1 /*
   2  * Copyright (c) 2000, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "c1/c1_Compilation.hpp"
  29 #include "c1/c1_LIRAssembler.hpp"
  30 #include "c1/c1_MacroAssembler.hpp"
  31 #include "c1/c1_Runtime1.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArrayKlass.hpp"
  34 #include "ci/ciInstance.hpp"
  35 #include "gc/shared/barrierSet.hpp"
  36 #include "gc/shared/cardTableBarrierSet.hpp"
  37 #include "gc/shared/collectedHeap.hpp"
  38 #include "nativeInst_x86.hpp"
  39 #include "oops/objArrayKlass.hpp"
  40 #include "runtime/frame.inline.hpp"
  41 #include "runtime/safepointMechanism.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 #include "vmreg_x86.inline.hpp"
  44 
  45 
  46 // These masks are used to provide 128-bit aligned bitmasks to the XMM
  47 // instructions, to allow sign-masking or sign-bit flipping.  They allow
  48 // fast versions of NegF/NegD and AbsF/AbsD.
  49 
  50 // Note: 'double' and 'long long' have 32-bits alignment on x86.
  51 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
  52   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
  53   // of 128-bits operands for SSE instructions.
  54   jlong *operand = (jlong*)(((intptr_t)adr) & ((intptr_t)(~0xF)));
  55   // Store the value to a 128-bits operand.
  56   operand[0] = lo;
  57   operand[1] = hi;
  58   return operand;
  59 }
  60 
  61 // Buffer for 128-bits masks used by SSE instructions.
  62 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
  63 
  64 // Static initialization during VM startup.
  65 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2],         CONST64(0x7FFFFFFF7FFFFFFF),         CONST64(0x7FFFFFFF7FFFFFFF));
  66 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2],         CONST64(0x7FFFFFFFFFFFFFFF),         CONST64(0x7FFFFFFFFFFFFFFF));
  67 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], (jlong)UCONST64(0x8000000080000000), (jlong)UCONST64(0x8000000080000000));
  68 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], (jlong)UCONST64(0x8000000000000000), (jlong)UCONST64(0x8000000000000000));
  69 
  70 
  71 NEEDS_CLEANUP // remove this definitions ?
  72 const Register IC_Klass    = rax;   // where the IC klass is cached
  73 const Register SYNC_header = rax;   // synchronization header
  74 const Register SHIFT_count = rcx;   // where count for shift operations must be
  75 
  76 #define __ _masm->
  77 
  78 
  79 static void select_different_registers(Register preserve,
  80                                        Register extra,
  81                                        Register &tmp1,
  82                                        Register &tmp2) {
  83   if (tmp1 == preserve) {
  84     assert_different_registers(tmp1, tmp2, extra);
  85     tmp1 = extra;
  86   } else if (tmp2 == preserve) {
  87     assert_different_registers(tmp1, tmp2, extra);
  88     tmp2 = extra;
  89   }
  90   assert_different_registers(preserve, tmp1, tmp2);
  91 }
  92 
  93 
  94 
  95 static void select_different_registers(Register preserve,
  96                                        Register extra,
  97                                        Register &tmp1,
  98                                        Register &tmp2,
  99                                        Register &tmp3) {
 100   if (tmp1 == preserve) {
 101     assert_different_registers(tmp1, tmp2, tmp3, extra);
 102     tmp1 = extra;
 103   } else if (tmp2 == preserve) {
 104     assert_different_registers(tmp1, tmp2, tmp3, extra);
 105     tmp2 = extra;
 106   } else if (tmp3 == preserve) {
 107     assert_different_registers(tmp1, tmp2, tmp3, extra);
 108     tmp3 = extra;
 109   }
 110   assert_different_registers(preserve, tmp1, tmp2, tmp3);
 111 }
 112 
 113 
 114 
 115 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
 116   if (opr->is_constant()) {
 117     LIR_Const* constant = opr->as_constant_ptr();
 118     switch (constant->type()) {
 119       case T_INT: {
 120         return true;
 121       }
 122 
 123       default:
 124         return false;
 125     }
 126   }
 127   return false;
 128 }
 129 
 130 
 131 LIR_Opr LIR_Assembler::receiverOpr() {
 132   return FrameMap::receiver_opr;
 133 }
 134 
 135 LIR_Opr LIR_Assembler::osrBufferPointer() {
 136   return FrameMap::as_pointer_opr(receiverOpr()->as_register());
 137 }
 138 
 139 //--------------fpu register translations-----------------------
 140 
 141 
 142 address LIR_Assembler::float_constant(float f) {
 143   address const_addr = __ float_constant(f);
 144   if (const_addr == NULL) {
 145     bailout("const section overflow");
 146     return __ code()->consts()->start();
 147   } else {
 148     return const_addr;
 149   }
 150 }
 151 
 152 
 153 address LIR_Assembler::double_constant(double d) {
 154   address const_addr = __ double_constant(d);
 155   if (const_addr == NULL) {
 156     bailout("const section overflow");
 157     return __ code()->consts()->start();
 158   } else {
 159     return const_addr;
 160   }
 161 }
 162 
 163 
 164 void LIR_Assembler::set_24bit_FPU() {
 165   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
 166 }
 167 
 168 void LIR_Assembler::reset_FPU() {
 169   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 170 }
 171 
 172 void LIR_Assembler::fpop() {
 173   __ fpop();
 174 }
 175 
 176 void LIR_Assembler::fxch(int i) {
 177   __ fxch(i);
 178 }
 179 
 180 void LIR_Assembler::fld(int i) {
 181   __ fld_s(i);
 182 }
 183 
 184 void LIR_Assembler::ffree(int i) {
 185   __ ffree(i);
 186 }
 187 
 188 void LIR_Assembler::breakpoint() {
 189   __ int3();
 190 }
 191 
 192 void LIR_Assembler::push(LIR_Opr opr) {
 193   if (opr->is_single_cpu()) {
 194     __ push_reg(opr->as_register());
 195   } else if (opr->is_double_cpu()) {
 196     NOT_LP64(__ push_reg(opr->as_register_hi()));
 197     __ push_reg(opr->as_register_lo());
 198   } else if (opr->is_stack()) {
 199     __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix()));
 200   } else if (opr->is_constant()) {
 201     LIR_Const* const_opr = opr->as_constant_ptr();
 202     if (const_opr->type() == T_OBJECT || const_opr->type() == T_VALUETYPE) {
 203       __ push_oop(const_opr->as_jobject());
 204     } else if (const_opr->type() == T_INT) {
 205       __ push_jint(const_opr->as_jint());
 206     } else {
 207       ShouldNotReachHere();
 208     }
 209 
 210   } else {
 211     ShouldNotReachHere();
 212   }
 213 }
 214 
 215 void LIR_Assembler::pop(LIR_Opr opr) {
 216   if (opr->is_single_cpu()) {
 217     __ pop_reg(opr->as_register());
 218   } else {
 219     ShouldNotReachHere();
 220   }
 221 }
 222 
 223 bool LIR_Assembler::is_literal_address(LIR_Address* addr) {
 224   return addr->base()->is_illegal() && addr->index()->is_illegal();
 225 }
 226 
 227 //-------------------------------------------
 228 
 229 Address LIR_Assembler::as_Address(LIR_Address* addr) {
 230   return as_Address(addr, rscratch1);
 231 }
 232 
 233 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
 234   if (addr->base()->is_illegal()) {
 235     assert(addr->index()->is_illegal(), "must be illegal too");
 236     AddressLiteral laddr((address)addr->disp(), relocInfo::none);
 237     if (! __ reachable(laddr)) {
 238       __ movptr(tmp, laddr.addr());
 239       Address res(tmp, 0);
 240       return res;
 241     } else {
 242       return __ as_Address(laddr);
 243     }
 244   }
 245 
 246   Register base = addr->base()->as_pointer_register();
 247 
 248   if (addr->index()->is_illegal()) {
 249     return Address( base, addr->disp());
 250   } else if (addr->index()->is_cpu_register()) {
 251     Register index = addr->index()->as_pointer_register();
 252     return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp());
 253   } else if (addr->index()->is_constant()) {
 254     intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp();
 255     assert(Assembler::is_simm32(addr_offset), "must be");
 256 
 257     return Address(base, addr_offset);
 258   } else {
 259     Unimplemented();
 260     return Address();
 261   }
 262 }
 263 
 264 
 265 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
 266   Address base = as_Address(addr);
 267   return Address(base._base, base._index, base._scale, base._disp + BytesPerWord);
 268 }
 269 
 270 
 271 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
 272   return as_Address(addr);
 273 }
 274 
 275 
 276 void LIR_Assembler::osr_entry() {
 277   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
 278   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
 279   ValueStack* entry_state = osr_entry->state();
 280   int number_of_locks = entry_state->locks_size();
 281 
 282   // we jump here if osr happens with the interpreter
 283   // state set up to continue at the beginning of the
 284   // loop that triggered osr - in particular, we have
 285   // the following registers setup:
 286   //
 287   // rcx: osr buffer
 288   //
 289 
 290   // build frame
 291   ciMethod* m = compilation()->method();
 292   __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes());
 293 
 294   // OSR buffer is
 295   //
 296   // locals[nlocals-1..0]
 297   // monitors[0..number_of_locks]
 298   //
 299   // locals is a direct copy of the interpreter frame so in the osr buffer
 300   // so first slot in the local array is the last local from the interpreter
 301   // and last slot is local[0] (receiver) from the interpreter
 302   //
 303   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
 304   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
 305   // in the interpreter frame (the method lock if a sync method)
 306 
 307   // Initialize monitors in the compiled activation.
 308   //   rcx: pointer to osr buffer
 309   //
 310   // All other registers are dead at this point and the locals will be
 311   // copied into place by code emitted in the IR.
 312 
 313   Register OSR_buf = osrBufferPointer()->as_pointer_register();
 314   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
 315     int monitor_offset = BytesPerWord * method()->max_locals() +
 316       (BasicObjectLock::size() * BytesPerWord) * (number_of_locks - 1);
 317     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
 318     // the OSR buffer using 2 word entries: first the lock and then
 319     // the oop.
 320     for (int i = 0; i < number_of_locks; i++) {
 321       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
 322 #ifdef ASSERT
 323       // verify the interpreter's monitor has a non-null object
 324       {
 325         Label L;
 326         __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), (int32_t)NULL_WORD);
 327         __ jcc(Assembler::notZero, L);
 328         __ stop("locked object is NULL");
 329         __ bind(L);
 330       }
 331 #endif
 332       __ movptr(rbx, Address(OSR_buf, slot_offset + 0));
 333       __ movptr(frame_map()->address_for_monitor_lock(i), rbx);
 334       __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord));
 335       __ movptr(frame_map()->address_for_monitor_object(i), rbx);
 336     }
 337   }
 338 }
 339 
 340 
 341 // inline cache check; done before the frame is built.
 342 int LIR_Assembler::check_icache() {
 343   Register receiver = FrameMap::receiver_opr->as_register();
 344   Register ic_klass = IC_Klass;
 345   const int ic_cmp_size = LP64_ONLY(10) NOT_LP64(9);
 346   const bool do_post_padding = VerifyOops || UseCompressedClassPointers;
 347   if (!do_post_padding) {
 348     // insert some nops so that the verified entry point is aligned on CodeEntryAlignment
 349     __ align(CodeEntryAlignment, __ offset() + ic_cmp_size);
 350   }
 351   int offset = __ offset();
 352   __ inline_cache_check(receiver, IC_Klass);
 353   assert(__ offset() % CodeEntryAlignment == 0 || do_post_padding, "alignment must be correct");
 354   if (do_post_padding) {
 355     // force alignment after the cache check.
 356     // It's been verified to be aligned if !VerifyOops
 357     __ align(CodeEntryAlignment);
 358   }
 359   return offset;
 360 }
 361 
 362 
 363 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
 364   jobject o = NULL;
 365   PatchingStub* patch = new PatchingStub(_masm, patching_id(info));
 366   __ movoop(reg, o);
 367   patching_epilog(patch, lir_patch_normal, reg, info);
 368 }
 369 
 370 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) {
 371   Metadata* o = NULL;
 372   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id);
 373   __ mov_metadata(reg, o);
 374   patching_epilog(patch, lir_patch_normal, reg, info);
 375 }
 376 
 377 // This specifies the rsp decrement needed to build the frame
 378 int LIR_Assembler::initial_frame_size_in_bytes() const {
 379   // if rounding, must let FrameMap know!
 380 
 381   // The frame_map records size in slots (32bit word)
 382 
 383   // subtract two words to account for return address and link
 384   return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word))  * VMRegImpl::stack_slot_size;
 385 }
 386 
 387 
 388 int LIR_Assembler::emit_exception_handler() {
 389   // if the last instruction is a call (typically to do a throw which
 390   // is coming at the end after block reordering) the return address
 391   // must still point into the code area in order to avoid assertion
 392   // failures when searching for the corresponding bci => add a nop
 393   // (was bug 5/14/1999 - gri)
 394   __ nop();
 395 
 396   // generate code for exception handler
 397   address handler_base = __ start_a_stub(exception_handler_size());
 398   if (handler_base == NULL) {
 399     // not enough space left for the handler
 400     bailout("exception handler overflow");
 401     return -1;
 402   }
 403 
 404   int offset = code_offset();
 405 
 406   // the exception oop and pc are in rax, and rdx
 407   // no other registers need to be preserved, so invalidate them
 408   __ invalidate_registers(false, true, true, false, true, true);
 409 
 410   // check that there is really an exception
 411   __ verify_not_null_oop(rax);
 412 
 413   // search an exception handler (rax: exception oop, rdx: throwing pc)
 414   __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id)));
 415   __ should_not_reach_here();
 416   guarantee(code_offset() - offset <= exception_handler_size(), "overflow");
 417   __ end_a_stub();
 418 
 419   return offset;
 420 }
 421 
 422 
 423 // Emit the code to remove the frame from the stack in the exception
 424 // unwind path.
