The Javae Language
Specification
Java SE 9 Edition

James Gosling
Bill Joy
Guy Steele
Gilad Bracha
Alex Buckley
Daniel Smith

2017-08-07

Specification: JSR-379 Javae SE 9 Release Contents (" Specification")
Version: 9

Status: Final Release

Release: September 2017

Copyright © 1997, 2017, Oracle America, Inc. and/or its affiliates.
500 Oracle Parkway, Redwood City, California 94065, U.S.A.
All rights reserved.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may
be trademarks of their respective owners.

The Specification provided hereinis provided to you only under the Limited License Grant
included herein as Appendix A. Please see Appendix A, Limited License Grant.

Table of Contents

I ntroduction 1

1.1 Organization of the Specification 2

1.2 Example Programs 6

1.3 Notation 6

1.4 Relationship to Predefined Classes and Interfaces 7
15 Feedback 7

16 References 7

Grammars 9

2.1 Context-Free Grammars 9
2.2 The Lexical Grammar 9
2.3 The Syntactic Grammar 10
24 Grammar Notation 10

Lexical Structure 15

3.1 Unicode 15

3.2 Lexicd Trandations 16

3.3 Unicode Escapes 17

34 LineTerminators 19

3.5 Input Elementsand Tokens 19

3.6 White Space 20

3.7 Comments 21

3.8 ldentifiers 22

39 Keywords 24

3.10 Literas 25
3.10.1 Integer Literals 25
3.10.2 Floating-Point Literals 32
3.10.3 Boolean Literals 35
3.10.4 Character Literals 35
3.105 StringLiterds 36
3.10.6 Escape Sequences for Character and String Literals 38
3.10.7 TheNull Litera 39

3.11 Separators 40

3.12 Operators 40

Types, Values, and Variables 41

41 TheKindsof Typesand Vaues 41
4.2 Primitive Typesand Values 42
421 Integral Typesand Values 43

The Java® Language Specification

4.3

44
4.5

4.6
4.7

4.9
4.10

411
4.12

4.2.2 Integer Operations 43

4.2.3 Floating-Point Types, Formats, and Values 45
4.24 Floating-Point Operations 48

425 Thebool ean Type and boolean Values 51
Reference Typesand Values 52

431 Objects 53

432 TheClassject 56

433 TheClassstring 56

434 When Reference Types Are the Same 57
Type Variables 57

Parameterized Types 59

451 Type Arguments of Parameterized Types 60
45.2 Members and Constructors of Parameterized Types 63
Type Erasure 64

Reifiable Types 65

Raw Types 66

Intersection Types 70

Subtyping 71

410.1 Subtyping among Primitive Types 71

4.10.2 Subtyping among Class and Interface Types 72
4.10.3 Subtyping among Array Types 73

4.10.4 Least Upper Bound 73

Where Types Are Used 76

Variables 80

4121 Variablesof Primitive Type 81

4122 Variablesof Reference Type 81

4123 Kindsof Variables 83

4124 final Variables 85

4125 |Initia Vauesof Variables 87

4126 Types, Classes, and Interfaces 88

5 Conversionsand Contexts 93

51

Kinds of Conversion 96
5.1.1 Identity Conversion 96
5.1.2 Widening Primitive Conversion 96
5.1.3 Narrowing Primitive Conversion 98
5.1.4 Widening and Narrowing Primitive Conversion 101
5.1.5 Widening Reference Conversion 101
5.1.6 Narrowing Reference Conversion 101
5.1.6.1 Allowed Narrowing Reference Conversion 102
5.1.6.2 Checked and Unchecked Narrowing Reference
Conversions 103
5.1.6.3 Narrowing Reference Conversions at Run Time 103
5.1.7 Boxing Conversion 105
5.1.8 Unboxing Conversion 107
5.1.9 Unchecked Conversion 108
5.1.10 Capture Conversion 109

The Java® Language Specification

5.1.11 String Conversion 111
5.1.12 Forbidden Conversions 112
5.1.13 Value Set Conversion 112

52 Assignment Contexts 113
5.3 Invocation Contexts 118
54 String Contexts 120
5,5 Casting Contexts 120
56 Numeric Contexts 126
5.6.1 Unary Numeric Promotion 127
5.6.2 Binary Numeric Promotion 128
Names 131
6.1 Declarations 132
6.2 Namesand Identifiers 139
6.3 Scopeof aDeclaration 141
6.4 Shadowing and Obscuring 145
6.4.1 Shadowing 147
6.4.2 Obscuring 150
6.5 Determining the Meaning of aName 151
6.5.1 Syntactic Classification of a Name According to Context 152
6.5.2 Reclassification of Contextually Ambiguous Names 155
6.5.3 Meaning of Module Names and Package Names 157
6.5.3.1 Simple Package Names 157
6.5.3.2 Qualified Package Names 158
6.54 Meaning of PackageOr TypeNames 158
6.5.4.1 Simple PackageOrTypeNames 158
6.5.4.2 Qualified PackageOrTypeNames 158
6.5.5 Meaning of Type Names 158
6.5.5.1 Simple Type Names 158
6.5.5.2 Qualified Type Names 158
6.5.6 Meaning of Expression Names 159
6.5.6.1 Simple Expression Names 159
6.5.6.2 Qualified Expression Names 160
6.5.7 Meaning of Method Names 163
6.5.7.1 Simple Method Names 163
6.6 AccessControl 164
6.6.1 Determining Accessibility 165
6.6.2 Detailson protect ed Access 169
6.6.21 Accesstoaprotected Member 170
6.6.22 Accesstoaprotect ed Constructor 170
6.7 Fully Qualified Names and Canonical Names 172

Packages and Modules 175

7.1
7.2
7.3
74

Package Members 176

Host Support for Modules and Packages 177
Compilation Units 180

Package Declarations 181

The Java® Language Specification

74.1 Named Packages 182

7.4.2 Unnamed Packages 182

7.4.3 Package Observability and Visibility 183
7.5 Import Declarations 184

751 Single-Type-Import Declarations 185

75.2 Type-Import-on-Demand Declarations 187

75.3 Single-Static-Import Declarations 188

75.4 Static-lmport-on-Demand Declarations 189
7.6 TopLevel Type Declarations 190
7.7 Module Declarations 192

7.71 Dependences 195

7.7.2 Exported and Opened Packages 198

7.7.3 Service Consumption 199

7.7.4 ServiceProvison 199

7.75 Unnamed Modules 200

7.76 Observability of aModule 201

8 Classes 203

8.1 Class Declarations 205
8.1.1 ClassModifiers 205
8111 abstract Classes 206
8.1.1.2 final Classes 208
8.1.1.3 strictfp Classes 208
8.1.2 Generic Classes and Type Parameters 208
8.1.3 Inner Classes and Enclosing Instances 211
8.14 Superclasses and Subclasses 214
8.15 Superinterfaces 216
8.1.6 ClassBody and Member Declarations 220
8.2 Class Members 220
8.3 Field Declarations 225
8.3.1 FiddModifiers 230
8.3.11 static Fields 230
8.3.1.2 final Fidds 233
8.3.1.3 transient Fieds 233
83.14 volatileFieds 234
8.3.2 FiddInitiaization 235
8.3.3 Redtrictionson Field Referencesin Initidlizers 237
8.4 Method Declarations 240
8.4.1 Formal Parameters 241
8.4.2 Method Signature 245
8.4.3 Method Modifiers 246
84.3.1 abstract Methods 246
8.4.3.2 static Methods 248
8.4.3.3 final Methods 248
8.4.34 native Methods 249
84.35 strictfp Methods 250
8.4.3.6 synchroni zed Methods 250

85
8.6

8.7
8.8

8.9

The Java® Language Specification

844 Generic Methods 251

845 Method Result 252

8.4.6 Method Throws 253

84.7 Method Body 254

8.4.8 Inheritance, Overriding, and Hiding 255
8.4.8.1 Overriding (by Instance Methods) 256
8.4.8.2 Hiding (by Class Methods) 260
8.4.8.3 Requirementsin Overriding and Hiding 261
8.4.84 Inheriting Methods with Override-Equivalent

Signatures 265

84.9 Overloading 266

Member Type Declarations 269

851 Static Member Type Declarations 270

Instance Initializers 270

Stetic Initializers 270

Constructor Declarations 271

8.8.1 Formal Parameters 272

8.8.2 Constructor Signature 273

8.8.3 Constructor Modifiers 273

8.8.4 Generic Constructors 274

8.8.5 Constructor Throws 274

8.8.6 TheTypeof aConstructor 275

8.8.7 Constructor Body 275
8.8.7.1 Explicit Constructor Invocations 276

8.8.8 Constructor Overloading 280

8.8.9 Default Constructor 280

8.8.10 Preventing Instantiation of aClass 282

Enum Types 282

8.9.1 Enum Constants 283

8.9.2 Enum Body Declarations 284

8.9.3 Enum Members 286

I nterfaces 293

9.1

9.2
9.3

9.4

Interface Declarations 294
9.1.1 Interface Modifiers 294
9.1.11 abstract Interfaces 295
9.1.1.2 strictfp Interfaces 295
9.1.2 Generic Interfaces and Type Parameters 295
9.1.3 Superinterfaces and Subinterfaces 296
9.14 Interface Body and Member Declarations 298
Interface Members 298
Field (Constant) Declarations 299
9.3.1 Initidization of Fieldsin Interfaces 301
Method Declarations 302
9.4.1 Inheritance and Overriding 303
9.4.1.1 Overriding (by Instance Methods) 305
94.1.2 Requirementsin Overriding 305

Vii

viii

The Java® Language Specification

10

11

9.4.1.3 Inheriting Methods with Override-Equivalent
Signatures 306

9.4.2 Overloading 307
9.4.3 Interface Method Body 307
9.5 Member Type Declarations 308
9.6 Annotation Types 309
9.6.1 Annotation Type Elements 310
9.6.2 Defaultsfor Annotation Type Elements 313
9.6.3 Repeatable Annotation Types 314
9.6.4 Predefined Annotation Types 318
9.64.1 @rarget 318
9.6.4.2 @etention 320
9.6.4.3 @nherited 321
9.6.44 @wverride 321
9.6.45 @uppressWarnings 322
9.6.46 @eprecated 323
9.6.4.7 @af evarargs 325
9.6.4.8 @epeat abl e 326
9.6.4.9 @unctional Interface 326
9.7 Annotations 326
9.71 Norma Annotations 327
9.7.2 Marker Annotations 329
9.7.3 Single-Element Annotations 330
9.74 Where Annotations May Appear 331
9.7.5 Multiple Annotations of the Same Type 336
9.8 Functiond Interfaces 337
9.9 Function Types 341
Arrays 347
10.1 Array Types 348
10.2 Array Variables 348
10.3 Array Creation 351
104 Array Access 351
10.5 Array Store Exception 352
10.6 Array Initializers 353
10.7 Array Members 355
10.8 C ass Objectsfor Arrays 356
10.9 AnArray of CharactersIsNot astring 358

Exceptions 359

111

11.2

The Kinds and Causes of Exceptions 360

11.1.1 TheKinds of Exceptions 360

11.1.2 The Causes of Exceptions 361

11.1.3 Asynchronous Exceptions 362
Compile-Time Checking of Exceptions 363
11.2.1 Exception Analysis of Expressions 364
11.2.2 Exception Analysis of Statements 365

12

13

11.3

The Java® Language Specification

11.2.3 Exception Checking 366
Run-Time Handling of an Exception 368

Execution 373

121

12.2

12.3

12.4

12.5
12.6

12.7
12.8

JavaVirtua Machine Startup 373

12.1.1 LoadtheClassTest 374

12.1.2 Link Test : Verify, Prepare, (Optionally) Resolve 374
12.1.3 Initialize Test: Execute Initializers 375
12.1.4 Invoke Test.min 376

Loading of Classes and Interfaces 376

12.21 ThelLoading Process 377

Linking of Classes and Interfaces 378

12.3.1 Veification of the Binary Representation 378
12.3.2 Preparation of aClass or Interface Type 379
12.3.3 Resolution of Symbolic References 379
Initialization of Classes and Interfaces 381

12.4.1 When Initialization Occurs 381

12.4.2 Detailed Initiaization Procedure 384
Creation of New Class Instances 386

Finalization of Class Instances 389

12.6.1 Implementing Finalization 391

12.6.2 Interaction with the Memory Model 392
Unloading of Classes and Interfaces 394

Program Exit 395

Binary Compatibility 397

131

The Form of aBinary 398

13.2 What Binary Compatibility Isand IsNot 404

133
13.4

Evolution of Packages and Modules 405

Evolution of Classes 406

13.4.1 abstract Classes 406

13.4.2 final Classes 407

13.4.3 public Classes 407

13.4.4 Superclasses and Superinterfaces 407

1345 Class Type Parameters 409

13.4.6 ClassBody and Member Declarations 409
13.4.7 Accessto Members and Constructors 411
13.4.8 Fidld Declarations 412

13.49 final Fieldsandstatic Constant Variables 414
13.4.10 static Fields 415

13.4.11 transient Fields 415

13.4.12 Method and Constructor Declarations 415
13.4.13 Method and Constructor Type Parameters 416
13.4.14 Method and Constructor Formal Parameters 417
13.4.15 Method Result Type 418

13.4.16 abstract Methods 418

13.4.17 final Methods 419

The Java® Language Specification

14

135

13.4.18 native Methods 419

13.4.19 static Methods 420

13.4.20 synchroni zed Methods 420

13.4.21 Method and Constructor Throws 420
13.4.22 Method and Constructor Body 420
13.4.23 Method and Constructor Overloading 420
13.4.24 Method Overriding 422

13.4.25 Static Initializers 422

13.4.26 Evolution of Enums 422

Evolution of Interfaces 422

13.5.1 public Interfaces 422

13.5.2 Superinterfaces 423

13.5.3 Interface Members 423

13.5.4 Interface Type Parameters 423
1355 Field Declarations 424

13.5.6 Interface Method Declarations 424
13.5.7 Evolution of Annotation Types 425

Blocks and Statements 427

141
14.2
14.3
144

145
14.6
14.7
14.8
14.9

14.10
1411
14.12

14.13

14.14

14.15
14.16
14.17

Normal and Abrupt Completion of Statements 427

Blocks 429

Local Class Declarations 429

Local Variable Declaration Statements 430

1441 Loca Variable Declarators and Types 431

14.4.2 Execution of Local Variable Declarations 432

Statements 432

The Empty Statement 434

Labeled Statements 435

Expression Statements 436

Theif Statement 437

14.9.1 Thei f -t hen Statement 438

14.9.2 Theif -t hen-el se Statement 438

Theassert Statement 438

Theswi t ch Statement 441

Thewhi | e Statement 445

14.12.1 Abrupt Completion of whi | e Statement 446

Thedo Statement 447

14.13.1 Abrupt Completion of do Statement 447

Thef or Statement 449

14.14.1 Thebasicfor Statement 449
14.14.1.1 Initialization of f or Statement 450
14.14.1.2 lteration of f or Statement 450
14.14.1.3 Abrupt Completion of f or Statement 451

14.14.2 The enhanced f or statement 452

The br eak Statement 454

Theconti nue Statement 456

Ther et ur n Statement 458

15

14.18
14.19
14.20

14.21

The Java® Language Specification

Thet hr ow Statement 460
Thesynchroni zed Statement 462
Thetry statement 463
14.20.1 Execution of try-catch 466
14.20.2 Executionof try-finally andtry-catch-finally 468
14.20.3 try-with-resources 470
14.20.3.1 Basictry-with-resources 472
14.20.3.2 Extended t r y-with-resources 475
Unreachable Statements 475

