1 /*
   2  * Copyright (c) 2005, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_Defs.hpp"
  28 #include "c1/c1_FrameMap.hpp"
  29 #include "c1/c1_Instruction.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_LIRGenerator.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArrayKlass.hpp"
  34 #include "ci/ciInstance.hpp"
  35 #include "ci/ciObjArray.hpp"
  36 #include "ci/ciUtilities.hpp"
  37 #include "ci/ciValueArrayKlass.hpp"
  38 #include "ci/ciValueKlass.hpp"
  39 #include "gc/shared/barrierSet.hpp"
  40 #include "gc/shared/c1/barrierSetC1.hpp"
  41 #include "runtime/arguments.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 #include "runtime/stubRoutines.hpp"
  44 #include "runtime/vm_version.hpp"
  45 #include "utilities/bitMap.inline.hpp"
  46 #include "utilities/macros.hpp"
  47 
  48 #ifdef ASSERT
  49 #define __ gen()->lir(__FILE__, __LINE__)->
  50 #else
  51 #define __ gen()->lir()->
  52 #endif
  53 
  54 #ifndef PATCHED_ADDR
  55 #define PATCHED_ADDR  (max_jint)
  56 #endif
  57 
  58 void PhiResolverState::reset() {
  59   _virtual_operands.clear();
  60   _other_operands.clear();
  61   _vreg_table.clear();
  62 }
  63 
  64 
  65 //--------------------------------------------------------------
  66 // PhiResolver
  67 
  68 // Resolves cycles:
  69 //
  70 //  r1 := r2  becomes  temp := r1
  71 //  r2 := r1           r1 := r2
  72 //                     r2 := temp
  73 // and orders moves:
  74 //
  75 //  r2 := r3  becomes  r1 := r2
  76 //  r1 := r2           r2 := r3
  77 
  78 PhiResolver::PhiResolver(LIRGenerator* gen)
  79  : _gen(gen)
  80  , _state(gen->resolver_state())
  81  , _temp(LIR_OprFact::illegalOpr)
  82 {
  83   // reinitialize the shared state arrays
  84   _state.reset();
  85 }
  86 
  87 
  88 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
  89   assert(src->is_valid(), "");
  90   assert(dest->is_valid(), "");
  91   __ move(src, dest);
  92 }
  93 
  94 
  95 void PhiResolver::move_temp_to(LIR_Opr dest) {
  96   assert(_temp->is_valid(), "");
  97   emit_move(_temp, dest);
  98   NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
  99 }
 100 
 101 
 102 void PhiResolver::move_to_temp(LIR_Opr src) {
 103   assert(_temp->is_illegal(), "");
 104   _temp = _gen->new_register(src->type());
 105   emit_move(src, _temp);
 106 }
 107 
 108 
 109 // Traverse assignment graph in depth first order and generate moves in post order
 110 // ie. two assignments: b := c, a := b start with node c:
 111 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
 112 // Generates moves in this order: move b to a and move c to b
 113 // ie. cycle a := b, b := a start with node a
 114 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
 115 // Generates moves in this order: move b to temp, move a to b, move temp to a
 116 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
 117   if (!dest->visited()) {
 118     dest->set_visited();
 119     for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
 120       move(dest, dest->destination_at(i));
 121     }
 122   } else if (!dest->start_node()) {
 123     // cylce in graph detected
 124     assert(_loop == NULL, "only one loop valid!");
 125     _loop = dest;
 126     move_to_temp(src->operand());
 127     return;
 128   } // else dest is a start node
 129 
 130   if (!dest->assigned()) {
 131     if (_loop == dest) {
 132       move_temp_to(dest->operand());
 133       dest->set_assigned();
 134     } else if (src != NULL) {
 135       emit_move(src->operand(), dest->operand());
 136       dest->set_assigned();
 137     }
 138   }
 139 }
 140 
 141 
 142 PhiResolver::~PhiResolver() {
 143   int i;
 144   // resolve any cycles in moves from and to virtual registers
 145   for (i = virtual_operands().length() - 1; i >= 0; i --) {
 146     ResolveNode* node = virtual_operands().at(i);
 147     if (!node->visited()) {
 148       _loop = NULL;
 149       move(NULL, node);
 150       node->set_start_node();
 151       assert(_temp->is_illegal(), "move_temp_to() call missing");
 152     }
 153   }
 154 
 155   // generate move for move from non virtual register to abitrary destination
 156   for (i = other_operands().length() - 1; i >= 0; i --) {
 157     ResolveNode* node = other_operands().at(i);
 158     for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
 159       emit_move(node->operand(), node->destination_at(j)->operand());
 160     }
 161   }
 162 }
 163 
 164 
 165 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
 166   ResolveNode* node;
 167   if (opr->is_virtual()) {
 168     int vreg_num = opr->vreg_number();
 169     node = vreg_table().at_grow(vreg_num, NULL);
 170     assert(node == NULL || node->operand() == opr, "");
 171     if (node == NULL) {
 172       node = new ResolveNode(opr);
 173       vreg_table().at_put(vreg_num, node);
 174     }
 175     // Make sure that all virtual operands show up in the list when
 176     // they are used as the source of a move.
 177     if (source && !virtual_operands().contains(node)) {
 178       virtual_operands().append(node);
 179     }
 180   } else {
 181     assert(source, "");
 182     node = new ResolveNode(opr);
 183     other_operands().append(node);
 184   }
 185   return node;
 186 }
 187 
 188 
 189 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
 190   assert(dest->is_virtual(), "");
 191   // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
 192   assert(src->is_valid(), "");
 193   assert(dest->is_valid(), "");
 194   ResolveNode* source = source_node(src);
 195   source->append(destination_node(dest));
 196 }
 197 
 198 
 199 //--------------------------------------------------------------
 200 // LIRItem
 201 
 202 void LIRItem::set_result(LIR_Opr opr) {
 203   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
 204   value()->set_operand(opr);
 205 
 206   if (opr->is_virtual()) {
 207     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
 208   }
 209 
 210   _result = opr;
 211 }
 212 
 213 void LIRItem::load_item() {
 214   if (result()->is_illegal()) {
 215     // update the items result
 216     _result = value()->operand();
 217   }
 218   if (!result()->is_register()) {
 219     LIR_Opr reg = _gen->new_register(value()->type());
 220     __ move(result(), reg);
 221     if (result()->is_constant()) {
 222       _result = reg;
 223     } else {
 224       set_result(reg);
 225     }
 226   }
 227 }
 228 
 229 
 230 void LIRItem::load_for_store(BasicType type) {
 231   if (_gen->can_store_as_constant(value(), type)) {
 232     _result = value()->operand();
 233     if (!_result->is_constant()) {
 234       _result = LIR_OprFact::value_type(value()->type());
 235     }
 236   } else if (type == T_BYTE || type == T_BOOLEAN) {
 237     load_byte_item();
 238   } else {
 239     load_item();
 240   }
 241 }
 242 
 243 void LIRItem::load_item_force(LIR_Opr reg) {
 244   LIR_Opr r = result();
 245   if (r != reg) {
 246 #if !defined(ARM) && !defined(E500V2)
 247     if (r->type() != reg->type()) {
 248       // moves between different types need an intervening spill slot
 249       r = _gen->force_to_spill(r, reg->type());
 250     }
 251 #endif
 252     __ move(r, reg);
 253     _result = reg;
 254   }
 255 }
 256 
 257 ciObject* LIRItem::get_jobject_constant() const {
 258   ObjectType* oc = type()->as_ObjectType();
 259   if (oc) {
 260     return oc->constant_value();
 261   }
 262   return NULL;
 263 }
 264 
 265 
 266 jint LIRItem::get_jint_constant() const {
 267   assert(is_constant() && value() != NULL, "");
 268   assert(type()->as_IntConstant() != NULL, "type check");
 269   return type()->as_IntConstant()->value();
 270 }
 271 
 272 
 273 jint LIRItem::get_address_constant() const {
 274   assert(is_constant() && value() != NULL, "");
 275   assert(type()->as_AddressConstant() != NULL, "type check");
 276   return type()->as_AddressConstant()->value();
 277 }
 278 
 279 
 280 jfloat LIRItem::get_jfloat_constant() const {
 281   assert(is_constant() && value() != NULL, "");
 282   assert(type()->as_FloatConstant() != NULL, "type check");
 283   return type()->as_FloatConstant()->value();
 284 }
 285 
 286 
 287 jdouble LIRItem::get_jdouble_constant() const {
 288   assert(is_constant() && value() != NULL, "");
 289   assert(type()->as_DoubleConstant() != NULL, "type check");
 290   return type()->as_DoubleConstant()->value();
 291 }
 292 
 293 
 294 jlong LIRItem::get_jlong_constant() const {
 295   assert(is_constant() && value() != NULL, "");
 296   assert(type()->as_LongConstant() != NULL, "type check");
 297   return type()->as_LongConstant()->value();
 298 }
 299 
 300 
 301 
 302 //--------------------------------------------------------------
 303 
 304 
 305 void LIRGenerator::block_do_prolog(BlockBegin* block) {
 306 #ifndef PRODUCT
 307   if (PrintIRWithLIR) {
 308     block->print();
 309   }
 310 #endif
 311 
 312   // set up the list of LIR instructions
 313   assert(block->lir() == NULL, "LIR list already computed for this block");
 314   _lir = new LIR_List(compilation(), block);
 315   block->set_lir(_lir);
 316 
 317   __ branch_destination(block->label());
 318 
 319   if (LIRTraceExecution &&
 320       Compilation::current()->hir()->start()->block_id() != block->block_id() &&
 321       !block->is_set(BlockBegin::exception_entry_flag)) {
 322     assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
 323     trace_block_entry(block);
 324   }
 325 }
 326 
 327 
 328 void LIRGenerator::block_do_epilog(BlockBegin* block) {
 329 #ifndef PRODUCT
 330   if (PrintIRWithLIR) {
 331     tty->cr();
 332   }
 333 #endif
 334 
 335   // LIR_Opr for unpinned constants shouldn't be referenced by other
 336   // blocks so clear them out after processing the block.
 337   for (int i = 0; i < _unpinned_constants.length(); i++) {
 338     _unpinned_constants.at(i)->clear_operand();
 339   }
 340   _unpinned_constants.trunc_to(0);
 341 
 342   // clear our any registers for other local constants
 343   _constants.trunc_to(0);
 344   _reg_for_constants.trunc_to(0);
 345 }
 346 
 347 
 348 void LIRGenerator::block_do(BlockBegin* block) {
 349   CHECK_BAILOUT();
 350 
 351   block_do_prolog(block);
 352   set_block(block);
 353 
 354   for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
 355     if (instr->is_pinned()) do_root(instr);
 356   }
 357 
 358   set_block(NULL);
 359   block_do_epilog(block);
 360 }
 361 
 362 
 363 //-------------------------LIRGenerator-----------------------------
 364 
 365 // This is where the tree-walk starts; instr must be root;
 366 void LIRGenerator::do_root(Value instr) {
 367   CHECK_BAILOUT();
 368 
 369   InstructionMark im(compilation(), instr);
 370 
 371   assert(instr->is_pinned(), "use only with roots");
 372   assert(instr->subst() == instr, "shouldn't have missed substitution");
 373 
 374   instr->visit(this);
 375 
 376   assert(!instr->has_uses() || instr->operand()->is_valid() ||
 377          instr->as_Constant() != NULL || bailed_out(), "invalid item set");
 378 }
 379 
 380 
 381 // This is called for each node in tree; the walk stops if a root is reached
 382 void LIRGenerator::walk(Value instr) {
 383   InstructionMark im(compilation(), instr);
 384   //stop walk when encounter a root
 385   if ((instr->is_pinned() && instr->as_Phi() == NULL) || instr->operand()->is_valid()) {
 386     assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
 387   } else {
 388     assert(instr->subst() == instr, "shouldn't have missed substitution");
 389     instr->visit(this);
 390     // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
 391   }
 392 }
 393 
 394 
 395 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
 396   assert(state != NULL, "state must be defined");
 397 
 398 #ifndef PRODUCT
 399   state->verify();
 400 #endif
 401 
 402   ValueStack* s = state;
 403   for_each_state(s) {
 404     if (s->kind() == ValueStack::EmptyExceptionState) {
 405       assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
 406       continue;
 407     }
 408 
 409     int index;
 410     Value value;
 411     for_each_stack_value(s, index, value) {
 412       assert(value->subst() == value, "missed substitution");
 413       if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 414         walk(value);
 415         assert(value->operand()->is_valid(), "must be evaluated now");
 416       }
 417     }
 418 
 419     int bci = s->bci();
 420     IRScope* scope = s->scope();
 421     ciMethod* method = scope->method();
 422 
 423     MethodLivenessResult liveness = method->liveness_at_bci(bci);
 424     if (bci == SynchronizationEntryBCI) {
 425       if (x->as_ExceptionObject() || x->as_Throw()) {
 426         // all locals are dead on exit from the synthetic unlocker
 427         liveness.clear();
 428       } else {
 429         assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
 430       }
 431     }
 432     if (!liveness.is_valid()) {
 433       // Degenerate or breakpointed method.
 434       bailout("Degenerate or breakpointed method");
 435     } else {
 436       assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
 437       for_each_local_value(s, index, value) {
 438         assert(value->subst() == value, "missed substition");
 439         if (liveness.at(index) && !value->type()->is_illegal()) {
 440           if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 441             walk(value);
 442             assert(value->operand()->is_valid(), "must be evaluated now");
 443           }
 444         } else {
 445           // NULL out this local so that linear scan can assume that all non-NULL values are live.
 446           s->invalidate_local(index);
 447         }
 448       }
 449     }
 450   }
 451 
 452   return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
 453 }
 454 
 455 
 456 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
 457   return state_for(x, x->exception_state());
 458 }
 459 
 460 
 461 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) {
 462   /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if TieredCompilation
 463    * is active and the class hasn't yet been resolved we need to emit a patch that resolves
 464    * the class. */
 465   if ((TieredCompilation && need_resolve) || !obj->is_loaded() || PatchALot) {
 466     assert(info != NULL, "info must be set if class is not loaded");
 467     __ klass2reg_patch(NULL, r, info);
 468   } else {
 469     // no patching needed
 470     __ metadata2reg(obj->constant_encoding(), r);
 471   }
 472 }
 473 
 474 
 475 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
 476                                     CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
 477   CodeStub* stub = new RangeCheckStub(range_check_info, index, array);
 478   if (index->is_constant()) {
 479     cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
 480                 index->as_jint(), null_check_info);
 481     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 482   } else {
 483     cmp_reg_mem(lir_cond_aboveEqual, index, array,
 484                 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
 485     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 486   }
 487 }
 488 
 489 
 490 void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
 491   CodeStub* stub = new RangeCheckStub(info, index);
 492   if (index->is_constant()) {
 493     cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
 494     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 495   } else {
 496     cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
 497                 java_nio_Buffer::limit_offset(), T_INT, info);
 498     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 499   }
 500   __ move(index, result);
 501 }
 502 
 503 
 504 
 505 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
 506   LIR_Opr result_op = result;
 507   LIR_Opr left_op   = left;
 508   LIR_Opr right_op  = right;
 509 
 510   if (TwoOperandLIRForm && left_op != result_op) {
 511     assert(right_op != result_op, "malformed");
 512     __ move(left_op, result_op);
 513     left_op = result_op;
 514   }
 515 
 516   switch(code) {
 517     case Bytecodes::_dadd:
 518     case Bytecodes::_fadd:
 519     case Bytecodes::_ladd:
 520     case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
 521     case Bytecodes::_fmul:
 522     case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
 523 
 524     case Bytecodes::_dmul:
 525       {
 526         if (is_strictfp) {
 527           __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
 528         } else {
 529           __ mul(left_op, right_op, result_op); break;
 530         }
 531       }
 532       break;
 533 
 534     case Bytecodes::_imul:
 535       {
 536         bool did_strength_reduce = false;
 537 
 538         if (right->is_constant()) {
 539           jint c = right->as_jint();
 540           if (c > 0 && is_power_of_2(c)) {
 541             // do not need tmp here
 542             __ shift_left(left_op, exact_log2(c), result_op);
 543             did_strength_reduce = true;
 544           } else {
 545             did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
 546           }
 547         }
 548         // we couldn't strength reduce so just emit the multiply
 549         if (!did_strength_reduce) {
 550           __ mul(left_op, right_op, result_op);
 551         }
 552       }
 553       break;
 554 
 555     case Bytecodes::_dsub:
 556     case Bytecodes::_fsub:
 557     case Bytecodes::_lsub:
 558     case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
 559 
 560     case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
 561     // ldiv and lrem are implemented with a direct runtime call
 562 
 563     case Bytecodes::_ddiv:
 564       {
 565         if (is_strictfp) {
 566           __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
 567         } else {
 568           __ div (left_op, right_op, result_op); break;
 569         }
 570       }
 571       break;
 572 
 573     case Bytecodes::_drem:
 574     case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
 575 
 576     default: ShouldNotReachHere();
 577   }
 578 }
 579 
 580 
 581 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 582   arithmetic_op(code, result, left, right, false, tmp);
 583 }
 584 
 585 
 586 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
 587   arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
 588 }
 589 
 590 
 591 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
 592   arithmetic_op(code, result, left, right, is_strictfp, tmp);
 593 }
 594 
 595 
 596 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
 597 
 598   if (TwoOperandLIRForm && value != result_op
 599       // Only 32bit right shifts require two operand form on S390.
