1 /*
   2  * Copyright (c) 1999, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_IR.hpp"
  27 #include "c1/c1_Instruction.hpp"
  28 #include "c1/c1_InstructionPrinter.hpp"
  29 #include "c1/c1_ValueStack.hpp"
  30 #include "ci/ciObjArrayKlass.hpp"
  31 #include "ci/ciTypeArrayKlass.hpp"
  32 #include "ci/ciValueArrayKlass.hpp"
  33 #include "ci/ciValueKlass.hpp"
  34 
  35 
  36 // Implementation of Instruction
  37 
  38 
  39 int Instruction::dominator_depth() {
  40   int result = -1;
  41   if (block()) {
  42     result = block()->dominator_depth();
  43   }
  44   assert(result != -1 || this->as_Local(), "Only locals have dominator depth -1");
  45   return result;
  46 }
  47 
  48 Instruction::Condition Instruction::mirror(Condition cond) {
  49   switch (cond) {
  50     case eql: return eql;
  51     case neq: return neq;
  52     case lss: return gtr;
  53     case leq: return geq;
  54     case gtr: return lss;
  55     case geq: return leq;
  56     case aeq: return beq;
  57     case beq: return aeq;
  58   }
  59   ShouldNotReachHere();
  60   return eql;
  61 }
  62 
  63 
  64 Instruction::Condition Instruction::negate(Condition cond) {
  65   switch (cond) {
  66     case eql: return neq;
  67     case neq: return eql;
  68     case lss: return geq;
  69     case leq: return gtr;
  70     case gtr: return leq;
  71     case geq: return lss;
  72     case aeq: assert(false, "Above equal cannot be negated");
  73     case beq: assert(false, "Below equal cannot be negated");
  74   }
  75   ShouldNotReachHere();
  76   return eql;
  77 }
  78 
  79 void Instruction::update_exception_state(ValueStack* state) {
  80   if (state != NULL && (state->kind() == ValueStack::EmptyExceptionState || state->kind() == ValueStack::ExceptionState)) {
  81     assert(state->kind() == ValueStack::EmptyExceptionState || Compilation::current()->env()->should_retain_local_variables(), "unexpected state kind");
  82     _exception_state = state;
  83   } else {
  84     _exception_state = NULL;
  85   }
  86 }
  87 
  88 // Prev without need to have BlockBegin
  89 Instruction* Instruction::prev() {
  90   Instruction* p = NULL;
  91   Instruction* q = block();
  92   while (q != this) {
  93     assert(q != NULL, "this is not in the block's instruction list");
  94     p = q; q = q->next();
  95   }
  96   return p;
  97 }
  98 
  99 
 100 void Instruction::state_values_do(ValueVisitor* f) {
 101   if (state_before() != NULL) {
 102     state_before()->values_do(f);
 103   }
 104   if (exception_state() != NULL){
 105     exception_state()->values_do(f);
 106   }
 107 }
 108 
 109 ciType* Instruction::exact_type() const {
 110   ciType* t =  declared_type();
 111   if (t != NULL && t->is_klass()) {
 112     return t->as_klass()->exact_klass();
 113   }
 114   return NULL;
 115 }
 116 
 117 
 118 // FIXME -- make this obsolete. Use maybe_flattened_array() or check_flattened_array() instead.
 119 bool Instruction::is_flattened_array() const {
 120   if (ValueArrayFlatten) {
 121     ciType* type = declared_type();
 122     if (type != NULL && type->is_value_array_klass()) {
 123       ciValueKlass* element_klass = type->as_value_array_klass()->element_klass()->as_value_klass();
 124       if (!element_klass->is_loaded() || element_klass->flatten_array()) {
 125         // Assume that all unloaded value arrays are not flattenable. If they
 126         // turn out to be flattenable, we deoptimize on aaload/aastore.
 127         // ^^^^ uugh -- this is ugly!
 128         return true;
 129       }
 130     }
 131   }
 132 
 133   return false;
 134 }
 135 
 136 bool Instruction::is_loaded_flattened_array() const {
 137   if (ValueArrayFlatten) {
 138     ciType* type = declared_type();
 139     if (type != NULL && type->is_value_array_klass()) {
 140       ciValueKlass* element_klass = type->as_value_array_klass()->element_klass()->as_value_klass();
 141       if (element_klass->is_loaded() && element_klass->flatten_array()) {
 142         return true;
 143       }
 144     }
 145   }
 146 
 147   return false;
 148 }
 149 
 150 bool Instruction::maybe_flattened_array() const {
 151   if (ValueArrayFlatten) {
 152     ciType* type = declared_type();
 153     if (type != NULL) {
 154       if (type->is_value_array_klass()) {
 155         ciValueKlass* element_klass = type->as_value_array_klass()->element_klass()->as_value_klass();
 156         if (!element_klass->is_loaded() || element_klass->flatten_array()) {
 157           // For unloaded value arrays, we will add a runtime check for flat-ness.
 158           return true;
 159         }
 160       } else if (type->is_obj_array_klass()) {
 161         ciKlass* element_klass = type->as_obj_array_klass()->element_klass();
 162         if (element_klass->is_java_lang_Object() || element_klass->is_interface()) {
 163           // Array covariance:
 164           //    (ValueType[] <: Object[])
 165           //    (ValueType[] <: <any interface>[])
 166           // We will add a runtime check for flat-ness.
