1 /*
   2  * Copyright (c) 2007, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "interpreter/bytecodeHistogram.hpp"
  28 #include "interpreter/cppInterpreter.hpp"
  29 #include "interpreter/interpreter.hpp"
  30 #include "interpreter/interpreterGenerator.hpp"
  31 #include "interpreter/interpreterRuntime.hpp"
  32 #include "oops/arrayOop.hpp"
  33 #include "oops/methodDataOop.hpp"
  34 #include "oops/methodOop.hpp"
  35 #include "oops/oop.inline.hpp"
  36 #include "prims/jvmtiExport.hpp"
  37 #include "prims/jvmtiThreadState.hpp"
  38 #include "runtime/arguments.hpp"
  39 #include "runtime/deoptimization.hpp"
  40 #include "runtime/frame.inline.hpp"
  41 #include "runtime/interfaceSupport.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 #include "runtime/stubRoutines.hpp"
  44 #include "runtime/synchronizer.hpp"
  45 #include "runtime/timer.hpp"
  46 #include "runtime/vframeArray.hpp"
  47 #include "utilities/debug.hpp"
  48 #ifdef SHARK
  49 #include "shark/shark_globals.hpp"
  50 #endif
  51 
  52 #ifdef CC_INTERP
  53 
  54 // Routine exists to make tracebacks look decent in debugger
  55 // while we are recursed in the frame manager/c++ interpreter.
  56 // We could use an address in the frame manager but having
  57 // frames look natural in the debugger is a plus.
  58 extern "C" void RecursiveInterpreterActivation(interpreterState istate )
  59 {
  60   //
  61   ShouldNotReachHere();
  62 }
  63 
  64 
  65 #define __ _masm->
  66 #define STATE(field_name) (Address(state, byte_offset_of(BytecodeInterpreter, field_name)))
  67 
  68 Label fast_accessor_slow_entry_path;  // fast accessor methods need to be able to jmp to unsynchronized
  69                                       // c++ interpreter entry point this holds that entry point label.
  70 
  71 // default registers for state and sender_sp
  72 // state and sender_sp are the same on 32bit because we have no choice.
  73 // state could be rsi on 64bit but it is an arg reg and not callee save
  74 // so r13 is better choice.
  75 
  76 const Register state = NOT_LP64(rsi) LP64_ONLY(r13);
  77 const Register sender_sp_on_entry = NOT_LP64(rsi) LP64_ONLY(r13);
  78 
  79 // NEEDED for JVMTI?
  80 // address AbstractInterpreter::_remove_activation_preserving_args_entry;
  81 
  82 static address unctrap_frame_manager_entry  = NULL;
  83 
  84 static address deopt_frame_manager_return_atos  = NULL;
  85 static address deopt_frame_manager_return_btos  = NULL;
  86 static address deopt_frame_manager_return_itos  = NULL;
  87 static address deopt_frame_manager_return_ltos  = NULL;
  88 static address deopt_frame_manager_return_ftos  = NULL;
  89 static address deopt_frame_manager_return_dtos  = NULL;
  90 static address deopt_frame_manager_return_vtos  = NULL;
  91 
  92 int AbstractInterpreter::BasicType_as_index(BasicType type) {
  93   int i = 0;
  94   switch (type) {
  95     case T_BOOLEAN: i = 0; break;
  96     case T_CHAR   : i = 1; break;
  97     case T_BYTE   : i = 2; break;
  98     case T_SHORT  : i = 3; break;
  99     case T_INT    : i = 4; break;
 100     case T_VOID   : i = 5; break;
 101     case T_FLOAT  : i = 8; break;
 102     case T_LONG   : i = 9; break;
 103     case T_DOUBLE : i = 6; break;
 104     case T_OBJECT : // fall through
 105     case T_ARRAY  : i = 7; break;
 106     default       : ShouldNotReachHere();
 107   }
 108   assert(0 <= i && i < AbstractInterpreter::number_of_result_handlers, "index out of bounds");
 109   return i;
 110 }
 111 
 112 // Is this pc anywhere within code owned by the interpreter?
 113 // This only works for pc that might possibly be exposed to frame
 114 // walkers. It clearly misses all of the actual c++ interpreter
 115 // implementation
 116 bool CppInterpreter::contains(address pc)            {
 117     return (_code->contains(pc) ||
 118             pc == CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation));
 119 }
 120 
 121 
 122 address CppInterpreterGenerator::generate_result_handler_for(BasicType type) {
 123   address entry = __ pc();
 124   switch (type) {
 125     case T_BOOLEAN: __ c2bool(rax);            break;
 126     case T_CHAR   : __ andl(rax, 0xFFFF);      break;
 127     case T_BYTE   : __ sign_extend_byte (rax); break;
 128     case T_SHORT  : __ sign_extend_short(rax); break;
 129     case T_VOID   : // fall thru
 130     case T_LONG   : // fall thru
 131     case T_INT    : /* nothing to do */        break;
 132 
 133     case T_DOUBLE :
 134     case T_FLOAT  :
 135       {
 136         const Register t = InterpreterRuntime::SignatureHandlerGenerator::temp();
 137         __ pop(t);                            // remove return address first
 138         // Must return a result for interpreter or compiler. In SSE
 139         // mode, results are returned in xmm0 and the FPU stack must
 140         // be empty.
 141         if (type == T_FLOAT && UseSSE >= 1) {
 142 #ifndef _LP64
 143           // Load ST0
 144           __ fld_d(Address(rsp, 0));
 145           // Store as float and empty fpu stack
 146           __ fstp_s(Address(rsp, 0));
 147 #endif // !_LP64
 148           // and reload
 149           __ movflt(xmm0, Address(rsp, 0));
 150         } else if (type == T_DOUBLE && UseSSE >= 2 ) {
 151           __ movdbl(xmm0, Address(rsp, 0));
 152         } else {
 153           // restore ST0
 154           __ fld_d(Address(rsp, 0));
 155         }
 156         // and pop the temp
 157         __ addptr(rsp, 2 * wordSize);
 158         __ push(t);                            // restore return address
 159       }
 160       break;
 161     case T_OBJECT :
 162       // retrieve result from frame
 163       __ movptr(rax, STATE(_oop_temp));
 164       // and verify it
 165       __ verify_oop(rax);
 166       break;
 167     default       : ShouldNotReachHere();
 168   }
 169   __ ret(0);                                   // return from result handler
 170   return entry;
 171 }
 172 
 173 // tosca based result to c++ interpreter stack based result.
 174 // Result goes to top of native stack.
 175 
 176 #undef EXTEND  // SHOULD NOT BE NEEDED
 177 address CppInterpreterGenerator::generate_tosca_to_stack_converter(BasicType type) {
 178   // A result is in the tosca (abi result) from either a native method call or compiled
 179   // code. Place this result on the java expression stack so C++ interpreter can use it.
 180   address entry = __ pc();
 181 
 182   const Register t = InterpreterRuntime::SignatureHandlerGenerator::temp();
 183   __ pop(t);                            // remove return address first
 184   switch (type) {
 185     case T_VOID:
 186        break;
 187     case T_BOOLEAN:
 188 #ifdef EXTEND
 189       __ c2bool(rax);
 190 #endif
 191       __ push(rax);
 192       break;
 193     case T_CHAR   :
 194 #ifdef EXTEND
 195       __ andl(rax, 0xFFFF);
 196 #endif
 197       __ push(rax);
 198       break;
 199     case T_BYTE   :
 200 #ifdef EXTEND
 201       __ sign_extend_byte (rax);
 202 #endif
 203       __ push(rax);
 204       break;
 205     case T_SHORT  :
 206 #ifdef EXTEND
 207       __ sign_extend_short(rax);
 208 #endif
 209       __ push(rax);
 210       break;
 211     case T_LONG    :
 212       __ push(rdx);                             // pushes useless junk on 64bit
 213       __ push(rax);
 214       break;
 215     case T_INT    :
 216       __ push(rax);
 217       break;
 218     case T_FLOAT  :
 219       // Result is in ST(0)/xmm0
 220       __ subptr(rsp, wordSize);
 221       if ( UseSSE < 1) {
 222         __ fstp_s(Address(rsp, 0));
 223       } else {
 224         __ movflt(Address(rsp, 0), xmm0);
 225       }
 226       break;
 227     case T_DOUBLE  :
 228       __ subptr(rsp, 2*wordSize);
 229       if ( UseSSE < 2 ) {
 230         __ fstp_d(Address(rsp, 0));
 231       } else {
 232         __ movdbl(Address(rsp, 0), xmm0);
 233       }
 234       break;
 235     case T_OBJECT :
 236       __ verify_oop(rax);                      // verify it
 237       __ push(rax);
 238       break;
 239     default       : ShouldNotReachHere();
 240   }
 241   __ jmp(t);                                   // return from result handler
 242   return entry;
 243 }
 244 
 245 address CppInterpreterGenerator::generate_stack_to_stack_converter(BasicType type) {
 246   // A result is in the java expression stack of the interpreted method that has just
 247   // returned. Place this result on the java expression stack of the caller.
 248   //
 249   // The current interpreter activation in rsi/r13 is for the method just returning its
 250   // result. So we know that the result of this method is on the top of the current
 251   // execution stack (which is pre-pushed) and will be return to the top of the caller
 252   // stack. The top of the callers stack is the bottom of the locals of the current
 253   // activation.
 254   // Because of the way activation are managed by the frame manager the value of rsp is
 255   // below both the stack top of the current activation and naturally the stack top
 256   // of the calling activation. This enable this routine to leave the return address
 257   // to the frame manager on the stack and do a vanilla return.
 258   //
 259   // On entry: rsi/r13 - interpreter state of activation returning a (potential) result
 260   // On Return: rsi/r13 - unchanged
 261   //            rax - new stack top for caller activation (i.e. activation in _prev_link)
 262   //
 263   // Can destroy rdx, rcx.
 264   //
 265 
 266   address entry = __ pc();
 267   const Register t = InterpreterRuntime::SignatureHandlerGenerator::temp();
 268   switch (type) {
 269     case T_VOID:
 270       __ movptr(rax, STATE(_locals));                                   // pop parameters get new stack value
 271       __ addptr(rax, wordSize);                                         // account for prepush before we return
 272       break;
 273     case T_FLOAT  :
 274     case T_BOOLEAN:
 275     case T_CHAR   :
 276     case T_BYTE   :
 277     case T_SHORT  :
 278     case T_INT    :
 279       // 1 word result
 280       __ movptr(rdx, STATE(_stack));
 281       __ movptr(rax, STATE(_locals));                                   // address for result
 282       __ movl(rdx, Address(rdx, wordSize));                             // get result
 283       __ movptr(Address(rax, 0), rdx);                                  // and store it
 284       break;
 285     case T_LONG    :
 286     case T_DOUBLE  :
 287       // return top two words on current expression stack to caller's expression stack
 288       // The caller's expression stack is adjacent to the current frame manager's intepretState
 289       // except we allocated one extra word for this intepretState so we won't overwrite it
 290       // when we return a two word result.
 291 
 292       __ movptr(rax, STATE(_locals));                                   // address for result
 293       __ movptr(rcx, STATE(_stack));
 294       __ subptr(rax, wordSize);                                         // need addition word besides locals[0]
 295       __ movptr(rdx, Address(rcx, 2*wordSize));                         // get result word (junk in 64bit)
 296       __ movptr(Address(rax, wordSize), rdx);                           // and store it
 297       __ movptr(rdx, Address(rcx, wordSize));                           // get result word
 298       __ movptr(Address(rax, 0), rdx);                                  // and store it
 299       break;
 300     case T_OBJECT :
 301       __ movptr(rdx, STATE(_stack));
 302       __ movptr(rax, STATE(_locals));                                   // address for result
 303       __ movptr(rdx, Address(rdx, wordSize));                           // get result
 304       __ verify_oop(rdx);                                               // verify it
 305       __ movptr(Address(rax, 0), rdx);                                  // and store it
 306       break;
 307     default       : ShouldNotReachHere();
 308   }
 309   __ ret(0);
 310   return entry;
 311 }
 312 
 313 address CppInterpreterGenerator::generate_stack_to_native_abi_converter(BasicType type) {
 314   // A result is in the java expression stack of the interpreted method that has just
 315   // returned. Place this result in the native abi that the caller expects.
 316   //
 317   // Similar to generate_stack_to_stack_converter above. Called at a similar time from the
 318   // frame manager execept in this situation the caller is native code (c1/c2/call_stub)
 319   // and so rather than return result onto caller's java expression stack we return the
 320   // result in the expected location based on the native abi.