 600       S390_ONLY(&& (code == Bytecodes::_ishr || code == Bytecodes::_iushr))) {
 601     assert(count != result_op, "malformed");
 602     __ move(value, result_op);
 603     value = result_op;
 604   }
 605 
 606   assert(count->is_constant() || count->is_register(), "must be");
 607   switch(code) {
 608   case Bytecodes::_ishl:
 609   case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
 610   case Bytecodes::_ishr:
 611   case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
 612   case Bytecodes::_iushr:
 613   case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
 614   default: ShouldNotReachHere();
 615   }
 616 }
 617 
 618 
 619 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
 620   if (TwoOperandLIRForm && left_op != result_op) {
 621     assert(right_op != result_op, "malformed");
 622     __ move(left_op, result_op);
 623     left_op = result_op;
 624   }
 625 
 626   switch(code) {
 627     case Bytecodes::_iand:
 628     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
 629 
 630     case Bytecodes::_ior:
 631     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
 632 
 633     case Bytecodes::_ixor:
 634     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
 635 
 636     default: ShouldNotReachHere();
 637   }
 638 }
 639 
 640 
 641 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no,
 642                                  CodeEmitInfo* info_for_exception, CodeEmitInfo* info, CodeStub* throw_imse_stub) {
 643   if (!GenerateSynchronizationCode) return;
 644   // for slow path, use debug info for state after successful locking
 645   CodeStub* slow_path = new MonitorEnterStub(object, lock, info, throw_imse_stub, scratch);
 646   __ load_stack_address_monitor(monitor_no, lock);
 647   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
 648   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception, throw_imse_stub);
 649 }
 650 
 651 
 652 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
 653   if (!GenerateSynchronizationCode) return;
 654   // setup registers
 655   LIR_Opr hdr = lock;
 656   lock = new_hdr;
 657   CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
 658   __ load_stack_address_monitor(monitor_no, lock);
 659   __ unlock_object(hdr, object, lock, scratch, slow_path);
 660 }
 661 
 662 #ifndef PRODUCT
 663 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
 664   if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
 665     tty->print_cr("   ###class not loaded at new bci %d", new_instance->printable_bci());
 666   } else if (PrintNotLoaded && (TieredCompilation && new_instance->is_unresolved())) {
 667     tty->print_cr("   ###class not resolved at new bci %d", new_instance->printable_bci());
 668   }
 669 }
 670 #endif
 671 
 672 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
 673   klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
 674   // If klass is not loaded we do not know if the klass has finalizers:
 675   if (UseFastNewInstance && klass->is_loaded()
 676       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
 677 
 678     Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
 679 
 680     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
 681 
 682     assert(klass->is_loaded(), "must be loaded");
 683     // allocate space for instance
 684     assert(klass->size_helper() >= 0, "illegal instance size");
 685     const int instance_size = align_object_size(klass->size_helper());
 686     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
 687                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
 688   } else {
 689     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
 690     __ branch(lir_cond_always, T_ILLEGAL, slow_path);
 691     __ branch_destination(slow_path->continuation());
 692   }
 693 }
 694 
 695 
 696 static bool is_constant_zero(Instruction* inst) {
 697   IntConstant* c = inst->type()->as_IntConstant();
 698   if (c) {
 699     return (c->value() == 0);
 700   }
 701   return false;
 702 }
 703 
 704 
 705 static bool positive_constant(Instruction* inst) {
 706   IntConstant* c = inst->type()->as_IntConstant();
 707   if (c) {
 708     return (c->value() >= 0);
 709   }
 710   return false;
 711 }
 712 
 713 
 714 static ciArrayKlass* as_array_klass(ciType* type) {
 715   if (type != NULL && type->is_array_klass() && type->is_loaded()) {
 716     return (ciArrayKlass*)type;
 717   } else {
 718     return NULL;
 719   }
 720 }
 721 
 722 static ciType* phi_declared_type(Phi* phi) {
 723   ciType* t = phi->operand_at(0)->declared_type();
 724   if (t == NULL) {
 725     return NULL;
 726   }
 727   for(int i = 1; i < phi->operand_count(); i++) {
 728     if (t != phi->operand_at(i)->declared_type()) {
 729       return NULL;
 730     }
 731   }
 732   return t;
 733 }
 734 
 735 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
 736   Instruction* src     = x->argument_at(0);
 737   Instruction* src_pos = x->argument_at(1);
 738   Instruction* dst     = x->argument_at(2);
 739   Instruction* dst_pos = x->argument_at(3);
 740   Instruction* length  = x->argument_at(4);
 741 
 742   // first try to identify the likely type of the arrays involved
 743   ciArrayKlass* expected_type = NULL;
 744   bool is_exact = false, src_objarray = false, dst_objarray = false;
 745   {
 746     ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
 747     ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
 748     Phi* phi;
 749     if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) {
 750       src_declared_type = as_array_klass(phi_declared_type(phi));
 751     }
 752     ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
 753     ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
 754     if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) {
 755       dst_declared_type = as_array_klass(phi_declared_type(phi));
 756     }
 757 
 758     if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
 759       // the types exactly match so the type is fully known
 760       is_exact = true;
 761       expected_type = src_exact_type;
 762     } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
 763       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
 764       ciArrayKlass* src_type = NULL;
 765       if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
 766         src_type = (ciArrayKlass*) src_exact_type;
 767       } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
 768         src_type = (ciArrayKlass*) src_declared_type;
 769       }
 770       if (src_type != NULL) {
 771         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
 772           is_exact = true;
 773           expected_type = dst_type;
 774         }
 775       }
 776     }
 777     // at least pass along a good guess
 778     if (expected_type == NULL) expected_type = dst_exact_type;
 779     if (expected_type == NULL) expected_type = src_declared_type;
 780     if (expected_type == NULL) expected_type = dst_declared_type;
 781 
 782     src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
 783     dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
 784   }
 785 
 786   // if a probable array type has been identified, figure out if any
 787   // of the required checks for a fast case can be elided.
 788   int flags = LIR_OpArrayCopy::all_flags;
 789 
 790   if (!src->is_loaded_flattened_array() && !dst->is_loaded_flattened_array()) {
 791     flags &= ~LIR_OpArrayCopy::always_slow_path;
 792   }
 793   if (!src->maybe_flattened_array()) {
 794     flags &= ~LIR_OpArrayCopy::src_flat_check;
 795   }
 796   if (!dst->maybe_flattened_array()) {
 797     flags &= ~LIR_OpArrayCopy::dst_flat_check;
 798   }
 799 
 800   if (!src_objarray)
 801     flags &= ~LIR_OpArrayCopy::src_objarray;
 802   if (!dst_objarray)
 803     flags &= ~LIR_OpArrayCopy::dst_objarray;
 804 
 805   if (!x->arg_needs_null_check(0))
 806     flags &= ~LIR_OpArrayCopy::src_null_check;
 807   if (!x->arg_needs_null_check(2))
 808     flags &= ~LIR_OpArrayCopy::dst_null_check;
 809 
 810 
 811   if (expected_type != NULL) {
 812     Value length_limit = NULL;
 813 
 814     IfOp* ifop = length->as_IfOp();
 815     if (ifop != NULL) {
 816       // look for expressions like min(v, a.length) which ends up as
 817       //   x > y ? y : x  or  x >= y ? y : x
 818       if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
 819           ifop->x() == ifop->fval() &&
 820           ifop->y() == ifop->tval()) {
 821         length_limit = ifop->y();
 822       }
 823     }
 824 
 825     // try to skip null checks and range checks
 826     NewArray* src_array = src->as_NewArray();
 827     if (src_array != NULL) {
 828       flags &= ~LIR_OpArrayCopy::src_null_check;
 829       if (length_limit != NULL &&
 830           src_array->length() == length_limit &&
 831           is_constant_zero(src_pos)) {
 832         flags &= ~LIR_OpArrayCopy::src_range_check;
 833       }
 834     }
 835 
 836     NewArray* dst_array = dst->as_NewArray();
 837     if (dst_array != NULL) {
 838       flags &= ~LIR_OpArrayCopy::dst_null_check;
 839       if (length_limit != NULL &&
 840           dst_array->length() == length_limit &&
 841           is_constant_zero(dst_pos)) {
 842         flags &= ~LIR_OpArrayCopy::dst_range_check;
 843       }
 844     }
 845 
 846     // check from incoming constant values
 847     if (positive_constant(src_pos))
 848       flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
 849     if (positive_constant(dst_pos))
 850       flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
 851     if (positive_constant(length))
 852       flags &= ~LIR_OpArrayCopy::length_positive_check;
 853 
 854     // see if the range check can be elided, which might also imply
 855     // that src or dst is non-null.
 856     ArrayLength* al = length->as_ArrayLength();
 857     if (al != NULL) {
 858       if (al->array() == src) {
 859         // it's the length of the source array
 860         flags &= ~LIR_OpArrayCopy::length_positive_check;
 861         flags &= ~LIR_OpArrayCopy::src_null_check;
 862         if (is_constant_zero(src_pos))
 863           flags &= ~LIR_OpArrayCopy::src_range_check;
 864       }
 865       if (al->array() == dst) {
 866         // it's the length of the destination array
 867         flags &= ~LIR_OpArrayCopy::length_positive_check;
 868         flags &= ~LIR_OpArrayCopy::dst_null_check;
 869         if (is_constant_zero(dst_pos))
 870           flags &= ~LIR_OpArrayCopy::dst_range_check;
 871       }
 872     }
 873     if (is_exact) {
 874       flags &= ~LIR_OpArrayCopy::type_check;
 875     }
 876   }
 877 
 878   IntConstant* src_int = src_pos->type()->as_IntConstant();
 879   IntConstant* dst_int = dst_pos->type()->as_IntConstant();
 880   if (src_int && dst_int) {
 881     int s_offs = src_int->value();
 882     int d_offs = dst_int->value();
 883     if (src_int->value() >= dst_int->value()) {
 884       flags &= ~LIR_OpArrayCopy::overlapping;
 885     }
 886     if (expected_type != NULL) {
 887       BasicType t = expected_type->element_type()->basic_type();
 888       int element_size = type2aelembytes(t);
 889       if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
 890           ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) {
 891         flags &= ~LIR_OpArrayCopy::unaligned;
 892       }
 893     }
 894   } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
 895     // src and dest positions are the same, or dst is zero so assume
 896     // nonoverlapping copy.
 897     flags &= ~LIR_OpArrayCopy::overlapping;
 898   }
 899 
 900   if (src == dst) {
 901     // moving within a single array so no type checks are needed
 902     if (flags & LIR_OpArrayCopy::type_check) {
 903       flags &= ~LIR_OpArrayCopy::type_check;
 904     }
 905   }
 906   *flagsp = flags;
 907   *expected_typep = (ciArrayKlass*)expected_type;
 908 }
 909 
 910 
 911 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
 912   assert(opr->is_register(), "why spill if item is not register?");
 913 
 914   if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
 915     LIR_Opr result = new_register(T_FLOAT);
 916     set_vreg_flag(result, must_start_in_memory);
 917     assert(opr->is_register(), "only a register can be spilled");
 918     assert(opr->value_type()->is_float(), "rounding only for floats available");
 919     __ roundfp(opr, LIR_OprFact::illegalOpr, result);
 920     return result;
 921   }
 922   return opr;
 923 }
 924 
 925 
 926 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
 927   assert(type2size[t] == type2size[value->type()],
 928          "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type()));
 929   if (!value->is_register()) {
 930     // force into a register
 931     LIR_Opr r = new_register(value->type());
 932     __ move(value, r);
 933     value = r;
 934   }
 935 
 936   // create a spill location
 937   LIR_Opr tmp = new_register(t);
 938   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
 939 
 940   // move from register to spill
 941   __ move(value, tmp);
 942   return tmp;
 943 }
 944 
 945 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
 946   if (if_instr->should_profile()) {
 947     ciMethod* method = if_instr->profiled_method();
 948     assert(method != NULL, "method should be set if branch is profiled");
 949     ciMethodData* md = method->method_data_or_null();
 950     assert(md != NULL, "Sanity");
 951     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
 952     assert(data != NULL, "must have profiling data");
 953     assert(data->is_BranchData(), "need BranchData for two-way branches");
 954     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
 955     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
 956     if (if_instr->is_swapped()) {
 957       int t = taken_count_offset;
 958       taken_count_offset = not_taken_count_offset;
 959       not_taken_count_offset = t;
 960     }
 961 
 962     LIR_Opr md_reg = new_register(T_METADATA);
 963     __ metadata2reg(md->constant_encoding(), md_reg);
 964 
 965     LIR_Opr data_offset_reg = new_pointer_register();
 966     __ cmove(lir_cond(cond),
 967              LIR_OprFact::intptrConst(taken_count_offset),
 968              LIR_OprFact::intptrConst(not_taken_count_offset),
 969              data_offset_reg, as_BasicType(if_instr->x()->type()));
 970 
 971     // MDO cells are intptr_t, so the data_reg width is arch-dependent.
 972     LIR_Opr data_reg = new_pointer_register();
 973     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
 974     __ move(data_addr, data_reg);
 975     // Use leal instead of add to avoid destroying condition codes on x86
 976     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
 977     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
 978     __ move(data_reg, data_addr);
 979   }
 980 }
 981 
 982 // Phi technique:
 983 // This is about passing live values from one basic block to the other.
 984 // In code generated with Java it is rather rare that more than one
 985 // value is on the stack from one basic block to the other.
 986 // We optimize our technique for efficient passing of one value
 987 // (of type long, int, double..) but it can be extended.
 988 // When entering or leaving a basic block, all registers and all spill
 989 // slots are release and empty. We use the released registers
 990 // and spill slots to pass the live values from one block
 991 // to the other. The topmost value, i.e., the value on TOS of expression
 992 // stack is passed in registers. All other values are stored in spilling
 993 // area. Every Phi has an index which designates its spill slot
 994 // At exit of a basic block, we fill the register(s) and spill slots.
 995 // At entry of a basic block, the block_prolog sets up the content of phi nodes
 996 // and locks necessary registers and spilling slots.
 997 
 998 
 999 // move current value to referenced phi function
1000 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
1001   Phi* phi = sux_val->as_Phi();
1002   // cur_val can be null without phi being null in conjunction with inlining
1003   if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
1004     Phi* cur_phi = cur_val->as_Phi();
1005     if (cur_phi != NULL && cur_phi->is_illegal()) {
1006       // Phi and local would need to get invalidated
1007       // (which is unexpected for Linear Scan).
1008       // But this case is very rare so we simply bail out.
1009       bailout("propagation of illegal phi");
1010       return;
1011     }
1012     LIR_Opr operand = cur_val->operand();
1013     if (operand->is_illegal()) {
1014       assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
1015              "these can be produced lazily");
1016       operand = operand_for_instruction(cur_val);
1017     }
1018     resolver->move(operand, operand_for_instruction(phi));
1019   }
1020 }
1021 
1022 
1023 // Moves all stack values into their PHI position
1024 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
1025   BlockBegin* bb = block();
1026   if (bb->number_of_sux() == 1) {
1027     BlockBegin* sux = bb->sux_at(0);
1028     assert(sux->number_of_preds() > 0, "invalid CFG");
1029 
1030     // a block with only one predecessor never has phi functions
1031     if (sux->number_of_preds() > 1) {
1032       PhiResolver resolver(this);
1033 
1034       ValueStack* sux_state = sux->state();
1035       Value sux_value;
1036       int index;
1037 
1038       assert(cur_state->scope() == sux_state->scope(), "not matching");
1039       assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
1040       assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
1041 
1042       for_each_stack_value(sux_state, index, sux_value) {
1043         move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
1044       }
1045 
1046       for_each_local_value(sux_state, index, sux_value) {
1047         move_to_phi(&resolver, cur_state->local_at(index), sux_value);
1048       }
1049 
1050       assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
1051     }
1052   }
1053 }
1054 
1055 
1056 LIR_Opr LIRGenerator::new_register(BasicType type) {
1057   int vreg = _virtual_register_number;
1058   // add a little fudge factor for the bailout, since the bailout is
1059   // only checked periodically.  This gives a few extra registers to
1060   // hand out before we really run out, which helps us keep from
1061   // tripping over assertions.