 167           return true;
 168         }
 169       }
 170     }
 171   }
 172 
 173   return false;
 174 }
 175 
 176 #ifndef PRODUCT
 177 void Instruction::check_state(ValueStack* state) {
 178   if (state != NULL) {
 179     state->verify();
 180   }
 181 }
 182 
 183 
 184 void Instruction::print() {
 185   InstructionPrinter ip;
 186   print(ip);
 187 }
 188 
 189 
 190 void Instruction::print_line() {
 191   InstructionPrinter ip;
 192   ip.print_line(this);
 193 }
 194 
 195 
 196 void Instruction::print(InstructionPrinter& ip) {
 197   ip.print_head();
 198   ip.print_line(this);
 199   tty->cr();
 200 }
 201 #endif // PRODUCT
 202 
 203 
 204 // perform constant and interval tests on index value
 205 bool AccessIndexed::compute_needs_range_check() {
 206   if (length()) {
 207     Constant* clength = length()->as_Constant();
 208     Constant* cindex = index()->as_Constant();
 209     if (clength && cindex) {
 210       IntConstant* l = clength->type()->as_IntConstant();
 211       IntConstant* i = cindex->type()->as_IntConstant();
 212       if (l && i && i->value() < l->value() && i->value() >= 0) {
 213         return false;
 214       }
 215     }
 216   }
 217 
 218   if (!this->check_flag(NeedsRangeCheckFlag)) {
 219     return false;
 220   }
 221 
 222   return true;
 223 }
 224 
 225 
 226 ciType* Constant::exact_type() const {
 227   if (type()->is_object() && type()->as_ObjectType()->is_loaded()) {
 228     return type()->as_ObjectType()->exact_type();
 229   }
 230   return NULL;
 231 }
 232 
 233 ciType* LoadIndexed::exact_type() const {
 234   ciType* array_type = array()->exact_type();
 235   if (array_type != NULL) {
 236     assert(array_type->is_array_klass(), "what else?");
 237     ciArrayKlass* ak = (ciArrayKlass*)array_type;
 238 
 239     if (ak->element_type()->is_instance_klass()) {
 240       ciInstanceKlass* ik = (ciInstanceKlass*)ak->element_type();
 241       if (ik->is_loaded() && ik->is_final()) {
 242         return ik;
 243       }
 244     }
 245   }
 246   return Instruction::exact_type();
 247 }
 248 
 249 
 250 ciType* LoadIndexed::declared_type() const {
 251   ciType* array_type = array()->declared_type();
 252   if (array_type == NULL || !array_type->is_loaded()) {
 253     return NULL;
 254   }
 255   assert(array_type->is_array_klass(), "what else?");
 256   ciArrayKlass* ak = (ciArrayKlass*)array_type;
 257   return ak->element_type();
 258 }
 259 
 260 
 261 ciType* LoadField::declared_type() const {
 262   return field()->type();
 263 }
 264 
 265 
 266 ciType* NewTypeArray::exact_type() const {
 267   return ciTypeArrayKlass::make(elt_type());
 268 }
 269 
 270 ciType* NewObjectArray::exact_type() const {
 271   ciKlass* element_klass = klass();
 272   if (element_klass->is_valuetype()) {
 273     return ciValueArrayKlass::make(element_klass);
 274   } else {
 275     return ciObjArrayKlass::make(element_klass);
 276   }
 277 }
 278 
 279 ciType* NewMultiArray::exact_type() const {
 280   return _klass;
 281 }
 282 
 283 ciType* NewArray::declared_type() const {
 284   return exact_type();
 285 }
 286 
 287 ciType* NewInstance::exact_type() const {
 288   return klass();
 289 }
 290 
 291 ciType* NewInstance::declared_type() const {
 292   return exact_type();
 293 }
 294 
 295 Value NewValueTypeInstance::depends_on() {
 296   if (_depends_on != this) {
 297     if (_depends_on->as_NewValueTypeInstance() != NULL) {
 298       return _depends_on->as_NewValueTypeInstance()->depends_on();
 299     }
 300   }
 301   return _depends_on;
 302 }
 303 
 304 ciType* NewValueTypeInstance::exact_type() const {
 305   return klass();
 306 }
 307 
 308 ciType* NewValueTypeInstance::declared_type() const {
 309   return exact_type();
 310 }
 311 
 312 ciType* CheckCast::declared_type() const {
 313   return klass();
 314 }
 315 
 316 // Implementation of ArithmeticOp
 317 
 318 bool ArithmeticOp::is_commutative() const {
 319   switch (op()) {
 320     case Bytecodes::_iadd: // fall through
 321     case Bytecodes::_ladd: // fall through
 322     case Bytecodes::_fadd: // fall through
 323     case Bytecodes::_dadd: // fall through
 324     case Bytecodes::_imul: // fall through
 325     case Bytecodes::_lmul: // fall through
 326     case Bytecodes::_fmul: // fall through
 327     case Bytecodes::_dmul: return true;
 328     default              : return false;
 329   }
 330 }
 331 
 332 
 333 bool ArithmeticOp::can_trap() const {
 334   switch (op()) {
 335     case Bytecodes::_idiv: // fall through
 336     case Bytecodes::_ldiv: // fall through
 337     case Bytecodes::_irem: // fall through
 338     case Bytecodes::_lrem: return true;
 339     default              : return false;
 340   }
 341 }
 342 
 343 
 344 // Implementation of LogicOp
 345 
 346 bool LogicOp::is_commutative() const {
 347 #ifdef ASSERT
 348   switch (op()) {
 349     case Bytecodes::_iand: // fall through
 350     case Bytecodes::_land: // fall through
 351     case Bytecodes::_ior : // fall through
 352     case Bytecodes::_lor : // fall through