Expressions 483

151
15.2
153
154
155
156
15.7

158

159

15.10

15.11

15.12

Evaluation, Denotation, and Result 483
Forms of Expressions 484
Type of an Expression 485
FP-strict Expressions 486
Expressions and Run-Time Checks 486
Normal and Abrupt Completion of Evaluation 488
Evauation Order 490
15.7.1 Evaluate Left-Hand Operand First 490
15.7.2 Evaluate Operands before Operation 492
15.7.3 Evaluation Respects Parentheses and Precedence 493
15.7.4 Argument Lists are Evaluated Left-to-Right 494
15.7.5 Evaluation Order for Other Expressions 495
Primary Expressions 495
15.8.1 Lexical Literals 496
15.8.2 ClassLiteras 497
1583 this 498
15.8.4 Qualifiedthis 499
15.8,5 Parenthesized Expressions 499
Class Instance Creation Expressions 500
159.1 Determining the Class being Instantiated 502
15.9.2 Determining Enclosing Instances 503
15.9.3 Choosing the Constructor and its Arguments 505
15.9.4 Run-Time Evauation of Class Instance Creation
Expressions 509
15.9.5 Anonymous Class Declarations 510
15.95.1 Anonymous Constructors 511
Array Creation and Access Expressions 512
15.10.1 Array Creation Expressions 512
15.10.2 Run-Time Evaluation of Array Creation Expressions 513
15.10.3 Array Access Expressions 517
15.10.4 Run-Time Evauation of Array Access Expressions 517
Field Access Expressions 520
15.11.1 Field Access Using aPrimary 520
15.11.2 Accessing Superclass Membersusing super 523
Method Invocation Expressions 525

Xi

Xii

The Java® Language Specification

15.13

15.14

15.15

15.16

15.17

15.18

15.19
15.20

15.21

15.12.1 Compile-Time Step 1: Determine Class or Interface to
Search 526
15.12.2 Compile-Time Step 2: Determine Method Signature 528
15.12.2.1 Identify Potentially Applicable Methods 534
15.12.2.2 Phase 1: Identify Matching Arity Methods Applicable
by Strict Invocation 537
15.12.2.3 Phase 2: Identify Matching Arity Methods Applicable
by Loose Invocation 538
15.12.2.4 Phase 3: Identify Methods Applicable by Variable Arity
Invocation 539
15.12.2.5 Choosing the Most Specific Method 539
15.12.2.6 Method Invocation Type 543
15.12.3 Compile-Time Step 3: Isthe Chosen Method Appropriate? 544
15.12.4 Run-Time Evaluation of Method Invocation 547
15.12.4.1 Compute Target Reference (If Necessary) 547
15.12.4.2 Evauate Arguments 549
15.12.4.3 Check Accessibility of Type and Method 550
15.12.4.4 Locate Method to Invoke 551
15.12.4.5 Create Frame, Synchronize, Transfer Control 555
Method Reference Expressions 557
15.13.1 Compile-Time Declaration of a Method Reference 560
15.13.2 Type of aMethod Reference 565
15.13.3 Run-Time Evauation of Method References 567
Postfix Expressions 570
15.14.1 Expression Names 571
15.14.2 Postfix Increment Operator ++ 571
15.14.3 Postfix Decrement Operator - - 571
Unary Operators 572
15.15.1 Prefix Increment Operator ++ 574
15.15.2 Prefix Decrement Operator - - 574
15.15.3 Unary Plus Operator + 575
15.15.4 Unary Minus Operator - 575
15.15.5 Bitwise Complement Operator ~ 576
15.15.6 Logical Complement Operator! 576
Cast Expressions 576
Multiplicative Operators 578
15.17.1 Multiplication Operator * 579
15.17.2 Division Operator / 580
15.17.3 Remainder Operator % 581
Additive Operators 584
15.18.1 String Concatenation Operator + 584
15.18.2 Additive Operators (+ and -) for Numeric Types 587
Shift Operators 589
Relational Operators 590
15.20.1 Numerical Comparison Operators <, <=, >, and >= 590
15.20.2 Type Comparison Operator i nst anceof 592
Equality Operators 593
15.21.1 Numerical Equality Operators==and! = 593

16

15.22

15.23
15.24
15.25

15.26

15.27

15.28

The Java® Language Specification

15.21.2 Boolean Equality Operators==and! = 594
15.21.3 Reference Equality Operators==and!= 595
Bitwise and Logical Operators 595

15.22.1 Integer Bitwise Operators &, ~, and | 596
15.22.2 Boolean Logical Operators &, ~, and| 597
Conditional-And Operator && 597

Conditional-Or Operator | | 598

Conditional Operator ? : 599

15.25.1 Boolean Conditional Expressions 606
15.25.2 Numeric Conditional Expressions 606
15.25.3 Reference Conditional Expressions 607
Assignment Operators 608

15.26.1 Simple Assignment Operator = 609

15.26.2 Compound Assignment Operators 615
Lambda Expressions 621

15.27.1 Lambda Parameters 623

15.27.2 LambdaBody 626

15.27.3 Type of aLambda Expression 629

15.27.4 Run-Time Evaluation of Lambda Expressions 631
Constant Expressions 632

Definite Assignment 635

16.1

16.2

Definite Assignment and Expressions 641
16.1.1 Boolean Constant Expressions 641
16.1.2 Conditiona-And Operator && 641
16.1.3 Conditional-Or Operator || 642
16.1.4 Logical Complement Operator! 642
16.1.5 Conditional Operator ? : 642
16.1.6 Conditional Operator ? : 643
16.1.7 Other Expressions of Typebool ean 643
16.1.8 Assignment Expressions 643
16.1.9 Operators++and-- 644
16.1.10 Other Expressions 644
Definite Assignment and Statements 646
16.2.1 Empty Statements 646
16.2.2 Blocks 646
16.2.3 Loca Class Declaration Statements 647
16.24 Loca Variable Declaration Statements 647
16.2.5 Labeled Statements 648
16.2.6 Expression Statements 648
16.2.7 if Statements 648
16.2.8 assert Statements 649
16.2.9 switch Statements 649
16.2.10 whi | e Statements 650
16.2.11 do Statements 650
16.2.12 for Statements 650
16.2.12.1 Initialization Part of f or Statement 651

Xiii

Xiv

The Java® Language Specification

17

18

16.3
16.4
165
16.6
16.7
16.8
16.9

16.2.12.2 Incrementation Part of f or Statement 652
16.2.13 break, conti nue, ret urn, and t hr ow Statements 652
16.2.14 synchroni zed Statements 652
16.2.15 try Statements 653
Definite Assignment and Parameters 654
Definite Assignment and Array Initializers 654
Definite Assignment and Enum Constants 655
Definite Assignment and Anonymous Classes 655
Definite Assignment and Member Types 656
Definite Assignment and Static Initializers 656
Definite Assignment, Constructors, and Instance Initializers 657

Threadsand Locks 659

171
17.2

17.3
174

17.5

17.6
17.7

Synchronization 660

Wait Sets and Notification 660

17.2.1 Wait 661

17.2.2 Notification 662

17.2.3 Interruptions 663

17.2.4 Interactions of Waits, Notification, and Interruption 663
Sleepand Yield 664

Memory Model 665

17.4.1 Shared Variables 668

17.42 Actions 668

17.4.3 Programsand Program Order 669

17.4.4 Synchronization Order 670

17.45 Happens-before Order 671

17.4.6 Executions 674

17.4.7 Well-Formed Executions 675

17.4.8 Executions and Causality Requirements 675
17.4.9 Observable Behavior and Nonterminating Executions 678
final Field Semantics 680

1751 Semanticsof fi nal Fields 682

17.5.2 Readingfinal FieldsDuring Construction 682
17.5.3 Subsequent Modification of fi nal Fields 683
17.5.4 Write-Protected Fields 684

Word Tearing 685

Non-Atomic Treatment of doubl e and | ong 686

TypeInference 687

18.1

18.2

Concepts and Notation 688

18.1.1 Inference Variables 683

18.1.2 Constraint Formulas 689

18.1.3 Bounds 689

Reduction 691

18.2.1 Expression Compatibility Constraints 691
18.2.2 Type Compatibility Constraints 696
18.2.3 Subtyping Constraints 697

The Java® Language Specification

18.24 Type Equality Constraints 698
18.25 Checked Exception Constraints 700
18.3 Incorporation 702
18.3.1 Complementary Pairs of Bounds 703
18.3.2 Bounds Involving Capture Conversion 703
18.4 Resolution 704
185 Usesof Inference 706
18.5.1 Invocation Applicability Inference 706
18.5.2 Invocation Type Inference 708
18.5.21 Poly Method Invocation Compatibility 708
185.2.2 Additiona Argument Constraints 711
18.5.3 Functional Interface Parameterization Inference 715
18.5.4 More Specific Method Inference 716

19 Syntax 719
Index 747

A Limited License Grant 789

XV

CHAPTER 1

| ntroduction

T HE Javee programming language is a general-purpose, concurrent, class
based, object-oriented language. It is designed to be simple enough that many
programmers can achieve fluency inthelanguage. The Javaprogramming language
isrelated to C and C++ but isorganized rather differently, with anumber of aspects
of C and C++ omitted and afew ideas from other languagesincluded. It isintended
to be a production language, not a research language, and so, as C. A. R. Hoare
suggested in his classic paper on language design, the design has avoided including
new and untested features.

The Javaprogramming languageis strongly and statically typed. This specification
clearly distinguishes between the compile-time errorsthat can and must be detected
at compile time, and those that occur at run time. Compile time normally consists
of translating programs into a machine-independent byte code representation.
Run-time activities include loading and linking of the classes needed to execute
a program, optional machine code generation and dynamic optimization of the
program, and actual program execution.

The Java programming language is arelatively high-level language, in that details
of the machine representation are not available through the language. It includes
automatic storage management, typically using a garbage collector, to avoid
the safety problems of explicit dealocation (as in C's free or C++'s del et e).
High-performance garbage-collected implementations can have bounded pausesto
support systems programming and real-time applications. The language does not
include any unsafe constructs, such asarray accesseswithout index checking, since
such unsafe constructs would cause a program to behave in an unspecified way.

The Java programming language is normally compiled to the bytecode instruction
set and binary format defined in The Java Virtual Machine Specification, Java SE
9 Edition.

11

Organization of the Specification INTRODUCTION

1.1 Organization of the Specification

Chapter 2 describes grammars and the notation used to present the lexical and
syntactic grammars for the language.

Chapter 3 describesthe lexical structure of the Java programming language, which
is based on C and C++. The language is written in the Unicode character set. It
supports the writing of Unicode characters on systems that support only ASCII.

Chapter 4 describes types, values, and variables. Types are subdivided into
primitive types and reference types.

The primitive types are defined to be the same on all machines and in al
implementations, and are various sizes of two's-complement integers, single- and
double-precision |EEE 754 standard floating-point numbers, abool ean type, and
a Unicode character char type. Vaues of the primitive types do not share state.

Reference types are the class types, the interface types, and the array types. The
reference types are implemented by dynamicaly created objects that are either
instances of classes or arrays. Many referencesto each object can exist. All objects
(including arrays) support the methods of the class j ect , which is the (single)
root of the class hierarchy. A predefined st ri ng class supports Unicode character
strings. Classes exist for wrapping primitive values inside of objects. In many
cases, wrapping and unwrapping is performed automatically by the compiler (in
which case, wrapping is called boxing, and unwrapping is called unboxing). Class
and interface declarations may be generic, that is, they may be parameterized by
other reference types. Such declarations may then be invoked with specific type
arguments.

Variables are typed storage locations. A variable of a primitive type holds avalue
of that exact primitive type. A variable of aclass type can hold a null reference or
areference to an object whose type is that class type or any subclass of that class
type. A variable of an interface type can hold a null reference or areferenceto an
instance of any classthat implements theinterface. A variable of an array type can
hold anull reference or areferenceto an array. A variable of classtype Obj ect can
hold a null reference or areference to any object, whether class instance or array.

Chapter 5 describes conversions and numeric promotions. Conversions change the
compile-time type and, sometimes, the value of an expression. These conversions
include the boxing and unboxing conversions between primitive types and
reference types. Numeric promotions are used to convert the operands of anumeric
operator to a common type where an operation can be performed. There are no

INTRODUCTION Organization of the Specification

loopholesinthelanguage; castson referencetypesare checked at runtimeto ensure
type safety.

Chapter 6 describes declarations and names, and how to determine what names
mean (that is, which declaration a name denotes). The Java programming language
does not require classes and interfaces, or their members, to be declared before
they are used. Declaration order issignificant only for local variables, local classes,
and the order of field initializers in a class or interface. Recommended naming
conventions that make for more readable programs are described here.

Chapter 7 describes the structure of a program, which is organized into packages.
The members of a package are classes, interfaces, and subpackages. Packages,
and consequently their members, have names in a hierarchical hame space; the
Internet domain name system can usually be used to form unique package names.
Compilation units contain declarations of the classes and interfaces that are
members of a given package, and may import classes and interfaces from other
packages to give them short names.

Packages may be grouped into modules that serve as building blocks in the
construction of very large programs. The declaration of a module specifies which
other modules (and thus packages, and thus classes and interfaces) are required in
order to compile and run code in its own packages.

The Java programming language supports limitations on external access to the
members of packages, classes, and interfaces. The members of a package may be
accessible solely by other members in the same package, or by members in other
packages of the same module, or by members of packages in different modules.
Similar constraints apply to the members of classes and interfaces.

Chapter 8 describes classes. The members of classes are classes, interfaces, fields
(variables) and methods. Classvariablesexist once per class. Class methods operate
without reference to a specific object. Instance variables are dynamically created
in objects that are instances of classes. Instance methods are invoked on instances
of classes; such instances become the current object t hi s during their execution,
supporting the object-oriented programming style.

Classes support singleinheritance, in which each classhasasingle superclass. Each
class inherits members from its superclass, and ultimately from the class j ect .
Variablesof aclasstype can reference an instance of that class or of any subclass of
that class, allowing new types to be used with existing methods, polymorphically.

Classes support concurrent programming with synchr oni zed methods. Methods
declare the checked exceptions that can arise from their execution, which allows
compile-time checking to ensure that exceptiona conditions are handled. Objects

11

11

Organization of the Specification INTRODUCTION

candeclareaf i nal i ze method that will beinvoked beforethe objectsarediscarded
by the garbage collector, allowing the objects to clean up their state.

For simplicity, the language has neither declaration "headers' separate from the
implementation of a class nor separate type and class hierarchies.

A special form of classes, enums, support the definition of small sets of valuesand
their manipulation in atype safe manner. Unlike enumerations in other languages,
enums are objects and may have their own methods.

Chapter 9 describes interfaces. The members of interfaces are classes, interfaces,
constant fields, and methods. Classes that are otherwise unrelated can implement
the same interface. A variable of an interface type can contain a reference to any
object that implements the interface.

Classes and interfaces support multiple inheritance from interfaces. A class that
implements one or more interfaces may inherit instance methods from both its
superclass and its superinterfaces.

Annotation types are speciaized interfaces used to annotate declarations. Such
annotations are not permitted to affect the semantics of programs in the Java
programming language in any way. However, they provide useful input to various
tools.

Chapter 10 describes arrays. Array accesses include bounds checking. Arrays are
dynamically created objects and may be assigned to variables of type j ect . The
language supports arrays of arrays, rather than multidimensional arrays.

Chapter 11 describes exceptions, which are nonresuming and fully integrated with
the language semantics and concurrency mechanisms. There are three kinds of
exceptions: checked exceptions, run-time exceptions, and errors. The compiler
ensures that checked exceptions are properly handled by requiring that a method
or constructor can result in a checked exception only if the method or constructor
declaresit. This provides compile-time checking that exception handlers exist, and
aids programming in the large. Most user-defined exceptions should be checked
exceptions. Invalid operationsin the program detected by the JavaVirtual Machine
result in run-time exceptions, such as Nul | Poi nt er Except i on. Errorsresult from
failures detected by the Java Virtua Machine, such as cut Of Meror yEr r or . Most
simple programs do not try to handle errors.