 321   // On entry: rsi/r13 - interpreter state of activation returning a (potential) result
 322   // On Return: rsi/r13 - unchanged
 323   // Other registers changed [rax/rdx/ST(0) as needed for the result returned]
 324 
 325   address entry = __ pc();
 326   switch (type) {
 327     case T_VOID:
 328        break;
 329     case T_BOOLEAN:
 330     case T_CHAR   :
 331     case T_BYTE   :
 332     case T_SHORT  :
 333     case T_INT    :
 334       __ movptr(rdx, STATE(_stack));                                    // get top of stack
 335       __ movl(rax, Address(rdx, wordSize));                             // get result word 1
 336       break;
 337     case T_LONG    :
 338       __ movptr(rdx, STATE(_stack));                                    // get top of stack
 339       __ movptr(rax, Address(rdx, wordSize));                           // get result low word
 340       NOT_LP64(__ movl(rdx, Address(rdx, 2*wordSize));)                 // get result high word
 341       break;
 342     case T_FLOAT  :
 343       __ movptr(rdx, STATE(_stack));                                    // get top of stack
 344       if ( UseSSE >= 1) {
 345         __ movflt(xmm0, Address(rdx, wordSize));
 346       } else {
 347         __ fld_s(Address(rdx, wordSize));                               // pushd float result
 348       }
 349       break;
 350     case T_DOUBLE  :
 351       __ movptr(rdx, STATE(_stack));                                    // get top of stack
 352       if ( UseSSE > 1) {
 353         __ movdbl(xmm0, Address(rdx, wordSize));
 354       } else {
 355         __ fld_d(Address(rdx, wordSize));                               // push double result
 356       }
 357       break;
 358     case T_OBJECT :
 359       __ movptr(rdx, STATE(_stack));                                    // get top of stack
 360       __ movptr(rax, Address(rdx, wordSize));                           // get result word 1
 361       __ verify_oop(rax);                                               // verify it
 362       break;
 363     default       : ShouldNotReachHere();
 364   }
 365   __ ret(0);
 366   return entry;
 367 }
 368 
 369 address CppInterpreter::return_entry(TosState state, int length) {
 370   // make it look good in the debugger
 371   return CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation);
 372 }
 373 
 374 address CppInterpreter::deopt_entry(TosState state, int length) {
 375   address ret = NULL;
 376   if (length != 0) {
 377     switch (state) {
 378       case atos: ret = deopt_frame_manager_return_atos; break;
 379       case btos: ret = deopt_frame_manager_return_btos; break;
 380       case ctos:
 381       case stos:
 382       case itos: ret = deopt_frame_manager_return_itos; break;
 383       case ltos: ret = deopt_frame_manager_return_ltos; break;
 384       case ftos: ret = deopt_frame_manager_return_ftos; break;
 385       case dtos: ret = deopt_frame_manager_return_dtos; break;
 386       case vtos: ret = deopt_frame_manager_return_vtos; break;
 387     }
 388   } else {
 389     ret = unctrap_frame_manager_entry;  // re-execute the bytecode ( e.g. uncommon trap)
 390   }
 391   assert(ret != NULL, "Not initialized");
 392   return ret;
 393 }
 394 
 395 // C++ Interpreter
 396 void CppInterpreterGenerator::generate_compute_interpreter_state(const Register state,
 397                                                                  const Register locals,
 398                                                                  const Register sender_sp,
 399                                                                  bool native) {
 400 
 401   // On entry the "locals" argument points to locals[0] (or where it would be in case no locals in
 402   // a static method). "state" contains any previous frame manager state which we must save a link
 403   // to in the newly generated state object. On return "state" is a pointer to the newly allocated
 404   // state object. We must allocate and initialize a new interpretState object and the method
 405   // expression stack. Because the returned result (if any) of the method will be placed on the caller's
 406   // expression stack and this will overlap with locals[0] (and locals[1] if double/long) we must
 407   // be sure to leave space on the caller's stack so that this result will not overwrite values when
 408   // locals[0] and locals[1] do not exist (and in fact are return address and saved rbp). So when
 409   // we are non-native we in essence ensure that locals[0-1] exist. We play an extra trick in
 410   // non-product builds and initialize this last local with the previous interpreterState as
 411   // this makes things look real nice in the debugger.
 412 
 413   // State on entry
 414   // Assumes locals == &locals[0]
 415   // Assumes state == any previous frame manager state (assuming call path from c++ interpreter)
 416   // Assumes rax = return address
 417   // rcx == senders_sp
 418   // rbx == method
 419   // Modifies rcx, rdx, rax
 420   // Returns:
 421   // state == address of new interpreterState
 422   // rsp == bottom of method's expression stack.
 423 
 424   const Address const_offset      (rbx, methodOopDesc::const_offset());
 425 
 426 
 427   // On entry sp is the sender's sp. This includes the space for the arguments
 428   // that the sender pushed. If the sender pushed no args (a static) and the
 429   // caller returns a long then we need two words on the sender's stack which
 430   // are not present (although when we return a restore full size stack the
 431   // space will be present). If we didn't allocate two words here then when
 432   // we "push" the result of the caller's stack we would overwrite the return
 433   // address and the saved rbp. Not good. So simply allocate 2 words now
 434   // just to be safe. This is the "static long no_params() method" issue.
 435   // See Lo.java for a testcase.
 436   // We don't need this for native calls because they return result in
 437   // register and the stack is expanded in the caller before we store
 438   // the results on the stack.
 439 
 440   if (!native) {
 441 #ifdef PRODUCT
 442     __ subptr(rsp, 2*wordSize);
 443 #else /* PRODUCT */
 444     __ push((int32_t)NULL_WORD);
 445     __ push(state);                         // make it look like a real argument
 446 #endif /* PRODUCT */
 447   }
 448 
 449   // Now that we are assure of space for stack result, setup typical linkage
 450 
 451   __ push(rax);
 452   __ enter();
 453 
 454   __ mov(rax, state);                                  // save current state
 455 
 456   __ lea(rsp, Address(rsp, -(int)sizeof(BytecodeInterpreter)));
 457   __ mov(state, rsp);
 458 
 459   // rsi/r13 == state/locals rax == prevstate
 460 
 461   // initialize the "shadow" frame so that use since C++ interpreter not directly
 462   // recursive. Simpler to recurse but we can't trim expression stack as we call
 463   // new methods.
 464   __ movptr(STATE(_locals), locals);                    // state->_locals = locals()
 465   __ movptr(STATE(_self_link), state);                  // point to self
 466   __ movptr(STATE(_prev_link), rax);                    // state->_link = state on entry (NULL or previous state)
 467   __ movptr(STATE(_sender_sp), sender_sp);              // state->_sender_sp = sender_sp
 468 #ifdef _LP64
 469   __ movptr(STATE(_thread), r15_thread);                // state->_bcp = codes()
 470 #else
 471   __ get_thread(rax);                                   // get vm's javathread*
 472   __ movptr(STATE(_thread), rax);                       // state->_bcp = codes()
 473 #endif // _LP64
 474   __ movptr(rdx, Address(rbx, methodOopDesc::const_offset())); // get constantMethodOop
 475   __ lea(rdx, Address(rdx, constMethodOopDesc::codes_offset())); // get code base
 476   if (native) {
 477     __ movptr(STATE(_bcp), (int32_t)NULL_WORD);         // state->_bcp = NULL
 478   } else {
 479     __ movptr(STATE(_bcp), rdx);                        // state->_bcp = codes()
 480   }
 481   __ xorptr(rdx, rdx);
 482   __ movptr(STATE(_oop_temp), rdx);                     // state->_oop_temp = NULL (only really needed for native)
 483   __ movptr(STATE(_mdx), rdx);                          // state->_mdx = NULL
 484   __ movptr(rdx, Address(rbx, methodOopDesc::const_offset()));
 485   __ movptr(rdx, Address(rdx, constMethodOopDesc::constants_offset()));
 486   __ movptr(rdx, Address(rdx, constantPoolOopDesc::cache_offset_in_bytes()));
 487   __ movptr(STATE(_constants), rdx);                    // state->_constants = constants()
 488 
 489   __ movptr(STATE(_method), rbx);                       // state->_method = method()
 490   __ movl(STATE(_msg), (int32_t) BytecodeInterpreter::method_entry);   // state->_msg = initial method entry
 491   __ movptr(STATE(_result._to_call._callee), (int32_t) NULL_WORD); // state->_result._to_call._callee_callee = NULL
 492 
 493 
 494   __ movptr(STATE(_monitor_base), rsp);                 // set monitor block bottom (grows down) this would point to entry [0]
 495                                                         // entries run from -1..x where &monitor[x] ==
 496 
 497   {
 498     // Must not attempt to lock method until we enter interpreter as gc won't be able to find the
 499     // initial frame. However we allocate a free monitor so we don't have to shuffle the expression stack
 500     // immediately.
 501 
 502     // synchronize method
 503     const Address access_flags      (rbx, methodOopDesc::access_flags_offset());
 504     const int entry_size            = frame::interpreter_frame_monitor_size() * wordSize;
 505     Label not_synced;
 506 
 507     __ movl(rax, access_flags);
 508     __ testl(rax, JVM_ACC_SYNCHRONIZED);
 509     __ jcc(Assembler::zero, not_synced);
 510 
 511     // Allocate initial monitor and pre initialize it
 512     // get synchronization object
 513 
 514     Label done;
 515     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
 516     __ movl(rax, access_flags);
 517     __ testl(rax, JVM_ACC_STATIC);
 518     __ movptr(rax, Address(locals, 0));                   // get receiver (assume this is frequent case)
 519     __ jcc(Assembler::zero, done);
 520     __ movptr(rax, Address(rbx, methodOopDesc::const_offset()));
 521     __ movptr(rax, Address(rax, constMethodOopDesc::constants_offset()));
 522     __ movptr(rax, Address(rax, constantPoolOopDesc::pool_holder_offset_in_bytes()));
 523     __ movptr(rax, Address(rax, mirror_offset));
 524     __ bind(done);
 525     // add space for monitor & lock
 526     __ subptr(rsp, entry_size);                                           // add space for a monitor entry
 527     __ movptr(Address(rsp, BasicObjectLock::obj_offset_in_bytes()), rax); // store object
 528     __ bind(not_synced);
 529   }
 530 
 531   __ movptr(STATE(_stack_base), rsp);                                     // set expression stack base ( == &monitors[-count])
 532   if (native) {
 533     __ movptr(STATE(_stack), rsp);                                        // set current expression stack tos
 534     __ movptr(STATE(_stack_limit), rsp);
 535   } else {
 536     __ subptr(rsp, wordSize);                                             // pre-push stack
 537     __ movptr(STATE(_stack), rsp);                                        // set current expression stack tos
 538 
 539     // compute full expression stack limit
 540 
 541     const Address size_of_stack    (rbx, methodOopDesc::max_stack_offset());
 542     const int extra_stack = 0; //6815692//methodOopDesc::extra_stack_words();
 543     __ load_unsigned_short(rdx, size_of_stack);                           // get size of expression stack in words
 544     __ negptr(rdx);                                                       // so we can subtract in next step
 545     // Allocate expression stack
 546     __ lea(rsp, Address(rsp, rdx, Address::times_ptr, -extra_stack));
 547     __ movptr(STATE(_stack_limit), rsp);
 548   }
 549 
 550 #ifdef _LP64
 551   // Make sure stack is properly aligned and sized for the abi
 552   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
 553   __ andptr(rsp, -16); // must be 16 byte boundary (see amd64 ABI)
 554 #endif // _LP64
 555 
 556 
 557 
 558 }
 559 
 560 // Helpers for commoning out cases in the various type of method entries.
 561 //
 562 
 563 // increment invocation count & check for overflow
 564 //
 565 // Note: checking for negative value instead of overflow
 566 //       so we have a 'sticky' overflow test
 567 //
 568 // rbx,: method
 569 // rcx: invocation counter
 570 //
 571 void InterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
 572 
 573   const Address invocation_counter(rbx, methodOopDesc::invocation_counter_offset() + InvocationCounter::counter_offset());
 574   const Address backedge_counter  (rbx, methodOopDesc::backedge_counter_offset() + InvocationCounter::counter_offset());
 575 
 576   if (ProfileInterpreter) { // %%% Merge this into methodDataOop
 577     __ incrementl(Address(rbx,methodOopDesc::interpreter_invocation_counter_offset()));
 578   }
 579   // Update standard invocation counters
 580   __ movl(rax, backedge_counter);               // load backedge counter
 581 
 582   __ increment(rcx, InvocationCounter::count_increment);
 583   __ andl(rax, InvocationCounter::count_mask_value);  // mask out the status bits
 584 
 585   __ movl(invocation_counter, rcx);             // save invocation count
 586   __ addl(rcx, rax);                            // add both counters
 587 
 588   // profile_method is non-null only for interpreted method so
 589   // profile_method != NULL == !native_call
 590   // BytecodeInterpreter only calls for native so code is elided.
 591 
 592   __ cmp32(rcx,
 593            ExternalAddress((address)&InvocationCounter::InterpreterInvocationLimit));
 594   __ jcc(Assembler::aboveEqual, *overflow);
 595 
 596 }
 597 
 598 void InterpreterGenerator::generate_counter_overflow(Label* do_continue) {
 599 
 600   // C++ interpreter on entry
 601   // rsi/r13 - new interpreter state pointer
 602   // rbp - interpreter frame pointer
 603   // rbx - method
 604 
 605   // On return (i.e. jump to entry_point) [ back to invocation of interpreter ]
 606   // rbx, - method
 607   // rcx - rcvr (assuming there is one)
 608   // top of stack return address of interpreter caller
 609   // rsp - sender_sp
 610 
 611   // C++ interpreter only
 612   // rsi/r13 - previous interpreter state pointer
 613 
 614   const Address size_of_parameters(rbx, methodOopDesc::size_of_parameters_offset());
 615 
 616   // InterpreterRuntime::frequency_counter_overflow takes one argument
 617   // indicating if the counter overflow occurs at a backwards branch (non-NULL bcp).