 353     case Bytecodes::_ixor: // fall through
 354     case Bytecodes::_lxor: break;
 355     default              : ShouldNotReachHere(); break;
 356   }
 357 #endif
 358   // all LogicOps are commutative
 359   return true;
 360 }
 361 
 362 
 363 // Implementation of IfOp
 364 
 365 bool IfOp::is_commutative() const {
 366   return cond() == eql || cond() == neq;
 367 }
 368 
 369 
 370 // Implementation of StateSplit
 371 
 372 void StateSplit::substitute(BlockList& list, BlockBegin* old_block, BlockBegin* new_block) {
 373   NOT_PRODUCT(bool assigned = false;)
 374   for (int i = 0; i < list.length(); i++) {
 375     BlockBegin** b = list.adr_at(i);
 376     if (*b == old_block) {
 377       *b = new_block;
 378       NOT_PRODUCT(assigned = true;)
 379     }
 380   }
 381   assert(assigned == true, "should have assigned at least once");
 382 }
 383 
 384 
 385 IRScope* StateSplit::scope() const {
 386   return _state->scope();
 387 }
 388 
 389 
 390 void StateSplit::state_values_do(ValueVisitor* f) {
 391   Instruction::state_values_do(f);
 392   if (state() != NULL) state()->values_do(f);
 393 }
 394 
 395 
 396 void BlockBegin::state_values_do(ValueVisitor* f) {
 397   StateSplit::state_values_do(f);
 398 
 399   if (is_set(BlockBegin::exception_entry_flag)) {
 400     for (int i = 0; i < number_of_exception_states(); i++) {
 401       exception_state_at(i)->values_do(f);
 402     }
 403   }
 404 }
 405 
 406 
 407 // Implementation of Invoke
 408 
 409 
 410 Invoke::Invoke(Bytecodes::Code code, ValueType* result_type, Value recv, Values* args,
 411                int vtable_index, ciMethod* target, ValueStack* state_before)
 412   : StateSplit(result_type, state_before)
 413   , _code(code)
 414   , _recv(recv)
 415   , _args(args)
 416   , _vtable_index(vtable_index)
 417   , _target(target)
 418 {
 419   set_flag(TargetIsLoadedFlag,   target->is_loaded());
 420   set_flag(TargetIsFinalFlag,    target_is_loaded() && target->is_final_method());
 421   set_flag(TargetIsStrictfpFlag, target_is_loaded() && target->is_strict());
 422 
 423   assert(args != NULL, "args must exist");
 424 #ifdef ASSERT
 425   AssertValues assert_value;
 426   values_do(&assert_value);
 427 #endif
 428 
 429   // provide an initial guess of signature size.
 430   _signature = new BasicTypeList(number_of_arguments() + (has_receiver() ? 1 : 0));
 431   if (has_receiver()) {
 432     _signature->append(as_BasicType(receiver()->type()));
 433   }
 434   for (int i = 0; i < number_of_arguments(); i++) {
 435     ValueType* t = argument_at(i)->type();
 436     BasicType bt = as_BasicType(t);
 437     _signature->append(bt);
 438   }
 439 }
 440 
 441 
 442 void Invoke::state_values_do(ValueVisitor* f) {
 443   StateSplit::state_values_do(f);
 444   if (state_before() != NULL) state_before()->values_do(f);
 445   if (state()        != NULL) state()->values_do(f);
 446 }
 447 
 448 ciType* Invoke::declared_type() const {
 449   ciSignature* declared_signature = state()->scope()->method()->get_declared_signature_at_bci(state()->bci());
 450   ciType *t = declared_signature->return_type();
 451   assert(t->basic_type() != T_VOID, "need return value of void method?");
 452   return t;
 453 }
 454 
 455 // Implementation of Contant
 456 intx Constant::hash() const {
 457   if (state_before() == NULL) {
 458     switch (type()->tag()) {
 459     case intTag:
 460       return HASH2(name(), type()->as_IntConstant()->value());
 461     case addressTag:
 462       return HASH2(name(), type()->as_AddressConstant()->value());
 463     case longTag:
 464       {
 465         jlong temp = type()->as_LongConstant()->value();
 466         return HASH3(name(), high(temp), low(temp));
 467       }
 468     case floatTag:
 469       return HASH2(name(), jint_cast(type()->as_FloatConstant()->value()));
 470     case doubleTag:
 471       {
 472         jlong temp = jlong_cast(type()->as_DoubleConstant()->value());
 473         return HASH3(name(), high(temp), low(temp));
 474       }
 475     case objectTag:
 476       assert(type()->as_ObjectType()->is_loaded(), "can't handle unloaded values");
 477       return HASH2(name(), type()->as_ObjectType()->constant_value());
 478     case metaDataTag:
 479       assert(type()->as_MetadataType()->is_loaded(), "can't handle unloaded values");
 480       return HASH2(name(), type()->as_MetadataType()->constant_value());
 481     default:
 482       ShouldNotReachHere();
 483     }
 484   }
 485   return 0;
 486 }
 487 
 488 bool Constant::is_equal(Value v) const {
 489   if (v->as_Constant() == NULL) return false;
 490 
 491   switch (type()->tag()) {
 492     case intTag:
 493       {
 494         IntConstant* t1 =    type()->as_IntConstant();
 495         IntConstant* t2 = v->type()->as_IntConstant();
 496         return (t1 != NULL && t2 != NULL &&
 497                 t1->value() == t2->value());
 498       }
 499     case longTag:
 500       {
 501         LongConstant* t1 =    type()->as_LongConstant();