Chapter 12 describes activities that occur during execution of a program. A
program is normaly stored as binary files representing compiled classes and
interfaces. These binary files can be loaded into a Java Virtual Machine, linked to
other classes and interfaces, and initialized.

INTRODUCTION Organization of the Specification

After initialization, class methods and class variables may be used. Some classes
may be instantiated to create new objects of the class type. Objects that are class
instances also contain an instance of each superclass of the class, and object
creation involves recursive creation of these superclass instances.

When an object is no longer referenced, it may be reclaimed by the garbage
collector. If an object declaresafinalizer, thefinalizer is executed before the object
is reclaimed to give the object a last chance to clean up resources that would not
otherwise be released. When a classis no longer needed, it may be unloaded.

Chapter 13 describes binary compatibility, specifying the impact of changes to
typeson other typesthat use the changed types but have not been recompiled. These
considerationsare of interest to devel opers of typesthat areto bewidely distributed,
in a continuing series of versions, often through the Internet. Good program
development environments automatically recompile dependent code whenever a
type is changed, so most programmers need not be concerned about these details.

Chapter 14 describes blocks and statements, which are based on C and C++.
The language has no got o statement, but includes labeled br eak and cont i nue
statements. Unlike C, the Java programming language requires bool ean (Or
Bool ean) expressions in control-flow statements, and does not convert types to
bool ean implicitly (except through unboxing), in the hope of catching more errors
at compile time. A synchroni zed statement provides basic object-level monitor
locking. A t ry statement canincludecat ch and f i nal I y clausesto protect against
non-local control transfers.

Chapter 15 describes expressions. This document fully specifies the (apparent)
order of evaluation of expressions, for increased determinism and portability.
Overloaded methods and constructors are resolved at compile time by picking the
most specific method or constructor from those which are applicable.

Chapter 16 describes the precise way in which the language ensures that
local variables are definitely set before use. While all other variables are
automatically initialized to a default value, the Java programming language does
not automatically initialize local variablesin order to avoid masking programming
errors.

Chapter 17 describes the semantics of threads and locks, which are based on
the monitor-based concurrency originally introduced with the Mesa programming
language. The Java programming language specifies a memory model for shared-
memory multiprocessors that supports high-performance implementations.

Chapter 18 describesavariety of typeinference algorithms used to test applicability
of generic methods and to infer types in a generic method invocation.

11

1.2

Example Programs INTRODUCTION

Chapter 19 presents a syntactic grammar for the language.

1.2 Example Programs

Most of the example programs given in the text are ready to be executed and are
similar in form to:

cl ass Test {
public static void main(String[] args) {
for (int i =0; i < args.length; i++)
Systemout.print(i == 0 ? args[i] : " " + args[i]);
Systemout. printlin();

}

Onamachinewith the Oracle JDK installed, thisclass, storedinthefileTest . j ava,
can be compiled and executed by giving the commands:

javac Test.java
java Test Hello, world.

producing the output:

Hel | o, worl d.

1.3 Notation

Throughout this specification we refer to classes and interfaces drawn from the
Java SE Platform API. Whenever we refer to aclass or interface (other than those
declared in an example) using asingle identifier N, the intended reference isto the
class or interface named N in the packagej ava. | ang. We use the canonical name
(86.7) for classes or interfaces from packages other than j ava. I ang.

Non-normative information, designed to clarify the specification, is given in
smaller, indented text.

Thisis non-normative information. It provides intuition, rationale, advice, examples, etc.

The type system of the Java programming language occasionally relies on the
notion of a substitution. The notation [F1: =T, .. ., Fn: =Tn] denotes substitution
of FF byT forl<i<n.

INTRODUCTION Relationship to Predefined Classes and Interfaces

1.4 Relationship to Predefined Classes and I nterfaces

As noted above, this specification often refers to classes of the Java SE
Platform API. In particular, some classes have a specia relationship with
the Java programming language. Examples include classes such as bj ect,
C ass, d asslLoader, String, Thread, and the classes and interfaces in package
java. |l ang. refl ect , among others. This specification constrains the behavior of
such classes and interfaces, but does not provide acompl ete specification for them.
The reader is referred to the Java SE Platform API documentation.

Consequently, this specification does not describe reflection in any detail.
Many linguistic constructs have analogs in the Core Reflection API
(java.l ang.refl ect) and the Language Moddl APl (j avax. | ang. nodel), but
these are generally not discussed here. For example, whenwelist thewaysinwhich
an object can be created, we generally do not include the ways in which the Core
Reflection API can accomplish this. Readers should be aware of these additional
mechanisms even though they are not mentioned in the text.

1.5 Feedback

Readers are invited to report technical errors and ambiguities in The Javae
Language Specificationtoj | s-j vis- spec- corment s@penj dk. j ava. net .

Questions concerning the behavior of j avac (the reference compiler for the Java
programming language), and in particular its conformance to this specification,
may be sent to conpi | er - dev@pen;j dk. j ava. net .

1.6 References

Apple Computer. Dylan Reference Manual. Apple Computer Inc., Cupertino, California.
September 29, 1995.

Bobrow, Daniel G., LindaG. DeMichidl, Richard P. Gabriel, Sonya E. Keene, Gregor Kiczales,
and David A. Moon. Common Lisp Object System Specification, X3J13 Document
88-002R, June 1988; appears as Chapter 28 of Steele, Guy. Common Lisp: The Language,
2nd ed. Digital Press, 1990, ISBN 1-55558-041-6, 770-864.

Ellis, Margaret A., and Bjarne Stroustrup. The Annotated C++ Reference Manual. Addison-
Wesley, Reading, Massachusetts, 1990, reprinted with corrections October 1992, ISBN
0-201-51459-1.

16

References INTRODUCTION

Goldberg, Adele and Robson, David. Smalltalk-80: The Language. Addison-Wesley, Reading,
M assachusetts, 1989, ISBN 0-201-13688-0.

Harbison, Samuel. Modula-3. Prentice Hall, Englewood Cliffs, New Jersey, 1992, I1SBN
0-13-596396.

Hoare, C. A. R. Hints on Programming Language Design. Stanford University Computer
Science Department Technical Report No. CS-73-403, December 1973. Reprinted in
SIGACT/SIGPLAN Symposium on Principles of Programming Languages. Association
for Computing Machinery, New Y ork, October 1973.

|IEEE Sandard for Binary Floating-Point Arithmetic. ANSI/IEEE Std. 754-1985. Available
from Globa Engineering Documents, 15 Inverness Way East, Englewood, Colorado
80112-5704 USA; 800-854-7179.

Kernighan, Brian W., and Dennis M. Ritchie. The C Programming Language, 2nd ed. Prentice
Hall, Englewood Cliffs, New Jersey, 1988, ISBN 0-13-110362-8.

Madsen, Ole Lehrmann, Birger Mgller-Pedersen, and Kristen Nygaard. Object-Oriented
Programming in the Beta Programming Language. Addison-Wesley, Reading,
Massachusetts, 1993, ISBN 0-201-62430-3.

Mitchell, James G., William Maybury, and Richard Sweet. The Mesa Programming Language,
Version 5.0. Xerox PARC, Palo Alto, California, CSL 79-3, April 1979.

Stroustrup, Bjarne. The C++ Progamming Language, 2nd ed. Addison-Wesley, Reading,
Massachusetts, 1991, reprinted with corrections January 1994, ISBN 0-201-53992-6.

Unicode Consortium, The. The Unicode Sandard, Version 8.0.0. Mountain View, California,
2015, ISBN 978-1-936213-10-8.

CHAPTER2

Grammars

THIS chapter describes the context-free grammars used in this specification to
define the lexical and syntactic structure of a program.

2.1 Context-Free Grammars

A context-free grammar consists of a number of productions. Each production has
an abstract symbol called a nonterminal as its left-hand side, and a sequence of
one or more nonterminal and terminal symbols as its right-hand side. For each
grammar, the terminal symbols are drawn from a specified al phabet.

Starting from a sentence consisting of asingledistinguished nonterminal, called the
goal symbol, a given context-free grammar specifies alanguage, namely, the set of
possible sequences of terminal symbols that can result from repeatedly replacing
any nonterminal in the sequence with aright-hand side of a production for which
the nonterminal isthe left-hand side.

2.2 ThelLexical Grammar

A lexical grammar for the Java programming language is given in 83 (Lexical
Structure). Thisgrammar has asitsterminal symbolsthe characters of the Unicode
character set. It defines a set of productions, starting from the goal symbol Input
(83.5), that describe how sequences of Unicode characters (83.1) aretrandated into
a sequence of input elements (83.5).

These input elements, with white space (83.6) and comments (83.7) discarded,
form the terminal symbols for the syntactic grammar for the Java programming
language and are called tokens (83.5). These tokens are the identifiers (83.8),

2.3

10

The Syntactic Grammar GRAMMARS

keywords (83.9), literals (83.10), separators (83.11), and operators (83.12) of the
Java programming language.

2.3 The Syntactic Grammar

The syntactic grammar for the Java programming language is given in Chapters
4, 6-10, 14, and 15. This grammar has as its terminal symbols the tokens defined
by the lexical grammar. It defines a set of productions, starting from the goal
symbol CompilationUnit (87.3), that describe how sequences of tokens can form
syntactically correct programs.

For convenience, the syntactic grammar is presented all together in Chapter 19.

2.4 Grammar Notation

Termina symbolsare showninfixed wi dt h font in the productions of the lexical
and syntactic grammars, and throughout this specification whenever the text is
directly referring to such a terminal symbol. These are to appear in a program
exactly aswritten.

Nonterminal symbols are shown in italic type. The definition of a nonterminal is
introduced by the name of the nonterminal being defined, followed by acolon. One
or more aternative definitionsfor the nonterminal then follow on succeeding lines.

For example, the syntactic production:

IfThenStatement:
i f (Expression) Statement

states that the nonterminal IfThenStatement represents the token i f, followed by a left
parenthesis token, followed by an Expression, followed by a right parenthesis token,
followed by a Statement.

The syntax {x} on the right-hand side of a production denotes zero or more
occurrences of X.

For example, the syntactic production:

ArgumentList:
Argument {, Argument}

GRAMMARS Grammar Notation

states that an ArgumentL.ist consists of an Argument, followed by zero or more occurrences
of acommaand an Argument. The result isthat an ArgumentList may contain any positive
number of arguments.

The syntax [X] on the right-hand side of a production denotes zero or one
occurrences of x. That is, x is an optional symbol. The alternative which contains
the optional symbol actually defines two alternatives: one that omits the optional
symbol and one that includesiit.

This means that:

BreakStatement:
br eak [Identifier] ;

is aconvenient abbreviation for:

BreakStatement:
break ;
br eak ldentifier ;

As another example, it means that:

BasicFor Satement:
for ([Forlnit] ; [Expression] ; [ForUpdate]) Satement

is aconvenient abbreviation for:

BasicFor Satement:
for (; [Expression] ; [ForUpdate]) Satement
for (Forlnit; [Expression] ; [ForUpdate]) Satement

which in turn is an abbreviation for:

BasicFor Statement:
for (;; [ForUpdate]) Satement
for (; Expression; [ForUpdate]) Satement
for (Forlnit; ; [ForUpdate]) Satement
for (Forlnit; Expression; [ForUpdate]) Satement

which in turn is an abbreviation for:

24

11

2.4 Grammar Notation GRAMMARS

BasicFor Satement:
for (; ;) Satement
for (; ; ForUpdate) Satement
for (; Expression;) Satement
for (; Expression; ForUpdate) Satement
for (Forlnit; ;) Satement
for (Forlnit; ; ForUpdate) Satement
for (Forlnit; Expression;) Satement
for (Forlnit; Expression; ForUpdate) Statement

so the nonterminal BasicFor Statement actually has eight alternative right-hand sides.

A very long right-hand side may be continued on asecond line by clearly indenting
the second line.

For example, the syntactic grammar contains this production:

Normal ClassDeclaration:
{ClassModifier} cl ass Identifier [TypeParameters]
[Superclass] [Superinterfaces] ClassBody

which defines one right-hand side for the nonterminal Normal ClassDeclaration.

The phrase (one of) on the right-hand side of a production signifiesthat each of the
symbols on the following line or linesis an aternative definition.

For example, the lexical grammar contains the production:

ZeroToThree:
(one of)
0123
which is merely a convenient abbreviation for:

ZeroToThree:
0

1
2
3
When an alternativein aproduction appearsto be atoken, it representsthe sequence
of characters that would make up such atoken.
Thus, the production:

BooleanLiteral:
(one of)
truefal se

12

GRAMMARS Grammar Notation

is shorthand for:

BooleanLiteral:
true
fal se

The right-hand side of a production may specify that certain expansions are not
permitted by using the phrase "but not" and then indicating the expansions to be
excluded.

For example:

Identifier:
IdentifierChars but not a Keyword or BooleanLiteral or NullLiteral

Finally, afew nonterminals are defined by a narrative phrase in roman type where
it would be impractical to list al the alternatives.

For example:

RawlnputCharacter:
any Unicode character

24

13

CHAPTER3

Lexical Structure

T HIS chapter specifies the lexical structure of the Java programming language.

Programs are written in Unicode (83.1), but lexical translations are provided (83.2)
so that Unicode escapes (83.3) can be used to include any Unicode character using
only ASCII characters. Line terminators are defined (83.4) to support the different
conventions of existing host systems while maintaining consistent line numbers.

The Unicode characters resulting from the lexical trandations are reduced to a
seguence of input elements (83.5), which are white space (83.6), comments (83.7),
and tokens. The tokens are the identifiers (83.8), keywords (83.9), literals (§83.10),
separators (83.11), and operators (83.12) of the syntactic grammar.

3.1 Unicode

Programs are written using the Unicode character set. Information about this
character set and its associated character encodings may be found at http://
www. uni code. org/ .

The Java SE Platform tracks the Unicode Standard as it evolves. The precise
version of Unicode used by a given release is specified in the documentation of
the class Char act er.

Versionsof the Javaprogramming language prior to JDK 1.1 used Unicode 1.1.5. Upgrades
to newer versions of the Unicode Standard occurred in JDK 1.1 (to Unicode 2.0), JDK 1.1.7
(to Unicode 2.1), Java SE 1.4 (to Unicode 3.0), Java SE 5.0 (to Unicode 4.0), Java SE 7 (to
Unicode 6.0), Java SE 8 (to Unicode 6.2), and Java SE 9 (to Unicode 8.0).

The Unicode standard was originally designed as a fixed-width 16-bit character
encoding. It has since been changed to alow for characters whose representation
requires more than 16 bits. The range of legal code points is now U-+0000
to U+10FFFF, using the hexadecimal U+n notation. Characters whose code

15

3.2

16

Lexical Translations LEXICAL STRUCTURE

points are greater than U+FFFF are called supplementary characters. To represent
the complete range of characters using only 16-bit units, the Unicode standard
defines an encoding called UTF-16. In thisencoding, supplementary charactersare
represented as pairs of 16-bit code units, the first from the high-surrogates range,
(U+D800 to U+DBFF), the second from the low-surrogates range (U+DC00 to U
+DFFF). For charactersin the range U+0000 to U+FFFF, the values of code points
and UTF-16 code units are the same.

The Java programming language represents text in sequences of 16-bit code units,
using the UTF-16 encoding.

Some APIs of the Java SE Platform, primarily in the Char act er class, use 32-bit integers
to represent code points as individual entities. The Java SE Platform provides methods to
convert between 16-bit and 32-bit representations.

This specification uses the terms code point and UTF-16 code unit where the
representation is relevant, and the generic term character where the representation
isirrelevant to the discussion.

Except for comments (83.7), identifiers, and the contents of character and string
literals (83.10.4, 8§3.10.5), all input elements (83.5) in a program are formed
only from ASCII characters (or Unicode escapes (83.3) which result in ASCII
characters).

