1 /*
   2  * Copyright (c) 1999, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/codeBuffer.hpp"
  27 #include "c1/c1_CodeStubs.hpp"
  28 #include "c1/c1_Defs.hpp"
  29 #include "c1/c1_FrameMap.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_MacroAssembler.hpp"
  32 #include "c1/c1_Runtime1.hpp"
  33 #include "classfile/systemDictionary.hpp"
  34 #include "classfile/vmSymbols.hpp"
  35 #include "code/codeBlob.hpp"
  36 #include "code/compiledIC.hpp"
  37 #include "code/pcDesc.hpp"
  38 #include "code/scopeDesc.hpp"
  39 #include "code/vtableStubs.hpp"
  40 #include "compiler/disassembler.hpp"
  41 #include "gc/shared/barrierSet.hpp"
  42 #include "gc/shared/c1/barrierSetC1.hpp"
  43 #include "gc/shared/collectedHeap.hpp"
  44 #include "interpreter/bytecode.hpp"
  45 #include "interpreter/interpreter.hpp"
  46 #include "jfr/support/jfrIntrinsics.hpp"
  47 #include "logging/log.hpp"
  48 #include "memory/allocation.inline.hpp"
  49 #include "memory/oopFactory.hpp"
  50 #include "memory/resourceArea.hpp"
  51 #include "oops/access.inline.hpp"
  52 #include "oops/objArrayOop.inline.hpp"
  53 #include "oops/objArrayKlass.hpp"
  54 #include "oops/oop.inline.hpp"
  55 #include "oops/valueArrayKlass.hpp"
  56 #include "oops/valueArrayOop.inline.hpp"
  57 #include "runtime/atomic.hpp"
  58 #include "runtime/biasedLocking.hpp"
  59 #include "runtime/compilationPolicy.hpp"
  60 #include "runtime/fieldDescriptor.inline.hpp"
  61 #include "runtime/frame.inline.hpp"
  62 #include "runtime/interfaceSupport.inline.hpp"
  63 #include "runtime/javaCalls.hpp"
  64 #include "runtime/sharedRuntime.hpp"
  65 #include "runtime/threadCritical.hpp"
  66 #include "runtime/vframe.inline.hpp"
  67 #include "runtime/vframeArray.hpp"
  68 #include "runtime/vm_version.hpp"
  69 #include "utilities/copy.hpp"
  70 #include "utilities/events.hpp"
  71 
  72 
  73 // Implementation of StubAssembler
  74 
  75 StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) {
  76   _name = name;
  77   _must_gc_arguments = false;
  78   _frame_size = no_frame_size;
  79   _num_rt_args = 0;
  80   _stub_id = stub_id;
  81 }
  82 
  83 
  84 void StubAssembler::set_info(const char* name, bool must_gc_arguments) {
  85   _name = name;
  86   _must_gc_arguments = must_gc_arguments;
  87 }
  88 
  89 
  90 void StubAssembler::set_frame_size(int size) {
  91   if (_frame_size == no_frame_size) {
  92     _frame_size = size;
  93   }
  94   assert(_frame_size == size, "can't change the frame size");
  95 }
  96 
  97 
  98 void StubAssembler::set_num_rt_args(int args) {
  99   if (_num_rt_args == 0) {
 100     _num_rt_args = args;
 101   }
 102   assert(_num_rt_args == args, "can't change the number of args");
 103 }
 104 
 105 // Implementation of Runtime1
 106 
 107 CodeBlob* Runtime1::_blobs[Runtime1::number_of_ids];
 108 const char *Runtime1::_blob_names[] = {
 109   RUNTIME1_STUBS(STUB_NAME, LAST_STUB_NAME)
 110 };
 111 
 112 #ifndef PRODUCT
 113 // statistics
 114 int Runtime1::_generic_arraycopy_cnt = 0;
 115 int Runtime1::_generic_arraycopystub_cnt = 0;
 116 int Runtime1::_arraycopy_slowcase_cnt = 0;
 117 int Runtime1::_arraycopy_checkcast_cnt = 0;
 118 int Runtime1::_arraycopy_checkcast_attempt_cnt = 0;
 119 int Runtime1::_new_type_array_slowcase_cnt = 0;
 120 int Runtime1::_new_object_array_slowcase_cnt = 0;
 121 int Runtime1::_new_instance_slowcase_cnt = 0;
 122 int Runtime1::_new_multi_array_slowcase_cnt = 0;
 123 int Runtime1::_load_flattened_array_slowcase_cnt = 0;
 124 int Runtime1::_store_flattened_array_slowcase_cnt = 0;