 425 int LIR_Assembler::emit_unwind_handler() {
 426 #ifndef PRODUCT
 427   if (CommentedAssembly) {
 428     _masm->block_comment("Unwind handler");
 429   }
 430 #endif
 431 
 432   int offset = code_offset();
 433 
 434   // Fetch the exception from TLS and clear out exception related thread state
 435   Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread);
 436   NOT_LP64(__ get_thread(rsi));
 437   __ movptr(rax, Address(thread, JavaThread::exception_oop_offset()));
 438   __ movptr(Address(thread, JavaThread::exception_oop_offset()), (intptr_t)NULL_WORD);
 439   __ movptr(Address(thread, JavaThread::exception_pc_offset()), (intptr_t)NULL_WORD);
 440 
 441   __ bind(_unwind_handler_entry);
 442   __ verify_not_null_oop(rax);
 443   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 444     __ mov(rbx, rax);  // Preserve the exception (rbx is always callee-saved)
 445   }
 446 
 447   // Preform needed unlocking
 448   MonitorExitStub* stub = NULL;
 449   if (method()->is_synchronized()) {
 450     monitor_address(0, FrameMap::rax_opr);
 451     stub = new MonitorExitStub(FrameMap::rax_opr, true, 0);
 452     __ unlock_object(rdi, rsi, rax, *stub->entry());
 453     __ bind(*stub->continuation());
 454   }
 455 
 456   if (compilation()->env()->dtrace_method_probes()) {
 457 #ifdef _LP64
 458     __ mov(rdi, r15_thread);
 459     __ mov_metadata(rsi, method()->constant_encoding());
 460 #else
 461     __ get_thread(rax);
 462     __ movptr(Address(rsp, 0), rax);
 463     __ mov_metadata(Address(rsp, sizeof(void*)), method()->constant_encoding());
 464 #endif
 465     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit)));
 466   }
 467 
 468   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 469     __ mov(rax, rbx);  // Restore the exception
 470   }
 471 
 472   // remove the activation and dispatch to the unwind handler
 473   __ remove_frame(initial_frame_size_in_bytes());
 474   __ jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
 475 
 476   // Emit the slow path assembly
 477   if (stub != NULL) {
 478     stub->emit_code(this);
 479   }
 480 
 481   return offset;
 482 }
 483 
 484 
 485 int LIR_Assembler::emit_deopt_handler() {
 486   // if the last instruction is a call (typically to do a throw which
 487   // is coming at the end after block reordering) the return address
 488   // must still point into the code area in order to avoid assertion
 489   // failures when searching for the corresponding bci => add a nop
 490   // (was bug 5/14/1999 - gri)
 491   __ nop();
 492 
 493   // generate code for exception handler
 494   address handler_base = __ start_a_stub(deopt_handler_size());
 495   if (handler_base == NULL) {
 496     // not enough space left for the handler
 497     bailout("deopt handler overflow");
 498     return -1;
 499   }
 500 
 501   int offset = code_offset();
 502   InternalAddress here(__ pc());
 503 
 504   __ pushptr(here.addr());
 505   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
 506   guarantee(code_offset() - offset <= deopt_handler_size(), "overflow");
 507   __ end_a_stub();
 508 
 509   return offset;
 510 }
 511 
 512 
 513 void LIR_Assembler::return_op(LIR_Opr result) {
 514   assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,");
 515   if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) {
 516     assert(result->fpu() == 0, "result must already be on TOS");
 517   }
 518 
 519   // Pop the stack before the safepoint code
 520   __ remove_frame(initial_frame_size_in_bytes());
 521 
 522   if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) {
 523     __ reserved_stack_check();
 524   }
 525 
 526   bool result_is_oop = result->is_valid() ? result->is_oop() : false;
 527 
 528   // Note: we do not need to round double result; float result has the right precision
 529   // the poll sets the condition code, but no data registers
 530 
 531   if (SafepointMechanism::uses_thread_local_poll()) {
 532 #ifdef _LP64
 533     const Register poll_addr = rscratch1;
 534     __ movptr(poll_addr, Address(r15_thread, Thread::polling_page_offset()));
 535 #else
 536     const Register poll_addr = rbx;
 537     assert(FrameMap::is_caller_save_register(poll_addr), "will overwrite");
 538     __ get_thread(poll_addr);
 539     __ movptr(poll_addr, Address(poll_addr, Thread::polling_page_offset()));
 540 #endif
 541     __ relocate(relocInfo::poll_return_type);
 542     __ testl(rax, Address(poll_addr, 0));
 543   } else {
 544     AddressLiteral polling_page(os::get_polling_page(), relocInfo::poll_return_type);
 545 
 546     if (Assembler::is_polling_page_far()) {
 547       __ lea(rscratch1, polling_page);
 548       __ relocate(relocInfo::poll_return_type);
 549       __ testl(rax, Address(rscratch1, 0));
 550     } else {
 551       __ testl(rax, polling_page);
 552     }
 553   }
 554   __ ret(0);
 555 }
 556 
 557 
 558 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
 559   guarantee(info != NULL, "Shouldn't be NULL");
 560   int offset = __ offset();
 561   if (SafepointMechanism::uses_thread_local_poll()) {
 562 #ifdef _LP64
 563     const Register poll_addr = rscratch1;
 564     __ movptr(poll_addr, Address(r15_thread, Thread::polling_page_offset()));
 565 #else
 566     assert(tmp->is_cpu_register(), "needed");
 567     const Register poll_addr = tmp->as_register();
 568     __ get_thread(poll_addr);
 569     __ movptr(poll_addr, Address(poll_addr, in_bytes(Thread::polling_page_offset())));
 570 #endif
 571     add_debug_info_for_branch(info);
 572     __ relocate(relocInfo::poll_type);
 573     address pre_pc = __ pc();
 574     __ testl(rax, Address(poll_addr, 0));
 575     address post_pc = __ pc();
 576     guarantee(pointer_delta(post_pc, pre_pc, 1) == 2 LP64_ONLY(+1), "must be exact length");
 577   } else {
 578     AddressLiteral polling_page(os::get_polling_page(), relocInfo::poll_type);
 579     if (Assembler::is_polling_page_far()) {
 580       __ lea(rscratch1, polling_page);
 581       offset = __ offset();
 582       add_debug_info_for_branch(info);
 583       __ relocate(relocInfo::poll_type);
 584       __ testl(rax, Address(rscratch1, 0));
 585     } else {
 586       add_debug_info_for_branch(info);
 587       __ testl(rax, polling_page);
 588     }
 589   }
 590   return offset;
 591 }
 592 
 593 
 594 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
 595   if (from_reg != to_reg) __ mov(to_reg, from_reg);
 596 }
 597 
 598 void LIR_Assembler::swap_reg(Register a, Register b) {
 599   __ xchgptr(a, b);
 600 }
 601 
 602 
 603 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
 604   assert(src->is_constant(), "should not call otherwise");
 605   assert(dest->is_register(), "should not call otherwise");
 606   LIR_Const* c = src->as_constant_ptr();
 607 
 608   switch (c->type()) {
 609     case T_INT: {
 610       assert(patch_code == lir_patch_none, "no patching handled here");
 611       __ movl(dest->as_register(), c->as_jint());
 612       break;
 613     }
 614 
 615     case T_ADDRESS: {
 616       assert(patch_code == lir_patch_none, "no patching handled here");
 617       __ movptr(dest->as_register(), c->as_jint());
 618       break;
 619     }
 620 
 621     case T_LONG: {
 622       assert(patch_code == lir_patch_none, "no patching handled here");
 623 #ifdef _LP64
 624       __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong());
 625 #else
 626       __ movptr(dest->as_register_lo(), c->as_jint_lo());
 627       __ movptr(dest->as_register_hi(), c->as_jint_hi());
 628 #endif // _LP64
 629       break;
 630     }
 631 
 632     case T_VALUETYPE: // Fall through
 633     case T_OBJECT: {
 634       if (patch_code != lir_patch_none) {
 635         jobject2reg_with_patching(dest->as_register(), info);
 636       } else {
 637         __ movoop(dest->as_register(), c->as_jobject());
 638       }
 639       break;
 640     }
 641 
 642     case T_METADATA: {
 643       if (patch_code != lir_patch_none) {
 644         klass2reg_with_patching(dest->as_register(), info);
 645       } else {
 646         __ mov_metadata(dest->as_register(), c->as_metadata());
 647       }
 648       break;
 649     }
 650 
 651     case T_FLOAT: {
 652       if (dest->is_single_xmm()) {
 653         if (LP64_ONLY(UseAVX <= 2 &&) c->is_zero_float()) {
 654           __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg());
 655         } else {
 656           __ movflt(dest->as_xmm_float_reg(),
 657                    InternalAddress(float_constant(c->as_jfloat())));
 658         }
 659       } else {
 660         assert(dest->is_single_fpu(), "must be");
 661         assert(dest->fpu_regnr() == 0, "dest must be TOS");
 662         if (c->is_zero_float()) {
 663           __ fldz();
 664         } else if (c->is_one_float()) {
 665           __ fld1();
 666         } else {
 667           __ fld_s (InternalAddress(float_constant(c->as_jfloat())));
 668         }
 669       }
 670       break;
 671     }
 672 
 673     case T_DOUBLE: {
 674       if (dest->is_double_xmm()) {
 675         if (LP64_ONLY(UseAVX <= 2 &&) c->is_zero_double()) {
 676           __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg());
 677         } else {
 678           __ movdbl(dest->as_xmm_double_reg(),
 679                     InternalAddress(double_constant(c->as_jdouble())));
 680         }
 681       } else {
 682         assert(dest->is_double_fpu(), "must be");
 683         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
 684         if (c->is_zero_double()) {
 685           __ fldz();
 686         } else if (c->is_one_double()) {
 687           __ fld1();
 688         } else {
 689           __ fld_d (InternalAddress(double_constant(c->as_jdouble())));
 690         }
 691       }
 692       break;
 693     }
 694 
 695     default:
 696       ShouldNotReachHere();
 697   }
 698 }
 699 
 700 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
 701   assert(src->is_constant(), "should not call otherwise");
 702   assert(dest->is_stack(), "should not call otherwise");
 703   LIR_Const* c = src->as_constant_ptr();
 704 
 705   switch (c->type()) {
 706     case T_INT:  // fall through
 707     case T_FLOAT:
 708       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
 709       break;
 710 
 711     case T_ADDRESS:
 712       __ movptr(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
 713       break;
 714 
 715     case T_VALUETYPE: // Fall through
 716     case T_OBJECT:
 717       __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject());
 718       break;
 719 
 720     case T_LONG:  // fall through
 721     case T_DOUBLE:
 722 #ifdef _LP64
 723       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 724                                             lo_word_offset_in_bytes), (intptr_t)c->as_jlong_bits());
 725 #else
 726       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 727                                               lo_word_offset_in_bytes), c->as_jint_lo_bits());
 728       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 729                                               hi_word_offset_in_bytes), c->as_jint_hi_bits());
 730 #endif // _LP64
 731       break;
 732 
 733     default:
 734       ShouldNotReachHere();
 735   }
 736 }
 737 
 738 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
 739   assert(src->is_constant(), "should not call otherwise");
 740   assert(dest->is_address(), "should not call otherwise");
 741   LIR_Const* c = src->as_constant_ptr();
 742   LIR_Address* addr = dest->as_address_ptr();
 743 
 744   int null_check_here = code_offset();
 745   switch (type) {
 746     case T_INT:    // fall through
 747     case T_FLOAT:
 748       __ movl(as_Address(addr), c->as_jint_bits());
 749       break;
 750 
 751     case T_ADDRESS:
 752       __ movptr(as_Address(addr), c->as_jint_bits());
 753       break;
 754 
 755     case T_VALUETYPE: // fall through
 756     case T_OBJECT:  // fall through
 757     case T_ARRAY:
 758       if (c->as_jobject() == NULL) {
 759         if (UseCompressedOops && !wide) {
 760           __ movl(as_Address(addr), (int32_t)NULL_WORD);
 761         } else {
 762 #ifdef _LP64
 763           __ xorptr(rscratch1, rscratch1);
 764           null_check_here = code_offset();
 765           __ movptr(as_Address(addr), rscratch1);
 766 #else
 767           __ movptr(as_Address(addr), NULL_WORD);
 768 #endif
 769         }
 770       } else {
 771         if (is_literal_address(addr)) {
 772           ShouldNotReachHere();
 773           __ movoop(as_Address(addr, noreg), c->as_jobject());
 774         } else {
 775 #ifdef _LP64
 776           __ movoop(rscratch1, c->as_jobject());
 777           if (UseCompressedOops && !wide) {
 778             __ encode_heap_oop(rscratch1);
 779             null_check_here = code_offset();
 780             __ movl(as_Address_lo(addr), rscratch1);
 781           } else {
 782             null_check_here = code_offset();
 783             __ movptr(as_Address_lo(addr), rscratch1);
 784           }
 785 #else
 786           __ movoop(as_Address(addr), c->as_jobject());
 787 #endif
 788         }
 789       }
 790       break;
 791 
 792     case T_LONG:    // fall through
 793     case T_DOUBLE:
 794 #ifdef _LP64
 795       if (is_literal_address(addr)) {
 796         ShouldNotReachHere();
 797         __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits());
 798       } else {
 799         __ movptr(r10, (intptr_t)c->as_jlong_bits());
 800         null_check_here = code_offset();
 801         __ movptr(as_Address_lo(addr), r10);
 802       }
 803 #else
 804       // Always reachable in 32bit so this doesn't produce useless move literal
 805       __ movptr(as_Address_hi(addr), c->as_jint_hi_bits());
 806       __ movptr(as_Address_lo(addr), c->as_jint_lo_bits());
 807 #endif // _LP64
 808       break;
 809 
 810     case T_BOOLEAN: // fall through
 811     case T_BYTE:
 812       __ movb(as_Address(addr), c->as_jint() & 0xFF);
 813       break;
 814 
 815     case T_CHAR:    // fall through
 816     case T_SHORT:
 817       __ movw(as_Address(addr), c->as_jint() & 0xFFFF);
 818       break;
 819 
 820     default:
 821       ShouldNotReachHere();
 822   };
 823 
 824   if (info != NULL) {
 825     add_debug_info_for_null_check(null_check_here, info);
 826   }
 827 }
 828 
 829 
 830 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
 831   assert(src->is_register(), "should not call otherwise");
 832   assert(dest->is_register(), "should not call otherwise");
 833 
 834   // move between cpu-registers
 835   if (dest->is_single_cpu()) {
 836 #ifdef _LP64
 837     if (src->type() == T_LONG) {
 838       // Can do LONG -> OBJECT
 839       move_regs(src->as_register_lo(), dest->as_register());
 840       return;
 841     }
 842 #endif
 843     assert(src->is_single_cpu(), "must match");
 844     if (src->type() == T_OBJECT || src->type() == T_VALUETYPE) {
 845       __ verify_oop(src->as_register());
 846     }
 847     move_regs(src->as_register(), dest->as_register());
 848 
 849   } else if (dest->is_double_cpu()) {
 850 #ifdef _LP64
 851     if (src->type() == T_OBJECT || src->type() == T_ARRAY || src->type() == T_VALUETYPE) {
 852       // Surprising to me but we can see move of a long to t_object
 853       __ verify_oop(src->as_register());
 854       move_regs(src->as_register(), dest->as_register_lo());
 855       return;
 856     }
 857 #endif
 858     assert(src->is_double_cpu(), "must match");
 859     Register f_lo = src->as_register_lo();
 860     Register f_hi = src->as_register_hi();
 861     Register t_lo = dest->as_register_lo();
 862     Register t_hi = dest->as_register_hi();
 863 #ifdef _LP64
 864     assert(f_hi == f_lo, "must be same");
 865     assert(t_hi == t_lo, "must be same");
 866     move_regs(f_lo, t_lo);
 867 #else
 868     assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation");
 869 
 870 
 871     if (f_lo == t_hi && f_hi == t_lo) {
 872       swap_reg(f_lo, f_hi);
 873     } else if (f_hi == t_lo) {
 874       assert(f_lo != t_hi, "overwriting register");
 875       move_regs(f_hi, t_hi);
 876       move_regs(f_lo, t_lo);
 877     } else {
 878       assert(f_hi != t_lo, "overwriting register");
 879       move_regs(f_lo, t_lo);
 880       move_regs(f_hi, t_hi);
 881     }
 882 #endif // LP64
 883 
 884     // special moves from fpu-register to xmm-register
 885     // necessary for method results
 886   } else if (src->is_single_xmm() && !dest->is_single_xmm()) {
 887     __ movflt(Address(rsp, 0), src->as_xmm_float_reg());
 888     __ fld_s(Address(rsp, 0));
 889   } else if (src->is_double_xmm() && !dest->is_double_xmm()) {
 890     __ movdbl(Address(rsp, 0), src->as_xmm_double_reg());
 891     __ fld_d(Address(rsp, 0));
 892   } else if (dest->is_single_xmm() && !src->is_single_xmm()) {
 893     __ fstp_s(Address(rsp, 0));
 894     __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0));
 895   } else if (dest->is_double_xmm() && !src->is_double_xmm()) {
 896     __ fstp_d(Address(rsp, 0));
 897     __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0));
 898 
 899     // move between xmm-registers
 900   } else if (dest->is_single_xmm()) {
 901     assert(src->is_single_xmm(), "must match");
 902     __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg());
 903   } else if (dest->is_double_xmm()) {
 904     assert(src->is_double_xmm(), "must match");
 905     __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg());
 906 
 907     // move between fpu-registers (no instruction necessary because of fpu-stack)
 908   } else if (dest->is_single_fpu() || dest->is_double_fpu()) {
 909     assert(src->is_single_fpu() || src->is_double_fpu(), "must match");
 910     assert(src->fpu() == dest->fpu(), "currently should be nothing to do");
 911   } else {
 912     ShouldNotReachHere();
 913   }
 914 }
 915 
 916 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
 917   assert(src->is_register(), "should not call otherwise");
 918   assert(dest->is_stack(), "should not call otherwise");
 919 
 920   if (src->is_single_cpu()) {
 921     Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
 922     if (type == T_OBJECT || type == T_ARRAY || type == T_VALUETYPE) {
 923       __ verify_oop(src->as_register());
 924       __ movptr (dst, src->as_register());
 925     } else if (type == T_METADATA) {
 926       __ movptr (dst, src->as_register());
 927     } else {
 928       __ movl (dst, src->as_register());
 929     }
 930 
 931   } else if (src->is_double_cpu()) {
 932     Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
 933     Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes);
 934     __ movptr (dstLO, src->as_register_lo());
 935     NOT_LP64(__ movptr (dstHI, src->as_register_hi()));
 936 
 937   } else if (src->is_single_xmm()) {
 938     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
 939     __ movflt(dst_addr, src->as_xmm_float_reg());
 940 
 941   } else if (src->is_double_xmm()) {
 942     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
 943     __ movdbl(dst_addr, src->as_xmm_double_reg());
 944 
 945   } else if (src->is_single_fpu()) {
 946     assert(src->fpu_regnr() == 0, "argument must be on TOS");
 947     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
 948     if (pop_fpu_stack)     __ fstp_s (dst_addr);
 949     else                   __ fst_s  (dst_addr);
 950 
 951   } else if (src->is_double_fpu()) {
 952     assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
 953     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
 954     if (pop_fpu_stack)     __ fstp_d (dst_addr);
 955     else                   __ fst_d  (dst_addr);
 956 
 957   } else {
 958     ShouldNotReachHere();
 959   }
 960 }
 961 
 962 
 963 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide, bool /* unaligned */) {
 964   LIR_Address* to_addr = dest->as_address_ptr();
 965   PatchingStub* patch = NULL;
 966   Register compressed_src = rscratch1;
 967 
 968   if (type == T_ARRAY || type == T_OBJECT || type == T_VALUETYPE) {
 969     __ verify_oop(src->as_register());
 970 #ifdef _LP64
 971     if (UseCompressedOops && !wide) {
 972       __ movptr(compressed_src, src->as_register());
 973       __ encode_heap_oop(compressed_src);
 974       if (patch_code != lir_patch_none) {
 975         info->oop_map()->set_narrowoop(compressed_src->as_VMReg());
 976       }
 977     }
 978 #endif
 979   }
 980 
 981   if (patch_code != lir_patch_none) {
 982     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
 983     Address toa = as_Address(to_addr);
 984     assert(toa.disp() != 0, "must have");
 985   }
 986 
 987   int null_check_here = code_offset();
 988   switch (type) {
 989     case T_FLOAT: {
 990       if (src->is_single_xmm()) {
 991         __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
 992       } else {
 993         assert(src->is_single_fpu(), "must be");
 994         assert(src->fpu_regnr() == 0, "argument must be on TOS");
 995         if (pop_fpu_stack)      __ fstp_s(as_Address(to_addr));
 996         else                    __ fst_s (as_Address(to_addr));
 997       }
 998       break;
 999     }
1000 
1001     case T_DOUBLE: {
1002       if (src->is_double_xmm()) {
1003         __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
1004       } else {
1005         assert(src->is_double_fpu(), "must be");
1006         assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
1007         if (pop_fpu_stack)      __ fstp_d(as_Address(to_addr));
1008         else                    __ fst_d (as_Address(to_addr));
1009       }
1010       break;
1011     }
1012 
1013     case T_VALUETYPE: // fall through
1014     case T_ARRAY:   // fall through
1015     case T_OBJECT:  // fall through
1016       if (UseCompressedOops && !wide) {
1017         __ movl(as_Address(to_addr), compressed_src);
1018       } else {
1019         __ movptr(as_Address(to_addr), src->as_register());
1020       }
1021       break;
1022     case T_METADATA:
1023       // We get here to store a method pointer to the stack to pass to
1024       // a dtrace runtime call. This can't work on 64 bit with
1025       // compressed klass ptrs: T_METADATA can be a compressed klass
1026       // ptr or a 64 bit method pointer.
