1 /*
   2  * Copyright (c) 2003, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #ifndef _WINDOWS
  27 #include "alloca.h"
  28 #endif
  29 #include "asm/macroAssembler.hpp"
  30 #include "asm/macroAssembler.inline.hpp"
  31 #include "classfile/symbolTable.hpp"
  32 #include "code/debugInfoRec.hpp"
  33 #include "code/icBuffer.hpp"
  34 #include "code/nativeInst.hpp"
  35 #include "code/vtableStubs.hpp"
  36 #include "gc/shared/collectedHeap.hpp"
  37 #include "gc/shared/gcLocker.hpp"
  38 #include "interpreter/interpreter.hpp"
  39 #include "logging/log.hpp"
  40 #include "memory/resourceArea.hpp"
  41 #include "oops/compiledICHolder.hpp"
  42 #include "runtime/safepointMechanism.hpp"
  43 #include "runtime/sharedRuntime.hpp"
  44 #include "runtime/vframeArray.hpp"
  45 #include "utilities/align.hpp"
  46 #include "utilities/formatBuffer.hpp"
  47 #include "vm_version_x86.hpp"
  48 #include "vmreg_x86.inline.hpp"
  49 #ifdef COMPILER1
  50 #include "c1/c1_Runtime1.hpp"
  51 #endif
  52 #ifdef COMPILER2
  53 #include "opto/runtime.hpp"
  54 #endif
  55 #if INCLUDE_JVMCI
  56 #include "jvmci/jvmciJavaClasses.hpp"
  57 #endif
  58 
  59 #define __ masm->
  60 
  61 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
  62 
  63 class SimpleRuntimeFrame {
  64 
  65   public:
  66 
  67   // Most of the runtime stubs have this simple frame layout.
  68   // This class exists to make the layout shared in one place.
  69   // Offsets are for compiler stack slots, which are jints.
  70   enum layout {
  71     // The frame sender code expects that rbp will be in the "natural" place and
  72     // will override any oopMap setting for it. We must therefore force the layout
  73     // so that it agrees with the frame sender code.
  74     rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt,
  75     rbp_off2,
  76     return_off, return_off2,
  77     framesize
  78   };
  79 };
  80 
  81 class RegisterSaver {
  82   // Capture info about frame layout.  Layout offsets are in jint
  83   // units because compiler frame slots are jints.
  84 #define XSAVE_AREA_BEGIN 160
  85 #define XSAVE_AREA_YMM_BEGIN 576
  86 #define XSAVE_AREA_ZMM_BEGIN 1152
  87 #define XSAVE_AREA_UPPERBANK 1664
  88 #define DEF_XMM_OFFS(regnum) xmm ## regnum ## _off = xmm_off + (regnum)*16/BytesPerInt, xmm ## regnum ## H_off
  89 #define DEF_YMM_OFFS(regnum) ymm ## regnum ## _off = ymm_off + (regnum)*16/BytesPerInt, ymm ## regnum ## H_off
  90 #define DEF_ZMM_OFFS(regnum) zmm ## regnum ## _off = zmm_off + (regnum-16)*64/BytesPerInt, zmm ## regnum ## H_off
  91   enum layout {
  92     fpu_state_off = frame::arg_reg_save_area_bytes/BytesPerInt, // fxsave save area
  93     xmm_off       = fpu_state_off + XSAVE_AREA_BEGIN/BytesPerInt,            // offset in fxsave save area
  94     DEF_XMM_OFFS(0),
  95     DEF_XMM_OFFS(1),
  96     // 2..15 are implied in range usage
  97     ymm_off = xmm_off + (XSAVE_AREA_YMM_BEGIN - XSAVE_AREA_BEGIN)/BytesPerInt,
  98     DEF_YMM_OFFS(0),
  99     DEF_YMM_OFFS(1),
 100     // 2..15 are implied in range usage
 101     zmm_high = xmm_off + (XSAVE_AREA_ZMM_BEGIN - XSAVE_AREA_BEGIN)/BytesPerInt,
 102     zmm_off = xmm_off + (XSAVE_AREA_UPPERBANK - XSAVE_AREA_BEGIN)/BytesPerInt,
 103     DEF_ZMM_OFFS(16),
 104     DEF_ZMM_OFFS(17),
 105     // 18..31 are implied in range usage
 106     fpu_state_end = fpu_state_off + ((FPUStateSizeInWords-1)*wordSize / BytesPerInt),
 107     fpu_stateH_end,
 108     r15_off, r15H_off,
 109     r14_off, r14H_off,
 110     r13_off, r13H_off,
 111     r12_off, r12H_off,
 112     r11_off, r11H_off,
 113     r10_off, r10H_off,
 114     r9_off,  r9H_off,
 115     r8_off,  r8H_off,
 116     rdi_off, rdiH_off,
 117     rsi_off, rsiH_off,
 118     ignore_off, ignoreH_off,  // extra copy of rbp
 119     rsp_off, rspH_off,
 120     rbx_off, rbxH_off,
 121     rdx_off, rdxH_off,
 122     rcx_off, rcxH_off,
 123     rax_off, raxH_off,
 124     // 16-byte stack alignment fill word: see MacroAssembler::push/pop_IU_state
 125     align_off, alignH_off,
 126     flags_off, flagsH_off,
 127     // The frame sender code expects that rbp will be in the "natural" place and
 128     // will override any oopMap setting for it. We must therefore force the layout
 129     // so that it agrees with the frame sender code.
 130     rbp_off, rbpH_off,        // copy of rbp we will restore
 131     return_off, returnH_off,  // slot for return address
 132     reg_save_size             // size in compiler stack slots
 133   };
 134 
 135  public:
 136   static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words, bool save_vectors = false);
 137   static void restore_live_registers(MacroAssembler* masm, bool restore_vectors = false);
 138 
 139   // Offsets into the register save area
 140   // Used by deoptimization when it is managing result register
 141   // values on its own
 142 
 143   static int rax_offset_in_bytes(void)    { return BytesPerInt * rax_off; }
 144   static int rdx_offset_in_bytes(void)    { return BytesPerInt * rdx_off; }
 145   static int rbx_offset_in_bytes(void)    { return BytesPerInt * rbx_off; }
 146   static int xmm0_offset_in_bytes(void)   { return BytesPerInt * xmm0_off; }
 147   static int return_offset_in_bytes(void) { return BytesPerInt * return_off; }
 148 
 149   // During deoptimization only the result registers need to be restored,
 150   // all the other values have already been extracted.
 151   static void restore_result_registers(MacroAssembler* masm);
 152 };
 153 
 154 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words, bool save_vectors) {
 155   int off = 0;
 156   int num_xmm_regs = XMMRegisterImpl::number_of_registers;
 157   if (UseAVX < 3) {
 158     num_xmm_regs = num_xmm_regs/2;
 159   }
 160 #if COMPILER2_OR_JVMCI
 161   if (save_vectors) {
 162     assert(UseAVX > 0, "Vectors larger than 16 byte long are supported only with AVX");
 163     assert(MaxVectorSize <= 64, "Only up to 64 byte long vectors are supported");
 164   }
 165 #else
 166   assert(!save_vectors, "vectors are generated only by C2 and JVMCI");
 167 #endif
 168 
 169   // Always make the frame size 16-byte aligned, both vector and non vector stacks are always allocated
 170   int frame_size_in_bytes = align_up(reg_save_size*BytesPerInt, num_xmm_regs);
 171   // OopMap frame size is in compiler stack slots (jint's) not bytes or words
 172   int frame_size_in_slots = frame_size_in_bytes / BytesPerInt;
 173   // CodeBlob frame size is in words.
 174   int frame_size_in_words = frame_size_in_bytes / wordSize;
 175   *total_frame_words = frame_size_in_words;
 176 
 177   // Save registers, fpu state, and flags.
 178   // We assume caller has already pushed the return address onto the
 179   // stack, so rsp is 8-byte aligned here.
 180   // We push rpb twice in this sequence because we want the real rbp
 181   // to be under the return like a normal enter.
 182 
 183   __ enter();          // rsp becomes 16-byte aligned here
 184   __ push_CPU_state(); // Push a multiple of 16 bytes
 185 
 186   // push cpu state handles this on EVEX enabled targets
 187   if (save_vectors) {
 188     // Save upper half of YMM registers(0..15)
 189     int base_addr = XSAVE_AREA_YMM_BEGIN;
 190     for (int n = 0; n < 16; n++) {
 191       __ vextractf128_high(Address(rsp, base_addr+n*16), as_XMMRegister(n));
 192     }
 193     if (VM_Version::supports_evex()) {
 194       // Save upper half of ZMM registers(0..15)
 195       base_addr = XSAVE_AREA_ZMM_BEGIN;
 196       for (int n = 0; n < 16; n++) {
 197         __ vextractf64x4_high(Address(rsp, base_addr+n*32), as_XMMRegister(n));
 198       }
 199       // Save full ZMM registers(16..num_xmm_regs)
 200       base_addr = XSAVE_AREA_UPPERBANK;
 201       off = 0;
 202       int vector_len = Assembler::AVX_512bit;
 203       for (int n = 16; n < num_xmm_regs; n++) {
 204         __ evmovdqul(Address(rsp, base_addr+(off++*64)), as_XMMRegister(n), vector_len);
 205       }
 206     }
 207   } else {
 208     if (VM_Version::supports_evex()) {
 209       // Save upper bank of ZMM registers(16..31) for double/float usage
 210       int base_addr = XSAVE_AREA_UPPERBANK;
 211       off = 0;
 212       for (int n = 16; n < num_xmm_regs; n++) {
 213         __ movsd(Address(rsp, base_addr+(off++*64)), as_XMMRegister(n));
 214       }
 215     }
 216   }
 217   __ vzeroupper();
 218   if (frame::arg_reg_save_area_bytes != 0) {
 219     // Allocate argument register save area
 220     __ subptr(rsp, frame::arg_reg_save_area_bytes);
 221   }
 222 
 223   // Set an oopmap for the call site.  This oopmap will map all
 224   // oop-registers and debug-info registers as callee-saved.  This
 225   // will allow deoptimization at this safepoint to find all possible
 226   // debug-info recordings, as well as let GC find all oops.
 227 
 228   OopMapSet *oop_maps = new OopMapSet();
 229   OopMap* map = new OopMap(frame_size_in_slots, 0);
 230 
 231 #define STACK_OFFSET(x) VMRegImpl::stack2reg((x))
 232 
 233   map->set_callee_saved(STACK_OFFSET( rax_off ), rax->as_VMReg());
 234   map->set_callee_saved(STACK_OFFSET( rcx_off ), rcx->as_VMReg());
 235   map->set_callee_saved(STACK_OFFSET( rdx_off ), rdx->as_VMReg());
 236   map->set_callee_saved(STACK_OFFSET( rbx_off ), rbx->as_VMReg());
 237   // rbp location is known implicitly by the frame sender code, needs no oopmap
 238   // and the location where rbp was saved by is ignored
 239   map->set_callee_saved(STACK_OFFSET( rsi_off ), rsi->as_VMReg());
 240   map->set_callee_saved(STACK_OFFSET( rdi_off ), rdi->as_VMReg());
 241   map->set_callee_saved(STACK_OFFSET( r8_off  ), r8->as_VMReg());
 242   map->set_callee_saved(STACK_OFFSET( r9_off  ), r9->as_VMReg());
 243   map->set_callee_saved(STACK_OFFSET( r10_off ), r10->as_VMReg());
 244   map->set_callee_saved(STACK_OFFSET( r11_off ), r11->as_VMReg());
 245   map->set_callee_saved(STACK_OFFSET( r12_off ), r12->as_VMReg());
 246   map->set_callee_saved(STACK_OFFSET( r13_off ), r13->as_VMReg());
 247   map->set_callee_saved(STACK_OFFSET( r14_off ), r14->as_VMReg());
 248   map->set_callee_saved(STACK_OFFSET( r15_off ), r15->as_VMReg());
 249   // For both AVX and EVEX we will use the legacy FXSAVE area for xmm0..xmm15,
 250   // on EVEX enabled targets, we get it included in the xsave area
 251   off = xmm0_off;
 252   int delta = xmm1_off - off;
 253   for (int n = 0; n < 16; n++) {
 254     XMMRegister xmm_name = as_XMMRegister(n);
 255     map->set_callee_saved(STACK_OFFSET(off), xmm_name->as_VMReg());
 256     off += delta;
 257   }
 258   if(UseAVX > 2) {
 259     // Obtain xmm16..xmm31 from the XSAVE area on EVEX enabled targets
 260     off = zmm16_off;
 261     delta = zmm17_off - off;
 262     for (int n = 16; n < num_xmm_regs; n++) {
 263       XMMRegister zmm_name = as_XMMRegister(n);
 264       map->set_callee_saved(STACK_OFFSET(off), zmm_name->as_VMReg());
 265       off += delta;
 266     }
 267   }
 268 
 269 #if COMPILER2_OR_JVMCI
 270   if (save_vectors) {
 271     off = ymm0_off;
 272     int delta = ymm1_off - off;
 273     for (int n = 0; n < 16; n++) {
 274       XMMRegister ymm_name = as_XMMRegister(n);
 275       map->set_callee_saved(STACK_OFFSET(off), ymm_name->as_VMReg()->next(4));
 276       off += delta;
 277     }
 278   }
 279 #endif // COMPILER2_OR_JVMCI
 280 
 281   // %%% These should all be a waste but we'll keep things as they were for now
 282   if (true) {
 283     map->set_callee_saved(STACK_OFFSET( raxH_off ), rax->as_VMReg()->next());
 284     map->set_callee_saved(STACK_OFFSET( rcxH_off ), rcx->as_VMReg()->next());
 285     map->set_callee_saved(STACK_OFFSET( rdxH_off ), rdx->as_VMReg()->next());
 286     map->set_callee_saved(STACK_OFFSET( rbxH_off ), rbx->as_VMReg()->next());
 287     // rbp location is known implicitly by the frame sender code, needs no oopmap
 288     map->set_callee_saved(STACK_OFFSET( rsiH_off ), rsi->as_VMReg()->next());
 289     map->set_callee_saved(STACK_OFFSET( rdiH_off ), rdi->as_VMReg()->next());
 290     map->set_callee_saved(STACK_OFFSET( r8H_off  ), r8->as_VMReg()->next());
 291     map->set_callee_saved(STACK_OFFSET( r9H_off  ), r9->as_VMReg()->next());
 292     map->set_callee_saved(STACK_OFFSET( r10H_off ), r10->as_VMReg()->next());
 293     map->set_callee_saved(STACK_OFFSET( r11H_off ), r11->as_VMReg()->next());
 294     map->set_callee_saved(STACK_OFFSET( r12H_off ), r12->as_VMReg()->next());
 295     map->set_callee_saved(STACK_OFFSET( r13H_off ), r13->as_VMReg()->next());
 296     map->set_callee_saved(STACK_OFFSET( r14H_off ), r14->as_VMReg()->next());
 297     map->set_callee_saved(STACK_OFFSET( r15H_off ), r15->as_VMReg()->next());
 298     // For both AVX and EVEX we will use the legacy FXSAVE area for xmm0..xmm15,
 299     // on EVEX enabled targets, we get it included in the xsave area
 300     off = xmm0H_off;
 301     delta = xmm1H_off - off;
 302     for (int n = 0; n < 16; n++) {
 303       XMMRegister xmm_name = as_XMMRegister(n);
 304       map->set_callee_saved(STACK_OFFSET(off), xmm_name->as_VMReg()->next());
 305       off += delta;
 306     }
 307     if (UseAVX > 2) {
 308       // Obtain xmm16..xmm31 from the XSAVE area on EVEX enabled targets
 309       off = zmm16H_off;
 310       delta = zmm17H_off - off;
 311       for (int n = 16; n < num_xmm_regs; n++) {
 312         XMMRegister zmm_name = as_XMMRegister(n);
 313         map->set_callee_saved(STACK_OFFSET(off), zmm_name->as_VMReg()->next());
 314         off += delta;
 315       }
 316     }
 317   }
 318 
 319   return map;
 320 }
 321 
 322 void RegisterSaver::restore_live_registers(MacroAssembler* masm, bool restore_vectors) {
 323   int num_xmm_regs = XMMRegisterImpl::number_of_registers;
 324   if (UseAVX < 3) {
 325     num_xmm_regs = num_xmm_regs/2;
 326   }
 327   if (frame::arg_reg_save_area_bytes != 0) {
 328     // Pop arg register save area
 329     __ addptr(rsp, frame::arg_reg_save_area_bytes);
 330   }
 331 
 332 #if COMPILER2_OR_JVMCI
 333   if (restore_vectors) {
 334     assert(UseAVX > 0, "Vectors larger than 16 byte long are supported only with AVX");
 335     assert(MaxVectorSize <= 64, "Only up to 64 byte long vectors are supported");
 336   }
 337 #else
 338   assert(!restore_vectors, "vectors are generated only by C2");
 339 #endif
 340 
 341   __ vzeroupper();
 342 
 343   // On EVEX enabled targets everything is handled in pop fpu state
 344   if (restore_vectors) {
 345     // Restore upper half of YMM registers (0..15)
 346     int base_addr = XSAVE_AREA_YMM_BEGIN;
 347     for (int n = 0; n < 16; n++) {
 348       __ vinsertf128_high(as_XMMRegister(n), Address(rsp, base_addr+n*16));
 349     }
 350     if (VM_Version::supports_evex()) {
 351       // Restore upper half of ZMM registers (0..15)
 352       base_addr = XSAVE_AREA_ZMM_BEGIN;
 353       for (int n = 0; n < 16; n++) {
 354         __ vinsertf64x4_high(as_XMMRegister(n), Address(rsp, base_addr+n*32));
 355       }
 356       // Restore full ZMM registers(16..num_xmm_regs)
 357       base_addr = XSAVE_AREA_UPPERBANK;
 358       int vector_len = Assembler::AVX_512bit;
 359       int off = 0;
 360       for (int n = 16; n < num_xmm_regs; n++) {
 361         __ evmovdqul(as_XMMRegister(n), Address(rsp, base_addr+(off++*64)), vector_len);
 362       }
 363     }
 364   } else {
 365     if (VM_Version::supports_evex()) {
 366       // Restore upper bank of ZMM registers(16..31) for double/float usage
 367       int base_addr = XSAVE_AREA_UPPERBANK;
 368       int off = 0;
 369       for (int n = 16; n < num_xmm_regs; n++) {
 370         __ movsd(as_XMMRegister(n), Address(rsp, base_addr+(off++*64)));
 371       }
 372     }
 373   }
 374 
 375   // Recover CPU state
 376   __ pop_CPU_state();
 377   // Get the rbp described implicitly by the calling convention (no oopMap)
 378   __ pop(rbp);
 379 }
 380 
 381 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
 382 
 383   // Just restore result register. Only used by deoptimization. By
 384   // now any callee save register that needs to be restored to a c2
 385   // caller of the deoptee has been extracted into the vframeArray
 386   // and will be stuffed into the c2i adapter we create for later
 387   // restoration so only result registers need to be restored here.
 388 
 389   // Restore fp result register
 390   __ movdbl(xmm0, Address(rsp, xmm0_offset_in_bytes()));
 391   // Restore integer result register
 392   __ movptr(rax, Address(rsp, rax_offset_in_bytes()));
 393   __ movptr(rdx, Address(rsp, rdx_offset_in_bytes()));
 394 
 395   // Pop all of the register save are off the stack except the return address
 396   __ addptr(rsp, return_offset_in_bytes());
 397 }
 398 
 399 // Is vector's size (in bytes) bigger than a size saved by default?
 400 // 16 bytes XMM registers are saved by default using fxsave/fxrstor instructions.
 401 bool SharedRuntime::is_wide_vector(int size) {
 402   return size > 16;
 403 }
 404 
 405 size_t SharedRuntime::trampoline_size() {
 406   return 16;
 407 }
 408 
 409 void SharedRuntime::generate_trampoline(MacroAssembler *masm, address destination) {
 410   __ jump(RuntimeAddress(destination));
 411 }
 412 
 413 // The java_calling_convention describes stack locations as ideal slots on
 414 // a frame with no abi restrictions. Since we must observe abi restrictions
 415 // (like the placement of the register window) the slots must be biased by
 416 // the following value.
 417 static int reg2offset_in(VMReg r) {
 418   // Account for saved rbp and return address
 419   // This should really be in_preserve_stack_slots
 420   return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size;
 421 }
 422 
 423 static int reg2offset_out(VMReg r) {
 424   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
 425 }
 426 
 427 // ---------------------------------------------------------------------------
 428 // Read the array of BasicTypes from a signature, and compute where the
 429 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte
 430 // quantities.  Values less than VMRegImpl::stack0 are registers, those above
 431 // refer to 4-byte stack slots.  All stack slots are based off of the stack pointer
 432 // as framesizes are fixed.
 433 // VMRegImpl::stack0 refers to the first slot 0(sp).
 434 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
 435 // up to RegisterImpl::number_of_registers) are the 64-bit
 436 // integer registers.
 437 
 438 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
 439 // either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
 440 // units regardless of build. Of course for i486 there is no 64 bit build
 441 
 442 // The Java calling convention is a "shifted" version of the C ABI.
 443 // By skipping the first C ABI register we can call non-static jni methods
 444 // with small numbers of arguments without having to shuffle the arguments
 445 // at all. Since we control the java ABI we ought to at least get some
 446 // advantage out of it.
 447 
 448 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
 449                                            VMRegPair *regs,
 450                                            int total_args_passed,
 451                                            int is_outgoing) {
 452 
 453   // Create the mapping between argument positions and
 454   // registers.