 125 int Runtime1::_monitorenter_slowcase_cnt = 0;
 126 int Runtime1::_monitorexit_slowcase_cnt = 0;
 127 int Runtime1::_patch_code_slowcase_cnt = 0;
 128 int Runtime1::_throw_range_check_exception_count = 0;
 129 int Runtime1::_throw_index_exception_count = 0;
 130 int Runtime1::_throw_div0_exception_count = 0;
 131 int Runtime1::_throw_null_pointer_exception_count = 0;
 132 int Runtime1::_throw_class_cast_exception_count = 0;
 133 int Runtime1::_throw_incompatible_class_change_error_count = 0;
 134 int Runtime1::_throw_illegal_monitor_state_exception_count = 0;
 135 int Runtime1::_throw_array_store_exception_count = 0;
 136 int Runtime1::_throw_count = 0;
 137 
 138 static int _byte_arraycopy_stub_cnt = 0;
 139 static int _short_arraycopy_stub_cnt = 0;
 140 static int _int_arraycopy_stub_cnt = 0;
 141 static int _long_arraycopy_stub_cnt = 0;
 142 static int _oop_arraycopy_stub_cnt = 0;
 143 
 144 address Runtime1::arraycopy_count_address(BasicType type) {
 145   switch (type) {
 146   case T_BOOLEAN:
 147   case T_BYTE:   return (address)&_byte_arraycopy_stub_cnt;
 148   case T_CHAR:
 149   case T_SHORT:  return (address)&_short_arraycopy_stub_cnt;
 150   case T_FLOAT:
 151   case T_INT:    return (address)&_int_arraycopy_stub_cnt;
 152   case T_DOUBLE:
 153   case T_LONG:   return (address)&_long_arraycopy_stub_cnt;
 154   case T_ARRAY:
 155   case T_OBJECT: return (address)&_oop_arraycopy_stub_cnt;
 156   default:
 157     ShouldNotReachHere();
 158     return NULL;
 159   }
 160 }
 161 
 162 
 163 #endif
 164 
 165 // Simple helper to see if the caller of a runtime stub which
 166 // entered the VM has been deoptimized
 167 
 168 static bool caller_is_deopted() {
 169   JavaThread* thread = JavaThread::current();
 170   RegisterMap reg_map(thread, false);
 171   frame runtime_frame = thread->last_frame();
 172   frame caller_frame = runtime_frame.sender(&reg_map);
 173   assert(caller_frame.is_compiled_frame(), "must be compiled");
 174   return caller_frame.is_deoptimized_frame();
 175 }
 176 
 177 // Stress deoptimization
 178 static void deopt_caller() {
 179   if ( !caller_is_deopted()) {
 180     JavaThread* thread = JavaThread::current();
 181     RegisterMap reg_map(thread, false);
 182     frame runtime_frame = thread->last_frame();
 183     frame caller_frame = runtime_frame.sender(&reg_map);
 184     Deoptimization::deoptimize_frame(thread, caller_frame.id());
 185     assert(caller_is_deopted(), "Must be deoptimized");
 186   }
 187 }
 188 
 189 class StubIDStubAssemblerCodeGenClosure: public StubAssemblerCodeGenClosure {
 190  private:
 191   Runtime1::StubID _id;
 192  public:
 193   StubIDStubAssemblerCodeGenClosure(Runtime1::StubID id) : _id(id) {}
 194   virtual OopMapSet* generate_code(StubAssembler* sasm) {
 195     return Runtime1::generate_code_for(_id, sasm);
 196   }
 197 };
 198 
 199 CodeBlob* Runtime1::generate_blob(BufferBlob* buffer_blob, int stub_id, const char* name, bool expect_oop_map, StubAssemblerCodeGenClosure* cl) {
 200   ResourceMark rm;
 201   // create code buffer for code storage
 202   CodeBuffer code(buffer_blob);
 203 
 204   OopMapSet* oop_maps;
 205   int frame_size;
 206   bool must_gc_arguments;
 207 
 208   Compilation::setup_code_buffer(&code, 0);
 209 
 210   // create assembler for code generation
 211   StubAssembler* sasm = new StubAssembler(&code, name, stub_id);
 212   // generate code for runtime stub
 213   oop_maps = cl->generate_code(sasm);
 214   assert(oop_maps == NULL || sasm->frame_size() != no_frame_size,