 618   // The call returns the address of the verified entry point for the method or NULL
 619   // if the compilation did not complete (either went background or bailed out).
 620   __ movptr(rax, (int32_t)false);
 621   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), rax);
 622 
 623   // for c++ interpreter can rsi really be munged?
 624   __ lea(state, Address(rbp, -(int)sizeof(BytecodeInterpreter)));                               // restore state
 625   __ movptr(rbx, Address(state, byte_offset_of(BytecodeInterpreter, _method)));            // restore method
 626   __ movptr(rdi, Address(state, byte_offset_of(BytecodeInterpreter, _locals)));            // get locals pointer
 627 
 628   __ jmp(*do_continue, relocInfo::none);
 629 
 630 }
 631 
 632 void InterpreterGenerator::generate_stack_overflow_check(void) {
 633   // see if we've got enough room on the stack for locals plus overhead.
 634   // the expression stack grows down incrementally, so the normal guard
 635   // page mechanism will work for that.
 636   //
 637   // Registers live on entry:
 638   //
 639   // Asm interpreter
 640   // rdx: number of additional locals this frame needs (what we must check)
 641   // rbx,: methodOop
 642 
 643   // C++ Interpreter
 644   // rsi/r13: previous interpreter frame state object
 645   // rdi: &locals[0]
 646   // rcx: # of locals
 647   // rdx: number of additional locals this frame needs (what we must check)
 648   // rbx: methodOop
 649 
 650   // destroyed on exit
 651   // rax,
 652 
 653   // NOTE:  since the additional locals are also always pushed (wasn't obvious in
 654   // generate_method_entry) so the guard should work for them too.
 655   //
 656 
 657   // monitor entry size: see picture of stack set (generate_method_entry) and frame_i486.hpp
 658   const int entry_size    = frame::interpreter_frame_monitor_size() * wordSize;
 659 
 660   // total overhead size: entry_size + (saved rbp, thru expr stack bottom).
 661   // be sure to change this if you add/subtract anything to/from the overhead area
 662   const int overhead_size = (int)sizeof(BytecodeInterpreter);
 663 
 664   const int page_size = os::vm_page_size();
 665 
 666   Label after_frame_check;
 667 
 668   // compute rsp as if this were going to be the last frame on
 669   // the stack before the red zone
 670 
 671   Label after_frame_check_pop;
 672 
 673   // save rsi == caller's bytecode ptr (c++ previous interp. state)
 674   // QQQ problem here?? rsi overload????
 675   __ push(state);
 676 
 677   const Register thread = LP64_ONLY(r15_thread) NOT_LP64(rsi);
 678 
 679   NOT_LP64(__ get_thread(thread));
 680 
 681   const Address stack_base(thread, Thread::stack_base_offset());
 682   const Address stack_size(thread, Thread::stack_size_offset());
 683 
 684   // locals + overhead, in bytes
 685     const Address size_of_stack    (rbx, methodOopDesc::max_stack_offset());
 686     // Always give one monitor to allow us to start interp if sync method.
 687     // Any additional monitors need a check when moving the expression stack
 688     const int one_monitor = frame::interpreter_frame_monitor_size() * wordSize;
 689     const int extra_stack = 0; //6815692//methodOopDesc::extra_stack_entries();
 690   __ load_unsigned_short(rax, size_of_stack);                           // get size of expression stack in words
 691   __ lea(rax, Address(noreg, rax, Interpreter::stackElementScale(), extra_stack + one_monitor));
 692   __ lea(rax, Address(rax, rdx, Interpreter::stackElementScale(), overhead_size));
 693 
 694 #ifdef ASSERT
 695   Label stack_base_okay, stack_size_okay;
 696   // verify that thread stack base is non-zero
 697   __ cmpptr(stack_base, (int32_t)0);
 698   __ jcc(Assembler::notEqual, stack_base_okay);
 699   __ stop("stack base is zero");
 700   __ bind(stack_base_okay);
 701   // verify that thread stack size is non-zero
 702   __ cmpptr(stack_size, (int32_t)0);
 703   __ jcc(Assembler::notEqual, stack_size_okay);
 704   __ stop("stack size is zero");
 705   __ bind(stack_size_okay);
 706 #endif
 707 
 708   // Add stack base to locals and subtract stack size
 709   __ addptr(rax, stack_base);
 710   __ subptr(rax, stack_size);
 711 
 712   // We should have a magic number here for the size of the c++ interpreter frame.
 713   // We can't actually tell this ahead of time. The debug version size is around 3k
 714   // product is 1k and fastdebug is 4k
 715   const int slop = 6 * K;
 716 
 717   // Use the maximum number of pages we might bang.
 718   const int max_pages = StackShadowPages > (StackRedPages+StackYellowPages) ? StackShadowPages :
 719                                                                               (StackRedPages+StackYellowPages);
 720   // Only need this if we are stack banging which is temporary while
 721   // we're debugging.
 722   __ addptr(rax, slop + 2*max_pages * page_size);
 723 
 724   // check against the current stack bottom
 725   __ cmpptr(rsp, rax);
 726   __ jcc(Assembler::above, after_frame_check_pop);
 727 
 728   __ pop(state);  //  get c++ prev state.
 729 
 730      // throw exception return address becomes throwing pc
 731   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
 732 
 733   // all done with frame size check
 734   __ bind(after_frame_check_pop);
 735   __ pop(state);
 736 
 737   __ bind(after_frame_check);
 738 }
 739 
 740 // Find preallocated  monitor and lock method (C++ interpreter)
 741 // rbx - methodOop
 742 //
 743 void InterpreterGenerator::lock_method(void) {
 744   // assumes state == rsi/r13 == pointer to current interpreterState
 745   // minimally destroys rax, rdx|c_rarg1, rdi
 746   //
 747   // synchronize method
 748   const int entry_size            = frame::interpreter_frame_monitor_size() * wordSize;
 749   const Address access_flags      (rbx, methodOopDesc::access_flags_offset());
 750 
 751   const Register monitor  = NOT_LP64(rdx) LP64_ONLY(c_rarg1);
 752 
 753   // find initial monitor i.e. monitors[-1]
 754   __ movptr(monitor, STATE(_monitor_base));                                   // get monitor bottom limit
 755   __ subptr(monitor, entry_size);                                             // point to initial monitor
 756 
 757 #ifdef ASSERT
 758   { Label L;
 759     __ movl(rax, access_flags);
 760     __ testl(rax, JVM_ACC_SYNCHRONIZED);
 761     __ jcc(Assembler::notZero, L);
 762     __ stop("method doesn't need synchronization");
 763     __ bind(L);
 764   }
 765 #endif // ASSERT
 766   // get synchronization object
 767   { Label done;
 768     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
 769     __ movl(rax, access_flags);
 770     __ movptr(rdi, STATE(_locals));                                     // prepare to get receiver (assume common case)
 771     __ testl(rax, JVM_ACC_STATIC);
 772     __ movptr(rax, Address(rdi, 0));                                    // get receiver (assume this is frequent case)
 773     __ jcc(Assembler::zero, done);
 774     __ movptr(rax, Address(rbx, methodOopDesc::const_offset()));
 775     __ movptr(rax, Address(rax, constMethodOopDesc::constants_offset()));
 776     __ movptr(rax, Address(rax, constantPoolOopDesc::pool_holder_offset_in_bytes()));
 777     __ movptr(rax, Address(rax, mirror_offset));
 778     __ bind(done);
 779   }
 780 #ifdef ASSERT
 781   { Label L;
 782     __ cmpptr(rax, Address(monitor, BasicObjectLock::obj_offset_in_bytes()));   // correct object?
 783     __ jcc(Assembler::equal, L);
 784     __ stop("wrong synchronization lobject");
 785     __ bind(L);
 786   }
 787 #endif // ASSERT
 788   // can destroy rax, rdx|c_rarg1, rcx, and (via call_VM) rdi!
 789   __ lock_object(monitor);
 790 }
 791 
 792 // Call an accessor method (assuming it is resolved, otherwise drop into vanilla (slow path) entry
 793 
 794 address InterpreterGenerator::generate_accessor_entry(void) {
 795 
 796   // rbx: methodOop
 797 
 798   // rsi/r13: senderSP must preserved for slow path, set SP to it on fast path
 799 
 800   Label xreturn_path;
 801 
 802   // do fastpath for resolved accessor methods
 803   if (UseFastAccessorMethods) {
 804 
 805     address entry_point = __ pc();
 806 
 807     Label slow_path;
 808     // If we need a safepoint check, generate full interpreter entry.
 809     ExternalAddress state(SafepointSynchronize::address_of_state());
 810     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
 811              SafepointSynchronize::_not_synchronized);
 812 
 813     __ jcc(Assembler::notEqual, slow_path);
 814     // ASM/C++ Interpreter
 815     // Code: _aload_0, _(i|a)getfield, _(i|a)return or any rewrites thereof; parameter size = 1
 816     // Note: We can only use this code if the getfield has been resolved
 817     //       and if we don't have a null-pointer exception => check for
 818     //       these conditions first and use slow path if necessary.
 819     // rbx,: method
 820     // rcx: receiver
 821     __ movptr(rax, Address(rsp, wordSize));
 822 
 823     // check if local 0 != NULL and read field
 824     __ testptr(rax, rax);
 825     __ jcc(Assembler::zero, slow_path);
 826 
 827     // read first instruction word and extract bytecode @ 1 and index @ 2
 828     __ movptr(rdx, Address(rbx, methodOopDesc::const_offset()));
 829     __ movptr(rdi, Address(rdx, constMethodOopDesc::constants_offset()));
 830     __ movl(rdx, Address(rdx, constMethodOopDesc::codes_offset()));
 831     // Shift codes right to get the index on the right.
 832     // The bytecode fetched looks like <index><0xb4><0x2a>
 833     __ shrl(rdx, 2*BitsPerByte);
 834     __ shll(rdx, exact_log2(in_words(ConstantPoolCacheEntry::size())));
 835     __ movptr(rdi, Address(rdi, constantPoolOopDesc::cache_offset_in_bytes()));
 836 
 837     // rax,: local 0
 838     // rbx,: method
 839     // rcx: receiver - do not destroy since it is needed for slow path!
 840     // rcx: scratch
 841     // rdx: constant pool cache index
 842     // rdi: constant pool cache
 843     // rsi/r13: sender sp
 844 
 845     // check if getfield has been resolved and read constant pool cache entry
 846     // check the validity of the cache entry by testing whether _indices field
 847     // contains Bytecode::_getfield in b1 byte.
 848     assert(in_words(ConstantPoolCacheEntry::size()) == 4, "adjust shift below");
 849     __ movl(rcx,
 850             Address(rdi,
 851                     rdx,
 852                     Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::indices_offset()));
 853     __ shrl(rcx, 2*BitsPerByte);
 854     __ andl(rcx, 0xFF);
 855     __ cmpl(rcx, Bytecodes::_getfield);
 856     __ jcc(Assembler::notEqual, slow_path);
 857 
 858     // Note: constant pool entry is not valid before bytecode is resolved
 859     __ movptr(rcx,
 860             Address(rdi,
 861                     rdx,
 862                     Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f2_offset()));
 863     __ movl(rdx,
 864             Address(rdi,
 865                     rdx,
 866                     Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::flags_offset()));
 867 
 868     Label notByte, notShort, notChar;
 869     const Address field_address (rax, rcx, Address::times_1);
 870 
 871     // Need to differentiate between igetfield, agetfield, bgetfield etc.
 872     // because they are different sizes.
 873     // Use the type from the constant pool cache
 874     __ shrl(rdx, ConstantPoolCacheEntry::tosBits);
 875     // Make sure we don't need to mask rdx for tosBits after the above shift
 876     ConstantPoolCacheEntry::verify_tosBits();
 877 #ifdef _LP64
 878     Label notObj;
 879     __ cmpl(rdx, atos);
 880     __ jcc(Assembler::notEqual, notObj);
 881     // atos
 882     __ movptr(rax, field_address);
 883     __ jmp(xreturn_path);
 884 
 885     __ bind(notObj);
 886 #endif // _LP64
 887     __ cmpl(rdx, btos);
 888     __ jcc(Assembler::notEqual, notByte);
 889     __ load_signed_byte(rax, field_address);
 890     __ jmp(xreturn_path);
 891 
 892     __ bind(notByte);
 893     __ cmpl(rdx, stos);
 894     __ jcc(Assembler::notEqual, notShort);
 895     __ load_signed_short(rax, field_address);
 896     __ jmp(xreturn_path);
 897 
 898     __ bind(notShort);
 899     __ cmpl(rdx, ctos);
 900     __ jcc(Assembler::notEqual, notChar);
 901     __ load_unsigned_short(rax, field_address);
 902     __ jmp(xreturn_path);
 903 
 904     __ bind(notChar);
 905 #ifdef ASSERT
 906     Label okay;
 907 #ifndef _LP64
 908     __ cmpl(rdx, atos);
 909     __ jcc(Assembler::equal, okay);
 910 #endif // _LP64
 911     __ cmpl(rdx, itos);
 912     __ jcc(Assembler::equal, okay);
 913     __ stop("what type is this?");
 914     __ bind(okay);
 915 #endif // ASSERT
 916     // All the rest are a 32 bit wordsize
 917     __ movl(rax, field_address);
 918 
 919     __ bind(xreturn_path);
 920 
 921     // _ireturn/_areturn
 922     __ pop(rdi);                               // get return address
 923     __ mov(rsp, sender_sp_on_entry);           // set sp to sender sp
 924     __ jmp(rdi);
 925 
 926     // generate a vanilla interpreter entry as the slow path
 927     __ bind(slow_path);
 928     // We will enter c++ interpreter looking like it was
 929     // called by the call_stub this will cause it to return
 930     // a tosca result to the invoker which might have been
 931     // the c++ interpreter itself.
