1 /*
   2  * Copyright (c) 1999, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/codeBuffer.hpp"
  27 #include "c1/c1_CodeStubs.hpp"
  28 #include "c1/c1_Defs.hpp"
  29 #include "c1/c1_FrameMap.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_MacroAssembler.hpp"
  32 #include "c1/c1_Runtime1.hpp"
  33 #include "classfile/systemDictionary.hpp"
  34 #include "classfile/vmSymbols.hpp"
  35 #include "code/codeBlob.hpp"
  36 #include "code/compiledIC.hpp"
  37 #include "code/pcDesc.hpp"
  38 #include "code/scopeDesc.hpp"
  39 #include "code/vtableStubs.hpp"
  40 #include "compiler/disassembler.hpp"
  41 #include "gc/shared/barrierSet.hpp"
  42 #include "gc/shared/c1/barrierSetC1.hpp"
  43 #include "gc/shared/collectedHeap.hpp"
  44 #include "interpreter/bytecode.hpp"
  45 #include "interpreter/interpreter.hpp"
  46 #include "jfr/support/jfrIntrinsics.hpp"
  47 #include "logging/log.hpp"
  48 #include "memory/allocation.inline.hpp"
  49 #include "memory/oopFactory.hpp"
  50 #include "memory/resourceArea.hpp"
  51 #include "oops/access.inline.hpp"
  52 #include "oops/objArrayOop.inline.hpp"
  53 #include "oops/objArrayKlass.hpp"
  54 #include "oops/oop.inline.hpp"
  55 #include "oops/valueArrayKlass.hpp"
  56 #include "oops/valueArrayOop.inline.hpp"
  57 #include "runtime/atomic.hpp"
  58 #include "runtime/biasedLocking.hpp"
  59 #include "runtime/compilationPolicy.hpp"
  60 #include "runtime/fieldDescriptor.inline.hpp"
  61 #include "runtime/frame.inline.hpp"
  62 #include "runtime/handles.inline.hpp"
  63 #include "runtime/interfaceSupport.inline.hpp"
  64 #include "runtime/javaCalls.hpp"
  65 #include "runtime/sharedRuntime.hpp"
  66 #include "runtime/threadCritical.hpp"
  67 #include "runtime/vframe.inline.hpp"
  68 #include "runtime/vframeArray.hpp"
  69 #include "runtime/vm_version.hpp"
  70 #include "utilities/copy.hpp"
  71 #include "utilities/events.hpp"
  72 
  73 
  74 // Implementation of StubAssembler
  75 
  76 StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) {
  77   _name = name;
  78   _must_gc_arguments = false;
  79   _frame_size = no_frame_size;
  80   _num_rt_args = 0;
  81   _stub_id = stub_id;
  82 }
  83 
  84 
  85 void StubAssembler::set_info(const char* name, bool must_gc_arguments) {
  86   _name = name;
  87   _must_gc_arguments = must_gc_arguments;
  88 }
  89 
  90 
  91 void StubAssembler::set_frame_size(int size) {
  92   if (_frame_size == no_frame_size) {
  93     _frame_size = size;
  94   }
  95   assert(_frame_size == size, "can't change the frame size");
  96 }
  97 
  98 
  99 void StubAssembler::set_num_rt_args(int args) {
 100   if (_num_rt_args == 0) {
 101     _num_rt_args = args;
 102   }
 103   assert(_num_rt_args == args, "can't change the number of args");
 104 }
 105 
 106 // Implementation of Runtime1
 107 
 108 CodeBlob* Runtime1::_blobs[Runtime1::number_of_ids];
 109 const char *Runtime1::_blob_names[] = {
 110   RUNTIME1_STUBS(STUB_NAME, LAST_STUB_NAME)
 111 };
 112 
 113 #ifndef PRODUCT
 114 // statistics
 115 int Runtime1::_generic_arraycopy_cnt = 0;
 116 int Runtime1::_generic_arraycopystub_cnt = 0;
 117 int Runtime1::_arraycopy_slowcase_cnt = 0;
 118 int Runtime1::_arraycopy_checkcast_cnt = 0;
 119 int Runtime1::_arraycopy_checkcast_attempt_cnt = 0;
 120 int Runtime1::_new_type_array_slowcase_cnt = 0;
 121 int Runtime1::_new_object_array_slowcase_cnt = 0;
 122 int Runtime1::_new_instance_slowcase_cnt = 0;
 123 int Runtime1::_new_multi_array_slowcase_cnt = 0;
 124 int Runtime1::_load_flattened_array_slowcase_cnt = 0;
 125 int Runtime1::_store_flattened_array_slowcase_cnt = 0;
 126 int Runtime1::_monitorenter_slowcase_cnt = 0;
 127 int Runtime1::_monitorexit_slowcase_cnt = 0;
 128 int Runtime1::_patch_code_slowcase_cnt = 0;
 129 int Runtime1::_throw_range_check_exception_count = 0;
 130 int Runtime1::_throw_index_exception_count = 0;
 131 int Runtime1::_throw_div0_exception_count = 0;
 132 int Runtime1::_throw_null_pointer_exception_count = 0;
 133 int Runtime1::_throw_class_cast_exception_count = 0;
 134 int Runtime1::_throw_incompatible_class_change_error_count = 0;
 135 int Runtime1::_throw_illegal_monitor_state_exception_count = 0;
 136 int Runtime1::_throw_array_store_exception_count = 0;
 137 int Runtime1::_throw_count = 0;
 138 
 139 static int _byte_arraycopy_stub_cnt = 0;
 140 static int _short_arraycopy_stub_cnt = 0;
 141 static int _int_arraycopy_stub_cnt = 0;
 142 static int _long_arraycopy_stub_cnt = 0;
 143 static int _oop_arraycopy_stub_cnt = 0;
 144 
 145 address Runtime1::arraycopy_count_address(BasicType type) {
 146   switch (type) {
 147   case T_BOOLEAN:
 148   case T_BYTE:   return (address)&_byte_arraycopy_stub_cnt;
 149   case T_CHAR:
 150   case T_SHORT:  return (address)&_short_arraycopy_stub_cnt;
 151   case T_FLOAT:
 152   case T_INT:    return (address)&_int_arraycopy_stub_cnt;
 153   case T_DOUBLE:
 154   case T_LONG:   return (address)&_long_arraycopy_stub_cnt;
 155   case T_ARRAY:
 156   case T_OBJECT: return (address)&_oop_arraycopy_stub_cnt;
 157   default:
 158     ShouldNotReachHere();
 159     return NULL;
 160   }
 161 }
 162 
 163 
 164 #endif
 165 
 166 // Simple helper to see if the caller of a runtime stub which
 167 // entered the VM has been deoptimized
 168 
 169 static bool caller_is_deopted() {
 170   JavaThread* thread = JavaThread::current();
 171   RegisterMap reg_map(thread, false);
 172   frame runtime_frame = thread->last_frame();
 173   frame caller_frame = runtime_frame.sender(&reg_map);
 174   assert(caller_frame.is_compiled_frame(), "must be compiled");
 175   return caller_frame.is_deoptimized_frame();
 176 }
 177 
 178 // Stress deoptimization
 179 static void deopt_caller() {
 180   if ( !caller_is_deopted()) {
 181     JavaThread* thread = JavaThread::current();
 182     RegisterMap reg_map(thread, false);
 183     frame runtime_frame = thread->last_frame();
 184     frame caller_frame = runtime_frame.sender(&reg_map);
 185     Deoptimization::deoptimize_frame(thread, caller_frame.id());
 186     assert(caller_is_deopted(), "Must be deoptimized");
 187   }
 188 }
 189 
 190 class StubIDStubAssemblerCodeGenClosure: public StubAssemblerCodeGenClosure {
 191  private:
 192   Runtime1::StubID _id;
 193  public:
 194   StubIDStubAssemblerCodeGenClosure(Runtime1::StubID id) : _id(id) {}
 195   virtual OopMapSet* generate_code(StubAssembler* sasm) {
 196     return Runtime1::generate_code_for(_id, sasm);
 197   }
 198 };
 199 
 200 CodeBlob* Runtime1::generate_blob(BufferBlob* buffer_blob, int stub_id, const char* name, bool expect_oop_map, StubAssemblerCodeGenClosure* cl) {
 201   ResourceMark rm;
 202   // create code buffer for code storage
 203   CodeBuffer code(buffer_blob);
 204 
 205   OopMapSet* oop_maps;
 206   int frame_size;
 207   bool must_gc_arguments;
 208 
 209   Compilation::setup_code_buffer(&code, 0);
 210 
 211   // create assembler for code generation
 212   StubAssembler* sasm = new StubAssembler(&code, name, stub_id);
 213   // generate code for runtime stub
 214   oop_maps = cl->generate_code(sasm);
 215   assert(oop_maps == NULL || sasm->frame_size() != no_frame_size,
 216          "if stub has an oop map it must have a valid frame size");
 217   assert(!expect_oop_map || oop_maps != NULL, "must have an oopmap");
 218 
 219   // align so printing shows nop's instead of random code at the end (SimpleStubs are aligned)
 220   sasm->align(BytesPerWord);
 221   // make sure all code is in code buffer
