bytes);
3892       vsn.initialize();
3893       vsn.expand_by(vsn_test_size_words, vsn_test_size_words);
3894       vsn.get_chunk_vs(MediumChunk);
3895       vsn.get_chunk_vs(MediumChunk);
3896       vsn.retire(&cm);
3897       assert(cm.sum_free_chunks_count() == 2, "should have been memory left for 2 medium chunks");
3898       assert(cm.sum_free_chunks() == 2*MediumChunk, "sizes should add up");
3899     }
3900 
3901     const size_t page_chunks = 4 * (size_t)os::vm_page_size() / BytesPerWord;
3902     // This doesn't work for systems with vm_page_size >= 16K.
3903     if (page_chunks < MediumChunk) {
3904       // 4 pages of VSN is committed, some is used by chunks
3905       ChunkManager cm(SpecializedChunk, SmallChunk, MediumChunk);
3906       VirtualSpaceNode vsn(vsn_test_size_bytes);
3907 
3908       vsn.initialize();
3909       vsn.expand_by(page_chunks, page_chunks);
3910       vsn.get_chunk_vs(SmallChunk);
3911       vsn.get_chunk_vs(SpecializedChunk);
3912       vsn.retire(&cm);
3913 
3914       // committed - used = words left to retire
3915       const size_t words_left = page_chunks - SmallChunk - SpecializedChunk;
3916 
3917       size_t num_medium_chunks, num_small_chunks, num_spec_chunks;
3918       chunk_up(words_left, num_medium_chunks, num_small_chunks, num_spec_chunks);
3919 
3920       assert(num_medium_chunks == 0, "should not get any medium chunks");
3921       assert(cm.sum_free_chunks_count() == (num_small_chunks + num_spec_chunks), "should be space for 3 chunks");
3922       assert(cm.sum_free_chunks() == words_left, "sizes should add up");
3923     }
3924 
3925     { // Half of VSN is committed, a humongous chunk is used
3926       ChunkManager cm(SpecializedChunk, SmallChunk, MediumChunk);
3927       VirtualSpaceNode vsn(vsn_test_size_bytes);
3928       vsn.initialize();
3929       vsn.expand_by(MediumChunk * 2, MediumChunk * 2);
3930       vsn.get_chunk_vs(MediumChunk + SpecializedChunk); // Humongous chunks will be aligned up to MediumChunk + SpecializedChunk
3931       vsn.retire(&cm);
3932 
3933       const size_t words_left = MediumChunk * 2 - (MediumChunk + SpecializedChunk);
3934       size_t num_medium_chunks, num_small_chunks, num_spec_chunks;
3935       chunk_up(words_left, num_medium_chunks, num_small_chunks, num_spec_chunks);
3936 
3937       assert(num_medium_chunks == 0, "should not get any medium chunks");
3938       assert(cm.sum_free_chunks_count() == (num_small_chunks + num_spec_chunks), "should be space for 3 chunks");
3939       assert(cm.sum_free_chunks() == words_left, "sizes should add up");
3940     }
3941 
3942   }
3943 
3944 #define assert_is_available_positive(word_size) \
3945   assert(vsn.is_available(word_size), \
3946          #word_size ": " PTR_FORMAT " bytes were not available in " \
3947          "VirtualSpaceNode [" PTR_FORMAT ", " PTR_FORMAT ")", \
3948          (uintptr_t)(word_size * BytesPerWord), p2i(vsn.bottom()), p2i(vsn.end()));
3949 
3950 #define assert_is_available_negative(word_size) \
3951   assert(!vsn.is_available(word_size), \
3952          #word_size ": " PTR_FORMAT " bytes should not be available in " \
3953          "VirtualSpaceNode [" PTR_FORMAT ", " PTR_FORMAT ")", \
3954          (uintptr_t)(word_size * BytesPerWord), p2i(vsn.bottom()), p2i(vsn.end()));
3955 
3956   static void test_is_available_positive() {
3957     // Reserve some memory.
3958     VirtualSpaceNode vsn(os::vm_allocation_granularity());
3959     assert(vsn.initialize(), "Failed to setup VirtualSpaceNode");
3960 
3961     // Commit some memory.
3962     size_t commit_word_size = os::vm_allocation_granularity() / BytesPerWord;
3963     bool expanded = vsn.expand_by(commit_word_size, commit_word_size);
3964     assert(expanded, "Failed to commit");
3965 
3966     // Check that is_available accepts the committed size.
3967     assert_is_available_positive(commit_word_size);
3968 
3969     // Check that is_available accepts half the committed size.
3970     size_t expand_word_size = commit_word_size / 2;
3971     assert_is_available_positive(expand_word_size);
3972   }
3973 
3974   static void test_is_available_negative() {
3975     // Reserve some memory.
3976     VirtualSpaceNode vsn(os::vm_allocation_granularity());
3977     assert(vsn.initialize(), "Failed to setup VirtualSpaceNode");
3978 
3979     // Commit some memory.
3980     size_t commit_word_size = os::vm_allocation_granularity() / BytesPerWord;
3981     bool expanded = vsn.expand_by(commit_word_size, commit_word_size);
3982     assert(expanded, "Failed to commit");
3983 
3984     // Check that is_available doesn't accept a too large size.
3985     size_t two_times_commit_word_size = commit_word_size * 2;
3986     assert_is_available_negative(two_times_commit_word_size);
3987   }
3988 
3989   static void test_is_available_overflow() {
3990     // Reserve some memory.
3991     VirtualSpaceNode vsn(os::vm_allocation_granularity());
3992     assert(vsn.initialize(), "Failed to setup VirtualSpaceNode");
3993 
3994     // Commit some memory.
3995     size_t commit_word_size = os::vm_allocation_granularity() / BytesPerWord;
3996     bool expanded = vsn.expand_by(commit_word_size, commit_word_size);
3997     assert(expanded, "Failed to commit");
3998 
3999     // Calculate a size that will overflow the virtual space size.
4000     void* virtual_space_max = (void*)(uintptr_t)-1;
4001     size_t bottom_to_max = pointer_delta(virtual_space_max, vsn.bottom(), 1);
4002     size_t overflow_size = bottom_to_max + BytesPerWord;
4003     size_t overflow_word_size = overflow_size / BytesPerWord;
4004 
4005     // Check that is_available can handle the overflow.
4006     assert_is_available_negative(overflow_word_size);
4007   }
4008 
4009   static void test_is_available() {
4010     TestVirtualSpaceNodeTest::test_is_available_positive();
4011     TestVirtualSpaceNodeTest::test_is_available_negative();
4012     TestVirtualSpaceNodeTest::test_is_available_overflow();
4013   }
4014 };
4015 
4016 void TestVirtualSpaceNode_test() {
4017   TestVirtualSpaceNodeTest::test();
4018   TestVirtualSpaceNodeTest::test_is_available();
4019 }
4020 #endif