1027       LP64_ONLY(ShouldNotReachHere());
1028       __ movptr(as_Address(to_addr), src->as_register());
1029       break;
1030     case T_ADDRESS:
1031       __ movptr(as_Address(to_addr), src->as_register());
1032       break;
1033     case T_INT:
1034       __ movl(as_Address(to_addr), src->as_register());
1035       break;
1036 
1037     case T_LONG: {
1038       Register from_lo = src->as_register_lo();
1039       Register from_hi = src->as_register_hi();
1040 #ifdef _LP64
1041       __ movptr(as_Address_lo(to_addr), from_lo);
1042 #else
1043       Register base = to_addr->base()->as_register();
1044       Register index = noreg;
1045       if (to_addr->index()->is_register()) {
1046         index = to_addr->index()->as_register();
1047       }
1048       if (base == from_lo || index == from_lo) {
1049         assert(base != from_hi, "can't be");
1050         assert(index == noreg || (index != base && index != from_hi), "can't handle this");
1051         __ movl(as_Address_hi(to_addr), from_hi);
1052         if (patch != NULL) {
1053           patching_epilog(patch, lir_patch_high, base, info);
1054           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1055           patch_code = lir_patch_low;
1056         }
1057         __ movl(as_Address_lo(to_addr), from_lo);
1058       } else {
1059         assert(index == noreg || (index != base && index != from_lo), "can't handle this");
1060         __ movl(as_Address_lo(to_addr), from_lo);
1061         if (patch != NULL) {
1062           patching_epilog(patch, lir_patch_low, base, info);
1063           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1064           patch_code = lir_patch_high;
1065         }
1066         __ movl(as_Address_hi(to_addr), from_hi);
1067       }
1068 #endif // _LP64
1069       break;
1070     }
1071 
1072     case T_BYTE:    // fall through
1073     case T_BOOLEAN: {
1074       Register src_reg = src->as_register();
1075       Address dst_addr = as_Address(to_addr);
1076       assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6");
1077       __ movb(dst_addr, src_reg);
1078       break;
1079     }
1080 
1081     case T_CHAR:    // fall through
1082     case T_SHORT:
1083       __ movw(as_Address(to_addr), src->as_register());
1084       break;
1085 
1086     default:
1087       ShouldNotReachHere();
1088   }
1089   if (info != NULL) {
1090     add_debug_info_for_null_check(null_check_here, info);
1091   }
1092 
1093   if (patch_code != lir_patch_none) {
1094     patching_epilog(patch, patch_code, to_addr->base()->as_register(), info);
1095   }
1096 }
1097 
1098 
1099 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
1100   assert(src->is_stack(), "should not call otherwise");
1101   assert(dest->is_register(), "should not call otherwise");
1102 
1103   if (dest->is_single_cpu()) {
1104     if (type == T_ARRAY || type == T_OBJECT || type == T_VALUETYPE) {
1105       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1106       __ verify_oop(dest->as_register());
1107     } else if (type == T_METADATA) {
1108       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1109     } else {
1110       __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1111     }
1112 
1113   } else if (dest->is_double_cpu()) {
1114     Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
1115     Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes);
1116     __ movptr(dest->as_register_lo(), src_addr_LO);
1117     NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI));
1118 
1119   } else if (dest->is_single_xmm()) {
1120     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1121     __ movflt(dest->as_xmm_float_reg(), src_addr);
1122 
1123   } else if (dest->is_double_xmm()) {
1124     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1125     __ movdbl(dest->as_xmm_double_reg(), src_addr);
1126 
1127   } else if (dest->is_single_fpu()) {
1128     assert(dest->fpu_regnr() == 0, "dest must be TOS");
1129     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1130     __ fld_s(src_addr);
1131 
1132   } else if (dest->is_double_fpu()) {
1133     assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1134     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1135     __ fld_d(src_addr);
1136 
1137   } else {
1138     ShouldNotReachHere();
1139   }
1140 }
1141 
1142 
1143 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
1144   if (src->is_single_stack()) {
1145     if (type == T_OBJECT || type == T_ARRAY || type == T_VALUETYPE) {
1146       __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix()));
1147       __ popptr (frame_map()->address_for_slot(dest->single_stack_ix()));
1148     } else {
1149 #ifndef _LP64
1150       __ pushl(frame_map()->address_for_slot(src ->single_stack_ix()));
1151       __ popl (frame_map()->address_for_slot(dest->single_stack_ix()));
1152 #else
1153       //no pushl on 64bits
1154       __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix()));
1155       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1);
1156 #endif
1157     }
1158 
1159   } else if (src->is_double_stack()) {
1160 #ifdef _LP64
1161     __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix()));
1162     __ popptr (frame_map()->address_for_slot(dest->double_stack_ix()));
1163 #else
1164     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0));
1165     // push and pop the part at src + wordSize, adding wordSize for the previous push
1166     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize));
1167     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize));
1168     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0));
1169 #endif // _LP64
1170 
1171   } else {
1172     ShouldNotReachHere();
1173   }
1174 }
1175 
1176 
1177 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool /* unaligned */) {
1178   assert(src->is_address(), "should not call otherwise");
1179   assert(dest->is_register(), "should not call otherwise");
1180 
1181   LIR_Address* addr = src->as_address_ptr();
1182   Address from_addr = as_Address(addr);
1183 
1184   if (addr->base()->type() == T_OBJECT || addr->base()->type() == T_VALUETYPE) {
1185     __ verify_oop(addr->base()->as_pointer_register());
1186   }
1187 
1188   switch (type) {
1189     case T_BOOLEAN: // fall through
1190     case T_BYTE:    // fall through
1191     case T_CHAR:    // fall through
1192     case T_SHORT:
1193       if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) {
1194         // on pre P6 processors we may get partial register stalls
1195         // so blow away the value of to_rinfo before loading a
1196         // partial word into it.  Do it here so that it precedes
1197         // the potential patch point below.
1198         __ xorptr(dest->as_register(), dest->as_register());
1199       }
1200       break;
1201    default:
1202      break;
1203   }
1204 
1205   PatchingStub* patch = NULL;
1206   if (patch_code != lir_patch_none) {
1207     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1208     assert(from_addr.disp() != 0, "must have");
1209   }
1210   if (info != NULL) {
1211     add_debug_info_for_null_check_here(info);
1212   }
1213 
1214   switch (type) {
1215     case T_FLOAT: {
1216       if (dest->is_single_xmm()) {
1217         __ movflt(dest->as_xmm_float_reg(), from_addr);
1218       } else {
1219         assert(dest->is_single_fpu(), "must be");
1220         assert(dest->fpu_regnr() == 0, "dest must be TOS");
1221         __ fld_s(from_addr);
1222       }
1223       break;
1224     }
1225 
1226     case T_DOUBLE: {
1227       if (dest->is_double_xmm()) {
1228         __ movdbl(dest->as_xmm_double_reg(), from_addr);
1229       } else {
1230         assert(dest->is_double_fpu(), "must be");
1231         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1232         __ fld_d(from_addr);
1233       }
1234       break;
1235     }
1236 
1237     case T_VALUETYPE: // fall through
1238     case T_OBJECT:  // fall through
1239     case T_ARRAY:   // fall through
1240       if (UseCompressedOops && !wide) {
1241         __ movl(dest->as_register(), from_addr);
1242       } else {
1243         __ movptr(dest->as_register(), from_addr);
1244       }
1245       break;
1246 
1247     case T_ADDRESS:
1248       if (UseCompressedClassPointers && addr->disp() == oopDesc::klass_offset_in_bytes()) {
1249         __ movl(dest->as_register(), from_addr);
1250       } else {
1251         __ movptr(dest->as_register(), from_addr);
1252       }
1253       break;
1254     case T_INT:
1255       __ movl(dest->as_register(), from_addr);
1256       break;
1257 
1258     case T_LONG: {
1259       Register to_lo = dest->as_register_lo();
1260       Register to_hi = dest->as_register_hi();
1261 #ifdef _LP64
1262       __ movptr(to_lo, as_Address_lo(addr));
1263 #else
1264       Register base = addr->base()->as_register();
1265       Register index = noreg;
1266       if (addr->index()->is_register()) {
1267         index = addr->index()->as_register();
1268       }
1269       if ((base == to_lo && index == to_hi) ||
1270           (base == to_hi && index == to_lo)) {
1271         // addresses with 2 registers are only formed as a result of
1272         // array access so this code will never have to deal with
1273         // patches or null checks.
1274         assert(info == NULL && patch == NULL, "must be");
1275         __ lea(to_hi, as_Address(addr));
1276         __ movl(to_lo, Address(to_hi, 0));
1277         __ movl(to_hi, Address(to_hi, BytesPerWord));
1278       } else if (base == to_lo || index == to_lo) {
1279         assert(base != to_hi, "can't be");
1280         assert(index == noreg || (index != base && index != to_hi), "can't handle this");
1281         __ movl(to_hi, as_Address_hi(addr));
1282         if (patch != NULL) {
1283           patching_epilog(patch, lir_patch_high, base, info);
1284           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1285           patch_code = lir_patch_low;
1286         }
1287         __ movl(to_lo, as_Address_lo(addr));
1288       } else {
1289         assert(index == noreg || (index != base && index != to_lo), "can't handle this");
1290         __ movl(to_lo, as_Address_lo(addr));
1291         if (patch != NULL) {
1292           patching_epilog(patch, lir_patch_low, base, info);
1293           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1294           patch_code = lir_patch_high;
1295         }
1296         __ movl(to_hi, as_Address_hi(addr));
1297       }
1298 #endif // _LP64
1299       break;
1300     }
1301 
1302     case T_BOOLEAN: // fall through
1303     case T_BYTE: {
1304       Register dest_reg = dest->as_register();
1305       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1306       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1307         __ movsbl(dest_reg, from_addr);
1308       } else {
1309         __ movb(dest_reg, from_addr);
1310         __ shll(dest_reg, 24);
1311         __ sarl(dest_reg, 24);
1312       }
1313       break;
1314     }
1315 
1316     case T_CHAR: {
1317       Register dest_reg = dest->as_register();
1318       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1319       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1320         __ movzwl(dest_reg, from_addr);
1321       } else {
1322         __ movw(dest_reg, from_addr);
1323       }
1324       break;
1325     }
1326 
1327     case T_SHORT: {
1328       Register dest_reg = dest->as_register();
1329       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1330         __ movswl(dest_reg, from_addr);
1331       } else {
1332         __ movw(dest_reg, from_addr);
1333         __ shll(dest_reg, 16);
1334         __ sarl(dest_reg, 16);
1335       }
1336       break;
1337     }
1338 
1339     default:
1340       ShouldNotReachHere();
1341   }
1342 
1343   if (patch != NULL) {
1344     patching_epilog(patch, patch_code, addr->base()->as_register(), info);
1345   }
1346 
1347   if (type == T_ARRAY || type == T_OBJECT || type == T_VALUETYPE) {
1348 #ifdef _LP64
1349     if (UseCompressedOops && !wide) {
1350       __ decode_heap_oop(dest->as_register());
1351     }
1352 #endif
1353 
1354     // Load barrier has not yet been applied, so ZGC can't verify the oop here
1355     if (!UseZGC) {
1356       __ verify_oop(dest->as_register());
1357     }
1358   } else if (type == T_ADDRESS && addr->disp() == oopDesc::klass_offset_in_bytes()) {
1359 #ifdef _LP64
1360     if (UseCompressedClassPointers) {
1361       __ decode_klass_not_null(dest->as_register());
1362     }
1363 #endif
1364   }
1365 }
1366 
1367 
1368 NEEDS_CLEANUP; // This could be static?
1369 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const {
1370   int elem_size = type2aelembytes(type);
1371   switch (elem_size) {
1372     case 1: return Address::times_1;
1373     case 2: return Address::times_2;
1374     case 4: return Address::times_4;
1375     case 8: return Address::times_8;
1376   }
1377   ShouldNotReachHere();
1378   return Address::no_scale;
1379 }
1380 
1381 
1382 void LIR_Assembler::emit_op3(LIR_Op3* op) {
1383   switch (op->code()) {
1384     case lir_idiv:
1385     case lir_irem:
1386       arithmetic_idiv(op->code(),
1387                       op->in_opr1(),
1388                       op->in_opr2(),
1389                       op->in_opr3(),
1390                       op->result_opr(),
1391                       op->info());
1392       break;
1393     case lir_fmad:
1394       __ fmad(op->result_opr()->as_xmm_double_reg(),
1395               op->in_opr1()->as_xmm_double_reg(),
1396               op->in_opr2()->as_xmm_double_reg(),
1397               op->in_opr3()->as_xmm_double_reg());
1398       break;
1399     case lir_fmaf:
1400       __ fmaf(op->result_opr()->as_xmm_float_reg(),
1401               op->in_opr1()->as_xmm_float_reg(),
1402               op->in_opr2()->as_xmm_float_reg(),
1403               op->in_opr3()->as_xmm_float_reg());
1404       break;
1405     default:      ShouldNotReachHere(); break;
1406   }
1407 }
1408 
1409 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
1410 #ifdef ASSERT
1411   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
1412   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
1413   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
1414 #endif
1415 
1416   if (op->cond() == lir_cond_always) {
1417     if (op->info() != NULL) add_debug_info_for_branch(op->info());
1418     __ jmp (*(op->label()));
1419   } else {
1420     Assembler::Condition acond = Assembler::zero;
1421     if (op->code() == lir_cond_float_branch) {
1422       assert(op->ublock() != NULL, "must have unordered successor");
1423       __ jcc(Assembler::parity, *(op->ublock()->label()));
1424       switch(op->cond()) {
1425         case lir_cond_equal:        acond = Assembler::equal;      break;
1426         case lir_cond_notEqual:     acond = Assembler::notEqual;   break;
1427         case lir_cond_less:         acond = Assembler::below;      break;
1428         case lir_cond_lessEqual:    acond = Assembler::belowEqual; break;
1429         case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break;
1430         case lir_cond_greater:      acond = Assembler::above;      break;
1431         default:                         ShouldNotReachHere();
1432       }
1433     } else {
1434       switch (op->cond()) {
1435         case lir_cond_equal:        acond = Assembler::equal;       break;
1436         case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
1437         case lir_cond_less:         acond = Assembler::less;        break;
1438         case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
1439         case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
1440         case lir_cond_greater:      acond = Assembler::greater;     break;
1441         case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
1442         case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
1443         default:                         ShouldNotReachHere();
1444       }
1445     }
1446     __ jcc(acond,*(op->label()));
1447   }
1448 }
1449 
1450 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
1451   LIR_Opr src  = op->in_opr();
1452   LIR_Opr dest = op->result_opr();
1453 
1454   switch (op->bytecode()) {
1455     case Bytecodes::_i2l:
1456 #ifdef _LP64
1457       __ movl2ptr(dest->as_register_lo(), src->as_register());
1458 #else
1459       move_regs(src->as_register(), dest->as_register_lo());
1460       move_regs(src->as_register(), dest->as_register_hi());
1461       __ sarl(dest->as_register_hi(), 31);
1462 #endif // LP64
1463       break;
1464 
1465     case Bytecodes::_l2i:
1466 #ifdef _LP64
1467       __ movl(dest->as_register(), src->as_register_lo());
1468 #else
1469       move_regs(src->as_register_lo(), dest->as_register());
1470 #endif
1471       break;
1472 
1473     case Bytecodes::_i2b:
1474       move_regs(src->as_register(), dest->as_register());
1475       __ sign_extend_byte(dest->as_register());
1476       break;
1477 
1478     case Bytecodes::_i2c:
1479       move_regs(src->as_register(), dest->as_register());
1480       __ andl(dest->as_register(), 0xFFFF);
1481       break;
1482 
1483     case Bytecodes::_i2s:
1484       move_regs(src->as_register(), dest->as_register());
1485       __ sign_extend_short(dest->as_register());
1486       break;
1487 
1488 
1489     case Bytecodes::_f2d:
1490     case Bytecodes::_d2f:
1491       if (dest->is_single_xmm()) {
1492         __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
1493       } else if (dest->is_double_xmm()) {
1494         __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
1495       } else {
1496         assert(src->fpu() == dest->fpu(), "register must be equal");
1497         // do nothing (float result is rounded later through spilling)
1498       }
1499       break;
1500 
1501     case Bytecodes::_i2f:
1502     case Bytecodes::_i2d:
1503       if (dest->is_single_xmm()) {
1504         __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
1505       } else if (dest->is_double_xmm()) {
1506         __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
1507       } else {
1508         assert(dest->fpu() == 0, "result must be on TOS");
1509         __ movl(Address(rsp, 0), src->as_register());
1510         __ fild_s(Address(rsp, 0));
1511       }
1512       break;
1513 
1514     case Bytecodes::_f2i:
1515     case Bytecodes::_d2i:
1516       if (src->is_single_xmm()) {
1517         __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg());
1518       } else if (src->is_double_xmm()) {
1519         __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg());
1520       } else {
1521         assert(src->fpu() == 0, "input must be on TOS");
1522         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
1523         __ fist_s(Address(rsp, 0));
1524         __ movl(dest->as_register(), Address(rsp, 0));
1525         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
1526       }
1527 
1528       // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
1529       assert(op->stub() != NULL, "stub required");
1530       __ cmpl(dest->as_register(), 0x80000000);
1531       __ jcc(Assembler::equal, *op->stub()->entry());
1532       __ bind(*op->stub()->continuation());
1533       break;
1534 
1535     case Bytecodes::_l2f:
1536     case Bytecodes::_l2d:
1537       assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)");
1538       assert(dest->fpu() == 0, "result must be on TOS");
1539 
1540       __ movptr(Address(rsp, 0),            src->as_register_lo());
1541       NOT_LP64(__ movl(Address(rsp, BytesPerWord), src->as_register_hi()));
1542       __ fild_d(Address(rsp, 0));
1543       // float result is rounded later through spilling
1544       break;
1545 
1546     case Bytecodes::_f2l:
1547     case Bytecodes::_d2l:
1548       assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)");
1549       assert(src->fpu() == 0, "input must be on TOS");
1550       assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers");
1551 
1552       // instruction sequence too long to inline it here
1553       {
1554         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::fpu2long_stub_id)));
1555       }
1556       break;
1557 
1558     default: ShouldNotReachHere();
1559   }
1560 }
1561 
1562 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
1563   if (op->init_check()) {
1564     add_debug_info_for_null_check_here(op->stub()->info());
1565     __ cmpb(Address(op->klass()->as_register(),
1566                     InstanceKlass::init_state_offset()),
1567                     InstanceKlass::fully_initialized);
1568     __ jcc(Assembler::notEqual, *op->stub()->entry());
1569   }
1570   __ allocate_object(op->obj()->as_register(),
1571                      op->tmp1()->as_register(),
1572                      op->tmp2()->as_register(),
1573                      op->header_size(),
1574                      op->object_size(),
1575                      op->klass()->as_register(),
1576                      *op->stub()->entry());
1577   __ bind(*op->stub()->continuation());
1578 }
1579 
1580 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
1581   Register len =  op->len()->as_register();
1582   LP64_ONLY( __ movslq(len, len); )
1583 
1584   if (UseSlowPath || op->type() == T_VALUETYPE ||
1585       (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
1586       (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
1587     __ jmp(*op->stub()->entry());
1588   } else {
1589     Register tmp1 = op->tmp1()->as_register();
1590     Register tmp2 = op->tmp2()->as_register();
1591     Register tmp3 = op->tmp3()->as_register();
1592     if (len == tmp1) {
1593       tmp1 = tmp3;
1594     } else if (len == tmp2) {
1595       tmp2 = tmp3;
1596     } else if (len == tmp3) {
1597       // everything is ok
1598     } else {
1599       __ mov(tmp3, len);
1600     }
1601     __ allocate_array(op->obj()->as_register(),
1602                       len,
1603                       tmp1,
1604                       tmp2,
1605                       arrayOopDesc::header_size(op->type()),
1606                       array_element_size(op->type()),
1607                       op->klass()->as_register(),
1608                       *op->stub()->entry());
1609   }
1610   __ bind(*op->stub()->continuation());
1611 }
1612 
1613 void LIR_Assembler::type_profile_helper(Register mdo,
1614                                         ciMethodData *md, ciProfileData *data,
1615                                         Register recv, Label* update_done) {
1616   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1617     Label next_test;
1618     // See if the receiver is receiver[n].