 455   static const Register INT_ArgReg[Argument::n_int_register_parameters_j] = {
 456     j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5
 457   };
 458   static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_j] = {
 459     j_farg0, j_farg1, j_farg2, j_farg3,
 460     j_farg4, j_farg5, j_farg6, j_farg7
 461   };
 462 
 463 
 464   uint int_args = 0;
 465   uint fp_args = 0;
 466   uint stk_args = 0; // inc by 2 each time
 467 
 468   for (int i = 0; i < total_args_passed; i++) {
 469     switch (sig_bt[i]) {
 470     case T_BOOLEAN:
 471     case T_CHAR:
 472     case T_BYTE:
 473     case T_SHORT:
 474     case T_INT:
 475       if (int_args < Argument::n_int_register_parameters_j) {
 476         regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
 477       } else {
 478         regs[i].set1(VMRegImpl::stack2reg(stk_args));
 479         stk_args += 2;
 480       }
 481       break;
 482     case T_VOID:
 483       // halves of T_LONG or T_DOUBLE
 484       assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
 485       regs[i].set_bad();
 486       break;
 487     case T_LONG:
 488       assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
 489       // fall through
 490     case T_OBJECT:
 491     case T_ARRAY:
 492     case T_ADDRESS:
 493     case T_VALUETYPE:
 494     case T_VALUETYPEPTR:
 495       if (int_args < Argument::n_int_register_parameters_j) {
 496         regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
 497       } else {
 498         regs[i].set2(VMRegImpl::stack2reg(stk_args));
 499         stk_args += 2;
 500       }
 501       break;
 502     case T_FLOAT:
 503       if (fp_args < Argument::n_float_register_parameters_j) {
 504         regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
 505       } else {
 506         regs[i].set1(VMRegImpl::stack2reg(stk_args));
 507         stk_args += 2;
 508       }
 509       break;
 510     case T_DOUBLE:
 511       assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
 512       if (fp_args < Argument::n_float_register_parameters_j) {
 513         regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
 514       } else {
 515         regs[i].set2(VMRegImpl::stack2reg(stk_args));
 516         stk_args += 2;
 517       }
 518       break;
 519     default:
 520       ShouldNotReachHere();
 521       break;
 522     }
 523   }
 524 
 525   return align_up(stk_args, 2);
 526 }
 527 
 528 // Same as java_calling_convention() but for multiple return
 529 // values. There's no way to store them on the stack so if we don't
 530 // have enough registers, multiple values can't be returned.
 531 const uint SharedRuntime::java_return_convention_max_int = Argument::n_int_register_parameters_j+1;
 532 const uint SharedRuntime::java_return_convention_max_float = Argument::n_float_register_parameters_j;
 533 int SharedRuntime::java_return_convention(const BasicType *sig_bt,
 534                                           VMRegPair *regs,
 535                                           int total_args_passed) {
 536   // Create the mapping between argument positions and
 537   // registers.
 538   static const Register INT_ArgReg[java_return_convention_max_int] = {
 539     rax, j_rarg5, j_rarg4, j_rarg3, j_rarg2, j_rarg1, j_rarg0
 540   };
 541   static const XMMRegister FP_ArgReg[java_return_convention_max_float] = {
 542     j_farg0, j_farg1, j_farg2, j_farg3,
 543     j_farg4, j_farg5, j_farg6, j_farg7
 544   };
 545 
 546 
 547   uint int_args = 0;
 548   uint fp_args = 0;
 549 
 550   for (int i = 0; i < total_args_passed; i++) {
 551     switch (sig_bt[i]) {
 552     case T_BOOLEAN:
 553     case T_CHAR:
 554     case T_BYTE:
 555     case T_SHORT:
 556     case T_INT:
 557       if (int_args < Argument::n_int_register_parameters_j+1) {
 558         regs[i].set1(INT_ArgReg[int_args]->as_VMReg());
 559         int_args++;
 560       } else {
 561         return -1;
 562       }
 563       break;
 564     case T_VOID:
 565       // halves of T_LONG or T_DOUBLE
 566       assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
 567       regs[i].set_bad();
 568       break;
 569     case T_LONG:
 570       assert(sig_bt[i + 1] == T_VOID, "expecting half");
 571       // fall through
 572     case T_OBJECT:
 573     case T_ARRAY:
 574     case T_ADDRESS:
 575     case T_METADATA:
 576     case T_VALUETYPEPTR:
 577       if (int_args < Argument::n_int_register_parameters_j+1) {
 578         regs[i].set2(INT_ArgReg[int_args]->as_VMReg());
 579         int_args++;
 580       } else {
 581         return -1;
 582       }
 583       break;
 584     case T_FLOAT:
 585       if (fp_args < Argument::n_float_register_parameters_j) {
 586         regs[i].set1(FP_ArgReg[fp_args]->as_VMReg());
 587         fp_args++;
 588       } else {
 589         return -1;
 590       }
 591       break;
 592     case T_DOUBLE:
 593       assert(sig_bt[i + 1] == T_VOID, "expecting half");
 594       if (fp_args < Argument::n_float_register_parameters_j) {
 595         regs[i].set2(FP_ArgReg[fp_args]->as_VMReg());
 596         fp_args++;
 597       } else {
 598         return -1;
 599       }
 600       break;
 601     default:
 602       ShouldNotReachHere();
 603       break;
 604     }
 605   }
 606 
 607   return int_args + fp_args;
 608 }
 609 
 610 // Patch the callers callsite with entry to compiled code if it exists.
 611 static void patch_callers_callsite(MacroAssembler *masm) {
 612   Label L;
 613   __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
 614   __ jcc(Assembler::equal, L);
 615 
 616   // Save the current stack pointer
 617   __ mov(r13, rsp);
 618   // Schedule the branch target address early.
 619   // Call into the VM to patch the caller, then jump to compiled callee
 620   // rax isn't live so capture return address while we easily can
 621   __ movptr(rax, Address(rsp, 0));
 622 
 623   // align stack so push_CPU_state doesn't fault
 624   __ andptr(rsp, -(StackAlignmentInBytes));
 625   __ push_CPU_state();
 626   __ vzeroupper();
 627   // VM needs caller's callsite
 628   // VM needs target method
 629   // This needs to be a long call since we will relocate this adapter to
 630   // the codeBuffer and it may not reach
 631 
 632   // Allocate argument register save area
 633   if (frame::arg_reg_save_area_bytes != 0) {
 634     __ subptr(rsp, frame::arg_reg_save_area_bytes);
 635   }
 636   __ mov(c_rarg0, rbx);
 637   __ mov(c_rarg1, rax);
 638   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
 639 
 640   // De-allocate argument register save area
 641   if (frame::arg_reg_save_area_bytes != 0) {
 642     __ addptr(rsp, frame::arg_reg_save_area_bytes);
 643   }
 644 
 645   __ vzeroupper();
 646   __ pop_CPU_state();
 647   // restore sp
 648   __ mov(rsp, r13);
 649   __ bind(L);
 650 }
 651 
 652 // For each value type argument, sig includes the list of fields of
 653 // the value type. This utility function computes the number of
 654 // arguments for the call if value types are passed by reference (the
 655 // calling convention the interpreter expects).
 656 static int compute_total_args_passed_int(const GrowableArray<SigEntry>& sig_extended) {
 657   int total_args_passed = 0;
 658   if (ValueTypePassFieldsAsArgs) {
 659     for (int i = 0; i < sig_extended.length(); i++) {
 660       BasicType bt = sig_extended.at(i)._bt;
 661       if (bt == T_VALUETYPE) {
 662         // In sig_extended, a value type argument starts with:
 663         // T_VALUETYPE, followed by the types of the fields of the
 664         // value type and T_VOID to mark the end of the value
 665         // type. Value types are flattened so, for instance, in the
 666         // case of a value type with an int field and a value type
 667         // field that itself has 2 fields, an int and a long:
 668         // T_VALUETYPE T_INT T_VALUETYPE T_INT T_LONG T_VOID (second
 669         // slot for the T_LONG) T_VOID (inner T_VALUETYPE) T_VOID
 670         // (outer T_VALUETYPE)
 671         total_args_passed++;
 672         int vt = 1;
 673         do {
 674           i++;
 675           BasicType bt = sig_extended.at(i)._bt;
 676           BasicType prev_bt = sig_extended.at(i-1)._bt;
 677           if (bt == T_VALUETYPE) {
 678             vt++;
 679           } else if (bt == T_VOID &&
 680                      prev_bt != T_LONG &&
 681                      prev_bt != T_DOUBLE) {
 682             vt--;
 683           }
 684         } while (vt != 0);
 685       } else {
 686         total_args_passed++;
 687       }
 688     }
 689   } else {
 690     total_args_passed = sig_extended.length();
 691   }
 692   return total_args_passed;
 693 }
 694 
 695 
 696 static void gen_c2i_adapter_helper(MacroAssembler* masm,
 697                                    BasicType bt,
 698                                    BasicType prev_bt,
 699                                    size_t size_in_bytes,
 700                                    const VMRegPair& reg_pair,
 701                                    const Address& to,
 702                                    int extraspace,
 703                                    bool is_oop) {
 704   assert(bt != T_VALUETYPE || !ValueTypePassFieldsAsArgs, "no value type here");
 705   if (bt == T_VOID) {
 706     assert(prev_bt == T_LONG || prev_bt == T_DOUBLE, "missing half");
 707     return;
 708   }
 709 
 710   // Say 4 args:
 711   // i   st_off
 712   // 0   32 T_LONG
 713   // 1   24 T_VOID
 714   // 2   16 T_OBJECT
 715   // 3    8 T_BOOL
 716   // -    0 return address
 717   //
 718   // However to make thing extra confusing. Because we can fit a long/double in
 719   // a single slot on a 64 bt vm and it would be silly to break them up, the interpreter
 720   // leaves one slot empty and only stores to a single slot. In this case the
 721   // slot that is occupied is the T_VOID slot. See I said it was confusing.
 722 
 723   bool wide = (size_in_bytes == wordSize);
 724   VMReg r_1 = reg_pair.first();
 725   VMReg r_2 = reg_pair.second();
 726   assert(r_2->is_valid() == wide, "invalid size");
 727   if (!r_1->is_valid()) {
 728     assert(!r_2->is_valid(), "must be invalid");
 729     return;
 730   }
 731 
 732   if (!r_1->is_XMMRegister()) {
 733     Register val = rax;
 734     assert_different_registers(to.base(), val);
 735     if(r_1->is_stack()) {
 736       int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
 737       __ load_sized_value(val, Address(rsp, ld_off), size_in_bytes, /* is_signed */ false);
 738     } else {
 739       val = r_1->as_Register();
 740     }
 741     if (is_oop) {
 742       __ store_heap_oop(to, val);
 743     } else {
 744       __ store_sized_value(to, val, size_in_bytes);
 745     }
 746   } else {
 747     if (wide) {
 748       __ movdbl(to, r_1->as_XMMRegister());
 749     } else {
 750       __ movflt(to, r_1->as_XMMRegister());
 751     }
 752   }
 753 }
 754 
 755 static void gen_c2i_adapter(MacroAssembler *masm,
 756                             const GrowableArray<SigEntry>& sig_extended,
 757                             const VMRegPair *regs,
 758                             Label& skip_fixup,
 759                             address start,
 760                             OopMapSet*& oop_maps,
 761                             int& frame_complete,
 762                             int& frame_size_in_words) {
 763   // Before we get into the guts of the C2I adapter, see if we should be here
 764   // at all.  We've come from compiled code and are attempting to jump to the
 765   // interpreter, which means the caller made a static call to get here
 766   // (vcalls always get a compiled target if there is one).  Check for a
 767   // compiled target.  If there is one, we need to patch the caller's call.
 768   patch_callers_callsite(masm);
 769 
 770   __ bind(skip_fixup);
 771 
 772   bool has_value_argument = false;
 773   if (ValueTypePassFieldsAsArgs) {
 774     // Is there a value type argument?
 775     for (int i = 0; i < sig_extended.length() && !has_value_argument; i++) {
 776       has_value_argument = (sig_extended.at(i)._bt == T_VALUETYPE);
 777     }
 778     if (has_value_argument) {
 779       // There is at least a value type argument: we're coming from
 780       // compiled code so we have no buffers to back the value
 781       // types. Allocate the buffers here with a runtime call.
 782       oop_maps = new OopMapSet();
 783       OopMap* map = NULL;
 784 
 785       map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
 786 
 787       frame_complete = __ offset();
 788 
 789       __ set_last_Java_frame(noreg, noreg, NULL);
 790 
 791       __ mov(c_rarg0, r15_thread);
 792       __ mov(c_rarg1, rbx);
 793 
 794       __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::allocate_value_types)));
 795 
 796       oop_maps->add_gc_map((int)(__ pc() - start), map);
 797       __ reset_last_Java_frame(false);
 798 
 799       RegisterSaver::restore_live_registers(masm);
 800 
 801       Label no_exception;
 802       __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
 803       __ jcc(Assembler::equal, no_exception);
 804 
 805       __ movptr(Address(r15_thread, JavaThread::vm_result_offset()), (int)NULL_WORD);
 806       __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
 807       __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
 808 
 809       __ bind(no_exception);
 810 
 811       // We get an array of objects from the runtime call
 812       __ get_vm_result(r13, r15_thread); // Use r13 as temporary because r10 is trashed by movptr()
 813       __ get_vm_result_2(rbx, r15_thread); // TODO: required to keep the callee Method live?
 814       __ mov(r10, r13);
 815     }
 816   }
 817 
 818   // Since all args are passed on the stack, total_args_passed *
 819   // Interpreter::stackElementSize is the space we need. Plus 1 because
 820   // we also account for the return address location since
 821   // we store it first rather than hold it in rax across all the shuffling
 822   int total_args_passed = compute_total_args_passed_int(sig_extended);
 823   int extraspace = (total_args_passed * Interpreter::stackElementSize) + wordSize;
 824 
 825   // stack is aligned, keep it that way
 826   extraspace = align_up(extraspace, 2*wordSize);
 827 
 828   // Get return address
 829   __ pop(rax);
 830 
 831   // set senderSP value
 832   __ mov(r13, rsp);
 833 
 834   __ subptr(rsp, extraspace);
 835 
 836   // Store the return address in the expected location
 837   __ movptr(Address(rsp, 0), rax);
 838 
 839   // Now write the args into the outgoing interpreter space
 840 
 841   // next_arg_comp is the next argument from the compiler point of
 842   // view (value type fields are passed in registers/on the stack). In
 843   // sig_extended, a value type argument starts with: T_VALUETYPE,
 844   // followed by the types of the fields of the value type and T_VOID
 845   // to mark the end of the value type. ignored counts the number of
 846   // T_VALUETYPE/T_VOID. next_vt_arg is the next value type argument:
 847   // used to get the buffer for that argument from the pool of buffers
 848   // we allocated above and want to pass to the
 849   // interpreter. next_arg_int is the next argument from the
 850   // interpreter point of view (value types are passed by reference).
 851   bool has_oop_field = false;
 852   for (int next_arg_comp = 0, ignored = 0, next_vt_arg = 0, next_arg_int = 0;
 853        next_arg_comp < sig_extended.length(); next_arg_comp++) {
 854     assert(ignored <= next_arg_comp, "shouldn't skip over more slot than there are arguments");
 855     assert(next_arg_int < total_args_passed, "more arguments for the interpreter than expected?");
 856     BasicType bt = sig_extended.at(next_arg_comp)._bt;
 857     int st_off = (total_args_passed - next_arg_int) * Interpreter::stackElementSize;
 858     if (!ValueTypePassFieldsAsArgs || bt != T_VALUETYPE) {
 859       int next_off = st_off - Interpreter::stackElementSize;
 860       const int offset = (bt == T_LONG || bt == T_DOUBLE) ? next_off : st_off;
 861       const VMRegPair reg_pair = regs[next_arg_comp-ignored];
 862       size_t size_in_bytes = reg_pair.second()->is_valid() ? 8 : 4;
 863       gen_c2i_adapter_helper(masm, bt, next_arg_comp > 0 ? sig_extended.at(next_arg_comp-1)._bt : T_ILLEGAL,
 864                              size_in_bytes, reg_pair, Address(rsp, offset), extraspace, false);
 865       next_arg_int++;
 866 #ifdef ASSERT
 867       if (bt == T_LONG || bt == T_DOUBLE) {
 868         // Overwrite the unused slot with known junk
 869         __ mov64(rax, CONST64(0xdeadffffdeadaaaa));
 870         __ movptr(Address(rsp, st_off), rax);
 871       }
 872 #endif /* ASSERT */
 873     } else {
 874       ignored++;
 875       // get the buffer from the just allocated pool of buffers
 876       int index = arrayOopDesc::base_offset_in_bytes(T_OBJECT) + next_vt_arg * type2aelembytes(T_VALUETYPE);
 877       __ load_heap_oop(r11, Address(r10, index));
 878       next_vt_arg++; next_arg_int++;
 879       int vt = 1;
 880       // write fields we get from compiled code in registers/stack
 881       // slots to the buffer: we know we are done with that value type
 882       // argument when we hit the T_VOID that acts as an end of value
 883       // type delimiter for this value type. Value types are flattened
 884       // so we might encounter embedded value types. Each entry in
 885       // sig_extended contains a field offset in the buffer.
 886       do {
 887         next_arg_comp++;
 888         BasicType bt = sig_extended.at(next_arg_comp)._bt;
 889         BasicType prev_bt = sig_extended.at(next_arg_comp-1)._bt;
 890         if (bt == T_VALUETYPE) {
 891           vt++;
 892           ignored++;
 893         } else if (bt == T_VOID &&
 894                    prev_bt != T_LONG &&
 895                    prev_bt != T_DOUBLE) {
 896           vt--;
 897           ignored++;
 898         } else {
 899           int off = sig_extended.at(next_arg_comp)._offset;
 900           assert(off > 0, "offset in object should be positive");
 901           size_t size_in_bytes = is_java_primitive(bt) ? type2aelembytes(bt) : wordSize;
 902           bool is_oop = (bt == T_OBJECT || bt == T_VALUETYPEPTR || bt == T_ARRAY);
 903           has_oop_field = has_oop_field || is_oop;
 904           gen_c2i_adapter_helper(masm, bt, next_arg_comp > 0 ? sig_extended.at(next_arg_comp-1)._bt : T_ILLEGAL,
 905                                  size_in_bytes, regs[next_arg_comp-ignored], Address(r11, off), extraspace, is_oop);
 906         }
 907       } while (vt != 0);
 908       // pass the buffer to the interpreter
 909       __ movptr(Address(rsp, st_off), r11);
 910     }
 911   }
 912 
 913   // If a value type was allocated and initialized, apply post barrier to all oop fields
 914   if (has_value_argument && has_oop_field) {
 915     __ push(r13); // save senderSP
 916     __ push(rbx); // save callee
 917     // Allocate argument register save area
 918     if (frame::arg_reg_save_area_bytes != 0) {
 919       __ subptr(rsp, frame::arg_reg_save_area_bytes);
 920     }
 921     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::apply_post_barriers), r15_thread, r10);
 922     // De-allocate argument register save area
 923     if (frame::arg_reg_save_area_bytes != 0) {
 924       __ addptr(rsp, frame::arg_reg_save_area_bytes);
 925     }
 926     __ pop(rbx); // restore callee
 927     __ pop(r13); // restore sender SP
 928   }
 929 
 930   // Schedule the branch target address early.
 931   __ movptr(rcx, Address(rbx, in_bytes(Method::interpreter_entry_offset())));
 932   __ jmp(rcx);
 933 }
 934 
 935 static void range_check(MacroAssembler* masm, Register pc_reg, Register temp_reg,
 936                         address code_start, address code_end,
 937                         Label& L_ok) {
 938   Label L_fail;
 939   __ lea(temp_reg, ExternalAddress(code_start));
 940   __ cmpptr(pc_reg, temp_reg);
 941   __ jcc(Assembler::belowEqual, L_fail);
 942   __ lea(temp_reg, ExternalAddress(code_end));
 943   __ cmpptr(pc_reg, temp_reg);
 944   __ jcc(Assembler::below, L_ok);
 945   __ bind(L_fail);
 946 }
 947 
 948 static void gen_i2c_adapter_helper(MacroAssembler* masm,
 949                                    BasicType bt,
 950                                    BasicType prev_bt,
 951                                    size_t size_in_bytes,
 952                                    const VMRegPair& reg_pair,
 953                                    const Address& from,
 954                                    bool is_oop) {
 955   assert(bt != T_VALUETYPE || !ValueTypePassFieldsAsArgs, "no value type here");
 956   if (bt == T_VOID) {
 957     // Longs and doubles are passed in native word order, but misaligned
 958     // in the 32-bit build.
 959     assert(prev_bt == T_LONG || prev_bt == T_DOUBLE, "missing half");
 960     return;
 961   }
 962   assert(!reg_pair.second()->is_valid() || reg_pair.first()->next() == reg_pair.second(),
 963          "scrambled load targets?");
 964 
 965   bool wide = (size_in_bytes == wordSize);
 966   VMReg r_1 = reg_pair.first();
 967   VMReg r_2 = reg_pair.second();
 968   assert(r_2->is_valid() == wide, "invalid size");
 969   if (!r_1->is_valid()) {
 970     assert(!r_2->is_valid(), "must be invalid");
 971     return;
 972   }
 973 
 974   bool is_signed = (bt != T_CHAR) && (bt != T_BOOLEAN);
 975   if (!r_1->is_XMMRegister()) {
 976     // We can use r13 as a temp here because compiled code doesn't need r13 as an input
 977     // and if we end up going thru a c2i because of a miss a reasonable value of r13
 978     // will be generated.
 979     Register dst = r_1->is_stack() ? r13 : r_1->as_Register();
 980     if (is_oop) {
 981       __ load_heap_oop(dst, from);
 982     } else {
 983       __ load_sized_value(dst, from, size_in_bytes, is_signed);
 984     }
 985     if (r_1->is_stack()) {
 986       // Convert stack slot to an SP offset (+ wordSize to account for return address)
 987       int st_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + wordSize;
 988       __ movq(Address(rsp, st_off), dst);
 989     }
 990   } else {
 991     if (wide) {
 992       __ movdbl(r_1->as_XMMRegister(), from);
 993     } else {
 994       __ movflt(r_1->as_XMMRegister(), from);
 995     }
 996   }
 997 }
 998 
 999 void SharedRuntime::gen_i2c_adapter(MacroAssembler *masm,
1000                                     int comp_args_on_stack,
1001                                     const GrowableArray<SigEntry>& sig_extended,
1002                                     const VMRegPair *regs) {
1003 
1004   // Note: r13 contains the senderSP on entry. We must preserve it since
1005   // we may do a i2c -> c2i transition if we lose a race where compiled
1006   // code goes non-entrant while we get args ready.
1007   // In addition we use r13 to locate all the interpreter args as
1008   // we must align the stack to 16 bytes on an i2c entry else we
1009   // lose alignment we expect in all compiled code and register
1010   // save code can segv when fxsave instructions find improperly
1011   // aligned stack pointer.