 502         LongConstant* t2 = v->type()->as_LongConstant();
 503         return (t1 != NULL && t2 != NULL &&
 504                 t1->value() == t2->value());
 505       }
 506     case floatTag:
 507       {
 508         FloatConstant* t1 =    type()->as_FloatConstant();
 509         FloatConstant* t2 = v->type()->as_FloatConstant();
 510         return (t1 != NULL && t2 != NULL &&
 511                 jint_cast(t1->value()) == jint_cast(t2->value()));
 512       }
 513     case doubleTag:
 514       {
 515         DoubleConstant* t1 =    type()->as_DoubleConstant();
 516         DoubleConstant* t2 = v->type()->as_DoubleConstant();
 517         return (t1 != NULL && t2 != NULL &&
 518                 jlong_cast(t1->value()) == jlong_cast(t2->value()));
 519       }
 520     case objectTag:
 521       {
 522         ObjectType* t1 =    type()->as_ObjectType();
 523         ObjectType* t2 = v->type()->as_ObjectType();
 524         return (t1 != NULL && t2 != NULL &&
 525                 t1->is_loaded() && t2->is_loaded() &&
 526                 t1->constant_value() == t2->constant_value());
 527       }
 528     case metaDataTag:
 529       {
 530         MetadataType* t1 =    type()->as_MetadataType();
 531         MetadataType* t2 = v->type()->as_MetadataType();
 532         return (t1 != NULL && t2 != NULL &&
 533                 t1->is_loaded() && t2->is_loaded() &&
 534                 t1->constant_value() == t2->constant_value());
 535       }
 536     default:
 537       return false;
 538   }
 539 }
 540 
 541 Constant::CompareResult Constant::compare(Instruction::Condition cond, Value right) const {
 542   Constant* rc = right->as_Constant();
 543   // other is not a constant
 544   if (rc == NULL) return not_comparable;
 545 
 546   ValueType* lt = type();
 547   ValueType* rt = rc->type();
 548   // different types
 549   if (lt->base() != rt->base()) return not_comparable;
 550   switch (lt->tag()) {
 551   case intTag: {
 552     int x = lt->as_IntConstant()->value();
 553     int y = rt->as_IntConstant()->value();
 554     switch (cond) {
 555     case If::eql: return x == y ? cond_true : cond_false;
 556     case If::neq: return x != y ? cond_true : cond_false;
 557     case If::lss: return x <  y ? cond_true : cond_false;
 558     case If::leq: return x <= y ? cond_true : cond_false;
 559     case If::gtr: return x >  y ? cond_true : cond_false;
 560     case If::geq: return x >= y ? cond_true : cond_false;
 561     default     : break;
 562     }
 563     break;
 564   }
 565   case longTag: {
 566     jlong x = lt->as_LongConstant()->value();
 567     jlong y = rt->as_LongConstant()->value();
 568     switch (cond) {
 569     case If::eql: return x == y ? cond_true : cond_false;
 570     case If::neq: return x != y ? cond_true : cond_false;
 571     case If::lss: return x <  y ? cond_true : cond_false;
 572     case If::leq: return x <= y ? cond_true : cond_false;
 573     case If::gtr: return x >  y ? cond_true : cond_false;
 574     case If::geq: return x >= y ? cond_true : cond_false;
 575     default     : break;
 576     }
 577     break;
 578   }
 579   case objectTag: {
 580     ciObject* xvalue = lt->as_ObjectType()->constant_value();
 581     ciObject* yvalue = rt->as_ObjectType()->constant_value();
 582     assert(xvalue != NULL && yvalue != NULL, "not constants");
 583     if (xvalue->is_loaded() && yvalue->is_loaded()) {
 584       switch (cond) {
 585       case If::eql: return xvalue == yvalue ? cond_true : cond_false;
 586       case If::neq: return xvalue != yvalue ? cond_true : cond_false;
 587       default     : break;
 588       }
 589     }
 590     break;
 591   }
 592   case metaDataTag: {
 593     ciMetadata* xvalue = lt->as_MetadataType()->constant_value();
 594     ciMetadata* yvalue = rt->as_MetadataType()->constant_value();
 595     assert(xvalue != NULL && yvalue != NULL, "not constants");
 596     if (xvalue->is_loaded() && yvalue->is_loaded()) {
 597       switch (cond) {
 598       case If::eql: return xvalue == yvalue ? cond_true : cond_false;
 599       case If::neq: return xvalue != yvalue ? cond_true : cond_false;
 600       default     : break;
 601       }
 602     }
 603     break;
 604   }
 605   default:
 606     break;
 607   }
 608   return not_comparable;
 609 }
 610 
 611 
 612 // Implementation of BlockBegin
 613 
 614 void BlockBegin::set_end(BlockEnd* end) {
 615   assert(end != NULL, "should not reset block end to NULL");
 616   if (end == _end) {
 617     return;
 618   }
 619   clear_end();
 620 
 621   // Set the new end
 622   _end = end;
 623 
 624   _successors.clear();
 625   // Now reset successors list based on BlockEnd
 626   for (int i = 0; i < end->number_of_sux(); i++) {
 627     BlockBegin* sux = end->sux_at(i);
 628     _successors.append(sux);
 629     sux->_predecessors.append(this);
 630   }
 631   _end->set_begin(this);
 632 }
 633 
 634 
 635 void BlockBegin::clear_end() {
 636   // Must make the predecessors/successors match up with the
 637   // BlockEnd's notion.