 932 
 933     __ jmp(fast_accessor_slow_entry_path);
 934     return entry_point;
 935 
 936   } else {
 937     return NULL;
 938   }
 939 
 940 }
 941 
 942 address InterpreterGenerator::generate_Reference_get_entry(void) {
 943 #ifndef SERIALGC
 944   if (UseG1GC) {
 945     // We need to generate have a routine that generates code to:
 946     //   * load the value in the referent field
 947     //   * passes that value to the pre-barrier.
 948     //
 949     // In the case of G1 this will record the value of the
 950     // referent in an SATB buffer if marking is active.
 951     // This will cause concurrent marking to mark the referent
 952     // field as live.
 953     Unimplemented();
 954   }
 955 #endif // SERIALGC
 956 
 957   // If G1 is not enabled then attempt to go through the accessor entry point
 958   // Reference.get is an accessor
 959   return generate_accessor_entry();
 960 }
 961 
 962 //
 963 // C++ Interpreter stub for calling a native method.
 964 // This sets up a somewhat different looking stack for calling the native method
 965 // than the typical interpreter frame setup but still has the pointer to
 966 // an interpreter state.
 967 //
 968 
 969 address InterpreterGenerator::generate_native_entry(bool synchronized) {
 970   // determine code generation flags
 971   bool inc_counter  = UseCompiler || CountCompiledCalls;
 972 
 973   // rbx: methodOop
 974   // rcx: receiver (unused)
 975   // rsi/r13: previous interpreter state (if called from C++ interpreter) must preserve
 976   //      in any case. If called via c1/c2/call_stub rsi/r13 is junk (to use) but harmless
 977   //      to save/restore.
 978   address entry_point = __ pc();
 979 
 980   const Address size_of_parameters(rbx, methodOopDesc::size_of_parameters_offset());
 981   const Address size_of_locals    (rbx, methodOopDesc::size_of_locals_offset());
 982   const Address invocation_counter(rbx, methodOopDesc::invocation_counter_offset() + InvocationCounter::counter_offset());
 983   const Address access_flags      (rbx, methodOopDesc::access_flags_offset());
 984 
 985   // rsi/r13 == state/locals rdi == prevstate
 986   const Register locals = rdi;
 987 
 988   // get parameter size (always needed)
 989   __ load_unsigned_short(rcx, size_of_parameters);
 990 
 991   // rbx: methodOop
 992   // rcx: size of parameters
 993   __ pop(rax);                                       // get return address
 994   // for natives the size of locals is zero
 995 
 996   // compute beginning of parameters /locals
 997   __ lea(locals, Address(rsp, rcx, Address::times_ptr, -wordSize));
 998 
 999   // initialize fixed part of activation frame
1000 
1001   // Assumes rax = return address
1002 
1003   // allocate and initialize new interpreterState and method expression stack
1004   // IN(locals) ->  locals
1005   // IN(state) -> previous frame manager state (NULL from stub/c1/c2)
1006   // destroys rax, rcx, rdx
1007   // OUT (state) -> new interpreterState
1008   // OUT(rsp) -> bottom of methods expression stack
1009 
1010   // save sender_sp
1011   __ mov(rcx, sender_sp_on_entry);
1012   // start with NULL previous state
1013   __ movptr(state, (int32_t)NULL_WORD);
1014   generate_compute_interpreter_state(state, locals, rcx, true);
1015 
1016 #ifdef ASSERT
1017   { Label L;
1018     __ movptr(rax, STATE(_stack_base));
1019 #ifdef _LP64
1020     // duplicate the alignment rsp got after setting stack_base
1021     __ subptr(rax, frame::arg_reg_save_area_bytes); // windows
1022     __ andptr(rax, -16); // must be 16 byte boundary (see amd64 ABI)
1023 #endif // _LP64
1024     __ cmpptr(rax, rsp);
1025     __ jcc(Assembler::equal, L);
1026     __ stop("broken stack frame setup in interpreter");
1027     __ bind(L);
1028   }
1029 #endif
1030 
1031   if (inc_counter) __ movl(rcx, invocation_counter);  // (pre-)fetch invocation count
1032 
1033   const Register unlock_thread = LP64_ONLY(r15_thread) NOT_LP64(rax);
1034   NOT_LP64(__ movptr(unlock_thread, STATE(_thread));) // get thread
1035   // Since at this point in the method invocation the exception handler
1036   // would try to exit the monitor of synchronized methods which hasn't
1037   // been entered yet, we set the thread local variable
1038   // _do_not_unlock_if_synchronized to true. The remove_activation will
1039   // check this flag.
1040 
1041   const Address do_not_unlock_if_synchronized(unlock_thread,
1042         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
1043   __ movbool(do_not_unlock_if_synchronized, true);
1044 
1045   // make sure method is native & not abstract
1046 #ifdef ASSERT
1047   __ movl(rax, access_flags);
1048   {
1049     Label L;
1050     __ testl(rax, JVM_ACC_NATIVE);
1051     __ jcc(Assembler::notZero, L);
1052     __ stop("tried to execute non-native method as native");
1053     __ bind(L);
1054   }
1055   { Label L;
1056     __ testl(rax, JVM_ACC_ABSTRACT);
1057     __ jcc(Assembler::zero, L);
1058     __ stop("tried to execute abstract method in interpreter");
1059     __ bind(L);
1060   }
1061 #endif
1062 
1063 
1064   // increment invocation count & check for overflow
1065   Label invocation_counter_overflow;
1066   if (inc_counter) {
1067     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
1068   }
1069 
1070   Label continue_after_compile;
1071 
1072   __ bind(continue_after_compile);
1073 
1074   bang_stack_shadow_pages(true);
1075 
1076   // reset the _do_not_unlock_if_synchronized flag
1077   NOT_LP64(__ movl(rax, STATE(_thread));)                       // get thread
1078   __ movbool(do_not_unlock_if_synchronized, false);
1079 
1080 
1081   // check for synchronized native methods
1082   //
1083   // Note: This must happen *after* invocation counter check, since
1084   //       when overflow happens, the method should not be locked.
1085   if (synchronized) {
1086     // potentially kills rax, rcx, rdx, rdi
1087     lock_method();
1088   } else {
1089     // no synchronization necessary
1090 #ifdef ASSERT
1091       { Label L;
1092         __ movl(rax, access_flags);
1093         __ testl(rax, JVM_ACC_SYNCHRONIZED);
1094         __ jcc(Assembler::zero, L);
1095         __ stop("method needs synchronization");
1096         __ bind(L);
1097       }
1098 #endif
1099   }
1100 
1101   // start execution
1102 
1103   // jvmti support
1104   __ notify_method_entry();
1105 
1106   // work registers
1107   const Register method = rbx;
1108   const Register thread = LP64_ONLY(r15_thread) NOT_LP64(rdi);
1109   const Register t      = InterpreterRuntime::SignatureHandlerGenerator::temp();    // rcx|rscratch1
1110 
1111   // allocate space for parameters
1112   __ movptr(method, STATE(_method));
1113   __ verify_oop(method);
1114   __ load_unsigned_short(t, Address(method, methodOopDesc::size_of_parameters_offset()));
1115   __ shll(t, 2);
1116 #ifdef _LP64
1117   __ subptr(rsp, t);
1118   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
1119   __ andptr(rsp, -16); // must be 16 byte boundary (see amd64 ABI)
1120 #else
1121   __ addptr(t, 2*wordSize);     // allocate two more slots for JNIEnv and possible mirror
1122   __ subptr(rsp, t);
1123   __ andptr(rsp, -(StackAlignmentInBytes)); // gcc needs 16 byte aligned stacks to do XMM intrinsics
1124 #endif // _LP64
1125 
1126   // get signature handler
1127     Label pending_exception_present;
1128 
1129   { Label L;
1130     __ movptr(t, Address(method, methodOopDesc::signature_handler_offset()));
1131     __ testptr(t, t);
1132     __ jcc(Assembler::notZero, L);
1133     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), method, false);
1134     __ movptr(method, STATE(_method));
1135     __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
1136     __ jcc(Assembler::notEqual, pending_exception_present);
1137     __ verify_oop(method);
1138     __ movptr(t, Address(method, methodOopDesc::signature_handler_offset()));
1139     __ bind(L);
1140   }
1141 #ifdef ASSERT
1142   {
1143     Label L;
1144     __ push(t);
1145     __ get_thread(t);                                   // get vm's javathread*
1146     __ cmpptr(t, STATE(_thread));
1147     __ jcc(Assembler::equal, L);
1148     __ int3();
1149     __ bind(L);
1150     __ pop(t);
1151   }
1152 #endif //
1153 
1154   const Register from_ptr = InterpreterRuntime::SignatureHandlerGenerator::from();
1155   // call signature handler
1156   assert(InterpreterRuntime::SignatureHandlerGenerator::to  () == rsp, "adjust this code");
1157 
1158   // The generated handlers do not touch RBX (the method oop).
1159   // However, large signatures cannot be cached and are generated
1160   // each time here.  The slow-path generator will blow RBX
1161   // sometime, so we must reload it after the call.
1162   __ movptr(from_ptr, STATE(_locals));  // get the from pointer
1163   __ call(t);
1164   __ movptr(method, STATE(_method));
1165   __ verify_oop(method);
1166 
1167   // result handler is in rax
1168   // set result handler
1169   __ movptr(STATE(_result_handler), rax);
1170 
1171 
1172   // get native function entry point
1173   { Label L;
1174     __ movptr(rax, Address(method, methodOopDesc::native_function_offset()));
1175     __ testptr(rax, rax);
1176     __ jcc(Assembler::notZero, L);
1177     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), method);
1178     __ movptr(method, STATE(_method));
1179     __ verify_oop(method);
1180     __ movptr(rax, Address(method, methodOopDesc::native_function_offset()));
1181     __ bind(L);
1182   }
1183 
1184   // pass mirror handle if static call
1185   { Label L;
1186     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
1187     __ movl(t, Address(method, methodOopDesc::access_flags_offset()));
1188     __ testl(t, JVM_ACC_STATIC);
1189     __ jcc(Assembler::zero, L);
1190     // get mirror
1191     __ movptr(t, Address(method, methodOopDesc:: const_offset()));
1192     __ movptr(t, Address(t, constMethodOopDesc::constants_offset()));
1193     __ movptr(t, Address(t, constantPoolOopDesc::pool_holder_offset_in_bytes()));
1194     __ movptr(t, Address(t, mirror_offset));
1195     // copy mirror into activation object
1196     __ movptr(STATE(_oop_temp), t);
1197     // pass handle to mirror
1198 #ifdef _LP64
1199     __ lea(c_rarg1, STATE(_oop_temp));
1200 #else
1201     __ lea(t, STATE(_oop_temp));
1202     __ movptr(Address(rsp, wordSize), t);
1203 #endif // _LP64
1204     __ bind(L);
1205   }
1206 #ifdef ASSERT
1207   {
1208     Label L;
1209     __ push(t);
1210     __ get_thread(t);                                   // get vm's javathread*
1211     __ cmpptr(t, STATE(_thread));
1212     __ jcc(Assembler::equal, L);
1213     __ int3();
1214     __ bind(L);
1215     __ pop(t);
1216   }
1217 #endif //
1218 
1219   // pass JNIEnv
1220 #ifdef _LP64
1221   __ lea(c_rarg0, Address(thread, JavaThread::jni_environment_offset()));
1222 #else
1223   __ movptr(thread, STATE(_thread));          // get thread
1224   __ lea(t, Address(thread, JavaThread::jni_environment_offset()));
1225 
1226   __ movptr(Address(rsp, 0), t);
1227 #endif // _LP64
1228 
1229 #ifdef ASSERT
1230   {
1231     Label L;
1232     __ push(t);
1233     __ get_thread(t);                                   // get vm's javathread*
1234     __ cmpptr(t, STATE(_thread));
1235     __ jcc(Assembler::equal, L);
1236     __ int3();
1237     __ bind(L);
1238     __ pop(t);
1239   }
1240 #endif //
1241 
1242 #ifdef ASSERT
1243   { Label L;
1244     __ movl(t, Address(thread, JavaThread::thread_state_offset()));
1245     __ cmpl(t, _thread_in_Java);
1246     __ jcc(Assembler::equal, L);
1247     __ stop("Wrong thread state in native stub");
1248     __ bind(L);
1249   }
1250 #endif
1251 
1252   // Change state to native (we save the return address in the thread, since it might not
1253   // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
1254   // points into the right code segment. It does not have to be the correct return pc.