1619     __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
1620     __ jccb(Assembler::notEqual, next_test);
1621     Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
1622     __ addptr(data_addr, DataLayout::counter_increment);
1623     __ jmp(*update_done);
1624     __ bind(next_test);
1625   }
1626 
1627   // Didn't find receiver; find next empty slot and fill it in
1628   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1629     Label next_test;
1630     Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)));
1631     __ cmpptr(recv_addr, (intptr_t)NULL_WORD);
1632     __ jccb(Assembler::notEqual, next_test);
1633     __ movptr(recv_addr, recv);
1634     __ movptr(Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))), DataLayout::counter_increment);
1635     __ jmp(*update_done);
1636     __ bind(next_test);
1637   }
1638 }
1639 
1640 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
1641   // we always need a stub for the failure case.
1642   CodeStub* stub = op->stub();
1643   Register obj = op->object()->as_register();
1644   Register k_RInfo = op->tmp1()->as_register();
1645   Register klass_RInfo = op->tmp2()->as_register();
1646   Register dst = op->result_opr()->as_register();
1647   ciKlass* k = op->klass();
1648   Register Rtmp1 = noreg;
1649 
1650   // check if it needs to be profiled
1651   ciMethodData* md = NULL;
1652   ciProfileData* data = NULL;
1653 
1654   if (op->should_profile()) {
1655     ciMethod* method = op->profiled_method();
1656     assert(method != NULL, "Should have method");
1657     int bci = op->profiled_bci();
1658     md = method->method_data_or_null();
1659     assert(md != NULL, "Sanity");
1660     data = md->bci_to_data(bci);
1661     assert(data != NULL,                "need data for type check");
1662     assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1663   }
1664   Label profile_cast_success, profile_cast_failure;
1665   Label *success_target = op->should_profile() ? &profile_cast_success : success;
1666   Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
1667 
1668   if (obj == k_RInfo) {
1669     k_RInfo = dst;
1670   } else if (obj == klass_RInfo) {
1671     klass_RInfo = dst;
1672   }
1673   if (k->is_loaded() && !UseCompressedClassPointers) {
1674     select_different_registers(obj, dst, k_RInfo, klass_RInfo);
1675   } else {
1676     Rtmp1 = op->tmp3()->as_register();
1677     select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
1678   }
1679 
1680   assert_different_registers(obj, k_RInfo, klass_RInfo);
1681 
1682   if (op->need_null_check()) {
1683     __ cmpptr(obj, (int32_t)NULL_WORD);
1684     if (op->should_profile()) {
1685       Label not_null;
1686       __ jccb(Assembler::notEqual, not_null);
1687       // Object is null; update MDO and exit
1688       Register mdo  = klass_RInfo;
1689       __ mov_metadata(mdo, md->constant_encoding());
1690       Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()));
1691       int header_bits = BitData::null_seen_byte_constant();
1692       __ orb(data_addr, header_bits);
1693       __ jmp(*obj_is_null);
1694       __ bind(not_null);
1695     } else {
1696       __ jcc(Assembler::equal, *obj_is_null);
1697     }
1698   }
1699 
1700   if (!k->is_loaded()) {
1701     klass2reg_with_patching(k_RInfo, op->info_for_patch());
1702   } else {
1703 #ifdef _LP64
1704     __ mov_metadata(k_RInfo, k->constant_encoding());
1705 #endif // _LP64
1706   }
1707   __ verify_oop(obj);
1708 
1709   if (op->fast_check()) {
1710     // get object class
1711     // not a safepoint as obj null check happens earlier
1712 #ifdef _LP64
1713     if (UseCompressedClassPointers) {
1714       __ load_klass(Rtmp1, obj);
1715       __ cmpptr(k_RInfo, Rtmp1);
1716     } else {
1717       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1718     }
1719 #else
1720     if (k->is_loaded()) {
1721       __ cmpklass(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding());
1722     } else {
1723       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1724     }
1725 #endif
1726     __ jcc(Assembler::notEqual, *failure_target);
1727     // successful cast, fall through to profile or jump
1728   } else {
1729     // get object class
1730     // not a safepoint as obj null check happens earlier
1731     __ load_klass(klass_RInfo, obj);
1732     if (k->is_loaded()) {
1733       // See if we get an immediate positive hit
1734 #ifdef _LP64
1735       __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset()));
1736 #else
1737       __ cmpklass(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
1738 #endif // _LP64
1739       if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) {
1740         __ jcc(Assembler::notEqual, *failure_target);
1741         // successful cast, fall through to profile or jump
1742       } else {
1743         // See if we get an immediate positive hit
1744         __ jcc(Assembler::equal, *success_target);
1745         // check for self
1746 #ifdef _LP64
1747         __ cmpptr(klass_RInfo, k_RInfo);
1748 #else
1749         __ cmpklass(klass_RInfo, k->constant_encoding());
1750 #endif // _LP64
1751         __ jcc(Assembler::equal, *success_target);
1752 
1753         __ push(klass_RInfo);
1754 #ifdef _LP64
1755         __ push(k_RInfo);
1756 #else
1757         __ pushklass(k->constant_encoding());
1758 #endif // _LP64
1759         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1760         __ pop(klass_RInfo);
1761         __ pop(klass_RInfo);
1762         // result is a boolean
1763         __ cmpl(klass_RInfo, 0);
1764         __ jcc(Assembler::equal, *failure_target);
1765         // successful cast, fall through to profile or jump
1766       }
1767     } else {
1768       // perform the fast part of the checking logic
1769       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
1770       // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1771       __ push(klass_RInfo);
1772       __ push(k_RInfo);
1773       __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1774       __ pop(klass_RInfo);
1775       __ pop(k_RInfo);
1776       // result is a boolean
1777       __ cmpl(k_RInfo, 0);
1778       __ jcc(Assembler::equal, *failure_target);
1779       // successful cast, fall through to profile or jump
1780     }
1781   }
1782   if (op->should_profile()) {
1783     Register mdo  = klass_RInfo, recv = k_RInfo;
1784     __ bind(profile_cast_success);
1785     __ mov_metadata(mdo, md->constant_encoding());
1786     __ load_klass(recv, obj);
1787     type_profile_helper(mdo, md, data, recv, success);
1788     __ jmp(*success);
1789 
1790     __ bind(profile_cast_failure);
1791     __ mov_metadata(mdo, md->constant_encoding());
1792     Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1793     __ subptr(counter_addr, DataLayout::counter_increment);
1794     __ jmp(*failure);
1795   }
1796   __ jmp(*success);
1797 }
1798 
1799 
1800 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
1801   LIR_Code code = op->code();
1802   if (code == lir_store_check) {
1803     Register value = op->object()->as_register();
1804     Register array = op->array()->as_register();
1805     Register k_RInfo = op->tmp1()->as_register();
1806     Register klass_RInfo = op->tmp2()->as_register();
1807     Register Rtmp1 = op->tmp3()->as_register();
1808 
1809     CodeStub* stub = op->stub();
1810 
1811     // check if it needs to be profiled
1812     ciMethodData* md = NULL;
1813     ciProfileData* data = NULL;
1814 
1815     if (op->should_profile()) {
1816       ciMethod* method = op->profiled_method();
1817       assert(method != NULL, "Should have method");
1818       int bci = op->profiled_bci();
1819       md = method->method_data_or_null();
1820       assert(md != NULL, "Sanity");
1821       data = md->bci_to_data(bci);
1822       assert(data != NULL,                "need data for type check");
1823       assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1824     }
1825     Label profile_cast_success, profile_cast_failure, done;
1826     Label *success_target = op->should_profile() ? &profile_cast_success : &done;
1827     Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
1828 
1829     __ cmpptr(value, (int32_t)NULL_WORD);
1830     if (op->should_profile()) {
1831       Label not_null;
1832       __ jccb(Assembler::notEqual, not_null);
1833       // Object is null; update MDO and exit
1834       Register mdo  = klass_RInfo;
1835       __ mov_metadata(mdo, md->constant_encoding());
1836       Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()));
1837       int header_bits = BitData::null_seen_byte_constant();
1838       __ orb(data_addr, header_bits);
1839       __ jmp(done);
1840       __ bind(not_null);
1841     } else {
1842       __ jcc(Assembler::equal, done);
1843     }
1844 
1845     add_debug_info_for_null_check_here(op->info_for_exception());
1846     __ load_klass(k_RInfo, array);
1847     __ load_klass(klass_RInfo, value);
1848 
1849     // get instance klass (it's already uncompressed)
1850     __ movptr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset()));
1851     // perform the fast part of the checking logic
1852     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
1853     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1854     __ push(klass_RInfo);
1855     __ push(k_RInfo);
1856     __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1857     __ pop(klass_RInfo);
1858     __ pop(k_RInfo);
1859     // result is a boolean
1860     __ cmpl(k_RInfo, 0);
1861     __ jcc(Assembler::equal, *failure_target);
1862     // fall through to the success case
1863 
1864     if (op->should_profile()) {
1865       Register mdo  = klass_RInfo, recv = k_RInfo;
1866       __ bind(profile_cast_success);
1867       __ mov_metadata(mdo, md->constant_encoding());
1868       __ load_klass(recv, value);
1869       type_profile_helper(mdo, md, data, recv, &done);
1870       __ jmpb(done);
1871 
1872       __ bind(profile_cast_failure);
1873       __ mov_metadata(mdo, md->constant_encoding());
1874       Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1875       __ subptr(counter_addr, DataLayout::counter_increment);
1876       __ jmp(*stub->entry());
1877     }
1878 
1879     __ bind(done);
1880   } else
1881     if (code == lir_checkcast) {
1882       Register obj = op->object()->as_register();
1883       Register dst = op->result_opr()->as_register();
1884       Label success;
1885       emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
1886       __ bind(success);
1887       if (dst != obj) {
1888         __ mov(dst, obj);
1889       }
1890     } else
1891       if (code == lir_instanceof) {
1892         Register obj = op->object()->as_register();
1893         Register dst = op->result_opr()->as_register();
1894         Label success, failure, done;
1895         emit_typecheck_helper(op, &success, &failure, &failure);
1896         __ bind(failure);
1897         __ xorptr(dst, dst);
1898         __ jmpb(done);
1899         __ bind(success);
1900         __ movptr(dst, 1);
1901         __ bind(done);
1902       } else {
1903         ShouldNotReachHere();
1904       }
1905 
1906 }
1907 
1908 void LIR_Assembler::emit_opFlattenedStoreCheck(LIR_OpFlattenedStoreCheck* op) {
1909   Klass* k = (Klass*)(op->element_klass()->constant_encoding());
1910   assert(k->is_klass(), "must be a loaded klass");
1911   add_debug_info_for_null_check_here(op->info_for_exception());
1912 
1913 #ifdef _LP64
1914   if (UseCompressedClassPointers) {
1915     __ movl(op->tmp1()->as_register(), Address(op->object()->as_register(), oopDesc::klass_offset_in_bytes()));
1916     __ cmp_narrow_klass(op->tmp1()->as_register(), k);
1917   } else {
1918     __ movq(op->tmp1()->as_register(), Address(op->object()->as_register(), oopDesc::klass_offset_in_bytes()));
1919     __ cmpq(op->tmp1()->as_register(), op->tmp2()->as_register());
1920   }
1921 #else
1922   Unimplemented(); // FIXME
1923 #endif
1924 
1925   __ jcc(Assembler::notEqual, *op->stub()->entry());
1926   __ bind(*op->stub()->continuation());
1927 }
1928 
1929 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
1930   if (LP64_ONLY(false &&) op->code() == lir_cas_long && VM_Version::supports_cx8()) {
1931     assert(op->cmp_value()->as_register_lo() == rax, "wrong register");
1932     assert(op->cmp_value()->as_register_hi() == rdx, "wrong register");
1933     assert(op->new_value()->as_register_lo() == rbx, "wrong register");
1934     assert(op->new_value()->as_register_hi() == rcx, "wrong register");
1935     Register addr = op->addr()->as_register();
1936     __ lock();
1937     NOT_LP64(__ cmpxchg8(Address(addr, 0)));
1938 
1939   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) {
1940     NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");)
1941     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
1942     Register newval = op->new_value()->as_register();
1943     Register cmpval = op->cmp_value()->as_register();
1944     assert(cmpval == rax, "wrong register");
1945     assert(newval != NULL, "new val must be register");
1946     assert(cmpval != newval, "cmp and new values must be in different registers");
1947     assert(cmpval != addr, "cmp and addr must be in different registers");
1948     assert(newval != addr, "new value and addr must be in different registers");
1949 
1950     if ( op->code() == lir_cas_obj) {
1951 #ifdef _LP64
1952       if (UseCompressedOops) {
1953         __ encode_heap_oop(cmpval);
1954         __ mov(rscratch1, newval);
1955         __ encode_heap_oop(rscratch1);
1956         __ lock();
1957         // cmpval (rax) is implicitly used by this instruction
1958         __ cmpxchgl(rscratch1, Address(addr, 0));
1959       } else
1960 #endif
1961       {
1962         __ lock();
1963         __ cmpxchgptr(newval, Address(addr, 0));
1964       }
1965     } else {
1966       assert(op->code() == lir_cas_int, "lir_cas_int expected");
1967       __ lock();
1968       __ cmpxchgl(newval, Address(addr, 0));
1969     }
1970 #ifdef _LP64
1971   } else if (op->code() == lir_cas_long) {
1972     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
1973     Register newval = op->new_value()->as_register_lo();
1974     Register cmpval = op->cmp_value()->as_register_lo();
1975     assert(cmpval == rax, "wrong register");
1976     assert(newval != NULL, "new val must be register");
1977     assert(cmpval != newval, "cmp and new values must be in different registers");
1978     assert(cmpval != addr, "cmp and addr must be in different registers");
1979     assert(newval != addr, "new value and addr must be in different registers");
1980     __ lock();
1981     __ cmpxchgq(newval, Address(addr, 0));
1982 #endif // _LP64
1983   } else {
1984     Unimplemented();
1985   }
1986 }
1987 
1988 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
1989   Assembler::Condition acond, ncond;
1990   switch (condition) {
1991     case lir_cond_equal:        acond = Assembler::equal;        ncond = Assembler::notEqual;     break;
1992     case lir_cond_notEqual:     acond = Assembler::notEqual;     ncond = Assembler::equal;        break;
1993     case lir_cond_less:         acond = Assembler::less;         ncond = Assembler::greaterEqual; break;
1994     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    ncond = Assembler::greater;      break;
1995     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less;         break;
1996     case lir_cond_greater:      acond = Assembler::greater;      ncond = Assembler::lessEqual;    break;
1997     case lir_cond_belowEqual:   acond = Assembler::belowEqual;   ncond = Assembler::above;        break;
1998     case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;   ncond = Assembler::below;        break;
1999     default:                    acond = Assembler::equal;        ncond = Assembler::notEqual;
2000                                 ShouldNotReachHere();
2001   }
2002 
2003   if (opr1->is_cpu_register()) {
2004     reg2reg(opr1, result);
2005   } else if (opr1->is_stack()) {
2006     stack2reg(opr1, result, result->type());
2007   } else if (opr1->is_constant()) {
2008     const2reg(opr1, result, lir_patch_none, NULL);
2009   } else {
2010     ShouldNotReachHere();
2011   }
2012 
2013   if (VM_Version::supports_cmov() && !opr2->is_constant()) {
2014     // optimized version that does not require a branch
2015     if (opr2->is_single_cpu()) {
2016       assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
2017       __ cmov(ncond, result->as_register(), opr2->as_register());
2018     } else if (opr2->is_double_cpu()) {
2019       assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
2020       assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
2021       __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo());
2022       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());)
2023     } else if (opr2->is_single_stack()) {
2024       __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()));
2025     } else if (opr2->is_double_stack()) {
2026       __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes));
2027       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));)
2028     } else {
2029       ShouldNotReachHere();
2030     }
2031 
2032   } else {
2033     Label skip;
2034     __ jcc (acond, skip);
2035     if (opr2->is_cpu_register()) {
2036       reg2reg(opr2, result);
2037     } else if (opr2->is_stack()) {
2038       stack2reg(opr2, result, result->type());
2039     } else if (opr2->is_constant()) {
2040       const2reg(opr2, result, lir_patch_none, NULL);
2041     } else {
2042       ShouldNotReachHere();
2043     }
2044     __ bind(skip);
2045   }
2046 }
2047 
2048 
2049 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
2050   assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
2051 
2052   if (left->is_single_cpu()) {
2053     assert(left == dest, "left and dest must be equal");
2054     Register lreg = left->as_register();
2055 
2056     if (right->is_single_cpu()) {
2057       // cpu register - cpu register
2058       Register rreg = right->as_register();
2059       switch (code) {
2060         case lir_add: __ addl (lreg, rreg); break;
2061         case lir_sub: __ subl (lreg, rreg); break;
2062         case lir_mul: __ imull(lreg, rreg); break;
2063         default:      ShouldNotReachHere();
2064       }
2065 
2066     } else if (right->is_stack()) {
2067       // cpu register - stack
2068       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2069       switch (code) {
2070         case lir_add: __ addl(lreg, raddr); break;
2071         case lir_sub: __ subl(lreg, raddr); break;
2072         default:      ShouldNotReachHere();
2073       }
2074 
2075     } else if (right->is_constant()) {
2076       // cpu register - constant