 638   if (_end != NULL) {
 639     // disconnect from the old end
 640     _end->set_begin(NULL);
 641 
 642     // disconnect this block from it's current successors
 643     for (int i = 0; i < _successors.length(); i++) {
 644       _successors.at(i)->remove_predecessor(this);
 645     }
 646     _end = NULL;
 647   }
 648 }
 649 
 650 
 651 void BlockBegin::disconnect_edge(BlockBegin* from, BlockBegin* to) {
 652   // disconnect any edges between from and to
 653 #ifndef PRODUCT
 654   if (PrintIR && Verbose) {
 655     tty->print_cr("Disconnected edge B%d -> B%d", from->block_id(), to->block_id());
 656   }
 657 #endif
 658   for (int s = 0; s < from->number_of_sux();) {
 659     BlockBegin* sux = from->sux_at(s);
 660     if (sux == to) {
 661       int index = sux->_predecessors.find(from);
 662       if (index >= 0) {
 663         sux->_predecessors.remove_at(index);
 664       }
 665       from->_successors.remove_at(s);
 666     } else {
 667       s++;
 668     }
 669   }
 670 }
 671 
 672 
 673 void BlockBegin::disconnect_from_graph() {
 674   // disconnect this block from all other blocks
 675   for (int p = 0; p < number_of_preds(); p++) {
 676     pred_at(p)->remove_successor(this);
 677   }
 678   for (int s = 0; s < number_of_sux(); s++) {
 679     sux_at(s)->remove_predecessor(this);
 680   }
 681 }
 682 
 683 void BlockBegin::substitute_sux(BlockBegin* old_sux, BlockBegin* new_sux) {
 684   // modify predecessors before substituting successors
 685   for (int i = 0; i < number_of_sux(); i++) {
 686     if (sux_at(i) == old_sux) {
 687       // remove old predecessor before adding new predecessor
 688       // otherwise there is a dead predecessor in the list
 689       new_sux->remove_predecessor(old_sux);
 690       new_sux->add_predecessor(this);
 691     }
 692   }
 693   old_sux->remove_predecessor(this);
 694   end()->substitute_sux(old_sux, new_sux);
 695 }
 696 
 697 
 698 
 699 // In general it is not possible to calculate a value for the field "depth_first_number"
 700 // of the inserted block, without recomputing the values of the other blocks
 701 // in the CFG. Therefore the value of "depth_first_number" in BlockBegin becomes meaningless.
 702 BlockBegin* BlockBegin::insert_block_between(BlockBegin* sux) {
 703   int bci = sux->bci();
 704   // critical edge splitting may introduce a goto after a if and array
 705   // bound check elimination may insert a predicate between the if and
 706   // goto. The bci of the goto can't be the one of the if otherwise
 707   // the state and bci are inconsistent and a deoptimization triggered
 708   // by the predicate would lead to incorrect execution/a crash.
 709   BlockBegin* new_sux = new BlockBegin(bci);
 710 
 711   // mark this block (special treatment when block order is computed)
 712   new_sux->set(critical_edge_split_flag);
 713 
 714   // This goto is not a safepoint.
 715   Goto* e = new Goto(sux, false);
 716   new_sux->set_next(e, bci);
 717   new_sux->set_end(e);
 718   // setup states
 719   ValueStack* s = end()->state();
 720   new_sux->set_state(s->copy(s->kind(), bci));
 721   e->set_state(s->copy(s->kind(), bci));
 722   assert(new_sux->state()->locals_size() == s->locals_size(), "local size mismatch!");
 723   assert(new_sux->state()->stack_size() == s->stack_size(), "stack size mismatch!");
 724   assert(new_sux->state()->locks_size() == s->locks_size(), "locks size mismatch!");
 725 
 726   // link predecessor to new block
 727   end()->substitute_sux(sux, new_sux);
 728 
 729   // The ordering needs to be the same, so remove the link that the
 730   // set_end call above added and substitute the new_sux for this
 731   // block.
 732   sux->remove_predecessor(new_sux);
 733 
 734   // the successor could be the target of a switch so it might have
 735   // multiple copies of this predecessor, so substitute the new_sux
 736   // for the first and delete the rest.
 737   bool assigned = false;
 738   BlockList& list = sux->_predecessors;
 739   for (int i = 0; i < list.length(); i++) {
 740     BlockBegin** b = list.adr_at(i);
 741     if (*b == this) {
 742       if (assigned) {
 743         list.remove_at(i);
 744         // reprocess this index
 745         i--;
 746       } else {
 747         assigned = true;
 748         *b = new_sux;
 749       }
 750       // link the new block back to it's predecessors.