1255 
1256   __ set_last_Java_frame(thread, noreg, rbp, __ pc());
1257 
1258   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native);
1259 
1260   __ call(rax);
1261 
1262   // result potentially in rdx:rax or ST0
1263   __ movptr(method, STATE(_method));
1264   NOT_LP64(__ movptr(thread, STATE(_thread));)                  // get thread
1265 
1266   // The potential result is in ST(0) & rdx:rax
1267   // With C++ interpreter we leave any possible result in ST(0) until we are in result handler and then
1268   // we do the appropriate stuff for returning the result. rdx:rax must always be saved because just about
1269   // anything we do here will destroy it, st(0) is only saved if we re-enter the vm where it would
1270   // be destroyed.
1271   // It is safe to do these pushes because state is _thread_in_native and return address will be found
1272   // via _last_native_pc and not via _last_jave_sp
1273 
1274     // Must save the value of ST(0)/xmm0 since it could be destroyed before we get to result handler
1275     { Label Lpush, Lskip;
1276       ExternalAddress float_handler(AbstractInterpreter::result_handler(T_FLOAT));
1277       ExternalAddress double_handler(AbstractInterpreter::result_handler(T_DOUBLE));
1278       __ cmpptr(STATE(_result_handler), float_handler.addr());
1279       __ jcc(Assembler::equal, Lpush);
1280       __ cmpptr(STATE(_result_handler), double_handler.addr());
1281       __ jcc(Assembler::notEqual, Lskip);
1282       __ bind(Lpush);
1283       __ subptr(rsp, 2*wordSize);
1284       if ( UseSSE < 2 ) {
1285         __ fstp_d(Address(rsp, 0));
1286       } else {
1287         __ movdbl(Address(rsp, 0), xmm0);
1288       }
1289       __ bind(Lskip);
1290     }
1291 
1292   // save rax:rdx for potential use by result handler.
1293   __ push(rax);
1294 #ifndef _LP64
1295   __ push(rdx);
1296 #endif // _LP64
1297 
1298   // Either restore the MXCSR register after returning from the JNI Call
1299   // or verify that it wasn't changed.
1300   if (VM_Version::supports_sse()) {
1301     if (RestoreMXCSROnJNICalls) {
1302       __ ldmxcsr(ExternalAddress(StubRoutines::addr_mxcsr_std()));
1303     }
1304     else if (CheckJNICalls ) {
1305       __ call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry()));
1306     }
1307   }
1308 
1309 #ifndef _LP64
1310   // Either restore the x87 floating pointer control word after returning
1311   // from the JNI call or verify that it wasn't changed.
1312   if (CheckJNICalls) {
1313     __ call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry()));
1314   }
1315 #endif // _LP64
1316 
1317 
1318   // change thread state
1319   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
1320   if(os::is_MP()) {
1321     // Write serialization page so VM thread can do a pseudo remote membar.
1322     // We use the current thread pointer to calculate a thread specific
1323     // offset to write to within the page. This minimizes bus traffic
1324     // due to cache line collision.
1325     __ serialize_memory(thread, rcx);
1326   }
1327 
1328   // check for safepoint operation in progress and/or pending suspend requests
1329   { Label Continue;
1330 
1331     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
1332              SafepointSynchronize::_not_synchronized);
1333 
1334     // threads running native code and they are expected to self-suspend
1335     // when leaving the _thread_in_native state. We need to check for
1336     // pending suspend requests here.
1337     Label L;
1338     __ jcc(Assembler::notEqual, L);
1339     __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0);
1340     __ jcc(Assembler::equal, Continue);
1341     __ bind(L);
1342 
1343     // Don't use call_VM as it will see a possible pending exception and forward it
1344     // and never return here preventing us from clearing _last_native_pc down below.
1345     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
1346     // preserved and correspond to the bcp/locals pointers.
1347     //
1348 
1349     ((MacroAssembler*)_masm)->call_VM_leaf(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
1350                           thread);
1351     __ increment(rsp, wordSize);
1352 
1353     __ movptr(method, STATE(_method));
1354     __ verify_oop(method);
1355     __ movptr(thread, STATE(_thread));                       // get thread
1356 
1357     __ bind(Continue);
1358   }
1359 
1360   // change thread state
1361   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java);
1362 
1363   __ reset_last_Java_frame(thread, true, true);
1364 
1365   // reset handle block
1366   __ movptr(t, Address(thread, JavaThread::active_handles_offset()));
1367   __ movptr(Address(t, JNIHandleBlock::top_offset_in_bytes()), (int32_t)NULL_WORD);
1368 
1369   // If result was an oop then unbox and save it in the frame
1370   { Label L;
1371     Label no_oop, store_result;
1372       ExternalAddress oop_handler(AbstractInterpreter::result_handler(T_OBJECT));
1373     __ cmpptr(STATE(_result_handler), oop_handler.addr());
1374     __ jcc(Assembler::notEqual, no_oop);
1375 #ifndef _LP64
1376     __ pop(rdx);
1377 #endif // _LP64
1378     __ pop(rax);
1379     __ testptr(rax, rax);
1380     __ jcc(Assembler::zero, store_result);
1381     // unbox
1382     __ movptr(rax, Address(rax, 0));
1383     __ bind(store_result);
1384     __ movptr(STATE(_oop_temp), rax);
1385     // keep stack depth as expected by pushing oop which will eventually be discarded
1386     __ push(rax);
1387 #ifndef _LP64
1388     __ push(rdx);
1389 #endif // _LP64
1390     __ bind(no_oop);
1391   }
1392 
1393   {
1394      Label no_reguard;
1395      __ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
1396      __ jcc(Assembler::notEqual, no_reguard);
1397 
1398      __ pusha();
1399      __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
1400      __ popa();
1401 
1402      __ bind(no_reguard);
1403    }
1404 
1405 
1406   // QQQ Seems like for native methods we simply return and the caller will see the pending
1407   // exception and do the right thing. Certainly the interpreter will, don't know about
1408   // compiled methods.
1409   // Seems that the answer to above is no this is wrong. The old code would see the exception
1410   // and forward it before doing the unlocking and notifying jvmdi that method has exited.
1411   // This seems wrong need to investigate the spec.
1412 
1413   // handle exceptions (exception handling will handle unlocking!)
1414   { Label L;
1415     __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
1416     __ jcc(Assembler::zero, L);
1417     __ bind(pending_exception_present);
1418 
1419     // There are potential results on the stack (rax/rdx, ST(0)) we ignore these and simply
1420     // return and let caller deal with exception. This skips the unlocking here which
1421     // seems wrong but seems to be what asm interpreter did. Can't find this in the spec.
1422     // Note: must preverve method in rbx
1423     //
1424 
1425     // remove activation
1426 
1427     __ movptr(t, STATE(_sender_sp));
1428     __ leave();                                  // remove frame anchor
1429     __ pop(rdi);                                 // get return address
1430     __ movptr(state, STATE(_prev_link));         // get previous state for return
1431     __ mov(rsp, t);                              // set sp to sender sp
1432     __ push(rdi);                                // push throwing pc
1433     // The skips unlocking!! This seems to be what asm interpreter does but seems
1434     // very wrong. Not clear if this violates the spec.
1435     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
1436     __ bind(L);
1437   }
1438 
1439   // do unlocking if necessary
1440   { Label L;
1441     __ movl(t, Address(method, methodOopDesc::access_flags_offset()));
1442     __ testl(t, JVM_ACC_SYNCHRONIZED);
1443     __ jcc(Assembler::zero, L);
1444     // the code below should be shared with interpreter macro assembler implementation
1445     { Label unlock;
1446     const Register monitor = NOT_LP64(rdx) LP64_ONLY(c_rarg1);
1447       // BasicObjectLock will be first in list, since this is a synchronized method. However, need
1448       // to check that the object has not been unlocked by an explicit monitorexit bytecode.
1449       __ movptr(monitor, STATE(_monitor_base));
1450       __ subptr(monitor, frame::interpreter_frame_monitor_size() * wordSize);  // address of initial monitor
1451 
1452       __ movptr(t, Address(monitor, BasicObjectLock::obj_offset_in_bytes()));
1453       __ testptr(t, t);
1454       __ jcc(Assembler::notZero, unlock);
1455 
1456       // Entry already unlocked, need to throw exception
1457       __ MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
1458       __ should_not_reach_here();
1459 
1460       __ bind(unlock);
1461       __ unlock_object(monitor);
1462       // unlock can blow rbx so restore it for path that needs it below
1463       __ movptr(method, STATE(_method));
1464     }
1465     __ bind(L);
1466   }
1467 
1468   // jvmti support
1469   // Note: This must happen _after_ handling/throwing any exceptions since
1470   //       the exception handler code notifies the runtime of method exits
1471   //       too. If this happens before, method entry/exit notifications are
1472   //       not properly paired (was bug - gri 11/22/99).
1473   __ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI);
1474 
1475   // restore potential result in rdx:rax, call result handler to restore potential result in ST0 & handle result
1476 #ifndef _LP64
1477   __ pop(rdx);
1478 #endif // _LP64
1479   __ pop(rax);
1480   __ movptr(t, STATE(_result_handler));       // get result handler
1481   __ call(t);                                 // call result handler to convert to tosca form
1482 
1483   // remove activation
1484 
1485   __ movptr(t, STATE(_sender_sp));
1486 
1487   __ leave();                                  // remove frame anchor
1488   __ pop(rdi);                                 // get return address
1489   __ movptr(state, STATE(_prev_link));         // get previous state for return (if c++ interpreter was caller)
1490   __ mov(rsp, t);                              // set sp to sender sp
1491   __ jmp(rdi);
1492 
1493   // invocation counter overflow
1494   if (inc_counter) {
1495     // Handle overflow of counter and compile method
1496     __ bind(invocation_counter_overflow);
1497     generate_counter_overflow(&continue_after_compile);
1498   }
1499 
1500   return entry_point;
1501 }
1502 
1503 // Generate entries that will put a result type index into rcx
1504 void CppInterpreterGenerator::generate_deopt_handling() {
1505 
1506   Label return_from_deopt_common;
1507 
1508   // Generate entries that will put a result type index into rcx
1509   // deopt needs to jump to here to enter the interpreter (return a result)
1510   deopt_frame_manager_return_atos  = __ pc();
1511 
1512   // rax is live here
1513   __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_OBJECT));    // Result stub address array index
1514   __ jmp(return_from_deopt_common);
1515 
1516 
1517   // deopt needs to jump to here to enter the interpreter (return a result)
1518   deopt_frame_manager_return_btos  = __ pc();
1519 
1520   // rax is live here
1521   __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_BOOLEAN));    // Result stub address array index
1522   __ jmp(return_from_deopt_common);
1523 
1524   // deopt needs to jump to here to enter the interpreter (return a result)
1525   deopt_frame_manager_return_itos  = __ pc();
1526 
1527   // rax is live here
1528   __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_INT));    // Result stub address array index
1529   __ jmp(return_from_deopt_common);
1530 
1531   // deopt needs to jump to here to enter the interpreter (return a result)
1532 
1533   deopt_frame_manager_return_ltos  = __ pc();
1534   // rax,rdx are live here
1535   __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_LONG));    // Result stub address array index
1536   __ jmp(return_from_deopt_common);
1537 
1538   // deopt needs to jump to here to enter the interpreter (return a result)
1539 
1540   deopt_frame_manager_return_ftos  = __ pc();
1541   // st(0) is live here
1542   __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_FLOAT));    // Result stub address array index
1543   __ jmp(return_from_deopt_common);
1544 
1545   // deopt needs to jump to here to enter the interpreter (return a result)
1546   deopt_frame_manager_return_dtos  = __ pc();
1547 
1548   // st(0) is live here
1549   __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_DOUBLE));    // Result stub address array index
1550   __ jmp(return_from_deopt_common);
1551 
1552   // deopt needs to jump to here to enter the interpreter (return a result)
1553   deopt_frame_manager_return_vtos  = __ pc();
1554 
1555   __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_VOID));
1556 
1557   // Deopt return common
1558   // an index is present in rcx that lets us move any possible result being
1559   // return to the interpreter's stack
1560   //
1561   // Because we have a full sized interpreter frame on the youngest
1562   // activation the stack is pushed too deep to share the tosca to
1563   // stack converters directly. We shrink the stack to the desired
1564   // amount and then push result and then re-extend the stack.
1565   // We could have the code in size_activation layout a short
1566   // frame for the top activation but that would look different
1567   // than say sparc (which needs a full size activation because
1568   // the windows are in the way. Really it could be short? QQQ
1569   //
1570   __ bind(return_from_deopt_common);
1571 
1572   __ lea(state, Address(rbp, -(int)sizeof(BytecodeInterpreter)));
1573 
1574   // setup rsp so we can push the "result" as needed.