 222   sasm->flush();
 223 
 224   frame_size = sasm->frame_size();
 225   must_gc_arguments = sasm->must_gc_arguments();
 226   // create blob - distinguish a few special cases
 227   CodeBlob* blob = RuntimeStub::new_runtime_stub(name,
 228                                                  &code,
 229                                                  CodeOffsets::frame_never_safe,
 230                                                  frame_size,
 231                                                  oop_maps,
 232                                                  must_gc_arguments);
 233   assert(blob != NULL, "blob must exist");
 234   return blob;
 235 }
 236 
 237 void Runtime1::generate_blob_for(BufferBlob* buffer_blob, StubID id) {
 238   assert(0 <= id && id < number_of_ids, "illegal stub id");
 239   bool expect_oop_map = true;
 240 #ifdef ASSERT
 241   // Make sure that stubs that need oopmaps have them
 242   switch (id) {
 243     // These stubs don't need to have an oopmap
 244   case dtrace_object_alloc_id:
 245   case slow_subtype_check_id:
 246   case fpu2long_stub_id:
 247   case unwind_exception_id:
 248   case counter_overflow_id:
 249 #if defined(SPARC) || defined(PPC32)
 250   case handle_exception_nofpu_id:  // Unused on sparc
 251 #endif
 252     expect_oop_map = false;
 253     break;
 254   default:
 255     break;
 256   }
 257 #endif
 258   StubIDStubAssemblerCodeGenClosure cl(id);
 259   CodeBlob* blob = generate_blob(buffer_blob, id, name_for(id), expect_oop_map, &cl);
 260   // install blob
 261   _blobs[id] = blob;
 262 }
 263 
 264 void Runtime1::initialize(BufferBlob* blob) {
 265   // platform-dependent initialization
 266   initialize_pd();
 267   // generate stubs
 268   for (int id = 0; id < number_of_ids; id++) generate_blob_for(blob, (StubID)id);
 269   // printing
 270 #ifndef PRODUCT
 271   if (PrintSimpleStubs) {
 272     ResourceMark rm;
 273     for (int id = 0; id < number_of_ids; id++) {
 274       _blobs[id]->print();
 275       if (_blobs[id]->oop_maps() != NULL) {
 276         _blobs[id]->oop_maps()->print();
 277       }
 278     }
 279   }
 280 #endif
 281   BarrierSetC1* bs = BarrierSet::barrier_set()->barrier_set_c1();
 282   bs->generate_c1_runtime_stubs(blob);
 283 }
 284 
 285 CodeBlob* Runtime1::blob_for(StubID id) {
 286   assert(0 <= id && id < number_of_ids, "illegal stub id");
 287   return _blobs[id];
 288 }
 289 
 290 
 291 const char* Runtime1::name_for(StubID id) {
 292   assert(0 <= id && id < number_of_ids, "illegal stub id");
 293   return _blob_names[id];
 294 }
 295 
 296 const char* Runtime1::name_for_address(address entry) {
 297   for (int id = 0; id < number_of_ids; id++) {
 298     if (entry == entry_for((StubID)id)) return name_for((StubID)id);
 299   }
 300 
 301 #define FUNCTION_CASE(a, f) \
 302   if ((intptr_t)a == CAST_FROM_FN_PTR(intptr_t, f))  return #f
 303 
 304   FUNCTION_CASE(entry, os::javaTimeMillis);
 305   FUNCTION_CASE(entry, os::javaTimeNanos);
 306   FUNCTION_CASE(entry, SharedRuntime::OSR_migration_end);
 307   FUNCTION_CASE(entry, SharedRuntime::d2f);
 308   FUNCTION_CASE(entry, SharedRuntime::d2i);
 309   FUNCTION_CASE(entry, SharedRuntime::d2l);
 310   FUNCTION_CASE(entry, SharedRuntime::dcos);
 311   FUNCTION_CASE(entry, SharedRuntime::dexp);
 312   FUNCTION_CASE(entry, SharedRuntime::dlog);
 313   FUNCTION_CASE(entry, SharedRuntime::dlog10);
 314   FUNCTION_CASE(entry, SharedRuntime::dpow);
 315   FUNCTION_CASE(entry, SharedRuntime::drem);
 316   FUNCTION_CASE(entry, SharedRuntime::dsin);
 317   FUNCTION_CASE(entry, SharedRuntime::dtan);
 318   FUNCTION_CASE(entry, SharedRuntime::f2i);
 319   FUNCTION_CASE(entry, SharedRuntime::f2l);
 320   FUNCTION_CASE(entry, SharedRuntime::frem);
 321   FUNCTION_CASE(entry, SharedRuntime::l2d);
 322   FUNCTION_CASE(entry, SharedRuntime::l2f);
 323   FUNCTION_CASE(entry, SharedRuntime::ldiv);
 324   FUNCTION_CASE(entry, SharedRuntime::lmul);
 325   FUNCTION_CASE(entry, SharedRuntime::lrem);
 326   FUNCTION_CASE(entry, SharedRuntime::lrem);
 327   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_entry);
 328   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit);
 329   FUNCTION_CASE(entry, is_instance_of);
 330   FUNCTION_CASE(entry, trace_block_entry);
 331 #ifdef JFR_HAVE_INTRINSICS
 332   FUNCTION_CASE(entry, JFR_TIME_FUNCTION);
 333 #endif
 334   FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32());
 335   FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32C());
 336   FUNCTION_CASE(entry, StubRoutines::vectorizedMismatch());
 337   FUNCTION_CASE(entry, StubRoutines::dexp());
 338   FUNCTION_CASE(entry, StubRoutines::dlog());
 339   FUNCTION_CASE(entry, StubRoutines::dlog10());
 340   FUNCTION_CASE(entry, StubRoutines::dpow());
 341   FUNCTION_CASE(entry, StubRoutines::dsin());
 342   FUNCTION_CASE(entry, StubRoutines::dcos());
 343   FUNCTION_CASE(entry, StubRoutines::dtan());
 344 
 345 #undef FUNCTION_CASE
 346 
 347   // Soft float adds more runtime names.
 348   return pd_name_for_address(entry);
 349 }
 350 
 351 
 352 JRT_ENTRY(void, Runtime1::new_instance(JavaThread* thread, Klass* klass))
 353   NOT_PRODUCT(_new_instance_slowcase_cnt++;)
 354 
 355   assert(klass->is_klass(), "not a class");
 356   Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
 357   InstanceKlass* h = InstanceKlass::cast(klass);
 358   h->check_valid_for_instantiation(true, CHECK);
 359   // make sure klass is initialized
 360   h->initialize(CHECK);
 361   // allocate instance and return via TLS
 362   oop obj = h->allocate_instance(CHECK);
 363   thread->set_vm_result(obj);
 364 JRT_END
 365 
 366 
 367 JRT_ENTRY(void, Runtime1::new_type_array(JavaThread* thread, Klass* klass, jint length))
 368   NOT_PRODUCT(_new_type_array_slowcase_cnt++;)
 369   // Note: no handle for klass needed since they are not used
 370   //       anymore after new_typeArray() and no GC can happen before.
 371   //       (This may have to change if this code changes!)
 372   assert(klass->is_klass(), "not a class");
 373   BasicType elt_type = TypeArrayKlass::cast(klass)->element_type();
 374   oop obj = oopFactory::new_typeArray(elt_type, length, CHECK);
 375   thread->set_vm_result(obj);
 376   // This is pretty rare but this runtime patch is stressful to deoptimization
 377   // if we deoptimize here so force a deopt to stress the path.
 378   if (DeoptimizeALot) {
 379     deopt_caller();
 380   }
 381 
 382 JRT_END
 383 
 384 
 385 JRT_ENTRY(void, Runtime1::new_object_array(JavaThread* thread, Klass* array_klass, jint length))
 386   NOT_PRODUCT(_new_object_array_slowcase_cnt++;)
 387 
 388   // Note: no handle for klass needed since they are not used
 389   //       anymore after new_objArray() and no GC can happen before.
 390   //       (This may have to change if this code changes!)
 391   assert(array_klass->is_klass(), "not a class");
 392   Handle holder(THREAD, array_klass->klass_holder()); // keep the klass alive
 393   Klass* elem_klass = ArrayKlass::cast(array_klass)->element_klass();
 394   if (elem_klass->is_value()) {
 395     arrayOop obj = oopFactory::new_valueArray(elem_klass, length, CHECK);
 396     thread->set_vm_result(obj);
 397   } else {
 398     objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK);
 399     thread->set_vm_result(obj);
 400   }
 401   // This is pretty rare but this runtime patch is stressful to deoptimization
 402   // if we deoptimize here so force a deopt to stress the path.