 751       new_sux->add_predecessor(this);
 752     }
 753   }
 754   assert(assigned == true, "should have assigned at least once");
 755   return new_sux;
 756 }
 757 
 758 
 759 void BlockBegin::remove_successor(BlockBegin* pred) {
 760   int idx;
 761   while ((idx = _successors.find(pred)) >= 0) {
 762     _successors.remove_at(idx);
 763   }
 764 }
 765 
 766 
 767 void BlockBegin::add_predecessor(BlockBegin* pred) {
 768   _predecessors.append(pred);
 769 }
 770 
 771 
 772 void BlockBegin::remove_predecessor(BlockBegin* pred) {
 773   int idx;
 774   while ((idx = _predecessors.find(pred)) >= 0) {
 775     _predecessors.remove_at(idx);
 776   }
 777 }
 778 
 779 
 780 void BlockBegin::add_exception_handler(BlockBegin* b) {
 781   assert(b != NULL && (b->is_set(exception_entry_flag)), "exception handler must exist");
 782   // add only if not in the list already
 783   if (!_exception_handlers.contains(b)) _exception_handlers.append(b);
 784 }
 785 
 786 int BlockBegin::add_exception_state(ValueStack* state) {
 787   assert(is_set(exception_entry_flag), "only for xhandlers");
 788   if (_exception_states == NULL) {
 789     _exception_states = new ValueStackStack(4);
 790   }
 791   _exception_states->append(state);
 792   return _exception_states->length() - 1;
 793 }
 794 
 795 
 796 void BlockBegin::iterate_preorder(boolArray& mark, BlockClosure* closure) {
 797   if (!mark.at(block_id())) {
 798     mark.at_put(block_id(), true);
 799     closure->block_do(this);
 800     BlockEnd* e = end(); // must do this after block_do because block_do may change it!
 801     { for (int i = number_of_exception_handlers() - 1; i >= 0; i--) exception_handler_at(i)->iterate_preorder(mark, closure); }
 802     { for (int i = e->number_of_sux            () - 1; i >= 0; i--) e->sux_at           (i)->iterate_preorder(mark, closure); }
 803   }
 804 }
 805 
 806 
 807 void BlockBegin::iterate_postorder(boolArray& mark, BlockClosure* closure) {
 808   if (!mark.at(block_id())) {
 809     mark.at_put(block_id(), true);
 810     BlockEnd* e = end();
 811     { for (int i = number_of_exception_handlers() - 1; i >= 0; i--) exception_handler_at(i)->iterate_postorder(mark, closure); }
 812     { for (int i = e->number_of_sux            () - 1; i >= 0; i--) e->sux_at           (i)->iterate_postorder(mark, closure); }
 813     closure->block_do(this);
 814   }
 815 }
 816 
 817 
 818 void BlockBegin::iterate_preorder(BlockClosure* closure) {
 819   int mark_len = number_of_blocks();
 820   boolArray mark(mark_len, mark_len, false);
 821   iterate_preorder(mark, closure);
 822 }
 823 
 824 
 825 void BlockBegin::iterate_postorder(BlockClosure* closure) {
 826   int mark_len = number_of_blocks();
 827   boolArray mark(mark_len, mark_len, false);
 828   iterate_postorder(mark, closure);
 829 }
 830 
 831 
 832 void BlockBegin::block_values_do(ValueVisitor* f) {
 833   for (Instruction* n = this; n != NULL; n = n->next()) n->values_do(f);
 834 }
 835 
 836 
 837 #ifndef PRODUCT
 838    #define TRACE_PHI(code) if (PrintPhiFunctions) { code; }
 839 #else
 840    #define TRACE_PHI(coce)
 841 #endif
 842 
 843 
 844 bool BlockBegin::try_merge(ValueStack* new_state) {
 845   TRACE_PHI(tty->print_cr("********** try_merge for block B%d", block_id()));
 846 
 847   // local variables used for state iteration
 848   int index;
 849   Value new_value, existing_value;
 850 
 851   ValueStack* existing_state = state();
 852   if (existing_state == NULL) {
 853     TRACE_PHI(tty->print_cr("first call of try_merge for this block"));
 854 
 855     if (is_set(BlockBegin::was_visited_flag)) {
 856       // this actually happens for complicated jsr/ret structures
 857       return false; // BAILOUT in caller
 858     }
 859 
 860     // copy state because it is altered
 861     new_state = new_state->copy(ValueStack::BlockBeginState, bci());
 862 
 863     // Use method liveness to invalidate dead locals
 864     MethodLivenessResult liveness = new_state->scope()->method()->liveness_at_bci(bci());
 865     if (liveness.is_valid()) {
 866       assert((int)liveness.size() == new_state->locals_size(), "error in use of liveness");
 867 
 868       for_each_local_value(new_state, index, new_value) {
 869         if (!liveness.at(index) || new_value->type()->is_illegal()) {
 870           new_state->invalidate_local(index);
 871           TRACE_PHI(tty->print_cr("invalidating dead local %d", index));
 872         }
 873       }
 874     }
 875 
 876     if (is_set(BlockBegin::parser_loop_header_flag)) {
 877       TRACE_PHI(tty->print_cr("loop header block, initializing phi functions"));
 878 
 879       for_each_stack_value(new_state, index, new_value) {
 880         new_state->setup_phi_for_stack(this, index, NULL, new_value);