ASCII (ANSI X3.4) isthe American Standard Code for Information Interchange. Thefirst
128 characters of the Unicode UTF-16 encoding are the ASCI| characters.

3.2 Lexical Trandations

A raw Unicode character stream is trandated into a sequence of tokens, using the
following three lexical trangation steps, which are applied in turn:

1. A trandation of Unicodeescapes(83.3) intheraw stream of Unicode characters
to the corresponding Unicode character. A Unicode escape of theform\ uxxxx,
where xxxx is a hexadecimal value, represents the UTF-16 code unit whose
encoding is xxxx. This trandation step allows any program to be expressed
using only ASCII characters.

2. A trandation of the Unicode stream resulting from step 1 into a stream of input
characters and line terminators (83.4).

3. A trandation of the stream of input characters and line terminators resulting
from step 2 into a sequence of input elements (83.5) which, after white space

LEXICAL STRUCTURE Unicode Escapes

(83.6) and comments (83.7) are discarded, comprise the tokens (83.5) that are
the terminal symbols of the syntactic grammar (82.3).

The longest possible translation is used at each step, even if the result does not
ultimately make a correct program while another lexical trandation would. There
is one exception: if lexical trandation occurs in a type context (84.11) and the
input stream has two or more consecutive > charactersthat are followed by anon->
character, then each > character must be trandlated to the token for the numerical
comparison operator >.

The input characters a- - b are tokenized (83.5) as a, - -, b, which is not part of any
grammatically correct program, even though the tokenization a, -, - , b could be part of a
grammatically correct program.

Without the rule for > characters, two consecutive > brackets in a type such as
Li st <Li st <Stri ng>> would be tokenized as the signed right shift operator >>, while
three consecutive > brackets in a type such as Li st <Li st <Li st <St ri ng>>> would be
tokenized as the unsigned right shift operator >>>. Worse, the tokenization of four or more
consecutive > bracketsin atype such asLi st <Li st <Li st <Li st <St ri ng>>>> would be
ambiguous, as various combinations of >, >>, and >>> tokens could represent the >>>>
characters.

3.3 Unicode Escapes

A compiler for the Java programming language ("Java compiler") first recognizes
Unicode escapesin itsinput, transating the ASCII characters\ u followed by four
hexadecimal digits to the UTF-16 code unit (83.1) for the indicated hexadecimal
value, and passing al other characters unchanged. Representing supplementary
characters requires two consecutive Unicode escapes. This tranglation step results
in a sequence of Unicode input characters.

Unicodel nputCharacter:
UnicodeEscape
Rawl nputCharacter

UnicodeEscape:
\ UnicodeMarker HexDigit HexDigit HexDigit HexDigit

UnicodeMarker:

u {u}

3.3

17

3.3

18

Unicode Escapes LEXICAL STRUCTURE

HexDigit:
(one of)
0123456789abcdef ABCDEF

RawlnputCharacter:
any Unicode character

The\, u, and hexadecimal digits here are all ASCII characters.

In addition to the processing implied by the grammar, for each raw input character
that isabackslash\ , input processing must consider how many other \ characters
contiguously precedeit, separating it fromanon-\ character or the start of theinput
stream. If this number is even, then the\ is eligible to begin a Unicode escape; if
the number is odd, then the\ is not eligible to begin a Unicode escape.

For example, theraw input "\ \ u2122=\ u2122" resultsinthe eleven characters” \ \ u
2 122 =™"(\u2122 isthe Unicode encoding of the character ™.

If an eligible\ isnot followed by u, then it istreated as a Rawl nputCharacter and
remains part of the escaped Unicode stream.

If an eligible\ isfollowed by u, or more than one u, and the last u is not followed
by four hexadecimal digits, then a compile-time error occurs.

Thecharacter produced by aUnicode escape does not participatein further Unicode
€SCapes.

For example, the raw input \ u005cu005a results in the six characters\ u 0 0 5 a,
because 005c¢ is the Unicode value for \ . It does not result in the character Z, which is
Unicode character 005a, because the\ that resulted from the\ u005c is not interpreted as
the start of afurther Unicode escape.

The Java programming language specifies a standard way of transforming a
program written in Unicode into ASCII that changes a program into a form that
can be processed by ASCII-based tools. The transformation involves converting
any Unicode escapesin the source text of the program to ASCII by adding an extra
u - for example, \ uxxxx becomes\ uuxxxx - while simultaneously converting non-
ASCII charactersin the source text to Unicode escapes containing asingle u each.

This transformed version is equally acceptable to a Java compiler and represents
the exact same program. The exact Unicode source can later be restored from this
ASCII form by converting each escape sequence where multipleu's are present to a
sequence of Unicode characterswith onefewer u, while simultaneously converting
each escape sequencewith asingleu to the corresponding single Unicode character.

LEXICAL STRUCTURE Line Terminators 34

A Java compiler should use the \ uxxxx notation as an output format to display Unicode
characters when a suitable font is not available.

3.4 LineTerminators

A Java compiler next divides the sequence of Unicode input charactersinto lines
by recognizing line terminators.

LineTerminator:
the ASCII LF character, also known as "newline"
the ASCII CR character, also known as "return”
the ASCII CR character followed by the ASCII LF character

InputCharacter:
Unicodel nputCharacter but not CR or LF

Lines are terminated by the ASCII characters CR, or LF, or CR LF. The two
characters CR immediately followed by LF are counted as one line terminator, not
two.

A line terminator specifies the termination of the// form of acomment (83.7).

The lines defined by line terminators may determine the line numbers produced by a Java
compiler.

The result is a sequence of line terminators and input characters, which are the
terminal symbols for the third step in the tokenization process.

3.5 Input Elementsand Tokens

Theinput characters and line terminators that result from escape processing (83.3)
and then input line recognition (83.4) are reduced to a sequence of input elements.

Input:
{InputElement} [Sub]

InputElement:
WhiteSpace
Comment
Token

19

3.6 White Space LEXICAL STRUCTURE

Token:
Identifier

Keyword
Literal

Separator

Operator

Sub:
the ASCII SUB character, also known as "control-Z"

Those input elements that are not white space or comments are tokens. The tokens
are the terminal symbols of the syntactic grammar (82.3).

White space (83.6) and comments (83.7) can serve to separate tokens that, if
adjacent, might be tokenized in another manner. For example, the ASCII characters
- and = in the input can form the operator token - = (83.12) only if there is no
intervening white space or comment.

Asaspecia concession for compatibility with certain operating systems, the ASCI|
SUB character (\ uo01a, or control-Z) is ignored if it is the last character in the
escaped input stream.

Consider two tokensx andy in the resulting input stream. If x precedesy, then we
say that x isto theleft of y and that y isto theright of x.

For example, in this simple piece of code:

class Empty {

we say that the} token isto the right of the { token, even though it appears, in this two-
dimensional representation, downward and to theleft of the{ token. This convention about
the use of thewords|eft and right all ows usto speak, for example, of the right-hand operand
of abinary operator or of the |left-hand side of an assignment.

3.6 White Space

White spaceisdefined asthe ASCII space character, horizontal tab character, form
feed character, and line terminator characters (83.4).

20

LEXICAL STRUCTURE Comments 3.7

WhiteSpace:
the ASCII SP character, also known as " space”
the ASCII HT character, also known as "horizontal tab"
the ASCII FF character, also known as "form feed"
LineTerminator

3.7 Comments

There are two kinds of comments:
o /* text*/

A traditional comment: al the text from the ASCI| characters/ * to the ASCII
characters*/ isignored (asin C and C++).

e // text

An end-of-line comment: all the text from the ASCI| characters// to the end of
thelineisignored (asin C++).

Comment:
Traditional Comment
EndOfLineComment

Traditional Comment:
/ * CommentTail

CommentTail:
* CommentTailSar
NotSar CommentTail

CommentTailSar:
/
* CommentTail Star
NotSarNotSash CommentTail

NotSar:

InputCharacter but not *
LineTerminator

21

3.8 Identifiers LEXICAL STRUCTURE

NotStarNotSash:
InputCharacter but not * or /
LineTerminator

EndOfLineComment:
/1 {InputCharacter}

These productionsimply all of the following properties:
» Comments do not nest.
» /* and*/ have no special meaning in comments that begin with// .

* // hasno special meaning in comments that begin with/* or /**.

As aresult, the following text is a single compl ete comment:
/* this comment /* // /** ends here: */

The lexical grammar implies that comments do not occur within character literals
(83.10.4) or string literals (§3.10.5).

3.8 Ildentifiers

An identifier is an unlimited-length sequence of Java letters and Java digits, the
first of which must be a Java letter.

Identifier:
| dentifierChars but not a Keyword or BooleanLiteral or NullLiteral

IdentifierChars:
Javal etter {Javal etter OrDigit}

Javal etter:
any Unicode character that isa"Javaletter”

Javal etter OrDigit:
any Unicode character that is a"Javaletter-or-digit”

A "Java letter" is a character for which the method
Character.isJavaldentifierStart(int) returnstrue.

22

LEXICAL STRUCTURE

A

"Java letter-or-digit" is a character for which the method

Character.isJaval dentifierPart(int) returnstrue.

Letters and digits may be drawn from the entire Unicode character set, which
supports most writing scriptsin use in the world today, including the large sets for
Chinese, Japanese, and Korean. Thisallows programmersto useidentifiersin their

The "Java letters' include uppercase and lowercase ASCII Latin letters A-Z (\ u0041-
\ u005a), and a- z (\ u0061-\ u007a), and, for historical reasons, the ASCII dollar sign
($, or \ u0024) and underscore (_, or \ u005f). The dollar sign should be used only in
mechanically generated source code or, rarely, to access pre-existing names on legacy
systems. The underscore may be used in identifiers formed of two or more characters, but
it cannot be used as a one-character identifier due to being a keyword.

The "Javadigits' include the ASCII digits0- 9 (\ u0030-\ u0039).

programs that are written in their native languages.

An identifier cannot have the same spelling (Unicode character sequence) as a
keyword (83.9), boolean literal (§83.10.3), or the null literal (83.10.7), or acompile-

time error occurs.

Two identifiers are the same only if they are identical, that is, have the same
Unicode character for each letter or digit. Identifiers that have the same external

appearance may yet be different.

For example, the identifiers consisting of the single letters LATIN CAPITAL LETTER
A (A, \u0041), LATIN SMALL LETTER A (a, \u0061), GREEK CAPITAL
LETTER ALPHA (A, \u0391), CYRILLIC SMALL LETTER A (a, \u0430) and
MATHEMATICAL BOLD ITALIC SMALL A (a,\ ud835\ udc82) are dl different.

Unicode composite characters are different from their canonical equivalent decomposed
characters. For example, aLATIN CAPITAL LETTERA ACUTE (A,\ u00c1) isdifferent
from a LATIN CAPITAL LETTER A (A, \u0041) immediately followed by a NON-
SPACING ACUTE (", \u0301) in identifiers. See The Unicode Standard, Section 3.11
"Normalization Forms".

Examples of identifiers are:

e String

* i3

* apetn

e MAX_VALUE

e isLetterODigit

Identifiers

3.8

23

3.9

24

Keywords LEXICAL STRUCTURE

3.9 Keywords

51 character sequences, formed from ASCII letters, are reserved for use as
keywords and cannot be used as identifiers (83.8).

Keyword:
(one of)
abstract conti nue for new switch
assert def aul t i f package synchroni zed
bool ean do goto private this
br eak doubl e i mpl ement s protected t hr ow
byte el se i mport public t hr ows
case enum i nst anceof return transi ent
catch ext ends i nt short try
char final interface static voi d
cl ass finally | ong strictfp vol atile
const fl oat native super whi | e

_ (underscore)

The keywords const and got o are reserved, even though they are not currently used.
This may allow a Java compiler to produce better error messages if these C++ keywords
incorrectly appear in programs.

Whilet rue and f al se might appear to be keywords, they are technically boolean literals
(83.10.3). Similarly, while nul I might appear to be a keyword, it is technically the null
literal (83.10.7).

A further ten character sequences are restricted keywords. open, nodul e,
requires, transitive, exports, opens, to, uses, provides, and wi t h. These
character sequences are tokenized as keywords solely where they appear as
terminalsin the ModuleDeclaration and ModuleDirective productions (87.7). They
are tokenized as identifiers everywhere else, for compatibility with programs
written prior to Java SE 9. There is one exception: immediately to the right of
the character sequencer equi r es inthe ModuleDirective production, the character
sequencet r ansi ti ve istokenized asakeyword unlessit isfollowed by aseparator,
in which case it istokenized as an identifier.

LEXICAL STRUCTURE Literals

3.10 Literals

A literal isthe source code representation of avalue of aprimitive type (84.2), the
String type (84.3.3), or the null type (84.1).

Literal:
IntegerLiteral
FloatingPointLiteral
BooleanLiteral
CharacterLiteral
SringLiteral
NullLiteral

3.10.1 Integer Literals

Aninteger literal may be expressed in decimal (base 10), hexadecimal (base 16),
octal (base 8), or binary (base 2).

IntegerLiteral:
DecimalIntegerLiteral
HexIntegerLiteral
OctallntegerLiteral
BinarylntegerLiteral

DecimalIntegerLiteral:
DecimalNumeral [Integer TypeSuffix]

HexlIntegerLiteral:
HexNumeral [Integer TypeSuffix]

OctallntegerLiteral:
OctalNumeral [Integer TypeSuffix]

BinarylntegerLiteral:
BinaryNumeral [Integer TypeSuffix]

Integer TypeSuffix:
(one of)
I L

3.10

25

3.10

26

Literals LEXICAL STRUCTURE

Aninteger literal isof typel ong if it is suffixed with an ASCII letter L or 1 (ell);
otherwiseit isof typei nt (84.2.1).

The suffix L is preferred, becausetheletter | (ell) isoften hard to distinguish from the digit
1 (one).

Underscores are allowed as separators between digits that denote the integer.

In a hexadecimal or binary literal, the integer is only denoted by the digits after
the ox or ob characters and before any type suffix. Therefore, underscores may not
appear immediately after ox or ob, or after the last digit in the numeral.

In adecimal or octal literal, the integer is denoted by all the digits in the litera
before any type suffix. Therefore, underscores may not appear before thefirst digit
or after the last digit in the numeral. Underscores may appear after the initial 0 in
an octal numeral (since 0 is a digit that denotes part of the integer) and after the
initial non-zero digit in anon-zero decimal literal.

LEXICAL STRUCTURE Literals

A decimal numeral iseither the single ASCII digit 0, representing the integer zero,
or consistsof an ASCII digit from 1 to 9 optionally followed by one or more ASCI|
digitsfrom 0 to 9 interspersed with underscores, representing a positive integer.

DecimalNumeral:
0
NonZeroDigit [Digits]
NonZeroDigit Underscores Digits

NonZeroDigit:
(one of)
123456789

Digits:

Digit

Digit [DigitsAndUnder scores] Digit
Digit:

0

NonZeroDigit

DigitsAndUnderscores:
DigitOrUnderscore {DigitOrUnderscore}

DigitOrUnderscore:
Digit

Underscores:

{3

3.10

27

3.10

28

Literals LEXICAL STRUCTURE

A hexadecimal numeral consists of theleading ASCII charactersox or 0x followed
by one or more ASCII hexadecimal digits interspersed with underscores, and can
represent a positive, zero, or negative integer.

Hexadecimal digitswith values 10 through 15 are represented by the ASCI| letters
a through f or A through F, respectively; each letter used as a hexadecimal digit
may be uppercase or lowercase.

HexNumeral:
0 x HexDigits
0 X HexDigits

HexDigits:
HexDigit
HexDigit [HexDigitsAndUnder scores] HexDigit

HexDigit:
(one of)
0123456789abcdef ABCDEF

HexDigitsAndUnder scores:
HexDigitOrUnder score {HexDigitOrUnder scor e}

HexDigitOrUnderscore:
HexDigit

The HexDigit production above comes from §3.3.