1012 
1013   // Adapters can be frameless because they do not require the caller
1014   // to perform additional cleanup work, such as correcting the stack pointer.
1015   // An i2c adapter is frameless because the *caller* frame, which is interpreted,
1016   // routinely repairs its own stack pointer (from interpreter_frame_last_sp),
1017   // even if a callee has modified the stack pointer.
1018   // A c2i adapter is frameless because the *callee* frame, which is interpreted,
1019   // routinely repairs its caller's stack pointer (from sender_sp, which is set
1020   // up via the senderSP register).
1021   // In other words, if *either* the caller or callee is interpreted, we can
1022   // get the stack pointer repaired after a call.
1023   // This is why c2i and i2c adapters cannot be indefinitely composed.
1024   // In particular, if a c2i adapter were to somehow call an i2c adapter,
1025   // both caller and callee would be compiled methods, and neither would
1026   // clean up the stack pointer changes performed by the two adapters.
1027   // If this happens, control eventually transfers back to the compiled
1028   // caller, but with an uncorrected stack, causing delayed havoc.
1029 
1030   // Pick up the return address
1031   __ movptr(rax, Address(rsp, 0));
1032 
1033   if (VerifyAdapterCalls &&
1034       (Interpreter::code() != NULL || StubRoutines::code1() != NULL)) {
1035     // So, let's test for cascading c2i/i2c adapters right now.
1036     //  assert(Interpreter::contains($return_addr) ||
1037     //         StubRoutines::contains($return_addr),
1038     //         "i2c adapter must return to an interpreter frame");
1039     __ block_comment("verify_i2c { ");
1040     Label L_ok;
1041     if (Interpreter::code() != NULL)
1042       range_check(masm, rax, r11,
1043                   Interpreter::code()->code_start(), Interpreter::code()->code_end(),
1044                   L_ok);
1045     if (StubRoutines::code1() != NULL)
1046       range_check(masm, rax, r11,
1047                   StubRoutines::code1()->code_begin(), StubRoutines::code1()->code_end(),
1048                   L_ok);
1049     if (StubRoutines::code2() != NULL)
1050       range_check(masm, rax, r11,
1051                   StubRoutines::code2()->code_begin(), StubRoutines::code2()->code_end(),
1052                   L_ok);
1053     const char* msg = "i2c adapter must return to an interpreter frame";
1054     __ block_comment(msg);
1055     __ stop(msg);
1056     __ bind(L_ok);
1057     __ block_comment("} verify_i2ce ");
1058   }
1059 
1060   // Must preserve original SP for loading incoming arguments because
1061   // we need to align the outgoing SP for compiled code.
1062   __ movptr(r11, rsp);
1063 
1064   // Cut-out for having no stack args.  Since up to 2 int/oop args are passed
1065   // in registers, we will occasionally have no stack args.
1066   int comp_words_on_stack = 0;
1067   if (comp_args_on_stack) {
1068     // Sig words on the stack are greater-than VMRegImpl::stack0.  Those in
1069     // registers are below.  By subtracting stack0, we either get a negative
1070     // number (all values in registers) or the maximum stack slot accessed.
1071 
1072     // Convert 4-byte c2 stack slots to words.
1073     comp_words_on_stack = align_up(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
1074     // Round up to miminum stack alignment, in wordSize
1075     comp_words_on_stack = align_up(comp_words_on_stack, 2);
1076     __ subptr(rsp, comp_words_on_stack * wordSize);
1077   }
1078 
1079 
1080   // Ensure compiled code always sees stack at proper alignment
1081   __ andptr(rsp, -16);
1082 
1083   // push the return address and misalign the stack that youngest frame always sees
1084   // as far as the placement of the call instruction
1085   __ push(rax);
1086 
1087   // Put saved SP in another register
1088   const Register saved_sp = rax;
1089   __ movptr(saved_sp, r11);
1090 
1091   // Will jump to the compiled code just as if compiled code was doing it.
1092   // Pre-load the register-jump target early, to schedule it better.
1093   __ movptr(r11, Address(rbx, in_bytes(Method::from_compiled_offset())));
1094 
1095 #if INCLUDE_JVMCI
1096   if (EnableJVMCI || UseAOT) {
1097     // check if this call should be routed towards a specific entry point
1098     __ cmpptr(Address(r15_thread, in_bytes(JavaThread::jvmci_alternate_call_target_offset())), 0);
1099     Label no_alternative_target;
1100     __ jcc(Assembler::equal, no_alternative_target);
1101     __ movptr(r11, Address(r15_thread, in_bytes(JavaThread::jvmci_alternate_call_target_offset())));
1102     __ movptr(Address(r15_thread, in_bytes(JavaThread::jvmci_alternate_call_target_offset())), 0);
1103     __ bind(no_alternative_target);
1104   }
1105 #endif // INCLUDE_JVMCI
1106 
1107   int total_args_passed = compute_total_args_passed_int(sig_extended);
1108   // Now generate the shuffle code.  Pick up all register args and move the
1109   // rest through the floating point stack top.
1110 
1111   // next_arg_comp is the next argument from the compiler point of
1112   // view (value type fields are passed in registers/on the stack). In
1113   // sig_extended, a value type argument starts with: T_VALUETYPE,
1114   // followed by the types of the fields of the value type and T_VOID
1115   // to mark the end of the value type. ignored counts the number of
1116   // T_VALUETYPE/T_VOID. next_arg_int is the next argument from the
1117   // interpreter point of view (value types are passed by reference).
1118   for (int next_arg_comp = 0, ignored = 0, next_arg_int = 0; next_arg_comp < sig_extended.length(); next_arg_comp++) {
1119     assert(ignored <= next_arg_comp, "shouldn't skip over more slot than there are arguments");
1120     assert(next_arg_int < total_args_passed, "more arguments from the interpreter than expected?");
1121     BasicType bt = sig_extended.at(next_arg_comp)._bt;
1122     int ld_off = (total_args_passed - next_arg_int)*Interpreter::stackElementSize;
1123     if (!ValueTypePassFieldsAsArgs || bt != T_VALUETYPE) {
1124       // Load in argument order going down.
1125       // Point to interpreter value (vs. tag)
1126       int next_off = ld_off - Interpreter::stackElementSize;
1127       int offset = (bt == T_LONG || bt == T_DOUBLE) ? next_off : ld_off;
1128       const VMRegPair reg_pair = regs[next_arg_comp-ignored];
1129       size_t size_in_bytes = reg_pair.second()->is_valid() ? 8 : 4;
1130       gen_i2c_adapter_helper(masm, bt, next_arg_comp > 0 ? sig_extended.at(next_arg_comp-1)._bt : T_ILLEGAL,
1131                              size_in_bytes, reg_pair, Address(saved_sp, offset), false);
1132       next_arg_int++;
1133     } else {
1134       next_arg_int++;
1135       ignored++;
1136       // get the buffer for that value type
1137       __ movptr(r10, Address(saved_sp, ld_off));
1138       int vt = 1;
1139       // load fields to registers/stack slots from the buffer: we know
1140       // we are done with that value type argument when we hit the
1141       // T_VOID that acts as an end of value type delimiter for this
1142       // value type. Value types are flattened so we might encounter
1143       // embedded value types. Each entry in sig_extended contains a
1144       // field offset in the buffer.
1145       do {
1146         next_arg_comp++;
1147         BasicType bt = sig_extended.at(next_arg_comp)._bt;
1148         BasicType prev_bt = sig_extended.at(next_arg_comp-1)._bt;
1149         if (bt == T_VALUETYPE) {
1150           vt++;
1151           ignored++;
1152         } else if (bt == T_VOID &&
1153                    prev_bt != T_LONG &&
1154                    prev_bt != T_DOUBLE) {
1155           vt--;
1156           ignored++;
1157         } else {
1158           int off = sig_extended.at(next_arg_comp)._offset;
1159           assert(off > 0, "offset in object should be positive");
1160           size_t size_in_bytes = is_java_primitive(bt) ? type2aelembytes(bt) : wordSize;
1161           bool is_oop = (bt == T_OBJECT || bt == T_VALUETYPEPTR || bt == T_ARRAY);
1162           gen_i2c_adapter_helper(masm, bt, prev_bt, size_in_bytes, regs[next_arg_comp - ignored], Address(r10, off), is_oop);
1163         }
1164       } while (vt != 0);
1165     }
1166   }
1167 
1168   // 6243940 We might end up in handle_wrong_method if
1169   // the callee is deoptimized as we race thru here. If that
1170   // happens we don't want to take a safepoint because the
1171   // caller frame will look interpreted and arguments are now
1172   // "compiled" so it is much better to make this transition
1173   // invisible to the stack walking code. Unfortunately if
1174   // we try and find the callee by normal means a safepoint
1175   // is possible. So we stash the desired callee in the thread
1176   // and the vm will find there should this case occur.
1177 
1178   __ movptr(Address(r15_thread, JavaThread::callee_target_offset()), rbx);
1179 
1180   // put Method* where a c2i would expect should we end up there
1181   // only needed because of c2 resolve stubs return Method* as a result in
1182   // rax
1183   __ mov(rax, rbx);
1184   __ jmp(r11);
1185 }
1186 
1187 // ---------------------------------------------------------------
1188 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
1189                                                             int comp_args_on_stack,
1190                                                             const GrowableArray<SigEntry>& sig_extended,
1191                                                             const VMRegPair *regs,
1192                                                             AdapterFingerPrint* fingerprint,
1193                                                             AdapterBlob*& new_adapter) {
1194   address i2c_entry = __ pc();
1195 
1196   gen_i2c_adapter(masm, comp_args_on_stack, sig_extended, regs);
1197 
1198   // -------------------------------------------------------------------------
1199   // Generate a C2I adapter.  On entry we know rbx holds the Method* during calls
1200   // to the interpreter.  The args start out packed in the compiled layout.  They
1201   // need to be unpacked into the interpreter layout.  This will almost always
1202   // require some stack space.  We grow the current (compiled) stack, then repack
1203   // the args.  We  finally end in a jump to the generic interpreter entry point.
1204   // On exit from the interpreter, the interpreter will restore our SP (lest the
1205   // compiled code, which relys solely on SP and not RBP, get sick).
1206 
1207   address c2i_unverified_entry = __ pc();
1208   Label skip_fixup;
1209   Label ok;
1210 
1211   Register holder = rax;
1212   Register receiver = j_rarg0;
1213   Register temp = rbx;
1214 
1215   {
1216     __ load_klass(temp, receiver);
1217     __ cmpptr(temp, Address(holder, CompiledICHolder::holder_klass_offset()));
1218     __ movptr(rbx, Address(holder, CompiledICHolder::holder_metadata_offset()));
1219     __ jcc(Assembler::equal, ok);
1220     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
1221 
1222     __ bind(ok);
1223     // Method might have been compiled since the call site was patched to
1224     // interpreted if that is the case treat it as a miss so we can get
1225     // the call site corrected.
1226     __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
1227     __ jcc(Assembler::equal, skip_fixup);
1228     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
1229   }
1230 
1231   address c2i_entry = __ pc();
1232 
1233   OopMapSet* oop_maps = NULL;
1234   int frame_complete = CodeOffsets::frame_never_safe;
1235   int frame_size_in_words = 0;
1236   gen_c2i_adapter(masm, sig_extended, regs, skip_fixup, i2c_entry, oop_maps, frame_complete, frame_size_in_words);
1237 
1238   __ flush();
1239   new_adapter = AdapterBlob::create(masm->code(), frame_complete, frame_size_in_words, oop_maps);
1240 
1241   // If the method has value types arguments, save the extended signature as symbol in
1242   // the AdapterHandlerEntry to be used for scalarization of value type arguments.
1243   Symbol* extended_signature = NULL;
1244   bool has_value_argument = false;
1245   Thread* THREAD = Thread::current();
1246   ResourceMark rm(THREAD);
1247   int length = sig_extended.length();
1248   char* sig_str = NEW_RESOURCE_ARRAY(char, 2*length + 3);
1249   int idx = 0;
1250   sig_str[idx++] = '(';
1251   for (int index = 0; index < length; index++) {
1252     BasicType bt = sig_extended.at(index)._bt;
1253     if (bt == T_VALUETYPE) {
1254       has_value_argument = true;
1255     } else if (bt == T_VALUETYPEPTR) {
1256       has_value_argument = true;
1257       // non-flattened value type field
1258       sig_str[idx++] = type2char(T_VALUETYPE);
1259       sig_str[idx++] = ';';
1260     } else if (bt == T_VOID) {
1261       // Ignore
1262     } else {
1263       if (bt == T_ARRAY) {
1264         bt = T_OBJECT; // We don't know the element type, treat as Object
1265       }
1266       sig_str[idx++] = type2char(bt);
1267       if (bt == T_OBJECT) {
1268         sig_str[idx++] = ';';
1269       }
1270     }
1271   }
1272   sig_str[idx++] = ')';
1273   sig_str[idx++] = '\0';
1274   if (has_value_argument) {
1275     // Extended signature is only required if a value type argument is passed
1276     extended_signature = SymbolTable::new_permanent_symbol(sig_str, THREAD);
1277   }
1278 
1279   return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry, extended_signature);
1280 }
1281 
1282 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
1283                                          VMRegPair *regs,
1284                                          VMRegPair *regs2,
1285                                          int total_args_passed) {
1286   assert(regs2 == NULL, "not needed on x86");
1287 // We return the amount of VMRegImpl stack slots we need to reserve for all
1288 // the arguments NOT counting out_preserve_stack_slots.
1289 
1290 // NOTE: These arrays will have to change when c1 is ported
1291 #ifdef _WIN64
1292     static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
1293       c_rarg0, c_rarg1, c_rarg2, c_rarg3
1294     };
1295     static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
1296       c_farg0, c_farg1, c_farg2, c_farg3
1297     };
1298 #else
1299     static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
1300       c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, c_rarg5
1301     };
1302     static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
1303       c_farg0, c_farg1, c_farg2, c_farg3,
1304       c_farg4, c_farg5, c_farg6, c_farg7
1305     };
1306 #endif // _WIN64
1307 
1308 
1309     uint int_args = 0;
1310     uint fp_args = 0;
1311     uint stk_args = 0; // inc by 2 each time
1312 
1313     for (int i = 0; i < total_args_passed; i++) {
1314       switch (sig_bt[i]) {
1315       case T_BOOLEAN:
1316       case T_CHAR:
1317       case T_BYTE:
1318       case T_SHORT:
1319       case T_INT:
1320         if (int_args < Argument::n_int_register_parameters_c) {
1321           regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
1322 #ifdef _WIN64
1323           fp_args++;
1324           // Allocate slots for callee to stuff register args the stack.
1325           stk_args += 2;
1326 #endif
1327         } else {
1328           regs[i].set1(VMRegImpl::stack2reg(stk_args));
1329           stk_args += 2;
1330         }
1331         break;
1332       case T_LONG:
1333         assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
1334         // fall through
1335       case T_OBJECT:
1336       case T_ARRAY:
1337       case T_ADDRESS:
1338       case T_METADATA:
1339         if (int_args < Argument::n_int_register_parameters_c) {
1340           regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
1341 #ifdef _WIN64
1342           fp_args++;
1343           stk_args += 2;
1344 #endif
1345         } else {
1346           regs[i].set2(VMRegImpl::stack2reg(stk_args));
1347           stk_args += 2;
1348         }
1349         break;
1350       case T_FLOAT:
1351         if (fp_args < Argument::n_float_register_parameters_c) {
1352           regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
1353 #ifdef _WIN64
1354           int_args++;
1355           // Allocate slots for callee to stuff register args the stack.
1356           stk_args += 2;
1357 #endif
1358         } else {
1359           regs[i].set1(VMRegImpl::stack2reg(stk_args));
1360           stk_args += 2;
1361         }
1362         break;
1363       case T_DOUBLE:
1364         assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
1365         if (fp_args < Argument::n_float_register_parameters_c) {
1366           regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
1367 #ifdef _WIN64
1368           int_args++;
1369           // Allocate slots for callee to stuff register args the stack.
1370           stk_args += 2;
1371 #endif
1372         } else {
1373           regs[i].set2(VMRegImpl::stack2reg(stk_args));
1374           stk_args += 2;
1375         }
1376         break;
1377       case T_VOID: // Halves of longs and doubles
1378         assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
1379         regs[i].set_bad();
1380         break;
1381       default:
1382         ShouldNotReachHere();
1383         break;
1384       }
1385     }
1386 #ifdef _WIN64
1387   // windows abi requires that we always allocate enough stack space
1388   // for 4 64bit registers to be stored down.
1389   if (stk_args < 8) {
1390     stk_args = 8;
1391   }
1392 #endif // _WIN64
1393 
1394   return stk_args;
1395 }
1396 
1397 // On 64 bit we will store integer like items to the stack as
1398 // 64 bits items (sparc abi) even though java would only store
1399 // 32bits for a parameter. On 32bit it will simply be 32 bits
1400 // So this routine will do 32->32 on 32bit and 32->64 on 64bit
1401 static void move32_64(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1402   if (src.first()->is_stack()) {
1403     if (dst.first()->is_stack()) {
1404       // stack to stack
1405       __ movslq(rax, Address(rbp, reg2offset_in(src.first())));
1406       __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
1407     } else {
1408       // stack to reg
1409       __ movslq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
1410     }
1411   } else if (dst.first()->is_stack()) {
1412     // reg to stack
1413     // Do we really have to sign extend???
1414     // __ movslq(src.first()->as_Register(), src.first()->as_Register());
1415     __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
1416   } else {
1417     // Do we really have to sign extend???
1418     // __ movslq(dst.first()->as_Register(), src.first()->as_Register());
1419     if (dst.first() != src.first()) {
1420       __ movq(dst.first()->as_Register(), src.first()->as_Register());
1421     }
1422   }
1423 }
1424 
1425 static void move_ptr(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1426   if (src.first()->is_stack()) {
1427     if (dst.first()->is_stack()) {
1428       // stack to stack
1429       __ movq(rax, Address(rbp, reg2offset_in(src.first())));
1430       __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
1431     } else {
1432       // stack to reg
1433       __ movq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
1434     }
1435   } else if (dst.first()->is_stack()) {
1436     // reg to stack
1437     __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
1438   } else {
1439     if (dst.first() != src.first()) {
1440       __ movq(dst.first()->as_Register(), src.first()->as_Register());
1441     }
1442   }
1443 }
1444 
1445 // An oop arg. Must pass a handle not the oop itself
1446 static void object_move(MacroAssembler* masm,
1447                         OopMap* map,
1448                         int oop_handle_offset,
1449                         int framesize_in_slots,
1450                         VMRegPair src,
1451                         VMRegPair dst,
1452                         bool is_receiver,
1453                         int* receiver_offset) {
1454 
1455   // must pass a handle. First figure out the location we use as a handle
1456 
1457   Register rHandle = dst.first()->is_stack() ? rax : dst.first()->as_Register();
1458 
1459   // See if oop is NULL if it is we need no handle
1460 
1461   if (src.first()->is_stack()) {
1462 
1463     // Oop is already on the stack as an argument
1464     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1465     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
1466     if (is_receiver) {
1467       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
1468     }
1469 
1470     __ cmpptr(Address(rbp, reg2offset_in(src.first())), (int32_t)NULL_WORD);
1471     __ lea(rHandle, Address(rbp, reg2offset_in(src.first())));
1472     // conditionally move a NULL
1473     __ cmovptr(Assembler::equal, rHandle, Address(rbp, reg2offset_in(src.first())));
1474   } else {
1475 
1476     // Oop is in an a register we must store it to the space we reserve
1477     // on the stack for oop_handles and pass a handle if oop is non-NULL
1478 
1479     const Register rOop = src.first()->as_Register();
1480     int oop_slot;
1481     if (rOop == j_rarg0)
1482       oop_slot = 0;
1483     else if (rOop == j_rarg1)
1484       oop_slot = 1;
1485     else if (rOop == j_rarg2)
1486       oop_slot = 2;
1487     else if (rOop == j_rarg3)
1488       oop_slot = 3;
1489     else if (rOop == j_rarg4)
1490       oop_slot = 4;
1491     else {
1492       assert(rOop == j_rarg5, "wrong register");
1493       oop_slot = 5;
1494     }
1495 
1496     oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset;
1497     int offset = oop_slot*VMRegImpl::stack_slot_size;
1498 
1499     map->set_oop(VMRegImpl::stack2reg(oop_slot));
1500     // Store oop in handle area, may be NULL
1501     __ movptr(Address(rsp, offset), rOop);
1502     if (is_receiver) {
1503       *receiver_offset = offset;
1504     }
1505 
1506     __ cmpptr(rOop, (int32_t)NULL_WORD);
1507     __ lea(rHandle, Address(rsp, offset));
1508     // conditionally move a NULL from the handle area where it was just stored
1509     __ cmovptr(Assembler::equal, rHandle, Address(rsp, offset));
1510   }
1511 
1512   // If arg is on the stack then place it otherwise it is already in correct reg.
1513   if (dst.first()->is_stack()) {
1514     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
1515   }
1516 }
1517 
1518 // A float arg may have to do float reg int reg conversion
1519 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1520   assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
1521 
1522   // The calling conventions assures us that each VMregpair is either
1523   // all really one physical register or adjacent stack slots.
1524   // This greatly simplifies the cases here compared to sparc.
1525 
1526   if (src.first()->is_stack()) {
1527     if (dst.first()->is_stack()) {
1528       __ movl(rax, Address(rbp, reg2offset_in(src.first())));
1529       __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1530     } else {
1531       // stack to reg
1532       assert(dst.first()->is_XMMRegister(), "only expect xmm registers as parameters");
1533       __ movflt(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first())));
1534     }
1535   } else if (dst.first()->is_stack()) {
1536     // reg to stack
1537     assert(src.first()->is_XMMRegister(), "only expect xmm registers as parameters");
1538     __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1539   } else {
1540     // reg to reg
1541     // In theory these overlap but the ordering is such that this is likely a nop
1542     if ( src.first() != dst.first()) {
1543       __ movdbl(dst.first()->as_XMMRegister(),  src.first()->as_XMMRegister());
1544     }
1545   }
1546 }
1547 
1548 // A long move
1549 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1550 
1551   // The calling conventions assures us that each VMregpair is either
1552   // all really one physical register or adjacent stack slots.
1553   // This greatly simplifies the cases here compared to sparc.