 403   if (DeoptimizeALot) {
 404     deopt_caller();
 405   }
 406 JRT_END
 407 
 408 
 409 JRT_ENTRY(void, Runtime1::new_multi_array(JavaThread* thread, Klass* klass, int rank, jint* dims))
 410   NOT_PRODUCT(_new_multi_array_slowcase_cnt++;)
 411 
 412   assert(klass->is_klass(), "not a class");
 413   assert(rank >= 1, "rank must be nonzero");
 414   Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
 415   oop obj = ArrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK);
 416   thread->set_vm_result(obj);
 417 JRT_END
 418 
 419 
 420 JRT_ENTRY(void, Runtime1::load_flattened_array(JavaThread* thread, valueArrayOopDesc* array, int index))
 421   NOT_PRODUCT(_load_flattened_array_slowcase_cnt++;)
 422   Klass* klass = array->klass();
 423   assert(klass->is_valueArray_klass(), "expected value array oop");
 424   assert(array->length() > 0 && index < array->length(), "already checked");
 425 
 426   ValueArrayKlass* vaklass = ValueArrayKlass::cast(klass);
 427   ValueKlass* vklass = vaklass->element_klass();
 428 
 429   // We have a non-empty flattened array, so the element type must have been initialized.
 430   assert(vklass->is_initialized(), "must be");
 431   Handle holder(THREAD, vklass->klass_holder()); // keep the vklass alive
 432   oop obj = vklass->allocate_instance(CHECK);
 433 
 434   void* src = array->value_at_addr(index, vaklass->layout_helper());
 435   vklass->value_store(src, vklass->data_for_oop(obj),
 436                       vaklass->element_byte_size(), true, false);
 437   thread->set_vm_result(obj);
 438 JRT_END
 439 
 440 
 441 JRT_ENTRY(void, Runtime1::store_flattened_array(JavaThread* thread, valueArrayOopDesc* array, int index, oopDesc* value))
 442   NOT_PRODUCT(_store_flattened_array_slowcase_cnt++;)
 443   if (value == NULL) {
 444     SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 445   } else {
 446     Klass* klass = array->klass();
 447     assert(klass->is_valueArray_klass(), "expected value array");
 448     assert(ArrayKlass::cast(klass)->element_klass() == value->klass(), "Store type incorrect");
 449 
 450     ValueArrayKlass* vaklass = ValueArrayKlass::cast(klass);
 451     ValueKlass* vklass = vaklass->element_klass();
 452     const int lh = vaklass->layout_helper();
 453     vklass->value_store(vklass->data_for_oop(value), array->value_at_addr(index, lh),
 454                         vaklass->element_byte_size(), true, false);
 455   }
 456 JRT_END
 457 
 458 
 459 JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* thread, StubID id))
 460   tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point", id);
 461 JRT_END
 462 
 463 
 464 JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* thread, oopDesc* obj))
 465   ResourceMark rm(thread);
 466   const char* klass_name = obj->klass()->external_name();
 467   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayStoreException(), klass_name);
 468 JRT_END
 469 
 470 
 471 // counter_overflow() is called from within C1-compiled methods. The enclosing method is the method
 472 // associated with the top activation record. The inlinee (that is possibly included in the enclosing
 473 // method) method oop is passed as an argument. In order to do that it is embedded in the code as
 474 // a constant.
 475 static nmethod* counter_overflow_helper(JavaThread* THREAD, int branch_bci, Method* m) {
 476   nmethod* osr_nm = NULL;
 477   methodHandle method(THREAD, m);
 478 
 479   RegisterMap map(THREAD, false);
 480   frame fr =  THREAD->last_frame().sender(&map);
 481   nmethod* nm = (nmethod*) fr.cb();
 482   assert(nm!= NULL && nm->is_nmethod(), "Sanity check");
 483   methodHandle enclosing_method(THREAD, nm->method());
 484 
 485   CompLevel level = (CompLevel)nm->comp_level();
 486   int bci = InvocationEntryBci;
 487   if (branch_bci != InvocationEntryBci) {
 488     // Compute destination bci
 489     address pc = method()->code_base() + branch_bci;
 490     Bytecodes::Code branch = Bytecodes::code_at(method(), pc);
 491     int offset = 0;
 492     switch (branch) {
 493       case Bytecodes::_if_icmplt: case Bytecodes::_iflt:
 494       case Bytecodes::_if_icmpgt: case Bytecodes::_ifgt:
 495       case Bytecodes::_if_icmple: case Bytecodes::_ifle:
 496       case Bytecodes::_if_icmpge: case Bytecodes::_ifge:
 497       case Bytecodes::_if_icmpeq: case Bytecodes::_if_acmpeq: case Bytecodes::_ifeq:
 498       case Bytecodes::_if_icmpne: case Bytecodes::_if_acmpne: case Bytecodes::_ifne:
 499       case Bytecodes::_ifnull: case Bytecodes::_ifnonnull: case Bytecodes::_goto:
 500         offset = (int16_t)Bytes::get_Java_u2(pc + 1);
 501         break;
 502       case Bytecodes::_goto_w:
 503         offset = Bytes::get_Java_u4(pc + 1);
 504         break;
 505       default: ;
 506     }
 507     bci = branch_bci + offset;
 508   }
 509   assert(!HAS_PENDING_EXCEPTION, "Should not have any exceptions pending");
 510   osr_nm = CompilationPolicy::policy()->event(enclosing_method, method, branch_bci, bci, level, nm, THREAD);
 511   assert(!HAS_PENDING_EXCEPTION, "Event handler should not throw any exceptions");
 512   return osr_nm;
 513 }
 514 
 515 JRT_BLOCK_ENTRY(address, Runtime1::counter_overflow(JavaThread* thread, int bci, Method* method))
 516   nmethod* osr_nm;
 517   JRT_BLOCK
 518     osr_nm = counter_overflow_helper(thread, bci, method);
 519     if (osr_nm != NULL) {
 520       RegisterMap map(thread, false);
 521       frame fr =  thread->last_frame().sender(&map);
 522       Deoptimization::deoptimize_frame(thread, fr.id());
 523     }
 524   JRT_BLOCK_END
 525   return NULL;
 526 JRT_END
 527 
 528 extern void vm_exit(int code);
 529 
 530 // Enter this method from compiled code handler below. This is where we transition
 531 // to VM mode. This is done as a helper routine so that the method called directly
 532 // from compiled code does not have to transition to VM. This allows the entry
 533 // method to see if the nmethod that we have just looked up a handler for has
 534 // been deoptimized while we were in the vm. This simplifies the assembly code
 535 // cpu directories.
 536 //
 537 // We are entering here from exception stub (via the entry method below)
 538 // If there is a compiled exception handler in this method, we will continue there;
 539 // otherwise we will unwind the stack and continue at the caller of top frame method
 540 // Note: we enter in Java using a special JRT wrapper. This wrapper allows us to
 541 // control the area where we can allow a safepoint. After we exit the safepoint area we can
 542 // check to see if the handler we are going to return is now in a nmethod that has
 543 // been deoptimized. If that is the case we return the deopt blob
 544 // unpack_with_exception entry instead. This makes life for the exception blob easier
 545 // because making that same check and diverting is painful from assembly language.
 546 JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* thread, oopDesc* ex, address pc, nmethod*& nm))
 547   // Reset method handle flag.
 548   thread->set_is_method_handle_return(false);
 549 
 550   Handle exception(thread, ex);
 551   nm = CodeCache::find_nmethod(pc);
 552   assert(nm != NULL, "this is not an nmethod");
 553   // Adjust the pc as needed/
 554   if (nm->is_deopt_pc(pc)) {
 555     RegisterMap map(thread, false);
 556     frame exception_frame = thread->last_frame().sender(&map);
 557     // if the frame isn't deopted then pc must not correspond to the caller of last_frame
 558     assert(exception_frame.is_deoptimized_frame(), "must be deopted");
 559     pc = exception_frame.pc();
 560   }
 561 #ifdef ASSERT
 562   assert(exception.not_null(), "NULL exceptions should be handled by throw_exception");
 563   // Check that exception is a subclass of Throwable, otherwise we have a VerifyError
 564   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
 565     if (ExitVMOnVerifyError) vm_exit(-1);
 566     ShouldNotReachHere();
 567   }
 568 #endif
 569 
 570   // Check the stack guard pages and reenable them if necessary and there is
 571   // enough space on the stack to do so.  Use fast exceptions only if the guard
 572   // pages are enabled.
 573   bool guard_pages_enabled = thread->stack_guards_enabled();
 574   if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 575 
 576   if (JvmtiExport::can_post_on_exceptions()) {
 577     // To ensure correct notification of exception catches and throws
 578     // we have to deoptimize here.  If we attempted to notify the
 579     // catches and throws during this exception lookup it's possible
 580     // we could deoptimize on the way out of the VM and end back in
 581     // the interpreter at the throw site.  This would result in double
 582     // notifications since the interpreter would also notify about
 583     // these same catches and throws as it unwound the frame.
 584 
 585     RegisterMap reg_map(thread);
 586     frame stub_frame = thread->last_frame();
 587     frame caller_frame = stub_frame.sender(&reg_map);
 588 
 589     // We don't really want to deoptimize the nmethod itself since we
 590     // can actually continue in the exception handler ourselves but I
 591     // don't see an easy way to have the desired effect.