LEXICAL STRUCTURE Literals

Anocta numeral consistsof an ASCII digit o followed by one or more of the ASCI|
digitso through 7 interspersed with underscores, and can represent a positive, zero,
or negative integer.

OctalNumeral:
0 OctalDigits
0 Underscores OctalDigits

OctalDigits:
OctalDigit
OctalDigit [Octal DigitsAndUnder scores] Octal Digit

OctalDigit:
(one of)
01234567

Octal DigitsAndUnder scores:
Octal DigitOrUnderscore {Octal DigitOrUnder score}

Octal DigitOrUnderscore:
OctalDigit

Note that octal numerals always consist of two or more digits, as 0 aone is aways
considered to be a decimal numeral - not that it matters much in practice, for the numerals
0, 00, and 0x0 al represent exactly the same integer value.

3.10

29

3.10 Literals LEXICAL STRUCTURE

A binary numeral consists of theleading ASCII charactersob or 0B followed by one
or more of the ASCII digitso or 1 interspersed with underscores, and can represent
apositive, zero, or negative integer.

BinaryNumeral:
0 b BinaryDigits
0 B BinaryDigits

BinaryDigits:

BinaryDigit

BinaryDigit [BinaryDigitsAndUnderscores] BinaryDigit
BinaryDigit:

(one of)
01

BinaryDigitsAndUnder scores:
BinaryDigitOrUnderscore {BinaryDigitOrUnderscore}

BinaryDigitOrUnderscore:
BinaryDigit

30

LEXICAL STRUCTURE Literals

The largest decimal literal of typei nt is 2147483648 (2°%).

All decimal literalsfrom 0 t0 2147483647 may appear anywhereani nt literal may
appear. The decimal literal 2147483648 may appear only as the operand of the
unary minus operator - (815.15.4).

Itisacompile-timeerror if thedecimal literal 2147483648 appears anywhere other
than as the operand of the unary minus operator; or if adecimal literal of typei nt
islarger than 2147483648 (2°Y).

The largest positive hexadecimal, octal, and binary literals of typei nt - each of
which represents the decimal value 2147483647 (2 l-1) - arerespectively:

o OX7fff ffff,
e 0177_7777_7777,and
e 0b0111_1111 1111 1111 1111 1111 1111 1111

The most negative hexadecimal, octal, and binary literals of type i nt - each of
which represents the decimal value - 2147483648 (-231) - are respectively:

* 0x8000_0000,
e 0200_0000_0000, and
* 0b1000_0000_0000_0000_0000_0000_0000_0000

The following hexadecimal, octal, and binary literals represent the decimal value
-1

o Oxffff _ffff,
e 0377_7777_7777,and
e O0b1111_ 1111 1111 1111 1111 1111 1111 1111

It isa compile-time error if a hexadecimal, octal, or binary i nt literal does not fit
in 32 bits.

The largest decimal literal of type| ong is 9223372036854775808L (2%).

All decima literals from oL to 9223372036854775807L may appear anywhere a
I ong literal may appear. The decimal literal 9223372036854775808L may appear
only as the operand of the unary minus operator - (815.15.4).

It is a compile-time error if the decimal literal 9223372036854775808L appears
anywhere other than as the operand of the unary minus operator; or if a decimal
literal of type! ong islarger than 9223372036854775808L (2%).

3.10

31

3.10

32

Literals LEXICAL STRUCTURE

The largest positive hexadecimal, octal, and binary literals of type | ong - each
of which represents the decimal value 9223372036854775807L (2%-1) - are
respectively:

o OX7fff fFFff fFFF _FFFFL,
e 07_7777_7777_7777_7777_7777L, and

e Ob0O111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111L

The most negative hexadecimal, octal, and binary literals of type | ong - each
of which represents the decimal value - 9223372036854775808L (-2%%) - are
respectively:

* 0x8000_0000_0000_0000L, and
* 010_0000_0000_0000_0000_0000L, and

e 0b1000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000L

The following hexadecimal, octal, and binary literals represent the decimal value
-1L:

o OXFfff fff fEff fEEFL,

e 017_7777_7777_7777_7777_7777L, and

o Ob1111 1111 1111 1111 1111 1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111L

It is a compile-time error if a hexadecimal, octal, or binary | ong literal does not
fit in 64 bits.

Examplesof i nt literals:
0 2 0372 OxDada_Caf e 1996 0x00_FF__00_FF
Examplesof | ong literals:

ol 0777L 0x100000000L 2_147_483_648L 0xC0BOL

3.10.2 Floating-Point Literals

A floating-point literal has the following parts: awhole-number part, adecimal or
hexadecimal point (represented by an ASCII period character), a fraction part, an
exponent, and a type suffix.

A floating-point literal may be expressed in decimal (base 10) or hexadecimal (base
16).

LEXICAL STRUCTURE Literals

For decimal floating-point literals, at least one digit (in either the whole number or
the fraction part) and either a decimal point, an exponent, or afloat type suffix are
required. All other parts are optional. The exponent, if present, isindicated by the
ASCII letter e or E followed by an optionally signed integer.

For hexadecimal floating-point literals, at least one digit is required (in either the
whole number or the fraction part), and the exponent is mandatory, and the float
type suffix isoptional. The exponent isindicated by the ASCI| letter p or Pfollowed
by an optionally signed integer.

Underscoresare allowed as separators between digitsthat denote the whole-number
part, and between digitsthat denote the fraction part, and between digitsthat denote
the exponent.

FloatingPointLiteral:
Decimal FloatingPointLiteral
Hexadecimal FloatingPointLiteral

Decimal FloatingPointLiteral:
Digits. [Digits] [ExponentPart] [FloatTypeSuffix]
. Digits [ExponentPart] [FloatTypeSuffix]
Digits ExponentPart [Float TypeSuffix]
Digits [ExponentPart] FloatTypeSuffix

ExponentPart:
ExponentIndicator Sgnedinteger

Exponentlndicator:
(one of)
e E

Sgnedinteger:
[Sgn] Digits

Sgn:
(one of)
+ -

FloatTypeSuffix:
(one of)
f FdD

3.10

33

3.10 Literals LEXICAL STRUCTURE

Hexadecimal FloatingPointLiteral:
HexS gnificand BinaryExponent [Float TypeSuffix]

HexSgnificand:
HexNumeral [.]
0 x [HexDigits] . HexDigits
0 X[HexDigits] . HexDigits

BinaryExponent:
BinaryExponentindicator Signedinteger

BinaryExponentI ndicator:
(one of)
p P

A floating-point literal isof typef | oat if it issuffixed with an ASCII letter For f ;
otherwise itstypeisdoubl e and it can optionally be suffixed with an ASCI| |etter
Dord (84.2.3).

The elements of the types float and doubl e are those values that can be
represented using the |EEE 754 32-bit single-precision and 64-bit double-precision
binary floating-point formats, respectively.

The details of proper input conversion from a Unicode string representation of a floating-
point number to the internal |EEE 754 binary floating-point representation are described
for the methods val ueCf of classFl oat and class Doubl e of the packagej ava. | ang.

The largest positive finite literal of typef oat iS3. 4028235e38f .

The smallest positive finite non-zero literal of typef ! oat iS1. 40e- 45f .

The largest positive finite literal of type doubl e iS1. 7976931348623157e308.
The smallest positive finite non-zero literal of type doubl e is4. 9e- 324.

It isacompile-time error if anon-zero floating-point literal istoo large, so that on
rounded conversion to itsinternal representation, it becomes an IEEE 754 infinity.

A program can represent infinitieswithout producing acompile-timeerror by using
constant expressions such as1f / 0f or - 1d/ 0d or by using the predefined constants
PCSI TI VE_I NFI NI TY and NEGATI VE_I NFI NI TY of the classes Fl oat and Doubl e.

Itisacompile-time error if anon-zero floating-point literal istoo small, so that, on
rounded conversion to its internal representation, it becomes a zero.

LEXICAL STRUCTURE Literals

A compile-time error does not occur if anon-zero floating-point literal has a small
value that, on rounded conversion to its internal representation, becomes a non-
zero denormalized number.

Predefined constants representing Not-a-Number values are defined in the classes
Fl oat and Doubl e asFl oat . NaN and Doubl e. NaN.

Examplesof f | oat literas:
lelf 2. f . 3f of 3. 14f 6.022137e+23f
Examples of doubl e literals:

lel 2. .3 0.0 3.14 le-9d 1lel37

3.10.3 Boolean Literals

The bool ean type has two values, represented by the boolean literals t rue and
fal se, formed from ASCI|I letters.

BooleanLiteral:
(one of)
true fal se

A boolean literal is aways of type bool ean (84.2.5).

3.10.4 Character Literals

A character literal is expressed as a character or an escape sequence (83.10.6),
enclosed in ASCII single quotes. (The single-quote, or apostrophe, character is
\ u0027.)

CharacterLiteral:
' SngleCharacter '
' EscapeSequence’

SngleCharacter:
InputCharacter but not* or\

See §3.10.6 for the definition of EscapeSequence.

Character literals can only represent UTF-16 code units (83.1), i.e., they arelimited
to values from \ u0000 to \ uf f f f . Supplementary characters must be represented

3.10

35

3.10

36

Literals LEXICAL STRUCTURE

either as a surrogate pair within achar sequence, or as an integer, depending on
the API they are used with.

A character litera isaways of type char (84.2.1).

It is a compile-time error for the character following the SngleCharacter or
EscapeSequence to be other than a* .

It is a compile-time error for a line terminator (83.4) to appear after the opening
' and before the closing ' .

As specified in 83.4, the characters CR and LF are never an InputCharacter; each is
recognized as constituting a LineTerminator.

The following are examples of char literals:

e 'gQ'

.« "%
o\t
ANY

o T\

+ '\ u03a9'
o '\ UFFFF
. \177'

o ' TM

Because Unicode escapes are processed very early, it is not correct to write ' \ u0o00a’
for a character litera whose value is linefeed (LF); the Unicode escape \ u000a is
transformed into an actua linefeed in trandation step 1 (83.3) and the linefeed becomes a
LineTerminator in step 2 (§83.4), and so the character literal is not valid in step 3. Instead,
one should use the escape sequence ' \ n' (83.10.6). Similarly, it is not correct to write
"\u000d' for acharacter literal whose valueis carriage return (CR). Instead, use' \r" .

In C and C++, a character literal may contain representations of more than one character,
but thevalue of such acharacter litera isimplementation-defined. In the Java programming
language, a character literal always represents exactly one character.

3.10.5 StringLiterals

A dtring literal consists of zero or more characters enclosed in double quotes.
Characters may be represented by escape sequences (83.10.6) - one escape
sequence for characters in the range U+0000 to U+FFFF, two escape sequences
for the UTF-16 surrogate code units of characters in the range U+010000 to U
+10FFFF.

LEXICAL STRUCTURE Literals

SringLiteral:
* {SringCharacter} "

SringCharacter:
InputCharacter but not * or\
EscapeSequence

See §3.10.6 for the definition of EscapeSequence.

A string literal is aways of type st ri ng (84.3.3).

It is a compile-time error for a line terminator to appear after the opening " and
before the closing matching " .

As specified in 83.4, the characters CR and LF are never an InputCharacter; each is
recognized as constituting a LineTerminator.

A long string literal can always be broken up into shorter pieces and written as a (possibly
parenthesized) expression using the string concatenation operator + (§15.18.1).

The following are examples of string literals:

/1 the enpty string

A /1 a string containing " al one

"This is a string" /'l a string containing 16 characters

"This is a" + // actually a string-valued constant expression,
"two-line string" /1 formed fromtwo string literals

Because Unicode escapes are processed very early, it is not correct to write "\ uo00a"
for a string literal containing a single linefeed (LF); the Unicode escape \ u000a is
transformed into an actual linefeed in trandlation step 1 (83.3) and the linefeed becomes
aLineTerminator in step 2 (§83.4), and so the string literal is not valid in step 3. Instead,
one should write"\ n" (83.10.6). Similarly, it is not correct to write"\ u000d" for astring
literal containing asingle carriage return (CR). Instead, use™\ r " . Finally, itisnot possible
to write"\ u0022" for astring literal containing a double quotation mark (").

A string literal is areference to an instance of class St ri ng (84.3.1, §4.3.3).

Moreover, astring literal always refers to the same instance of classstri ng. This
isbecause string literals - or, more generally, stringsthat are the values of constant
expressions (815.28) - are "interned”" so as to share unique instances, using the
method St ri ng. i ntern.

Example 3.10.5-1. String Literals
The program consisting of the compilation unit (87.3):

package test Package;

3.10

37

3.10 Literals LEXICAL STRUCTURE

class Test {
public static void main(String[] args) {

String hello = "Hello", lo = "lo";
Systemout.print((hello == "Hello") + " ");
Systemout.print((CGher.hello == hello) + " ");
Systemout.print((other.ther.hello == hello) + " ");

Systemout.print((hello == ("Hel"+"l0o")) + " ");
Systemout.print((hello == ("Hel"+lo)) + " ");
Systemout.printin(hello == ("Hel"+lo).intern());

}

class Oher { static String hello = "Hello"; }
and the compilation unit:

package ot her;
public class Gther { public static String hello = "Hello"; }

produces the output:
true true true true fal se true
This exampleillustrates six points:
« Literal strings within the same class (88 (Classes)) in the same package (87 (Packages

and Modules)) represent referencesto the same St ri ng object (84.3.1).

« Litera strings within different classes in the same package represent references to the
same St ri ng object.

« Litera stringswithin different classesin different packageslikewise represent references
tothesame St ri ng object.

 Strings computed by constant expressions (§15.28) are computed at compile time and
then treated asif they wereliterals.

« Strings computed by concatenation at run time are newly created and therefore distinct.

» Theresult of explicitly interning acomputed string isthe same string as any pre-existing
literal string with the same contents.

3.10.6 Escape Sequencesfor Character and String Literals

The character and string escape sequences allow for the representation of some
nongraphic characters without using Unicode escapes, as well as the single quote,
double quote, and backslash characters, in character literals (83.10.4) and string
literals (83.10.5).

38

LEXICAL STRUCTURE Literals 3.10

EscapeSequence:
\ b (backspace BS, Unicode\ uo008)
\ t (horizontal tab HT, Unicode\ u0009)
\ n (linefeed LF, Unicode\ uoooa)
\ f (formfeed FF, Unicode\ uoooc)
\ r (carriagereturn CR, Unicode\ uo0o0d)
\ " (doublequote", Unicode\ uoo22)
\ * (singlequote' , Unicode\ u0027)

\ \ (backslash\, Unicode\ uoo5c)
OctalEscape (octa value, Unicode\ u0000 to\ uoof f)

Octal Escape:
\ OctalDigit
\ OctalDigit OctalDigit
\ ZeroToThree OctalDigit Octal Digit

OctalDigit:
(one of)
01234567

ZeroToThree:
(one of)
0123

The OctalDigit production above comes from §3.10.1.

It is a compile-time error if the character following a backslash in an escape
sequenceisnot an ASClHl b, t,n,f,r,",',\,0,1,2,3,4,5,6, 0r 7. The Unicode
escape\ u is processed earlier (83.3).

Octal escapes are provided for compatibility with C, but can express only Unicode values
\ u0000 through \ u0OFF, so Unicode escapes are usually preferred.

3.10.7 TheNull Literal

The null type has one value, the null reference, represented by the null literal nul |,
which isformed from ASCII characters.

NullLiteral:
nul |

A null literal is aways of the null type (84.1).

39

311 Separators LEXICAL STRUCTURE

3.11 Separators

Twelve tokens, formed from ASCII characters, are the separators (punctuators).

Separator:

(one of)
¢y <y v r @

3.12 Operators

38 tokens, formed from ASCI| characters, are the operators.