1062   if (vreg + 20 >= LIR_OprDesc::vreg_max) {
1063     bailout("out of virtual registers");
1064     if (vreg + 2 >= LIR_OprDesc::vreg_max) {
1065       // wrap it around
1066       _virtual_register_number = LIR_OprDesc::vreg_base;
1067     }
1068   }
1069   _virtual_register_number += 1;
1070   return LIR_OprFact::virtual_register(vreg, type);
1071 }
1072 
1073 
1074 // Try to lock using register in hint
1075 LIR_Opr LIRGenerator::rlock(Value instr) {
1076   return new_register(instr->type());
1077 }
1078 
1079 
1080 // does an rlock and sets result
1081 LIR_Opr LIRGenerator::rlock_result(Value x) {
1082   LIR_Opr reg = rlock(x);
1083   set_result(x, reg);
1084   return reg;
1085 }
1086 
1087 
1088 // does an rlock and sets result
1089 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
1090   LIR_Opr reg;
1091   switch (type) {
1092   case T_BYTE:
1093   case T_BOOLEAN:
1094     reg = rlock_byte(type);
1095     break;
1096   default:
1097     reg = rlock(x);
1098     break;
1099   }
1100 
1101   set_result(x, reg);
1102   return reg;
1103 }
1104 
1105 
1106 //---------------------------------------------------------------------
1107 ciObject* LIRGenerator::get_jobject_constant(Value value) {
1108   ObjectType* oc = value->type()->as_ObjectType();
1109   if (oc) {
1110     return oc->constant_value();
1111   }
1112   return NULL;
1113 }
1114 
1115 
1116 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1117   assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1118   assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1119 
1120   // no moves are created for phi functions at the begin of exception
1121   // handlers, so assign operands manually here
1122   for_each_phi_fun(block(), phi,
1123                    if (!phi->is_illegal()) { operand_for_instruction(phi); });
1124 
1125   LIR_Opr thread_reg = getThreadPointer();
1126   __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1127                exceptionOopOpr());
1128   __ move_wide(LIR_OprFact::oopConst(NULL),
1129                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1130   __ move_wide(LIR_OprFact::oopConst(NULL),
1131                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1132 
1133   LIR_Opr result = new_register(T_OBJECT);
1134   __ move(exceptionOopOpr(), result);
1135   set_result(x, result);
1136 }
1137 
1138 
1139 //----------------------------------------------------------------------
1140 //----------------------------------------------------------------------
1141 //----------------------------------------------------------------------
1142 //----------------------------------------------------------------------
1143 //                        visitor functions
1144 //----------------------------------------------------------------------
1145 //----------------------------------------------------------------------
1146 //----------------------------------------------------------------------
1147 //----------------------------------------------------------------------
1148 
1149 void LIRGenerator::do_Phi(Phi* x) {
1150   // phi functions are never visited directly
1151   ShouldNotReachHere();
1152 }
1153 
1154 
1155 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1156 void LIRGenerator::do_Constant(Constant* x) {
1157   if (x->state_before() != NULL) {
1158     // Any constant with a ValueStack requires patching so emit the patch here
1159     LIR_Opr reg = rlock_result(x);
1160     CodeEmitInfo* info = state_for(x, x->state_before());
1161     __ oop2reg_patch(NULL, reg, info);
1162   } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1163     if (!x->is_pinned()) {
1164       // unpinned constants are handled specially so that they can be
1165       // put into registers when they are used multiple times within a
1166       // block.  After the block completes their operand will be
1167       // cleared so that other blocks can't refer to that register.
1168       set_result(x, load_constant(x));
1169     } else {
1170       LIR_Opr res = x->operand();
1171       if (!res->is_valid()) {
1172         res = LIR_OprFact::value_type(x->type());
1173       }
1174       if (res->is_constant()) {
1175         LIR_Opr reg = rlock_result(x);
1176         __ move(res, reg);
1177       } else {
1178         set_result(x, res);
1179       }
1180     }
1181   } else {
1182     set_result(x, LIR_OprFact::value_type(x->type()));
1183   }
1184 }
1185 
1186 
1187 void LIRGenerator::do_Local(Local* x) {
1188   // operand_for_instruction has the side effect of setting the result
1189   // so there's no need to do it here.
1190   operand_for_instruction(x);
1191 }
1192 
1193 
1194 void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
1195   Unimplemented();
1196 }
1197 
1198 
1199 void LIRGenerator::do_Return(Return* x) {
1200   if (compilation()->env()->dtrace_method_probes()) {
1201     BasicTypeList signature;
1202     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
1203     signature.append(T_METADATA); // Method*
1204     LIR_OprList* args = new LIR_OprList();
1205     args->append(getThreadPointer());
1206     LIR_Opr meth = new_register(T_METADATA);
1207     __ metadata2reg(method()->constant_encoding(), meth);
1208     args->append(meth);
1209     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
1210   }
1211 
1212   if (x->type()->is_void()) {
1213     __ return_op(LIR_OprFact::illegalOpr);
1214   } else {
1215     LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1216     LIRItem result(x->result(), this);
1217 
1218     result.load_item_force(reg);
1219     __ return_op(result.result());
1220   }
1221   set_no_result(x);
1222 }
1223 
1224 // Examble: ref.get()
1225 // Combination of LoadField and g1 pre-write barrier
1226 void LIRGenerator::do_Reference_get(Intrinsic* x) {
1227 
1228   const int referent_offset = java_lang_ref_Reference::referent_offset;
1229   guarantee(referent_offset > 0, "referent offset not initialized");
1230 
1231   assert(x->number_of_arguments() == 1, "wrong type");
1232 
1233   LIRItem reference(x->argument_at(0), this);
1234   reference.load_item();
1235 
1236   // need to perform the null check on the reference objecy
1237   CodeEmitInfo* info = NULL;
1238   if (x->needs_null_check()) {
1239     info = state_for(x);
1240   }
1241 
1242   LIR_Opr result = rlock_result(x, T_OBJECT);
1243   access_load_at(IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT,
1244                  reference, LIR_OprFact::intConst(referent_offset), result);
1245 }
1246 
1247 // Example: clazz.isInstance(object)
1248 void LIRGenerator::do_isInstance(Intrinsic* x) {
1249   assert(x->number_of_arguments() == 2, "wrong type");
1250 
1251   // TODO could try to substitute this node with an equivalent InstanceOf
1252   // if clazz is known to be a constant Class. This will pick up newly found
1253   // constants after HIR construction. I'll leave this to a future change.
1254 
1255   // as a first cut, make a simple leaf call to runtime to stay platform independent.
1256   // could follow the aastore example in a future change.
1257 
1258   LIRItem clazz(x->argument_at(0), this);
1259   LIRItem object(x->argument_at(1), this);
1260   clazz.load_item();
1261   object.load_item();
1262   LIR_Opr result = rlock_result(x);
1263 
1264   // need to perform null check on clazz
1265   if (x->needs_null_check()) {
1266     CodeEmitInfo* info = state_for(x);
1267     __ null_check(clazz.result(), info);
1268   }
1269 
1270   LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
1271                                      CAST_FROM_FN_PTR(address, Runtime1::is_instance_of),
1272                                      x->type(),
1273                                      NULL); // NULL CodeEmitInfo results in a leaf call
1274   __ move(call_result, result);
1275 }
1276 
1277 // Example: object.getClass ()
1278 void LIRGenerator::do_getClass(Intrinsic* x) {
1279   assert(x->number_of_arguments() == 1, "wrong type");
1280 
1281   LIRItem rcvr(x->argument_at(0), this);
1282   rcvr.load_item();
1283   LIR_Opr temp = new_register(T_METADATA);
1284   LIR_Opr result = rlock_result(x);
1285 
1286   // need to perform the null check on the rcvr
1287   CodeEmitInfo* info = NULL;
1288   if (x->needs_null_check()) {
1289     info = state_for(x);
1290   }
1291 
1292   // FIXME T_ADDRESS should actually be T_METADATA but it can't because the
1293   // meaning of these two is mixed up (see JDK-8026837).
1294   __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), temp, info);
1295   __ move_wide(new LIR_Address(temp, in_bytes(Klass::java_mirror_offset()), T_ADDRESS), temp);
1296   // mirror = ((OopHandle)mirror)->resolve();
1297   access_load(IN_NATIVE, T_OBJECT,
1298               LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), result);
1299 }
1300 
1301 // java.lang.Class::isPrimitive()
1302 void LIRGenerator::do_isPrimitive(Intrinsic* x) {
1303   assert(x->number_of_arguments() == 1, "wrong type");
1304 
1305   LIRItem rcvr(x->argument_at(0), this);
1306   rcvr.load_item();
1307   LIR_Opr temp = new_register(T_METADATA);
1308   LIR_Opr result = rlock_result(x);
1309 
1310   CodeEmitInfo* info = NULL;
1311   if (x->needs_null_check()) {
1312     info = state_for(x);
1313   }
1314 
1315   __ move(new LIR_Address(rcvr.result(), java_lang_Class::klass_offset_in_bytes(), T_ADDRESS), temp, info);
1316   __ cmp(lir_cond_notEqual, temp, LIR_OprFact::intConst(0));
1317   __ cmove(lir_cond_notEqual, LIR_OprFact::intConst(0), LIR_OprFact::intConst(1), result, T_BOOLEAN);
1318 }
1319 
1320 
1321 // Example: Thread.currentThread()
1322 void LIRGenerator::do_currentThread(Intrinsic* x) {
1323   assert(x->number_of_arguments() == 0, "wrong type");
1324   LIR_Opr reg = rlock_result(x);
1325   __ move_wide(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
1326 }
1327 
1328 
1329 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1330   assert(x->number_of_arguments() == 1, "wrong type");
1331   LIRItem receiver(x->argument_at(0), this);
1332 
1333   receiver.load_item();
1334   BasicTypeList signature;
1335   signature.append(T_OBJECT); // receiver
1336   LIR_OprList* args = new LIR_OprList();
1337   args->append(receiver.result());
1338   CodeEmitInfo* info = state_for(x, x->state());
1339   call_runtime(&signature, args,
1340                CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
1341                voidType, info);
1342 
1343   set_no_result(x);
1344 }
1345 
1346 
1347 //------------------------local access--------------------------------------
1348 
1349 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1350   if (x->operand()->is_illegal()) {
1351     Constant* c = x->as_Constant();
1352     if (c != NULL) {
1353       x->set_operand(LIR_OprFact::value_type(c->type()));
1354     } else {
1355       assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
1356       // allocate a virtual register for this local or phi
1357       x->set_operand(rlock(x));
1358       _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
1359     }
1360   }
1361   return x->operand();
1362 }
1363 
1364 
1365 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
1366   if (opr->is_virtual()) {
1367     return instruction_for_vreg(opr->vreg_number());
1368   }
1369   return NULL;
1370 }
1371 
1372 
1373 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1374   if (reg_num < _instruction_for_operand.length()) {
1375     return _instruction_for_operand.at(reg_num);
1376   }
1377   return NULL;
1378 }
1379 
1380 
1381 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1382   if (_vreg_flags.size_in_bits() == 0) {
1383     BitMap2D temp(100, num_vreg_flags);
1384     _vreg_flags = temp;
1385   }
1386   _vreg_flags.at_put_grow(vreg_num, f, true);
1387 }
1388 
1389 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1390   if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1391     return false;
1392   }
1393   return _vreg_flags.at(vreg_num, f);
1394 }
1395 
1396 
1397 // Block local constant handling.  This code is useful for keeping
1398 // unpinned constants and constants which aren't exposed in the IR in
1399 // registers.  Unpinned Constant instructions have their operands
1400 // cleared when the block is finished so that other blocks can't end
1401 // up referring to their registers.
1402 
1403 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1404   assert(!x->is_pinned(), "only for unpinned constants");
1405   _unpinned_constants.append(x);
1406   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1407 }
1408 
1409 
1410 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1411   BasicType t = c->type();
1412   for (int i = 0; i < _constants.length(); i++) {
1413     LIR_Const* other = _constants.at(i);
1414     if (t == other->type()) {
1415       switch (t) {
1416       case T_INT:
1417       case T_FLOAT:
1418         if (c->as_jint_bits() != other->as_jint_bits()) continue;
1419         break;
1420       case T_LONG:
1421       case T_DOUBLE:
1422         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1423         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1424         break;
1425       case T_OBJECT:
1426         if (c->as_jobject() != other->as_jobject()) continue;
1427         break;
1428       default:
1429         break;
1430       }
1431       return _reg_for_constants.at(i);
1432     }
1433   }
1434 
1435   LIR_Opr result = new_register(t);
1436   __ move((LIR_Opr)c, result);
1437   _constants.append(c);
1438   _reg_for_constants.append(result);
1439   return result;
1440 }
1441 
1442 //------------------------field access--------------------------------------
1443 
1444 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
1445   assert(x->number_of_arguments() == 4, "wrong type");
1446   LIRItem obj   (x->argument_at(0), this);  // object
1447   LIRItem offset(x->argument_at(1), this);  // offset of field
1448   LIRItem cmp   (x->argument_at(2), this);  // value to compare with field
1449   LIRItem val   (x->argument_at(3), this);  // replace field with val if matches cmp
1450   assert(obj.type()->tag() == objectTag, "invalid type");
1451 
1452   // In 64bit the type can be long, sparc doesn't have this assert
1453   // assert(offset.type()->tag() == intTag, "invalid type");
1454 
1455   assert(cmp.type()->tag() == type->tag(), "invalid type");
1456   assert(val.type()->tag() == type->tag(), "invalid type");
1457 
1458   LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type),
1459                                             obj, offset, cmp, val);
1460   set_result(x, result);
1461 }
1462 
1463 // Comment copied form templateTable_i486.cpp
1464 // ----------------------------------------------------------------------------
1465 // Volatile variables demand their effects be made known to all CPU's in
1466 // order.  Store buffers on most chips allow reads & writes to reorder; the
1467 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1468 // memory barrier (i.e., it's not sufficient that the interpreter does not
1469 // reorder volatile references, the hardware also must not reorder them).
1470 //
1471 // According to the new Java Memory Model (JMM):
1472 // (1) All volatiles are serialized wrt to each other.
1473 // ALSO reads & writes act as aquire & release, so:
1474 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1475 // the read float up to before the read.  It's OK for non-volatile memory refs
1476 // that happen before the volatile read to float down below it.
1477 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1478 // that happen BEFORE the write float down to after the write.  It's OK for
1479 // non-volatile memory refs that happen after the volatile write to float up
1480 // before it.
1481 //
1482 // We only put in barriers around volatile refs (they are expensive), not
1483 // _between_ memory refs (that would require us to track the flavor of the
1484 // previous memory refs).  Requirements (2) and (3) require some barriers
1485 // before volatile stores and after volatile loads.  These nearly cover
1486 // requirement (1) but miss the volatile-store-volatile-load case.  This final
1487 // case is placed after volatile-stores although it could just as well go
1488 // before volatile-loads.
1489 
1490 
1491 void LIRGenerator::do_StoreField(StoreField* x) {
1492   bool needs_patching = x->needs_patching();
1493   bool is_volatile = x->field()->is_volatile();
1494   BasicType field_type = x->field_type();
1495 
1496   CodeEmitInfo* info = NULL;
1497   if (needs_patching) {
1498     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1499     info = state_for(x, x->state_before());
1500   } else if (x->needs_null_check()) {
1501     NullCheck* nc = x->explicit_null_check();
1502     if (nc == NULL) {
1503       info = state_for(x);
1504     } else {
1505       info = state_for(nc);
1506     }
1507   }
1508 
1509   LIRItem object(x->obj(), this);
1510   LIRItem value(x->value(),  this);
1511 
1512   object.load_item();
1513 
1514   if (is_volatile || needs_patching) {
1515     // load item if field is volatile (fewer special cases for volatiles)
1516     // load item if field not initialized
1517     // load item if field not constant
1518     // because of code patching we cannot inline constants
1519     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1520       value.load_byte_item();
1521     } else  {
1522       value.load_item();
1523     }
1524   } else {
1525     value.load_for_store(field_type);
1526   }
1527 
1528   set_no_result(x);
1529 
1530 #ifndef PRODUCT
1531   if (PrintNotLoaded && needs_patching) {
1532     tty->print_cr("   ###class not loaded at store_%s bci %d",
1533                   x->is_static() ?  "static" : "field", x->printable_bci());
1534   }
1535 #endif
1536 
1537   if (x->needs_null_check() &&
1538       (needs_patching ||
1539        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1540     if (needs_patching && x->field()->is_flattenable()) {
1541       // We are storing a field of type "QT;" into holder class H, but H is not yet
1542       // loaded. (If H had been loaded, then T must also have already been loaded
1543       // due to the "Q" signature, and needs_patching would be false).
1544       assert(!x->field()->holder()->is_loaded(), "must be");
1545       // We don't know the offset of this field. Let's deopt and recompile.
1546       CodeStub* stub = new DeoptimizeStub(new CodeEmitInfo(info),
1547                                           Deoptimization::Reason_unloaded,
1548                                           Deoptimization::Action_make_not_entrant);
1549       __ branch(lir_cond_always, T_ILLEGAL, stub);
1550     } else {
1551       // Emit an explicit null check because the offset is too large.
1552       // If the class is not loaded and the object is NULL, we need to deoptimize to throw a
1553       // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1554       __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1555     }
1556   }
1557 
1558   DecoratorSet decorators = IN_HEAP;
1559   if (is_volatile) {
1560     decorators |= MO_SEQ_CST;
1561   }
1562   if (needs_patching) {
1563     decorators |= C1_NEEDS_PATCHING;
1564   }
1565 
1566   access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()),
1567                   value.result(), info != NULL ? new CodeEmitInfo(info) : NULL, info);
1568 }
1569 
1570 // FIXME -- I can't find any other way to pass an address to access_load_at().
1571 class TempResolvedAddress: public Instruction {
1572  public:
1573   TempResolvedAddress(ValueType* type, LIR_Opr addr) : Instruction(type) {
1574     set_operand(addr);
1575   }
1576   virtual void input_values_do(ValueVisitor*) {}
1577   virtual void visit(InstructionVisitor* v)   {}
1578   virtual const char* name() const  { return "TempResolvedAddress"; }
1579 };
1580 
1581 void LIRGenerator::access_flattened_array(bool is_load, LIRItem& array, LIRItem& index, LIRItem& obj_item) {
1582   // Find the starting address of the source (inside the array)
1583   ciType* array_type = array.value()->declared_type();
1584   ciValueArrayKlass* value_array_klass = array_type->as_value_array_klass();
1585   assert(value_array_klass->is_loaded(), "must be");
1586 
1587   ciValueKlass* elem_klass = value_array_klass->element_klass()->as_value_klass();
1588   int array_header_size = value_array_klass->array_header_in_bytes();
1589   int shift = value_array_klass->log2_element_size();
1590 
1591 #ifndef _LP64
1592   LIR_Opr index_op = new_register(T_INT);
1593   // FIXME -- on 32-bit, the shift below can overflow, so we need to check that
1594   // the top (shift+1) bits of index_op must be zero, or
1595   // else throw ArrayIndexOutOfBoundsException
1596   if (index.result()->is_constant()) {
1597     jint const_index = index.result()->as_jint();
1598     __ move(LIR_OprFact::intConst(const_index << shift), index_op);
1599   } else {
1600     __ shift_left(index_op, shift, index.result());
1601   }
1602 #else
1603   LIR_Opr index_op = new_register(T_LONG);
1604   if (index.result()->is_constant()) {
1605     jint const_index = index.result()->as_jint();
1606     __ move(LIR_OprFact::longConst(const_index << shift), index_op);
1607   } else {
1608     __ convert(Bytecodes::_i2l, index.result(), index_op);
1609     // Need to shift manually, as LIR_Address can scale only up to 3.