 592     Deoptimization::deoptimize_frame(thread, caller_frame.id());
 593     assert(caller_is_deopted(), "Must be deoptimized");
 594 
 595     return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 596   }
 597 
 598   // ExceptionCache is used only for exceptions at call sites and not for implicit exceptions
 599   if (guard_pages_enabled) {
 600     address fast_continuation = nm->handler_for_exception_and_pc(exception, pc);
 601     if (fast_continuation != NULL) {
 602       // Set flag if return address is a method handle call site.
 603       thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
 604       return fast_continuation;
 605     }
 606   }
 607 
 608   // If the stack guard pages are enabled, check whether there is a handler in
 609   // the current method.  Otherwise (guard pages disabled), force an unwind and
 610   // skip the exception cache update (i.e., just leave continuation==NULL).
 611   address continuation = NULL;
 612   if (guard_pages_enabled) {
 613 
 614     // New exception handling mechanism can support inlined methods
 615     // with exception handlers since the mappings are from PC to PC
 616 
 617     // debugging support
 618     // tracing
 619     if (log_is_enabled(Info, exceptions)) {
 620       ResourceMark rm;
 621       stringStream tempst;
 622       assert(nm->method() != NULL, "Unexpected NULL method()");
 623       tempst.print("compiled method <%s>\n"
 624                    " at PC" INTPTR_FORMAT " for thread " INTPTR_FORMAT,
 625                    nm->method()->print_value_string(), p2i(pc), p2i(thread));
 626       Exceptions::log_exception(exception, tempst);
 627     }
 628     // for AbortVMOnException flag
 629     Exceptions::debug_check_abort(exception);
 630 
 631     // Clear out the exception oop and pc since looking up an
 632     // exception handler can cause class loading, which might throw an
 633     // exception and those fields are expected to be clear during
 634     // normal bytecode execution.
 635     thread->clear_exception_oop_and_pc();
 636 
 637     bool recursive_exception = false;
 638     continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false, recursive_exception);
 639     // If an exception was thrown during exception dispatch, the exception oop may have changed
 640     thread->set_exception_oop(exception());
 641     thread->set_exception_pc(pc);
 642 
 643     // the exception cache is used only by non-implicit exceptions
 644     // Update the exception cache only when there didn't happen
 645     // another exception during the computation of the compiled
 646     // exception handler. Checking for exception oop equality is not
 647     // sufficient because some exceptions are pre-allocated and reused.
 648     if (continuation != NULL && !recursive_exception) {
 649       nm->add_handler_for_exception_and_pc(exception, pc, continuation);
 650     }
 651   }
 652 
 653   thread->set_vm_result(exception());
 654   // Set flag if return address is a method handle call site.
 655   thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
 656 
 657   if (log_is_enabled(Info, exceptions)) {
 658     ResourceMark rm;
 659     log_info(exceptions)("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT
 660                          " for exception thrown at PC " PTR_FORMAT,
 661                          p2i(thread), p2i(continuation), p2i(pc));
 662   }
 663 
 664   return continuation;
 665 JRT_END
 666 
 667 // Enter this method from compiled code only if there is a Java exception handler
 668 // in the method handling the exception.
 669 // We are entering here from exception stub. We don't do a normal VM transition here.
 670 // We do it in a helper. This is so we can check to see if the nmethod we have just
 671 // searched for an exception handler has been deoptimized in the meantime.
 672 address Runtime1::exception_handler_for_pc(JavaThread* thread) {
 673   oop exception = thread->exception_oop();
 674   address pc = thread->exception_pc();
 675   // Still in Java mode
 676   DEBUG_ONLY(ResetNoHandleMark rnhm);
 677   nmethod* nm = NULL;
 678   address continuation = NULL;
 679   {
 680     // Enter VM mode by calling the helper
 681     ResetNoHandleMark rnhm;
 682     continuation = exception_handler_for_pc_helper(thread, exception, pc, nm);
 683   }
 684   // Back in JAVA, use no oops DON'T safepoint
 685 
 686   // Now check to see if the nmethod we were called from is now deoptimized.
 687   // If so we must return to the deopt blob and deoptimize the nmethod
 688   if (nm != NULL && caller_is_deopted()) {
 689     continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 690   }
 691 
 692   assert(continuation != NULL, "no handler found");
 693   return continuation;
 694 }
 695 
 696 
 697 JRT_ENTRY(void, Runtime1::throw_range_check_exception(JavaThread* thread, int index, arrayOopDesc* a))
 698   NOT_PRODUCT(_throw_range_check_exception_count++;)
 699   const int len = 35;
 700   assert(len < strlen("Index %d out of bounds for length %d"), "Must allocate more space for message.");
 701   char message[2 * jintAsStringSize + len];
 702   sprintf(message, "Index %d out of bounds for length %d", index, a->length());
 703   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message);
 704 JRT_END
 705 
 706 
 707 JRT_ENTRY(void, Runtime1::throw_index_exception(JavaThread* thread, int index))
 708   NOT_PRODUCT(_throw_index_exception_count++;)
 709   char message[16];
 710   sprintf(message, "%d", index);
 711   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IndexOutOfBoundsException(), message);
 712 JRT_END
 713 
 714 
 715 JRT_ENTRY(void, Runtime1::throw_div0_exception(JavaThread* thread))
 716   NOT_PRODUCT(_throw_div0_exception_count++;)
 717   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 718 JRT_END
 719 
 720 
 721 JRT_ENTRY(void, Runtime1::throw_null_pointer_exception(JavaThread* thread))
 722   NOT_PRODUCT(_throw_null_pointer_exception_count++;)
 723   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 724 JRT_END
 725 
 726 
 727 JRT_ENTRY(void, Runtime1::throw_class_cast_exception(JavaThread* thread, oopDesc* object))
 728   NOT_PRODUCT(_throw_class_cast_exception_count++;)
 729   ResourceMark rm(thread);
 730   char* message = SharedRuntime::generate_class_cast_message(
 731     thread, object->klass());
 732   SharedRuntime::throw_and_post_jvmti_exception(
 733     thread, vmSymbols::java_lang_ClassCastException(), message);
 734 JRT_END
 735 
 736 
 737 JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* thread))
 738   NOT_PRODUCT(_throw_incompatible_class_change_error_count++;)
 739   ResourceMark rm(thread);
 740   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError());
 741 JRT_END
 742 
 743 
 744 JRT_ENTRY(void, Runtime1::throw_illegal_monitor_state_exception(JavaThread* thread))
 745   NOT_PRODUCT(_throw_illegal_monitor_state_exception_count++;)
 746   ResourceMark rm(thread);
 747   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IllegalMonitorStateException());
 748 JRT_END
 749 
 750 
 751 JRT_ENTRY_NO_ASYNC(void, Runtime1::monitorenter(JavaThread* thread, oopDesc* obj, BasicObjectLock* lock))
 752   NOT_PRODUCT(_monitorenter_slowcase_cnt++;)
 753   if (PrintBiasedLockingStatistics) {
 754     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
 755   }
 756   Handle h_obj(thread, obj);
 757   if (UseBiasedLocking) {
 758     // Retry fast entry if bias is revoked to avoid unnecessary inflation
 759     ObjectSynchronizer::fast_enter(h_obj, lock->lock(), true, CHECK);
 760   } else {
 761     if (UseFastLocking) {
 762       // When using fast locking, the compiled code has already tried the fast case
 763       assert(obj == lock->obj(), "must match");
 764       ObjectSynchronizer::slow_enter(h_obj, lock->lock(), THREAD);
 765     } else {
 766       lock->set_obj(obj);
 767       ObjectSynchronizer::fast_enter(h_obj, lock->lock(), false, THREAD);
 768     }
 769   }
 770 JRT_END
 771 
 772 
 773 JRT_LEAF(void, Runtime1::monitorexit(JavaThread* thread, BasicObjectLock* lock))
 774   NOT_PRODUCT(_monitorexit_slowcase_cnt++;)
 775   assert(thread == JavaThread::current(), "threads must correspond");
 776   assert(thread->last_Java_sp(), "last_Java_sp must be set");
 777   // monitorexit is non-blocking (leaf routine) => no exceptions can be thrown
 778   EXCEPTION_MARK;
 779 
 780   oop obj = lock->obj();
 781   assert(oopDesc::is_oop(obj), "must be NULL or an object");
 782   if (UseFastLocking) {
 783     // When using fast locking, the compiled code has already tried the fast case
 784     ObjectSynchronizer::slow_exit(obj, lock->lock(), THREAD);
 785   } else {
 786     ObjectSynchronizer::fast_exit(obj, lock->lock(), THREAD);
 787   }
 788 JRT_END
 789 
 790 // Cf. OptoRuntime::deoptimize_caller_frame
 791 JRT_ENTRY(void, Runtime1::deoptimize(JavaThread* thread, jint trap_request))
 792   // Called from within the owner thread, so no need for safepoint
 793   RegisterMap reg_map(thread, false);
 794   frame stub_frame = thread->last_frame();
 795   assert(stub_frame.is_runtime_frame(), "Sanity check");
 796   frame caller_frame = stub_frame.sender(&reg_map);
 797   nmethod* nm = caller_frame.cb()->as_nmethod_or_null();
 798   assert(nm != NULL, "Sanity check");
 799   methodHandle method(thread, nm->method());
 800   assert(nm == CodeCache::find_nmethod(caller_frame.pc()), "Should be the same");
 801   Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
 802   Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
 803 
 804   if (action == Deoptimization::Action_make_not_entrant) {
 805     if (nm->make_not_entrant()) {
 806       if (reason == Deoptimization::Reason_tenured) {
 807         MethodData* trap_mdo = Deoptimization::get_method_data(thread, method, true /*create_if_missing*/);
 808         if (trap_mdo != NULL) {
 809           trap_mdo->inc_tenure_traps();
 810         }
 811       }
 812     }
 813   }
 814 
 815   // Deoptimize the caller frame.