Operator:
(one of)
= > < | ~ ? ->
= >= <= l= && || ++ - -
+ - * / & | N << > S>>
t= -= *= [= & |= M= U <<= >>= >>>=

40

CHAPTER |

Types, Values, and Variables

T HE Java programming language is a statically typed language, which means
that every variable and every expression has atype that is known at compile time.

The Java programming language is also a strongly typed language, because types
limit the values that a variable (84.12) can hold or that an expression can produce,
limit the operations supported on those values, and determine the meaning of the
operations. Strong static typing helps detect errors at compile time.

The types of the Java programming language are divided into two categories:
primitive types and reference types. The primitive types (84.2) are the bool ean
type and the numeric types. The numeric types are the integral typesbyt e, short,
i nt, | ong, and char , and thefloating-point typesf | oat and doubl e. Thereference
types (84.3) are classtypes, interface types, and array types. Thereis also aspecial
null type. An object (84.3.1) isadynamically created instance of aclass type or a
dynamically created array. The values of areference type are references to objects.
All objects, including arrays, support the methods of class tvj ect (84.3.2). String
literals are represented by St ri ng objects (84.3.3).

4.1 TheKindsof Typesand Values

There are two kinds of types in the Java programming language: primitive types
(84.2) and reference types (84.3). There are, correspondingly, two kinds of data
values that can be stored in variables, passed as arguments, returned by methods,
and operated on: primitive values (84.2) and reference values (84.3).

Type:
PrimitiveType
ReferenceType

41

4.2

42

Primitive Types and Values TYPES VALUES AND VARIABLES

Thereisalso aspecial null type, thetype of the expressionnul | (83.10.7, §15.8.1),
which has no name.

Because the null type has no name, it isimpossible to declare a variabl e of the null
type or to cast to the null type.

The null reference is the only possible value of an expression of null type.

Thenull reference can always be assigned or cast to any referencetype (85.2, §85.3,
85.5).

In practice, the programmer can ignore the null type and just pretend that nul | is merely
aspeciad literal that can be of any reference type.

4.2 Primitive Typesand Values

A primitive type is predefined by the Java programming language and named by
its reserved keyword (§3.9):

PrimitiveType:
{Annotation} NumericType
{Annotation} bool ean

NumericType:
Integral Type
FloatingPointType

Integral Type:
(one of)
byt e short int | ong char

FloatingPointType:
(one of)
fl oat doubl e

Primitive values do not share state with other primitive values.
The numeric types are the integral types and the floating-point types.

Theintegral typesarebyt e, short,int, and | ong, whose values are 8-bit, 16-bit,
32-bit and 64-bit signed two's-complement integers, respectively, and char , whose
values are 16-bit unsigned integers representing UTF-16 code units (83.1).

TYPES, VALUES, AND VARIABLES Primitive Types and Values

The floating-point types are f1 oat , whose values include the 32-bit |IEEE 754
floating-point numbers, and doubl e, whose values include the 64-bit IEEE 754
floating-point numbers.

Thebool ean type has exactly two values: true and f al se.

421 Integral Typesand Values

The values of the integral types are integersin the following ranges:

» For byt e, from-128to 127, inclusive

» For short, from -32768 to 32767, inclusive

» Forint, from -2147483648 to 2147483647, inclusive

 For I ong, from -9223372036854775808 to 9223372036854 775807, inclusive
» For char, from'\u0000' to'\uffff' inclusive, thatis, from O to 65535

4.2.2 Integer Operations

The Java programming language providesanumber of operatorsthat act onintegral
values:

» The comparison operators, which result in avalue of type bool ean:
— The numerical comparison operators <, <=, >, and >= (815.20.1)
— The numerical equality operators== and ! = (§15.21.1)
» The numerical operators, which result in avalue of typei nt or | ong:
— The unary plus and minus operators + and - (815.15.3, §15.15.4)
— The multiplicative operators*, / , and %(815.17)
— The additive operators + and - (815.18)
— The increment operator ++, both prefix (815.15.1) and postfix (815.14.2)
— The decrement operator - -, both prefix (815.15.2) and postfix (815.14.3)
— The signed and unsigned shift operators <<, >>, and >>> (815.19)
— The bitwise complement operator ~ (§15.15.5)
— Theinteger bitwise operators &, ~, and | (815.22.1)
» The conditional operator ? : (815.25)

4.2

43

4.2

Primitive Types and Values TYPES VALUES AND VARIABLES

» The cast operator (815.16), which can convert from an integral value to avalue
of any specified numeric type

» The string concatenation operator + (815.18.1), which, when given a String
operand and an integral operand, will convert the integral operandto a stri ng
(the decima form of a byte, short, int, or | ong operand, or the character
of a char operand), and then produce a newly created String that is the
concatenation of the two strings

Other useful constructors, methods, and constants are predefined in the classes
Byt e, Short, | nt eger, Long, and Char act er.

If an integer operator other than a shift operator has at least one operand of type
| ong, then the operation is carried out using 64-bit precision, and the result of
the numerical operator is of type | ong. If the other operand is not | ong, it isfirst
widened (85.1.5) to type | ong by numeric promotion (85.6).

Otherwise, the operation is carried out using 32-bit precision, and the result of the
numerical operator isof typei nt . If either operandisnot ani nt , itisfirst widened
totypei nt by numeric promotion.

Any value of any integral type may be cast to or from any numeric type. There are
no casts between integral types and the type bool ean.

See 84.2.5 for an idiom to convert integer expressionsto bool ean.

The integer operators do not indicate overflow or underflow in any way.

An integer operator can throw an exception (811 (Exceptions)) for the following
reasons:

* Any integer operator can throw a Null Poi nter Exception if unboxing
conversion (85.1.8) of anull referenceis required.

» The integer divide operator / (815.17.2) and the integer remainder operator %
(815.17.3) canthrow an Ari t hret i cExcept i on if theright-hand operand iszero.

e The increment and decrement operators ++ (815.14.2, 815.15.1) and --
(815.14.3, 815.15.2) can throw an Qut Of Meror yEr ror if boxing conversion
(85.1.7) isrequired and there is not sufficient memory available to perform the
conversion.

Example 4.2.2-1. Integer Operations

class Test {
public static void main(String[] args) {
int i = 1000000;
Systemout.printin(i * i);

TYPES, VALUES, AND VARIABLES Primitive Types and Values

long I =1i;
Systemout.printin(l * 1);
Systemout.printin(20296 / (I - i));

}
This program produces the outpult:

- 727379968
1000000000000

and then encounters an Ari t hmet i cExcepti on in the divison by | - i, because |
- i iszero. Thefirst multiplication is performed in 32-bit precision, whereas the second
multiplicationisal ong multiplication. The value - 727379968 isthe decimal value of the
low 32 hits of the mathematical result, 1000000000000, which is a value too large for
typei nt .

4.2.3 Floating-Point Types, Formats, and Values

The floating-point typesaref | oat and doubl e, which are conceptually associated
with the single-precision 32-bit and double-precision 64-bit format IEEE 754
values and operations as specified in IEEE Sandard for Binary Floating-Point
Arithmetic, ANSI/IEEE Standard 754-1985 (IEEE, New Y ork).

Thel EEE 754 standard includes not only positive and negative numbersthat consist
of asign and magnitude, but also positive and negative zeros, positive and negative
infinities, and special Not-a-Number values (hereafter abbreviated NaN). A NaN
value is used to represent the result of certain invalid operations such as dividing
zero by zero. NaN constants of both 1 oat and doubl e type are predefined as
Fl oat . NaN and Doubl e. NaN.

Every implementation of the Java programming languageisrequired to support two
standard sets of floating-point values, called the float value set and the double value
set. In addition, an implementation of the Java programming language may support
either or both of two extended-exponent floating-point value sets, called the float-
extended-exponent value set and the double-extended-exponent value set. These
extended-exponent value sets may, under certain circumstances, be used instead
of the standard value sets to represent the values of expressions of type 1 oat or
doubl e (85.1.13, §15.4).

The finite nonzero values of any floating-point value set can all be expressed in
the form s Om [(2©"N* Y where sis +1 or -1, mis a positive integer less than
2V and eis an integer between Epip = -(2°-2) and Epux = 2€°-1, inclusive, and
where N and K are parameters that depend on the value set. Some values can
be represented in this form in more than one way; for example, supposing that a

4.2

45

4.2

46

Primitive Types and Values TYPES VALUES AND VARIABLES

value v in a value set might be represented in this form using certain values for
s, m, and e, then if it happened that m were even and e were less than 2%, one
could halve mand increase e by 1 to produce a second representation for the same
value v. A representation in this form is called normalized if m > 2V otherwise
the representation is said to be denormalized. If a value in a value set cannot be
represented in such away that m= 2", then the valueis said to be adenormalized
value, because it has no normalized representation.

The constraints on the parameters N and K (and on the derived parameters Ein
and Engy) for the two required and two optiona floating-point value sets are
summarized in Table 4.2.3-A.

Table 4.2.3-A. Floating-point value set parameters

Parameter float float-extended- double double-extended-
exponent exponent
24 24 53 53
8 >11 1 215
Emax +127 > +1023 +1023 > +16383
Enin -126 <-1022 -1022 <-16382

Where one or both extended-exponent value sets are supported by an
implementation, then for each supported extended-exponent value set there is
a specific implementation-dependent constant K, whose value is constrained by
Table 4.2.3-A; thisvalue K in turn dictates the values for Eqin and Epax.

Each of the four value sets includes not only the finite nonzero values that are
ascribed to it above, but also NaN values and the four values positive zero, negative
zero, positive infinity, and negative infinity.

Note that the constraintsin Table 4.2.3-A are designed so that every element of the
float value set is necessarily also an element of the float-extended-exponent value
set, the double value set, and the double-extended-exponent value set. Likewise,
each element of the double value set is necessarily also an element of the double-
extended-exponent value set. Each extended-exponent value set has alarger range
of exponent values than the corresponding standard value set, but does not have
more precision.

The elements of the float value set are exactly the values that can be represented
using the single floating-point format defined in the IEEE 754 standard. The
elements of the double value set are exactly the valuesthat can be represented using
the doubl e floating-point format defined in the |EEE 754 standard. Note, however,

TYPES, VALUES, AND VARIABLES Primitive Types and Values

that the elements of the float-extended-exponent and double-extended-exponent
value sets defined here do not correspond to the values that can be represented
using |EEE 754 single extended and double extended formats, respectively.

The float, float-extended-exponent, double, and double-extended-exponent value
sets are not types. It is always correct for an implementation of the Java
programming language to use an element of the float value set to represent avalue
of type f I oat ; however, it may be permissible in certain regions of code for an
implementation to use an element of the float-extended-exponent val ue set instead.
Similarly, itisaways correct for an implementation to use an element of the double
value set to represent a value of type doubl e; however, it may be permissible in
certain regions of code for an implementation to use an element of the double-
extended-exponent value set instead.

Except for NaN, floating-point values are ordered; arranged from smallest to
largest, they are negative infinity, negative finite nonzero values, positive and
negative zero, positive finite nonzero values, and positive infinity.

IEEE 754 alows multiple distinct NaN values for each of its single and double
floating-point formats. While each hardware architecture returns a particular bit
pattern for NaN when a new NaN is generated, a programmer can also create
NaNs with different bit patterns to encode, for example, retrospective diagnostic
information.

For the most part, the Java SE Platform treats NaN values of agiven type asthough
collapsed into asingle canonical value, and hence this specification normally refers
to an arbitrary NaN as though to a canonical value.

However, verson 1.3 of the Java SE Platform introduced methods enabling the
programmer to distinguish between NaN values: the Fl oat . f | oat ToRawl nt Bi t s and
Doubl e. doubl eToRawLongBi t s methods. The interested reader is referred to the
specifications for the Fl oat and Doubl e classes for more information.

Positive zero and negative zero compare equal; thus the result of the expression
0.0==-0. 0 istrue and the result of 0. 0>-0. 0 is false. But other operations can
distinguish positive and negative zero; for example, 1. 0/ 0. 0 hasthe value positive
infinity, while the value of 1. 0/ - 0. 0 is negative infinity.

NaN is unordered, so:

» The numerical comparison operators <, <=, >, and >= return f al se if either or
both operands are NaN (815.20.1).

In particular, (x<y) == ! (x>=y) will befal seif x ory isNaN.

» The equality operator == returnsf al se if either operand is NaN.

4.2

47

4.2

48

Primitive Types and Values TYPES VALUES AND VARIABLES

» Theinequality operator ! = returnst r ue if either operand is NaN (§15.21.1).
In particular, x! =x istrue if and only if x is NaN.

4.2.4 Floating-Point Operations

The Java programming language provides a number of operators that act on
floating-point values:

» The comparison operators, which result in avalue of type bool ean:
— The numerical comparison operators <, <=, >, and >= (815.20.1)
— The numerical equality operators== and ! = (§15.21.1)
e The numerical operators, which result in avalue of typef 1 oat or doubl e:
— The unary plus and minus operators + and - (815.15.3, §15.15.4)
— The multiplicative operators*, / , and %(815.17)
— The additive operators + and - (§15.18.2)
— The increment operator ++, both prefix (815.15.1) and postfix (815.14.2)
— The decrement operator - -, both prefix (815.15.2) and postfix (815.14.3)
» The conditional operator ? : (815.25)

» The cast operator (815.16), which can convert from a floating-point value to a
value of any specified numeric type

» The string concatenation operator + (815.18.1), which, when given a String
operand and afloating-point operand, will convert the floating-point operand to
astring representing its value in decimal form (without information loss), and
then produce a newly created St ri ng by concatenating the two strings

Other useful constructors, methods, and constants are predefined in the classes
Fl oat , Doubl e, and Mat h.

If at least one of the operands to a binary operator is of floating-point type, then
the operation is a floating-point operation, even if the other isintegral.

If at least one of the operands to a numerical operator is of type doubl e, then the
operation is carried out using 64-bit floating-point arithmetic, and the result of the
numerical operator isavaue of type doubl e. If the other operand isnot adoubl e,
it isfirst widened (85.1.5) to type doubl e by numeric promotion (85.6).

TYPES, VALUES, AND VARIABLES Primitive Types and Values

Otherwise, the operation is carried out using 32-bit floating-point arithmetic, and
the result of the numerical operator isavalue of typefl oat . (If the other operand
isnot afl oat, itisfirst widened to typef 1 oat by numeric promotion.)

Any value of afloating-point type may be cast to or from any numeric type. There
are no casts between floating-point types and the type bool ean.

See 8§4.2.5 for an idiom to convert floating-point expressions to bool ean.

Operators on floating-point numbers behave as specified by IEEE 754 (with
the exception of the remainder operator (815.17.3)). In particular, the Java
programming language requires support of |EEE 754 denor malized floating-point
numbers and gradual underflow, which make it easier to prove desirable properties
of particular numerical algorithms. Floating-point operations do not "flush to zero"
if the calculated result is a denormalized number.

The Java programming language requires that floating-point arithmetic behave
as if every floating-point operator rounded its floating-point result to the result
precision. Inexact results must be rounded to the representable value nearest to the
infinitely precise result; if the two nearest representable values are equally near,
the one with its least significant bit zero is chosen. Thisisthe IEEE 754 standard's
default rounding mode known as round to nearest.

The Java programming language uses round toward zero when converting a
floating value to an integer (85.1.3), which acts, in this case, as though the number
were truncated, discarding the mantissa bits. Rounding toward zero chooses as its
result the format's value closest to and no greater in magnitude than the infinitely
precise result.

A floating-point operation that overflows produces a signed infinity.

A floating-point operation that underflows produces a denormalized value or a
signed zero.

A floating-point operation that hasno mathematically definite result producesNaN.
All numeric operations with NaN as an operand produce NaN as a result.

