Hash table based implementation of the
Map
interface, with
weak keys . An entry in a
WeakHashMap
will automatically be removed when its key is no longer in ordinary use. More precisely, the presence of a mapping for a given key will not prevent the key from being discarded by the garbage collector, that is, made finalizable, finalized, and then reclaimed. When a key has been discarded its entry is effectively removed from the map, so this class behaves somewhat differently from other
Map
implementations.
Both null values and the null key are supported. This class has performance characteristics similar to those of the HashMap
class, and has the same efficiency parameters of initial capacity and load factor .
Like most collection classes, this class is not synchronized. A synchronized WeakHashMap
may be constructed using the Collections.synchronizedMap
method.
This class is intended primarily for use with key objects whose equals
methods test for object identity using the ==
operator. Once such a key is discarded it can never be recreated, so it is impossible to do a lookup of that key in a WeakHashMap
at some later time and be surprised that its entry has been removed. This class will work perfectly well with key objects whose equals
methods are not based upon object identity, such as String
instances. With such recreatable key objects, however, the automatic removal of WeakHashMap
entries whose keys have been discarded may prove to be confusing.
The behavior of the WeakHashMap
class depends in part upon the actions of the garbage collector, so several familiar (though not required) Map
invariants do not hold for this class. Because the garbage collector may discard keys at any time, a WeakHashMap
may behave as though an unknown thread is silently removing entries. In particular, even if you synchronize on a WeakHashMap
instance and invoke none of its mutator methods, it is possible for the size
method to return smaller values over time, for the isEmpty
method to return false
and then true
, for the containsKey
method to return true
and later false
for a given key, for the get
method to return a value for a given key but later return null
, for the put
method to return null
and the remove
method to return false
for a key that previously appeared to be in the map, and for successive examinations of the key set, the value collection, and the entry set to yield successively smaller numbers of elements.
Each key object in a WeakHashMap
is stored indirectly as the referent of a weak reference. Therefore a key will automatically be removed only after the weak references to it, both inside and outside of the map, have been cleared by the garbage collector.
Implementation note: The value objects in a WeakHashMap
are held by ordinary strong references. Thus care should be taken to ensure that value objects do not strongly refer to their own keys, either directly or indirectly, since that will prevent the keys from being discarded. Note that a value object may refer indirectly to its key via the WeakHashMap
itself; that is, a value object may strongly refer to some other key object whose associated value object, in turn, strongly refers to the key of the first value object. If the values in the map do not rely on the map holding strong references to them, one way to deal with this is to wrap values themselves within WeakReferences
before inserting, as in: m.put(key, new WeakReference(value))
, and then unwrapping upon each get
.
The iterators returned by the iterator
method of the collections returned by all of this class's "collection view methods" are fail-fast: if the map is structurally modified at any time after the iterator is created, in any way except through the iterator's own remove
method, the iterator will throw a ConcurrentModificationException
. Thus, in the face of concurrent modification, the iterator fails quickly and cleanly, rather than risking arbitrary, non-deterministic behavior at an undetermined time in the future.
Note that the fail-fast behavior of an iterator cannot be guaranteed as it is, generally speaking, impossible to make any hard guarantees in the presence of unsynchronized concurrent modification. Fail-fast iterators throw ConcurrentModificationException
on a best-effort basis. Therefore, it would be wrong to write a program that depended on this exception for its correctness: the fail-fast behavior of iterators should be used only to detect bugs.
This class is a member of the Java Collections Framework .