1610     __ shift_left(index_op, shift, index_op);
1611   }
1612 #endif
1613 
1614   LIR_Opr elm_op = new_pointer_register();
1615   LIR_Address* elm_address = new LIR_Address(array.result(), index_op, array_header_size, T_ADDRESS);
1616   __ leal(LIR_OprFact::address(elm_address), elm_op);
1617 
1618   for (int i = 0; i < elem_klass->nof_nonstatic_fields(); i++) {
1619     ciField* inner_field = elem_klass->nonstatic_field_at(i);
1620     assert(!inner_field->is_flattened(), "flattened fields must have been expanded");
1621     int obj_offset = inner_field->offset();
1622     int elm_offset = obj_offset - elem_klass->first_field_offset(); // object header is not stored in array.
1623 
1624     BasicType field_type = inner_field->type()->basic_type();
1625     switch (field_type) {
1626     case T_BYTE:
1627     case T_BOOLEAN:
1628     case T_SHORT:
1629     case T_CHAR:
1630      field_type = T_INT;
1631       break;
1632     default:
1633       break;
1634     }
1635 
1636     LIR_Opr temp = new_register(field_type);
1637     TempResolvedAddress* elm_resolved_addr = new TempResolvedAddress(as_ValueType(field_type), elm_op);
1638     LIRItem elm_item(elm_resolved_addr, this);
1639 
1640     DecoratorSet decorators = IN_HEAP;
1641     if (is_load) {
1642       access_load_at(decorators, field_type,
1643                      elm_item, LIR_OprFact::intConst(elm_offset), temp,
1644                      NULL, NULL);
1645       access_store_at(decorators, field_type,
1646                       obj_item, LIR_OprFact::intConst(obj_offset), temp,
1647                       NULL, NULL);
1648     } else {
1649     access_load_at(decorators, field_type,
1650                    obj_item, LIR_OprFact::intConst(obj_offset), temp,
1651                    NULL, NULL);
1652     access_store_at(decorators, field_type,
1653                     elm_item, LIR_OprFact::intConst(elm_offset), temp,
1654                     NULL, NULL);
1655     }
1656   }
1657 }
1658 
1659 void LIRGenerator::check_flattened_array(LIRItem& array, CodeStub* slow_path) {
1660   LIR_Opr array_klass_reg = new_register(T_METADATA);
1661 
1662   __ move(new LIR_Address(array.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), array_klass_reg);
1663   LIR_Opr layout = new_register(T_INT);
1664   __ move(new LIR_Address(array_klass_reg, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
1665   __ shift_right(layout, Klass::_lh_array_tag_shift, layout);
1666   __ cmp(lir_cond_equal, layout, LIR_OprFact::intConst(Klass::_lh_array_tag_vt_value));
1667   __ branch(lir_cond_equal, T_ILLEGAL, slow_path);
1668 }
1669 
1670 bool LIRGenerator::needs_flattened_array_store_check(StoreIndexed* x) {
1671   if (ValueArrayFlatten && x->elt_type() == T_OBJECT && x->array()->maybe_flattened_array()) {
1672     ciType* type = x->value()->declared_type();
1673     if (type != NULL && type->is_klass()) {
1674       ciKlass* klass = type->as_klass();
1675       if (klass->is_loaded() &&
1676           !(klass->is_valuetype() && klass->as_value_klass()->flatten_array()) &&
1677           !klass->is_java_lang_Object() &&
1678           !klass->is_interface()) {
1679         // This is known to be a non-flattenable object. If the array is flattened,
1680         // it will be caught by the code generated by array_store_check().
1681         return false;
1682       }
1683     }
1684     // We're not 100% sure, so let's do the flattened_array_store_check.
1685     return true;
1686   }
1687   return false;
1688 }
1689 
1690 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
1691   assert(x->is_pinned(),"");
1692   assert(x->elt_type() != T_ARRAY, "never used");
1693   bool is_loaded_flattened_array = x->array()->is_loaded_flattened_array();
1694   bool needs_range_check = x->compute_needs_range_check();
1695   bool use_length = x->length() != NULL;
1696   bool obj_store = x->elt_type() == T_OBJECT;
1697   bool needs_store_check = obj_store && !is_loaded_flattened_array &&
1698                                         (x->value()->as_Constant() == NULL ||
1699                                          !get_jobject_constant(x->value())->is_null_object() ||
1700                                          x->should_profile());
1701 
1702   LIRItem array(x->array(), this);
1703   LIRItem index(x->index(), this);
1704   LIRItem value(x->value(), this);
1705   LIRItem length(this);
1706 
1707   array.load_item();
1708   index.load_nonconstant();
1709 
1710   if (use_length && needs_range_check) {
1711     length.set_instruction(x->length());
1712     length.load_item();
1713   }
1714 
1715   if (needs_store_check || x->check_boolean()
1716       || is_loaded_flattened_array || needs_flattened_array_store_check(x)) {
1717     value.load_item();
1718   } else {
1719     value.load_for_store(x->elt_type());
1720   }
1721 
1722   set_no_result(x);
1723 
1724   // the CodeEmitInfo must be duplicated for each different
1725   // LIR-instruction because spilling can occur anywhere between two
1726   // instructions and so the debug information must be different
1727   CodeEmitInfo* range_check_info = state_for(x);
1728   CodeEmitInfo* null_check_info = NULL;
1729   if (x->needs_null_check()) {
1730     null_check_info = new CodeEmitInfo(range_check_info);
1731   }
1732 
1733   if (GenerateRangeChecks && needs_range_check) {
1734     if (use_length) {
1735       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1736       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result(), array.result()));
1737     } else {
1738       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1739       // range_check also does the null check
1740       null_check_info = NULL;
1741     }
1742   }
1743 
1744   if (GenerateArrayStoreCheck && needs_store_check) {
1745     CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
1746     array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci());
1747   }
1748 
1749   if (is_loaded_flattened_array) {
1750     if (!x->is_exact_flattened_array_store()) {
1751       CodeEmitInfo* info = new CodeEmitInfo(range_check_info);
1752       ciKlass* element_klass = x->array()->declared_type()->as_value_array_klass()->element_klass();
1753       flattened_array_store_check(value.result(), element_klass, info);
1754     } else if (!x->value()->is_never_null()) {
1755       __ null_check(value.result(), new CodeEmitInfo(range_check_info));
1756     }
1757     access_flattened_array(false, array, index, value);
1758   } else {
1759     StoreFlattenedArrayStub* slow_path = NULL;
1760 
1761     if (needs_flattened_array_store_check(x)) {
1762       // Check if we indeed have a flattened array
1763       index.load_item();
1764       slow_path = new StoreFlattenedArrayStub(array.result(), index.result(), value.result(), state_for(x));
1765       check_flattened_array(array, slow_path);
1766     }
1767 
1768     DecoratorSet decorators = IN_HEAP | IS_ARRAY;
1769     if (x->check_boolean()) {
1770       decorators |= C1_MASK_BOOLEAN;
1771     }
1772 
1773     access_store_at(decorators, x->elt_type(), array, index.result(), value.result(),
1774                     NULL, null_check_info);
1775     if (slow_path != NULL) {
1776       __ branch_destination(slow_path->continuation());
1777     }
1778   }
1779 }
1780 
1781 void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type,
1782                                   LIRItem& base, LIR_Opr offset, LIR_Opr result,
1783                                   CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) {
1784   decorators |= ACCESS_READ;
1785   LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info);
1786   if (access.is_raw()) {
1787     _barrier_set->BarrierSetC1::load_at(access, result);
1788   } else {
1789     _barrier_set->load_at(access, result);
1790   }
1791 }
1792 
1793 void LIRGenerator::access_load(DecoratorSet decorators, BasicType type,
1794                                LIR_Opr addr, LIR_Opr result) {
1795   decorators |= ACCESS_READ;
1796   LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type);
1797   access.set_resolved_addr(addr);
1798   if (access.is_raw()) {
1799     _barrier_set->BarrierSetC1::load(access, result);
1800   } else {
1801     _barrier_set->load(access, result);
1802   }
1803 }
1804 
1805 void LIRGenerator::access_store_at(DecoratorSet decorators, BasicType type,
1806                                    LIRItem& base, LIR_Opr offset, LIR_Opr value,
1807                                    CodeEmitInfo* patch_info, CodeEmitInfo* store_emit_info) {
1808   decorators |= ACCESS_WRITE;
1809   LIRAccess access(this, decorators, base, offset, type, patch_info, store_emit_info);
1810   if (access.is_raw()) {
1811     _barrier_set->BarrierSetC1::store_at(access, value);
1812   } else {
1813     _barrier_set->store_at(access, value);
1814   }
1815 }
1816 
1817 LIR_Opr LIRGenerator::access_atomic_cmpxchg_at(DecoratorSet decorators, BasicType type,
1818                                                LIRItem& base, LIRItem& offset, LIRItem& cmp_value, LIRItem& new_value) {
1819   decorators |= ACCESS_READ;
1820   decorators |= ACCESS_WRITE;
1821   // Atomic operations are SEQ_CST by default
1822   decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1823   LIRAccess access(this, decorators, base, offset, type);
1824   if (access.is_raw()) {
1825     return _barrier_set->BarrierSetC1::atomic_cmpxchg_at(access, cmp_value, new_value);
1826   } else {
1827     return _barrier_set->atomic_cmpxchg_at(access, cmp_value, new_value);
1828   }
1829 }
1830 
1831 LIR_Opr LIRGenerator::access_atomic_xchg_at(DecoratorSet decorators, BasicType type,
1832                                             LIRItem& base, LIRItem& offset, LIRItem& value) {
1833   decorators |= ACCESS_READ;
1834   decorators |= ACCESS_WRITE;
1835   // Atomic operations are SEQ_CST by default
1836   decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1837   LIRAccess access(this, decorators, base, offset, type);
1838   if (access.is_raw()) {
1839     return _barrier_set->BarrierSetC1::atomic_xchg_at(access, value);
1840   } else {
1841     return _barrier_set->atomic_xchg_at(access, value);
1842   }
1843 }
1844 
1845 LIR_Opr LIRGenerator::access_atomic_add_at(DecoratorSet decorators, BasicType type,
1846                                            LIRItem& base, LIRItem& offset, LIRItem& value) {
1847   decorators |= ACCESS_READ;
1848   decorators |= ACCESS_WRITE;
1849   // Atomic operations are SEQ_CST by default
1850   decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1851   LIRAccess access(this, decorators, base, offset, type);
1852   if (access.is_raw()) {
1853     return _barrier_set->BarrierSetC1::atomic_add_at(access, value);
1854   } else {
1855     return _barrier_set->atomic_add_at(access, value);
1856   }
1857 }
1858 
1859 LIR_Opr LIRGenerator::access_resolve(DecoratorSet decorators, LIR_Opr obj) {
1860   // Use stronger ACCESS_WRITE|ACCESS_READ by default.
1861   if ((decorators & (ACCESS_READ | ACCESS_WRITE)) == 0) {
1862     decorators |= ACCESS_READ | ACCESS_WRITE;
1863   }
1864 
1865   return _barrier_set->resolve(this, decorators, obj);
1866 }
1867 
1868 Value LIRGenerator::flattenable_load_field_prolog(LoadField* x, CodeEmitInfo* info) {
1869   ciField* field = x->field();
1870   ciInstanceKlass* holder = field->holder();
1871   Value default_value = NULL;
1872 
1873   // Unloaded "QV;" klasses are represented by a ciInstanceKlass
1874   bool field_type_unloaded = field->type()->is_instance_klass() && !field->type()->as_instance_klass()->is_loaded();
1875 
1876   // Check for edge cases (1), (2) and (3) for getstatic and getfield
1877   bool deopt = false;
1878   bool need_default = false;
1879   if (field->is_static()) {
1880       // (1) holder is unloaded -- no problem: it will be loaded by patching, and field offset will be determined.
1881       // No check needed here.
1882 
1883     if (field_type_unloaded) {
1884       // (2) field type is unloaded -- problem: we don't know what the default value is. Let's deopt.
1885       //                               FIXME: consider getting the default value in patching code.
1886       deopt = true;
1887     } else {
1888       need_default = true;
1889     }
1890 
1891       // (3) field is not flattened -- we don't care: static fields are never flattened.
1892       // No check needed here.
1893   } else {
1894     if (!holder->is_loaded()) {
1895       // (1) holder is unloaded -- problem: we needed the field offset back in GraphBuilder::access_field()
1896       //                           FIXME: consider getting field offset in patching code (but only if the field
1897       //                           type was loaded at compilation time).
1898       deopt = true;
1899     } else if (field_type_unloaded) {
1900       // (2) field type is unloaded -- problem: we don't know whether it's flattened or not. Let's deopt
1901       deopt = true;
1902     } else if (!field->is_flattened()) {
1903       // (3) field is not flattened -- need default value in cases of uninitialized field
1904       need_default = true;
1905     }
1906   }
1907 
1908   if (deopt) {
1909     assert(!need_default, "deopt and need_default cannot both be true");
1910     assert(x->needs_patching(), "must be");
1911     assert(info != NULL, "must be");
1912     CodeStub* stub = new DeoptimizeStub(new CodeEmitInfo(info),
1913                                         Deoptimization::Reason_unloaded,
1914                                         Deoptimization::Action_make_not_entrant);
1915     __ branch(lir_cond_always, T_ILLEGAL, stub);
1916   } else if (need_default) {
1917     assert(!field_type_unloaded, "must be");
1918     assert(field->type()->is_valuetype(), "must be");
1919     ciValueKlass* value_klass = field->type()->as_value_klass();
1920     assert(value_klass->is_loaded(), "must be");
1921 
1922     if (field->is_static() && holder->is_loaded()) {
1923       ciInstance* mirror = field->holder()->java_mirror();
1924       ciObject* val = mirror->field_value(field).as_object();
1925       if (val->is_null_object()) {
1926         // This is a non-nullable static field, but it's not initialized.
1927         // We need to do a null check, and replace it with the default value.
1928       } else {
1929         // No need to perform null check on this static field
1930         need_default = false;
1931       }
1932     }
1933 
1934     if (need_default) {
1935       default_value = new Constant(new InstanceConstant(value_klass->default_value_instance()));
1936     }
1937   }
1938 
1939   return default_value;
1940 }
1941 
1942 void LIRGenerator::do_LoadField(LoadField* x) {
1943   bool needs_patching = x->needs_patching();
1944   bool is_volatile = x->field()->is_volatile();
1945   BasicType field_type = x->field_type();
1946 
1947   CodeEmitInfo* info = NULL;
1948   if (needs_patching) {
1949     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1950     info = state_for(x, x->state_before());
1951   } else if (x->needs_null_check()) {
1952     NullCheck* nc = x->explicit_null_check();
1953     if (nc == NULL) {
1954       info = state_for(x);
1955     } else {
1956       info = state_for(nc);
1957     }
1958   }
1959 
1960   LIRItem object(x->obj(), this);
1961 
1962   object.load_item();
1963 
1964 #ifndef PRODUCT
1965   if (PrintNotLoaded && needs_patching) {
1966     tty->print_cr("   ###class not loaded at load_%s bci %d",
1967                   x->is_static() ?  "static" : "field", x->printable_bci());
1968   }
1969 #endif
1970 
1971   Value default_value = NULL;
1972   if (x->field()->is_flattenable()) {
1973     default_value = flattenable_load_field_prolog(x, info);
1974   }
1975 
1976   bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
1977   if (x->needs_null_check() &&
1978       (needs_patching ||
1979        MacroAssembler::needs_explicit_null_check(x->offset()) ||
1980        stress_deopt)) {
1981     LIR_Opr obj = object.result();
1982     if (stress_deopt) {
1983       obj = new_register(T_OBJECT);
1984       __ move(LIR_OprFact::oopConst(NULL), obj);
1985     }
1986     // Emit an explicit null check because the offset is too large.
1987     // If the class is not loaded and the object is NULL, we need to deoptimize to throw a
1988     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1989     __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1990   }
1991 
1992   DecoratorSet decorators = IN_HEAP;
1993   if (is_volatile) {
1994     decorators |= MO_SEQ_CST;
1995   }
1996   if (needs_patching) {
1997     decorators |= C1_NEEDS_PATCHING;
1998   }
1999 
2000   LIR_Opr result = rlock_result(x, field_type);
2001   access_load_at(decorators, field_type,
2002                  object, LIR_OprFact::intConst(x->offset()), result,
2003                  info ? new CodeEmitInfo(info) : NULL, info);
2004 
2005   if (default_value != NULL) {
2006     LabelObj* L_end = new LabelObj();
2007     __ cmp(lir_cond_notEqual, result, LIR_OprFact::oopConst(NULL));
2008     __ branch(lir_cond_notEqual, T_OBJECT, L_end->label());
2009 
2010     LIRItem dv(default_value, this);
2011     dv.load_item();
2012     __ move(dv.result(), result);
2013 
2014     __ branch_destination(L_end->label());
2015   }
2016 }
2017 
2018 
2019 //------------------------java.nio.Buffer.checkIndex------------------------
2020 
2021 // int java.nio.Buffer.checkIndex(int)
2022 void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
2023   // NOTE: by the time we are in checkIndex() we are guaranteed that
2024   // the buffer is non-null (because checkIndex is package-private and
2025   // only called from within other methods in the buffer).