A floating-point operator can throw an exception (811 (Exceptions)) for the
following reasons:

» Any floating-point operator can throw a Nul | Poi nt er Excepti on if unboxing
conversion (85.1.8) of anull referenceis required.

e The increment and decrement operators ++ (815.14.2, 815.15.1) and --
(815.14.3, 815.15.2) can throw an Qut Of Meror yEr ror if boxing conversion

4.2

49

4.2 Primitive Types and Values TYPES VALUES AND VARIABLES

(85.1.7) isrequired and there is not sufficient memory available to perform the

conversion.

Example 4.2.4-1. Floating-point Operations

class Test {

}

public static void main(String[] args) {

/1 An exanple of overflow
double d = 1e308;
System out. print("overflow produces infinity: ");
Systemout.println(d + "*10==" + d*10);
/1 An exanpl e of gradual underfl ow
d = 1e-305 * Math.PIl;
System out. print("gradual underflow " + d + "\n ")
for (int i =0; i < 4; i++)
Systemout.print(" " + (d /= 100000));
Systemout. println();
/1 An exanpl e of NaN:
Systemout.print("0.0/0.0 is Not-a-Nunber: ");
d = 0.0/0.0;
System out. println(d);
/1 An exanpl e of inexact results and roundi ng:
Systemout.print("inexact results with float:");

for (int i =0; i < 100; i++) {
float z = 1.0f / i;
if (z*i !=1.0f)
Systemout.print(" " + i);
}

Systemout. println();
/1 Anot her exampl e of inexact results and roundi ng:
Systemout. print("inexact results with double:");

for (int i =0; i < 100; i++) {
double z = 1.0/ i;
if (z*i !'=1.0)
Systemout.print(" " + i);
}

Systemout. println();

/1 An exanple of cast to integer rounding:
Systemout.print("cast to int rounds toward 0: ");
d = 12345. 6;

Systemout.printin((int)d +" " + (int)(-d));

This program produces the outpuit:

50

TYPES, VALUES, AND VARIABLES Primitive Types and Values

overfl ow produces infinity: 1.0E308*10==Infinity
gradual underflow 3.141592653589793E- 305

3. 1415926535898E- 310 3. 141592653E- 315 3. 142E-320 0.0
0.0/0.0 is Not-a-Nunmber: NaN
inexact results with float: 0 41 47 55 61 82 83 94 97
inexact results with double: 0 49 98
cast to int rounds toward 0: 12345 -12345

This example demonstrates, among other things, that gradua underflow can result in a
gradual loss of precision.

The resultswhen i is0 involve division by zero, so that z becomes positive infinity, and
z * 0isNaN, whichisnot equa to1. 0.

4.25 Thebool ean Type and boolean Values

Thebool ean type represents alogical quantity with two possible values, indicated
by theliteralstrue andf al se (83.10.3).

The boolean operators are:

» Therelational operators==and! = (815.21.2)

» Thelogical complement operator ! (8§15.15.6)

» Thelogical operators &, ~, and | (815.22.2)

» The conditional-and and conditional-or operators && (815.23) and | | (§15.24)
» The conditional operator ? : (815.25)

» The string concatenation operator + (815.18.1), which, when given a String
operand and abool ean operand, will convert the bool ean operandtoastri ng
(either "t rue" or"fal se"), and then produce anewly created St ri ng that isthe
concatenation of the two strings

Boolean expressions determine the control flow in several kinds of statements:
* Theif statement (814.9)

» Thewhi | e statement (§14.12)

* The do statement (8§14.13)

e Thefor statement (814.14)

A bool ean expression also determines which subexpression is evaluated in the
conditional ? : operator (815.25).

Only bool ean and Bool ean expressions can be used in control flow statements and
asthefirst operand of the conditional operator ? : .

4.2

51

4.3

52

Reference Types and Values TYPES, VALUES AND VARIABLES

An integer or floating-point expression x can be converted to a bool ean value,
following the C language convention that any nonzero value is true, by the
expression x! =0.

An object reference obj can be converted to a bool ean value, following the C
language convention that any reference other than nul | ist r ue, by the expression
obj ! =nul | .

A bool ean value can be converted to a st ri ng by string conversion (85.4).

A bool ean value may be cast totypebool ean, Bool ean, or Obj ect (85.5). No other
casts on type bool ean are alowed.

4.3 Reference Typesand Values

There are four kinds of reference types: class types (88.1), interface types (89.1),
type variables (84.4), and array types (810.1).

ReferenceType:
ClassOrlInterfaceType
TypeVariable
ArrayType

ClassOr|nterfaceType:
ClassType
InterfaceType

ClassType:
{Annotation} Identifier [TypeArguments]
ClassOrlInterfaceType. {Annotation} Identifier [TypeArguments]

InterfaceType:
ClassType

TypeVariable:
{Annotation} Identifier

ArrayType:
PrimitiveType Dims
ClassOrlInterfaceType Dims
TypeVariable Dims

TYPES, VALUES, AND VARIABLES Reference Types and Values

Dims:
{Annotation} [] {{Annotation} []}

The sample code:

class Point { int[] metrics; }
interface Move { void nove(int deltax, int deltay); }

declaresaclasstypePoi nt , aninterfacetype Move, and usesan array typei nt [] (anarray
of i nt) to declarethefield met ri cs of the class Poi nt .

A classor interface type consists of anidentifier or adotted sequence of identifiers,
where each identifier is optionally followed by type arguments (84.5.1). If type
arguments appear anywhere in a class or interface type, it is a parameterized type
(84.5).

Eachidentifier in aclass or interface typeis classified as a package name or atype
name (86.5.1). Identifierswhich are classified astype names may be annotated. If a
classor interface type hastheform T. i d (optionally followed by type arguments),
then i d must be the simple name of an accessible member type of T (86.6, §8.5,
§89.5), or a compile-time error occurs. The class or interface type denotes that
member type.

4.3.1 Objects

An object isaclassinstance or an array.

The reference values (often just references) are pointers to these objects, and a
specia null reference, which refers to no object.

A classinstanceisexplicitly created by aclassinstance creation expression (815.9).
An array isexplicitly created by an array creation expression (§15.10.1).

Other expressionsmay implicitly createaclassinstance (812.5) or an array (810.6).

Example 4.3.1-1. Object Creation

class Point {
int x, vy;
Point() { Systemout.println("default"); }
Point(int x, int y) { this.x =x; this.y =vy; }

/* A Point instance is explicitly created at
class initialization time: */
static Point origin = new Point(0,0);

4.3

53

4.3 Reference Types and Values TYPES, VALUES AND VARIABLES

/* A String can be inplicitly created
by a + operator: */
public String toString() { return "(" + x +"," +y +")"; }

}

class Test {
public static void main(String[] args) {
/* A Point is explicitly created
usi ng new nstance: */
Point p = null;
try {
p = (Point)C ass. forNanme("Point").new nstance();
} catch (Exception e) {
Systemout.printlin(e);

}

/* An array is inplicitly created
by an array constructor: */
Point a[] = { new Point(0,0), new Point(1,1) };

/* Strings are inplicitly created
by + operators: */
Systemout.printin("p: " + p);
Systemout.printin("a: { " + a[0] + ", " + a[1] + " }");

/* An array is explicitly created

by an array creation expression: */
String sa[] = new String[?2];
sa[0] = "he"; sa[1] = "llo";
Systemout.printin(sa[0] + sa[1l]);

}
This program produces the output:

def aul t

p: (0,0)

a: { (0,0), (1,1 }
hell o

The operators on references to objects are:

» Field access, using either a qualified name (86.6) or a field access expression
(815.11)

* Method invocation (8§15.12)
» The cast operator (85.5, §15.16)

» The string concatenation operator + (815.18.1), which, when given a Stri ng
operand and areference, will convert the referenceto a st ri ng by invoking the
t oSt ri ng method of the referenced object (using “nul | * if either the reference

TYPES, VALUES, AND VARIABLES Reference Types and Values

or the result of tosString is a null reference), and then will produce a newly
created St ri ng that is the concatenation of the two strings

* Thei nst anceof operator (815.20.2)
» Thereference equality operators==and ! = (815.21.3)
 The conditional operator ? : (815.25).

There may be many references to the same object. Most objects have state, stored
in the fields of abjects that are instances of classes or in the variables that are the
components of an array object. If two variables contain references to the same
object, the state of the object can be modified using one variable's reference to the
object, and then the altered state can be observed through the referencein the other
variable.

Example 4.3.1-2. Primitive and Reference | dentity
class Value { int val; }

class Test {

public static void main(String[] args) {
int il =3;
int i2=1i1;
i2 = 4
Systemout.print("il==" + i1)
Systemout.println(" but i2==" +i2);
Val ue vl = new Val ue()

vli.val =5

Val ue v2 = vl

v2.val = 6

Systemout. print("vl. val ==" + vl.val)
Systemout.println(" and v2.val ==" + v2.val);

}
This program produces the output:

i 1==3 but i2==4
vl.val ==6 and v2.val ==6

because v1. val and v2. val reference the same instance variable (84.12.3) in the one
Val ue object created by the only new expression, whilei 1 andi 2 are different variables.

Each object is associated with a monitor (817.1), which is used by synchr oni zed
methods (88.4.3) and thesynchr oni zed statement (§814.19) to provide control over
concurrent access to state by multiple threads (817 (Threads and Locks)).

4.3

55

4.3

56

Reference Types and Values TYPES, VALUES AND VARIABLES

4.3.2 The Class j ect

The class j ect isasuperclass (88.1.4) of all other classes.

All class and array types inherit (88.4.8) the methods of class j ect , which are
summarized as follows:

» The method cl one is used to make a duplicate of an object.

» Themethod equal s defines anotion of object equality, which is based on value,
not reference, comparison.

» Themethod fi nal i ze isrun just before an object is destroyed (812.6).

» The method get d ass returns the C ass object that represents the class of the
object.

A d ass object exists for each reference type. It can be used, for example,
to discover the fully qualified name of a class, its members, its immediate
superclass, and any interfaces that it implements.

The type of a method invocation expression of get C ass IS O ass<? ext ends
[T]>, where T is the class or interface that was searched for get d ass (815.12.1)
and |T| denotes the erasure of T (84.6).

A class method that is declared synchroni zed (88.4.3.6) synchronizes on the
monitor associated with the d ass object of the class.

» The method hashCode is very useful, together with the method equal s, in
hashtables such asj ava. uti | . HashMap.

» Themethodswai t, notify,andnoti fyAl | areusedin concurrent programming
using threads (817.2).

» Themethodt oSt ri ng returnsa st ri ng representation of the object.

433 TheClassstring

Instances of class St ri ng represent sequences of Unicode code points.
A string object has aconstant (unchanging) value.
String literals (83.10.5) are references to instances of class St ri ng.

The string concatenation operator + (815.18.1) implicitly creates a new String
object when the result is not a constant expression (8§15.28).

TYPES, VALUES AND VARIABLES Type Variables

4.3.4 When Reference Types Arethe Same

Two reference types are the same compile-time type if they are declared in
compilation units associated with the same module (87.3), and they have the same
binary name (813.1), and their type arguments, if any, are the same, applying this
definition recursively.

When two reference types are the same, they are sometimes said to be the same
class or the same interface.

At run time, severa reference types with the same binary name may be loaded
simultaneously by different class loaders. These types may or may not represent
the same type declaration. Even if two such types do represent the same type
declaration, they are considered distinct.

Two reference types are the same run-time type if:

» They are both class or both interface types, are defined by the same class |oader,
and have the same binary name (813.1), in which case they are sometimes said
to be the same run-time class or the same run-time interface.

» They are both array types, and their component types are the same run-time type
(810 (Arrays)).

4.4 TypeVariables

A typevariableisanunqualified identifier used asatypein class, interface, method,
and constructor bodies.

A type variable is introduced by the declaration of atype parameter of a generic
class, interface, method, or constructor (88.1.2, 89.1.2, 88.4.4, §8.8.4).

TypeParameter:
{TypeParameter Modifier} Identifier [TypeBound]

TypeParameterModifier:
Annotation

TypeBound:
ext ends TypeVariable
ext ends ClassOrlnterfaceType { Additional Bound}

4.4

57

4.4

58

Type Variables TYPES VALUES, AND VARIABLES

Additional Bound:
& InterfaceType

The scope of atype variable declared as atype parameter is specified in 8§6.3.

Every type variable declared as a type parameter has a bound. If no bound is
declared for atype variable, aoj ect isassumed. If abound is declared, it consists
of either:

e asingletypevariableT, or
» aclassor interface type T possibly followed by interfacetypesi ; & ... &1 y.
Itisacompile-timeerror if any of thetypesi ; ... I , isaclasstype or type variable.

The erasures (84.6) of all constituent types of a bound must be pairwise different,
or acompile-time error occurs.

A typevariable must not at the same time be a subtype of two interface typeswhich
are different parameterizations of the same generic interface, or a compile-time
€rror occurs.

Theorder of typesinaboundisonly significant in that the erasure of atypevariable
is determined by the first type in its bound, and that a class type or type variable
may only appear in the first position.

The members of atype variable x withbound T &1 ; & ... & I ,, are the members of
the intersection type (84.9) T &1 & ... & | , appearing at the point where the type
variable is declared.

Example 4.4-1. Members of a Type Variable
package TypeVar Menbers;

class C{
public voi d mCPublic() {}
protected void nCProtected() {}
voi d mCPackage() {}
private voi d mCPrivate() {}

}

interface I {
void m();
}

class CT extends Cinplenents | {
public void m () {}
}

class Test {

TYPES VALUES AND VARIABLES Parameterized Types

<T extends C & | > void test(T t) {

t.m(); /11 K
t. mCPublic(); /Il K
t.mCProtected(); // XK
t. mCPackage() ; /Il K
t.nCPrivate(); /1 Conpile-time error

}

The type variable T has the same members as the intersection type C & |, which in turn
has the same members as the empty class CT, defined in the same scope with equivalent
supertypes. Themembersof aninterfaceareawayspubl i ¢, and thereforealwaysinherited
(unless overridden). Hence m is a member of CT and of T. Among the members of C, all
but nCPr i vat e areinherited by CT, and are therefore members of both CT and T.

If C had been declared in a different package than T, then the call to nCPackage would
giveriseto acompile-timeerror, asthat member would not be accessible at the point where
T isdeclared.

4.5 Parameterized Types

A class or interface declaration that is generic (88.1.2, 89.1.2) defines a set of
parameterized types.

A parameterized type is a class or interface type of the form c<Ty,...,T,>, where C
is the name of a generic type and <Ty,...,T,> isalist of type arguments that denote
aparticular parameterization of the generic type.

A generic type has type parameters Fy,...,F, with corresponding bounds Bq,...,B;.
Each type argument T, of a parameterized type ranges over all types that are
subtypes of all types listed in the corresponding bound. That is, for each bound
typesing;, T; isasubtypeof S[Fi: =Ty, .. ., Fn: =Tp] (84.10).

A parameterized type C<Ty,...,To> iswell-formed if al of the following are true:
* Ccisthe name of ageneric type.

» The number of type arguments is the same as the number of type parametersin
the generic declaration of C.

» When subjected to capture conversion (85.1.10) resulting in thetype C<Xy,...,Xn>,
each type argument X; is a subtype of S[F;: =Xy, ..., Fq: =X,] for each bound
typesinsg;.

Itisacompile-time error if a parameterized type is not well-formed.

4.5

59

4.5

60

Parameterized Types TYPES, VALUES AND VARIABLES

In this specification, whenever we speak of aclassor interface type, weincludethe
generic version as well, unless explicitly excluded.

Two parameterized types are provably distinct if either of the following istrue:

» They are parameterizations of distinct generic type declarations.

» Any of their type arguments are provably distinct.