 816   Deoptimization::deoptimize_frame(thread, caller_frame.id());
 817   // Return to the now deoptimized frame.
 818 JRT_END
 819 
 820 
 821 #ifndef DEOPTIMIZE_WHEN_PATCHING
 822 
 823 static Klass* resolve_field_return_klass(const methodHandle& caller, int bci, TRAPS) {
 824   Bytecode_field field_access(caller, bci);
 825   // This can be static or non-static field access
 826   Bytecodes::Code code       = field_access.code();
 827 
 828   // We must load class, initialize class and resolve the field
 829   fieldDescriptor result; // initialize class if needed
 830   constantPoolHandle constants(THREAD, caller->constants());
 831   LinkResolver::resolve_field_access(result, constants, field_access.index(), caller, Bytecodes::java_code(code), CHECK_NULL);
 832   return result.field_holder();
 833 }
 834 
 835 
 836 //
 837 // This routine patches sites where a class wasn't loaded or
 838 // initialized at the time the code was generated.  It handles
 839 // references to classes, fields and forcing of initialization.  Most
 840 // of the cases are straightforward and involving simply forcing
 841 // resolution of a class, rewriting the instruction stream with the
 842 // needed constant and replacing the call in this function with the
 843 // patched code.  The case for static field is more complicated since
 844 // the thread which is in the process of initializing a class can
 845 // access it's static fields but other threads can't so the code
 846 // either has to deoptimize when this case is detected or execute a
 847 // check that the current thread is the initializing thread.  The
 848 // current
 849 //
 850 // Patches basically look like this:
 851 //
 852 //
 853 // patch_site: jmp patch stub     ;; will be patched
 854 // continue:   ...
 855 //             ...
 856 //             ...
 857 //             ...
 858 //
 859 // They have a stub which looks like this:
 860 //
 861 //             ;; patch body
 862 //             movl <const>, reg           (for class constants)
 863 //        <or> movl [reg1 + <const>], reg  (for field offsets)
 864 //        <or> movl reg, [reg1 + <const>]  (for field offsets)
 865 //             <being_init offset> <bytes to copy> <bytes to skip>
 866 // patch_stub: call Runtime1::patch_code (through a runtime stub)
 867 //             jmp patch_site
 868 //
 869 //
 870 // A normal patch is done by rewriting the patch body, usually a move,
 871 // and then copying it into place over top of the jmp instruction
 872 // being careful to flush caches and doing it in an MP-safe way.  The
 873 // constants following the patch body are used to find various pieces
 874 // of the patch relative to the call site for Runtime1::patch_code.
 875 // The case for getstatic and putstatic is more complicated because
 876 // getstatic and putstatic have special semantics when executing while
 877 // the class is being initialized.  getstatic/putstatic on a class
 878 // which is being_initialized may be executed by the initializing
 879 // thread but other threads have to block when they execute it.  This
 880 // is accomplished in compiled code by executing a test of the current
 881 // thread against the initializing thread of the class.  It's emitted
 882 // as boilerplate in their stub which allows the patched code to be
 883 // executed before it's copied back into the main body of the nmethod.
 884 //
 885 // being_init: get_thread(<tmp reg>
 886 //             cmpl [reg1 + <init_thread_offset>], <tmp reg>
 887 //             jne patch_stub
 888 //             movl [reg1 + <const>], reg  (for field offsets)  <or>
 889 //             movl reg, [reg1 + <const>]  (for field offsets)
 890 //             jmp continue
 891 //             <being_init offset> <bytes to copy> <bytes to skip>
 892 // patch_stub: jmp Runtim1::patch_code (through a runtime stub)
 893 //             jmp patch_site
 894 //
 895 // If the class is being initialized the patch body is rewritten and
 896 // the patch site is rewritten to jump to being_init, instead of
 897 // patch_stub.  Whenever this code is executed it checks the current
 898 // thread against the intializing thread so other threads will enter
 899 // the runtime and end up blocked waiting the class to finish
 900 // initializing inside the calls to resolve_field below.  The
 901 // initializing class will continue on it's way.  Once the class is
 902 // fully_initialized, the intializing_thread of the class becomes
 903 // NULL, so the next thread to execute this code will fail the test,
 904 // call into patch_code and complete the patching process by copying
 905 // the patch body back into the main part of the nmethod and resume
 906 // executing.
 907 
 908 // NB:
 909 //
 910 // Patchable instruction sequences inherently exhibit race conditions,
 911 // where thread A is patching an instruction at the same time thread B
 912 // is executing it.  The algorithms we use ensure that any observation
 913 // that B can make on any intermediate states during A's patching will
 914 // always end up with a correct outcome.  This is easiest if there are
 915 // few or no intermediate states.  (Some inline caches have two
 916 // related instructions that must be patched in tandem.  For those,
 917 // intermediate states seem to be unavoidable, but we will get the
 918 // right answer from all possible observation orders.)
 919 //
 920 // When patching the entry instruction at the head of a method, or a
 921 // linkable call instruction inside of a method, we try very hard to
 922 // use a patch sequence which executes as a single memory transaction.
 923 // This means, in practice, that when thread A patches an instruction,
 924 // it should patch a 32-bit or 64-bit word that somehow overlaps the
 925 // instruction or is contained in it.  We believe that memory hardware
 926 // will never break up such a word write, if it is naturally aligned
 927 // for the word being written.  We also know that some CPUs work very
 928 // hard to create atomic updates even of naturally unaligned words,
 929 // but we don't want to bet the farm on this always working.
 930 //
 931 // Therefore, if there is any chance of a race condition, we try to
 932 // patch only naturally aligned words, as single, full-word writes.
 933 
 934 JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_id ))
 935   NOT_PRODUCT(_patch_code_slowcase_cnt++;)
 936 
 937   ResourceMark rm(thread);
 938   RegisterMap reg_map(thread, false);
 939   frame runtime_frame = thread->last_frame();
 940   frame caller_frame = runtime_frame.sender(&reg_map);
 941 
 942   // last java frame on stack
 943   vframeStream vfst(thread, true);
 944   assert(!vfst.at_end(), "Java frame must exist");
 945 
 946   methodHandle caller_method(THREAD, vfst.method());
 947   // Note that caller_method->code() may not be same as caller_code because of OSR's
 948   // Note also that in the presence of inlining it is not guaranteed
 949   // that caller_method() == caller_code->method()
 950 
 951   int bci = vfst.bci();
 952   Bytecodes::Code code = caller_method()->java_code_at(bci);
 953 
 954   // this is used by assertions in the access_field_patching_id
 955   BasicType patch_field_type = T_ILLEGAL;
 956   bool deoptimize_for_volatile = false;
 957   bool deoptimize_for_atomic = false;
 958   int patch_field_offset = -1;
 959   Klass* init_klass = NULL; // klass needed by load_klass_patching code
 960   Klass* load_klass = NULL; // klass needed by load_klass_patching code
 961   Handle mirror(THREAD, NULL);                    // oop needed by load_mirror_patching code
 962   Handle appendix(THREAD, NULL);                  // oop needed by appendix_patching code
 963   bool load_klass_or_mirror_patch_id =
 964     (stub_id == Runtime1::load_klass_patching_id || stub_id == Runtime1::load_mirror_patching_id);
 965 
 966   if (stub_id == Runtime1::access_field_patching_id) {
 967 
 968     Bytecode_field field_access(caller_method, bci);
 969     fieldDescriptor result; // initialize class if needed
 970     Bytecodes::Code code = field_access.code();
 971     constantPoolHandle constants(THREAD, caller_method->constants());
 972     LinkResolver::resolve_field_access(result, constants, field_access.index(), caller_method, Bytecodes::java_code(code), CHECK);
 973     patch_field_offset = result.offset();
 974 
 975     // If we're patching a field which is volatile then at compile it
 976     // must not have been know to be volatile, so the generated code
 977     // isn't correct for a volatile reference.  The nmethod has to be
 978     // deoptimized so that the code can be regenerated correctly.
 979     // This check is only needed for access_field_patching since this
 980     // is the path for patching field offsets.  load_klass is only
 981     // used for patching references to oops which don't need special
 982     // handling in the volatile case.
 983 
 984     deoptimize_for_volatile = result.access_flags().is_volatile();
 985 
 986     // If we are patching a field which should be atomic, then
 987     // the generated code is not correct either, force deoptimizing.
 988     // We need to only cover T_LONG and T_DOUBLE fields, as we can
 989     // break access atomicity only for them.