 215          "if stub has an oop map it must have a valid frame size");
 216   assert(!expect_oop_map || oop_maps != NULL, "must have an oopmap");
 217 
 218   // align so printing shows nop's instead of random code at the end (SimpleStubs are aligned)
 219   sasm->align(BytesPerWord);
 220   // make sure all code is in code buffer
 221   sasm->flush();
 222 
 223   frame_size = sasm->frame_size();
 224   must_gc_arguments = sasm->must_gc_arguments();
 225   // create blob - distinguish a few special cases
 226   CodeBlob* blob = RuntimeStub::new_runtime_stub(name,
 227                                                  &code,
 228                                                  CodeOffsets::frame_never_safe,
 229                                                  frame_size,
 230                                                  oop_maps,
 231                                                  must_gc_arguments);
 232   assert(blob != NULL, "blob must exist");
 233   return blob;
 234 }
 235 
 236 void Runtime1::generate_blob_for(BufferBlob* buffer_blob, StubID id) {
 237   assert(0 <= id && id < number_of_ids, "illegal stub id");
 238   bool expect_oop_map = true;
 239 #ifdef ASSERT
 240   // Make sure that stubs that need oopmaps have them
 241   switch (id) {
 242     // These stubs don't need to have an oopmap
 243   case dtrace_object_alloc_id:
 244   case slow_subtype_check_id:
 245   case fpu2long_stub_id:
 246   case unwind_exception_id:
 247   case counter_overflow_id:
 248 #if defined(SPARC) || defined(PPC32)
 249   case handle_exception_nofpu_id:  // Unused on sparc
 250 #endif
 251     expect_oop_map = false;
 252     break;
 253   default:
 254     break;
 255   }
 256 #endif
 257   StubIDStubAssemblerCodeGenClosure cl(id);
 258   CodeBlob* blob = generate_blob(buffer_blob, id, name_for(id), expect_oop_map, &cl);
 259   // install blob
 260   _blobs[id] = blob;
 261 }
 262 
 263 void Runtime1::initialize(BufferBlob* blob) {
 264   // platform-dependent initialization
 265   initialize_pd();
 266   // generate stubs
 267   for (int id = 0; id < number_of_ids; id++) generate_blob_for(blob, (StubID)id);
 268   // printing
 269 #ifndef PRODUCT
 270   if (PrintSimpleStubs) {
 271     ResourceMark rm;
 272     for (int id = 0; id < number_of_ids; id++) {
 273       _blobs[id]->print();
 274       if (_blobs[id]->oop_maps() != NULL) {
 275         _blobs[id]->oop_maps()->print();
 276       }
 277     }
 278   }
 279 #endif
 280   BarrierSetC1* bs = BarrierSet::barrier_set()->barrier_set_c1();
 281   bs->generate_c1_runtime_stubs(blob);
 282 }
 283 
 284 CodeBlob* Runtime1::blob_for(StubID id) {
 285   assert(0 <= id && id < number_of_ids, "illegal stub id");
 286   return _blobs[id];
 287 }
 288 
 289 
 290 const char* Runtime1::name_for(StubID id) {
 291   assert(0 <= id && id < number_of_ids, "illegal stub id");
 292   return _blob_names[id];
 293 }
 294 
 295 const char* Runtime1::name_for_address(address entry) {
 296   for (int id = 0; id < number_of_ids; id++) {
 297     if (entry == entry_for((StubID)id)) return name_for((StubID)id);
 298   }
 299 
 300 #define FUNCTION_CASE(a, f) \
 301   if ((intptr_t)a == CAST_FROM_FN_PTR(intptr_t, f))  return #f
 302 
 303   FUNCTION_CASE(entry, os::javaTimeMillis);
 304   FUNCTION_CASE(entry, os::javaTimeNanos);
 305   FUNCTION_CASE(entry, SharedRuntime::OSR_migration_end);
 306   FUNCTION_CASE(entry, SharedRuntime::d2f);
 307   FUNCTION_CASE(entry, SharedRuntime::d2i);
 308   FUNCTION_CASE(entry, SharedRuntime::d2l);
 309   FUNCTION_CASE(entry, SharedRuntime::dcos);