 881         TRACE_PHI(tty->print_cr("creating phi-function %c%d for stack %d", new_state->stack_at(index)->type()->tchar(), new_state->stack_at(index)->id(), index));
 882       }
 883 
 884       BitMap& requires_phi_function = new_state->scope()->requires_phi_function();
 885 
 886       for_each_local_value(new_state, index, new_value) {
 887         bool requires_phi = requires_phi_function.at(index) || (new_value->type()->is_double_word() && requires_phi_function.at(index + 1));
 888         if (requires_phi || !SelectivePhiFunctions) {
 889           new_state->setup_phi_for_local(this, index, NULL, new_value);
 890           TRACE_PHI(tty->print_cr("creating phi-function %c%d for local %d", new_state->local_at(index)->type()->tchar(), new_state->local_at(index)->id(), index));
 891         }
 892       }
 893     }
 894 
 895     // initialize state of block
 896     set_state(new_state);
 897 
 898   } else if (existing_state->is_same(new_state)) {
 899     TRACE_PHI(tty->print_cr("exisiting state found"));
 900 
 901     assert(existing_state->scope() == new_state->scope(), "not matching");
 902     assert(existing_state->locals_size() == new_state->locals_size(), "not matching");
 903     assert(existing_state->stack_size() == new_state->stack_size(), "not matching");
 904 
 905     if (is_set(BlockBegin::was_visited_flag)) {
 906       TRACE_PHI(tty->print_cr("loop header block, phis must be present"));
 907 
 908       if (!is_set(BlockBegin::parser_loop_header_flag)) {
 909         // this actually happens for complicated jsr/ret structures
 910         return false; // BAILOUT in caller
 911       }
 912 
 913       for_each_local_value(existing_state, index, existing_value) {
 914         Value new_value = new_state->local_at(index);
 915         if (new_value == NULL || new_value->type()->tag() != existing_value->type()->tag()) {
 916           Phi* existing_phi = existing_value->as_Phi();
 917           if (existing_phi == NULL) {
 918             return false; // BAILOUT in caller
 919           }
 920           // Invalidate the phi function here. This case is very rare except for
 921           // JVMTI capability "can_access_local_variables".
 922           // In really rare cases we will bail out in LIRGenerator::move_to_phi.
 923           existing_phi->make_illegal();
 924           existing_state->invalidate_local(index);
 925           TRACE_PHI(tty->print_cr("invalidating local %d because of type mismatch", index));
 926         }
 927       }
 928 
 929 #ifdef ASSERT
 930       // check that all necessary phi functions are present
 931       for_each_stack_value(existing_state, index, existing_value) {
 932         assert(existing_value->as_Phi() != NULL && existing_value->as_Phi()->block() == this, "phi function required");
 933       }
 934       for_each_local_value(existing_state, index, existing_value) {
 935         assert(existing_value == new_state->local_at(index) || (existing_value->as_Phi() != NULL && existing_value->as_Phi()->as_Phi()->block() == this), "phi function required");
 936       }
 937 #endif
 938 
 939     } else {
 940       TRACE_PHI(tty->print_cr("creating phi functions on demand"));
 941 
 942       // create necessary phi functions for stack
 943       for_each_stack_value(existing_state, index, existing_value) {
 944         Value new_value = new_state->stack_at(index);
 945         Phi* existing_phi = existing_value->as_Phi();
 946 
 947         if (new_value != existing_value && (existing_phi == NULL || existing_phi->block() != this)) {
 948           existing_state->setup_phi_for_stack(this, index, existing_value, new_value);
 949           TRACE_PHI(tty->print_cr("creating phi-function %c%d for stack %d", existing_state->stack_at(index)->type()->tchar(), existing_state->stack_at(index)->id(), index));
 950         }
 951       }
 952 
 953       // create necessary phi functions for locals
 954       for_each_local_value(existing_state, index, existing_value) {
 955         Value new_value = new_state->local_at(index);
 956         Phi* existing_phi = existing_value->as_Phi();
 957 
 958         if (new_value == NULL || new_value->type()->tag() != existing_value->type()->tag()) {
 959           existing_state->invalidate_local(index);
 960           TRACE_PHI(tty->print_cr("invalidating local %d because of type mismatch", index));
 961         } else if (new_value != existing_value && (existing_phi == NULL || existing_phi->block() != this)) {
 962           existing_state->setup_phi_for_local(this, index, existing_value, new_value);
 963           TRACE_PHI(tty->print_cr("creating phi-function %c%d for local %d", existing_state->local_at(index)->type()->tchar(), existing_state->local_at(index)->id(), index));
 964         }
 965       }
 966     }
 967 
 968     assert(existing_state->caller_state() == new_state->caller_state(), "caller states must be equal");