 990 
 991     // Strictly speaking, the deoptimization on 64-bit platforms
 992     // is unnecessary, and T_LONG stores on 32-bit platforms need
 993     // to be handled by special patching code when AlwaysAtomicAccesses
 994     // becomes product feature. At this point, we are still going
 995     // for the deoptimization for consistency against volatile
 996     // accesses.
 997 
 998     patch_field_type = result.field_type();
 999     deoptimize_for_atomic = (AlwaysAtomicAccesses && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG));
1000 
1001   } else if (load_klass_or_mirror_patch_id) {
1002     Klass* k = NULL;
1003     switch (code) {
1004       case Bytecodes::_putstatic:
1005       case Bytecodes::_getstatic:
1006         { Klass* klass = resolve_field_return_klass(caller_method, bci, CHECK);
1007           init_klass = klass;
1008           mirror = Handle(THREAD, klass->java_mirror());
1009         }
1010         break;
1011       case Bytecodes::_new:
1012         { Bytecode_new bnew(caller_method(), caller_method->bcp_from(bci));
1013           k = caller_method->constants()->klass_at(bnew.index(), CHECK);
1014         }
1015         break;
1016       case Bytecodes::_defaultvalue:
1017         { Bytecode_defaultvalue bdefaultvalue(caller_method(), caller_method->bcp_from(bci));
1018           k = caller_method->constants()->klass_at(bdefaultvalue.index(), CHECK);
1019         }
1020         break;
1021       case Bytecodes::_multianewarray:
1022         { Bytecode_multianewarray mna(caller_method(), caller_method->bcp_from(bci));
1023           k = caller_method->constants()->klass_at(mna.index(), CHECK);
1024         }
1025         break;
1026       case Bytecodes::_instanceof:
1027         { Bytecode_instanceof io(caller_method(), caller_method->bcp_from(bci));
1028           k = caller_method->constants()->klass_at(io.index(), CHECK);
1029         }
1030         break;
1031       case Bytecodes::_checkcast:
1032         { Bytecode_checkcast cc(caller_method(), caller_method->bcp_from(bci));
1033           k = caller_method->constants()->klass_at(cc.index(), CHECK);
1034         }
1035         break;
1036       case Bytecodes::_anewarray:
1037         { Bytecode_anewarray anew(caller_method(), caller_method->bcp_from(bci));
1038           Klass* ek = caller_method->constants()->klass_at(anew.index(), CHECK);
1039           k = ek->array_klass(CHECK);
1040         }
1041         break;
1042       case Bytecodes::_ldc:
1043       case Bytecodes::_ldc_w:
1044         {
1045           Bytecode_loadconstant cc(caller_method, bci);
1046           oop m = cc.resolve_constant(CHECK);
1047           mirror = Handle(THREAD, m);
1048         }
1049         break;
1050       default: fatal("unexpected bytecode for load_klass_or_mirror_patch_id");
1051     }
1052     load_klass = k;
1053   } else if (stub_id == load_appendix_patching_id) {
1054     Bytecode_invoke bytecode(caller_method, bci);
1055     Bytecodes::Code bc = bytecode.invoke_code();
1056 
1057     CallInfo info;
1058     constantPoolHandle pool(thread, caller_method->constants());
1059     int index = bytecode.index();
1060     LinkResolver::resolve_invoke(info, Handle(), pool, index, bc, CHECK);
1061     switch (bc) {
1062       case Bytecodes::_invokehandle: {
1063         int cache_index = ConstantPool::decode_cpcache_index(index, true);
1064         assert(cache_index >= 0 && cache_index < pool->cache()->length(), "unexpected cache index");
1065         ConstantPoolCacheEntry* cpce = pool->cache()->entry_at(cache_index);
1066         cpce->set_method_handle(pool, info);
1067         appendix = Handle(THREAD, cpce->appendix_if_resolved(pool)); // just in case somebody already resolved the entry
1068         break;
1069       }
1070       case Bytecodes::_invokedynamic: {
1071         ConstantPoolCacheEntry* cpce = pool->invokedynamic_cp_cache_entry_at(index);
1072         cpce->set_dynamic_call(pool, info);
1073         appendix = Handle(THREAD, cpce->appendix_if_resolved(pool)); // just in case somebody already resolved the entry
1074         break;
1075       }
1076       default: fatal("unexpected bytecode for load_appendix_patching_id");
1077     }
1078   } else {
1079     ShouldNotReachHere();
1080   }
1081 
1082   if (deoptimize_for_volatile || deoptimize_for_atomic) {
1083     // At compile time we assumed the field wasn't volatile/atomic but after
1084     // loading it turns out it was volatile/atomic so we have to throw the
1085     // compiled code out and let it be regenerated.
1086     if (TracePatching) {
1087       if (deoptimize_for_volatile) {
1088         tty->print_cr("Deoptimizing for patching volatile field reference");
1089       }
1090       if (deoptimize_for_atomic) {
1091         tty->print_cr("Deoptimizing for patching atomic field reference");
1092       }
1093     }
1094 
1095     // It's possible the nmethod was invalidated in the last
1096     // safepoint, but if it's still alive then make it not_entrant.
1097     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1098     if (nm != NULL) {
1099       nm->make_not_entrant();
1100     }
1101 
1102     Deoptimization::deoptimize_frame(thread, caller_frame.id());
1103 
1104     // Return to the now deoptimized frame.
1105   }
1106 
1107   // Now copy code back
1108 
1109   {
1110     MutexLockerEx ml_patch (Patching_lock, Mutex::_no_safepoint_check_flag);
1111     //
1112     // Deoptimization may have happened while we waited for the lock.
1113     // In that case we don't bother to do any patching we just return
1114     // and let the deopt happen
1115     if (!caller_is_deopted()) {
1116       NativeGeneralJump* jump = nativeGeneralJump_at(caller_frame.pc());
1117       address instr_pc = jump->jump_destination();
1118       NativeInstruction* ni = nativeInstruction_at(instr_pc);
1119       if (ni->is_jump() ) {
1120         // the jump has not been patched yet
1121         // The jump destination is slow case and therefore not part of the stubs
1122         // (stubs are only for StaticCalls)
1123 
1124         // format of buffer
1125         //    ....
1126         //    instr byte 0     <-- copy_buff
1127         //    instr byte 1
1128         //    ..
1129         //    instr byte n-1
1130         //      n
1131         //    ....             <-- call destination
1132 
1133         address stub_location = caller_frame.pc() + PatchingStub::patch_info_offset();
1134         unsigned char* byte_count = (unsigned char*) (stub_location - 1);
1135         unsigned char* byte_skip = (unsigned char*) (stub_location - 2);
1136         unsigned char* being_initialized_entry_offset = (unsigned char*) (stub_location - 3);
1137         address copy_buff = stub_location - *byte_skip - *byte_count;
1138         address being_initialized_entry = stub_location - *being_initialized_entry_offset;
1139         if (TracePatching) {
1140           ttyLocker ttyl;
1141           tty->print_cr(" Patching %s at bci %d at address " INTPTR_FORMAT "  (%s)", Bytecodes::name(code), bci,
1142                         p2i(instr_pc), (stub_id == Runtime1::access_field_patching_id) ? "field" : "klass");
1143           nmethod* caller_code = CodeCache::find_nmethod(caller_frame.pc());
1144           assert(caller_code != NULL, "nmethod not found");
1145 
1146           // NOTE we use pc() not original_pc() because we already know they are
1147           // identical otherwise we'd have never entered this block of code
1148 
1149           const ImmutableOopMap* map = caller_code->oop_map_for_return_address(caller_frame.pc());
1150           assert(map != NULL, "null check");
1151           map->print();
1152           tty->cr();
1153 
1154           Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1155         }
1156         // depending on the code below, do_patch says whether to copy the patch body back into the nmethod
1157         bool do_patch = true;
1158         if (stub_id == Runtime1::access_field_patching_id) {
1159           // The offset may not be correct if the class was not loaded at code generation time.
1160           // Set it now.
1161           NativeMovRegMem* n_move = nativeMovRegMem_at(copy_buff);
1162           assert(n_move->offset() == 0 || (n_move->offset() == 4 && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)), "illegal offset for type");
1163           assert(patch_field_offset >= 0, "illegal offset");
1164           n_move->add_offset_in_bytes(patch_field_offset);
1165         } else if (load_klass_or_mirror_patch_id) {
1166           // If a getstatic or putstatic is referencing a klass which
1167           // isn't fully initialized, the patch body isn't copied into
1168           // place until initialization is complete.  In this case the
1169           // patch site is setup so that any threads besides the
1170           // initializing thread are forced to come into the VM and
1171           // block.