2077       jint c = right->as_constant_ptr()->as_jint();
2078       switch (code) {
2079         case lir_add: {
2080           __ incrementl(lreg, c);
2081           break;
2082         }
2083         case lir_sub: {
2084           __ decrementl(lreg, c);
2085           break;
2086         }
2087         default: ShouldNotReachHere();
2088       }
2089 
2090     } else {
2091       ShouldNotReachHere();
2092     }
2093 
2094   } else if (left->is_double_cpu()) {
2095     assert(left == dest, "left and dest must be equal");
2096     Register lreg_lo = left->as_register_lo();
2097     Register lreg_hi = left->as_register_hi();
2098 
2099     if (right->is_double_cpu()) {
2100       // cpu register - cpu register
2101       Register rreg_lo = right->as_register_lo();
2102       Register rreg_hi = right->as_register_hi();
2103       NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi));
2104       LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo));
2105       switch (code) {
2106         case lir_add:
2107           __ addptr(lreg_lo, rreg_lo);
2108           NOT_LP64(__ adcl(lreg_hi, rreg_hi));
2109           break;
2110         case lir_sub:
2111           __ subptr(lreg_lo, rreg_lo);
2112           NOT_LP64(__ sbbl(lreg_hi, rreg_hi));
2113           break;
2114         case lir_mul:
2115 #ifdef _LP64
2116           __ imulq(lreg_lo, rreg_lo);
2117 #else
2118           assert(lreg_lo == rax && lreg_hi == rdx, "must be");
2119           __ imull(lreg_hi, rreg_lo);
2120           __ imull(rreg_hi, lreg_lo);
2121           __ addl (rreg_hi, lreg_hi);
2122           __ mull (rreg_lo);
2123           __ addl (lreg_hi, rreg_hi);
2124 #endif // _LP64
2125           break;
2126         default:
2127           ShouldNotReachHere();
2128       }
2129 
2130     } else if (right->is_constant()) {
2131       // cpu register - constant
2132 #ifdef _LP64
2133       jlong c = right->as_constant_ptr()->as_jlong_bits();
2134       __ movptr(r10, (intptr_t) c);
2135       switch (code) {
2136         case lir_add:
2137           __ addptr(lreg_lo, r10);
2138           break;
2139         case lir_sub:
2140           __ subptr(lreg_lo, r10);
2141           break;
2142         default:
2143           ShouldNotReachHere();
2144       }
2145 #else
2146       jint c_lo = right->as_constant_ptr()->as_jint_lo();
2147       jint c_hi = right->as_constant_ptr()->as_jint_hi();
2148       switch (code) {
2149         case lir_add:
2150           __ addptr(lreg_lo, c_lo);
2151           __ adcl(lreg_hi, c_hi);
2152           break;
2153         case lir_sub:
2154           __ subptr(lreg_lo, c_lo);
2155           __ sbbl(lreg_hi, c_hi);
2156           break;
2157         default:
2158           ShouldNotReachHere();
2159       }
2160 #endif // _LP64
2161 
2162     } else {
2163       ShouldNotReachHere();
2164     }
2165 
2166   } else if (left->is_single_xmm()) {
2167     assert(left == dest, "left and dest must be equal");
2168     XMMRegister lreg = left->as_xmm_float_reg();
2169 
2170     if (right->is_single_xmm()) {
2171       XMMRegister rreg = right->as_xmm_float_reg();
2172       switch (code) {
2173         case lir_add: __ addss(lreg, rreg);  break;
2174         case lir_sub: __ subss(lreg, rreg);  break;
2175         case lir_mul_strictfp: // fall through
2176         case lir_mul: __ mulss(lreg, rreg);  break;
2177         case lir_div_strictfp: // fall through
2178         case lir_div: __ divss(lreg, rreg);  break;
2179         default: ShouldNotReachHere();
2180       }
2181     } else {
2182       Address raddr;
2183       if (right->is_single_stack()) {
2184         raddr = frame_map()->address_for_slot(right->single_stack_ix());
2185       } else if (right->is_constant()) {
2186         // hack for now
2187         raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat())));
2188       } else {
2189         ShouldNotReachHere();
2190       }
2191       switch (code) {
2192         case lir_add: __ addss(lreg, raddr);  break;
2193         case lir_sub: __ subss(lreg, raddr);  break;
2194         case lir_mul_strictfp: // fall through
2195         case lir_mul: __ mulss(lreg, raddr);  break;
2196         case lir_div_strictfp: // fall through
2197         case lir_div: __ divss(lreg, raddr);  break;
2198         default: ShouldNotReachHere();
2199       }
2200     }
2201 
2202   } else if (left->is_double_xmm()) {
2203     assert(left == dest, "left and dest must be equal");
2204 
2205     XMMRegister lreg = left->as_xmm_double_reg();
2206     if (right->is_double_xmm()) {
2207       XMMRegister rreg = right->as_xmm_double_reg();
2208       switch (code) {
2209         case lir_add: __ addsd(lreg, rreg);  break;
2210         case lir_sub: __ subsd(lreg, rreg);  break;
2211         case lir_mul_strictfp: // fall through
2212         case lir_mul: __ mulsd(lreg, rreg);  break;
2213         case lir_div_strictfp: // fall through
2214         case lir_div: __ divsd(lreg, rreg);  break;
2215         default: ShouldNotReachHere();
2216       }
2217     } else {
2218       Address raddr;
2219       if (right->is_double_stack()) {
2220         raddr = frame_map()->address_for_slot(right->double_stack_ix());
2221       } else if (right->is_constant()) {
2222         // hack for now
2223         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2224       } else {
2225         ShouldNotReachHere();
2226       }
2227       switch (code) {
2228         case lir_add: __ addsd(lreg, raddr);  break;
2229         case lir_sub: __ subsd(lreg, raddr);  break;
2230         case lir_mul_strictfp: // fall through
2231         case lir_mul: __ mulsd(lreg, raddr);  break;
2232         case lir_div_strictfp: // fall through
2233         case lir_div: __ divsd(lreg, raddr);  break;
2234         default: ShouldNotReachHere();
2235       }
2236     }
2237 
2238   } else if (left->is_single_fpu()) {
2239     assert(dest->is_single_fpu(),  "fpu stack allocation required");
2240 
2241     if (right->is_single_fpu()) {
2242       arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack);
2243 
2244     } else {
2245       assert(left->fpu_regnr() == 0, "left must be on TOS");
2246       assert(dest->fpu_regnr() == 0, "dest must be on TOS");
2247 
2248       Address raddr;
2249       if (right->is_single_stack()) {
2250         raddr = frame_map()->address_for_slot(right->single_stack_ix());
2251       } else if (right->is_constant()) {
2252         address const_addr = float_constant(right->as_jfloat());
2253         assert(const_addr != NULL, "incorrect float/double constant maintainance");
2254         // hack for now
2255         raddr = __ as_Address(InternalAddress(const_addr));
2256       } else {
2257         ShouldNotReachHere();
2258       }
2259 
2260       switch (code) {
2261         case lir_add: __ fadd_s(raddr); break;
2262         case lir_sub: __ fsub_s(raddr); break;
2263         case lir_mul_strictfp: // fall through
2264         case lir_mul: __ fmul_s(raddr); break;
2265         case lir_div_strictfp: // fall through
2266         case lir_div: __ fdiv_s(raddr); break;
2267         default:      ShouldNotReachHere();
2268       }
2269     }
2270 
2271   } else if (left->is_double_fpu()) {
2272     assert(dest->is_double_fpu(),  "fpu stack allocation required");
2273 
2274     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
2275       // Double values require special handling for strictfp mul/div on x86
2276       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
2277       __ fmulp(left->fpu_regnrLo() + 1);
2278     }
2279 
2280     if (right->is_double_fpu()) {
2281       arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack);
2282 
2283     } else {
2284       assert(left->fpu_regnrLo() == 0, "left must be on TOS");
2285       assert(dest->fpu_regnrLo() == 0, "dest must be on TOS");
2286 
2287       Address raddr;
2288       if (right->is_double_stack()) {
2289         raddr = frame_map()->address_for_slot(right->double_stack_ix());
2290       } else if (right->is_constant()) {
2291         // hack for now
2292         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2293       } else {
2294         ShouldNotReachHere();
2295       }
2296 
2297       switch (code) {
2298         case lir_add: __ fadd_d(raddr); break;
2299         case lir_sub: __ fsub_d(raddr); break;
2300         case lir_mul_strictfp: // fall through
2301         case lir_mul: __ fmul_d(raddr); break;
2302         case lir_div_strictfp: // fall through
2303         case lir_div: __ fdiv_d(raddr); break;
2304         default: ShouldNotReachHere();
2305       }
2306     }
2307 
2308     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
2309       // Double values require special handling for strictfp mul/div on x86
2310       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
2311       __ fmulp(dest->fpu_regnrLo() + 1);
2312     }
2313 
2314   } else if (left->is_single_stack() || left->is_address()) {
2315     assert(left == dest, "left and dest must be equal");
2316 
2317     Address laddr;
2318     if (left->is_single_stack()) {
2319       laddr = frame_map()->address_for_slot(left->single_stack_ix());
2320     } else if (left->is_address()) {
2321       laddr = as_Address(left->as_address_ptr());
2322     } else {
2323       ShouldNotReachHere();
2324     }
2325 
2326     if (right->is_single_cpu()) {
2327       Register rreg = right->as_register();
2328       switch (code) {
2329         case lir_add: __ addl(laddr, rreg); break;
2330         case lir_sub: __ subl(laddr, rreg); break;
2331         default:      ShouldNotReachHere();
2332       }
2333     } else if (right->is_constant()) {
2334       jint c = right->as_constant_ptr()->as_jint();
2335       switch (code) {
2336         case lir_add: {
2337           __ incrementl(laddr, c);
2338           break;
2339         }
2340         case lir_sub: {
2341           __ decrementl(laddr, c);
2342           break;
2343         }
2344         default: ShouldNotReachHere();
2345       }
2346     } else {
2347       ShouldNotReachHere();
2348     }
2349 
2350   } else {
2351     ShouldNotReachHere();
2352   }
2353 }
2354 
2355 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) {
2356   assert(pop_fpu_stack  || (left_index     == dest_index || right_index     == dest_index), "invalid LIR");
2357   assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR");
2358   assert(left_index == 0 || right_index == 0, "either must be on top of stack");
2359 
2360   bool left_is_tos = (left_index == 0);
2361   bool dest_is_tos = (dest_index == 0);
2362   int non_tos_index = (left_is_tos ? right_index : left_index);
2363 
2364   switch (code) {
2365     case lir_add:
2366       if (pop_fpu_stack)       __ faddp(non_tos_index);
2367       else if (dest_is_tos)    __ fadd (non_tos_index);
2368       else                     __ fadda(non_tos_index);
2369       break;
2370 
2371     case lir_sub:
2372       if (left_is_tos) {
2373         if (pop_fpu_stack)     __ fsubrp(non_tos_index);
2374         else if (dest_is_tos)  __ fsub  (non_tos_index);
2375         else                   __ fsubra(non_tos_index);
2376       } else {
2377         if (pop_fpu_stack)     __ fsubp (non_tos_index);
2378         else if (dest_is_tos)  __ fsubr (non_tos_index);
2379         else                   __ fsuba (non_tos_index);
2380       }
2381       break;
2382 
2383     case lir_mul_strictfp: // fall through
2384     case lir_mul:
2385       if (pop_fpu_stack)       __ fmulp(non_tos_index);
2386       else if (dest_is_tos)    __ fmul (non_tos_index);
2387       else                     __ fmula(non_tos_index);
2388       break;
2389 
2390     case lir_div_strictfp: // fall through
2391     case lir_div:
2392       if (left_is_tos) {
2393         if (pop_fpu_stack)     __ fdivrp(non_tos_index);
2394         else if (dest_is_tos)  __ fdiv  (non_tos_index);
2395         else                   __ fdivra(non_tos_index);
2396       } else {
2397         if (pop_fpu_stack)     __ fdivp (non_tos_index);
2398         else if (dest_is_tos)  __ fdivr (non_tos_index);
2399         else                   __ fdiva (non_tos_index);
2400       }
2401       break;
2402 
2403     case lir_rem:
2404       assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation");
2405       __ fremr(noreg);
2406       break;
2407 
2408     default:
2409       ShouldNotReachHere();
2410   }
2411 }
2412 
2413 
2414 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr tmp, LIR_Opr dest, LIR_Op* op) {
2415   if (value->is_double_xmm()) {
2416     switch(code) {
2417       case lir_abs :
2418         {
2419 #ifdef _LP64
2420           if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {
2421             assert(tmp->is_valid(), "need temporary");
2422             __ vpandn(dest->as_xmm_double_reg(), tmp->as_xmm_double_reg(), value->as_xmm_double_reg(), 2);
2423           } else
2424 #endif
2425           {
2426             if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
2427               __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
2428             }
2429             assert(!tmp->is_valid(), "do not need temporary");
2430             __ andpd(dest->as_xmm_double_reg(),
2431                      ExternalAddress((address)double_signmask_pool));
2432           }
2433         }
2434         break;
2435 
2436       case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break;
2437       // all other intrinsics are not available in the SSE instruction set, so FPU is used
2438       default      : ShouldNotReachHere();
2439     }
2440 
2441   } else if (value->is_double_fpu()) {
2442     assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS");
2443     switch(code) {
2444       case lir_abs   : __ fabs() ; break;
2445       case lir_sqrt  : __ fsqrt(); break;
2446       default      : ShouldNotReachHere();
2447     }
2448   } else {
2449     Unimplemented();
2450   }
2451 }
2452 
2453 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
2454   // assert(left->destroys_register(), "check");
2455   if (left->is_single_cpu()) {
2456     Register reg = left->as_register();
2457     if (right->is_constant()) {
2458       int val = right->as_constant_ptr()->as_jint();
2459       switch (code) {
2460         case lir_logic_and: __ andl (reg, val); break;
2461         case lir_logic_or:  __ orl  (reg, val); break;
2462         case lir_logic_xor: __ xorl (reg, val); break;
2463         default: ShouldNotReachHere();
2464       }
2465     } else if (right->is_stack()) {
2466       // added support for stack operands
2467       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2468       switch (code) {
2469         case lir_logic_and: __ andl (reg, raddr); break;
2470         case lir_logic_or:  __ orl  (reg, raddr); break;
2471         case lir_logic_xor: __ xorl (reg, raddr); break;
2472         default: ShouldNotReachHere();
2473       }
2474     } else {
2475       Register rright = right->as_register();
2476       switch (code) {
2477         case lir_logic_and: __ andptr (reg, rright); break;
2478         case lir_logic_or : __ orptr  (reg, rright); break;
2479         case lir_logic_xor: __ xorptr (reg, rright); break;
2480         default: ShouldNotReachHere();
2481       }
2482     }
2483     move_regs(reg, dst->as_register());
2484   } else {
2485     Register l_lo = left->as_register_lo();
2486     Register l_hi = left->as_register_hi();
2487     if (right->is_constant()) {
2488 #ifdef _LP64
2489       __ mov64(rscratch1, right->as_constant_ptr()->as_jlong());
2490       switch (code) {
2491         case lir_logic_and:
2492           __ andq(l_lo, rscratch1);
2493           break;
2494         case lir_logic_or:
2495           __ orq(l_lo, rscratch1);
2496           break;
2497         case lir_logic_xor:
2498           __ xorq(l_lo, rscratch1);
2499           break;
2500         default: ShouldNotReachHere();
2501       }
2502 #else
2503       int r_lo = right->as_constant_ptr()->as_jint_lo();
2504       int r_hi = right->as_constant_ptr()->as_jint_hi();
2505       switch (code) {
2506         case lir_logic_and:
2507           __ andl(l_lo, r_lo);
2508           __ andl(l_hi, r_hi);
2509           break;
2510         case lir_logic_or:
2511           __ orl(l_lo, r_lo);
2512           __ orl(l_hi, r_hi);
2513           break;
2514         case lir_logic_xor:
2515           __ xorl(l_lo, r_lo);
2516           __ xorl(l_hi, r_hi);
2517           break;
2518         default: ShouldNotReachHere();
2519       }
2520 #endif // _LP64
2521     } else {
2522 #ifdef _LP64
2523       Register r_lo;
2524       if (right->type() == T_OBJECT || right->type() == T_ARRAY || right->type() == T_VALUETYPE) {
2525         r_lo = right->as_register();
2526       } else {
2527         r_lo = right->as_register_lo();
2528       }
2529 #else
2530       Register r_lo = right->as_register_lo();
2531       Register r_hi = right->as_register_hi();
2532       assert(l_lo != r_hi, "overwriting registers");
2533 #endif
2534       switch (code) {
2535         case lir_logic_and:
2536           __ andptr(l_lo, r_lo);
2537           NOT_LP64(__ andptr(l_hi, r_hi);)
2538           break;
2539         case lir_logic_or:
2540           __ orptr(l_lo, r_lo);
2541           NOT_LP64(__ orptr(l_hi, r_hi);)
2542           break;
2543         case lir_logic_xor:
2544           __ xorptr(l_lo, r_lo);
2545           NOT_LP64(__ xorptr(l_hi, r_hi);)
2546           break;
2547         default: ShouldNotReachHere();
2548       }
2549     }
2550 
2551     Register dst_lo = dst->as_register_lo();
2552     Register dst_hi = dst->as_register_hi();
2553 
2554 #ifdef _LP64
2555     move_regs(l_lo, dst_lo);
2556 #else
2557     if (dst_lo == l_hi) {
2558       assert(dst_hi != l_lo, "overwriting registers");
2559       move_regs(l_hi, dst_hi);
2560       move_regs(l_lo, dst_lo);
2561     } else {
2562       assert(dst_lo != l_hi, "overwriting registers");
2563       move_regs(l_lo, dst_lo);
2564       move_regs(l_hi, dst_hi);
2565     }
2566 #endif // _LP64
2567   }
2568 }
2569 
2570 
2571 // we assume that rax, and rdx can be overwritten
2572 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
2573 
2574   assert(left->is_single_cpu(),   "left must be register");
2575   assert(right->is_single_cpu() || right->is_constant(),  "right must be register or constant");
2576   assert(result->is_single_cpu(), "result must be register");
2577 
2578   //  assert(left->destroys_register(), "check");
2579   //  assert(right->destroys_register(), "check");
2580 
2581   Register lreg = left->as_register();
2582   Register dreg = result->as_register();
2583 
2584   if (right->is_constant()) {
2585     jint divisor = right->as_constant_ptr()->as_jint();
2586     assert(divisor > 0 && is_power_of_2(divisor), "must be");
2587     if (code == lir_idiv) {