1575   __ movptr(rsp, STATE(_stack));                                   // trim stack (is prepushed)
1576   __ addptr(rsp, wordSize);                                        // undo prepush
1577 
1578   ExternalAddress tosca_to_stack((address)CppInterpreter::_tosca_to_stack);
1579   // Address index(noreg, rcx, Address::times_ptr);
1580   __ movptr(rcx, ArrayAddress(tosca_to_stack, Address(noreg, rcx, Address::times_ptr)));
1581   // __ movl(rcx, Address(noreg, rcx, Address::times_ptr, int(AbstractInterpreter::_tosca_to_stack)));
1582   __ call(rcx);                                                   // call result converter
1583 
1584   __ movl(STATE(_msg), (int)BytecodeInterpreter::deopt_resume);
1585   __ lea(rsp, Address(rsp, -wordSize));                            // prepush stack (result if any already present)
1586   __ movptr(STATE(_stack), rsp);                                   // inform interpreter of new stack depth (parameters removed,
1587                                                                    // result if any on stack already )
1588   __ movptr(rsp, STATE(_stack_limit));                             // restore expression stack to full depth
1589 }
1590 
1591 // Generate the code to handle a more_monitors message from the c++ interpreter
1592 void CppInterpreterGenerator::generate_more_monitors() {
1593 
1594 
1595   Label entry, loop;
1596   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
1597   // 1. compute new pointers                     // rsp: old expression stack top
1598   __ movptr(rdx, STATE(_stack_base));            // rdx: old expression stack bottom
1599   __ subptr(rsp, entry_size);                    // move expression stack top limit
1600   __ subptr(STATE(_stack), entry_size);          // update interpreter stack top
1601   __ subptr(STATE(_stack_limit), entry_size);    // inform interpreter
1602   __ subptr(rdx, entry_size);                    // move expression stack bottom
1603   __ movptr(STATE(_stack_base), rdx);            // inform interpreter
1604   __ movptr(rcx, STATE(_stack));                 // set start value for copy loop
1605   __ jmp(entry);
1606   // 2. move expression stack contents
1607   __ bind(loop);
1608   __ movptr(rbx, Address(rcx, entry_size));      // load expression stack word from old location
1609   __ movptr(Address(rcx, 0), rbx);               // and store it at new location
1610   __ addptr(rcx, wordSize);                      // advance to next word
1611   __ bind(entry);
1612   __ cmpptr(rcx, rdx);                           // check if bottom reached
1613   __ jcc(Assembler::notEqual, loop);             // if not at bottom then copy next word
1614   // now zero the slot so we can find it.
1615   __ movptr(Address(rdx, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL_WORD);
1616   __ movl(STATE(_msg), (int)BytecodeInterpreter::got_monitors);
1617 }
1618 
1619 
1620 // Initial entry to C++ interpreter from the call_stub.
1621 // This entry point is called the frame manager since it handles the generation
1622 // of interpreter activation frames via requests directly from the vm (via call_stub)
1623 // and via requests from the interpreter. The requests from the call_stub happen
1624 // directly thru the entry point. Requests from the interpreter happen via returning
1625 // from the interpreter and examining the message the interpreter has returned to
1626 // the frame manager. The frame manager can take the following requests:
1627 
1628 // NO_REQUEST - error, should never happen.
1629 // MORE_MONITORS - need a new monitor. Shuffle the expression stack on down and
1630 //                 allocate a new monitor.
1631 // CALL_METHOD - setup a new activation to call a new method. Very similar to what
1632 //               happens during entry during the entry via the call stub.
1633 // RETURN_FROM_METHOD - remove an activation. Return to interpreter or call stub.
1634 //
1635 // Arguments:
1636 //
1637 // rbx: methodOop
1638 // rcx: receiver - unused (retrieved from stack as needed)
1639 // rsi/r13: previous frame manager state (NULL from the call_stub/c1/c2)
1640 //
1641 //
1642 // Stack layout at entry
1643 //
1644 // [ return address     ] <--- rsp
1645 // [ parameter n        ]
1646 //   ...
1647 // [ parameter 1        ]
1648 // [ expression stack   ]
1649 //
1650 //
1651 // We are free to blow any registers we like because the call_stub which brought us here
1652 // initially has preserved the callee save registers already.
1653 //
1654 //
1655 
1656 static address interpreter_frame_manager = NULL;
1657 
1658 address InterpreterGenerator::generate_normal_entry(bool synchronized) {
1659 
1660   // rbx: methodOop
1661   // rsi/r13: sender sp
1662 
1663   // Because we redispatch "recursive" interpreter entries thru this same entry point
1664   // the "input" register usage is a little strange and not what you expect coming
1665   // from the call_stub. From the call stub rsi/rdi (current/previous) interpreter
1666   // state are NULL but on "recursive" dispatches they are what you'd expect.
1667   // rsi: current interpreter state (C++ interpreter) must preserve (null from call_stub/c1/c2)
1668 
1669 
1670   // A single frame manager is plenty as we don't specialize for synchronized. We could and
1671   // the code is pretty much ready. Would need to change the test below and for good measure
1672   // modify generate_interpreter_state to only do the (pre) sync stuff stuff for synchronized
1673   // routines. Not clear this is worth it yet.
1674 
1675   if (interpreter_frame_manager) return interpreter_frame_manager;
1676 
1677   address entry_point = __ pc();
1678 
1679   // Fast accessor methods share this entry point.
1680   // This works because frame manager is in the same codelet
1681   if (UseFastAccessorMethods && !synchronized) __ bind(fast_accessor_slow_entry_path);
1682 
1683   Label dispatch_entry_2;
1684   __ movptr(rcx, sender_sp_on_entry);
1685   __ movptr(state, (int32_t)NULL_WORD);                              // no current activation
1686 
1687   __ jmp(dispatch_entry_2);
1688 
1689   const Register locals  = rdi;
1690 
1691   Label re_dispatch;
1692 
1693   __ bind(re_dispatch);
1694 
1695   // save sender sp (doesn't include return address
1696   __ lea(rcx, Address(rsp, wordSize));
1697 
1698   __ bind(dispatch_entry_2);
1699 
1700   // save sender sp
1701   __ push(rcx);
1702 
1703   const Address size_of_parameters(rbx, methodOopDesc::size_of_parameters_offset());
1704   const Address size_of_locals    (rbx, methodOopDesc::size_of_locals_offset());
1705   const Address access_flags      (rbx, methodOopDesc::access_flags_offset());
1706 
1707   // const Address monitor_block_top (rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
1708   // const Address monitor_block_bot (rbp, frame::interpreter_frame_initial_sp_offset        * wordSize);
1709   // const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset * wordSize - (int)sizeof(BasicObjectLock));
1710 
1711   // get parameter size (always needed)
1712   __ load_unsigned_short(rcx, size_of_parameters);
1713 
1714   // rbx: methodOop
1715   // rcx: size of parameters
1716   __ load_unsigned_short(rdx, size_of_locals);                     // get size of locals in words
1717 
1718   __ subptr(rdx, rcx);                                             // rdx = no. of additional locals
1719 
1720   // see if we've got enough room on the stack for locals plus overhead.
1721   generate_stack_overflow_check();                                 // C++
1722 
1723   // c++ interpreter does not use stack banging or any implicit exceptions
1724   // leave for now to verify that check is proper.
1725   bang_stack_shadow_pages(false);
1726 
1727 
1728 
1729   // compute beginning of parameters (rdi)
1730   __ lea(locals, Address(rsp, rcx, Address::times_ptr, wordSize));
1731 
1732   // save sender's sp
1733   // __ movl(rcx, rsp);
1734 
1735   // get sender's sp
1736   __ pop(rcx);
1737 
1738   // get return address
1739   __ pop(rax);
1740 
1741   // rdx - # of additional locals
1742   // allocate space for locals
1743   // explicitly initialize locals
1744   {
1745     Label exit, loop;
1746     __ testl(rdx, rdx);                               // (32bit ok)
1747     __ jcc(Assembler::lessEqual, exit);               // do nothing if rdx <= 0
1748     __ bind(loop);
1749     __ push((int32_t)NULL_WORD);                      // initialize local variables
1750     __ decrement(rdx);                                // until everything initialized
1751     __ jcc(Assembler::greater, loop);
1752     __ bind(exit);
1753   }
1754 
1755 
1756   // Assumes rax = return address
1757 
1758   // allocate and initialize new interpreterState and method expression stack
1759   // IN(locals) ->  locals
1760   // IN(state) -> any current interpreter activation
1761   // destroys rax, rcx, rdx, rdi
1762   // OUT (state) -> new interpreterState
1763   // OUT(rsp) -> bottom of methods expression stack
1764 
1765   generate_compute_interpreter_state(state, locals, rcx, false);
1766 
1767   // Call interpreter
1768 
1769   Label call_interpreter;
1770   __ bind(call_interpreter);
1771 
1772   // c++ interpreter does not use stack banging or any implicit exceptions
1773   // leave for now to verify that check is proper.
1774   bang_stack_shadow_pages(false);
1775 
1776 
1777   // Call interpreter enter here if message is
1778   // set and we know stack size is valid
1779 
1780   Label call_interpreter_2;
1781 
1782   __ bind(call_interpreter_2);
1783 
1784   {
1785     const Register thread  = NOT_LP64(rcx) LP64_ONLY(r15_thread);
1786 
1787 #ifdef _LP64
1788     __ mov(c_rarg0, state);
1789 #else
1790     __ push(state);                                                 // push arg to interpreter
1791     __ movptr(thread, STATE(_thread));
1792 #endif // _LP64
1793 
1794     // We can setup the frame anchor with everything we want at this point
1795     // as we are thread_in_Java and no safepoints can occur until we go to
1796     // vm mode. We do have to clear flags on return from vm but that is it
1797     //
1798     __ movptr(Address(thread, JavaThread::last_Java_fp_offset()), rbp);
1799     __ movptr(Address(thread, JavaThread::last_Java_sp_offset()), rsp);
1800 
1801     // Call the interpreter
1802 
1803     RuntimeAddress normal(CAST_FROM_FN_PTR(address, BytecodeInterpreter::run));
1804     RuntimeAddress checking(CAST_FROM_FN_PTR(address, BytecodeInterpreter::runWithChecks));
1805 
1806     __ call(JvmtiExport::can_post_interpreter_events() ? checking : normal);
1807     NOT_LP64(__ pop(rax);)                                          // discard parameter to run
1808     //
1809     // state is preserved since it is callee saved
1810     //
1811 
1812     // reset_last_Java_frame
1813 
1814     NOT_LP64(__ movl(thread, STATE(_thread));)
1815     __ reset_last_Java_frame(thread, true, true);
1816   }
1817 
1818   // examine msg from interpreter to determine next action
1819 
1820   __ movl(rdx, STATE(_msg));                                       // Get new message
1821 
1822   Label call_method;
1823   Label return_from_interpreted_method;
1824   Label throw_exception;
1825   Label bad_msg;
1826   Label do_OSR;
1827 
1828   __ cmpl(rdx, (int32_t)BytecodeInterpreter::call_method);
1829   __ jcc(Assembler::equal, call_method);
1830   __ cmpl(rdx, (int32_t)BytecodeInterpreter::return_from_method);
1831   __ jcc(Assembler::equal, return_from_interpreted_method);
1832   __ cmpl(rdx, (int32_t)BytecodeInterpreter::do_osr);
1833   __ jcc(Assembler::equal, do_OSR);
1834   __ cmpl(rdx, (int32_t)BytecodeInterpreter::throwing_exception);
1835   __ jcc(Assembler::equal, throw_exception);
1836   __ cmpl(rdx, (int32_t)BytecodeInterpreter::more_monitors);
1837   __ jcc(Assembler::notEqual, bad_msg);
1838 
1839   // Allocate more monitor space, shuffle expression stack....
1840 
1841   generate_more_monitors();
1842 
1843   __ jmp(call_interpreter);
1844 
1845   // uncommon trap needs to jump to here to enter the interpreter (re-execute current bytecode)
1846   unctrap_frame_manager_entry  = __ pc();
1847   //
1848   // Load the registers we need.
1849   __ lea(state, Address(rbp, -(int)sizeof(BytecodeInterpreter)));
1850   __ movptr(rsp, STATE(_stack_limit));                             // restore expression stack to full depth
1851   __ jmp(call_interpreter_2);
1852 
1853 
1854 
1855   //=============================================================================
1856   // Returning from a compiled method into a deopted method. The bytecode at the
1857   // bcp has completed. The result of the bytecode is in the native abi (the tosca
1858   // for the template based interpreter). Any stack space that was used by the
1859   // bytecode that has completed has been removed (e.g. parameters for an invoke)
1860   // so all that we have to do is place any pending result on the expression stack
1861   // and resume execution on the next bytecode.
1862 
1863 
1864   generate_deopt_handling();
1865   __ jmp(call_interpreter);
1866 
1867 
1868   // Current frame has caught an exception we need to dispatch to the
1869   // handler. We can get here because a native interpreter frame caught
1870   // an exception in which case there is no handler and we must rethrow
1871   // If it is a vanilla interpreted frame the we simply drop into the
1872   // interpreter and let it do the lookup.
1873 
1874   Interpreter::_rethrow_exception_entry = __ pc();
1875   // rax: exception
1876   // rdx: return address/pc that threw exception
1877 
1878   Label return_with_exception;
1879   Label unwind_and_forward;
1880 
1881   // restore state pointer.