1172           do_patch = (code != Bytecodes::_getstatic && code != Bytecodes::_putstatic) ||
1173                      InstanceKlass::cast(init_klass)->is_initialized();
1174           NativeGeneralJump* jump = nativeGeneralJump_at(instr_pc);
1175           if (jump->jump_destination() == being_initialized_entry) {
1176             assert(do_patch == true, "initialization must be complete at this point");
1177           } else {
1178             // patch the instruction <move reg, klass>
1179             NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
1180 
1181             assert(n_copy->data() == 0 ||
1182                    n_copy->data() == (intptr_t)Universe::non_oop_word(),
1183                    "illegal init value");
1184             if (stub_id == Runtime1::load_klass_patching_id) {
1185               assert(load_klass != NULL, "klass not set");
1186               n_copy->set_data((intx) (load_klass));
1187             } else {
1188               assert(mirror() != NULL, "klass not set");
1189               // Don't need a G1 pre-barrier here since we assert above that data isn't an oop.
1190               n_copy->set_data(cast_from_oop<intx>(mirror()));
1191             }
1192 
1193             if (TracePatching) {
1194               Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1195             }
1196           }
1197         } else if (stub_id == Runtime1::load_appendix_patching_id) {
1198           NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
1199           assert(n_copy->data() == 0 ||
1200                  n_copy->data() == (intptr_t)Universe::non_oop_word(),
1201                  "illegal init value");
1202           n_copy->set_data(cast_from_oop<intx>(appendix()));
1203 
1204           if (TracePatching) {
1205             Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1206           }
1207         } else {
1208           ShouldNotReachHere();
1209         }
1210 
1211 #if defined(SPARC) || defined(PPC32)
1212         if (load_klass_or_mirror_patch_id ||
1213             stub_id == Runtime1::load_appendix_patching_id) {
1214           // Update the location in the nmethod with the proper
1215           // metadata.  When the code was generated, a NULL was stuffed
1216           // in the metadata table and that table needs to be update to
1217           // have the right value.  On intel the value is kept
1218           // directly in the instruction instead of in the metadata
1219           // table, so set_data above effectively updated the value.
1220           nmethod* nm = CodeCache::find_nmethod(instr_pc);
1221           assert(nm != NULL, "invalid nmethod_pc");
1222           RelocIterator mds(nm, copy_buff, copy_buff + 1);
1223           bool found = false;
1224           while (mds.next() && !found) {
1225             if (mds.type() == relocInfo::oop_type) {
1226               assert(stub_id == Runtime1::load_mirror_patching_id ||
1227                      stub_id == Runtime1::load_appendix_patching_id, "wrong stub id");
1228               oop_Relocation* r = mds.oop_reloc();
1229               oop* oop_adr = r->oop_addr();
1230               *oop_adr = stub_id == Runtime1::load_mirror_patching_id ? mirror() : appendix();
1231               r->fix_oop_relocation();
1232               found = true;
1233             } else if (mds.type() == relocInfo::metadata_type) {
1234               assert(stub_id == Runtime1::load_klass_patching_id, "wrong stub id");
1235               metadata_Relocation* r = mds.metadata_reloc();
1236               Metadata** metadata_adr = r->metadata_addr();
1237               *metadata_adr = load_klass;
1238               r->fix_metadata_relocation();
1239               found = true;
1240             }
1241           }
1242           assert(found, "the metadata must exist!");
1243         }
1244 #endif
1245         if (do_patch) {
1246           // replace instructions
1247           // first replace the tail, then the call
1248 #ifdef ARM
1249           if((load_klass_or_mirror_patch_id ||
1250               stub_id == Runtime1::load_appendix_patching_id) &&
1251               nativeMovConstReg_at(copy_buff)->is_pc_relative()) {
1252             nmethod* nm = CodeCache::find_nmethod(instr_pc);
1253             address addr = NULL;
1254             assert(nm != NULL, "invalid nmethod_pc");
1255             RelocIterator mds(nm, copy_buff, copy_buff + 1);
1256             while (mds.next()) {
1257               if (mds.type() == relocInfo::oop_type) {
1258                 assert(stub_id == Runtime1::load_mirror_patching_id ||
1259                        stub_id == Runtime1::load_appendix_patching_id, "wrong stub id");
1260                 oop_Relocation* r = mds.oop_reloc();
1261                 addr = (address)r->oop_addr();
1262                 break;
1263               } else if (mds.type() == relocInfo::metadata_type) {
1264                 assert(stub_id == Runtime1::load_klass_patching_id, "wrong stub id");
1265                 metadata_Relocation* r = mds.metadata_reloc();
1266                 addr = (address)r->metadata_addr();
1267                 break;
1268               }
1269             }
1270             assert(addr != NULL, "metadata relocation must exist");
1271             copy_buff -= *byte_count;
1272             NativeMovConstReg* n_copy2 = nativeMovConstReg_at(copy_buff);
1273             n_copy2->set_pc_relative_offset(addr, instr_pc);
1274           }
1275 #endif
1276 
1277           for (int i = NativeGeneralJump::instruction_size; i < *byte_count; i++) {
1278             address ptr = copy_buff + i;
1279             int a_byte = (*ptr) & 0xFF;
1280             address dst = instr_pc + i;
1281             *(unsigned char*)dst = (unsigned char) a_byte;
1282           }
1283           ICache::invalidate_range(instr_pc, *byte_count);
1284           NativeGeneralJump::replace_mt_safe(instr_pc, copy_buff);
1285 
1286           if (load_klass_or_mirror_patch_id ||
1287               stub_id == Runtime1::load_appendix_patching_id) {
1288             relocInfo::relocType rtype =
1289               (stub_id == Runtime1::load_klass_patching_id) ?
1290                                    relocInfo::metadata_type :
1291                                    relocInfo::oop_type;
1292             // update relocInfo to metadata
1293             nmethod* nm = CodeCache::find_nmethod(instr_pc);
1294             assert(nm != NULL, "invalid nmethod_pc");
1295 
1296             // The old patch site is now a move instruction so update
1297             // the reloc info so that it will get updated during
1298             // future GCs.
1299             RelocIterator iter(nm, (address)instr_pc, (address)(instr_pc + 1));
1300             relocInfo::change_reloc_info_for_address(&iter, (address) instr_pc,
1301                                                      relocInfo::none, rtype);
1302 #ifdef SPARC
1303             // Sparc takes two relocations for an metadata so update the second one.
1304             address instr_pc2 = instr_pc + NativeMovConstReg::add_offset;
1305             RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
1306             relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2,
1307                                                      relocInfo::none, rtype);
1308 #endif
1309 #ifdef PPC32
1310           { address instr_pc2 = instr_pc + NativeMovConstReg::lo_offset;
1311             RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
1312             relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2,
1313                                                      relocInfo::none, rtype);
1314           }
1315 #endif
1316           }
1317 
1318         } else {
1319           ICache::invalidate_range(copy_buff, *byte_count);
1320           NativeGeneralJump::insert_unconditional(instr_pc, being_initialized_entry);
1321         }
1322       }
1323     }
1324   }
1325 
1326   // If we are patching in a non-perm oop, make sure the nmethod
1327   // is on the right list.
1328   if (ScavengeRootsInCode) {
1329     MutexLockerEx ml_code (CodeCache_lock, Mutex::_no_safepoint_check_flag);
1330     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1331     guarantee(nm != NULL, "only nmethods can contain non-perm oops");
1332 
1333     // Since we've patched some oops in the nmethod,
1334     // (re)register it with the heap.
1335     Universe::heap()->register_nmethod(nm);
1336   }
1337 JRT_END
1338 
1339 #else // DEOPTIMIZE_WHEN_PATCHING
1340 
1341 JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_id ))
1342   RegisterMap reg_map(thread, false);
1343 
1344   NOT_PRODUCT(_patch_code_slowcase_cnt++;)
1345   if (TracePatching) {
1346     tty->print_cr("Deoptimizing because patch is needed");
1347   }
1348 
1349   frame runtime_frame = thread->last_frame();
1350   frame caller_frame = runtime_frame.sender(&reg_map);
1351 
1352   // It's possible the nmethod was invalidated in the last
1353   // safepoint, but if it's still alive then make it not_entrant.
1354   nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1355   if (nm != NULL) {
1356     nm->make_not_entrant();
1357   }
1358 
1359   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1360 
1361   // Return to the now deoptimized frame.
1362 JRT_END
1363 
1364 #endif // DEOPTIMIZE_WHEN_PATCHING
1365 
1366 //
1367 // Entry point for compiled code. We want to patch a nmethod.
1368 // We don't do a normal VM transition here because we want to
1369 // know after the patching is complete and any safepoint(s) are taken
1370 // if the calling nmethod was deoptimized. We do this by calling a
1371 // helper method which does the normal VM transition and when it
1372 // completes we can check for deoptimization. This simplifies the
1373 // assembly code in the cpu directories.