 969 
 970   } else {
 971     assert(false, "stack or locks not matching (invalid bytecodes)");
 972     return false;
 973   }
 974 
 975   TRACE_PHI(tty->print_cr("********** try_merge for block B%d successful", block_id()));
 976 
 977   return true;
 978 }
 979 
 980 
 981 #ifndef PRODUCT
 982 void BlockBegin::print_block() {
 983   InstructionPrinter ip;
 984   print_block(ip, false);
 985 }
 986 
 987 
 988 void BlockBegin::print_block(InstructionPrinter& ip, bool live_only) {
 989   ip.print_instr(this); tty->cr();
 990   ip.print_stack(this->state()); tty->cr();
 991   ip.print_inline_level(this);
 992   ip.print_head();
 993   for (Instruction* n = next(); n != NULL; n = n->next()) {
 994     if (!live_only || n->is_pinned() || n->use_count() > 0) {
 995       ip.print_line(n);
 996     }
 997   }
 998   tty->cr();
 999 }
1000 #endif // PRODUCT
1001 
1002 
1003 // Implementation of BlockList
1004 
1005 void BlockList::iterate_forward (BlockClosure* closure) {
1006   const int l = length();
1007   for (int i = 0; i < l; i++) closure->block_do(at(i));
1008 }
1009 
1010 
1011 void BlockList::iterate_backward(BlockClosure* closure) {
1012   for (int i = length() - 1; i >= 0; i--) closure->block_do(at(i));
1013 }
1014 
1015 
1016 void BlockList::blocks_do(void f(BlockBegin*)) {
1017   for (int i = length() - 1; i >= 0; i--) f(at(i));
1018 }
1019 
1020 
1021 void BlockList::values_do(ValueVisitor* f) {
1022   for (int i = length() - 1; i >= 0; i--) at(i)->block_values_do(f);
1023 }
1024 
1025 
1026 #ifndef PRODUCT
1027 void BlockList::print(bool cfg_only, bool live_only) {
1028   InstructionPrinter ip;
1029   for (int i = 0; i < length(); i++) {
1030     BlockBegin* block = at(i);
1031     if (cfg_only) {
1032       ip.print_instr(block); tty->cr();
1033     } else {
1034       block->print_block(ip, live_only);
1035     }
1036   }
1037 }
1038 #endif // PRODUCT
1039 
1040 
1041 // Implementation of BlockEnd
1042 
1043 void BlockEnd::set_begin(BlockBegin* begin) {
1044   BlockList* sux = NULL;
1045   if (begin != NULL) {
1046     sux = begin->successors();
1047   } else if (this->begin() != NULL) {
1048     // copy our sux list
1049     BlockList* sux = new BlockList(this->begin()->number_of_sux());
1050     for (int i = 0; i < this->begin()->number_of_sux(); i++) {
1051       sux->append(this->begin()->sux_at(i));
1052     }
1053   }
1054   _sux = sux;
1055 }
1056 
1057 
1058 void BlockEnd::substitute_sux(BlockBegin* old_sux, BlockBegin* new_sux) {
1059   substitute(*_sux, old_sux, new_sux);
1060 }
1061 
1062 
1063 // Implementation of Phi
1064 
1065 // Normal phi functions take their operands from the last instruction of the
1066 // predecessor. Special handling is needed for xhanlder entries because there
1067 // the state of arbitrary instructions are needed.
1068 
1069 Value Phi::operand_at(int i) const {
1070   ValueStack* state;
1071   if (_block->is_set(BlockBegin::exception_entry_flag)) {
1072     state = _block->exception_state_at(i);
1073   } else {
1074     state = _block->pred_at(i)->end()->state();
1075   }
1076   assert(state != NULL, "");
1077 
1078   if (is_local()) {
1079     return state->local_at(local_index());
1080   } else {
1081     return state->stack_at(stack_index());
1082   }
1083 }
1084 
1085 
1086 int Phi::operand_count() const {
1087   if (_block->is_set(BlockBegin::exception_entry_flag)) {
1088     return _block->number_of_exception_states();
1089   } else {
1090     return _block->number_of_preds();
1091   }
1092 }
1093 
1094 #ifdef ASSERT
1095 // Constructor of Assert
1096 Assert::Assert(Value x, Condition cond, bool unordered_is_true, Value y) : Instruction(illegalType)
1097   , _x(x)
1098   , _cond(cond)
1099   , _y(y)
1100 {
1101   set_flag(UnorderedIsTrueFlag, unordered_is_true);
1102   assert(x->type()->tag() == y->type()->tag(), "types must match");
1103   pin();
1104 
1105   stringStream strStream;
1106   Compilation::current()->method()->print_name(&strStream);
1107 
1108   stringStream strStream1;
1109   InstructionPrinter ip1(1, &strStream1);
1110   ip1.print_instr(x);
1111 
1112   stringStream strStream2;
1113   InstructionPrinter ip2(1, &strStream2);
1114   ip2.print_instr(y);
1115 
1116   stringStream ss;
1117   ss.print("Assertion %s %s %s in method %s", strStream1.as_string(), ip2.cond_name(cond), strStream2.as_string(), strStream.as_string());
1118 
1119   _message = ss.as_string();
1120 }
1121 #endif
1122 
1123 void RangeCheckPredicate::check_state() {
1124   assert(state()->kind() != ValueStack::EmptyExceptionState && state()->kind() != ValueStack::ExceptionState, "will deopt with empty state");
1125 }
1126 
1127 void ProfileInvoke::state_values_do(ValueVisitor* f) {
1128   if (state() != NULL) state()->values_do(f);
1129 }