1882   __ lea(state, Address(rbp,  -(int)sizeof(BytecodeInterpreter)));
1883 
1884   __ movptr(rbx, STATE(_method));                       // get method
1885 #ifdef _LP64
1886   __ movptr(Address(r15_thread, Thread::pending_exception_offset()), rax);
1887 #else
1888   __ movl(rcx, STATE(_thread));                       // get thread
1889 
1890   // Store exception with interpreter will expect it
1891   __ movptr(Address(rcx, Thread::pending_exception_offset()), rax);
1892 #endif // _LP64
1893 
1894   // is current frame vanilla or native?
1895 
1896   __ movl(rdx, access_flags);
1897   __ testl(rdx, JVM_ACC_NATIVE);
1898   __ jcc(Assembler::zero, return_with_exception);     // vanilla interpreted frame, handle directly
1899 
1900   // We drop thru to unwind a native interpreted frame with a pending exception
1901   // We jump here for the initial interpreter frame with exception pending
1902   // We unwind the current acivation and forward it to our caller.
1903 
1904   __ bind(unwind_and_forward);
1905 
1906   // unwind rbp, return stack to unextended value and re-push return address
1907 
1908   __ movptr(rcx, STATE(_sender_sp));
1909   __ leave();
1910   __ pop(rdx);
1911   __ mov(rsp, rcx);
1912   __ push(rdx);
1913   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
1914 
1915   // Return point from a call which returns a result in the native abi
1916   // (c1/c2/jni-native). This result must be processed onto the java
1917   // expression stack.
1918   //
1919   // A pending exception may be present in which case there is no result present
1920 
1921   Label resume_interpreter;
1922   Label do_float;
1923   Label do_double;
1924   Label done_conv;
1925 
1926   // The FPU stack is clean if UseSSE >= 2 but must be cleaned in other cases
1927   if (UseSSE < 2) {
1928     __ lea(state, Address(rbp,  -(int)sizeof(BytecodeInterpreter)));
1929     __ movptr(rbx, STATE(_result._to_call._callee));                   // get method just executed
1930     __ movl(rcx, Address(rbx, methodOopDesc::result_index_offset()));
1931     __ cmpl(rcx, AbstractInterpreter::BasicType_as_index(T_FLOAT));    // Result stub address array index
1932     __ jcc(Assembler::equal, do_float);
1933     __ cmpl(rcx, AbstractInterpreter::BasicType_as_index(T_DOUBLE));    // Result stub address array index
1934     __ jcc(Assembler::equal, do_double);
1935 #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2)
1936     __ empty_FPU_stack();
1937 #endif // COMPILER2
1938     __ jmp(done_conv);
1939 
1940     __ bind(do_float);
1941 #ifdef COMPILER2
1942     for (int i = 1; i < 8; i++) {
1943       __ ffree(i);
1944     }
1945 #endif // COMPILER2
1946     __ jmp(done_conv);
1947     __ bind(do_double);
1948 #ifdef COMPILER2
1949     for (int i = 1; i < 8; i++) {
1950       __ ffree(i);
1951     }
1952 #endif // COMPILER2
1953     __ jmp(done_conv);
1954   } else {
1955     __ MacroAssembler::verify_FPU(0, "generate_return_entry_for compiled");
1956     __ jmp(done_conv);
1957   }
1958 
1959   // Return point to interpreter from compiled/native method
1960   InternalAddress return_from_native_method(__ pc());
1961 
1962   __ bind(done_conv);
1963 
1964 
1965   // Result if any is in tosca. The java expression stack is in the state that the
1966   // calling convention left it (i.e. params may or may not be present)
1967   // Copy the result from tosca and place it on java expression stack.
1968 
1969   // Restore rsi/r13 as compiled code may not preserve it
1970 
1971   __ lea(state, Address(rbp,  -(int)sizeof(BytecodeInterpreter)));
1972 
1973   // restore stack to what we had when we left (in case i2c extended it)
1974 
1975   __ movptr(rsp, STATE(_stack));
1976   __ lea(rsp, Address(rsp, wordSize));
1977 
1978   // If there is a pending exception then we don't really have a result to process
1979 
1980 #ifdef _LP64
1981   __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
1982 #else
1983   __ movptr(rcx, STATE(_thread));                       // get thread
1984   __ cmpptr(Address(rcx, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
1985 #endif // _LP64
1986   __ jcc(Assembler::notZero, return_with_exception);
1987 
1988   // get method just executed
1989   __ movptr(rbx, STATE(_result._to_call._callee));
1990 
1991   // callee left args on top of expression stack, remove them
1992   __ load_unsigned_short(rcx, Address(rbx, methodOopDesc::size_of_parameters_offset()));
1993   __ lea(rsp, Address(rsp, rcx, Address::times_ptr));
1994 
1995   __ movl(rcx, Address(rbx, methodOopDesc::result_index_offset()));
1996   ExternalAddress tosca_to_stack((address)CppInterpreter::_tosca_to_stack);
1997   // Address index(noreg, rax, Address::times_ptr);
1998   __ movptr(rcx, ArrayAddress(tosca_to_stack, Address(noreg, rcx, Address::times_ptr)));
1999   // __ movl(rcx, Address(noreg, rcx, Address::times_ptr, int(AbstractInterpreter::_tosca_to_stack)));
2000   __ call(rcx);                                               // call result converter
2001   __ jmp(resume_interpreter);
2002 
2003   // An exception is being caught on return to a vanilla interpreter frame.
2004   // Empty the stack and resume interpreter
2005 
2006   __ bind(return_with_exception);
2007 
2008   // Exception present, empty stack
2009   __ movptr(rsp, STATE(_stack_base));
2010   __ jmp(resume_interpreter);
2011 
2012   // Return from interpreted method we return result appropriate to the caller (i.e. "recursive"
2013   // interpreter call, or native) and unwind this interpreter activation.
2014   // All monitors should be unlocked.
2015 
2016   __ bind(return_from_interpreted_method);
2017 
2018   Label return_to_initial_caller;
2019 
2020   __ movptr(rbx, STATE(_method));                                   // get method just executed
2021   __ cmpptr(STATE(_prev_link), (int32_t)NULL_WORD);                 // returning from "recursive" interpreter call?
2022   __ movl(rax, Address(rbx, methodOopDesc::result_index_offset())); // get result type index
2023   __ jcc(Assembler::equal, return_to_initial_caller);               // back to native code (call_stub/c1/c2)
2024 
2025   // Copy result to callers java stack
2026   ExternalAddress stack_to_stack((address)CppInterpreter::_stack_to_stack);
2027   // Address index(noreg, rax, Address::times_ptr);
2028 
2029   __ movptr(rax, ArrayAddress(stack_to_stack, Address(noreg, rax, Address::times_ptr)));
2030   // __ movl(rax, Address(noreg, rax, Address::times_ptr, int(AbstractInterpreter::_stack_to_stack)));
2031   __ call(rax);                                                     // call result converter
2032 
2033   Label unwind_recursive_activation;
2034   __ bind(unwind_recursive_activation);
2035 
2036   // returning to interpreter method from "recursive" interpreter call
2037   // result converter left rax pointing to top of the java stack for method we are returning
2038   // to. Now all we must do is unwind the state from the completed call
2039 
2040   __ movptr(state, STATE(_prev_link));                              // unwind state
2041   __ leave();                                                       // pop the frame
2042   __ mov(rsp, rax);                                                 // unwind stack to remove args
2043 
2044   // Resume the interpreter. The current frame contains the current interpreter
2045   // state object.
2046   //
2047 
2048   __ bind(resume_interpreter);
2049 
2050   // state == interpreterState object for method we are resuming
2051 
2052   __ movl(STATE(_msg), (int)BytecodeInterpreter::method_resume);
2053   __ lea(rsp, Address(rsp, -wordSize));                            // prepush stack (result if any already present)
2054   __ movptr(STATE(_stack), rsp);                                   // inform interpreter of new stack depth (parameters removed,
2055                                                                    // result if any on stack already )
2056   __ movptr(rsp, STATE(_stack_limit));                             // restore expression stack to full depth
2057   __ jmp(call_interpreter_2);                                      // No need to bang
2058 
2059   // interpreter returning to native code (call_stub/c1/c2)
2060   // convert result and unwind initial activation
2061   // rax - result index
2062 
2063   __ bind(return_to_initial_caller);
2064   ExternalAddress stack_to_native((address)CppInterpreter::_stack_to_native_abi);
2065   // Address index(noreg, rax, Address::times_ptr);
2066 
2067   __ movptr(rax, ArrayAddress(stack_to_native, Address(noreg, rax, Address::times_ptr)));
2068   __ call(rax);                                                    // call result converter
2069 
2070   Label unwind_initial_activation;
2071   __ bind(unwind_initial_activation);
2072 
2073   // RETURN TO CALL_STUB/C1/C2 code (result if any in rax/rdx ST(0))
2074 
2075   /* Current stack picture
2076 
2077         [ incoming parameters ]
2078         [ extra locals ]
2079         [ return address to CALL_STUB/C1/C2]
2080   fp -> [ CALL_STUB/C1/C2 fp ]
2081         BytecodeInterpreter object
2082         expression stack
2083   sp ->
2084 
2085   */
2086 
2087   // return restoring the stack to the original sender_sp value
2088 
2089   __ movptr(rcx, STATE(_sender_sp));
2090   __ leave();
2091   __ pop(rdi);                                                        // get return address
2092   // set stack to sender's sp
2093   __ mov(rsp, rcx);
2094   __ jmp(rdi);                                                        // return to call_stub
2095 
2096   // OSR request, adjust return address to make current frame into adapter frame
2097   // and enter OSR nmethod
2098 
2099   __ bind(do_OSR);
2100 
2101   Label remove_initial_frame;
2102 
2103   // We are going to pop this frame. Is there another interpreter frame underneath
2104   // it or is it callstub/compiled?
2105 
2106   // Move buffer to the expected parameter location
2107   __ movptr(rcx, STATE(_result._osr._osr_buf));
2108 
2109   __ movptr(rax, STATE(_result._osr._osr_entry));
2110 
2111   __ cmpptr(STATE(_prev_link), (int32_t)NULL_WORD);            // returning from "recursive" interpreter call?
2112   __ jcc(Assembler::equal, remove_initial_frame);              // back to native code (call_stub/c1/c2)
2113 
2114   __ movptr(sender_sp_on_entry, STATE(_sender_sp));            // get sender's sp in expected register
2115   __ leave();                                                  // pop the frame
2116   __ mov(rsp, sender_sp_on_entry);                             // trim any stack expansion
2117 
2118 
2119   // We know we are calling compiled so push specialized return
2120   // method uses specialized entry, push a return so we look like call stub setup
2121   // this path will handle fact that result is returned in registers and not
2122   // on the java stack.
2123 
2124   __ pushptr(return_from_native_method.addr());
2125 
2126   __ jmp(rax);
2127 
2128   __ bind(remove_initial_frame);
2129 
2130   __ movptr(rdx, STATE(_sender_sp));
2131   __ leave();
2132   // get real return
2133   __ pop(rsi);
2134   // set stack to sender's sp
2135   __ mov(rsp, rdx);
2136   // repush real return
2137   __ push(rsi);
2138   // Enter OSR nmethod
2139   __ jmp(rax);
2140 
2141 
2142 
2143 
2144   // Call a new method. All we do is (temporarily) trim the expression stack
2145   // push a return address to bring us back to here and leap to the new entry.
2146 
2147   __ bind(call_method);
2148 
2149   // stack points to next free location and not top element on expression stack
2150   // method expects sp to be pointing to topmost element
2151 
2152   __ movptr(rsp, STATE(_stack));                                     // pop args to c++ interpreter, set sp to java stack top
2153   __ lea(rsp, Address(rsp, wordSize));
2154 
2155   __ movptr(rbx, STATE(_result._to_call._callee));                   // get method to execute
2156 
2157   // don't need a return address if reinvoking interpreter
2158 
2159   // Make it look like call_stub calling conventions
2160 
2161   // Get (potential) receiver
2162   __ load_unsigned_short(rcx, size_of_parameters);                   // get size of parameters in words
2163 
2164   ExternalAddress recursive(CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation));
2165   __ pushptr(recursive.addr());                                      // make it look good in the debugger
2166 
2167   InternalAddress entry(entry_point);
2168   __ cmpptr(STATE(_result._to_call._callee_entry_point), entry.addr()); // returning to interpreter?
2169   __ jcc(Assembler::equal, re_dispatch);                             // yes
2170 
2171   __ pop(rax);                                                       // pop dummy address
2172 
2173 
2174   // get specialized entry
2175   __ movptr(rax, STATE(_result._to_call._callee_entry_point));
2176   // set sender SP
2177   __ mov(sender_sp_on_entry, rsp);
2178 
2179   // method uses specialized entry, push a return so we look like call stub setup
2180   // this path will handle fact that result is returned in registers and not
2181   // on the java stack.
2182 
2183   __ pushptr(return_from_native_method.addr());
2184 
2185   __ jmp(rax);
2186 
2187   __ bind(bad_msg);
2188   __ stop("Bad message from interpreter");
2189 
2190   // Interpreted method "returned" with an exception pass it on...