1554 
1555   if (src.is_single_phys_reg() ) {
1556     if (dst.is_single_phys_reg()) {
1557       if (dst.first() != src.first()) {
1558         __ mov(dst.first()->as_Register(), src.first()->as_Register());
1559       }
1560     } else {
1561       assert(dst.is_single_reg(), "not a stack pair");
1562       __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
1563     }
1564   } else if (dst.is_single_phys_reg()) {
1565     assert(src.is_single_reg(),  "not a stack pair");
1566     __ movq(dst.first()->as_Register(), Address(rbp, reg2offset_out(src.first())));
1567   } else {
1568     assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
1569     __ movq(rax, Address(rbp, reg2offset_in(src.first())));
1570     __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
1571   }
1572 }
1573 
1574 // A double move
1575 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1576 
1577   // The calling conventions assures us that each VMregpair is either
1578   // all really one physical register or adjacent stack slots.
1579   // This greatly simplifies the cases here compared to sparc.
1580 
1581   if (src.is_single_phys_reg() ) {
1582     if (dst.is_single_phys_reg()) {
1583       // In theory these overlap but the ordering is such that this is likely a nop
1584       if ( src.first() != dst.first()) {
1585         __ movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister());
1586       }
1587     } else {
1588       assert(dst.is_single_reg(), "not a stack pair");
1589       __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1590     }
1591   } else if (dst.is_single_phys_reg()) {
1592     assert(src.is_single_reg(),  "not a stack pair");
1593     __ movdbl(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_out(src.first())));
1594   } else {
1595     assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
1596     __ movq(rax, Address(rbp, reg2offset_in(src.first())));
1597     __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
1598   }
1599 }
1600 
1601 
1602 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1603   // We always ignore the frame_slots arg and just use the space just below frame pointer
1604   // which by this time is free to use
1605   switch (ret_type) {
1606   case T_FLOAT:
1607     __ movflt(Address(rbp, -wordSize), xmm0);
1608     break;
1609   case T_DOUBLE:
1610     __ movdbl(Address(rbp, -wordSize), xmm0);
1611     break;
1612   case T_VOID:  break;
1613   default: {
1614     __ movptr(Address(rbp, -wordSize), rax);
1615     }
1616   }
1617 }
1618 
1619 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1620   // We always ignore the frame_slots arg and just use the space just below frame pointer
1621   // which by this time is free to use
1622   switch (ret_type) {
1623   case T_FLOAT:
1624     __ movflt(xmm0, Address(rbp, -wordSize));
1625     break;
1626   case T_DOUBLE:
1627     __ movdbl(xmm0, Address(rbp, -wordSize));
1628     break;
1629   case T_VOID:  break;
1630   default: {
1631     __ movptr(rax, Address(rbp, -wordSize));
1632     }
1633   }
1634 }
1635 
1636 static void save_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
1637     for ( int i = first_arg ; i < arg_count ; i++ ) {
1638       if (args[i].first()->is_Register()) {
1639         __ push(args[i].first()->as_Register());
1640       } else if (args[i].first()->is_XMMRegister()) {
1641         __ subptr(rsp, 2*wordSize);
1642         __ movdbl(Address(rsp, 0), args[i].first()->as_XMMRegister());
1643       }
1644     }
1645 }
1646 
1647 static void restore_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
1648     for ( int i = arg_count - 1 ; i >= first_arg ; i-- ) {
1649       if (args[i].first()->is_Register()) {
1650         __ pop(args[i].first()->as_Register());
1651       } else if (args[i].first()->is_XMMRegister()) {
1652         __ movdbl(args[i].first()->as_XMMRegister(), Address(rsp, 0));
1653         __ addptr(rsp, 2*wordSize);
1654       }
1655     }
1656 }
1657 
1658 
1659 static void save_or_restore_arguments(MacroAssembler* masm,
1660                                       const int stack_slots,
1661                                       const int total_in_args,
1662                                       const int arg_save_area,
1663                                       OopMap* map,
1664                                       VMRegPair* in_regs,
1665                                       BasicType* in_sig_bt) {
1666   // if map is non-NULL then the code should store the values,
1667   // otherwise it should load them.
1668   int slot = arg_save_area;
1669   // Save down double word first
1670   for ( int i = 0; i < total_in_args; i++) {
1671     if (in_regs[i].first()->is_XMMRegister() && in_sig_bt[i] == T_DOUBLE) {
1672       int offset = slot * VMRegImpl::stack_slot_size;
1673       slot += VMRegImpl::slots_per_word;
1674       assert(slot <= stack_slots, "overflow");
1675       if (map != NULL) {
1676         __ movdbl(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
1677       } else {
1678         __ movdbl(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
1679       }
1680     }
1681     if (in_regs[i].first()->is_Register() &&
1682         (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_ARRAY)) {
1683       int offset = slot * VMRegImpl::stack_slot_size;
1684       if (map != NULL) {
1685         __ movq(Address(rsp, offset), in_regs[i].first()->as_Register());
1686         if (in_sig_bt[i] == T_ARRAY) {
1687           map->set_oop(VMRegImpl::stack2reg(slot));;
1688         }
1689       } else {
1690         __ movq(in_regs[i].first()->as_Register(), Address(rsp, offset));
1691       }
1692       slot += VMRegImpl::slots_per_word;
1693     }
1694   }
1695   // Save or restore single word registers
1696   for ( int i = 0; i < total_in_args; i++) {
1697     if (in_regs[i].first()->is_Register()) {
1698       int offset = slot * VMRegImpl::stack_slot_size;
1699       slot++;
1700       assert(slot <= stack_slots, "overflow");
1701 
1702       // Value is in an input register pass we must flush it to the stack
1703       const Register reg = in_regs[i].first()->as_Register();
1704       switch (in_sig_bt[i]) {
1705         case T_BOOLEAN:
1706         case T_CHAR:
1707         case T_BYTE:
1708         case T_SHORT:
1709         case T_INT:
1710           if (map != NULL) {
1711             __ movl(Address(rsp, offset), reg);
1712           } else {
1713             __ movl(reg, Address(rsp, offset));
1714           }
1715           break;
1716         case T_ARRAY:
1717         case T_LONG:
1718           // handled above
1719           break;
1720         case T_OBJECT:
1721         default: ShouldNotReachHere();
1722       }
1723     } else if (in_regs[i].first()->is_XMMRegister()) {
1724       if (in_sig_bt[i] == T_FLOAT) {
1725         int offset = slot * VMRegImpl::stack_slot_size;
1726         slot++;
1727         assert(slot <= stack_slots, "overflow");
1728         if (map != NULL) {
1729           __ movflt(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
1730         } else {
1731           __ movflt(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
1732         }
1733       }
1734     } else if (in_regs[i].first()->is_stack()) {
1735       if (in_sig_bt[i] == T_ARRAY && map != NULL) {
1736         int offset_in_older_frame = in_regs[i].first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1737         map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots));
1738       }
1739     }
1740   }
1741 }
1742 
1743 // Pin object, return pinned object or null in rax
1744 static void gen_pin_object(MacroAssembler* masm,
1745                            VMRegPair reg) {
1746   __ block_comment("gen_pin_object {");
1747 
1748   // rax always contains oop, either incoming or
1749   // pinned.
1750   Register tmp_reg = rax;
1751 
1752   Label is_null;
1753   VMRegPair tmp;
1754   VMRegPair in_reg = reg;
1755 
1756   tmp.set_ptr(tmp_reg->as_VMReg());
1757   if (reg.first()->is_stack()) {
1758     // Load the arg up from the stack
1759     move_ptr(masm, reg, tmp);
1760     reg = tmp;
1761   } else {
1762     __ movptr(rax, reg.first()->as_Register());
1763   }
1764   __ testptr(reg.first()->as_Register(), reg.first()->as_Register());
1765   __ jccb(Assembler::equal, is_null);
1766 
1767   if (reg.first()->as_Register() != c_rarg1) {
1768     __ movptr(c_rarg1, reg.first()->as_Register());
1769   }
1770 
1771   __ call_VM_leaf(
1772     CAST_FROM_FN_PTR(address, SharedRuntime::pin_object),
1773     r15_thread, c_rarg1);
1774 
1775   __ bind(is_null);
1776   __ block_comment("} gen_pin_object");
1777 }
1778 
1779 // Unpin object
1780 static void gen_unpin_object(MacroAssembler* masm,
1781                              VMRegPair reg) {
1782   __ block_comment("gen_unpin_object {");
1783   Label is_null;
1784 
1785   if (reg.first()->is_stack()) {
1786     __ movptr(c_rarg1, Address(rbp, reg2offset_in(reg.first())));
1787   } else if (reg.first()->as_Register() != c_rarg1) {
1788     __ movptr(c_rarg1, reg.first()->as_Register());
1789   }
1790 
1791   __ testptr(c_rarg1, c_rarg1);
1792   __ jccb(Assembler::equal, is_null);
1793 
1794   __ call_VM_leaf(
1795     CAST_FROM_FN_PTR(address, SharedRuntime::unpin_object),
1796     r15_thread, c_rarg1);
1797 
1798   __ bind(is_null);
1799   __ block_comment("} gen_unpin_object");
1800 }
1801 
1802 // Check GCLocker::needs_gc and enter the runtime if it's true.  This
1803 // keeps a new JNI critical region from starting until a GC has been
1804 // forced.  Save down any oops in registers and describe them in an
1805 // OopMap.
1806 static void check_needs_gc_for_critical_native(MacroAssembler* masm,
1807                                                int stack_slots,
1808                                                int total_c_args,
1809                                                int total_in_args,
1810                                                int arg_save_area,
1811                                                OopMapSet* oop_maps,
1812                                                VMRegPair* in_regs,
1813                                                BasicType* in_sig_bt) {
1814   __ block_comment("check GCLocker::needs_gc");
1815   Label cont;
1816   __ cmp8(ExternalAddress((address)GCLocker::needs_gc_address()), false);
1817   __ jcc(Assembler::equal, cont);
1818 
1819   // Save down any incoming oops and call into the runtime to halt for a GC
1820 
1821   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1822   save_or_restore_arguments(masm, stack_slots, total_in_args,
1823                             arg_save_area, map, in_regs, in_sig_bt);
1824 
1825   address the_pc = __ pc();
1826   oop_maps->add_gc_map( __ offset(), map);
1827   __ set_last_Java_frame(rsp, noreg, the_pc);
1828 
1829   __ block_comment("block_for_jni_critical");
1830   __ movptr(c_rarg0, r15_thread);
1831   __ mov(r12, rsp); // remember sp
1832   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
1833   __ andptr(rsp, -16); // align stack as required by ABI
1834   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::block_for_jni_critical)));
1835   __ mov(rsp, r12); // restore sp
1836   __ reinit_heapbase();
1837 
1838   __ reset_last_Java_frame(false);
1839 
1840   save_or_restore_arguments(masm, stack_slots, total_in_args,
1841                             arg_save_area, NULL, in_regs, in_sig_bt);
1842   __ bind(cont);
1843 #ifdef ASSERT
1844   if (StressCriticalJNINatives) {
1845     // Stress register saving
1846     OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1847     save_or_restore_arguments(masm, stack_slots, total_in_args,
1848                               arg_save_area, map, in_regs, in_sig_bt);
1849     // Destroy argument registers
1850     for (int i = 0; i < total_in_args - 1; i++) {
1851       if (in_regs[i].first()->is_Register()) {
1852         const Register reg = in_regs[i].first()->as_Register();
1853         __ xorptr(reg, reg);
1854       } else if (in_regs[i].first()->is_XMMRegister()) {
1855         __ xorpd(in_regs[i].first()->as_XMMRegister(), in_regs[i].first()->as_XMMRegister());
1856       } else if (in_regs[i].first()->is_FloatRegister()) {
1857         ShouldNotReachHere();
1858       } else if (in_regs[i].first()->is_stack()) {
1859         // Nothing to do
1860       } else {
1861         ShouldNotReachHere();
1862       }
1863       if (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_DOUBLE) {
1864         i++;
1865       }
1866     }
1867 
1868     save_or_restore_arguments(masm, stack_slots, total_in_args,
1869                               arg_save_area, NULL, in_regs, in_sig_bt);
1870   }
1871 #endif
1872 }
1873 
1874 // Unpack an array argument into a pointer to the body and the length
1875 // if the array is non-null, otherwise pass 0 for both.
1876 static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type, VMRegPair body_arg, VMRegPair length_arg) {
1877   Register tmp_reg = rax;
1878   assert(!body_arg.first()->is_Register() || body_arg.first()->as_Register() != tmp_reg,
1879          "possible collision");
1880   assert(!length_arg.first()->is_Register() || length_arg.first()->as_Register() != tmp_reg,
1881          "possible collision");
1882 
1883   __ block_comment("unpack_array_argument {");
1884 
1885   // Pass the length, ptr pair
1886   Label is_null, done;
1887   VMRegPair tmp;
1888   tmp.set_ptr(tmp_reg->as_VMReg());
1889   if (reg.first()->is_stack()) {
1890     // Load the arg up from the stack
1891     move_ptr(masm, reg, tmp);
1892     reg = tmp;
1893   }
1894   __ testptr(reg.first()->as_Register(), reg.first()->as_Register());
1895   __ jccb(Assembler::equal, is_null);
1896   __ lea(tmp_reg, Address(reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type)));
1897   move_ptr(masm, tmp, body_arg);
1898   // load the length relative to the body.
1899   __ movl(tmp_reg, Address(tmp_reg, arrayOopDesc::length_offset_in_bytes() -
1900                            arrayOopDesc::base_offset_in_bytes(in_elem_type)));
1901   move32_64(masm, tmp, length_arg);
1902   __ jmpb(done);
1903   __ bind(is_null);
1904   // Pass zeros
1905   __ xorptr(tmp_reg, tmp_reg);
1906   move_ptr(masm, tmp, body_arg);
1907   move32_64(masm, tmp, length_arg);
1908   __ bind(done);
1909 
1910   __ block_comment("} unpack_array_argument");
1911 }
1912 
1913 
1914 // Different signatures may require very different orders for the move
1915 // to avoid clobbering other arguments.  There's no simple way to
1916 // order them safely.  Compute a safe order for issuing stores and
1917 // break any cycles in those stores.  This code is fairly general but
1918 // it's not necessary on the other platforms so we keep it in the
1919 // platform dependent code instead of moving it into a shared file.
1920 // (See bugs 7013347 & 7145024.)
1921 // Note that this code is specific to LP64.
1922 class ComputeMoveOrder: public StackObj {
1923   class MoveOperation: public ResourceObj {
1924     friend class ComputeMoveOrder;
1925    private:
1926     VMRegPair        _src;
1927     VMRegPair        _dst;
1928     int              _src_index;
1929     int              _dst_index;
1930     bool             _processed;
1931     MoveOperation*  _next;
1932     MoveOperation*  _prev;
1933 
1934     static int get_id(VMRegPair r) {
1935       return r.first()->value();
1936     }
1937 
1938    public:
1939     MoveOperation(int src_index, VMRegPair src, int dst_index, VMRegPair dst):
1940       _src(src)
1941     , _dst(dst)
1942     , _src_index(src_index)
1943     , _dst_index(dst_index)
1944     , _processed(false)
1945     , _next(NULL)
1946     , _prev(NULL) {
1947     }
1948 
1949     VMRegPair src() const              { return _src; }
1950     int src_id() const                 { return get_id(src()); }
1951     int src_index() const              { return _src_index; }
1952     VMRegPair dst() const              { return _dst; }
1953     void set_dst(int i, VMRegPair dst) { _dst_index = i, _dst = dst; }
1954     int dst_index() const              { return _dst_index; }
1955     int dst_id() const                 { return get_id(dst()); }
1956     MoveOperation* next() const       { return _next; }
1957     MoveOperation* prev() const       { return _prev; }
1958     void set_processed()               { _processed = true; }
1959     bool is_processed() const          { return _processed; }
1960 
1961     // insert
1962     void break_cycle(VMRegPair temp_register) {
1963       // create a new store following the last store
1964       // to move from the temp_register to the original
1965       MoveOperation* new_store = new MoveOperation(-1, temp_register, dst_index(), dst());
1966 
1967       // break the cycle of links and insert new_store at the end
1968       // break the reverse link.
1969       MoveOperation* p = prev();
1970       assert(p->next() == this, "must be");
1971       _prev = NULL;
1972       p->_next = new_store;
1973       new_store->_prev = p;
1974 
1975       // change the original store to save it's value in the temp.
1976       set_dst(-1, temp_register);
1977     }
1978 
1979     void link(GrowableArray<MoveOperation*>& killer) {
1980       // link this store in front the store that it depends on
1981       MoveOperation* n = killer.at_grow(src_id(), NULL);
1982       if (n != NULL) {
1983         assert(_next == NULL && n->_prev == NULL, "shouldn't have been set yet");
1984         _next = n;
1985         n->_prev = this;
1986       }
1987     }
1988   };
1989 
1990  private:
1991   GrowableArray<MoveOperation*> edges;
1992 
1993  public:
1994   ComputeMoveOrder(int total_in_args, VMRegPair* in_regs, int total_c_args, VMRegPair* out_regs,
1995                     BasicType* in_sig_bt, GrowableArray<int>& arg_order, VMRegPair tmp_vmreg) {
1996     // Move operations where the dest is the stack can all be
1997     // scheduled first since they can't interfere with the other moves.
1998     for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) {
1999       if (in_sig_bt[i] == T_ARRAY) {
2000         c_arg--;
2001         if (out_regs[c_arg].first()->is_stack() &&
2002             out_regs[c_arg + 1].first()->is_stack()) {
2003           arg_order.push(i);
2004           arg_order.push(c_arg);
2005         } else {
2006           if (out_regs[c_arg].first()->is_stack() ||
2007               in_regs[i].first() == out_regs[c_arg].first()) {
2008             add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg + 1]);
2009           } else {
2010             add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg]);
2011           }
2012         }
2013       } else if (in_sig_bt[i] == T_VOID) {
2014         arg_order.push(i);
2015         arg_order.push(c_arg);
2016       } else {
2017         if (out_regs[c_arg].first()->is_stack() ||
2018             in_regs[i].first() == out_regs[c_arg].first()) {
2019           arg_order.push(i);
2020           arg_order.push(c_arg);
2021         } else {
2022           add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg]);
2023         }
2024       }
2025     }
2026     // Break any cycles in the register moves and emit the in the
2027     // proper order.
2028     GrowableArray<MoveOperation*>* stores = get_store_order(tmp_vmreg);
2029     for (int i = 0; i < stores->length(); i++) {
2030       arg_order.push(stores->at(i)->src_index());
2031       arg_order.push(stores->at(i)->dst_index());
2032     }
2033  }
2034 
2035   // Collected all the move operations
2036   void add_edge(int src_index, VMRegPair src, int dst_index, VMRegPair dst) {
2037     if (src.first() == dst.first()) return;
2038     edges.append(new MoveOperation(src_index, src, dst_index, dst));
2039   }
2040 
2041   // Walk the edges breaking cycles between moves.  The result list
2042   // can be walked in order to produce the proper set of loads
2043   GrowableArray<MoveOperation*>* get_store_order(VMRegPair temp_register) {
2044     // Record which moves kill which values
2045     GrowableArray<MoveOperation*> killer;
2046     for (int i = 0; i < edges.length(); i++) {
2047       MoveOperation* s = edges.at(i);
2048       assert(killer.at_grow(s->dst_id(), NULL) == NULL, "only one killer");
2049       killer.at_put_grow(s->dst_id(), s, NULL);
2050     }
2051     assert(killer.at_grow(MoveOperation::get_id(temp_register), NULL) == NULL,
2052            "make sure temp isn't in the registers that are killed");
2053 
2054     // create links between loads and stores
2055     for (int i = 0; i < edges.length(); i++) {
2056       edges.at(i)->link(killer);
2057     }
2058 
2059     // at this point, all the move operations are chained together
2060     // in a doubly linked list.  Processing it backwards finds
2061     // the beginning of the chain, forwards finds the end.  If there's
2062     // a cycle it can be broken at any point,  so pick an edge and walk
2063     // backward until the list ends or we end where we started.
2064     GrowableArray<MoveOperation*>* stores = new GrowableArray<MoveOperation*>();
2065     for (int e = 0; e < edges.length(); e++) {
2066       MoveOperation* s = edges.at(e);
2067       if (!s->is_processed()) {
2068         MoveOperation* start = s;
2069         // search for the beginning of the chain or cycle
2070         while (start->prev() != NULL && start->prev() != s) {
2071           start = start->prev();
2072         }
2073         if (start->prev() == s) {
2074           start->break_cycle(temp_register);
2075         }
2076         // walk the chain forward inserting to store list
2077         while (start != NULL) {
2078           stores->append(start);
2079           start->set_processed();
2080           start = start->next();
2081         }
2082       }
2083     }
2084     return stores;
2085   }
2086 };
2087 
2088 static void verify_oop_args(MacroAssembler* masm,
2089                             const methodHandle& method,
2090                             const BasicType* sig_bt,
2091                             const VMRegPair* regs) {
2092   Register temp_reg = rbx;  // not part of any compiled calling seq
2093   if (VerifyOops) {
2094     for (int i = 0; i < method->size_of_parameters(); i++) {
2095       if (sig_bt[i] == T_OBJECT ||
2096           sig_bt[i] == T_ARRAY) {
2097         VMReg r = regs[i].first();
2098         assert(r->is_valid(), "bad oop arg");
2099         if (r->is_stack()) {
2100           __ movptr(temp_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
2101           __ verify_oop(temp_reg);
2102         } else {
2103           __ verify_oop(r->as_Register());
2104         }
2105       }
2106     }
2107   }
2108 }
2109 
2110 static void gen_special_dispatch(MacroAssembler* masm,
2111                                  const methodHandle& method,
2112                                  const BasicType* sig_bt,
2113                                  const VMRegPair* regs) {
2114   verify_oop_args(masm, method, sig_bt, regs);
2115   vmIntrinsics::ID iid = method->intrinsic_id();
2116 
2117   // Now write the args into the outgoing interpreter space
2118   bool     has_receiver   = false;
2119   Register receiver_reg   = noreg;
2120   int      member_arg_pos = -1;
2121   Register member_reg     = noreg;
2122   int      ref_kind       = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
2123   if (ref_kind != 0) {
2124     member_arg_pos = method->size_of_parameters() - 1;  // trailing MemberName argument
2125     member_reg = rbx;  // known to be free at this point
2126     has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
2127   } else if (iid == vmIntrinsics::_invokeBasic) {
2128     has_receiver = true;
2129   } else {
2130     fatal("unexpected intrinsic id %d", iid);
2131   }
2132 
2133   if (member_reg != noreg) {
2134     // Load the member_arg into register, if necessary.