2026   assert(x->number_of_arguments() == 2, "wrong type");
2027   LIRItem buf  (x->argument_at(0), this);
2028   LIRItem index(x->argument_at(1), this);
2029   buf.load_item();
2030   index.load_item();
2031 
2032   LIR_Opr result = rlock_result(x);
2033   if (GenerateRangeChecks) {
2034     CodeEmitInfo* info = state_for(x);
2035     CodeStub* stub = new RangeCheckStub(info, index.result());
2036     LIR_Opr buf_obj = access_resolve(IS_NOT_NULL | ACCESS_READ, buf.result());
2037     if (index.result()->is_constant()) {
2038       cmp_mem_int(lir_cond_belowEqual, buf_obj, java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
2039       __ branch(lir_cond_belowEqual, T_INT, stub);
2040     } else {
2041       cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf_obj,
2042                   java_nio_Buffer::limit_offset(), T_INT, info);
2043       __ branch(lir_cond_aboveEqual, T_INT, stub);
2044     }
2045     __ move(index.result(), result);
2046   } else {
2047     // Just load the index into the result register
2048     __ move(index.result(), result);
2049   }
2050 }
2051 
2052 
2053 //------------------------array access--------------------------------------
2054 
2055 
2056 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
2057   LIRItem array(x->array(), this);
2058   array.load_item();
2059   LIR_Opr reg = rlock_result(x);
2060 
2061   CodeEmitInfo* info = NULL;
2062   if (x->needs_null_check()) {
2063     NullCheck* nc = x->explicit_null_check();
2064     if (nc == NULL) {
2065       info = state_for(x);
2066     } else {
2067       info = state_for(nc);
2068     }
2069     if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
2070       LIR_Opr obj = new_register(T_OBJECT);
2071       __ move(LIR_OprFact::oopConst(NULL), obj);
2072       __ null_check(obj, new CodeEmitInfo(info));
2073     }
2074   }
2075   __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
2076 }
2077 
2078 
2079 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
2080   bool use_length = x->length() != NULL;
2081   LIRItem array(x->array(), this);
2082   LIRItem index(x->index(), this);
2083   LIRItem length(this);
2084   bool needs_range_check = x->compute_needs_range_check();
2085 
2086   if (use_length && needs_range_check) {
2087     length.set_instruction(x->length());
2088     length.load_item();
2089   }
2090 
2091   array.load_item();
2092   if (index.is_constant() && can_inline_as_constant(x->index())) {
2093     // let it be a constant
2094     index.dont_load_item();
2095   } else {
2096     index.load_item();
2097   }
2098 
2099   CodeEmitInfo* range_check_info = state_for(x);
2100   CodeEmitInfo* null_check_info = NULL;
2101   if (x->needs_null_check()) {
2102     NullCheck* nc = x->explicit_null_check();
2103     if (nc != NULL) {
2104       null_check_info = state_for(nc);
2105     } else {
2106       null_check_info = range_check_info;
2107     }
2108     if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
2109       LIR_Opr obj = new_register(T_OBJECT);
2110       __ move(LIR_OprFact::oopConst(NULL), obj);
2111       __ null_check(obj, new CodeEmitInfo(null_check_info));
2112     }
2113   }
2114 
2115   if (GenerateRangeChecks && needs_range_check) {
2116     if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
2117       __ branch(lir_cond_always, T_ILLEGAL, new RangeCheckStub(range_check_info, index.result(), array.result()));
2118     } else if (use_length) {
2119       // TODO: use a (modified) version of array_range_check that does not require a
2120       //       constant length to be loaded to a register
2121       __ cmp(lir_cond_belowEqual, length.result(), index.result());
2122       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result(), array.result()));
2123     } else {
2124       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
2125       // The range check performs the null check, so clear it out for the load
2126       null_check_info = NULL;
2127     }
2128   }
2129 
2130   if (x->array()->is_loaded_flattened_array()) {
2131     // Find the destination address (of the NewValueTypeInstance)
2132     LIR_Opr obj = x->vt()->operand();
2133     LIRItem obj_item(x->vt(), this);
2134 
2135     access_flattened_array(true, array, index, obj_item);
2136     set_no_result(x);
2137   } else {
2138     LIR_Opr result = rlock_result(x, x->elt_type());
2139     LoadFlattenedArrayStub* slow_path = NULL;
2140 
2141     if (x->elt_type() == T_OBJECT && x->array()->maybe_flattened_array()) {
2142       index.load_item();
2143       // if we are loading from flattened array, load it using a runtime call
2144       slow_path = new LoadFlattenedArrayStub(array.result(), index.result(), result, state_for(x));
2145       check_flattened_array(array, slow_path);
2146     }
2147 
2148     DecoratorSet decorators = IN_HEAP | IS_ARRAY;
2149     access_load_at(decorators, x->elt_type(),
2150                    array, index.result(), result,
2151                    NULL, null_check_info);
2152 
2153     if (slow_path != NULL) {
2154       __ branch_destination(slow_path->continuation());
2155     }
2156   }
2157 }
2158 
2159 
2160 void LIRGenerator::do_NullCheck(NullCheck* x) {
2161   if (x->can_trap()) {
2162     LIRItem value(x->obj(), this);
2163     value.load_item();
2164     CodeEmitInfo* info = state_for(x);
2165     __ null_check(value.result(), info);
2166   }
2167 }
2168 
2169 
2170 void LIRGenerator::do_TypeCast(TypeCast* x) {
2171   LIRItem value(x->obj(), this);
2172   value.load_item();
2173   // the result is the same as from the node we are casting
2174   set_result(x, value.result());
2175 }
2176 
2177 
2178 void LIRGenerator::do_Throw(Throw* x) {
2179   LIRItem exception(x->exception(), this);
2180   exception.load_item();
2181   set_no_result(x);
2182   LIR_Opr exception_opr = exception.result();
2183   CodeEmitInfo* info = state_for(x, x->state());
2184 
2185 #ifndef PRODUCT
2186   if (PrintC1Statistics) {
2187     increment_counter(Runtime1::throw_count_address(), T_INT);
2188   }
2189 #endif
2190 
2191   // check if the instruction has an xhandler in any of the nested scopes
2192   bool unwind = false;
2193   if (info->exception_handlers()->length() == 0) {
2194     // this throw is not inside an xhandler
2195     unwind = true;
2196   } else {
2197     // get some idea of the throw type
2198     bool type_is_exact = true;
2199     ciType* throw_type = x->exception()->exact_type();
2200     if (throw_type == NULL) {
2201       type_is_exact = false;
2202       throw_type = x->exception()->declared_type();
2203     }
2204     if (throw_type != NULL && throw_type->is_instance_klass()) {
2205       ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
2206       unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
2207     }
2208   }
2209 
2210   // do null check before moving exception oop into fixed register
2211   // to avoid a fixed interval with an oop during the null check.
2212   // Use a copy of the CodeEmitInfo because debug information is
2213   // different for null_check and throw.
2214   if (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL) {
2215     // if the exception object wasn't created using new then it might be null.
2216     __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
2217   }
2218 
2219   if (compilation()->env()->jvmti_can_post_on_exceptions()) {
2220     // we need to go through the exception lookup path to get JVMTI
2221     // notification done
2222     unwind = false;
2223   }
2224 
2225   // move exception oop into fixed register
2226   __ move(exception_opr, exceptionOopOpr());
2227 
2228   if (unwind) {
2229     __ unwind_exception(exceptionOopOpr());
2230   } else {
2231     __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
2232   }
2233 }
2234 
2235 
2236 void LIRGenerator::do_RoundFP(RoundFP* x) {
2237   LIRItem input(x->input(), this);
2238   input.load_item();
2239   LIR_Opr input_opr = input.result();
2240   assert(input_opr->is_register(), "why round if value is not in a register?");
2241   assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
2242   if (input_opr->is_single_fpu()) {
2243     set_result(x, round_item(input_opr)); // This code path not currently taken
2244   } else {
2245     LIR_Opr result = new_register(T_DOUBLE);
2246     set_vreg_flag(result, must_start_in_memory);
2247     __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
2248     set_result(x, result);
2249   }
2250 }
2251 
2252 // Here UnsafeGetRaw may have x->base() and x->index() be int or long
2253 // on both 64 and 32 bits. Expecting x->base() to be always long on 64bit.
2254 void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
2255   LIRItem base(x->base(), this);
2256   LIRItem idx(this);
2257 
2258   base.load_item();
2259   if (x->has_index()) {
2260     idx.set_instruction(x->index());
2261     idx.load_nonconstant();
2262   }
2263 
2264   LIR_Opr reg = rlock_result(x, x->basic_type());
2265 
2266   int   log2_scale = 0;
2267   if (x->has_index()) {
2268     log2_scale = x->log2_scale();
2269   }
2270 
2271   assert(!x->has_index() || idx.value() == x->index(), "should match");
2272 
2273   LIR_Opr base_op = base.result();
2274   LIR_Opr index_op = idx.result();
2275 #ifndef _LP64
2276   if (base_op->type() == T_LONG) {
2277     base_op = new_register(T_INT);
2278     __ convert(Bytecodes::_l2i, base.result(), base_op);
2279   }
2280   if (x->has_index()) {
2281     if (index_op->type() == T_LONG) {
2282       LIR_Opr long_index_op = index_op;
2283       if (index_op->is_constant()) {
2284         long_index_op = new_register(T_LONG);
2285         __ move(index_op, long_index_op);
2286       }
2287       index_op = new_register(T_INT);
2288       __ convert(Bytecodes::_l2i, long_index_op, index_op);
2289     } else {
2290       assert(x->index()->type()->tag() == intTag, "must be");
2291     }
2292   }
2293   // At this point base and index should be all ints.
2294   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2295   assert(!x->has_index() || index_op->type() == T_INT, "index should be an int");
2296 #else
2297   if (x->has_index()) {
2298     if (index_op->type() == T_INT) {
2299       if (!index_op->is_constant()) {
2300         index_op = new_register(T_LONG);
2301         __ convert(Bytecodes::_i2l, idx.result(), index_op);
2302       }
2303     } else {
2304       assert(index_op->type() == T_LONG, "must be");
2305       if (index_op->is_constant()) {
2306         index_op = new_register(T_LONG);
2307         __ move(idx.result(), index_op);
2308       }
2309     }
2310   }
2311   // At this point base is a long non-constant
2312   // Index is a long register or a int constant.
2313   // We allow the constant to stay an int because that would allow us a more compact encoding by
2314   // embedding an immediate offset in the address expression. If we have a long constant, we have to
2315   // move it into a register first.
2316   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a long non-constant");
2317   assert(!x->has_index() || (index_op->type() == T_INT && index_op->is_constant()) ||
2318                             (index_op->type() == T_LONG && !index_op->is_constant()), "unexpected index type");
2319 #endif
2320 
2321   BasicType dst_type = x->basic_type();
2322 
2323   LIR_Address* addr;
2324   if (index_op->is_constant()) {
2325     assert(log2_scale == 0, "must not have a scale");
2326     assert(index_op->type() == T_INT, "only int constants supported");
2327     addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
2328   } else {
2329 #ifdef X86
2330     addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
2331 #elif defined(GENERATE_ADDRESS_IS_PREFERRED)
2332     addr = generate_address(base_op, index_op, log2_scale, 0, dst_type);
2333 #else
2334     if (index_op->is_illegal() || log2_scale == 0) {
2335       addr = new LIR_Address(base_op, index_op, dst_type);
2336     } else {
2337       LIR_Opr tmp = new_pointer_register();
2338       __ shift_left(index_op, log2_scale, tmp);
2339       addr = new LIR_Address(base_op, tmp, dst_type);
2340     }
2341 #endif
2342   }
2343 
2344   if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
2345     __ unaligned_move(addr, reg);
2346   } else {
2347     if (dst_type == T_OBJECT && x->is_wide()) {
2348       __ move_wide(addr, reg);
2349     } else {
2350       __ move(addr, reg);
2351     }
2352   }
2353 }
2354 
2355 
2356 void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
2357   int  log2_scale = 0;
2358   BasicType type = x->basic_type();
2359 
2360   if (x->has_index()) {
2361     log2_scale = x->log2_scale();
2362   }
2363 
2364   LIRItem base(x->base(), this);
2365   LIRItem value(x->value(), this);
2366   LIRItem idx(this);
2367 
2368   base.load_item();
2369   if (x->has_index()) {
2370     idx.set_instruction(x->index());
2371     idx.load_item();
2372   }
2373 
2374   if (type == T_BYTE || type == T_BOOLEAN) {
2375     value.load_byte_item();
2376   } else {
2377     value.load_item();
2378   }
2379 
2380   set_no_result(x);
2381 
2382   LIR_Opr base_op = base.result();
2383   LIR_Opr index_op = idx.result();
2384 
2385 #ifdef GENERATE_ADDRESS_IS_PREFERRED
2386   LIR_Address* addr = generate_address(base_op, index_op, log2_scale, 0, x->basic_type());
2387 #else
2388 #ifndef _LP64
2389   if (base_op->type() == T_LONG) {
2390     base_op = new_register(T_INT);
2391     __ convert(Bytecodes::_l2i, base.result(), base_op);
2392   }
2393   if (x->has_index()) {
2394     if (index_op->type() == T_LONG) {
2395       index_op = new_register(T_INT);
2396       __ convert(Bytecodes::_l2i, idx.result(), index_op);
2397     }
2398   }
2399   // At this point base and index should be all ints and not constants
2400   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2401   assert(!x->has_index() || (index_op->type() == T_INT && !index_op->is_constant()), "index should be an non-constant int");
2402 #else
2403   if (x->has_index()) {
2404     if (index_op->type() == T_INT) {
2405       index_op = new_register(T_LONG);
2406       __ convert(Bytecodes::_i2l, idx.result(), index_op);
2407     }
2408   }
2409   // At this point base and index are long and non-constant
2410   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a non-constant long");
2411   assert(!x->has_index() || (index_op->type() == T_LONG && !index_op->is_constant()), "index must be a non-constant long");
2412 #endif
2413 
2414   if (log2_scale != 0) {
2415     // temporary fix (platform dependent code without shift on Intel would be better)
2416     // TODO: ARM also allows embedded shift in the address
2417     LIR_Opr tmp = new_pointer_register();
2418     if (TwoOperandLIRForm) {
2419       __ move(index_op, tmp);
2420       index_op = tmp;
2421     }
2422     __ shift_left(index_op, log2_scale, tmp);
2423     if (!TwoOperandLIRForm) {
2424       index_op = tmp;
2425     }
2426   }
2427 
2428   LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
2429 #endif // !GENERATE_ADDRESS_IS_PREFERRED
2430   __ move(value.result(), addr);
2431 }
2432 
2433 
2434 void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
2435   BasicType type = x->basic_type();
2436   LIRItem src(x->object(), this);
2437   LIRItem off(x->offset(), this);
2438 
2439   off.load_item();
2440   src.load_item();
2441 
2442   DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS;
2443 
2444   if (x->is_volatile()) {
2445     decorators |= MO_SEQ_CST;
2446   }
2447   if (type == T_BOOLEAN) {
2448     decorators |= C1_MASK_BOOLEAN;
2449   }
2450   if (type == T_ARRAY || type == T_OBJECT) {
2451     decorators |= ON_UNKNOWN_OOP_REF;
2452   }
2453 
2454   LIR_Opr result = rlock_result(x, type);
2455   access_load_at(decorators, type,
2456                  src, off.result(), result);
2457 }
2458 
2459 
2460 void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
2461   BasicType type = x->basic_type();
2462   LIRItem src(x->object(), this);
2463   LIRItem off(x->offset(), this);
2464   LIRItem data(x->value(), this);
2465 
2466   src.load_item();
2467   if (type == T_BOOLEAN || type == T_BYTE) {
2468     data.load_byte_item();
2469   } else {
2470     data.load_item();
2471   }
2472   off.load_item();
2473 
2474   set_no_result(x);
2475 
2476   DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS;
2477   if (type == T_ARRAY || type == T_OBJECT) {
2478     decorators |= ON_UNKNOWN_OOP_REF;
2479   }
2480   if (x->is_volatile()) {
2481     decorators |= MO_SEQ_CST;
2482   }
2483   access_store_at(decorators, type, src, off.result(), data.result());
2484 }
2485 
2486 void LIRGenerator::do_UnsafeGetAndSetObject(UnsafeGetAndSetObject* x) {
2487   BasicType type = x->basic_type();
2488   LIRItem src(x->object(), this);
2489   LIRItem off(x->offset(), this);
2490   LIRItem value(x->value(), this);
2491 
2492   DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS | MO_SEQ_CST;
2493 
2494   if (type == T_ARRAY || type == T_OBJECT) {
2495     decorators |= ON_UNKNOWN_OOP_REF;
2496   }
2497 
2498   LIR_Opr result;
2499   if (x->is_add()) {
2500     result = access_atomic_add_at(decorators, type, src, off, value);
2501   } else {
2502     result = access_atomic_xchg_at(decorators, type, src, off, value);
2503   }
2504   set_result(x, result);
2505 }
2506 
2507 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2508   int lng = x->length();
2509 
2510   for (int i = 0; i < lng; i++) {
2511     SwitchRange* one_range = x->at(i);
2512     int low_key = one_range->low_key();
2513     int high_key = one_range->high_key();
2514     BlockBegin* dest = one_range->sux();
2515     if (low_key == high_key) {
2516       __ cmp(lir_cond_equal, value, low_key);
2517       __ branch(lir_cond_equal, T_INT, dest);
2518     } else if (high_key - low_key == 1) {
2519       __ cmp(lir_cond_equal, value, low_key);
2520       __ branch(lir_cond_equal, T_INT, dest);
2521       __ cmp(lir_cond_equal, value, high_key);
2522       __ branch(lir_cond_equal, T_INT, dest);
2523     } else {
2524       LabelObj* L = new LabelObj();
2525       __ cmp(lir_cond_less, value, low_key);
2526       __ branch(lir_cond_less, T_INT, L->label());
2527       __ cmp(lir_cond_lessEqual, value, high_key);
2528       __ branch(lir_cond_lessEqual, T_INT, dest);
2529       __ branch_destination(L->label());
2530     }
2531   }
2532   __ jump(default_sux);
2533 }
2534 
2535 
2536 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2537   SwitchRangeList* res = new SwitchRangeList();
2538   int len = x->length();
2539   if (len > 0) {
2540     BlockBegin* sux = x->sux_at(0);
2541     int key = x->lo_key();
2542     BlockBegin* default_sux = x->default_sux();
2543     SwitchRange* range = new SwitchRange(key, sux);
2544     for (int i = 0; i < len; i++, key++) {