Giventhegenerictypesinthe examplesof §8.1.2, here are somewell-formed parameterized
types:

Seq<Stri ng>
Seq<Seq<Stri ng>>
Seq<Stri ng>. Zi pper <I nt eger >

Pai r<String, | nteger>

Here are some incorrect parameterizations of those generic types:

Seq<i nt > isillegal, as primitive types cannot be type arguments.
Pai r<Stri ng> isillegal, asthere are not enough type arguments.

Pai r<String, String, String>isillegal, asthere are too many type arguments.

A parameterized type may be an parameterization of a generic class or interface which
is nested. For example, if a hon-generic class C has a generic member class D<T>, then
C. D<bj ect > is a parameterized type. And if a generic class C<T> has a non-generic
member class D, then the member type C<St r i ng>. Disaparameterized type, even though
the class Dis hot generic.

45.1 TypeArgumentsof Parameterized Types

Type arguments may be either reference types or wildcards. Wildcards are useful
in situations where only partial knowledge about the type parameter is required.

TypeArguments.

< TypeArgumentList >

TypeArgumentList:

TypeArgument {, TypeArgument}

TypeArgument:

ReferenceType
Wildcard

TYPES VALUES AND VARIABLES Parameterized Types

Wildcard:
{Annotation} ? [WildcardBounds]

WildcardBounds:
ext ends ReferenceType
super ReferenceType

Wildcards may be given explicit bounds, just like regular type variable
declarations. An upper bound is signified by the following syntax, where B is the
bound:

? extends B

Unlike ordinary type variables declared in a method signature, no type inference
isrequired when using awildcard. Consequently, it is permissible to declare lower
bounds on awildcard, using the following syntax, where B is alower bound:

? super B

The wildcard ? ext ends Qbj ect is equivaent to the unbounded wildcard ~.
Two type arguments are provably distinct if one of the following istrue:

» Neither argument is atype variable or wildcard, and the two arguments are not
the same type.

» One type argument is a type variable or wildcard, with an upper bound (from
capture conversion (85.1.10), if necessary) of S; and the other type argument T
isnot atype variable or wildcard; and neither |s| <: |T| nor |T| <: || (84.8, §84.10).

» Each type argument is a type variable or wildcard, with upper bounds (from
capture conversion, if necessary) of s and T; and neither [s| <: [T| nor [T] <: [S].

A type argument T, is said to contain another type argument T,, written T, <= Ty,
if the set of types denoted by T, is provably a subset of the set of types denoted
by T1 under the reflexive and transitive closure of the following rules (where <:
denotes subtyping (84.10)):

e ?extends T<=?extends SifT<: S
* ?extends T<=?

e ?super T<=?super SifS<: T

* ?super T<=7?

* ? super T <=? extends bj ect

4.5

61

4.5 Parameterized Types TYPES, VALUES AND VARIABLES

e T<=T
e T<=?extends T

e T<=?super T

The relationship of wildcards to established type theory is an interesting one, which we
briefly alude to here. Wildcards are a restricted form of existential types. Given a generic
type declaration G<T ext ends B>, G<?> isroughly analogousto Sone X <: B. G<X>.

Historically, wildcards are a direct descendant of the work by Atsushi Igarashi and Mirko
Viroli. Readersinterested in amore comprehensive discussion should refer to On Variance-
Based Subtyping for Parametric Types by Atsushi Igarashi and Mirko Viroli, in the
Proceedings of the 16th European Conference on Object Oriented Programming (ECOOP
2002). This work itself builds upon earlier work by Kresten Thorup and Mads Torgersen
(Unifying Genericity, ECOOP 99), aswell asalong tradition of work on declaration based
variance that goes back to Pierre America's work on POOL (OOPSLA 89).

Wildcards differ in certain details from the constructs described in the aforementioned
paper, in particular in the use of capture conversion (85.1.10) rather than the cl ose
operation described by Igarashi and Viroli. For a formal account of wildcards, see Wild
FJ by Mads Torgersen, Erik Ernst and Christian Plesner Hansen, in the 12th workshop on
Foundations of Object Oriented Programming (FOOL 2005).

Example 4.5.1-1. Unbounded Wildcards

inmport java.util.Collection;
inmport java.util.Arraylist;

class Test {
static void printCollection(Collection<?>c) {
/1 a wildcard collection
for (Qbject o: c) {
System out. println(o);
}
}

public static void main(String[] args) {
Col l ection<String> cs = new ArrayList<String>();
cs.add("hel 1l 0");
cs.add("worl d");
printCollection(cs);

}

Note that using Col | ect i on<Obj ect > as the type of the incoming parameter, c, would
not be nearly as useful; the method could only be used with an argument expression that
had type Col | ect i on<bj ect >, which would be quite rare. In contrast, the use of an
unbounded wildcard allows any kind of collection to be passed as an argument.

Here is an example where the element type of an array is parameterized by awildcard:

62

TYPES VALUES AND VARIABLES Parameterized Types

public Method get Met hod(d ass<?>[] paraneterTypes) { ... }

Example 4.5.1-2. Bounded Wildcards

bool ean addAl | (Col | ecti on<? extends E> c)

Here, the method is declared within the interface Col | ect i on<E>, and is designed to add
all the elements of its incoming argument to the collection upon which it is invoked. A
natural tendency would beto useCol | ect i on<E> asthetypeof ¢, but thisisunnecessarily
restrictive. An alternative would be to declare the method itself to be generic:

<T> bool ean addAl | (Col | ecti on<T> c¢)

Thisversionissufficiently flexible, but note that the type parameter isused only onceinthe
signature. Thisreflectsthe fact that the type parameter is not being used to express any kind
of interdependency between the type(s) of the argument(s), the return type and/or throws
type. In the absence of such interdependency, generic methods are considered bad style,
and wildcards are preferred.

Ref erence(T referent, ReferenceQueue<? super T> queue)

Here, the referent can be inserted into any queue whose element type is a supertype of the
type T of the referent; T is the lower bound for the wildcard.

452 Membersand Constructors of Parameterized Types

Let c be ageneric class or interface declaration with type parameters A4,...,A,, and
let c<Ty,...,To> be a parameterization of c where, for 1 <i < n, T; isatype (rather
than awildcard). Then:

» Let mbe a member or constructor declaration in C, whose type as declared is T
(88.2, 88.8.6).

Thetype of min C<Ty,...,To> IST[A1: =Ty, . . ., A =Th] .

» Letmbeamember or constructor declarationin b, whereDisaclassextended by C
or aninterfaceimplemented by C. Let D<uy,...,Uc> be the supertype of C<Ty,...,Tp>
that corresponds to D.

Thetype of min C<Ty,...,Ty> isthe type of min D<Uy,...,U>.
If any of the type arguments in the parameterization of C are wildcards, then:

» The types of the fields, methods, and constructors in c<Ty,...,T,> are the types
of the fields, methods, and constructors in the capture conversion of C<Ty,...,T,>
(85.1.10).

4.5

63

4.6 Type Erasure TYPES, VALUES, AND VARIABLES

* Let D be a (possibly generic) class or interface declaration in C. Then the type
of Din C<Ty,...,T,> isDwhere, if Dis generic, all type arguments are unbounded
wildcards.

Thisis of no consequence, asit isimpossible to access a member of a parameterized type
without performing capture conversion, and it is impossible to use a wildcard after the
keyword newin aclass instance creation expression (§15.9).

The sole exception to the previous paragraph is when a nested parameterized type is used
asthe expressionin ani nst anceof operator (§15.20.2), where capture conversion is not
applied.

A stati c member that is declared in a generic type declaration must be referred
to using the non-generic type that corresponds to the generic type (86.1, 86.5.5.2,
86.5.6.2), or a compile-time error occurs.

In other words, it is illega to refer to a stati c member declared in a generic type
declaration by using a parameterized type.

46 TypeErasure

Type erasureis a mapping from types (possibly including parameterized types and
type variables) to types (that are never parameterized types or type variables). We
write |T| for the erasure of type T. The erasure mapping is defined as follows:

» The erasure of a parameterized type (84.5) G<Ty,...,Tn> iS|G.

» The erasure of anested type T. Cis|T|.C.

» Theerasure of an array type T[] iS|T|[].

» Theerasure of atype variable (84.4) isthe erasure of its leftmost bound.
» The erasure of every other typeis the type itself.

Type erasure aso maps the signature (88.4.2) of a constructor or method to a
signature that has no parameterized types or type variables. The erasure of a
constructor or method signature s is a signature consisting of the same name as s
and the erasures of all the formal parameter typesgivenins.

The return type of a method (88.4.5) and the type parameters of a generic method
or constructor (88.4.4, §8.8.4) also undergo erasure if the method or constructor's
signature is erased.

The erasure of the signature of a generic method has no type parameters.

TYPES, VALUES AND VARIABLES Reifiable Types

4.7 Reifiable Types

Because some type information is erased during compilation, not al types are
available at run time. Types that are completely available at run time are known
asreifiable types.

A typeisreifiableif and only if one of the following holds:

It refers to a non-generic class or interface type declaration.

It is a parameterized type in which al type arguments are unbounded wildcards
(84.5.2).

Itisaraw type (84.8).

It isaprimitive type (84.2).

It isan array type (810.1) whose element type isreifiable.

It isanested type where, for each type T separated by a". ", T itself isreifiable.

For example, if a generic class X<T> has a generic member class Y<U>, then the
type X<?>. Y<?> is reifiable because X<?> isreifiable and Y<?> isreifiable. The type
X<?>. Y<Cbj ect > isnot reifiable because Y<bj ect > is not reifiable.

An intersection typeis not reifiable.

The decision not to make all generic types reifiable is one of the most crucial, and
controversial design decisions involving the type system of the Java programming
language.

Ultimately, the most important motivation for this decision is compatibility with existing
code. In anaive sense, the addition of new constructs such as generics has no implications
for pre-existing code. The Java programming language, per se, is compatible with earlier
versions as long as every program written in the previous versions retains its meaning in
the new version. However, this notion, which may be termed language compatibility, is
of purely theoretical interest. Real programs (even trivial ones, such as "Hello World")
are composed of several compilation units, some of which are provided by the Java SE
Platform (such aselementsof j ava. | ang orj ava. uti |). In practice, then, the minimum
requirement is platform compatibility - that any program written for the prior version of the
Java SE Platform continues to function unchanged in the new version.

One way to provide platform compatibility is to leave existing platform functionality
unchanged, only adding new functionality. For example, rather than modify the existing
Collections hierarchy inj ava. uti | , one might introduce a new library utilizing generics.

The disadvantages of such a schemeisthat it is extremely difficult for pre-existing clients
of the Callection library to migrate to the new library. Collections are used to exchange
data between independently developed modules; if a vendor decides to switch to the new,
generic, library, that vendor must also distribute two versionsof their code, to be compatible

4.7

65

4.8

66

Raw Types TYPES, VALUES AND VARIABLES

with their clients. Librariesthat are dependent on other vendors code cannot be modified to
use generics until the supplier'slibrary is updated. If two modules are mutually dependent,
the changes must be made simultaneously.

Clearly, platform compatibility, as outlined above, does not provide a realistic path for
adoption of a pervasive new feature such as generics. Therefore, the design of the generic
type system seeks to support migration compatibility. Migration compatibiliy alows the
evolution of existing code to take advantage of generics without imposing dependencies
between independently developed software modules.

The price of migration compatibility isthat afull and sound reification of the generic type
system is not possible, at least while the migration is taking place.

4.8 Raw Types

Tofacilitateinterfacing with non-generic legacy code, it ispossibleto use asatype
the erasure (84.6) of a parameterized type (84.5) or the erasure of an array type
(810.1) whose element type is a parameterized type. Such a type is called a raw

type.
More precisely, araw typeis defined to be one of:

» Thereferencetypethat isformed by taking the name of ageneric typedeclaration
without an accompanying type argument list.

» An array type whose element type isaraw type.

* A non-stati c member typeof araw typeRthat isnot inherited from asuperclass
or superinterface of R.

A non-generic class or interface type is not araw type.

To see why a nhon-st ati ¢ type member of a raw type is considered raw, consider the
following example:

class Quter<T>{
Tt,;
class | nner {
T setQuterT(T t1) { t =t1; returnt; }
}
}

The type of the member(s) of | nner depends on the type parameter of Qut er . If Qut er is
raw, | nner must be treated as raw as well, asthereisno valid binding for T.

TYPES, VALUES AND VARIABLES Raw Types

Thisrule applies only to type members that are not inherited. Inherited type members that
depend on type variables will be inherited as raw types as a consequence of the rule that
the supertypes of araw type are erased, described later in this section.

Another implication of the rules above is that a generic inner class of araw type can itself
only be used as araw type:

class Quter<T>{
class I nner<S> {
S's;
}
}

It isnot possibleto access| nner asapartialy raw type (a"rare" type):

Quter.|lnner<Double> x = null; // illegal
Double d = x.s;

because Qut er itself israw, hence so are al itsinner classesincluding | nner, and soitis
not possible to pass any type arguments to Inner.

The superclasses (respectively, superinterfaces) of araw type arethe erasuresof the
superclasses (superinterfaces) of any of the parameterizations of the generic type.

Thetype of aconstructor (88.8), instance method (88.4, §9.4), or non-st at i ¢ field
(88.3) of araw type Ccthat is not inherited from its superclasses or superinterfaces
isthe raw type that corresponds to the erasure of itstype in the generic declaration
corresponding to C.

Thetypeof ast ati ¢ method or st at i ¢ field of araw type cisthe sameasitstype
in the generic declaration corresponding to C.

It isacompile-time error to pass type arguments to anon-st at i ¢ type member of
araw typethat is not inherited from its superclasses or superinterfaces.

It isacompile-time error to attempt to use atype member of a parameterized type
asaraw type.

This means that the ban on "rare" types extends to the case where the qualifying type is
parameterized, but we attempt to use the inner class as araw type:

Quter<integer>.Ilnner x = null; // illegal

Thisis the opposite of the case discussed above. Thereis no practical justification for this
half-baked type. Inlegacy code, no type arguments are used. In non-legacy code, we should
use the generic types correctly and pass al the required type arguments.

4.8

67

4.8

68

Raw Types TYPES, VALUES AND VARIABLES

The supertype of a class may be a raw type. Member accesses for the class are
treated as normal, and member accesses for the supertype are treated as for raw
types. In the constructor of the class, calsto super aretreated as method calls on
araw type.

The use of raw types is alowed only as a concession to compatibility of legacy
code. The use of raw types in code written after the introduction of genericsinto
the Java programming language is strongly discouraged. It is possible that future
versions of the Java programming language will disallow the use of raw types.

To make sure that potential violations of the typing rules are aways flagged, some
accessesto members of araw typewill result in compile-time unchecked warnings.
The rules for compile-time unchecked warnings when accessing members or
constructors of raw types are asfollows:

* At an assignment to a field: if the type of the Primary in the field access
expression (815.11) isaraw type, then acompile-time unchecked warning occurs
if erasure changes the field's type.

» Ataninvocation of amethod or constructor: if thetype of the classor interfaceto
search (815.12.1) isaraw type, then acompile-time unchecked warning occursif
erasure changes any of the formal parameter types of the method or constructor.

* No compile-time unchecked warning occurs for a method call when the formal
parameter types do not change under erasure (even if the return type and/or
t hr ows clause changes), for reading from afield, or for a class instance creation
of araw type.

Note that the unchecked warnings above are distinct from the unchecked warnings possible
from narrowing reference conversion (85.1.6), unchecked conversion (85.1.9), method
declarations (88.4.1, 88.4.8.3), and certain expressions (815.12.4.2, §15.13.2, §15.27.3).

The warnings here cover the case where alegacy consumer uses a generified library. For
example, the library declares ageneric class Foo<T ext ends String> that hasafield f
of type Vect or <T>, but the consumer assigns a vector of integersto e. f where e has the
raw type Foo. The legacy consumer receives a warning because it may have caused heap
pollution (84.12.2) for generified consumers of the generified library.

(Note that the legacy consumer can assign a