2135     SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
2136     VMReg r = regs[member_arg_pos].first();
2137     if (r->is_stack()) {
2138       __ movptr(member_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
2139     } else {
2140       // no data motion is needed
2141       member_reg = r->as_Register();
2142     }
2143   }
2144 
2145   if (has_receiver) {
2146     // Make sure the receiver is loaded into a register.
2147     assert(method->size_of_parameters() > 0, "oob");
2148     assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
2149     VMReg r = regs[0].first();
2150     assert(r->is_valid(), "bad receiver arg");
2151     if (r->is_stack()) {
2152       // Porting note:  This assumes that compiled calling conventions always
2153       // pass the receiver oop in a register.  If this is not true on some
2154       // platform, pick a temp and load the receiver from stack.
2155       fatal("receiver always in a register");
2156       receiver_reg = j_rarg0;  // known to be free at this point
2157       __ movptr(receiver_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
2158     } else {
2159       // no data motion is needed
2160       receiver_reg = r->as_Register();
2161     }
2162   }
2163 
2164   // Figure out which address we are really jumping to:
2165   MethodHandles::generate_method_handle_dispatch(masm, iid,
2166                                                  receiver_reg, member_reg, /*for_compiler_entry:*/ true);
2167 }
2168 
2169 // ---------------------------------------------------------------------------
2170 // Generate a native wrapper for a given method.  The method takes arguments
2171 // in the Java compiled code convention, marshals them to the native
2172 // convention (handlizes oops, etc), transitions to native, makes the call,
2173 // returns to java state (possibly blocking), unhandlizes any result and
2174 // returns.
2175 //
2176 // Critical native functions are a shorthand for the use of
2177 // GetPrimtiveArrayCritical and disallow the use of any other JNI
2178 // functions.  The wrapper is expected to unpack the arguments before
2179 // passing them to the callee and perform checks before and after the
2180 // native call to ensure that they GCLocker
2181 // lock_critical/unlock_critical semantics are followed.  Some other
2182 // parts of JNI setup are skipped like the tear down of the JNI handle
2183 // block and the check for pending exceptions it's impossible for them
2184 // to be thrown.
2185 //
2186 // They are roughly structured like this:
2187 //    if (GCLocker::needs_gc())
2188 //      SharedRuntime::block_for_jni_critical();
2189 //    tranistion to thread_in_native
2190 //    unpack arrray arguments and call native entry point
2191 //    check for safepoint in progress
2192 //    check if any thread suspend flags are set
2193 //      call into JVM and possible unlock the JNI critical
2194 //      if a GC was suppressed while in the critical native.
2195 //    transition back to thread_in_Java
2196 //    return to caller
2197 //
2198 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
2199                                                 const methodHandle& method,
2200                                                 int compile_id,
2201                                                 BasicType* in_sig_bt,
2202                                                 VMRegPair* in_regs,
2203                                                 BasicType ret_type) {
2204   if (method->is_method_handle_intrinsic()) {
2205     vmIntrinsics::ID iid = method->intrinsic_id();
2206     intptr_t start = (intptr_t)__ pc();
2207     int vep_offset = ((intptr_t)__ pc()) - start;
2208     gen_special_dispatch(masm,
2209                          method,
2210                          in_sig_bt,
2211                          in_regs);
2212     int frame_complete = ((intptr_t)__ pc()) - start;  // not complete, period
2213     __ flush();
2214     int stack_slots = SharedRuntime::out_preserve_stack_slots();  // no out slots at all, actually
2215     return nmethod::new_native_nmethod(method,
2216                                        compile_id,
2217                                        masm->code(),
2218                                        vep_offset,
2219                                        frame_complete,
2220                                        stack_slots / VMRegImpl::slots_per_word,
2221                                        in_ByteSize(-1),
2222                                        in_ByteSize(-1),
2223                                        (OopMapSet*)NULL);
2224   }
2225   bool is_critical_native = true;
2226   address native_func = method->critical_native_function();
2227   if (native_func == NULL) {
2228     native_func = method->native_function();
2229     is_critical_native = false;
2230   }
2231   assert(native_func != NULL, "must have function");
2232 
2233   // An OopMap for lock (and class if static)
2234   OopMapSet *oop_maps = new OopMapSet();
2235   intptr_t start = (intptr_t)__ pc();
2236 
2237   // We have received a description of where all the java arg are located
2238   // on entry to the wrapper. We need to convert these args to where
2239   // the jni function will expect them. To figure out where they go
2240   // we convert the java signature to a C signature by inserting
2241   // the hidden arguments as arg[0] and possibly arg[1] (static method)
2242 
2243   const int total_in_args = method->size_of_parameters();
2244   int total_c_args = total_in_args;
2245   if (!is_critical_native) {
2246     total_c_args += 1;
2247     if (method->is_static()) {
2248       total_c_args++;
2249     }
2250   } else {
2251     for (int i = 0; i < total_in_args; i++) {
2252       if (in_sig_bt[i] == T_ARRAY) {
2253         total_c_args++;
2254       }
2255     }
2256   }
2257 
2258   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
2259   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
2260   BasicType* in_elem_bt = NULL;
2261 
2262   int argc = 0;
2263   if (!is_critical_native) {
2264     out_sig_bt[argc++] = T_ADDRESS;
2265     if (method->is_static()) {
2266       out_sig_bt[argc++] = T_OBJECT;
2267     }
2268 
2269     for (int i = 0; i < total_in_args ; i++ ) {
2270       out_sig_bt[argc++] = in_sig_bt[i];
2271     }
2272   } else {
2273     Thread* THREAD = Thread::current();
2274     in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_in_args);
2275     SignatureStream ss(method->signature());
2276     for (int i = 0; i < total_in_args ; i++ ) {
2277       if (in_sig_bt[i] == T_ARRAY) {
2278         // Arrays are passed as int, elem* pair
2279         out_sig_bt[argc++] = T_INT;
2280         out_sig_bt[argc++] = T_ADDRESS;
2281         Symbol* atype = ss.as_symbol(CHECK_NULL);
2282         const char* at = atype->as_C_string();
2283         if (strlen(at) == 2) {
2284           assert(at[0] == '[', "must be");
2285           switch (at[1]) {
2286             case 'B': in_elem_bt[i]  = T_BYTE; break;
2287             case 'C': in_elem_bt[i]  = T_CHAR; break;
2288             case 'D': in_elem_bt[i]  = T_DOUBLE; break;
2289             case 'F': in_elem_bt[i]  = T_FLOAT; break;
2290             case 'I': in_elem_bt[i]  = T_INT; break;
2291             case 'J': in_elem_bt[i]  = T_LONG; break;
2292             case 'S': in_elem_bt[i]  = T_SHORT; break;
2293             case 'Z': in_elem_bt[i]  = T_BOOLEAN; break;
2294             default: ShouldNotReachHere();
2295           }
2296         }
2297       } else {
2298         out_sig_bt[argc++] = in_sig_bt[i];
2299         in_elem_bt[i] = T_VOID;
2300       }
2301       if (in_sig_bt[i] != T_VOID) {
2302         assert(in_sig_bt[i] == ss.type(), "must match");
2303         ss.next();
2304       }
2305     }
2306   }
2307 
2308   // Now figure out where the args must be stored and how much stack space
2309   // they require.
2310   int out_arg_slots;
2311   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, NULL, total_c_args);
2312 
2313   // Compute framesize for the wrapper.  We need to handlize all oops in
2314   // incoming registers
2315 
2316   // Calculate the total number of stack slots we will need.
2317 
2318   // First count the abi requirement plus all of the outgoing args
2319   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
2320 
2321   // Now the space for the inbound oop handle area
2322   int total_save_slots = 6 * VMRegImpl::slots_per_word;  // 6 arguments passed in registers
2323   if (is_critical_native) {
2324     // Critical natives may have to call out so they need a save area
2325     // for register arguments.
2326     int double_slots = 0;
2327     int single_slots = 0;
2328     for ( int i = 0; i < total_in_args; i++) {
2329       if (in_regs[i].first()->is_Register()) {
2330         const Register reg = in_regs[i].first()->as_Register();
2331         switch (in_sig_bt[i]) {
2332           case T_BOOLEAN:
2333           case T_BYTE:
2334           case T_SHORT:
2335           case T_CHAR:
2336           case T_INT:  single_slots++; break;
2337           case T_ARRAY:  // specific to LP64 (7145024)
2338           case T_LONG: double_slots++; break;
2339           default:  ShouldNotReachHere();
2340         }
2341       } else if (in_regs[i].first()->is_XMMRegister()) {
2342         switch (in_sig_bt[i]) {
2343           case T_FLOAT:  single_slots++; break;
2344           case T_DOUBLE: double_slots++; break;
2345           default:  ShouldNotReachHere();
2346         }
2347       } else if (in_regs[i].first()->is_FloatRegister()) {
2348         ShouldNotReachHere();
2349       }
2350     }
2351     total_save_slots = double_slots * 2 + single_slots;
2352     // align the save area
2353     if (double_slots != 0) {
2354       stack_slots = align_up(stack_slots, 2);
2355     }
2356   }
2357 
2358   int oop_handle_offset = stack_slots;
2359   stack_slots += total_save_slots;
2360 
2361   // Now any space we need for handlizing a klass if static method
2362 
2363   int klass_slot_offset = 0;
2364   int klass_offset = -1;
2365   int lock_slot_offset = 0;
2366   bool is_static = false;
2367 
2368   if (method->is_static()) {
2369     klass_slot_offset = stack_slots;
2370     stack_slots += VMRegImpl::slots_per_word;
2371     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
2372     is_static = true;
2373   }
2374 
2375   // Plus a lock if needed
2376 
2377   if (method->is_synchronized()) {
2378     lock_slot_offset = stack_slots;
2379     stack_slots += VMRegImpl::slots_per_word;
2380   }
2381 
2382   // Now a place (+2) to save return values or temp during shuffling
2383   // + 4 for return address (which we own) and saved rbp
2384   stack_slots += 6;
2385 
2386   // Ok The space we have allocated will look like:
2387   //
2388   //
2389   // FP-> |                     |
2390   //      |---------------------|
2391   //      | 2 slots for moves   |
2392   //      |---------------------|
2393   //      | lock box (if sync)  |
2394   //      |---------------------| <- lock_slot_offset
2395   //      | klass (if static)   |
2396   //      |---------------------| <- klass_slot_offset
2397   //      | oopHandle area      |
2398   //      |---------------------| <- oop_handle_offset (6 java arg registers)
2399   //      | outbound memory     |
2400   //      | based arguments     |
2401   //      |                     |
2402   //      |---------------------|
2403   //      |                     |
2404   // SP-> | out_preserved_slots |
2405   //
2406   //
2407 
2408 
2409   // Now compute actual number of stack words we need rounding to make
2410   // stack properly aligned.
2411   stack_slots = align_up(stack_slots, StackAlignmentInSlots);
2412 
2413   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
2414 
2415   // First thing make an ic check to see if we should even be here
2416 
2417   // We are free to use all registers as temps without saving them and
2418   // restoring them except rbp. rbp is the only callee save register
2419   // as far as the interpreter and the compiler(s) are concerned.
2420 
2421 
2422   const Register ic_reg = rax;
2423   const Register receiver = j_rarg0;
2424 
2425   Label hit;
2426   Label exception_pending;
2427 
2428   assert_different_registers(ic_reg, receiver, rscratch1);
2429   __ verify_oop(receiver);
2430   __ load_klass(rscratch1, receiver);
2431   __ cmpq(ic_reg, rscratch1);
2432   __ jcc(Assembler::equal, hit);
2433 
2434   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
2435 
2436   // Verified entry point must be aligned
2437   __ align(8);
2438 
2439   __ bind(hit);
2440 
2441   int vep_offset = ((intptr_t)__ pc()) - start;
2442 
2443 #ifdef COMPILER1
2444   // For Object.hashCode, System.identityHashCode try to pull hashCode from object header if available.
2445   if ((InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) || (method->intrinsic_id() == vmIntrinsics::_identityHashCode)) {
2446     inline_check_hashcode_from_object_header(masm, method, j_rarg0 /*obj_reg*/, rax /*result*/);
2447   }
2448 #endif // COMPILER1
2449 
2450   // The instruction at the verified entry point must be 5 bytes or longer
2451   // because it can be patched on the fly by make_non_entrant. The stack bang
2452   // instruction fits that requirement.
2453 
2454   // Generate stack overflow check
2455 
2456   if (UseStackBanging) {
2457     __ bang_stack_with_offset((int)JavaThread::stack_shadow_zone_size());
2458   } else {
2459     // need a 5 byte instruction to allow MT safe patching to non-entrant
2460     __ fat_nop();
2461   }
2462 
2463   // Generate a new frame for the wrapper.
2464   __ enter();
2465   // -2 because return address is already present and so is saved rbp
2466   __ subptr(rsp, stack_size - 2*wordSize);
2467 
2468   // Frame is now completed as far as size and linkage.
2469   int frame_complete = ((intptr_t)__ pc()) - start;
2470 
2471     if (UseRTMLocking) {
2472       // Abort RTM transaction before calling JNI
2473       // because critical section will be large and will be
2474       // aborted anyway. Also nmethod could be deoptimized.
2475       __ xabort(0);
2476     }
2477 
2478 #ifdef ASSERT
2479     {
2480       Label L;
2481       __ mov(rax, rsp);
2482       __ andptr(rax, -16); // must be 16 byte boundary (see amd64 ABI)
2483       __ cmpptr(rax, rsp);
2484       __ jcc(Assembler::equal, L);
2485       __ stop("improperly aligned stack");
2486       __ bind(L);
2487     }
2488 #endif /* ASSERT */
2489 
2490 
2491   // We use r14 as the oop handle for the receiver/klass
2492   // It is callee save so it survives the call to native
2493 
2494   const Register oop_handle_reg = r14;
2495 
2496   if (is_critical_native && !Universe::heap()->supports_object_pinning()) {
2497     check_needs_gc_for_critical_native(masm, stack_slots, total_c_args, total_in_args,
2498                                        oop_handle_offset, oop_maps, in_regs, in_sig_bt);
2499   }
2500 
2501   //
2502   // We immediately shuffle the arguments so that any vm call we have to
2503   // make from here on out (sync slow path, jvmti, etc.) we will have
2504   // captured the oops from our caller and have a valid oopMap for
2505   // them.
2506 
2507   // -----------------
2508   // The Grand Shuffle
2509 
2510   // The Java calling convention is either equal (linux) or denser (win64) than the
2511   // c calling convention. However the because of the jni_env argument the c calling
2512   // convention always has at least one more (and two for static) arguments than Java.
2513   // Therefore if we move the args from java -> c backwards then we will never have
2514   // a register->register conflict and we don't have to build a dependency graph
2515   // and figure out how to break any cycles.
2516   //
2517 
2518   // Record esp-based slot for receiver on stack for non-static methods
2519   int receiver_offset = -1;
2520 
2521   // This is a trick. We double the stack slots so we can claim
2522   // the oops in the caller's frame. Since we are sure to have
2523   // more args than the caller doubling is enough to make
2524   // sure we can capture all the incoming oop args from the
2525   // caller.
2526   //
2527   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
2528 
2529   // Mark location of rbp (someday)
2530   // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, vmreg(rbp));
2531 
2532   // Use eax, ebx as temporaries during any memory-memory moves we have to do
2533   // All inbound args are referenced based on rbp and all outbound args via rsp.
2534 
2535 
2536 #ifdef ASSERT
2537   bool reg_destroyed[RegisterImpl::number_of_registers];
2538   bool freg_destroyed[XMMRegisterImpl::number_of_registers];
2539   for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
2540     reg_destroyed[r] = false;
2541   }
2542   for ( int f = 0 ; f < XMMRegisterImpl::number_of_registers ; f++ ) {
2543     freg_destroyed[f] = false;
2544   }
2545 
2546 #endif /* ASSERT */
2547 
2548   // This may iterate in two different directions depending on the
2549   // kind of native it is.  The reason is that for regular JNI natives
2550   // the incoming and outgoing registers are offset upwards and for
2551   // critical natives they are offset down.
2552   GrowableArray<int> arg_order(2 * total_in_args);
2553   // Inbound arguments that need to be pinned for critical natives
2554   GrowableArray<int> pinned_args(total_in_args);
2555   // Current stack slot for storing register based array argument
2556   int pinned_slot = oop_handle_offset;
2557 
2558   VMRegPair tmp_vmreg;
2559   tmp_vmreg.set2(rbx->as_VMReg());
2560 
2561   if (!is_critical_native) {
2562     for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) {
2563       arg_order.push(i);
2564       arg_order.push(c_arg);
2565     }
2566   } else {
2567     // Compute a valid move order, using tmp_vmreg to break any cycles
2568     ComputeMoveOrder cmo(total_in_args, in_regs, total_c_args, out_regs, in_sig_bt, arg_order, tmp_vmreg);
2569   }
2570 
2571   int temploc = -1;
2572   for (int ai = 0; ai < arg_order.length(); ai += 2) {
2573     int i = arg_order.at(ai);
2574     int c_arg = arg_order.at(ai + 1);
2575     __ block_comment(err_msg("move %d -> %d", i, c_arg));
2576     if (c_arg == -1) {
2577       assert(is_critical_native, "should only be required for critical natives");
2578       // This arg needs to be moved to a temporary
2579       __ mov(tmp_vmreg.first()->as_Register(), in_regs[i].first()->as_Register());
2580       in_regs[i] = tmp_vmreg;
2581       temploc = i;
2582       continue;
2583     } else if (i == -1) {
2584       assert(is_critical_native, "should only be required for critical natives");
2585       // Read from the temporary location
2586       assert(temploc != -1, "must be valid");
2587       i = temploc;
2588       temploc = -1;
2589     }
2590 #ifdef ASSERT
2591     if (in_regs[i].first()->is_Register()) {
2592       assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "destroyed reg!");
2593     } else if (in_regs[i].first()->is_XMMRegister()) {
2594       assert(!freg_destroyed[in_regs[i].first()->as_XMMRegister()->encoding()], "destroyed reg!");
2595     }
2596     if (out_regs[c_arg].first()->is_Register()) {
2597       reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
2598     } else if (out_regs[c_arg].first()->is_XMMRegister()) {
2599       freg_destroyed[out_regs[c_arg].first()->as_XMMRegister()->encoding()] = true;
2600     }
2601 #endif /* ASSERT */
2602     switch (in_sig_bt[i]) {
2603       case T_ARRAY:
2604         if (is_critical_native) {
2605           // pin before unpack
2606           if (Universe::heap()->supports_object_pinning()) {
2607             save_args(masm, total_c_args, 0, out_regs);
2608             gen_pin_object(masm, in_regs[i]);
2609             pinned_args.append(i);
2610             restore_args(masm, total_c_args, 0, out_regs);
2611 
2612             // rax has pinned array
2613             VMRegPair result_reg;
2614             result_reg.set_ptr(rax->as_VMReg());
2615             move_ptr(masm, result_reg, in_regs[i]);
2616             if (!in_regs[i].first()->is_stack()) {
2617               assert(pinned_slot <= stack_slots, "overflow");
2618               move_ptr(masm, result_reg, VMRegImpl::stack2reg(pinned_slot));
2619               pinned_slot += VMRegImpl::slots_per_word;
2620             }
2621           }
2622           unpack_array_argument(masm, in_regs[i], in_elem_bt[i], out_regs[c_arg + 1], out_regs[c_arg]);
2623           c_arg++;
2624 #ifdef ASSERT
2625           if (out_regs[c_arg].first()->is_Register()) {
2626             reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
2627           } else if (out_regs[c_arg].first()->is_XMMRegister()) {
2628             freg_destroyed[out_regs[c_arg].first()->as_XMMRegister()->encoding()] = true;
2629           }
2630 #endif
2631           break;
2632         }
2633       case T_OBJECT:
2634         assert(!is_critical_native, "no oop arguments");
2635         object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
2636                     ((i == 0) && (!is_static)),
2637                     &receiver_offset);
2638         break;
2639       case T_VOID:
2640         break;
2641 
2642       case T_FLOAT:
2643         float_move(masm, in_regs[i], out_regs[c_arg]);
2644           break;
2645 
2646       case T_DOUBLE:
2647         assert( i + 1 < total_in_args &&
2648                 in_sig_bt[i + 1] == T_VOID &&
2649                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
2650         double_move(masm, in_regs[i], out_regs[c_arg]);
2651         break;
2652 
2653       case T_LONG :
2654         long_move(masm, in_regs[i], out_regs[c_arg]);
2655         break;
2656 
2657       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
2658 
2659       default:
2660         move32_64(masm, in_regs[i], out_regs[c_arg]);
2661     }
2662   }
2663 
2664   int c_arg;
2665 
2666   // Pre-load a static method's oop into r14.  Used both by locking code and
2667   // the normal JNI call code.
2668   if (!is_critical_native) {
2669     // point c_arg at the first arg that is already loaded in case we
2670     // need to spill before we call out
2671     c_arg = total_c_args - total_in_args;
2672 
2673     if (method->is_static()) {
2674 
2675       //  load oop into a register
2676       __ movoop(oop_handle_reg, JNIHandles::make_local(method->method_holder()->java_mirror()));
2677 
2678       // Now handlize the static class mirror it's known not-null.
2679       __ movptr(Address(rsp, klass_offset), oop_handle_reg);
2680       map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
2681 
2682       // Now get the handle
2683       __ lea(oop_handle_reg, Address(rsp, klass_offset));
2684       // store the klass handle as second argument
2685       __ movptr(c_rarg1, oop_handle_reg);
2686       // and protect the arg if we must spill
2687       c_arg--;
2688     }
2689   } else {
2690     // For JNI critical methods we need to save all registers in save_args.
2691     c_arg = 0;
2692   }
2693 
2694   // Change state to native (we save the return address in the thread, since it might not
2695   // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
2696   // points into the right code segment. It does not have to be the correct return pc.