2545       BlockBegin* new_sux = x->sux_at(i);
2546       if (sux == new_sux) {
2547         // still in same range
2548         range->set_high_key(key);
2549       } else {
2550         // skip tests which explicitly dispatch to the default
2551         if (sux != default_sux) {
2552           res->append(range);
2553         }
2554         range = new SwitchRange(key, new_sux);
2555       }
2556       sux = new_sux;
2557     }
2558     if (res->length() == 0 || res->last() != range)  res->append(range);
2559   }
2560   return res;
2561 }
2562 
2563 
2564 // we expect the keys to be sorted by increasing value
2565 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2566   SwitchRangeList* res = new SwitchRangeList();
2567   int len = x->length();
2568   if (len > 0) {
2569     BlockBegin* default_sux = x->default_sux();
2570     int key = x->key_at(0);
2571     BlockBegin* sux = x->sux_at(0);
2572     SwitchRange* range = new SwitchRange(key, sux);
2573     for (int i = 1; i < len; i++) {
2574       int new_key = x->key_at(i);
2575       BlockBegin* new_sux = x->sux_at(i);
2576       if (key+1 == new_key && sux == new_sux) {
2577         // still in same range
2578         range->set_high_key(new_key);
2579       } else {
2580         // skip tests which explicitly dispatch to the default
2581         if (range->sux() != default_sux) {
2582           res->append(range);
2583         }
2584         range = new SwitchRange(new_key, new_sux);
2585       }
2586       key = new_key;
2587       sux = new_sux;
2588     }
2589     if (res->length() == 0 || res->last() != range)  res->append(range);
2590   }
2591   return res;
2592 }
2593 
2594 
2595 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2596   LIRItem tag(x->tag(), this);
2597   tag.load_item();
2598   set_no_result(x);
2599 
2600   if (x->is_safepoint()) {
2601     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2602   }
2603 
2604   // move values into phi locations
2605   move_to_phi(x->state());
2606 
2607   int lo_key = x->lo_key();
2608   int len = x->length();
2609   assert(lo_key <= (lo_key + (len - 1)), "integer overflow");
2610   LIR_Opr value = tag.result();
2611 
2612   if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) {
2613     ciMethod* method = x->state()->scope()->method();
2614     ciMethodData* md = method->method_data_or_null();
2615     assert(md != NULL, "Sanity");
2616     ciProfileData* data = md->bci_to_data(x->state()->bci());
2617     assert(data != NULL, "must have profiling data");
2618     assert(data->is_MultiBranchData(), "bad profile data?");
2619     int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset());
2620     LIR_Opr md_reg = new_register(T_METADATA);
2621     __ metadata2reg(md->constant_encoding(), md_reg);
2622     LIR_Opr data_offset_reg = new_pointer_register();
2623     LIR_Opr tmp_reg = new_pointer_register();
2624 
2625     __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg);
2626     for (int i = 0; i < len; i++) {
2627       int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i));
2628       __ cmp(lir_cond_equal, value, i + lo_key);
2629       __ move(data_offset_reg, tmp_reg);
2630       __ cmove(lir_cond_equal,
2631                LIR_OprFact::intptrConst(count_offset),
2632                tmp_reg,
2633                data_offset_reg, T_INT);
2634     }
2635 
2636     LIR_Opr data_reg = new_pointer_register();
2637     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
2638     __ move(data_addr, data_reg);
2639     __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg);
2640     __ move(data_reg, data_addr);
2641   }
2642 
2643   if (UseTableRanges) {
2644     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2645   } else {
2646     for (int i = 0; i < len; i++) {
2647       __ cmp(lir_cond_equal, value, i + lo_key);
2648       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2649     }
2650     __ jump(x->default_sux());
2651   }
2652 }
2653 
2654 
2655 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2656   LIRItem tag(x->tag(), this);
2657   tag.load_item();
2658   set_no_result(x);
2659 
2660   if (x->is_safepoint()) {
2661     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2662   }
2663 
2664   // move values into phi locations
2665   move_to_phi(x->state());
2666 
2667   LIR_Opr value = tag.result();
2668   int len = x->length();
2669 
2670   if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) {
2671     ciMethod* method = x->state()->scope()->method();
2672     ciMethodData* md = method->method_data_or_null();
2673     assert(md != NULL, "Sanity");
2674     ciProfileData* data = md->bci_to_data(x->state()->bci());
2675     assert(data != NULL, "must have profiling data");
2676     assert(data->is_MultiBranchData(), "bad profile data?");
2677     int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset());
2678     LIR_Opr md_reg = new_register(T_METADATA);
2679     __ metadata2reg(md->constant_encoding(), md_reg);
2680     LIR_Opr data_offset_reg = new_pointer_register();
2681     LIR_Opr tmp_reg = new_pointer_register();
2682 
2683     __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg);
2684     for (int i = 0; i < len; i++) {
2685       int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i));
2686       __ cmp(lir_cond_equal, value, x->key_at(i));
2687       __ move(data_offset_reg, tmp_reg);
2688       __ cmove(lir_cond_equal,
2689                LIR_OprFact::intptrConst(count_offset),
2690                tmp_reg,
2691                data_offset_reg, T_INT);
2692     }
2693 
2694     LIR_Opr data_reg = new_pointer_register();
2695     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
2696     __ move(data_addr, data_reg);
2697     __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg);
2698     __ move(data_reg, data_addr);
2699   }
2700 
2701   if (UseTableRanges) {
2702     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2703   } else {
2704     int len = x->length();
2705     for (int i = 0; i < len; i++) {
2706       __ cmp(lir_cond_equal, value, x->key_at(i));
2707       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2708     }
2709     __ jump(x->default_sux());
2710   }
2711 }
2712 
2713 
2714 void LIRGenerator::do_Goto(Goto* x) {
2715   set_no_result(x);
2716 
2717   if (block()->next()->as_OsrEntry()) {
2718     // need to free up storage used for OSR entry point
2719     LIR_Opr osrBuffer = block()->next()->operand();
2720     BasicTypeList signature;
2721     signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer
2722     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2723     __ move(osrBuffer, cc->args()->at(0));
2724     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2725                          getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2726   }
2727 
2728   if (x->is_safepoint()) {
2729     ValueStack* state = x->state_before() ? x->state_before() : x->state();
2730 
2731     // increment backedge counter if needed
2732     CodeEmitInfo* info = state_for(x, state);
2733     increment_backedge_counter(info, x->profiled_bci());
2734     CodeEmitInfo* safepoint_info = state_for(x, state);
2735     __ safepoint(safepoint_poll_register(), safepoint_info);
2736   }
2737 
2738   // Gotos can be folded Ifs, handle this case.
2739   if (x->should_profile()) {
2740     ciMethod* method = x->profiled_method();
2741     assert(method != NULL, "method should be set if branch is profiled");
2742     ciMethodData* md = method->method_data_or_null();
2743     assert(md != NULL, "Sanity");
2744     ciProfileData* data = md->bci_to_data(x->profiled_bci());
2745     assert(data != NULL, "must have profiling data");
2746     int offset;
2747     if (x->direction() == Goto::taken) {
2748       assert(data->is_BranchData(), "need BranchData for two-way branches");
2749       offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2750     } else if (x->direction() == Goto::not_taken) {
2751       assert(data->is_BranchData(), "need BranchData for two-way branches");
2752       offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2753     } else {
2754       assert(data->is_JumpData(), "need JumpData for branches");
2755       offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2756     }
2757     LIR_Opr md_reg = new_register(T_METADATA);
2758     __ metadata2reg(md->constant_encoding(), md_reg);
2759 
2760     increment_counter(new LIR_Address(md_reg, offset,
2761                                       NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2762   }
2763 
2764   // emit phi-instruction move after safepoint since this simplifies
2765   // describing the state as the safepoint.
2766   move_to_phi(x->state());
2767 
2768   __ jump(x->default_sux());
2769 }
2770 
2771 /**
2772  * Emit profiling code if needed for arguments, parameters, return value types
2773  *
2774  * @param md                    MDO the code will update at runtime
2775  * @param md_base_offset        common offset in the MDO for this profile and subsequent ones
2776  * @param md_offset             offset in the MDO (on top of md_base_offset) for this profile
2777  * @param profiled_k            current profile
2778  * @param obj                   IR node for the object to be profiled
2779  * @param mdp                   register to hold the pointer inside the MDO (md + md_base_offset).
2780  *                              Set once we find an update to make and use for next ones.
2781  * @param not_null              true if we know obj cannot be null
2782  * @param signature_at_call_k   signature at call for obj
2783  * @param callee_signature_k    signature of callee for obj
2784  *                              at call and callee signatures differ at method handle call
2785  * @return                      the only klass we know will ever be seen at this profile point
2786  */
2787 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k,
2788                                     Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k,
2789                                     ciKlass* callee_signature_k) {
2790   ciKlass* result = NULL;
2791   bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k);
2792   bool do_update = !TypeEntries::is_type_unknown(profiled_k);
2793   // known not to be null or null bit already set and already set to
2794   // unknown: nothing we can do to improve profiling
2795   if (!do_null && !do_update) {
2796     return result;
2797   }
2798 
2799   ciKlass* exact_klass = NULL;
2800   Compilation* comp = Compilation::current();
2801   if (do_update) {
2802     // try to find exact type, using CHA if possible, so that loading
2803     // the klass from the object can be avoided
2804     ciType* type = obj->exact_type();
2805     if (type == NULL) {
2806       type = obj->declared_type();
2807       type = comp->cha_exact_type(type);
2808     }
2809     assert(type == NULL || type->is_klass(), "type should be class");
2810     exact_klass = (type != NULL && type->is_loaded()) ? (ciKlass*)type : NULL;
2811 
2812     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2813   }
2814 
2815   if (!do_null && !do_update) {
2816     return result;
2817   }
2818 
2819   ciKlass* exact_signature_k = NULL;
2820   if (do_update) {
2821     // Is the type from the signature exact (the only one possible)?
2822     exact_signature_k = signature_at_call_k->exact_klass();
2823     if (exact_signature_k == NULL) {
2824       exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2825     } else {
2826       result = exact_signature_k;
2827       // Known statically. No need to emit any code: prevent
2828       // LIR_Assembler::emit_profile_type() from emitting useless code
2829       profiled_k = ciTypeEntries::with_status(result, profiled_k);
2830     }
2831     // exact_klass and exact_signature_k can be both non NULL but
2832     // different if exact_klass is loaded after the ciObject for
2833     // exact_signature_k is created.
2834     if (exact_klass == NULL && exact_signature_k != NULL && exact_klass != exact_signature_k) {
2835       // sometimes the type of the signature is better than the best type
2836       // the compiler has
2837       exact_klass = exact_signature_k;
2838     }
2839     if (callee_signature_k != NULL &&
2840         callee_signature_k != signature_at_call_k) {
2841       ciKlass* improved_klass = callee_signature_k->exact_klass();
2842       if (improved_klass == NULL) {
2843         improved_klass = comp->cha_exact_type(callee_signature_k);
2844       }
2845       if (exact_klass == NULL && improved_klass != NULL && exact_klass != improved_klass) {
2846         exact_klass = exact_signature_k;
2847       }
2848     }
2849     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2850   }
2851 
2852   if (!do_null && !do_update) {
2853     return result;
2854   }
2855 
2856   if (mdp == LIR_OprFact::illegalOpr) {
2857     mdp = new_register(T_METADATA);
2858     __ metadata2reg(md->constant_encoding(), mdp);
2859     if (md_base_offset != 0) {
2860       LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2861       mdp = new_pointer_register();
2862       __ leal(LIR_OprFact::address(base_type_address), mdp);
2863     }
2864   }
2865   LIRItem value(obj, this);
2866   value.load_item();
2867   __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2868                   value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != NULL);
2869   return result;
2870 }
2871 
2872 // profile parameters on entry to the root of the compilation
2873 void LIRGenerator::profile_parameters(Base* x) {
2874   if (compilation()->profile_parameters()) {
2875     CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2876     ciMethodData* md = scope()->method()->method_data_or_null();
2877     assert(md != NULL, "Sanity");
2878 
2879     if (md->parameters_type_data() != NULL) {
2880       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
2881       ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
2882       LIR_Opr mdp = LIR_OprFact::illegalOpr;
2883       for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) {
2884         LIR_Opr src = args->at(i);
2885         assert(!src->is_illegal(), "check");
2886         BasicType t = src->type();
2887         if (t == T_OBJECT || t == T_ARRAY) {
2888           intptr_t profiled_k = parameters->type(j);
2889           Local* local = x->state()->local_at(java_index)->as_Local();
2890           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2891                                         in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2892                                         profiled_k, local, mdp, false, local->declared_type()->as_klass(), NULL);
2893           // If the profile is known statically set it once for all and do not emit any code
2894           if (exact != NULL) {
2895             md->set_parameter_type(j, exact);
2896           }
2897           j++;
2898         }
2899         java_index += type2size[t];
2900       }
2901     }
2902   }
2903 }
2904 
2905 void LIRGenerator::do_Base(Base* x) {
2906   __ std_entry(LIR_OprFact::illegalOpr);
2907   // Emit moves from physical registers / stack slots to virtual registers
2908   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2909   IRScope* irScope = compilation()->hir()->top_scope();
2910   int java_index = 0;
2911   for (int i = 0; i < args->length(); i++) {
2912     LIR_Opr src = args->at(i);
2913     assert(!src->is_illegal(), "check");
2914     BasicType t = src->type();
2915 
2916     // Types which are smaller than int are passed as int, so
2917     // correct the type which passed.
2918     switch (t) {
2919     case T_BYTE:
2920     case T_BOOLEAN:
2921     case T_SHORT:
2922     case T_CHAR:
2923       t = T_INT;
2924       break;
2925     default:
2926       break;
2927     }
2928 
2929     LIR_Opr dest = new_register(t);
2930     __ move(src, dest);
2931 
2932     // Assign new location to Local instruction for this local
2933     Local* local = x->state()->local_at(java_index)->as_Local();
2934     assert(local != NULL, "Locals for incoming arguments must have been created");
2935 #ifndef __SOFTFP__
2936     // The java calling convention passes double as long and float as int.
2937     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2938 #endif // __SOFTFP__
2939     local->set_operand(dest);
2940     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
2941     java_index += type2size[t];
2942   }
2943 
2944   if (compilation()->env()->dtrace_method_probes()) {
2945     BasicTypeList signature;
2946     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
2947     signature.append(T_METADATA); // Method*
2948     LIR_OprList* args = new LIR_OprList();
2949     args->append(getThreadPointer());
2950     LIR_Opr meth = new_register(T_METADATA);
2951     __ metadata2reg(method()->constant_encoding(), meth);
2952     args->append(meth);
2953     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
2954   }
2955 
2956   if (method()->is_synchronized()) {
2957     LIR_Opr obj;
2958     if (method()->is_static()) {
2959       obj = new_register(T_OBJECT);
2960       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2961     } else {
2962       Local* receiver = x->state()->local_at(0)->as_Local();
2963       assert(receiver != NULL, "must already exist");
2964       obj = receiver->operand();
2965     }
2966     assert(obj->is_valid(), "must be valid");
2967 
2968     if (method()->is_synchronized() && GenerateSynchronizationCode) {
2969       LIR_Opr lock = syncLockOpr();
2970       __ load_stack_address_monitor(0, lock);
2971 
2972       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, x->check_flag(Instruction::DeoptimizeOnException));
2973       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2974 
2975       // receiver is guaranteed non-NULL so don't need CodeEmitInfo
2976       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
2977     }
2978   }
2979   if (compilation()->age_code()) {
2980     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, 0), NULL, false);
2981     decrement_age(info);
2982   }
2983   // increment invocation counters if needed
2984   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2985     profile_parameters(x);
2986     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, false);
2987     increment_invocation_counter(info);
2988   }
2989 
2990   // all blocks with a successor must end with an unconditional jump
2991   // to the successor even if they are consecutive
2992   __ jump(x->default_sux());
2993 }
2994 
2995 
2996 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2997   // construct our frame and model the production of incoming pointer
2998   // to the OSR buffer.