2191   // Pass result, unwind activation and continue/return to interpreter/call_stub
2192   // We handle result (if any) differently based on return to interpreter or call_stub
2193 
2194   Label unwind_initial_with_pending_exception;
2195 
2196   __ bind(throw_exception);
2197   __ cmpptr(STATE(_prev_link), (int32_t)NULL_WORD);                 // returning from recursive interpreter call?
2198   __ jcc(Assembler::equal, unwind_initial_with_pending_exception);  // no, back to native code (call_stub/c1/c2)
2199   __ movptr(rax, STATE(_locals));                                   // pop parameters get new stack value
2200   __ addptr(rax, wordSize);                                         // account for prepush before we return
2201   __ jmp(unwind_recursive_activation);
2202 
2203   __ bind(unwind_initial_with_pending_exception);
2204 
2205   // We will unwind the current (initial) interpreter frame and forward
2206   // the exception to the caller. We must put the exception in the
2207   // expected register and clear pending exception and then forward.
2208 
2209   __ jmp(unwind_and_forward);
2210 
2211   interpreter_frame_manager = entry_point;
2212   return entry_point;
2213 }
2214 
2215 address AbstractInterpreterGenerator::generate_method_entry(AbstractInterpreter::MethodKind kind) {
2216   // determine code generation flags
2217   bool synchronized = false;
2218   address entry_point = NULL;
2219 
2220   switch (kind) {
2221     case Interpreter::zerolocals             :                                                                             break;
2222     case Interpreter::zerolocals_synchronized: synchronized = true;                                                        break;
2223     case Interpreter::native                 : entry_point = ((InterpreterGenerator*)this)->generate_native_entry(false);  break;
2224     case Interpreter::native_synchronized    : entry_point = ((InterpreterGenerator*)this)->generate_native_entry(true);   break;
2225     case Interpreter::empty                  : entry_point = ((InterpreterGenerator*)this)->generate_empty_entry();        break;
2226     case Interpreter::accessor               : entry_point = ((InterpreterGenerator*)this)->generate_accessor_entry();     break;
2227     case Interpreter::abstract               : entry_point = ((InterpreterGenerator*)this)->generate_abstract_entry();     break;
2228     case Interpreter::method_handle          : entry_point = ((InterpreterGenerator*)this)->generate_method_handle_entry(); break;
2229 
2230     case Interpreter::java_lang_math_sin     : // fall thru
2231     case Interpreter::java_lang_math_cos     : // fall thru
2232     case Interpreter::java_lang_math_tan     : // fall thru
2233     case Interpreter::java_lang_math_abs     : // fall thru
2234     case Interpreter::java_lang_math_log     : // fall thru
2235     case Interpreter::java_lang_math_log10   : // fall thru
2236     case Interpreter::java_lang_math_sqrt    : entry_point = ((InterpreterGenerator*)this)->generate_math_entry(kind);     break;
2237     case Interpreter::java_lang_ref_reference_get
2238                                              : entry_point = ((InterpreterGenerator*)this)->generate_Reference_get_entry(); break;
2239     default                                  : ShouldNotReachHere();                                                       break;
2240   }
2241 
2242   if (entry_point) return entry_point;
2243 
2244   return ((InterpreterGenerator*)this)->generate_normal_entry(synchronized);
2245 
2246 }
2247 
2248 InterpreterGenerator::InterpreterGenerator(StubQueue* code)
2249  : CppInterpreterGenerator(code) {
2250    generate_all(); // down here so it can be "virtual"
2251 }
2252 
2253 // Deoptimization helpers for C++ interpreter
2254 
2255 // How much stack a method activation needs in words.
2256 int AbstractInterpreter::size_top_interpreter_activation(methodOop method) {
2257 
2258   const int stub_code = 4;  // see generate_call_stub
2259   // Save space for one monitor to get into the interpreted method in case
2260   // the method is synchronized
2261   int monitor_size    = method->is_synchronized() ?
2262                                 1*frame::interpreter_frame_monitor_size() : 0;
2263 
2264   // total static overhead size. Account for interpreter state object, return
2265   // address, saved rbp and 2 words for a "static long no_params() method" issue.
2266 
2267   const int overhead_size = sizeof(BytecodeInterpreter)/wordSize +
2268     ( frame::sender_sp_offset - frame::link_offset) + 2;
2269 
2270   const int extra_stack = 0; //6815692//methodOopDesc::extra_stack_entries();
2271   const int method_stack = (method->max_locals() + method->max_stack() + extra_stack) *
2272                            Interpreter::stackElementWords();
2273   return overhead_size + method_stack + stub_code;
2274 }
2275 
2276 // returns the activation size.
2277 static int size_activation_helper(int extra_locals_size, int monitor_size) {
2278   return (extra_locals_size +                  // the addition space for locals
2279           2*BytesPerWord +                     // return address and saved rbp
2280           2*BytesPerWord +                     // "static long no_params() method" issue
2281           sizeof(BytecodeInterpreter) +               // interpreterState
2282           monitor_size);                       // monitors
2283 }
2284 
2285 void BytecodeInterpreter::layout_interpreterState(interpreterState to_fill,
2286                                            frame* caller,
2287                                            frame* current,
2288                                            methodOop method,
2289                                            intptr_t* locals,
2290                                            intptr_t* stack,
2291                                            intptr_t* stack_base,
2292                                            intptr_t* monitor_base,
2293                                            intptr_t* frame_bottom,
2294                                            bool is_top_frame
2295                                            )
2296 {
2297   // What about any vtable?
2298   //
2299   to_fill->_thread = JavaThread::current();
2300   // This gets filled in later but make it something recognizable for now
2301   to_fill->_bcp = method->code_base();
2302   to_fill->_locals = locals;
2303   to_fill->_constants = method->constants()->cache();
2304   to_fill->_method = method;
2305   to_fill->_mdx = NULL;
2306   to_fill->_stack = stack;
2307   if (is_top_frame && JavaThread::current()->popframe_forcing_deopt_reexecution() ) {
2308     to_fill->_msg = deopt_resume2;
2309   } else {
2310     to_fill->_msg = method_resume;
2311   }
2312   to_fill->_result._to_call._bcp_advance = 0;
2313   to_fill->_result._to_call._callee_entry_point = NULL; // doesn't matter to anyone
2314   to_fill->_result._to_call._callee = NULL; // doesn't matter to anyone
2315   to_fill->_prev_link = NULL;
2316 
2317   to_fill->_sender_sp = caller->unextended_sp();
2318 
2319   if (caller->is_interpreted_frame()) {
2320     interpreterState prev  = caller->get_interpreterState();
2321     to_fill->_prev_link = prev;
2322     // *current->register_addr(GR_Iprev_state) = (intptr_t) prev;
2323     // Make the prev callee look proper
2324     prev->_result._to_call._callee = method;
2325     if (*prev->_bcp == Bytecodes::_invokeinterface) {
2326       prev->_result._to_call._bcp_advance = 5;
2327     } else {
2328       prev->_result._to_call._bcp_advance = 3;
2329     }
2330   }
2331   to_fill->_oop_temp = NULL;
2332   to_fill->_stack_base = stack_base;
2333   // Need +1 here because stack_base points to the word just above the first expr stack entry
2334   // and stack_limit is supposed to point to the word just below the last expr stack entry.
2335   // See generate_compute_interpreter_state.
2336   int extra_stack = 0; //6815692//methodOopDesc::extra_stack_entries();
2337   to_fill->_stack_limit = stack_base - (method->max_stack() + extra_stack + 1);
2338   to_fill->_monitor_base = (BasicObjectLock*) monitor_base;
2339 
2340   to_fill->_self_link = to_fill;
2341   assert(stack >= to_fill->_stack_limit && stack < to_fill->_stack_base,
2342          "Stack top out of range");
2343 }
2344 
2345 int AbstractInterpreter::layout_activation(methodOop method,
2346                                            int tempcount,  //
2347                                            int popframe_extra_args,
2348                                            int moncount,
2349                                            int caller_actual_parameters,
2350                                            int callee_param_count,
2351                                            int callee_locals,
2352                                            frame* caller,
2353                                            frame* interpreter_frame,
2354                                            bool is_top_frame) {
2355 
2356   assert(popframe_extra_args == 0, "FIX ME");
2357   // NOTE this code must exactly mimic what InterpreterGenerator::generate_compute_interpreter_state()
2358   // does as far as allocating an interpreter frame.
2359   // If interpreter_frame!=NULL, set up the method, locals, and monitors.
2360   // The frame interpreter_frame, if not NULL, is guaranteed to be the right size,
2361   // as determined by a previous call to this method.
2362   // It is also guaranteed to be walkable even though it is in a skeletal state
2363   // NOTE: return size is in words not bytes
2364   // NOTE: tempcount is the current size of the java expression stack. For top most
2365   //       frames we will allocate a full sized expression stack and not the curback
2366   //       version that non-top frames have.
2367 
2368   // Calculate the amount our frame will be adjust by the callee. For top frame
2369   // this is zero.
2370 
2371   // NOTE: ia64 seems to do this wrong (or at least backwards) in that it
2372   // calculates the extra locals based on itself. Not what the callee does
2373   // to it. So it ignores last_frame_adjust value. Seems suspicious as far
2374   // as getting sender_sp correct.
2375 
2376   int extra_locals_size = (callee_locals - callee_param_count) * BytesPerWord;
2377   int monitor_size = sizeof(BasicObjectLock) * moncount;
2378 
2379   // First calculate the frame size without any java expression stack
2380   int short_frame_size = size_activation_helper(extra_locals_size,
2381                                                 monitor_size);
2382 
2383   // Now with full size expression stack
2384   int extra_stack = 0; //6815692//methodOopDesc::extra_stack_entries();
2385   int full_frame_size = short_frame_size + (method->max_stack() + extra_stack) * BytesPerWord;
2386 
2387   // and now with only live portion of the expression stack
2388   short_frame_size = short_frame_size + tempcount * BytesPerWord;
2389 
2390   // the size the activation is right now. Only top frame is full size
2391   int frame_size = (is_top_frame ? full_frame_size : short_frame_size);
2392 
2393   if (interpreter_frame != NULL) {
2394 #ifdef ASSERT
2395     assert(caller->unextended_sp() == interpreter_frame->interpreter_frame_sender_sp(), "Frame not properly walkable");
2396 #endif
2397 
2398     // MUCHO HACK
2399 
2400     intptr_t* frame_bottom = (intptr_t*) ((intptr_t)interpreter_frame->sp() - (full_frame_size - frame_size));
2401 
2402     /* Now fillin the interpreterState object */
2403 
2404     // The state object is the first thing on the frame and easily located
2405 
2406     interpreterState cur_state = (interpreterState) ((intptr_t)interpreter_frame->fp() - sizeof(BytecodeInterpreter));
2407 
2408 
2409     // Find the locals pointer. This is rather simple on x86 because there is no
2410     // confusing rounding at the callee to account for. We can trivially locate
2411     // our locals based on the current fp().
2412     // Note: the + 2 is for handling the "static long no_params() method" issue.
2413     // (too bad I don't really remember that issue well...)
2414 
2415     intptr_t* locals;
2416     // If the caller is interpreted we need to make sure that locals points to the first
2417     // argument that the caller passed and not in an area where the stack might have been extended.
2418     // because the stack to stack to converter needs a proper locals value in order to remove the
2419     // arguments from the caller and place the result in the proper location. Hmm maybe it'd be
2420     // simpler if we simply stored the result in the BytecodeInterpreter object and let the c++ code
2421     // adjust the stack?? HMMM QQQ
2422     //
2423     if (caller->is_interpreted_frame()) {
2424       // locals must agree with the caller because it will be used to set the
2425       // caller's tos when we return.
2426       interpreterState prev  = caller->get_interpreterState();
2427       // stack() is prepushed.
2428       locals = prev->stack() + method->size_of_parameters();
2429       // locals = caller->unextended_sp() + (method->size_of_parameters() - 1);
2430       if (locals != interpreter_frame->fp() + frame::sender_sp_offset + (method->max_locals() - 1) + 2) {
2431         // os::breakpoint();
2432       }
2433     } else {
2434       // this is where a c2i would have placed locals (except for the +2)
2435       locals = interpreter_frame->fp() + frame::sender_sp_offset + (method->max_locals() - 1) + 2;
2436     }
2437 
2438     intptr_t* monitor_base = (intptr_t*) cur_state;
2439     intptr_t* stack_base = (intptr_t*) ((intptr_t) monitor_base - monitor_size);
2440     /* +1 because stack is always prepushed */
2441     intptr_t* stack = (intptr_t*) ((intptr_t) stack_base - (tempcount + 1) * BytesPerWord);
2442 
2443 
2444     BytecodeInterpreter::layout_interpreterState(cur_state,
2445                                           caller,
2446                                           interpreter_frame,
2447                                           method,
2448                                           locals,
2449                                           stack,
2450                                           stack_base,
2451                                           monitor_base,
2452                                           frame_bottom,
2453                                           is_top_frame);
2454 
2455     // BytecodeInterpreter::pd_layout_interpreterState(cur_state, interpreter_return_address, interpreter_frame->fp());
2456   }
2457   return frame_size/BytesPerWord;
2458 }
2459 
2460 #endif // CC_INTERP (all)