2697   // We use the same pc/oopMap repeatedly when we call out
2698 
2699   intptr_t the_pc = (intptr_t) __ pc();
2700   oop_maps->add_gc_map(the_pc - start, map);
2701 
2702   __ set_last_Java_frame(rsp, noreg, (address)the_pc);
2703 
2704 
2705   // We have all of the arguments setup at this point. We must not touch any register
2706   // argument registers at this point (what if we save/restore them there are no oop?
2707 
2708   {
2709     SkipIfEqual skip(masm, &DTraceMethodProbes, false);
2710     // protect the args we've loaded
2711     save_args(masm, total_c_args, c_arg, out_regs);
2712     __ mov_metadata(c_rarg1, method());
2713     __ call_VM_leaf(
2714       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
2715       r15_thread, c_rarg1);
2716     restore_args(masm, total_c_args, c_arg, out_regs);
2717   }
2718 
2719   // RedefineClasses() tracing support for obsolete method entry
2720   if (log_is_enabled(Trace, redefine, class, obsolete)) {
2721     // protect the args we've loaded
2722     save_args(masm, total_c_args, c_arg, out_regs);
2723     __ mov_metadata(c_rarg1, method());
2724     __ call_VM_leaf(
2725       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
2726       r15_thread, c_rarg1);
2727     restore_args(masm, total_c_args, c_arg, out_regs);
2728   }
2729 
2730   // Lock a synchronized method
2731 
2732   // Register definitions used by locking and unlocking
2733 
2734   const Register swap_reg = rax;  // Must use rax for cmpxchg instruction
2735   const Register obj_reg  = rbx;  // Will contain the oop
2736   const Register lock_reg = r13;  // Address of compiler lock object (BasicLock)
2737   const Register old_hdr  = r13;  // value of old header at unlock time
2738 
2739   Label slow_path_lock;
2740   Label lock_done;
2741 
2742   if (method->is_synchronized()) {
2743     assert(!is_critical_native, "unhandled");
2744 
2745 
2746     const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
2747 
2748     // Get the handle (the 2nd argument)
2749     __ mov(oop_handle_reg, c_rarg1);
2750 
2751     // Get address of the box
2752 
2753     __ lea(lock_reg, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
2754 
2755     // Load the oop from the handle
2756     __ movptr(obj_reg, Address(oop_handle_reg, 0));
2757 
2758     __ resolve(IS_NOT_NULL, obj_reg);
2759     if (UseBiasedLocking) {
2760       __ biased_locking_enter(lock_reg, obj_reg, swap_reg, rscratch1, false, lock_done, &slow_path_lock);
2761     }
2762 
2763     // Load immediate 1 into swap_reg %rax
2764     __ movl(swap_reg, 1);
2765 
2766     // Load (object->mark() | 1) into swap_reg %rax
2767     __ orptr(swap_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
2768     if (EnableValhalla && !UseBiasedLocking) {
2769       // For slow path is_always_locked, using biased, which is never natural for !UseBiasLocking
2770       __ andptr(swap_reg, ~markOopDesc::biased_lock_bit_in_place);
2771     }
2772 
2773     // Save (object->mark() | 1) into BasicLock's displaced header
2774     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
2775 
2776     if (os::is_MP()) {
2777       __ lock();
2778     }
2779 
2780     // src -> dest iff dest == rax else rax <- dest
2781     __ cmpxchgptr(lock_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
2782     __ jcc(Assembler::equal, lock_done);
2783 
2784     // Hmm should this move to the slow path code area???
2785 
2786     // Test if the oopMark is an obvious stack pointer, i.e.,
2787     //  1) (mark & 3) == 0, and
2788     //  2) rsp <= mark < mark + os::pagesize()
2789     // These 3 tests can be done by evaluating the following
2790     // expression: ((mark - rsp) & (3 - os::vm_page_size())),
2791     // assuming both stack pointer and pagesize have their
2792     // least significant 2 bits clear.
2793     // NOTE: the oopMark is in swap_reg %rax as the result of cmpxchg
2794 
2795     __ subptr(swap_reg, rsp);
2796     __ andptr(swap_reg, 3 - os::vm_page_size());
2797 
2798     // Save the test result, for recursive case, the result is zero
2799     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
2800     __ jcc(Assembler::notEqual, slow_path_lock);
2801 
2802     // Slow path will re-enter here
2803 
2804     __ bind(lock_done);
2805   }
2806 
2807 
2808   // Finally just about ready to make the JNI call
2809 
2810 
2811   // get JNIEnv* which is first argument to native
2812   if (!is_critical_native) {
2813     __ lea(c_rarg0, Address(r15_thread, in_bytes(JavaThread::jni_environment_offset())));
2814   }
2815 
2816   // Now set thread in native
2817   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native);
2818 
2819   __ call(RuntimeAddress(native_func));
2820 
2821   // Verify or restore cpu control state after JNI call
2822   __ restore_cpu_control_state_after_jni();
2823 
2824   // Unpack native results.
2825   switch (ret_type) {
2826   case T_BOOLEAN: __ c2bool(rax);            break;
2827   case T_CHAR   : __ movzwl(rax, rax);      break;
2828   case T_BYTE   : __ sign_extend_byte (rax); break;
2829   case T_SHORT  : __ sign_extend_short(rax); break;
2830   case T_INT    : /* nothing to do */        break;
2831   case T_DOUBLE :
2832   case T_FLOAT  :
2833     // Result is in xmm0 we'll save as needed
2834     break;
2835   case T_ARRAY:                 // Really a handle
2836   case T_OBJECT:                // Really a handle
2837       break; // can't de-handlize until after safepoint check
2838   case T_VOID: break;
2839   case T_LONG: break;
2840   default       : ShouldNotReachHere();
2841   }
2842 
2843   // unpin pinned arguments
2844   pinned_slot = oop_handle_offset;
2845   if (pinned_args.length() > 0) {
2846     // save return value that may be overwritten otherwise.
2847     save_native_result(masm, ret_type, stack_slots);
2848     for (int index = 0; index < pinned_args.length(); index ++) {
2849       int i = pinned_args.at(index);
2850       assert(pinned_slot <= stack_slots, "overflow");
2851       if (!in_regs[i].first()->is_stack()) {
2852         int offset = pinned_slot * VMRegImpl::stack_slot_size;
2853         __ movq(in_regs[i].first()->as_Register(), Address(rsp, offset));
2854         pinned_slot += VMRegImpl::slots_per_word;
2855       }
2856       gen_unpin_object(masm, in_regs[i]);
2857     }
2858     restore_native_result(masm, ret_type, stack_slots);
2859   }
2860 
2861   // Switch thread to "native transition" state before reading the synchronization state.
2862   // This additional state is necessary because reading and testing the synchronization
2863   // state is not atomic w.r.t. GC, as this scenario demonstrates:
2864   //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
2865   //     VM thread changes sync state to synchronizing and suspends threads for GC.
2866   //     Thread A is resumed to finish this native method, but doesn't block here since it
2867   //     didn't see any synchronization is progress, and escapes.
2868   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
2869 
2870   if(os::is_MP()) {
2871     if (UseMembar) {
2872       // Force this write out before the read below
2873       __ membar(Assembler::Membar_mask_bits(
2874            Assembler::LoadLoad | Assembler::LoadStore |
2875            Assembler::StoreLoad | Assembler::StoreStore));
2876     } else {
2877       // Write serialization page so VM thread can do a pseudo remote membar.
2878       // We use the current thread pointer to calculate a thread specific
2879       // offset to write to within the page. This minimizes bus traffic
2880       // due to cache line collision.
2881       __ serialize_memory(r15_thread, rcx);
2882     }
2883   }
2884 
2885   Label after_transition;
2886 
2887   // check for safepoint operation in progress and/or pending suspend requests
2888   {
2889     Label Continue;
2890     Label slow_path;
2891 
2892     __ safepoint_poll(slow_path, r15_thread, rscratch1);
2893 
2894     __ cmpl(Address(r15_thread, JavaThread::suspend_flags_offset()), 0);
2895     __ jcc(Assembler::equal, Continue);
2896     __ bind(slow_path);
2897 
2898     // Don't use call_VM as it will see a possible pending exception and forward it
2899     // and never return here preventing us from clearing _last_native_pc down below.
2900     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
2901     // preserved and correspond to the bcp/locals pointers. So we do a runtime call
2902     // by hand.
2903     //
2904     __ vzeroupper();
2905     save_native_result(masm, ret_type, stack_slots);
2906     __ mov(c_rarg0, r15_thread);
2907     __ mov(r12, rsp); // remember sp
2908     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
2909     __ andptr(rsp, -16); // align stack as required by ABI
2910     if (!is_critical_native) {
2911       __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)));
2912     } else {
2913       __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans_and_transition)));
2914     }
2915     __ mov(rsp, r12); // restore sp
2916     __ reinit_heapbase();
2917     // Restore any method result value
2918     restore_native_result(masm, ret_type, stack_slots);
2919 
2920     if (is_critical_native) {
2921       // The call above performed the transition to thread_in_Java so
2922       // skip the transition logic below.
2923       __ jmpb(after_transition);
2924     }
2925 
2926     __ bind(Continue);
2927   }
2928 
2929   // change thread state
2930   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_Java);
2931   __ bind(after_transition);
2932 
2933   Label reguard;
2934   Label reguard_done;
2935   __ cmpl(Address(r15_thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_reserved_disabled);
2936   __ jcc(Assembler::equal, reguard);
2937   __ bind(reguard_done);
2938 
2939   // native result if any is live
2940 
2941   // Unlock
2942   Label unlock_done;
2943   Label slow_path_unlock;
2944   if (method->is_synchronized()) {
2945 
2946     // Get locked oop from the handle we passed to jni
2947     __ movptr(obj_reg, Address(oop_handle_reg, 0));
2948     __ resolve(IS_NOT_NULL, obj_reg);
2949 
2950     Label done;
2951 
2952     if (UseBiasedLocking) {
2953       __ biased_locking_exit(obj_reg, old_hdr, done);
2954     }
2955 
2956     // Simple recursive lock?
2957 
2958     __ cmpptr(Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size), (int32_t)NULL_WORD);
2959     __ jcc(Assembler::equal, done);
2960 
2961     // Must save rax if if it is live now because cmpxchg must use it
2962     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
2963       save_native_result(masm, ret_type, stack_slots);
2964     }
2965 
2966 
2967     // get address of the stack lock
2968     __ lea(rax, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
2969     //  get old displaced header
2970     __ movptr(old_hdr, Address(rax, 0));
2971 
2972     // Atomic swap old header if oop still contains the stack lock
2973     if (os::is_MP()) {
2974       __ lock();
2975     }
2976     __ cmpxchgptr(old_hdr, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
2977     __ jcc(Assembler::notEqual, slow_path_unlock);
2978 
2979     // slow path re-enters here
2980     __ bind(unlock_done);
2981     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
2982       restore_native_result(masm, ret_type, stack_slots);
2983     }
2984 
2985     __ bind(done);
2986 
2987   }
2988   {
2989     SkipIfEqual skip(masm, &DTraceMethodProbes, false);
2990     save_native_result(masm, ret_type, stack_slots);
2991     __ mov_metadata(c_rarg1, method());
2992     __ call_VM_leaf(
2993          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2994          r15_thread, c_rarg1);
2995     restore_native_result(masm, ret_type, stack_slots);
2996   }
2997 
2998   __ reset_last_Java_frame(false);
2999 
3000   // Unbox oop result, e.g. JNIHandles::resolve value.
3001   if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
3002     __ resolve_jobject(rax /* value */,
3003                        r15_thread /* thread */,
3004                        rcx /* tmp */);
3005   }
3006 
3007   if (CheckJNICalls) {
3008     // clear_pending_jni_exception_check
3009     __ movptr(Address(r15_thread, JavaThread::pending_jni_exception_check_fn_offset()), NULL_WORD);
3010   }
3011 
3012   if (!is_critical_native) {
3013     // reset handle block
3014     __ movptr(rcx, Address(r15_thread, JavaThread::active_handles_offset()));
3015     __ movl(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), (int32_t)NULL_WORD);
3016   }
3017 
3018   // pop our frame
3019 
3020   __ leave();
3021 
3022   if (!is_critical_native) {
3023     // Any exception pending?
3024     __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
3025     __ jcc(Assembler::notEqual, exception_pending);
3026   }
3027 
3028   // Return
3029 
3030   __ ret(0);
3031 
3032   // Unexpected paths are out of line and go here
3033 
3034   if (!is_critical_native) {
3035     // forward the exception
3036     __ bind(exception_pending);
3037 
3038     // and forward the exception
3039     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3040   }
3041 
3042   // Slow path locking & unlocking
3043   if (method->is_synchronized()) {
3044 
3045     // BEGIN Slow path lock
3046     __ bind(slow_path_lock);
3047 
3048     // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
3049     // args are (oop obj, BasicLock* lock, JavaThread* thread)
3050 
3051     // protect the args we've loaded
3052     save_args(masm, total_c_args, c_arg, out_regs);
3053 
3054     __ mov(c_rarg0, obj_reg);
3055     __ mov(c_rarg1, lock_reg);
3056     __ mov(c_rarg2, r15_thread);
3057 
3058     // Not a leaf but we have last_Java_frame setup as we want
3059     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), 3);
3060     restore_args(masm, total_c_args, c_arg, out_regs);
3061 
3062 #ifdef ASSERT
3063     { Label L;
3064     __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
3065     __ jcc(Assembler::equal, L);
3066     __ stop("no pending exception allowed on exit from monitorenter");
3067     __ bind(L);
3068     }
3069 #endif
3070     __ jmp(lock_done);
3071 
3072     // END Slow path lock
3073 
3074     // BEGIN Slow path unlock
3075     __ bind(slow_path_unlock);
3076 
3077     // If we haven't already saved the native result we must save it now as xmm registers
3078     // are still exposed.
3079     __ vzeroupper();
3080     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
3081       save_native_result(masm, ret_type, stack_slots);
3082     }
3083 
3084     __ lea(c_rarg1, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
3085 
3086     __ mov(c_rarg0, obj_reg);
3087     __ mov(c_rarg2, r15_thread);
3088     __ mov(r12, rsp); // remember sp
3089     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
3090     __ andptr(rsp, -16); // align stack as required by ABI
3091 
3092     // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
3093     // NOTE that obj_reg == rbx currently
3094     __ movptr(rbx, Address(r15_thread, in_bytes(Thread::pending_exception_offset())));
3095     __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
3096 
3097     // args are (oop obj, BasicLock* lock, JavaThread* thread)
3098     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
3099     __ mov(rsp, r12); // restore sp
3100     __ reinit_heapbase();
3101 #ifdef ASSERT
3102     {
3103       Label L;
3104       __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD);
3105       __ jcc(Assembler::equal, L);
3106       __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
3107       __ bind(L);
3108     }
3109 #endif /* ASSERT */
3110 
3111     __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), rbx);
3112 
3113     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
3114       restore_native_result(masm, ret_type, stack_slots);
3115     }
3116     __ jmp(unlock_done);
3117 
3118     // END Slow path unlock
3119 
3120   } // synchronized
3121 
3122   // SLOW PATH Reguard the stack if needed
3123 
3124   __ bind(reguard);
3125   __ vzeroupper();
3126   save_native_result(masm, ret_type, stack_slots);
3127   __ mov(r12, rsp); // remember sp
3128   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
3129   __ andptr(rsp, -16); // align stack as required by ABI
3130   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
3131   __ mov(rsp, r12); // restore sp
3132   __ reinit_heapbase();
3133   restore_native_result(masm, ret_type, stack_slots);
3134   // and continue
3135   __ jmp(reguard_done);
3136 
3137 
3138 
3139   __ flush();
3140 
3141   nmethod *nm = nmethod::new_native_nmethod(method,
3142                                             compile_id,
3143                                             masm->code(),
3144                                             vep_offset,
3145                                             frame_complete,
3146                                             stack_slots / VMRegImpl::slots_per_word,
3147                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
3148                                             in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
3149                                             oop_maps);
3150 
3151   if (is_critical_native) {
3152     nm->set_lazy_critical_native(true);
3153   }
3154 
3155   return nm;
3156 
3157 }
3158 
3159 // this function returns the adjust size (in number of words) to a c2i adapter
3160 // activation for use during deoptimization
3161 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
3162   return (callee_locals - callee_parameters) * Interpreter::stackElementWords;
3163 }
3164 
3165 
3166 uint SharedRuntime::out_preserve_stack_slots() {
3167   return 0;
3168 }
3169 
3170 //------------------------------generate_deopt_blob----------------------------
3171 void SharedRuntime::generate_deopt_blob() {
3172   // Allocate space for the code
3173   ResourceMark rm;
3174   // Setup code generation tools
3175   int pad = 0;
3176 #if INCLUDE_JVMCI
3177   if (EnableJVMCI || UseAOT) {
3178     pad += 512; // Increase the buffer size when compiling for JVMCI
3179   }
3180 #endif
3181   CodeBuffer buffer("deopt_blob", 2048+pad, 1024);
3182   MacroAssembler* masm = new MacroAssembler(&buffer);
3183   int frame_size_in_words;
3184   OopMap* map = NULL;
3185   OopMapSet *oop_maps = new OopMapSet();
3186 
3187   // -------------
3188   // This code enters when returning to a de-optimized nmethod.  A return
3189   // address has been pushed on the the stack, and return values are in
3190   // registers.
3191   // If we are doing a normal deopt then we were called from the patched
3192   // nmethod from the point we returned to the nmethod. So the return
3193   // address on the stack is wrong by NativeCall::instruction_size
3194   // We will adjust the value so it looks like we have the original return
3195   // address on the stack (like when we eagerly deoptimized).
3196   // In the case of an exception pending when deoptimizing, we enter
3197   // with a return address on the stack that points after the call we patched
3198   // into the exception handler. We have the following register state from,
3199   // e.g., the forward exception stub (see stubGenerator_x86_64.cpp).
3200   //    rax: exception oop
3201   //    rbx: exception handler
3202   //    rdx: throwing pc
3203   // So in this case we simply jam rdx into the useless return address and
3204   // the stack looks just like we want.
3205   //
3206   // At this point we need to de-opt.  We save the argument return
3207   // registers.  We call the first C routine, fetch_unroll_info().  This
3208   // routine captures the return values and returns a structure which
3209   // describes the current frame size and the sizes of all replacement frames.
3210   // The current frame is compiled code and may contain many inlined
3211   // functions, each with their own JVM state.  We pop the current frame, then
3212   // push all the new frames.  Then we call the C routine unpack_frames() to
3213   // populate these frames.  Finally unpack_frames() returns us the new target
3214   // address.  Notice that callee-save registers are BLOWN here; they have
3215   // already been captured in the vframeArray at the time the return PC was
3216   // patched.
3217   address start = __ pc();
3218   Label cont;
3219 
3220   // Prolog for non exception case!
3221 
3222   // Save everything in sight.
3223   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
3224 
3225   // Normal deoptimization.  Save exec mode for unpack_frames.
3226   __ movl(r14, Deoptimization::Unpack_deopt); // callee-saved
3227   __ jmp(cont);
3228 
3229   int reexecute_offset = __ pc() - start;
3230 #if INCLUDE_JVMCI && !defined(COMPILER1)
3231   if (EnableJVMCI && UseJVMCICompiler) {
3232     // JVMCI does not use this kind of deoptimization
3233     __ should_not_reach_here();
3234   }
3235 #endif
3236 
3237   // Reexecute case
3238   // return address is the pc describes what bci to do re-execute at
3239 
3240   // No need to update map as each call to save_live_registers will produce identical oopmap
3241   (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
3242 
3243   __ movl(r14, Deoptimization::Unpack_reexecute); // callee-saved
3244   __ jmp(cont);
3245 
3246 #if INCLUDE_JVMCI
3247   Label after_fetch_unroll_info_call;
3248   int implicit_exception_uncommon_trap_offset = 0;
3249   int uncommon_trap_offset = 0;
3250 
3251   if (EnableJVMCI || UseAOT) {
3252     implicit_exception_uncommon_trap_offset = __ pc() - start;
3253 
3254     __ pushptr(Address(r15_thread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset())));
3255     __ movptr(Address(r15_thread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset())), (int32_t)NULL_WORD);
3256 
3257     uncommon_trap_offset = __ pc() - start;
3258 
3259     // Save everything in sight.
3260     RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
3261     // fetch_unroll_info needs to call last_java_frame()
3262     __ set_last_Java_frame(noreg, noreg, NULL);
3263 
3264     __ movl(c_rarg1, Address(r15_thread, in_bytes(JavaThread::pending_deoptimization_offset())));
3265     __ movl(Address(r15_thread, in_bytes(JavaThread::pending_deoptimization_offset())), -1);
3266 
3267     __ movl(r14, (int32_t)Deoptimization::Unpack_reexecute);
3268     __ mov(c_rarg0, r15_thread);
3269     __ movl(c_rarg2, r14); // exec mode
3270     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
3271     oop_maps->add_gc_map( __ pc()-start, map->deep_copy());
3272 
3273     __ reset_last_Java_frame(false);
3274 
3275     __ jmp(after_fetch_unroll_info_call);
3276   } // EnableJVMCI
3277 #endif // INCLUDE_JVMCI
3278 
3279   int exception_offset = __ pc() - start;
3280 
3281   // Prolog for exception case
3282 
3283   // all registers are dead at this entry point, except for rax, and
3284   // rdx which contain the exception oop and exception pc
3285   // respectively.  Set them in TLS and fall thru to the
3286   // unpack_with_exception_in_tls entry point.
3287 
3288   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx);
3289   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), rax);
3290 
3291   int exception_in_tls_offset = __ pc() - start;
3292 
3293   // new implementation because exception oop is now passed in JavaThread
3294 
3295   // Prolog for exception case
3296   // All registers must be preserved because they might be used by LinearScan
3297   // Exceptiop oop and throwing PC are passed in JavaThread
3298   // tos: stack at point of call to method that threw the exception (i.e. only
3299   // args are on the stack, no return address)
3300 
3301   // make room on stack for the return address
3302   // It will be patched later with the throwing pc. The correct value is not
3303   // available now because loading it from memory would destroy registers.
3304   __ push(0);
3305 
3306   // Save everything in sight.
3307   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
3308 
3309   // Now it is safe to overwrite any register
3310 
3311   // Deopt during an exception.  Save exec mode for unpack_frames.