2588       assert(lreg == rax, "must be rax,");
2589       assert(temp->as_register() == rdx, "tmp register must be rdx");
2590       __ cdql(); // sign extend into rdx:rax
2591       if (divisor == 2) {
2592         __ subl(lreg, rdx);
2593       } else {
2594         __ andl(rdx, divisor - 1);
2595         __ addl(lreg, rdx);
2596       }
2597       __ sarl(lreg, log2_jint(divisor));
2598       move_regs(lreg, dreg);
2599     } else if (code == lir_irem) {
2600       Label done;
2601       __ mov(dreg, lreg);
2602       __ andl(dreg, 0x80000000 | (divisor - 1));
2603       __ jcc(Assembler::positive, done);
2604       __ decrement(dreg);
2605       __ orl(dreg, ~(divisor - 1));
2606       __ increment(dreg);
2607       __ bind(done);
2608     } else {
2609       ShouldNotReachHere();
2610     }
2611   } else {
2612     Register rreg = right->as_register();
2613     assert(lreg == rax, "left register must be rax,");
2614     assert(rreg != rdx, "right register must not be rdx");
2615     assert(temp->as_register() == rdx, "tmp register must be rdx");
2616 
2617     move_regs(lreg, rax);
2618 
2619     int idivl_offset = __ corrected_idivl(rreg);
2620     if (ImplicitDiv0Checks) {
2621       add_debug_info_for_div0(idivl_offset, info);
2622     }
2623     if (code == lir_irem) {
2624       move_regs(rdx, dreg); // result is in rdx
2625     } else {
2626       move_regs(rax, dreg);
2627     }
2628   }
2629 }
2630 
2631 
2632 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
2633   if (opr1->is_single_cpu()) {
2634     Register reg1 = opr1->as_register();
2635     if (opr2->is_single_cpu()) {
2636       // cpu register - cpu register
2637       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY || opr1->type() == T_VALUETYPE) {
2638         __ cmpoop(reg1, opr2->as_register());
2639       } else {
2640         assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY && opr2->type() != T_VALUETYPE, "cmp int, oop?");
2641         __ cmpl(reg1, opr2->as_register());
2642       }
2643     } else if (opr2->is_stack()) {
2644       // cpu register - stack
2645       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY || opr1->type() == T_VALUETYPE) {
2646         __ cmpoop(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2647       } else {
2648         __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2649       }
2650     } else if (opr2->is_constant()) {
2651       // cpu register - constant
2652       LIR_Const* c = opr2->as_constant_ptr();
2653       if (c->type() == T_INT) {
2654         __ cmpl(reg1, c->as_jint());
2655       } else if (c->type() == T_OBJECT || c->type() == T_ARRAY || c->type() == T_VALUETYPE) {
2656         // In 64bit oops are single register
2657         jobject o = c->as_jobject();
2658         if (o == NULL) {
2659           __ cmpptr(reg1, (int32_t)NULL_WORD);
2660         } else {
2661           __ cmpoop(reg1, o);
2662         }
2663       } else {
2664         fatal("unexpected type: %s", basictype_to_str(c->type()));
2665       }
2666       // cpu register - address
2667     } else if (opr2->is_address()) {
2668       if (op->info() != NULL) {
2669         add_debug_info_for_null_check_here(op->info());
2670       }
2671       __ cmpl(reg1, as_Address(opr2->as_address_ptr()));
2672     } else {
2673       ShouldNotReachHere();
2674     }
2675 
2676   } else if(opr1->is_double_cpu()) {
2677     Register xlo = opr1->as_register_lo();
2678     Register xhi = opr1->as_register_hi();
2679     if (opr2->is_double_cpu()) {
2680 #ifdef _LP64
2681       __ cmpptr(xlo, opr2->as_register_lo());
2682 #else
2683       // cpu register - cpu register
2684       Register ylo = opr2->as_register_lo();
2685       Register yhi = opr2->as_register_hi();
2686       __ subl(xlo, ylo);
2687       __ sbbl(xhi, yhi);
2688       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
2689         __ orl(xhi, xlo);
2690       }
2691 #endif // _LP64
2692     } else if (opr2->is_constant()) {
2693       // cpu register - constant 0
2694       assert(opr2->as_jlong() == (jlong)0, "only handles zero");
2695 #ifdef _LP64
2696       __ cmpptr(xlo, (int32_t)opr2->as_jlong());
2697 #else
2698       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case");
2699       __ orl(xhi, xlo);
2700 #endif // _LP64
2701     } else {
2702       ShouldNotReachHere();
2703     }
2704 
2705   } else if (opr1->is_single_xmm()) {
2706     XMMRegister reg1 = opr1->as_xmm_float_reg();
2707     if (opr2->is_single_xmm()) {
2708       // xmm register - xmm register
2709       __ ucomiss(reg1, opr2->as_xmm_float_reg());
2710     } else if (opr2->is_stack()) {
2711       // xmm register - stack
2712       __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2713     } else if (opr2->is_constant()) {
2714       // xmm register - constant
2715       __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat())));
2716     } else if (opr2->is_address()) {
2717       // xmm register - address
2718       if (op->info() != NULL) {
2719         add_debug_info_for_null_check_here(op->info());
2720       }
2721       __ ucomiss(reg1, as_Address(opr2->as_address_ptr()));
2722     } else {
2723       ShouldNotReachHere();
2724     }
2725 
2726   } else if (opr1->is_double_xmm()) {
2727     XMMRegister reg1 = opr1->as_xmm_double_reg();
2728     if (opr2->is_double_xmm()) {
2729       // xmm register - xmm register
2730       __ ucomisd(reg1, opr2->as_xmm_double_reg());
2731     } else if (opr2->is_stack()) {
2732       // xmm register - stack
2733       __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix()));
2734     } else if (opr2->is_constant()) {
2735       // xmm register - constant
2736       __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble())));
2737     } else if (opr2->is_address()) {
2738       // xmm register - address
2739       if (op->info() != NULL) {
2740         add_debug_info_for_null_check_here(op->info());
2741       }
2742       __ ucomisd(reg1, as_Address(opr2->pointer()->as_address()));
2743     } else {
2744       ShouldNotReachHere();
2745     }
2746 
2747   } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) {
2748     assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)");
2749     assert(opr2->is_fpu_register(), "both must be registers");
2750     __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2751 
2752   } else if (opr1->is_address() && opr2->is_constant()) {
2753     LIR_Const* c = opr2->as_constant_ptr();
2754 #ifdef _LP64
2755     if (c->type() == T_OBJECT || c->type() == T_ARRAY || c->type() == T_VALUETYPE) {
2756       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse");
2757       __ movoop(rscratch1, c->as_jobject());
2758     }
2759 #endif // LP64
2760     if (op->info() != NULL) {
2761       add_debug_info_for_null_check_here(op->info());
2762     }
2763     // special case: address - constant
2764     LIR_Address* addr = opr1->as_address_ptr();
2765     if (c->type() == T_INT) {
2766       __ cmpl(as_Address(addr), c->as_jint());
2767     } else if (c->type() == T_OBJECT || c->type() == T_ARRAY || c->type() == T_VALUETYPE) {
2768 #ifdef _LP64
2769       // %%% Make this explode if addr isn't reachable until we figure out a
2770       // better strategy by giving noreg as the temp for as_Address
2771       __ cmpoop(rscratch1, as_Address(addr, noreg));
2772 #else
2773       __ cmpoop(as_Address(addr), c->as_jobject());
2774 #endif // _LP64
2775     } else {
2776       ShouldNotReachHere();
2777     }
2778 
2779   } else {
2780     ShouldNotReachHere();
2781   }
2782 }
2783 
2784 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
2785   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
2786     if (left->is_single_xmm()) {
2787       assert(right->is_single_xmm(), "must match");
2788       __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2789     } else if (left->is_double_xmm()) {
2790       assert(right->is_double_xmm(), "must match");
2791       __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2792 
2793     } else {
2794       assert(left->is_single_fpu() || left->is_double_fpu(), "must be");
2795       assert(right->is_single_fpu() || right->is_double_fpu(), "must match");
2796 
2797       assert(left->fpu() == 0, "left must be on TOS");
2798       __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(),
2799                   op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2800     }
2801   } else {
2802     assert(code == lir_cmp_l2i, "check");
2803 #ifdef _LP64
2804     Label done;
2805     Register dest = dst->as_register();
2806     __ cmpptr(left->as_register_lo(), right->as_register_lo());
2807     __ movl(dest, -1);
2808     __ jccb(Assembler::less, done);
2809     __ set_byte_if_not_zero(dest);
2810     __ movzbl(dest, dest);
2811     __ bind(done);
2812 #else
2813     __ lcmp2int(left->as_register_hi(),
2814                 left->as_register_lo(),
2815                 right->as_register_hi(),
2816                 right->as_register_lo());
2817     move_regs(left->as_register_hi(), dst->as_register());
2818 #endif // _LP64
2819   }
2820 }
2821 
2822 
2823 void LIR_Assembler::align_call(LIR_Code code) {
2824   // make sure that the displacement word of the call ends up word aligned
2825   int offset = __ offset();
2826   switch (code) {
2827   case lir_static_call:
2828   case lir_optvirtual_call:
2829   case lir_dynamic_call:
2830     offset += NativeCall::displacement_offset;
2831     break;
2832   case lir_icvirtual_call:
2833     offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size;
2834     break;
2835   case lir_virtual_call:  // currently, sparc-specific for niagara
2836   default: ShouldNotReachHere();
2837   }
2838   __ align(BytesPerWord, offset);
2839 }
2840 
2841 
2842 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
2843   assert((__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
2844          "must be aligned");
2845   __ call(AddressLiteral(op->addr(), rtype));
2846   add_call_info(code_offset(), op->info());
2847 }
2848 
2849 
2850 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
2851   __ ic_call(op->addr());
2852   add_call_info(code_offset(), op->info());
2853   assert((__ offset() - NativeCall::instruction_size + NativeCall::displacement_offset) % BytesPerWord == 0,
2854          "must be aligned");
2855 }
2856 
2857 
2858 /* Currently, vtable-dispatch is only enabled for sparc platforms */
2859 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
2860   ShouldNotReachHere();
2861 }
2862 
2863 
2864 void LIR_Assembler::emit_static_call_stub() {
2865   address call_pc = __ pc();
2866   address stub = __ start_a_stub(call_stub_size());
2867   if (stub == NULL) {
2868     bailout("static call stub overflow");
2869     return;
2870   }
2871 
2872   int start = __ offset();
2873 
2874   // make sure that the displacement word of the call ends up word aligned
2875   __ align(BytesPerWord, __ offset() + NativeMovConstReg::instruction_size + NativeCall::displacement_offset);
2876   __ relocate(static_stub_Relocation::spec(call_pc, false /* is_aot */));
2877   __ mov_metadata(rbx, (Metadata*)NULL);
2878   // must be set to -1 at code generation time
2879   assert(((__ offset() + 1) % BytesPerWord) == 0, "must be aligned");
2880   // On 64bit this will die since it will take a movq & jmp, must be only a jmp
2881   __ jump(RuntimeAddress(__ pc()));
2882 
2883   if (UseAOT) {
2884     // Trampoline to aot code
2885     __ relocate(static_stub_Relocation::spec(call_pc, true /* is_aot */));
2886 #ifdef _LP64
2887     __ mov64(rax, CONST64(0));  // address is zapped till fixup time.
2888 #else
2889     __ movl(rax, 0xdeadffff);  // address is zapped till fixup time.
2890 #endif
2891     __ jmp(rax);
2892   }
2893   assert(__ offset() - start <= call_stub_size(), "stub too big");
2894   __ end_a_stub();
2895 }
2896 
2897 
2898 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2899   assert(exceptionOop->as_register() == rax, "must match");
2900   assert(exceptionPC->as_register() == rdx, "must match");
2901 
2902   // exception object is not added to oop map by LinearScan
2903   // (LinearScan assumes that no oops are in fixed registers)
2904   info->add_register_oop(exceptionOop);
2905   Runtime1::StubID unwind_id;
2906 
2907   // get current pc information
2908   // pc is only needed if the method has an exception handler, the unwind code does not need it.
2909   int pc_for_athrow_offset = __ offset();
2910   InternalAddress pc_for_athrow(__ pc());
2911   __ lea(exceptionPC->as_register(), pc_for_athrow);
2912   add_call_info(pc_for_athrow_offset, info); // for exception handler
2913 
2914   __ verify_not_null_oop(rax);
2915   // search an exception handler (rax: exception oop, rdx: throwing pc)
2916   if (compilation()->has_fpu_code()) {
2917     unwind_id = Runtime1::handle_exception_id;
2918   } else {
2919     unwind_id = Runtime1::handle_exception_nofpu_id;
2920   }
2921   __ call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
2922 
2923   // enough room for two byte trap
2924   __ nop();
2925 }
2926 
2927 
2928 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
2929   assert(exceptionOop->as_register() == rax, "must match");
2930 
2931   __ jmp(_unwind_handler_entry);
2932 }
2933 
2934 
2935 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2936 
2937   // optimized version for linear scan:
2938   // * count must be already in ECX (guaranteed by LinearScan)
2939   // * left and dest must be equal
2940   // * tmp must be unused
2941   assert(count->as_register() == SHIFT_count, "count must be in ECX");
2942   assert(left == dest, "left and dest must be equal");
2943   assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
2944 
2945   if (left->is_single_cpu()) {
2946     Register value = left->as_register();
2947     assert(value != SHIFT_count, "left cannot be ECX");
2948 
2949     switch (code) {
2950       case lir_shl:  __ shll(value); break;
2951       case lir_shr:  __ sarl(value); break;
2952       case lir_ushr: __ shrl(value); break;
2953       default: ShouldNotReachHere();
2954     }
2955   } else if (left->is_double_cpu()) {
2956     Register lo = left->as_register_lo();
2957     Register hi = left->as_register_hi();
2958     assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX");
2959 #ifdef _LP64
2960     switch (code) {
2961       case lir_shl:  __ shlptr(lo);        break;
2962       case lir_shr:  __ sarptr(lo);        break;
2963       case lir_ushr: __ shrptr(lo);        break;
2964       default: ShouldNotReachHere();
2965     }
2966 #else
2967 
2968     switch (code) {
2969       case lir_shl:  __ lshl(hi, lo);        break;
2970       case lir_shr:  __ lshr(hi, lo, true);  break;
2971       case lir_ushr: __ lshr(hi, lo, false); break;
2972       default: ShouldNotReachHere();
2973     }
2974 #endif // LP64
2975   } else {
2976     ShouldNotReachHere();
2977   }
2978 }
2979 
2980 
2981 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
2982   if (dest->is_single_cpu()) {
2983     // first move left into dest so that left is not destroyed by the shift
2984     Register value = dest->as_register();
2985     count = count & 0x1F; // Java spec
2986 
2987     move_regs(left->as_register(), value);
2988     switch (code) {
2989       case lir_shl:  __ shll(value, count); break;
2990       case lir_shr:  __ sarl(value, count); break;
2991       case lir_ushr: __ shrl(value, count); break;
2992       default: ShouldNotReachHere();
2993     }
2994   } else if (dest->is_double_cpu()) {
2995 #ifndef _LP64
2996     Unimplemented();
2997 #else
2998     // first move left into dest so that left is not destroyed by the shift
2999     Register value = dest->as_register_lo();
3000     count = count & 0x1F; // Java spec
3001 
3002     move_regs(left->as_register_lo(), value);
3003     switch (code) {
3004       case lir_shl:  __ shlptr(value, count); break;
3005       case lir_shr:  __ sarptr(value, count); break;
3006       case lir_ushr: __ shrptr(value, count); break;
3007       default: ShouldNotReachHere();
3008     }
3009 #endif // _LP64
3010   } else {
3011     ShouldNotReachHere();
3012   }
3013 }
3014 
3015 
3016 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
3017   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3018   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3019   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3020   __ movptr (Address(rsp, offset_from_rsp_in_bytes), r);
3021 }
3022 
3023 
3024 void LIR_Assembler::store_parameter(jint c,     int offset_from_rsp_in_words) {
3025   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3026   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3027   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3028   __ movptr (Address(rsp, offset_from_rsp_in_bytes), c);
3029 }
3030 
3031 
3032 void LIR_Assembler::store_parameter(jobject o,  int offset_from_rsp_in_words) {
3033   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3034   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3035   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3036   __ movoop (Address(rsp, offset_from_rsp_in_bytes), o);
3037 }
3038 
3039 
3040 void LIR_Assembler::store_parameter(Metadata* m,  int offset_from_rsp_in_words) {
3041   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3042   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3043   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3044   __ mov_metadata(Address(rsp, offset_from_rsp_in_bytes), m);
3045 }
3046 
3047 
3048 // This code replaces a call to arraycopy; no exception may
3049 // be thrown in this code, they must be thrown in the System.arraycopy
3050 // activation frame; we could save some checks if this would not be the case
3051 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
3052   ciArrayKlass* default_type = op->expected_type();
3053   Register src = op->src()->as_register();
3054   Register dst = op->dst()->as_register();
3055   Register src_pos = op->src_pos()->as_register();
3056   Register dst_pos = op->dst_pos()->as_register();
3057   Register length  = op->length()->as_register();
3058   Register tmp = op->tmp()->as_register();
3059 
3060   __ resolve(ACCESS_READ, src);
3061   __ resolve(ACCESS_WRITE, dst);
3062 
3063   CodeStub* stub = op->stub();
3064   int flags = op->flags();
3065   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
3066   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
3067 
3068   // if we don't know anything, just go through the generic arraycopy
3069   if (default_type == NULL) {
3070     // save outgoing arguments on stack in case call to System.arraycopy is needed
3071     // HACK ALERT. This code used to push the parameters in a hardwired fashion
3072     // for interpreter calling conventions. Now we have to do it in new style conventions.