2999   __ osr_entry(LIR_Assembler::osrBufferPointer());
3000   LIR_Opr result = rlock_result(x);
3001   __ move(LIR_Assembler::osrBufferPointer(), result);
3002 }
3003 
3004 
3005 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
3006   assert(args->length() == arg_list->length(),
3007          "args=%d, arg_list=%d", args->length(), arg_list->length());
3008   for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
3009     LIRItem* param = args->at(i);
3010     LIR_Opr loc = arg_list->at(i);
3011     if (loc->is_register()) {
3012       param->load_item_force(loc);
3013     } else {
3014       LIR_Address* addr = loc->as_address_ptr();
3015       param->load_for_store(addr->type());
3016       assert(addr->type() != T_VALUETYPE, "not supported yet");
3017       if (addr->type() == T_OBJECT) {
3018         __ move_wide(param->result(), addr);
3019       } else
3020         if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3021           __ unaligned_move(param->result(), addr);
3022         } else {
3023           __ move(param->result(), addr);
3024         }
3025     }
3026   }
3027 
3028   if (x->has_receiver()) {
3029     LIRItem* receiver = args->at(0);
3030     LIR_Opr loc = arg_list->at(0);
3031     if (loc->is_register()) {
3032       receiver->load_item_force(loc);
3033     } else {
3034       assert(loc->is_address(), "just checking");
3035       receiver->load_for_store(T_OBJECT);
3036       __ move_wide(receiver->result(), loc->as_address_ptr());
3037     }
3038   }
3039 }
3040 
3041 
3042 // Visits all arguments, returns appropriate items without loading them
3043 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
3044   LIRItemList* argument_items = new LIRItemList();
3045   if (x->has_receiver()) {
3046     LIRItem* receiver = new LIRItem(x->receiver(), this);
3047     argument_items->append(receiver);
3048   }
3049   for (int i = 0; i < x->number_of_arguments(); i++) {
3050     LIRItem* param = new LIRItem(x->argument_at(i), this);
3051     argument_items->append(param);
3052   }
3053   return argument_items;
3054 }
3055 
3056 
3057 // The invoke with receiver has following phases:
3058 //   a) traverse and load/lock receiver;
3059 //   b) traverse all arguments -> item-array (invoke_visit_argument)
3060 //   c) push receiver on stack
3061 //   d) load each of the items and push on stack
3062 //   e) unlock receiver
3063 //   f) move receiver into receiver-register %o0
3064 //   g) lock result registers and emit call operation
3065 //
3066 // Before issuing a call, we must spill-save all values on stack
3067 // that are in caller-save register. "spill-save" moves those registers
3068 // either in a free callee-save register or spills them if no free
3069 // callee save register is available.
3070 //
3071 // The problem is where to invoke spill-save.
3072 // - if invoked between e) and f), we may lock callee save
3073 //   register in "spill-save" that destroys the receiver register
3074 //   before f) is executed
3075 // - if we rearrange f) to be earlier (by loading %o0) it
3076 //   may destroy a value on the stack that is currently in %o0
3077 //   and is waiting to be spilled
3078 // - if we keep the receiver locked while doing spill-save,
3079 //   we cannot spill it as it is spill-locked
3080 //
3081 void LIRGenerator::do_Invoke(Invoke* x) {
3082   CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
3083 
3084   LIR_OprList* arg_list = cc->args();
3085   LIRItemList* args = invoke_visit_arguments(x);
3086   LIR_Opr receiver = LIR_OprFact::illegalOpr;
3087 
3088   // setup result register
3089   LIR_Opr result_register = LIR_OprFact::illegalOpr;
3090   if (x->type() != voidType) {
3091     result_register = result_register_for(x->type());
3092   }
3093 
3094   CodeEmitInfo* info = state_for(x, x->state());
3095 
3096   invoke_load_arguments(x, args, arg_list);
3097 
3098   if (x->has_receiver()) {
3099     args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
3100     receiver = args->at(0)->result();
3101   }
3102 
3103   // emit invoke code
3104   assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
3105 
3106   // JSR 292
3107   // Preserve the SP over MethodHandle call sites, if needed.
3108   ciMethod* target = x->target();
3109   bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
3110                                   target->is_method_handle_intrinsic() ||
3111                                   target->is_compiled_lambda_form());
3112   if (is_method_handle_invoke) {
3113     info->set_is_method_handle_invoke(true);
3114     if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
3115         __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
3116     }
3117   }
3118 
3119   switch (x->code()) {
3120     case Bytecodes::_invokestatic:
3121       __ call_static(target, result_register,
3122                      SharedRuntime::get_resolve_static_call_stub(),
3123                      arg_list, info);
3124       break;
3125     case Bytecodes::_invokespecial:
3126     case Bytecodes::_invokevirtual:
3127     case Bytecodes::_invokeinterface:
3128       // for loaded and final (method or class) target we still produce an inline cache,
3129       // in order to be able to call mixed mode
3130       if (x->code() == Bytecodes::_invokespecial || x->target_is_final()) {
3131         __ call_opt_virtual(target, receiver, result_register,
3132                             SharedRuntime::get_resolve_opt_virtual_call_stub(),
3133                             arg_list, info);
3134       } else if (x->vtable_index() < 0) {
3135         __ call_icvirtual(target, receiver, result_register,
3136                           SharedRuntime::get_resolve_virtual_call_stub(),
3137                           arg_list, info);
3138       } else {
3139         int entry_offset = in_bytes(Klass::vtable_start_offset()) + x->vtable_index() * vtableEntry::size_in_bytes();
3140         int vtable_offset = entry_offset + vtableEntry::method_offset_in_bytes();
3141         __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info);
3142       }
3143       break;
3144     case Bytecodes::_invokedynamic: {
3145       __ call_dynamic(target, receiver, result_register,
3146                       SharedRuntime::get_resolve_static_call_stub(),
3147                       arg_list, info);
3148       break;
3149     }
3150     default:
3151       fatal("unexpected bytecode: %s", Bytecodes::name(x->code()));
3152       break;
3153   }
3154 
3155   // JSR 292
3156   // Restore the SP after MethodHandle call sites, if needed.
3157   if (is_method_handle_invoke
3158       && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
3159     __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
3160   }
3161 
3162   if (x->type()->is_float() || x->type()->is_double()) {
3163     // Force rounding of results from non-strictfp when in strictfp
3164     // scope (or when we don't know the strictness of the callee, to
3165     // be safe.)
3166     if (method()->is_strict()) {
3167       if (!x->target_is_loaded() || !x->target_is_strictfp()) {
3168         result_register = round_item(result_register);
3169       }
3170     }
3171   }
3172 
3173   if (result_register->is_valid()) {
3174     LIR_Opr result = rlock_result(x);
3175     __ move(result_register, result);
3176   }
3177 }
3178 
3179 
3180 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
3181   assert(x->number_of_arguments() == 1, "wrong type");
3182   LIRItem value       (x->argument_at(0), this);
3183   LIR_Opr reg = rlock_result(x);
3184   value.load_item();
3185   LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
3186   __ move(tmp, reg);
3187 }
3188 
3189 
3190 
3191 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
3192 void LIRGenerator::do_IfOp(IfOp* x) {
3193 #ifdef ASSERT
3194   {
3195     ValueTag xtag = x->x()->type()->tag();
3196     ValueTag ttag = x->tval()->type()->tag();
3197     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
3198     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
3199     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
3200   }
3201 #endif
3202 
3203   LIRItem left(x->x(), this);
3204   LIRItem right(x->y(), this);
3205   left.load_item();
3206   if (can_inline_as_constant(right.value())) {
3207     right.dont_load_item();
3208   } else {
3209     right.load_item();
3210   }
3211 
3212   LIRItem t_val(x->tval(), this);
3213   LIRItem f_val(x->fval(), this);
3214   t_val.dont_load_item();
3215   f_val.dont_load_item();
3216   LIR_Opr reg = rlock_result(x);
3217 
3218   __ cmp(lir_cond(x->cond()), left.result(), right.result());
3219   __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
3220 }
3221 
3222 #ifdef JFR_HAVE_INTRINSICS
3223 void LIRGenerator::do_ClassIDIntrinsic(Intrinsic* x) {
3224   CodeEmitInfo* info = state_for(x);
3225   CodeEmitInfo* info2 = new CodeEmitInfo(info); // Clone for the second null check
3226 
3227   assert(info != NULL, "must have info");
3228   LIRItem arg(x->argument_at(0), this);
3229 
3230   arg.load_item();
3231   LIR_Opr klass = new_register(T_METADATA);
3232   __ move(new LIR_Address(arg.result(), java_lang_Class::klass_offset_in_bytes(), T_ADDRESS), klass, info);
3233   LIR_Opr id = new_register(T_LONG);
3234   ByteSize offset = KLASS_TRACE_ID_OFFSET;
3235   LIR_Address* trace_id_addr = new LIR_Address(klass, in_bytes(offset), T_LONG);
3236 
3237   __ move(trace_id_addr, id);
3238   __ logical_or(id, LIR_OprFact::longConst(0x01l), id);
3239   __ store(id, trace_id_addr);
3240 
3241 #ifdef TRACE_ID_META_BITS
3242   __ logical_and(id, LIR_OprFact::longConst(~TRACE_ID_META_BITS), id);
3243 #endif
3244 #ifdef TRACE_ID_SHIFT
3245   __ unsigned_shift_right(id, TRACE_ID_SHIFT, id);
3246 #endif
3247 
3248   __ move(id, rlock_result(x));
3249 }
3250 
3251 void LIRGenerator::do_getEventWriter(Intrinsic* x) {
3252   LabelObj* L_end = new LabelObj();
3253 
3254   LIR_Address* jobj_addr = new LIR_Address(getThreadPointer(),
3255                                            in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR),
3256                                            T_OBJECT);
3257   LIR_Opr result = rlock_result(x);
3258   __ move_wide(jobj_addr, result);
3259   __ cmp(lir_cond_equal, result, LIR_OprFact::oopConst(NULL));
3260   __ branch(lir_cond_equal, T_OBJECT, L_end->label());
3261 
3262   LIR_Opr jobj = new_register(T_OBJECT);
3263   __ move(result, jobj);
3264   access_load(IN_NATIVE, T_OBJECT, LIR_OprFact::address(new LIR_Address(jobj, T_OBJECT)), result);
3265 
3266   __ branch_destination(L_end->label());
3267 }
3268 
3269 #endif
3270 
3271 
3272 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) {
3273   assert(x->number_of_arguments() == 0, "wrong type");
3274   // Enforce computation of _reserved_argument_area_size which is required on some platforms.
3275   BasicTypeList signature;
3276   CallingConvention* cc = frame_map()->c_calling_convention(&signature);
3277   LIR_Opr reg = result_register_for(x->type());
3278   __ call_runtime_leaf(routine, getThreadTemp(),
3279                        reg, new LIR_OprList());
3280   LIR_Opr result = rlock_result(x);
3281   __ move(reg, result);
3282 }
3283 
3284 
3285 
3286 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
3287   switch (x->id()) {
3288   case vmIntrinsics::_intBitsToFloat      :
3289   case vmIntrinsics::_doubleToRawLongBits :
3290   case vmIntrinsics::_longBitsToDouble    :
3291   case vmIntrinsics::_floatToRawIntBits   : {
3292     do_FPIntrinsics(x);
3293     break;
3294   }
3295 
3296 #ifdef JFR_HAVE_INTRINSICS
3297   case vmIntrinsics::_getClassId:
3298     do_ClassIDIntrinsic(x);
3299     break;
3300   case vmIntrinsics::_getEventWriter:
3301     do_getEventWriter(x);
3302     break;
3303   case vmIntrinsics::_counterTime:
3304     do_RuntimeCall(CAST_FROM_FN_PTR(address, JFR_TIME_FUNCTION), x);
3305     break;
3306 #endif
3307 
3308   case vmIntrinsics::_currentTimeMillis:
3309     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x);
3310     break;
3311 
3312   case vmIntrinsics::_nanoTime:
3313     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x);
3314     break;
3315 
3316   case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
3317   case vmIntrinsics::_isInstance:     do_isInstance(x);    break;
3318   case vmIntrinsics::_isPrimitive:    do_isPrimitive(x);   break;
3319   case vmIntrinsics::_getClass:       do_getClass(x);      break;
3320   case vmIntrinsics::_currentThread:  do_currentThread(x); break;
3321 
3322   case vmIntrinsics::_dlog:           // fall through
3323   case vmIntrinsics::_dlog10:         // fall through
3324   case vmIntrinsics::_dabs:           // fall through
3325   case vmIntrinsics::_dsqrt:          // fall through
3326   case vmIntrinsics::_dtan:           // fall through
3327   case vmIntrinsics::_dsin :          // fall through
3328   case vmIntrinsics::_dcos :          // fall through
3329   case vmIntrinsics::_dexp :          // fall through
3330   case vmIntrinsics::_dpow :          do_MathIntrinsic(x); break;
3331   case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
3332 
3333   case vmIntrinsics::_fmaD:           do_FmaIntrinsic(x); break;
3334   case vmIntrinsics::_fmaF:           do_FmaIntrinsic(x); break;
3335 
3336   // java.nio.Buffer.checkIndex
3337   case vmIntrinsics::_checkIndex:     do_NIOCheckIndex(x); break;
3338 
3339   case vmIntrinsics::_compareAndSetReference:
3340     do_CompareAndSwap(x, objectType);
3341     break;
3342   case vmIntrinsics::_compareAndSetInt:
3343     do_CompareAndSwap(x, intType);
3344     break;
3345   case vmIntrinsics::_compareAndSetLong:
3346     do_CompareAndSwap(x, longType);
3347     break;
3348 
3349   case vmIntrinsics::_loadFence :
3350     __ membar_acquire();
3351     break;
3352   case vmIntrinsics::_storeFence:
3353     __ membar_release();
3354     break;
3355   case vmIntrinsics::_fullFence :
3356     __ membar();
3357     break;
3358   case vmIntrinsics::_onSpinWait:
3359     __ on_spin_wait();
3360     break;
3361   case vmIntrinsics::_Reference_get:
3362     do_Reference_get(x);
3363     break;
3364 
3365   case vmIntrinsics::_updateCRC32:
3366   case vmIntrinsics::_updateBytesCRC32:
3367   case vmIntrinsics::_updateByteBufferCRC32:
3368     do_update_CRC32(x);
3369     break;
3370 
3371   case vmIntrinsics::_updateBytesCRC32C:
3372   case vmIntrinsics::_updateDirectByteBufferCRC32C:
3373     do_update_CRC32C(x);
3374     break;
3375 
3376   case vmIntrinsics::_vectorizedMismatch:
3377     do_vectorizedMismatch(x);
3378     break;
3379 
3380   default: ShouldNotReachHere(); break;
3381   }
3382 }
3383 
3384 void LIRGenerator::profile_arguments(ProfileCall* x) {
3385   if (compilation()->profile_arguments()) {
3386     int bci = x->bci_of_invoke();
3387     ciMethodData* md = x->method()->method_data_or_null();
3388     assert(md != NULL, "Sanity");
3389     ciProfileData* data = md->bci_to_data(bci);
3390     if (data != NULL) {
3391       if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) ||
3392           (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) {
3393         ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset();
3394         int base_offset = md->byte_offset_of_slot(data, extra);
3395         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3396         ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args();
3397 
3398         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3399         int start = 0;
3400         int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments();
3401         if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) {
3402           // first argument is not profiled at call (method handle invoke)
3403           assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected");
3404           start = 1;
3405         }
3406         ciSignature* callee_signature = x->callee()->signature();
3407         // method handle call to virtual method
3408         bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc);
3409         ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : NULL);
3410 
3411         bool ignored_will_link;
3412         ciSignature* signature_at_call = NULL;
3413         x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3414         ciSignatureStream signature_at_call_stream(signature_at_call);
3415 
3416         // if called through method handle invoke, some arguments may have been popped
3417         for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) {
3418           int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset());
3419           ciKlass* exact = profile_type(md, base_offset, off,
3420               args->type(i), x->profiled_arg_at(i+start), mdp,
3421               !x->arg_needs_null_check(i+start),
3422               signature_at_call_stream.next_klass(), callee_signature_stream.next_klass());
3423           if (exact != NULL) {
3424             md->set_argument_type(bci, i, exact);
3425           }
3426         }
3427       } else {
3428 #ifdef ASSERT
3429         Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke());
3430         int n = x->nb_profiled_args();
3431         assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() ||
3432             (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))),
3433             "only at JSR292 bytecodes");
3434 #endif
3435       }
3436     }
3437   }
3438 }
3439 
3440 // profile parameters on entry to an inlined method
3441 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) {
3442   if (compilation()->profile_parameters() && x->inlined()) {
3443     ciMethodData* md = x->callee()->method_data_or_null();
3444     if (md != NULL) {
3445       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
3446       if (parameters_type_data != NULL) {
3447         ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
3448         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3449         bool has_receiver = !x->callee()->is_static();
3450         ciSignature* sig = x->callee()->signature();
3451         ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : NULL);
3452         int i = 0; // to iterate on the Instructions
3453         Value arg = x->recv();
3454         bool not_null = false;
3455         int bci = x->bci_of_invoke();
3456         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3457         // The first parameter is the receiver so that's what we start
3458         // with if it exists. One exception is method handle call to
3459         // virtual method: the receiver is in the args list
3460         if (arg == NULL || !Bytecodes::has_receiver(bc)) {
3461           i = 1;
3462           arg = x->profiled_arg_at(0);
3463           not_null = !x->arg_needs_null_check(0);
3464         }
3465         int k = 0; // to iterate on the profile data
3466         for (;;) {
3467           intptr_t profiled_k = parameters->type(k);
3468           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
3469                                         in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)),
3470                                         profiled_k, arg, mdp, not_null, sig_stream.next_klass(), NULL);
3471           // If the profile is known statically set it once for all and do not emit any code
3472           if (exact != NULL) {
3473             md->set_parameter_type(k, exact);
3474           }
3475           k++;
3476           if (k >= parameters_type_data->number_of_parameters()) {
3477 #ifdef ASSERT
3478             int extra = 0;
3479             if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 &&
3480                 x->nb_profiled_args() >= TypeProfileParmsLimit &&
3481                 x->recv() != NULL && Bytecodes::has_receiver(bc)) {
3482               extra += 1;
3483             }
3484             assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?");
3485 #endif
3486             break;
3487           }
3488           arg = x->profiled_arg_at(i);
3489           not_null = !x->arg_needs_null_check(i);
3490           i++;
3491         }
3492       }
3493     }
3494   }
3495 }
3496 
3497 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
3498   // Need recv in a temporary register so it interferes with the other temporaries
3499   LIR_Opr recv = LIR_OprFact::illegalOpr;
3500   LIR_Opr mdo = new_register(T_METADATA);
3501   // tmp is used to hold the counters on SPARC
3502   LIR_Opr tmp = new_pointer_register();
3503 
3504   if (x->nb_profiled_args() > 0) {
3505     profile_arguments(x);
3506   }
3507 
3508   // profile parameters on inlined method entry including receiver
3509   if (x->recv() != NULL || x->nb_profiled_args() > 0) {
3510     profile_parameters_at_call(x);
3511   }
3512 
3513   if (x->recv() != NULL) {
3514     LIRItem value(x->recv(), this);
3515     value.load_item();
3516     recv = new_register(T_OBJECT);
3517     __ move(value.result(), recv);
3518   }
3519   __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3520 }
3521 
3522 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3523   int bci = x->bci_of_invoke();
3524   ciMethodData* md = x->method()->method_data_or_null();
3525   assert(md != NULL, "Sanity");
3526   ciProfileData* data = md->bci_to_data(bci);
3527   if (data != NULL) {
3528     assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3529     ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3530     LIR_Opr mdp = LIR_OprFact::illegalOpr;
3531 
3532     bool ignored_will_link;
3533     ciSignature* signature_at_call = NULL;
3534     x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3535 
3536     // The offset within the MDO of the entry to update may be too large
3537     // to be used in load/store instructions on some platforms. So have
3538     // profile_type() compute the address of the profile in a register.