1374 //
1375 int Runtime1::move_klass_patching(JavaThread* thread) {
1376 //
1377 // NOTE: we are still in Java
1378 //
1379   Thread* THREAD = thread;
1380   debug_only(NoHandleMark nhm;)
1381   {
1382     // Enter VM mode
1383 
1384     ResetNoHandleMark rnhm;
1385     patch_code(thread, load_klass_patching_id);
1386   }
1387   // Back in JAVA, use no oops DON'T safepoint
1388 
1389   // Return true if calling code is deoptimized
1390 
1391   return caller_is_deopted();
1392 }
1393 
1394 int Runtime1::move_mirror_patching(JavaThread* thread) {
1395 //
1396 // NOTE: we are still in Java
1397 //
1398   Thread* THREAD = thread;
1399   debug_only(NoHandleMark nhm;)
1400   {
1401     // Enter VM mode
1402 
1403     ResetNoHandleMark rnhm;
1404     patch_code(thread, load_mirror_patching_id);
1405   }
1406   // Back in JAVA, use no oops DON'T safepoint
1407 
1408   // Return true if calling code is deoptimized
1409 
1410   return caller_is_deopted();
1411 }
1412 
1413 int Runtime1::move_appendix_patching(JavaThread* thread) {
1414 //
1415 // NOTE: we are still in Java
1416 //
1417   Thread* THREAD = thread;
1418   debug_only(NoHandleMark nhm;)
1419   {
1420     // Enter VM mode
1421 
1422     ResetNoHandleMark rnhm;
1423     patch_code(thread, load_appendix_patching_id);
1424   }
1425   // Back in JAVA, use no oops DON'T safepoint
1426 
1427   // Return true if calling code is deoptimized
1428 
1429   return caller_is_deopted();
1430 }
1431 //
1432 // Entry point for compiled code. We want to patch a nmethod.
1433 // We don't do a normal VM transition here because we want to
1434 // know after the patching is complete and any safepoint(s) are taken
1435 // if the calling nmethod was deoptimized. We do this by calling a
1436 // helper method which does the normal VM transition and when it
1437 // completes we can check for deoptimization. This simplifies the
1438 // assembly code in the cpu directories.
1439 //
1440 
1441 int Runtime1::access_field_patching(JavaThread* thread) {
1442 //
1443 // NOTE: we are still in Java
1444 //
1445   Thread* THREAD = thread;
1446   debug_only(NoHandleMark nhm;)
1447   {
1448     // Enter VM mode
1449 
1450     ResetNoHandleMark rnhm;
1451     patch_code(thread, access_field_patching_id);
1452   }
1453   // Back in JAVA, use no oops DON'T safepoint
1454 
1455   // Return true if calling code is deoptimized
1456 
1457   return caller_is_deopted();
1458 JRT_END
1459 
1460 
1461 JRT_LEAF(void, Runtime1::trace_block_entry(jint block_id))
1462   // for now we just print out the block id
1463   tty->print("%d ", block_id);
1464 JRT_END
1465 
1466 
1467 JRT_LEAF(int, Runtime1::is_instance_of(oopDesc* mirror, oopDesc* obj))
1468   // had to return int instead of bool, otherwise there may be a mismatch
1469   // between the C calling convention and the Java one.
1470   // e.g., on x86, GCC may clear only %al when returning a bool false, but
1471   // JVM takes the whole %eax as the return value, which may misinterpret
1472   // the return value as a boolean true.
1473 
1474   assert(mirror != NULL, "should null-check on mirror before calling");
1475   Klass* k = java_lang_Class::as_Klass(mirror);
1476   return (k != NULL && obj != NULL && obj->is_a(k)) ? 1 : 0;
1477 JRT_END
1478 
1479 JRT_ENTRY(void, Runtime1::predicate_failed_trap(JavaThread* thread))
1480   ResourceMark rm;
1481 
1482   assert(!TieredCompilation, "incompatible with tiered compilation");
1483 
1484   RegisterMap reg_map(thread, false);
1485   frame runtime_frame = thread->last_frame();
1486   frame caller_frame = runtime_frame.sender(&reg_map);
1487 
1488   nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1489   assert (nm != NULL, "no more nmethod?");
1490   nm->make_not_entrant();
1491 
1492   methodHandle m(nm->method());
1493   MethodData* mdo = m->method_data();
1494 
1495   if (mdo == NULL && !HAS_PENDING_EXCEPTION) {
1496     // Build an MDO.  Ignore errors like OutOfMemory;
1497     // that simply means we won't have an MDO to update.
1498     Method::build_interpreter_method_data(m, THREAD);
1499     if (HAS_PENDING_EXCEPTION) {
1500       assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
1501       CLEAR_PENDING_EXCEPTION;
1502     }
1503     mdo = m->method_data();
1504   }
1505 
1506   if (mdo != NULL) {
1507     mdo->inc_trap_count(Deoptimization::Reason_none);
1508   }
1509 
1510   if (TracePredicateFailedTraps) {
1511     stringStream ss1, ss2;
1512     vframeStream vfst(thread);
1513     methodHandle inlinee = methodHandle(vfst.method());
1514     inlinee->print_short_name(&ss1);
1515     m->print_short_name(&ss2);
1516     tty->print_cr("Predicate failed trap in method %s at bci %d inlined in %s at pc " INTPTR_FORMAT, ss1.as_string(), vfst.bci(), ss2.as_string(), p2i(caller_frame.pc()));
1517   }
1518 
1519 
1520   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1521 
1522 JRT_END
1523 
1524 #ifndef PRODUCT
1525 void Runtime1::print_statistics() {
1526   tty->print_cr("C1 Runtime statistics:");
1527   tty->print_cr(" _resolve_invoke_virtual_cnt:     %d", SharedRuntime::_resolve_virtual_ctr);
1528   tty->print_cr(" _resolve_invoke_opt_virtual_cnt: %d", SharedRuntime::_resolve_opt_virtual_ctr);
1529   tty->print_cr(" _resolve_invoke_static_cnt:      %d", SharedRuntime::_resolve_static_ctr);
1530   tty->print_cr(" _handle_wrong_method_cnt:        %d", SharedRuntime::_wrong_method_ctr);
1531   tty->print_cr(" _ic_miss_cnt:                    %d", SharedRuntime::_ic_miss_ctr);
1532   tty->print_cr(" _generic_arraycopy_cnt:          %d", _generic_arraycopy_cnt);
1533   tty->print_cr(" _generic_arraycopystub_cnt:      %d", _generic_arraycopystub_cnt);
1534   tty->print_cr(" _byte_arraycopy_cnt:             %d", _byte_arraycopy_stub_cnt);
1535   tty->print_cr(" _short_arraycopy_cnt:            %d", _short_arraycopy_stub_cnt);
1536   tty->print_cr(" _int_arraycopy_cnt:              %d", _int_arraycopy_stub_cnt);
1537   tty->print_cr(" _long_arraycopy_cnt:             %d", _long_arraycopy_stub_cnt);
1538   tty->print_cr(" _oop_arraycopy_cnt:              %d", _oop_arraycopy_stub_cnt);
1539   tty->print_cr(" _arraycopy_slowcase_cnt:         %d", _arraycopy_slowcase_cnt);
1540   tty->print_cr(" _arraycopy_checkcast_cnt:        %d", _arraycopy_checkcast_cnt);
1541   tty->print_cr(" _arraycopy_checkcast_attempt_cnt:%d", _arraycopy_checkcast_attempt_cnt);
1542 
1543   tty->print_cr(" _new_type_array_slowcase_cnt:    %d", _new_type_array_slowcase_cnt);
1544   tty->print_cr(" _new_object_array_slowcase_cnt:  %d", _new_object_array_slowcase_cnt);
1545   tty->print_cr(" _new_instance_slowcase_cnt:      %d", _new_instance_slowcase_cnt);
1546   tty->print_cr(" _new_multi_array_slowcase_cnt:   %d", _new_multi_array_slowcase_cnt);
1547   tty->print_cr(" _load_flattened_array_slowcase_cnt: %d", _load_flattened_array_slowcase_cnt);
1548   tty->print_cr(" _store_flattened_array_slowcase_cnt:%d", _store_flattened_array_slowcase_cnt);
1549   tty->print_cr(" _monitorenter_slowcase_cnt:      %d", _monitorenter_slowcase_cnt);
1550   tty->print_cr(" _monitorexit_slowcase_cnt:       %d", _monitorexit_slowcase_cnt);
1551   tty->print_cr(" _patch_code_slowcase_cnt:        %d", _patch_code_slowcase_cnt);
1552 
1553   tty->print_cr(" _throw_range_check_exception_count:            %d:", _throw_range_check_exception_count);
1554   tty->print_cr(" _throw_index_exception_count:                  %d:", _throw_index_exception_count);
1555   tty->print_cr(" _throw_div0_exception_count:                   %d:", _throw_div0_exception_count);
1556   tty->print_cr(" _throw_null_pointer_exception_count:           %d:", _throw_null_pointer_exception_count);
1557   tty->print_cr(" _throw_class_cast_exception_count:             %d:", _throw_class_cast_exception_count);
1558   tty->print_cr(" _throw_incompatible_class_change_error_count:  %d:", _throw_incompatible_class_change_error_count);
1559   tty->print_cr(" _throw_illegal_monitor_state_exception_count:  %d:", _throw_illegal_monitor_state_exception_count);
1560   tty->print_cr(" _throw_array_store_exception_count:            %d:", _throw_array_store_exception_count);
1561   tty->print_cr(" _throw_count:                                  %d:", _throw_count);
1562 
1563   SharedRuntime::print_ic_miss_histogram();
1564   tty->cr();
1565 }
1566 #endif // PRODUCT