3073     // For the moment until C1 gets the new register allocator I just force all the
3074     // args to the right place (except the register args) and then on the back side
3075     // reload the register args properly if we go slow path. Yuck
3076 
3077     // These are proper for the calling convention
3078     store_parameter(length, 2);
3079     store_parameter(dst_pos, 1);
3080     store_parameter(dst, 0);
3081 
3082     // these are just temporary placements until we need to reload
3083     store_parameter(src_pos, 3);
3084     store_parameter(src, 4);
3085     NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");)
3086 
3087     address copyfunc_addr = StubRoutines::generic_arraycopy();
3088     assert(copyfunc_addr != NULL, "generic arraycopy stub required");
3089 
3090     // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint
3091 #ifdef _LP64
3092     // The arguments are in java calling convention so we can trivially shift them to C
3093     // convention
3094     assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
3095     __ mov(c_rarg0, j_rarg0);
3096     assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
3097     __ mov(c_rarg1, j_rarg1);
3098     assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
3099     __ mov(c_rarg2, j_rarg2);
3100     assert_different_registers(c_rarg3, j_rarg4);
3101     __ mov(c_rarg3, j_rarg3);
3102 #ifdef _WIN64
3103     // Allocate abi space for args but be sure to keep stack aligned
3104     __ subptr(rsp, 6*wordSize);
3105     store_parameter(j_rarg4, 4);
3106 #ifndef PRODUCT
3107     if (PrintC1Statistics) {
3108       __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
3109     }
3110 #endif
3111     __ call(RuntimeAddress(copyfunc_addr));
3112     __ addptr(rsp, 6*wordSize);
3113 #else
3114     __ mov(c_rarg4, j_rarg4);
3115 #ifndef PRODUCT
3116     if (PrintC1Statistics) {
3117       __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
3118     }
3119 #endif
3120     __ call(RuntimeAddress(copyfunc_addr));
3121 #endif // _WIN64
3122 #else
3123     __ push(length);
3124     __ push(dst_pos);
3125     __ push(dst);
3126     __ push(src_pos);
3127     __ push(src);
3128 
3129 #ifndef PRODUCT
3130     if (PrintC1Statistics) {
3131       __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
3132     }
3133 #endif
3134     __ call_VM_leaf(copyfunc_addr, 5); // removes pushed parameter from the stack
3135 
3136 #endif // _LP64
3137 
3138     __ cmpl(rax, 0);
3139     __ jcc(Assembler::equal, *stub->continuation());
3140 
3141     __ mov(tmp, rax);
3142     __ xorl(tmp, -1);
3143 
3144     // Reload values from the stack so they are where the stub
3145     // expects them.
3146     __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
3147     __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
3148     __ movptr   (length,  Address(rsp, 2*BytesPerWord));
3149     __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
3150     __ movptr   (src,     Address(rsp, 4*BytesPerWord));
3151 
3152     __ subl(length, tmp);
3153     __ addl(src_pos, tmp);
3154     __ addl(dst_pos, tmp);
3155     __ jmp(*stub->entry());
3156 
3157     __ bind(*stub->continuation());
3158     return;
3159   }
3160 
3161   assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
3162 
3163   int elem_size = type2aelembytes(basic_type);
3164   Address::ScaleFactor scale;
3165 
3166   switch (elem_size) {
3167     case 1 :
3168       scale = Address::times_1;
3169       break;
3170     case 2 :
3171       scale = Address::times_2;
3172       break;
3173     case 4 :
3174       scale = Address::times_4;
3175       break;
3176     case 8 :
3177       scale = Address::times_8;
3178       break;
3179     default:
3180       scale = Address::no_scale;
3181       ShouldNotReachHere();
3182   }
3183 
3184   Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
3185   Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
3186   Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
3187   Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
3188 
3189   // length and pos's are all sign extended at this point on 64bit
3190 
3191   // test for NULL
3192   if (flags & LIR_OpArrayCopy::src_null_check) {
3193     __ testptr(src, src);
3194     __ jcc(Assembler::zero, *stub->entry());
3195   }
3196   if (flags & LIR_OpArrayCopy::dst_null_check) {
3197     __ testptr(dst, dst);
3198     __ jcc(Assembler::zero, *stub->entry());
3199   }
3200 
3201   // If the compiler was not able to prove that exact type of the source or the destination
3202   // of the arraycopy is an array type, check at runtime if the source or the destination is
3203   // an instance type.
3204   if (flags & LIR_OpArrayCopy::type_check) {
3205     if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
3206       __ load_klass(tmp, dst);
3207       __ cmpl(Address(tmp, in_bytes(Klass::layout_helper_offset())), Klass::_lh_neutral_value);
3208       __ jcc(Assembler::greaterEqual, *stub->entry());
3209     }
3210 
3211     if (!(flags & LIR_OpArrayCopy::src_objarray)) {
3212       __ load_klass(tmp, src);
3213       __ cmpl(Address(tmp, in_bytes(Klass::layout_helper_offset())), Klass::_lh_neutral_value);
3214       __ jcc(Assembler::greaterEqual, *stub->entry());
3215     }
3216   }
3217 
3218   // check if negative
3219   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
3220     __ testl(src_pos, src_pos);
3221     __ jcc(Assembler::less, *stub->entry());
3222   }
3223   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
3224     __ testl(dst_pos, dst_pos);
3225     __ jcc(Assembler::less, *stub->entry());
3226   }
3227 
3228   if (flags & LIR_OpArrayCopy::src_range_check) {
3229     __ lea(tmp, Address(src_pos, length, Address::times_1, 0));
3230     __ cmpl(tmp, src_length_addr);
3231     __ jcc(Assembler::above, *stub->entry());
3232   }
3233   if (flags & LIR_OpArrayCopy::dst_range_check) {
3234     __ lea(tmp, Address(dst_pos, length, Address::times_1, 0));
3235     __ cmpl(tmp, dst_length_addr);
3236     __ jcc(Assembler::above, *stub->entry());
3237   }
3238 
3239   if (flags & LIR_OpArrayCopy::length_positive_check) {
3240     __ testl(length, length);
3241     __ jcc(Assembler::less, *stub->entry());
3242   }
3243 
3244 #ifdef _LP64
3245   __ movl2ptr(src_pos, src_pos); //higher 32bits must be null
3246   __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null
3247 #endif
3248 
3249   if (flags & LIR_OpArrayCopy::type_check) {
3250     // We don't know the array types are compatible
3251     if (basic_type != T_OBJECT) {
3252       // Simple test for basic type arrays
3253       if (UseCompressedClassPointers) {
3254         __ movl(tmp, src_klass_addr);
3255         __ cmpl(tmp, dst_klass_addr);
3256       } else {
3257         __ movptr(tmp, src_klass_addr);
3258         __ cmpptr(tmp, dst_klass_addr);
3259       }
3260       __ jcc(Assembler::notEqual, *stub->entry());
3261     } else {
3262       // For object arrays, if src is a sub class of dst then we can
3263       // safely do the copy.
3264       Label cont, slow;
3265 
3266       __ push(src);
3267       __ push(dst);
3268 
3269       __ load_klass(src, src);
3270       __ load_klass(dst, dst);
3271 
3272       __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, NULL);
3273 
3274       __ push(src);
3275       __ push(dst);
3276       __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
3277       __ pop(dst);
3278       __ pop(src);
3279 
3280       __ cmpl(src, 0);
3281       __ jcc(Assembler::notEqual, cont);
3282 
3283       __ bind(slow);
3284       __ pop(dst);
3285       __ pop(src);
3286 
3287       address copyfunc_addr = StubRoutines::checkcast_arraycopy();
3288       if (copyfunc_addr != NULL) { // use stub if available
3289         // src is not a sub class of dst so we have to do a
3290         // per-element check.
3291 
3292         int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
3293         if ((flags & mask) != mask) {
3294           // Check that at least both of them object arrays.
3295           assert(flags & mask, "one of the two should be known to be an object array");
3296 
3297           if (!(flags & LIR_OpArrayCopy::src_objarray)) {
3298             __ load_klass(tmp, src);
3299           } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
3300             __ load_klass(tmp, dst);
3301           }
3302           int lh_offset = in_bytes(Klass::layout_helper_offset());
3303           Address klass_lh_addr(tmp, lh_offset);
3304           jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
3305           __ cmpl(klass_lh_addr, objArray_lh);
3306           __ jcc(Assembler::notEqual, *stub->entry());
3307         }
3308 
3309        // Spill because stubs can use any register they like and it's
3310        // easier to restore just those that we care about.
3311        store_parameter(dst, 0);
3312        store_parameter(dst_pos, 1);
3313        store_parameter(length, 2);
3314        store_parameter(src_pos, 3);
3315        store_parameter(src, 4);
3316 
3317 #ifndef _LP64
3318         __ movptr(tmp, dst_klass_addr);
3319         __ movptr(tmp, Address(tmp, ObjArrayKlass::element_klass_offset()));
3320         __ push(tmp);
3321         __ movl(tmp, Address(tmp, Klass::super_check_offset_offset()));
3322         __ push(tmp);
3323         __ push(length);
3324         __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3325         __ push(tmp);
3326         __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3327         __ push(tmp);
3328 
3329         __ call_VM_leaf(copyfunc_addr, 5);
3330 #else
3331         __ movl2ptr(length, length); //higher 32bits must be null
3332 
3333         __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3334         assert_different_registers(c_rarg0, dst, dst_pos, length);
3335         __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3336         assert_different_registers(c_rarg1, dst, length);
3337 
3338         __ mov(c_rarg2, length);
3339         assert_different_registers(c_rarg2, dst);
3340 
3341 #ifdef _WIN64
3342         // Allocate abi space for args but be sure to keep stack aligned
3343         __ subptr(rsp, 6*wordSize);
3344         __ load_klass(c_rarg3, dst);
3345         __ movptr(c_rarg3, Address(c_rarg3, ObjArrayKlass::element_klass_offset()));
3346         store_parameter(c_rarg3, 4);
3347         __ movl(c_rarg3, Address(c_rarg3, Klass::super_check_offset_offset()));
3348         __ call(RuntimeAddress(copyfunc_addr));
3349         __ addptr(rsp, 6*wordSize);
3350 #else
3351         __ load_klass(c_rarg4, dst);
3352         __ movptr(c_rarg4, Address(c_rarg4, ObjArrayKlass::element_klass_offset()));
3353         __ movl(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset()));
3354         __ call(RuntimeAddress(copyfunc_addr));
3355 #endif
3356 
3357 #endif
3358 
3359 #ifndef PRODUCT
3360         if (PrintC1Statistics) {
3361           Label failed;
3362           __ testl(rax, rax);
3363           __ jcc(Assembler::notZero, failed);
3364           __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt));
3365           __ bind(failed);
3366         }
3367 #endif
3368 
3369         __ testl(rax, rax);
3370         __ jcc(Assembler::zero, *stub->continuation());
3371 
3372 #ifndef PRODUCT
3373         if (PrintC1Statistics) {
3374           __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt));
3375         }
3376 #endif
3377 
3378         __ mov(tmp, rax);
3379 
3380         __ xorl(tmp, -1);
3381 
3382         // Restore previously spilled arguments
3383         __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
3384         __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
3385         __ movptr   (length,  Address(rsp, 2*BytesPerWord));
3386         __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
3387         __ movptr   (src,     Address(rsp, 4*BytesPerWord));
3388 
3389 
3390         __ subl(length, tmp);
3391         __ addl(src_pos, tmp);
3392         __ addl(dst_pos, tmp);
3393       }
3394 
3395       __ jmp(*stub->entry());
3396 
3397       __ bind(cont);
3398       __ pop(dst);
3399       __ pop(src);
3400     }
3401   }
3402 
3403 #ifdef ASSERT
3404   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
3405     // Sanity check the known type with the incoming class.  For the
3406     // primitive case the types must match exactly with src.klass and
3407     // dst.klass each exactly matching the default type.  For the
3408     // object array case, if no type check is needed then either the
3409     // dst type is exactly the expected type and the src type is a
3410     // subtype which we can't check or src is the same array as dst
3411     // but not necessarily exactly of type default_type.
3412     Label known_ok, halt;
3413     __ mov_metadata(tmp, default_type->constant_encoding());
3414 #ifdef _LP64
3415     if (UseCompressedClassPointers) {
3416       __ encode_klass_not_null(tmp);
3417     }
3418 #endif
3419 
3420     if (basic_type != T_OBJECT) {
3421 
3422       if (UseCompressedClassPointers)          __ cmpl(tmp, dst_klass_addr);
3423       else                   __ cmpptr(tmp, dst_klass_addr);
3424       __ jcc(Assembler::notEqual, halt);
3425       if (UseCompressedClassPointers)          __ cmpl(tmp, src_klass_addr);
3426       else                   __ cmpptr(tmp, src_klass_addr);
3427       __ jcc(Assembler::equal, known_ok);
3428     } else {
3429       if (UseCompressedClassPointers)          __ cmpl(tmp, dst_klass_addr);
3430       else                   __ cmpptr(tmp, dst_klass_addr);
3431       __ jcc(Assembler::equal, known_ok);
3432       __ cmpptr(src, dst);
3433       __ jcc(Assembler::equal, known_ok);
3434     }
3435     __ bind(halt);
3436     __ stop("incorrect type information in arraycopy");
3437     __ bind(known_ok);
3438   }
3439 #endif
3440 
3441 #ifndef PRODUCT
3442   if (PrintC1Statistics) {
3443     __ incrementl(ExternalAddress(Runtime1::arraycopy_count_address(basic_type)));
3444   }
3445 #endif
3446 
3447 #ifdef _LP64
3448   assert_different_registers(c_rarg0, dst, dst_pos, length);
3449   __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3450   assert_different_registers(c_rarg1, length);
3451   __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3452   __ mov(c_rarg2, length);
3453 
3454 #else
3455   __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3456   store_parameter(tmp, 0);
3457   __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3458   store_parameter(tmp, 1);
3459   store_parameter(length, 2);
3460 #endif // _LP64
3461 
3462   bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
3463   bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
3464   const char *name;
3465   address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
3466   __ call_VM_leaf(entry, 0);
3467 
3468   __ bind(*stub->continuation());
3469 }
3470 
3471 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
3472   assert(op->crc()->is_single_cpu(),  "crc must be register");
3473   assert(op->val()->is_single_cpu(),  "byte value must be register");
3474   assert(op->result_opr()->is_single_cpu(), "result must be register");
3475   Register crc = op->crc()->as_register();
3476   Register val = op->val()->as_register();
3477   Register res = op->result_opr()->as_register();
3478 
3479   assert_different_registers(val, crc, res);
3480 
3481   __ lea(res, ExternalAddress(StubRoutines::crc_table_addr()));
3482   __ notl(crc); // ~crc
3483   __ update_byte_crc32(crc, val, res);
3484   __ notl(crc); // ~crc
3485   __ mov(res, crc);
3486 }
3487 
3488 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
3489   Register obj = op->obj_opr()->as_register();  // may not be an oop
3490   Register hdr = op->hdr_opr()->as_register();
3491   Register lock = op->lock_opr()->as_register();
3492   if (!UseFastLocking) {
3493     __ jmp(*op->stub()->entry());
3494   } else if (op->code() == lir_lock) {
3495     Register scratch = noreg;
3496     if (UseBiasedLocking) {
3497       scratch = op->scratch_opr()->as_register();
3498     }
3499     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3500     __ resolve(ACCESS_READ | ACCESS_WRITE, obj);
3501     // add debug info for NullPointerException only if one is possible
3502     int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry());
3503     if (op->info() != NULL) {
3504       add_debug_info_for_null_check(null_check_offset, op->info());
3505     }
3506     // done
3507   } else if (op->code() == lir_unlock) {
3508     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3509     __ unlock_object(hdr, obj, lock, *op->stub()->entry());
3510   } else {
3511     Unimplemented();
3512   }
3513   __ bind(*op->stub()->continuation());
3514 }
3515 
3516 
3517 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
3518   ciMethod* method = op->profiled_method();
3519   int bci          = op->profiled_bci();
3520   ciMethod* callee = op->profiled_callee();
3521 
3522   // Update counter for all call types
3523   ciMethodData* md = method->method_data_or_null();
3524   assert(md != NULL, "Sanity");
3525   ciProfileData* data = md->bci_to_data(bci);
3526   assert(data != NULL && data->is_CounterData(), "need CounterData for calls");
3527   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
3528   Register mdo  = op->mdo()->as_register();
3529   __ mov_metadata(mdo, md->constant_encoding());
3530   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
3531   // Perform additional virtual call profiling for invokevirtual and
3532   // invokeinterface bytecodes
3533   if (op->should_profile_receiver_type()) {
3534     assert(op->recv()->is_single_cpu(), "recv must be allocated");
3535     Register recv = op->recv()->as_register();
3536     assert_different_registers(mdo, recv);
3537     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
3538     ciKlass* known_klass = op->known_holder();
3539     if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
3540       // We know the type that will be seen at this call site; we can
3541       // statically update the MethodData* rather than needing to do
3542       // dynamic tests on the receiver type
3543 
3544       // NOTE: we should probably put a lock around this search to
3545       // avoid collisions by concurrent compilations
3546       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
3547       uint i;
3548       for (i = 0; i < VirtualCallData::row_limit(); i++) {
3549         ciKlass* receiver = vc_data->receiver(i);
3550         if (known_klass->equals(receiver)) {
3551           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3552           __ addptr(data_addr, DataLayout::counter_increment);
3553           return;
3554         }
3555       }
3556 
3557       // Receiver type not found in profile data; select an empty slot
3558 
3559       // Note that this is less efficient than it should be because it
3560       // always does a write to the receiver part of the
3561       // VirtualCallData rather than just the first time
3562       for (i = 0; i < VirtualCallData::row_limit(); i++) {
3563         ciKlass* receiver = vc_data->receiver(i);
3564         if (receiver == NULL) {
3565           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
3566           __ mov_metadata(recv_addr, known_klass->constant_encoding());
3567           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3568           __ addptr(data_addr, DataLayout::counter_increment);
3569           return;
3570         }
3571       }
3572     } else {
3573       __ load_klass(recv, recv);
3574       Label update_done;
3575       type_profile_helper(mdo, md, data, recv, &update_done);
3576       // Receiver did not match any saved receiver and there is no empty row for it.