3539     ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3540         ret->type(), x->ret(), mdp,
3541         !x->needs_null_check(),
3542         signature_at_call->return_type()->as_klass(),
3543         x->callee()->signature()->return_type()->as_klass());
3544     if (exact != NULL) {
3545       md->set_return_type(bci, exact);
3546     }
3547   }
3548 }
3549 
3550 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3551   // We can safely ignore accessors here, since c2 will inline them anyway,
3552   // accessors are also always mature.
3553   if (!x->inlinee()->is_accessor()) {
3554     CodeEmitInfo* info = state_for(x, x->state(), true);
3555     // Notify the runtime very infrequently only to take care of counter overflows
3556     int freq_log = Tier23InlineeNotifyFreqLog;
3557     double scale;
3558     if (_method->has_option_value("CompileThresholdScaling", scale)) {
3559       freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3560     }
3561     increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true);
3562   }
3563 }
3564 
3565 void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) {
3566   if (compilation()->count_backedges()) {
3567 #if defined(X86) && !defined(_LP64)
3568     // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy.
3569     LIR_Opr left_copy = new_register(left->type());
3570     __ move(left, left_copy);
3571     __ cmp(cond, left_copy, right);
3572 #else
3573     __ cmp(cond, left, right);
3574 #endif
3575     LIR_Opr step = new_register(T_INT);
3576     LIR_Opr plus_one = LIR_OprFact::intConst(InvocationCounter::count_increment);
3577     LIR_Opr zero = LIR_OprFact::intConst(0);
3578     __ cmove(cond,
3579         (left_bci < bci) ? plus_one : zero,
3580         (right_bci < bci) ? plus_one : zero,
3581         step, left->type());
3582     increment_backedge_counter(info, step, bci);
3583   }
3584 }
3585 
3586 
3587 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, LIR_Opr step, int bci, bool backedge) {
3588   int freq_log = 0;
3589   int level = compilation()->env()->comp_level();
3590   if (level == CompLevel_limited_profile) {
3591     freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
3592   } else if (level == CompLevel_full_profile) {
3593     freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
3594   } else {
3595     ShouldNotReachHere();
3596   }
3597   // Increment the appropriate invocation/backedge counter and notify the runtime.
3598   double scale;
3599   if (_method->has_option_value("CompileThresholdScaling", scale)) {
3600     freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3601   }
3602   increment_event_counter_impl(info, info->scope()->method(), step, right_n_bits(freq_log), bci, backedge, true);
3603 }
3604 
3605 void LIRGenerator::decrement_age(CodeEmitInfo* info) {
3606   ciMethod* method = info->scope()->method();
3607   MethodCounters* mc_adr = method->ensure_method_counters();
3608   if (mc_adr != NULL) {
3609     LIR_Opr mc = new_pointer_register();
3610     __ move(LIR_OprFact::intptrConst(mc_adr), mc);
3611     int offset = in_bytes(MethodCounters::nmethod_age_offset());
3612     LIR_Address* counter = new LIR_Address(mc, offset, T_INT);
3613     LIR_Opr result = new_register(T_INT);
3614     __ load(counter, result);
3615     __ sub(result, LIR_OprFact::intConst(1), result);
3616     __ store(result, counter);
3617     // DeoptimizeStub will reexecute from the current state in code info.
3618     CodeStub* deopt = new DeoptimizeStub(info, Deoptimization::Reason_tenured,
3619                                          Deoptimization::Action_make_not_entrant);
3620     __ cmp(lir_cond_lessEqual, result, LIR_OprFact::intConst(0));
3621     __ branch(lir_cond_lessEqual, T_INT, deopt);
3622   }
3623 }
3624 
3625 
3626 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
3627                                                 ciMethod *method, LIR_Opr step, int frequency,
3628                                                 int bci, bool backedge, bool notify) {
3629   assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
3630   int level = _compilation->env()->comp_level();
3631   assert(level > CompLevel_simple, "Shouldn't be here");
3632 
3633   int offset = -1;
3634   LIR_Opr counter_holder = NULL;
3635   if (level == CompLevel_limited_profile) {
3636     MethodCounters* counters_adr = method->ensure_method_counters();
3637     if (counters_adr == NULL) {
3638       bailout("method counters allocation failed");
3639       return;
3640     }
3641     counter_holder = new_pointer_register();
3642     __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder);
3643     offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() :
3644                                  MethodCounters::invocation_counter_offset());
3645   } else if (level == CompLevel_full_profile) {
3646     counter_holder = new_register(T_METADATA);
3647     offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
3648                                  MethodData::invocation_counter_offset());
3649     ciMethodData* md = method->method_data_or_null();
3650     assert(md != NULL, "Sanity");
3651     __ metadata2reg(md->constant_encoding(), counter_holder);
3652   } else {
3653     ShouldNotReachHere();
3654   }
3655   LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
3656   LIR_Opr result = new_register(T_INT);
3657   __ load(counter, result);
3658   __ add(result, step, result);
3659   __ store(result, counter);
3660   if (notify && (!backedge || UseOnStackReplacement)) {
3661     LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding());
3662     // The bci for info can point to cmp for if's we want the if bci
3663     CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
3664     int freq = frequency << InvocationCounter::count_shift;
3665     if (freq == 0) {
3666       if (!step->is_constant()) {
3667         __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0));
3668         __ branch(lir_cond_notEqual, T_ILLEGAL, overflow);
3669       } else {
3670         __ branch(lir_cond_always, T_ILLEGAL, overflow);
3671       }
3672     } else {
3673       LIR_Opr mask = load_immediate(freq, T_INT);
3674       if (!step->is_constant()) {
3675         // If step is 0, make sure the overflow check below always fails
3676         __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0));
3677         __ cmove(lir_cond_notEqual, result, LIR_OprFact::intConst(InvocationCounter::count_increment), result, T_INT);
3678       }
3679       __ logical_and(result, mask, result);
3680       __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
3681       __ branch(lir_cond_equal, T_INT, overflow);
3682     }
3683     __ branch_destination(overflow->continuation());
3684   }
3685 }
3686 
3687 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
3688   LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
3689   BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
3690 
3691   if (x->pass_thread()) {
3692     signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
3693     args->append(getThreadPointer());
3694   }
3695 
3696   for (int i = 0; i < x->number_of_arguments(); i++) {
3697     Value a = x->argument_at(i);
3698     LIRItem* item = new LIRItem(a, this);
3699     item->load_item();
3700     args->append(item->result());
3701     signature->append(as_BasicType(a->type()));
3702   }
3703 
3704   LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL);
3705   if (x->type() == voidType) {
3706     set_no_result(x);
3707   } else {
3708     __ move(result, rlock_result(x));
3709   }
3710 }
3711 
3712 #ifdef ASSERT
3713 void LIRGenerator::do_Assert(Assert *x) {
3714   ValueTag tag = x->x()->type()->tag();
3715   If::Condition cond = x->cond();
3716 
3717   LIRItem xitem(x->x(), this);
3718   LIRItem yitem(x->y(), this);
3719   LIRItem* xin = &xitem;
3720   LIRItem* yin = &yitem;
3721 
3722   assert(tag == intTag, "Only integer assertions are valid!");
3723 
3724   xin->load_item();
3725   yin->dont_load_item();
3726 
3727   set_no_result(x);
3728 
3729   LIR_Opr left = xin->result();
3730   LIR_Opr right = yin->result();
3731 
3732   __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
3733 }
3734 #endif
3735 
3736 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
3737 
3738 
3739   Instruction *a = x->x();
3740   Instruction *b = x->y();
3741   if (!a || StressRangeCheckElimination) {
3742     assert(!b || StressRangeCheckElimination, "B must also be null");
3743 
3744     CodeEmitInfo *info = state_for(x, x->state());
3745     CodeStub* stub = new PredicateFailedStub(info);
3746 
3747     __ jump(stub);
3748   } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
3749     int a_int = a->type()->as_IntConstant()->value();
3750     int b_int = b->type()->as_IntConstant()->value();
3751 
3752     bool ok = false;
3753 
3754     switch(x->cond()) {
3755       case Instruction::eql: ok = (a_int == b_int); break;
3756       case Instruction::neq: ok = (a_int != b_int); break;
3757       case Instruction::lss: ok = (a_int < b_int); break;
3758       case Instruction::leq: ok = (a_int <= b_int); break;
3759       case Instruction::gtr: ok = (a_int > b_int); break;
3760       case Instruction::geq: ok = (a_int >= b_int); break;
3761       case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
3762       case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
3763       default: ShouldNotReachHere();
3764     }
3765 
3766     if (ok) {
3767 
3768       CodeEmitInfo *info = state_for(x, x->state());
3769       CodeStub* stub = new PredicateFailedStub(info);
3770 
3771       __ jump(stub);
3772     }
3773   } else {
3774 
3775     ValueTag tag = x->x()->type()->tag();
3776     If::Condition cond = x->cond();
3777     LIRItem xitem(x->x(), this);
3778     LIRItem yitem(x->y(), this);
3779     LIRItem* xin = &xitem;
3780     LIRItem* yin = &yitem;
3781 
3782     assert(tag == intTag, "Only integer deoptimizations are valid!");
3783 
3784     xin->load_item();
3785     yin->dont_load_item();
3786     set_no_result(x);
3787 
3788     LIR_Opr left = xin->result();
3789     LIR_Opr right = yin->result();
3790 
3791     CodeEmitInfo *info = state_for(x, x->state());
3792     CodeStub* stub = new PredicateFailedStub(info);
3793 
3794     __ cmp(lir_cond(cond), left, right);
3795     __ branch(lir_cond(cond), right->type(), stub);
3796   }
3797 }
3798 
3799 
3800 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
3801   LIRItemList args(1);
3802   LIRItem value(arg1, this);
3803   args.append(&value);
3804   BasicTypeList signature;
3805   signature.append(as_BasicType(arg1->type()));
3806 
3807   return call_runtime(&signature, &args, entry, result_type, info);
3808 }
3809 
3810 
3811 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
3812   LIRItemList args(2);
3813   LIRItem value1(arg1, this);
3814   LIRItem value2(arg2, this);
3815   args.append(&value1);
3816   args.append(&value2);
3817   BasicTypeList signature;
3818   signature.append(as_BasicType(arg1->type()));
3819   signature.append(as_BasicType(arg2->type()));
3820 
3821   return call_runtime(&signature, &args, entry, result_type, info);
3822 }
3823 
3824 
3825 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
3826                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3827   // get a result register
3828   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3829   LIR_Opr result = LIR_OprFact::illegalOpr;
3830   if (result_type->tag() != voidTag) {
3831     result = new_register(result_type);
3832     phys_reg = result_register_for(result_type);
3833   }
3834 
3835   // move the arguments into the correct location
3836   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3837   assert(cc->length() == args->length(), "argument mismatch");
3838   for (int i = 0; i < args->length(); i++) {
3839     LIR_Opr arg = args->at(i);
3840     LIR_Opr loc = cc->at(i);
3841     if (loc->is_register()) {
3842       __ move(arg, loc);
3843     } else {
3844       LIR_Address* addr = loc->as_address_ptr();
3845 //           if (!can_store_as_constant(arg)) {
3846 //             LIR_Opr tmp = new_register(arg->type());
3847 //             __ move(arg, tmp);
3848 //             arg = tmp;
3849 //           }
3850       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3851         __ unaligned_move(arg, addr);
3852       } else {
3853         __ move(arg, addr);
3854       }
3855     }
3856   }
3857 
3858   if (info) {
3859     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3860   } else {
3861     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3862   }
3863   if (result->is_valid()) {
3864     __ move(phys_reg, result);
3865   }
3866   return result;
3867 }
3868 
3869 
3870 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
3871                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3872   // get a result register
3873   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3874   LIR_Opr result = LIR_OprFact::illegalOpr;
3875   if (result_type->tag() != voidTag) {
3876     result = new_register(result_type);
3877     phys_reg = result_register_for(result_type);
3878   }
3879 
3880   // move the arguments into the correct location
3881   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3882 
3883   assert(cc->length() == args->length(), "argument mismatch");
3884   for (int i = 0; i < args->length(); i++) {
3885     LIRItem* arg = args->at(i);
3886     LIR_Opr loc = cc->at(i);
3887     if (loc->is_register()) {
3888       arg->load_item_force(loc);
3889     } else {
3890       LIR_Address* addr = loc->as_address_ptr();
3891       arg->load_for_store(addr->type());
3892       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3893         __ unaligned_move(arg->result(), addr);
3894       } else {
3895         __ move(arg->result(), addr);
3896       }
3897     }
3898   }
3899 
3900   if (info) {
3901     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3902   } else {
3903     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3904   }
3905   if (result->is_valid()) {
3906     __ move(phys_reg, result);
3907   }
3908   return result;
3909 }
3910 
3911 void LIRGenerator::do_MemBar(MemBar* x) {
3912   LIR_Code code = x->code();
3913   switch(code) {
3914   case lir_membar_acquire   : __ membar_acquire(); break;
3915   case lir_membar_release   : __ membar_release(); break;
3916   case lir_membar           : __ membar(); break;
3917   case lir_membar_loadload  : __ membar_loadload(); break;
3918   case lir_membar_storestore: __ membar_storestore(); break;
3919   case lir_membar_loadstore : __ membar_loadstore(); break;
3920   case lir_membar_storeload : __ membar_storeload(); break;
3921   default                   : ShouldNotReachHere(); break;
3922   }
3923 }
3924 
3925 LIR_Opr LIRGenerator::mask_boolean(LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) {
3926   LIR_Opr value_fixed = rlock_byte(T_BYTE);
3927   if (TwoOperandLIRForm) {
3928     __ move(value, value_fixed);
3929     __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed);
3930   } else {
3931     __ logical_and(value, LIR_OprFact::intConst(1), value_fixed);
3932   }
3933   LIR_Opr klass = new_register(T_METADATA);
3934   __ move(new LIR_Address(array, oopDesc::klass_offset_in_bytes(), T_ADDRESS), klass, null_check_info);
3935   null_check_info = NULL;
3936   LIR_Opr layout = new_register(T_INT);
3937   __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
3938   int diffbit = Klass::layout_helper_boolean_diffbit();
3939   __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout);
3940   __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0));
3941   __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE);
3942   value = value_fixed;
3943   return value;
3944 }
3945 
3946 LIR_Opr LIRGenerator::maybe_mask_boolean(StoreIndexed* x, LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) {
3947   if (x->check_boolean()) {
3948     value = mask_boolean(array, value, null_check_info);
3949   }
3950   return value;
3951 }