3312   __ movl(r14, Deoptimization::Unpack_exception); // callee-saved
3313 
3314   // load throwing pc from JavaThread and patch it as the return address
3315   // of the current frame. Then clear the field in JavaThread
3316 
3317   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
3318   __ movptr(Address(rbp, wordSize), rdx);
3319   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
3320 
3321 #ifdef ASSERT
3322   // verify that there is really an exception oop in JavaThread
3323   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
3324   __ verify_oop(rax);
3325 
3326   // verify that there is no pending exception
3327   Label no_pending_exception;
3328   __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
3329   __ testptr(rax, rax);
3330   __ jcc(Assembler::zero, no_pending_exception);
3331   __ stop("must not have pending exception here");
3332   __ bind(no_pending_exception);
3333 #endif
3334 
3335   __ bind(cont);
3336 
3337   // Call C code.  Need thread and this frame, but NOT official VM entry
3338   // crud.  We cannot block on this call, no GC can happen.
3339   //
3340   // UnrollBlock* fetch_unroll_info(JavaThread* thread)
3341 
3342   // fetch_unroll_info needs to call last_java_frame().
3343 
3344   __ set_last_Java_frame(noreg, noreg, NULL);
3345 #ifdef ASSERT
3346   { Label L;
3347     __ cmpptr(Address(r15_thread,
3348                     JavaThread::last_Java_fp_offset()),
3349             (int32_t)0);
3350     __ jcc(Assembler::equal, L);
3351     __ stop("SharedRuntime::generate_deopt_blob: last_Java_fp not cleared");
3352     __ bind(L);
3353   }
3354 #endif // ASSERT
3355   __ mov(c_rarg0, r15_thread);
3356   __ movl(c_rarg1, r14); // exec_mode
3357   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
3358 
3359   // Need to have an oopmap that tells fetch_unroll_info where to
3360   // find any register it might need.
3361   oop_maps->add_gc_map(__ pc() - start, map);
3362 
3363   __ reset_last_Java_frame(false);
3364 
3365 #if INCLUDE_JVMCI
3366   if (EnableJVMCI || UseAOT) {
3367     __ bind(after_fetch_unroll_info_call);
3368   }
3369 #endif
3370 
3371   // Load UnrollBlock* into rdi
3372   __ mov(rdi, rax);
3373 
3374   __ movl(r14, Address(rdi, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes()));
3375    Label noException;
3376   __ cmpl(r14, Deoptimization::Unpack_exception);   // Was exception pending?
3377   __ jcc(Assembler::notEqual, noException);
3378   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
3379   // QQQ this is useless it was NULL above
3380   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
3381   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD);
3382   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
3383 
3384   __ verify_oop(rax);
3385 
3386   // Overwrite the result registers with the exception results.
3387   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
3388   // I think this is useless
3389   __ movptr(Address(rsp, RegisterSaver::rdx_offset_in_bytes()), rdx);
3390 
3391   __ bind(noException);
3392 
3393   // Only register save data is on the stack.
3394   // Now restore the result registers.  Everything else is either dead
3395   // or captured in the vframeArray.
3396   RegisterSaver::restore_result_registers(masm);
3397 
3398   // All of the register save area has been popped of the stack. Only the
3399   // return address remains.
3400 
3401   // Pop all the frames we must move/replace.
3402   //
3403   // Frame picture (youngest to oldest)
3404   // 1: self-frame (no frame link)
3405   // 2: deopting frame  (no frame link)
3406   // 3: caller of deopting frame (could be compiled/interpreted).
3407   //
3408   // Note: by leaving the return address of self-frame on the stack
3409   // and using the size of frame 2 to adjust the stack
3410   // when we are done the return to frame 3 will still be on the stack.
3411 
3412   // Pop deoptimized frame
3413   __ movl(rcx, Address(rdi, Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
3414   __ addptr(rsp, rcx);
3415 
3416   // rsp should be pointing at the return address to the caller (3)
3417 
3418   // Pick up the initial fp we should save
3419   // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved)
3420   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
3421 
3422 #ifdef ASSERT
3423   // Compilers generate code that bang the stack by as much as the
3424   // interpreter would need. So this stack banging should never
3425   // trigger a fault. Verify that it does not on non product builds.
3426   if (UseStackBanging) {
3427     __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
3428     __ bang_stack_size(rbx, rcx);
3429   }
3430 #endif
3431 
3432   // Load address of array of frame pcs into rcx
3433   __ movptr(rcx, Address(rdi, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
3434 
3435   // Trash the old pc
3436   __ addptr(rsp, wordSize);
3437 
3438   // Load address of array of frame sizes into rsi
3439   __ movptr(rsi, Address(rdi, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
3440 
3441   // Load counter into rdx
3442   __ movl(rdx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
3443 
3444   // Now adjust the caller's stack to make up for the extra locals
3445   // but record the original sp so that we can save it in the skeletal interpreter
3446   // frame and the stack walking of interpreter_sender will get the unextended sp
3447   // value and not the "real" sp value.
3448 
3449   const Register sender_sp = r8;
3450 
3451   __ mov(sender_sp, rsp);
3452   __ movl(rbx, Address(rdi,
3453                        Deoptimization::UnrollBlock::
3454                        caller_adjustment_offset_in_bytes()));
3455   __ subptr(rsp, rbx);
3456 
3457   // Push interpreter frames in a loop
3458   Label loop;
3459   __ bind(loop);
3460   __ movptr(rbx, Address(rsi, 0));      // Load frame size
3461   __ subptr(rbx, 2*wordSize);           // We'll push pc and ebp by hand
3462   __ pushptr(Address(rcx, 0));          // Save return address
3463   __ enter();                           // Save old & set new ebp
3464   __ subptr(rsp, rbx);                  // Prolog
3465   // This value is corrected by layout_activation_impl
3466   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD );
3467   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), sender_sp); // Make it walkable
3468   __ mov(sender_sp, rsp);               // Pass sender_sp to next frame
3469   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
3470   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
3471   __ decrementl(rdx);                   // Decrement counter
3472   __ jcc(Assembler::notZero, loop);
3473   __ pushptr(Address(rcx, 0));          // Save final return address
3474 
3475   // Re-push self-frame
3476   __ enter();                           // Save old & set new ebp
3477 
3478   // Allocate a full sized register save area.
3479   // Return address and rbp are in place, so we allocate two less words.
3480   __ subptr(rsp, (frame_size_in_words - 2) * wordSize);
3481 
3482   // Restore frame locals after moving the frame
3483   __ movdbl(Address(rsp, RegisterSaver::xmm0_offset_in_bytes()), xmm0);
3484   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
3485 
3486   // Call C code.  Need thread but NOT official VM entry
3487   // crud.  We cannot block on this call, no GC can happen.  Call should
3488   // restore return values to their stack-slots with the new SP.
3489   //
3490   // void Deoptimization::unpack_frames(JavaThread* thread, int exec_mode)
3491 
3492   // Use rbp because the frames look interpreted now
3493   // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP.
3494   // Don't need the precise return PC here, just precise enough to point into this code blob.
3495   address the_pc = __ pc();
3496   __ set_last_Java_frame(noreg, rbp, the_pc);
3497 
3498   __ andptr(rsp, -(StackAlignmentInBytes));  // Fix stack alignment as required by ABI
3499   __ mov(c_rarg0, r15_thread);
3500   __ movl(c_rarg1, r14); // second arg: exec_mode
3501   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
3502   // Revert SP alignment after call since we're going to do some SP relative addressing below
3503   __ movptr(rsp, Address(r15_thread, JavaThread::last_Java_sp_offset()));
3504 
3505   // Set an oopmap for the call site
3506   // Use the same PC we used for the last java frame
3507   oop_maps->add_gc_map(the_pc - start,
3508                        new OopMap( frame_size_in_words, 0 ));
3509 
3510   // Clear fp AND pc
3511   __ reset_last_Java_frame(true);
3512 
3513   // Collect return values
3514   __ movdbl(xmm0, Address(rsp, RegisterSaver::xmm0_offset_in_bytes()));
3515   __ movptr(rax, Address(rsp, RegisterSaver::rax_offset_in_bytes()));
3516   // I think this is useless (throwing pc?)
3517   __ movptr(rdx, Address(rsp, RegisterSaver::rdx_offset_in_bytes()));
3518 
3519   // Pop self-frame.
3520   __ leave();                           // Epilog
3521 
3522   // Jump to interpreter
3523   __ ret(0);
3524 
3525   // Make sure all code is generated
3526   masm->flush();
3527 
3528   _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
3529   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
3530 #if INCLUDE_JVMCI
3531   if (EnableJVMCI || UseAOT) {
3532     _deopt_blob->set_uncommon_trap_offset(uncommon_trap_offset);
3533     _deopt_blob->set_implicit_exception_uncommon_trap_offset(implicit_exception_uncommon_trap_offset);
3534   }
3535 #endif
3536 }
3537 
3538 #ifdef COMPILER2
3539 //------------------------------generate_uncommon_trap_blob--------------------
3540 void SharedRuntime::generate_uncommon_trap_blob() {
3541   // Allocate space for the code
3542   ResourceMark rm;
3543   // Setup code generation tools
3544   CodeBuffer buffer("uncommon_trap_blob", 2048, 1024);
3545   MacroAssembler* masm = new MacroAssembler(&buffer);
3546 
3547   assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
3548 
3549   address start = __ pc();
3550 
3551   if (UseRTMLocking) {
3552     // Abort RTM transaction before possible nmethod deoptimization.
3553     __ xabort(0);
3554   }
3555 
3556   // Push self-frame.  We get here with a return address on the
3557   // stack, so rsp is 8-byte aligned until we allocate our frame.
3558   __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog!
3559 
3560   // No callee saved registers. rbp is assumed implicitly saved
3561   __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp);
3562 
3563   // compiler left unloaded_class_index in j_rarg0 move to where the
3564   // runtime expects it.
3565   __ movl(c_rarg1, j_rarg0);
3566 
3567   __ set_last_Java_frame(noreg, noreg, NULL);
3568 
3569   // Call C code.  Need thread but NOT official VM entry
3570   // crud.  We cannot block on this call, no GC can happen.  Call should
3571   // capture callee-saved registers as well as return values.
3572   // Thread is in rdi already.
3573   //
3574   // UnrollBlock* uncommon_trap(JavaThread* thread, jint unloaded_class_index);
3575 
3576   __ mov(c_rarg0, r15_thread);
3577   __ movl(c_rarg2, Deoptimization::Unpack_uncommon_trap);
3578   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
3579 
3580   // Set an oopmap for the call site
3581   OopMapSet* oop_maps = new OopMapSet();
3582   OopMap* map = new OopMap(SimpleRuntimeFrame::framesize, 0);
3583 
3584   // location of rbp is known implicitly by the frame sender code
3585 
3586   oop_maps->add_gc_map(__ pc() - start, map);
3587 
3588   __ reset_last_Java_frame(false);
3589 
3590   // Load UnrollBlock* into rdi
3591   __ mov(rdi, rax);
3592 
3593 #ifdef ASSERT
3594   { Label L;
3595     __ cmpptr(Address(rdi, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes()),
3596             (int32_t)Deoptimization::Unpack_uncommon_trap);
3597     __ jcc(Assembler::equal, L);
3598     __ stop("SharedRuntime::generate_deopt_blob: expected Unpack_uncommon_trap");
3599     __ bind(L);
3600   }
3601 #endif
3602 
3603   // Pop all the frames we must move/replace.
3604   //
3605   // Frame picture (youngest to oldest)
3606   // 1: self-frame (no frame link)
3607   // 2: deopting frame  (no frame link)
3608   // 3: caller of deopting frame (could be compiled/interpreted).
3609 
3610   // Pop self-frame.  We have no frame, and must rely only on rax and rsp.
3611   __ addptr(rsp, (SimpleRuntimeFrame::framesize - 2) << LogBytesPerInt); // Epilog!
3612 
3613   // Pop deoptimized frame (int)
3614   __ movl(rcx, Address(rdi,
3615                        Deoptimization::UnrollBlock::
3616                        size_of_deoptimized_frame_offset_in_bytes()));
3617   __ addptr(rsp, rcx);
3618 
3619   // rsp should be pointing at the return address to the caller (3)
3620 
3621   // Pick up the initial fp we should save
3622   // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved)
3623   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
3624 
3625 #ifdef ASSERT
3626   // Compilers generate code that bang the stack by as much as the
3627   // interpreter would need. So this stack banging should never
3628   // trigger a fault. Verify that it does not on non product builds.
3629   if (UseStackBanging) {
3630     __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
3631     __ bang_stack_size(rbx, rcx);
3632   }
3633 #endif
3634 
3635   // Load address of array of frame pcs into rcx (address*)
3636   __ movptr(rcx, Address(rdi, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
3637 
3638   // Trash the return pc
3639   __ addptr(rsp, wordSize);
3640 
3641   // Load address of array of frame sizes into rsi (intptr_t*)
3642   __ movptr(rsi, Address(rdi, Deoptimization::UnrollBlock:: frame_sizes_offset_in_bytes()));
3643 
3644   // Counter
3645   __ movl(rdx, Address(rdi, Deoptimization::UnrollBlock:: number_of_frames_offset_in_bytes())); // (int)
3646 
3647   // Now adjust the caller's stack to make up for the extra locals but
3648   // record the original sp so that we can save it in the skeletal
3649   // interpreter frame and the stack walking of interpreter_sender
3650   // will get the unextended sp value and not the "real" sp value.
3651 
3652   const Register sender_sp = r8;
3653 
3654   __ mov(sender_sp, rsp);
3655   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock:: caller_adjustment_offset_in_bytes())); // (int)
3656   __ subptr(rsp, rbx);
3657 
3658   // Push interpreter frames in a loop
3659   Label loop;
3660   __ bind(loop);
3661   __ movptr(rbx, Address(rsi, 0)); // Load frame size
3662   __ subptr(rbx, 2 * wordSize);    // We'll push pc and rbp by hand
3663   __ pushptr(Address(rcx, 0));     // Save return address
3664   __ enter();                      // Save old & set new rbp
3665   __ subptr(rsp, rbx);             // Prolog
3666   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize),
3667             sender_sp);            // Make it walkable
3668   // This value is corrected by layout_activation_impl
3669   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD );
3670   __ mov(sender_sp, rsp);          // Pass sender_sp to next frame
3671   __ addptr(rsi, wordSize);        // Bump array pointer (sizes)
3672   __ addptr(rcx, wordSize);        // Bump array pointer (pcs)
3673   __ decrementl(rdx);              // Decrement counter
3674   __ jcc(Assembler::notZero, loop);
3675   __ pushptr(Address(rcx, 0));     // Save final return address
3676 
3677   // Re-push self-frame
3678   __ enter();                 // Save old & set new rbp
3679   __ subptr(rsp, (SimpleRuntimeFrame::framesize - 4) << LogBytesPerInt);
3680                               // Prolog
3681 
3682   // Use rbp because the frames look interpreted now
3683   // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP.
3684   // Don't need the precise return PC here, just precise enough to point into this code blob.
3685   address the_pc = __ pc();
3686   __ set_last_Java_frame(noreg, rbp, the_pc);
3687 
3688   // Call C code.  Need thread but NOT official VM entry
3689   // crud.  We cannot block on this call, no GC can happen.  Call should
3690   // restore return values to their stack-slots with the new SP.
3691   // Thread is in rdi already.
3692   //
3693   // BasicType unpack_frames(JavaThread* thread, int exec_mode);
3694 
3695   __ andptr(rsp, -(StackAlignmentInBytes)); // Align SP as required by ABI
3696   __ mov(c_rarg0, r15_thread);
3697   __ movl(c_rarg1, Deoptimization::Unpack_uncommon_trap);
3698   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
3699 
3700   // Set an oopmap for the call site
3701   // Use the same PC we used for the last java frame
3702   oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0));
3703 
3704   // Clear fp AND pc
3705   __ reset_last_Java_frame(true);
3706 
3707   // Pop self-frame.
3708   __ leave();                 // Epilog
3709 
3710   // Jump to interpreter
3711   __ ret(0);
3712 
3713   // Make sure all code is generated
3714   masm->flush();
3715 
3716   _uncommon_trap_blob =  UncommonTrapBlob::create(&buffer, oop_maps,
3717                                                  SimpleRuntimeFrame::framesize >> 1);
3718 }
3719 #endif // COMPILER2
3720 
3721 
3722 //------------------------------generate_handler_blob------
3723 //
3724 // Generate a special Compile2Runtime blob that saves all registers,
3725 // and setup oopmap.
3726 //
3727 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) {
3728   assert(StubRoutines::forward_exception_entry() != NULL,
3729          "must be generated before");
3730 
3731   ResourceMark rm;
3732   OopMapSet *oop_maps = new OopMapSet();
3733   OopMap* map;
3734 
3735   // Allocate space for the code.  Setup code generation tools.
3736   CodeBuffer buffer("handler_blob", 2048, 1024);
3737   MacroAssembler* masm = new MacroAssembler(&buffer);
3738 
3739   address start   = __ pc();
3740   address call_pc = NULL;
3741   int frame_size_in_words;
3742   bool cause_return = (poll_type == POLL_AT_RETURN);
3743   bool save_vectors = (poll_type == POLL_AT_VECTOR_LOOP);
3744 
3745   if (UseRTMLocking) {
3746     // Abort RTM transaction before calling runtime
3747     // because critical section will be large and will be
3748     // aborted anyway. Also nmethod could be deoptimized.
3749     __ xabort(0);
3750   }
3751 
3752   // Make room for return address (or push it again)
3753   if (!cause_return) {
3754     __ push(rbx);
3755   }
3756 
3757   // Save registers, fpu state, and flags
3758   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words, save_vectors);
3759 
3760   // The following is basically a call_VM.  However, we need the precise
3761   // address of the call in order to generate an oopmap. Hence, we do all the
3762   // work outselves.
3763 
3764   __ set_last_Java_frame(noreg, noreg, NULL);
3765 
3766   // The return address must always be correct so that frame constructor never
3767   // sees an invalid pc.
3768 
3769   if (!cause_return) {
3770     // Get the return pc saved by the signal handler and stash it in its appropriate place on the stack.
3771     // Additionally, rbx is a callee saved register and we can look at it later to determine
3772     // if someone changed the return address for us!
3773     __ movptr(rbx, Address(r15_thread, JavaThread::saved_exception_pc_offset()));
3774     __ movptr(Address(rbp, wordSize), rbx);
3775   }
3776 
3777   // Do the call
3778   __ mov(c_rarg0, r15_thread);
3779   __ call(RuntimeAddress(call_ptr));
3780 
3781   // Set an oopmap for the call site.  This oopmap will map all
3782   // oop-registers and debug-info registers as callee-saved.  This
3783   // will allow deoptimization at this safepoint to find all possible
3784   // debug-info recordings, as well as let GC find all oops.
3785 
3786   oop_maps->add_gc_map( __ pc() - start, map);
3787 
3788   Label noException;
3789 
3790   __ reset_last_Java_frame(false);
3791 
3792   __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
3793   __ jcc(Assembler::equal, noException);
3794 
3795   // Exception pending
3796 
3797   RegisterSaver::restore_live_registers(masm, save_vectors);
3798 
3799   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3800 
3801   // No exception case
3802   __ bind(noException);
3803 
3804   Label no_adjust, bail, no_prefix, not_special;
3805   if (SafepointMechanism::uses_thread_local_poll() && !cause_return) {
3806     // If our stashed return pc was modified by the runtime we avoid touching it
3807     __ cmpptr(rbx, Address(rbp, wordSize));
3808     __ jccb(Assembler::notEqual, no_adjust);
3809 
3810     // Skip over the poll instruction.
3811     // See NativeInstruction::is_safepoint_poll()
3812     // Possible encodings:
3813     //      85 00       test   %eax,(%rax)
3814     //      85 01       test   %eax,(%rcx)
3815     //      85 02       test   %eax,(%rdx)
3816     //      85 03       test   %eax,(%rbx)
3817     //      85 06       test   %eax,(%rsi)
3818     //      85 07       test   %eax,(%rdi)
3819     //
3820     //   41 85 00       test   %eax,(%r8)
3821     //   41 85 01       test   %eax,(%r9)
3822     //   41 85 02       test   %eax,(%r10)
3823     //   41 85 03       test   %eax,(%r11)
3824     //   41 85 06       test   %eax,(%r14)
3825     //   41 85 07       test   %eax,(%r15)
3826     //
3827     //      85 04 24    test   %eax,(%rsp)
3828     //   41 85 04 24    test   %eax,(%r12)
3829     //      85 45 00    test   %eax,0x0(%rbp)
3830     //   41 85 45 00    test   %eax,0x0(%r13)
3831 
3832     __ cmpb(Address(rbx, 0), NativeTstRegMem::instruction_rex_b_prefix);
3833     __ jcc(Assembler::notEqual, no_prefix);
3834     __ addptr(rbx, 1);
3835     __ bind(no_prefix);
3836 #ifdef ASSERT
3837     __ movptr(rax, rbx); // remember where 0x85 should be, for verification below
3838 #endif
3839     // r12/r13/rsp/rbp base encoding takes 3 bytes with the following register values:
3840     // r12/rsp 0x04
3841     // r13/rbp 0x05
3842     __ movzbq(rcx, Address(rbx, 1));
3843     __ andptr(rcx, 0x07); // looking for 0x04 .. 0x05
3844     __ subptr(rcx, 4);    // looking for 0x00 .. 0x01
3845     __ cmpptr(rcx, 1);
3846     __ jcc(Assembler::above, not_special);
3847     __ addptr(rbx, 1);
3848     __ bind(not_special);
3849 #ifdef ASSERT
3850     // Verify the correct encoding of the poll we're about to skip.
3851     __ cmpb(Address(rax, 0), NativeTstRegMem::instruction_code_memXregl);
3852     __ jcc(Assembler::notEqual, bail);
3853     // Mask out the modrm bits
3854     __ testb(Address(rax, 1), NativeTstRegMem::modrm_mask);
3855     // rax encodes to 0, so if the bits are nonzero it's incorrect
3856     __ jcc(Assembler::notZero, bail);
3857 #endif
3858     // Adjust return pc forward to step over the safepoint poll instruction
3859     __ addptr(rbx, 2);
3860     __ movptr(Address(rbp, wordSize), rbx);
3861   }
3862 
3863   __ bind(no_adjust);
3864   // Normal exit, restore registers and exit.