3577       // Increment total counter to indicate polymorphic case.
3578       __ addptr(counter_addr, DataLayout::counter_increment);
3579 
3580       __ bind(update_done);
3581     }
3582   } else {
3583     // Static call
3584     __ addptr(counter_addr, DataLayout::counter_increment);
3585   }
3586 }
3587 
3588 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) {
3589   Register obj = op->obj()->as_register();
3590   Register tmp = op->tmp()->as_pointer_register();
3591   Address mdo_addr = as_Address(op->mdp()->as_address_ptr());
3592   ciKlass* exact_klass = op->exact_klass();
3593   intptr_t current_klass = op->current_klass();
3594   bool not_null = op->not_null();
3595   bool no_conflict = op->no_conflict();
3596 
3597   Label update, next, none;
3598 
3599   bool do_null = !not_null;
3600   bool exact_klass_set = exact_klass != NULL && ciTypeEntries::valid_ciklass(current_klass) == exact_klass;
3601   bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set;
3602 
3603   assert(do_null || do_update, "why are we here?");
3604   assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?");
3605 
3606   __ verify_oop(obj);
3607 
3608   if (tmp != obj) {
3609     __ mov(tmp, obj);
3610   }
3611   if (do_null) {
3612     __ testptr(tmp, tmp);
3613     __ jccb(Assembler::notZero, update);
3614     if (!TypeEntries::was_null_seen(current_klass)) {
3615       __ orptr(mdo_addr, TypeEntries::null_seen);
3616     }
3617     if (do_update) {
3618 #ifndef ASSERT
3619       __ jmpb(next);
3620     }
3621 #else
3622       __ jmp(next);
3623     }
3624   } else {
3625     __ testptr(tmp, tmp);
3626     __ jcc(Assembler::notZero, update);
3627     __ stop("unexpect null obj");
3628 #endif
3629   }
3630 
3631   __ bind(update);
3632 
3633   if (do_update) {
3634 #ifdef ASSERT
3635     if (exact_klass != NULL) {
3636       Label ok;
3637       __ load_klass(tmp, tmp);
3638       __ push(tmp);
3639       __ mov_metadata(tmp, exact_klass->constant_encoding());
3640       __ cmpptr(tmp, Address(rsp, 0));
3641       __ jcc(Assembler::equal, ok);
3642       __ stop("exact klass and actual klass differ");
3643       __ bind(ok);
3644       __ pop(tmp);
3645     }
3646 #endif
3647     if (!no_conflict) {
3648       if (exact_klass == NULL || TypeEntries::is_type_none(current_klass)) {
3649         if (exact_klass != NULL) {
3650           __ mov_metadata(tmp, exact_klass->constant_encoding());
3651         } else {
3652           __ load_klass(tmp, tmp);
3653         }
3654 
3655         __ xorptr(tmp, mdo_addr);
3656         __ testptr(tmp, TypeEntries::type_klass_mask);
3657         // klass seen before, nothing to do. The unknown bit may have been
3658         // set already but no need to check.
3659         __ jccb(Assembler::zero, next);
3660 
3661         __ testptr(tmp, TypeEntries::type_unknown);
3662         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3663 
3664         if (TypeEntries::is_type_none(current_klass)) {
3665           __ cmpptr(mdo_addr, 0);
3666           __ jccb(Assembler::equal, none);
3667           __ cmpptr(mdo_addr, TypeEntries::null_seen);
3668           __ jccb(Assembler::equal, none);
3669           // There is a chance that the checks above (re-reading profiling
3670           // data from memory) fail if another thread has just set the
3671           // profiling to this obj's klass
3672           __ xorptr(tmp, mdo_addr);
3673           __ testptr(tmp, TypeEntries::type_klass_mask);
3674           __ jccb(Assembler::zero, next);
3675         }
3676       } else {
3677         assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
3678                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only");
3679 
3680         __ movptr(tmp, mdo_addr);
3681         __ testptr(tmp, TypeEntries::type_unknown);
3682         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3683       }
3684 
3685       // different than before. Cannot keep accurate profile.
3686       __ orptr(mdo_addr, TypeEntries::type_unknown);
3687 
3688       if (TypeEntries::is_type_none(current_klass)) {
3689         __ jmpb(next);
3690 
3691         __ bind(none);
3692         // first time here. Set profile type.
3693         __ movptr(mdo_addr, tmp);
3694       }
3695     } else {
3696       // There's a single possible klass at this profile point
3697       assert(exact_klass != NULL, "should be");
3698       if (TypeEntries::is_type_none(current_klass)) {
3699         __ mov_metadata(tmp, exact_klass->constant_encoding());
3700         __ xorptr(tmp, mdo_addr);
3701         __ testptr(tmp, TypeEntries::type_klass_mask);
3702 #ifdef ASSERT
3703         __ jcc(Assembler::zero, next);
3704 
3705         {
3706           Label ok;
3707           __ push(tmp);
3708           __ cmpptr(mdo_addr, 0);
3709           __ jcc(Assembler::equal, ok);
3710           __ cmpptr(mdo_addr, TypeEntries::null_seen);
3711           __ jcc(Assembler::equal, ok);
3712           // may have been set by another thread
3713           __ mov_metadata(tmp, exact_klass->constant_encoding());
3714           __ xorptr(tmp, mdo_addr);
3715           __ testptr(tmp, TypeEntries::type_mask);
3716           __ jcc(Assembler::zero, ok);
3717 
3718           __ stop("unexpected profiling mismatch");
3719           __ bind(ok);
3720           __ pop(tmp);
3721         }
3722 #else
3723         __ jccb(Assembler::zero, next);
3724 #endif
3725         // first time here. Set profile type.
3726         __ movptr(mdo_addr, tmp);
3727       } else {
3728         assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
3729                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent");
3730 
3731         __ movptr(tmp, mdo_addr);
3732         __ testptr(tmp, TypeEntries::type_unknown);
3733         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3734 
3735         __ orptr(mdo_addr, TypeEntries::type_unknown);
3736       }
3737     }
3738 
3739     __ bind(next);
3740   }
3741 }
3742 
3743 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
3744   Unimplemented();
3745 }
3746 
3747 
3748 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
3749   __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
3750 }
3751 
3752 
3753 void LIR_Assembler::align_backward_branch_target() {
3754   __ align(BytesPerWord);
3755 }
3756 
3757 
3758 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest, LIR_Opr tmp) {
3759   if (left->is_single_cpu()) {
3760     __ negl(left->as_register());
3761     move_regs(left->as_register(), dest->as_register());
3762 
3763   } else if (left->is_double_cpu()) {
3764     Register lo = left->as_register_lo();
3765 #ifdef _LP64
3766     Register dst = dest->as_register_lo();
3767     __ movptr(dst, lo);
3768     __ negptr(dst);
3769 #else
3770     Register hi = left->as_register_hi();
3771     __ lneg(hi, lo);
3772     if (dest->as_register_lo() == hi) {
3773       assert(dest->as_register_hi() != lo, "destroying register");
3774       move_regs(hi, dest->as_register_hi());
3775       move_regs(lo, dest->as_register_lo());
3776     } else {
3777       move_regs(lo, dest->as_register_lo());
3778       move_regs(hi, dest->as_register_hi());
3779     }
3780 #endif // _LP64
3781 
3782   } else if (dest->is_single_xmm()) {
3783 #ifdef _LP64
3784     if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {
3785       assert(tmp->is_valid(), "need temporary");
3786       assert_different_registers(left->as_xmm_float_reg(), tmp->as_xmm_float_reg());
3787       __ vpxor(dest->as_xmm_float_reg(), tmp->as_xmm_float_reg(), left->as_xmm_float_reg(), 2);
3788     }
3789     else
3790 #endif
3791     {
3792       assert(!tmp->is_valid(), "do not need temporary");
3793       if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
3794         __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
3795       }
3796       __ xorps(dest->as_xmm_float_reg(),
3797                ExternalAddress((address)float_signflip_pool));
3798     }
3799   } else if (dest->is_double_xmm()) {
3800 #ifdef _LP64
3801     if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {
3802       assert(tmp->is_valid(), "need temporary");
3803       assert_different_registers(left->as_xmm_double_reg(), tmp->as_xmm_double_reg());
3804       __ vpxor(dest->as_xmm_double_reg(), tmp->as_xmm_double_reg(), left->as_xmm_double_reg(), 2);
3805     }
3806     else
3807 #endif
3808     {
3809       assert(!tmp->is_valid(), "do not need temporary");
3810       if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
3811         __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
3812       }
3813       __ xorpd(dest->as_xmm_double_reg(),
3814                ExternalAddress((address)double_signflip_pool));
3815     }
3816   } else if (left->is_single_fpu() || left->is_double_fpu()) {
3817     assert(left->fpu() == 0, "arg must be on TOS");
3818     assert(dest->fpu() == 0, "dest must be TOS");
3819     __ fchs();
3820 
3821   } else {
3822     ShouldNotReachHere();
3823   }
3824 }
3825 
3826 
3827 void LIR_Assembler::leal(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
3828   assert(src->is_address(), "must be an address");
3829   assert(dest->is_register(), "must be a register");
3830 
3831   PatchingStub* patch = NULL;
3832   if (patch_code != lir_patch_none) {
3833     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
3834   }
3835 
3836   Register reg = dest->as_pointer_register();
3837   LIR_Address* addr = src->as_address_ptr();
3838   __ lea(reg, as_Address(addr));
3839 
3840   if (patch != NULL) {
3841     patching_epilog(patch, patch_code, addr->base()->as_register(), info);
3842   }
3843 }
3844 
3845 
3846 
3847 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
3848   assert(!tmp->is_valid(), "don't need temporary");
3849   __ call(RuntimeAddress(dest));
3850   if (info != NULL) {
3851     add_call_info_here(info);
3852   }
3853 }
3854 
3855 
3856 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
3857   assert(type == T_LONG, "only for volatile long fields");
3858 
3859   if (info != NULL) {
3860     add_debug_info_for_null_check_here(info);
3861   }
3862 
3863   if (src->is_double_xmm()) {
3864     if (dest->is_double_cpu()) {
3865 #ifdef _LP64
3866       __ movdq(dest->as_register_lo(), src->as_xmm_double_reg());
3867 #else
3868       __ movdl(dest->as_register_lo(), src->as_xmm_double_reg());
3869       __ psrlq(src->as_xmm_double_reg(), 32);
3870       __ movdl(dest->as_register_hi(), src->as_xmm_double_reg());
3871 #endif // _LP64
3872     } else if (dest->is_double_stack()) {
3873       __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg());
3874     } else if (dest->is_address()) {
3875       __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg());
3876     } else {
3877       ShouldNotReachHere();
3878     }
3879 
3880   } else if (dest->is_double_xmm()) {
3881     if (src->is_double_stack()) {
3882       __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix()));
3883     } else if (src->is_address()) {
3884       __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr()));
3885     } else {
3886       ShouldNotReachHere();
3887     }
3888 
3889   } else if (src->is_double_fpu()) {
3890     assert(src->fpu_regnrLo() == 0, "must be TOS");
3891     if (dest->is_double_stack()) {
3892       __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix()));
3893     } else if (dest->is_address()) {
3894       __ fistp_d(as_Address(dest->as_address_ptr()));
3895     } else {
3896       ShouldNotReachHere();
3897     }
3898 
3899   } else if (dest->is_double_fpu()) {
3900     assert(dest->fpu_regnrLo() == 0, "must be TOS");
3901     if (src->is_double_stack()) {
3902       __ fild_d(frame_map()->address_for_slot(src->double_stack_ix()));
3903     } else if (src->is_address()) {
3904       __ fild_d(as_Address(src->as_address_ptr()));
3905     } else {
3906       ShouldNotReachHere();
3907     }
3908   } else {
3909     ShouldNotReachHere();
3910   }
3911 }
3912 
3913 #ifdef ASSERT
3914 // emit run-time assertion
3915 void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
3916   assert(op->code() == lir_assert, "must be");
3917 
3918   if (op->in_opr1()->is_valid()) {
3919     assert(op->in_opr2()->is_valid(), "both operands must be valid");
3920     comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op);
3921   } else {
3922     assert(op->in_opr2()->is_illegal(), "both operands must be illegal");
3923     assert(op->condition() == lir_cond_always, "no other conditions allowed");
3924   }
3925 
3926   Label ok;
3927   if (op->condition() != lir_cond_always) {
3928     Assembler::Condition acond = Assembler::zero;
3929     switch (op->condition()) {
3930       case lir_cond_equal:        acond = Assembler::equal;       break;
3931       case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
3932       case lir_cond_less:         acond = Assembler::less;        break;
3933       case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
3934       case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
3935       case lir_cond_greater:      acond = Assembler::greater;     break;
3936       case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
3937       case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
3938       default:                    ShouldNotReachHere();
3939     }
3940     __ jcc(acond, ok);
3941   }
3942   if (op->halt()) {
3943     const char* str = __ code_string(op->msg());
3944     __ stop(str);
3945   } else {
3946     breakpoint();
3947   }
3948   __ bind(ok);
3949 }
3950 #endif
3951 
3952 void LIR_Assembler::membar() {
3953   // QQQ sparc TSO uses this,
3954   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad));
3955 }
3956 
3957 void LIR_Assembler::membar_acquire() {
3958   // No x86 machines currently require load fences
3959 }
3960 
3961 void LIR_Assembler::membar_release() {
3962   // No x86 machines currently require store fences
3963 }
3964 
3965 void LIR_Assembler::membar_loadload() {
3966   // no-op
3967   //__ membar(Assembler::Membar_mask_bits(Assembler::loadload));
3968 }
3969 
3970 void LIR_Assembler::membar_storestore() {
3971   // no-op
3972   //__ membar(Assembler::Membar_mask_bits(Assembler::storestore));
3973 }
3974 
3975 void LIR_Assembler::membar_loadstore() {
3976   // no-op
3977   //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore));
3978 }
3979 
3980 void LIR_Assembler::membar_storeload() {
3981   __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
3982 }
3983 
3984 void LIR_Assembler::on_spin_wait() {
3985   __ pause ();
3986 }
3987 
3988 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
3989   assert(result_reg->is_register(), "check");
3990 #ifdef _LP64
3991   // __ get_thread(result_reg->as_register_lo());
3992   __ mov(result_reg->as_register(), r15_thread);
3993 #else
3994   __ get_thread(result_reg->as_register());
3995 #endif // _LP64
3996 }
3997 
3998 
3999 void LIR_Assembler::peephole(LIR_List*) {
4000   // do nothing for now
4001 }
4002 
4003 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) {
4004   assert(data == dest, "xchg/xadd uses only 2 operands");
4005 
4006   if (data->type() == T_INT) {
4007     if (code == lir_xadd) {
4008       __ lock();
4009       __ xaddl(as_Address(src->as_address_ptr()), data->as_register());
4010     } else {
4011       __ xchgl(data->as_register(), as_Address(src->as_address_ptr()));
4012     }
4013   } else if (data->is_oop()) {
4014     assert (code == lir_xchg, "xadd for oops");
4015     Register obj = data->as_register();
4016 #ifdef _LP64
4017     if (UseCompressedOops) {
4018       __ encode_heap_oop(obj);
4019       __ xchgl(obj, as_Address(src->as_address_ptr()));
4020       __ decode_heap_oop(obj);
4021     } else {
4022       __ xchgptr(obj, as_Address(src->as_address_ptr()));
4023     }
4024 #else
4025     __ xchgl(obj, as_Address(src->as_address_ptr()));
4026 #endif
4027   } else if (data->type() == T_LONG) {
4028 #ifdef _LP64
4029     assert(data->as_register_lo() == data->as_register_hi(), "should be a single register");
4030     if (code == lir_xadd) {
4031       __ lock();
4032       __ xaddq(as_Address(src->as_address_ptr()), data->as_register_lo());
4033     } else {
4034       __ xchgq(data->as_register_lo(), as_Address(src->as_address_ptr()));
4035     }
4036 #else
4037     ShouldNotReachHere();
4038 #endif
4039   } else {
4040     ShouldNotReachHere();
4041   }
4042 }
4043 
4044 #undef __