3865   RegisterSaver::restore_live_registers(masm, save_vectors);
3866   __ ret(0);
3867 
3868 #ifdef ASSERT
3869   __ bind(bail);
3870   __ stop("Attempting to adjust pc to skip safepoint poll but the return point is not what we expected");
3871 #endif
3872 
3873   // Make sure all code is generated
3874   masm->flush();
3875 
3876   // Fill-out other meta info
3877   return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
3878 }
3879 
3880 //
3881 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
3882 //
3883 // Generate a stub that calls into vm to find out the proper destination
3884 // of a java call. All the argument registers are live at this point
3885 // but since this is generic code we don't know what they are and the caller
3886 // must do any gc of the args.
3887 //
3888 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
3889   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
3890 
3891   // allocate space for the code
3892   ResourceMark rm;
3893 
3894   CodeBuffer buffer(name, 1000, 512);
3895   MacroAssembler* masm                = new MacroAssembler(&buffer);
3896 
3897   int frame_size_in_words;
3898 
3899   OopMapSet *oop_maps = new OopMapSet();
3900   OopMap* map = NULL;
3901 
3902   int start = __ offset();
3903 
3904   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
3905 
3906   int frame_complete = __ offset();
3907 
3908   __ set_last_Java_frame(noreg, noreg, NULL);
3909 
3910   __ mov(c_rarg0, r15_thread);
3911 
3912   __ call(RuntimeAddress(destination));
3913 
3914 
3915   // Set an oopmap for the call site.
3916   // We need this not only for callee-saved registers, but also for volatile
3917   // registers that the compiler might be keeping live across a safepoint.
3918 
3919   oop_maps->add_gc_map( __ offset() - start, map);
3920 
3921   // rax contains the address we are going to jump to assuming no exception got installed
3922 
3923   // clear last_Java_sp
3924   __ reset_last_Java_frame(false);
3925   // check for pending exceptions
3926   Label pending;
3927   __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
3928   __ jcc(Assembler::notEqual, pending);
3929 
3930   // get the returned Method*
3931   __ get_vm_result_2(rbx, r15_thread);
3932   __ movptr(Address(rsp, RegisterSaver::rbx_offset_in_bytes()), rbx);
3933 
3934   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
3935 
3936   RegisterSaver::restore_live_registers(masm);
3937 
3938   // We are back the the original state on entry and ready to go.
3939 
3940   __ jmp(rax);
3941 
3942   // Pending exception after the safepoint
3943 
3944   __ bind(pending);
3945 
3946   RegisterSaver::restore_live_registers(masm);
3947 
3948   // exception pending => remove activation and forward to exception handler
3949 
3950   __ movptr(Address(r15_thread, JavaThread::vm_result_offset()), (int)NULL_WORD);
3951 
3952   __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
3953   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3954 
3955   // -------------
3956   // make sure all code is generated
3957   masm->flush();
3958 
3959   // return the  blob
3960   // frame_size_words or bytes??
3961   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_words, oop_maps, true);
3962 }
3963 
3964 
3965 //------------------------------Montgomery multiplication------------------------
3966 //
3967 
3968 #ifndef _WINDOWS
3969 
3970 #define ASM_SUBTRACT
3971 
3972 #ifdef ASM_SUBTRACT
3973 // Subtract 0:b from carry:a.  Return carry.
3974 static unsigned long
3975 sub(unsigned long a[], unsigned long b[], unsigned long carry, long len) {
3976   long i = 0, cnt = len;
3977   unsigned long tmp;
3978   asm volatile("clc; "
3979                "0: ; "
3980                "mov (%[b], %[i], 8), %[tmp]; "
3981                "sbb %[tmp], (%[a], %[i], 8); "
3982                "inc %[i]; dec %[cnt]; "
3983                "jne 0b; "
3984                "mov %[carry], %[tmp]; sbb $0, %[tmp]; "
3985                : [i]"+r"(i), [cnt]"+r"(cnt), [tmp]"=&r"(tmp)
3986                : [a]"r"(a), [b]"r"(b), [carry]"r"(carry)
3987                : "memory");
3988   return tmp;
3989 }
3990 #else // ASM_SUBTRACT
3991 typedef int __attribute__((mode(TI))) int128;
3992 
3993 // Subtract 0:b from carry:a.  Return carry.
3994 static unsigned long
3995 sub(unsigned long a[], unsigned long b[], unsigned long carry, int len) {
3996   int128 tmp = 0;
3997   int i;
3998   for (i = 0; i < len; i++) {
3999     tmp += a[i];
4000     tmp -= b[i];
4001     a[i] = tmp;
4002     tmp >>= 64;
4003     assert(-1 <= tmp && tmp <= 0, "invariant");
4004   }
4005   return tmp + carry;
4006 }
4007 #endif // ! ASM_SUBTRACT
4008 
4009 // Multiply (unsigned) Long A by Long B, accumulating the double-
4010 // length result into the accumulator formed of T0, T1, and T2.
4011 #define MACC(A, B, T0, T1, T2)                                  \
4012 do {                                                            \
4013   unsigned long hi, lo;                                         \
4014   __asm__ ("mul %5; add %%rax, %2; adc %%rdx, %3; adc $0, %4"   \
4015            : "=&d"(hi), "=a"(lo), "+r"(T0), "+r"(T1), "+g"(T2)  \
4016            : "r"(A), "a"(B) : "cc");                            \
4017  } while(0)
4018 
4019 // As above, but add twice the double-length result into the
4020 // accumulator.
4021 #define MACC2(A, B, T0, T1, T2)                                 \
4022 do {                                                            \
4023   unsigned long hi, lo;                                         \
4024   __asm__ ("mul %5; add %%rax, %2; adc %%rdx, %3; adc $0, %4; " \
4025            "add %%rax, %2; adc %%rdx, %3; adc $0, %4"           \
4026            : "=&d"(hi), "=a"(lo), "+r"(T0), "+r"(T1), "+g"(T2)  \
4027            : "r"(A), "a"(B) : "cc");                            \
4028  } while(0)
4029 
4030 // Fast Montgomery multiplication.  The derivation of the algorithm is
4031 // in  A Cryptographic Library for the Motorola DSP56000,
4032 // Dusse and Kaliski, Proc. EUROCRYPT 90, pp. 230-237.
4033 
4034 static void __attribute__((noinline))
4035 montgomery_multiply(unsigned long a[], unsigned long b[], unsigned long n[],
4036                     unsigned long m[], unsigned long inv, int len) {
4037   unsigned long t0 = 0, t1 = 0, t2 = 0; // Triple-precision accumulator
4038   int i;
4039 
4040   assert(inv * n[0] == -1UL, "broken inverse in Montgomery multiply");
4041 
4042   for (i = 0; i < len; i++) {
4043     int j;
4044     for (j = 0; j < i; j++) {
4045       MACC(a[j], b[i-j], t0, t1, t2);
4046       MACC(m[j], n[i-j], t0, t1, t2);
4047     }
4048     MACC(a[i], b[0], t0, t1, t2);
4049     m[i] = t0 * inv;
4050     MACC(m[i], n[0], t0, t1, t2);
4051 
4052     assert(t0 == 0, "broken Montgomery multiply");
4053 
4054     t0 = t1; t1 = t2; t2 = 0;
4055   }
4056 
4057   for (i = len; i < 2*len; i++) {
4058     int j;
4059     for (j = i-len+1; j < len; j++) {
4060       MACC(a[j], b[i-j], t0, t1, t2);
4061       MACC(m[j], n[i-j], t0, t1, t2);
4062     }
4063     m[i-len] = t0;
4064     t0 = t1; t1 = t2; t2 = 0;
4065   }
4066 
4067   while (t0)
4068     t0 = sub(m, n, t0, len);
4069 }
4070 
4071 // Fast Montgomery squaring.  This uses asymptotically 25% fewer
4072 // multiplies so it should be up to 25% faster than Montgomery
4073 // multiplication.  However, its loop control is more complex and it
4074 // may actually run slower on some machines.
4075 
4076 static void __attribute__((noinline))
4077 montgomery_square(unsigned long a[], unsigned long n[],
4078                   unsigned long m[], unsigned long inv, int len) {
4079   unsigned long t0 = 0, t1 = 0, t2 = 0; // Triple-precision accumulator
4080   int i;
4081 
4082   assert(inv * n[0] == -1UL, "broken inverse in Montgomery multiply");
4083 
4084   for (i = 0; i < len; i++) {
4085     int j;
4086     int end = (i+1)/2;
4087     for (j = 0; j < end; j++) {
4088       MACC2(a[j], a[i-j], t0, t1, t2);
4089       MACC(m[j], n[i-j], t0, t1, t2);
4090     }
4091     if ((i & 1) == 0) {
4092       MACC(a[j], a[j], t0, t1, t2);
4093     }
4094     for (; j < i; j++) {
4095       MACC(m[j], n[i-j], t0, t1, t2);
4096     }
4097     m[i] = t0 * inv;
4098     MACC(m[i], n[0], t0, t1, t2);
4099 
4100     assert(t0 == 0, "broken Montgomery square");
4101 
4102     t0 = t1; t1 = t2; t2 = 0;
4103   }
4104 
4105   for (i = len; i < 2*len; i++) {
4106     int start = i-len+1;
4107     int end = start + (len - start)/2;
4108     int j;
4109     for (j = start; j < end; j++) {
4110       MACC2(a[j], a[i-j], t0, t1, t2);
4111       MACC(m[j], n[i-j], t0, t1, t2);
4112     }
4113     if ((i & 1) == 0) {
4114       MACC(a[j], a[j], t0, t1, t2);
4115     }
4116     for (; j < len; j++) {
4117       MACC(m[j], n[i-j], t0, t1, t2);
4118     }
4119     m[i-len] = t0;
4120     t0 = t1; t1 = t2; t2 = 0;
4121   }
4122 
4123   while (t0)
4124     t0 = sub(m, n, t0, len);
4125 }
4126 
4127 // Swap words in a longword.
4128 static unsigned long swap(unsigned long x) {
4129   return (x << 32) | (x >> 32);
4130 }
4131 
4132 // Copy len longwords from s to d, word-swapping as we go.  The
4133 // destination array is reversed.
4134 static void reverse_words(unsigned long *s, unsigned long *d, int len) {
4135   d += len;
4136   while(len-- > 0) {
4137     d--;
4138     *d = swap(*s);
4139     s++;
4140   }
4141 }
4142 
4143 // The threshold at which squaring is advantageous was determined
4144 // experimentally on an i7-3930K (Ivy Bridge) CPU @ 3.5GHz.
4145 #define MONTGOMERY_SQUARING_THRESHOLD 64
4146 
4147 void SharedRuntime::montgomery_multiply(jint *a_ints, jint *b_ints, jint *n_ints,
4148                                         jint len, jlong inv,
4149                                         jint *m_ints) {
4150   assert(len % 2 == 0, "array length in montgomery_multiply must be even");
4151   int longwords = len/2;
4152 
4153   // Make very sure we don't use so much space that the stack might
4154   // overflow.  512 jints corresponds to an 16384-bit integer and
4155   // will use here a total of 8k bytes of stack space.
4156   int total_allocation = longwords * sizeof (unsigned long) * 4;
4157   guarantee(total_allocation <= 8192, "must be");
4158   unsigned long *scratch = (unsigned long *)alloca(total_allocation);
4159 
4160   // Local scratch arrays
4161   unsigned long
4162     *a = scratch + 0 * longwords,
4163     *b = scratch + 1 * longwords,
4164     *n = scratch + 2 * longwords,
4165     *m = scratch + 3 * longwords;
4166 
4167   reverse_words((unsigned long *)a_ints, a, longwords);
4168   reverse_words((unsigned long *)b_ints, b, longwords);
4169   reverse_words((unsigned long *)n_ints, n, longwords);
4170 
4171   ::montgomery_multiply(a, b, n, m, (unsigned long)inv, longwords);
4172 
4173   reverse_words(m, (unsigned long *)m_ints, longwords);
4174 }
4175 
4176 void SharedRuntime::montgomery_square(jint *a_ints, jint *n_ints,
4177                                       jint len, jlong inv,
4178                                       jint *m_ints) {
4179   assert(len % 2 == 0, "array length in montgomery_square must be even");
4180   int longwords = len/2;
4181 
4182   // Make very sure we don't use so much space that the stack might
4183   // overflow.  512 jints corresponds to an 16384-bit integer and
4184   // will use here a total of 6k bytes of stack space.
4185   int total_allocation = longwords * sizeof (unsigned long) * 3;
4186   guarantee(total_allocation <= 8192, "must be");
4187   unsigned long *scratch = (unsigned long *)alloca(total_allocation);
4188 
4189   // Local scratch arrays
4190   unsigned long
4191     *a = scratch + 0 * longwords,
4192     *n = scratch + 1 * longwords,
4193     *m = scratch + 2 * longwords;
4194 
4195   reverse_words((unsigned long *)a_ints, a, longwords);
4196   reverse_words((unsigned long *)n_ints, n, longwords);
4197 
4198   if (len >= MONTGOMERY_SQUARING_THRESHOLD) {
4199     ::montgomery_square(a, n, m, (unsigned long)inv, longwords);
4200   } else {
4201     ::montgomery_multiply(a, a, n, m, (unsigned long)inv, longwords);
4202   }
4203 
4204   reverse_words(m, (unsigned long *)m_ints, longwords);
4205 }
4206 
4207 #endif // WINDOWS
4208 
4209 #ifdef COMPILER2
4210 // This is here instead of runtime_x86_64.cpp because it uses SimpleRuntimeFrame
4211 //
4212 //------------------------------generate_exception_blob---------------------------
4213 // creates exception blob at the end
4214 // Using exception blob, this code is jumped from a compiled method.
4215 // (see emit_exception_handler in x86_64.ad file)
4216 //
4217 // Given an exception pc at a call we call into the runtime for the
4218 // handler in this method. This handler might merely restore state
4219 // (i.e. callee save registers) unwind the frame and jump to the
4220 // exception handler for the nmethod if there is no Java level handler
4221 // for the nmethod.
4222 //
4223 // This code is entered with a jmp.
4224 //
4225 // Arguments:
4226 //   rax: exception oop
4227 //   rdx: exception pc
4228 //
4229 // Results:
4230 //   rax: exception oop
4231 //   rdx: exception pc in caller or ???
4232 //   destination: exception handler of caller
4233 //
4234 // Note: the exception pc MUST be at a call (precise debug information)
4235 //       Registers rax, rdx, rcx, rsi, rdi, r8-r11 are not callee saved.
4236 //
4237 
4238 void OptoRuntime::generate_exception_blob() {
4239   assert(!OptoRuntime::is_callee_saved_register(RDX_num), "");
4240   assert(!OptoRuntime::is_callee_saved_register(RAX_num), "");
4241   assert(!OptoRuntime::is_callee_saved_register(RCX_num), "");
4242 
4243   assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
4244 
4245   // Allocate space for the code
4246   ResourceMark rm;
4247   // Setup code generation tools
4248   CodeBuffer buffer("exception_blob", 2048, 1024);
4249   MacroAssembler* masm = new MacroAssembler(&buffer);
4250 
4251 
4252   address start = __ pc();
4253 
4254   // Exception pc is 'return address' for stack walker
4255   __ push(rdx);
4256   __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Prolog
4257 
4258   // Save callee-saved registers.  See x86_64.ad.
4259 
4260   // rbp is an implicitly saved callee saved register (i.e., the calling
4261   // convention will save/restore it in the prolog/epilog). Other than that
4262   // there are no callee save registers now that adapter frames are gone.
4263 
4264   __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp);
4265 
4266   // Store exception in Thread object. We cannot pass any arguments to the
4267   // handle_exception call, since we do not want to make any assumption
4268   // about the size of the frame where the exception happened in.
4269   // c_rarg0 is either rdi (Linux) or rcx (Windows).
4270   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()),rax);
4271   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx);
4272 
4273   // This call does all the hard work.  It checks if an exception handler
4274   // exists in the method.
4275   // If so, it returns the handler address.
4276   // If not, it prepares for stack-unwinding, restoring the callee-save
4277   // registers of the frame being removed.
4278   //
4279   // address OptoRuntime::handle_exception_C(JavaThread* thread)
4280 
4281   // At a method handle call, the stack may not be properly aligned
4282   // when returning with an exception.
4283   address the_pc = __ pc();
4284   __ set_last_Java_frame(noreg, noreg, the_pc);
4285   __ mov(c_rarg0, r15_thread);
4286   __ andptr(rsp, -(StackAlignmentInBytes));    // Align stack
4287   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, OptoRuntime::handle_exception_C)));
4288 
4289   // Set an oopmap for the call site.  This oopmap will only be used if we
4290   // are unwinding the stack.  Hence, all locations will be dead.
4291   // Callee-saved registers will be the same as the frame above (i.e.,
4292   // handle_exception_stub), since they were restored when we got the
4293   // exception.
4294 
4295   OopMapSet* oop_maps = new OopMapSet();
4296 
4297   oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0));
4298 
4299   __ reset_last_Java_frame(false);
4300 
4301   // Restore callee-saved registers
4302 
4303   // rbp is an implicitly saved callee-saved register (i.e., the calling
4304   // convention will save restore it in prolog/epilog) Other than that
4305   // there are no callee save registers now that adapter frames are gone.
4306 
4307   __ movptr(rbp, Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt));
4308 
4309   __ addptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog
4310   __ pop(rdx);                  // No need for exception pc anymore
4311 
4312   // rax: exception handler
4313 
4314   // We have a handler in rax (could be deopt blob).
4315   __ mov(r8, rax);
4316 
4317   // Get the exception oop
4318   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
4319   // Get the exception pc in case we are deoptimized
4320   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
4321 #ifdef ASSERT
4322   __ movptr(Address(r15_thread, JavaThread::exception_handler_pc_offset()), (int)NULL_WORD);
4323   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int)NULL_WORD);
4324 #endif
4325   // Clear the exception oop so GC no longer processes it as a root.
4326   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int)NULL_WORD);
4327 
4328   // rax: exception oop
4329   // r8:  exception handler
4330   // rdx: exception pc
4331   // Jump to handler
4332 
4333   __ jmp(r8);
4334 
4335   // Make sure all code is generated
4336   masm->flush();
4337 
4338   // Set exception blob
4339   _exception_blob =  ExceptionBlob::create(&buffer, oop_maps, SimpleRuntimeFrame::framesize >> 1);
4340 }
4341 #endif // COMPILER2
4342 
4343 BufferedValueTypeBlob* SharedRuntime::generate_buffered_value_type_adapter(const ValueKlass* vk) {
4344   BufferBlob* buf = BufferBlob::create("value types pack/unpack", 16 * K);
4345   CodeBuffer buffer(buf);
4346   short buffer_locs[20];
4347   buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
4348                                          sizeof(buffer_locs)/sizeof(relocInfo));
4349 
4350   MacroAssembler _masm(&buffer);
4351   MacroAssembler* masm = &_masm;
4352 
4353   const Array<SigEntry>* sig_vk = vk->extended_sig();
4354   const Array<VMRegPair>* regs = vk->return_regs();
4355 
4356   int pack_fields_off = __ offset();
4357 
4358   int j = 1;
4359   for (int i = 0; i < sig_vk->length(); i++) {
4360     BasicType bt = sig_vk->at(i)._bt;
4361     if (bt == T_VALUETYPE) {
4362       continue;
4363     }
4364     if (bt == T_VOID) {
4365       if (sig_vk->at(i-1)._bt == T_LONG ||
4366           sig_vk->at(i-1)._bt == T_DOUBLE) {
4367         j++;
4368       }
4369       continue;
4370     }
4371     int off = sig_vk->at(i)._offset;
4372     VMRegPair pair = regs->at(j);
4373     VMReg r_1 = pair.first();
4374     VMReg r_2 = pair.second();
4375     Address to(rax, off);
4376     if (bt == T_FLOAT) {
4377       __ movflt(to, r_1->as_XMMRegister());
4378     } else if (bt == T_DOUBLE) {
4379       __ movdbl(to, r_1->as_XMMRegister());
4380     } else if (bt == T_OBJECT || bt == T_VALUETYPEPTR || bt == T_ARRAY) {
4381       __ store_heap_oop(to, r_1->as_Register());
4382     } else {
4383       assert(is_java_primitive(bt), "unexpected basic type");
4384       size_t size_in_bytes = type2aelembytes(bt);
4385       __ store_sized_value(to, r_1->as_Register(), size_in_bytes);
4386     }
4387     j++;
4388   }
4389   assert(j == regs->length(), "missed a field?");
4390 
4391   __ ret(0);
4392 
4393   int unpack_fields_off = __ offset();
4394 
4395   j = 1;
4396   for (int i = 0; i < sig_vk->length(); i++) {
4397     BasicType bt = sig_vk->at(i)._bt;
4398     if (bt == T_VALUETYPE) {
4399       continue;
4400     }
4401     if (bt == T_VOID) {
4402       if (sig_vk->at(i-1)._bt == T_LONG ||
4403           sig_vk->at(i-1)._bt == T_DOUBLE) {
4404         j++;
4405       }
4406       continue;
4407     }
4408     int off = sig_vk->at(i)._offset;
4409     VMRegPair pair = regs->at(j);
4410     VMReg r_1 = pair.first();
4411     VMReg r_2 = pair.second();
4412     Address from(rax, off);
4413     if (bt == T_FLOAT) {
4414       __ movflt(r_1->as_XMMRegister(), from);
4415     } else if (bt == T_DOUBLE) {
4416       __ movdbl(r_1->as_XMMRegister(), from);
4417     } else if (bt == T_OBJECT || bt == T_VALUETYPEPTR || bt == T_ARRAY) {
4418       __ load_heap_oop(r_1->as_Register(), from);
4419     } else {
4420       assert(is_java_primitive(bt), "unexpected basic type");
4421       size_t size_in_bytes = type2aelembytes(bt);
4422       __ load_sized_value(r_1->as_Register(), from, size_in_bytes, bt != T_CHAR && bt != T_BOOLEAN);
4423     }
4424     j++;
4425   }
4426   assert(j == regs->length(), "missed a field?");
4427 
4428   if (StressValueTypeReturnedAsFields) {
4429     __ load_klass(rax, rax);
4430     __ orptr(rax, 1);
4431   }
4432 
4433   __ ret(0);
4434 
4435   __ flush();
4436 
4437   return BufferedValueTypeBlob::create(&buffer, pack_fields_off, unpack_fields_off);
4438 }