 310   FUNCTION_CASE(entry, SharedRuntime::dexp);
 311   FUNCTION_CASE(entry, SharedRuntime::dlog);
 312   FUNCTION_CASE(entry, SharedRuntime::dlog10);
 313   FUNCTION_CASE(entry, SharedRuntime::dpow);
 314   FUNCTION_CASE(entry, SharedRuntime::drem);
 315   FUNCTION_CASE(entry, SharedRuntime::dsin);
 316   FUNCTION_CASE(entry, SharedRuntime::dtan);
 317   FUNCTION_CASE(entry, SharedRuntime::f2i);
 318   FUNCTION_CASE(entry, SharedRuntime::f2l);
 319   FUNCTION_CASE(entry, SharedRuntime::frem);
 320   FUNCTION_CASE(entry, SharedRuntime::l2d);
 321   FUNCTION_CASE(entry, SharedRuntime::l2f);
 322   FUNCTION_CASE(entry, SharedRuntime::ldiv);
 323   FUNCTION_CASE(entry, SharedRuntime::lmul);
 324   FUNCTION_CASE(entry, SharedRuntime::lrem);
 325   FUNCTION_CASE(entry, SharedRuntime::lrem);
 326   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_entry);
 327   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit);
 328   FUNCTION_CASE(entry, is_instance_of);
 329   FUNCTION_CASE(entry, trace_block_entry);
 330 #ifdef JFR_HAVE_INTRINSICS
 331   FUNCTION_CASE(entry, JFR_TIME_FUNCTION);
 332 #endif
 333   FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32());
 334   FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32C());
 335   FUNCTION_CASE(entry, StubRoutines::vectorizedMismatch());
 336   FUNCTION_CASE(entry, StubRoutines::dexp());
 337   FUNCTION_CASE(entry, StubRoutines::dlog());
 338   FUNCTION_CASE(entry, StubRoutines::dlog10());
 339   FUNCTION_CASE(entry, StubRoutines::dpow());
 340   FUNCTION_CASE(entry, StubRoutines::dsin());
 341   FUNCTION_CASE(entry, StubRoutines::dcos());
 342   FUNCTION_CASE(entry, StubRoutines::dtan());
 343 
 344 #undef FUNCTION_CASE
 345 
 346   // Soft float adds more runtime names.
 347   return pd_name_for_address(entry);
 348 }
 349 
 350 
 351 JRT_ENTRY(void, Runtime1::new_instance(JavaThread* thread, Klass* klass))
 352   NOT_PRODUCT(_new_instance_slowcase_cnt++;)
 353 
 354   assert(klass->is_klass(), "not a class");
 355   Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
 356   InstanceKlass* h = InstanceKlass::cast(klass);
 357   h->check_valid_for_instantiation(true, CHECK);
 358   // make sure klass is initialized
 359   h->initialize(CHECK);
 360   // allocate instance and return via TLS
 361   oop obj = h->allocate_instance(CHECK);
 362   thread->set_vm_result(obj);
 363 JRT_END
 364 
 365 
 366 JRT_ENTRY(void, Runtime1::new_type_array(JavaThread* thread, Klass* klass, jint length))
 367   NOT_PRODUCT(_new_type_array_slowcase_cnt++;)
 368   // Note: no handle for klass needed since they are not used
 369   //       anymore after new_typeArray() and no GC can happen before.
 370   //       (This may have to change if this code changes!)
 371   assert(klass->is_klass(), "not a class");
 372   BasicType elt_type = TypeArrayKlass::cast(klass)->element_type();
 373   oop obj = oopFactory::new_typeArray(elt_type, length, CHECK);
 374   thread->set_vm_result(obj);
 375   // This is pretty rare but this runtime patch is stressful to deoptimization
 376   // if we deoptimize here so force a deopt to stress the path.
 377   if (DeoptimizeALot) {
 378     deopt_caller();
 379   }
 380 
 381 JRT_END
 382 
 383 
 384 JRT_ENTRY(void, Runtime1::new_object_array(JavaThread* thread, Klass* array_klass, jint length))
 385   NOT_PRODUCT(_new_object_array_slowcase_cnt++;)
 386 
 387   // Note: no handle for klass needed since they are not used
 388   //       anymore after new_objArray() and no GC can happen before.
 389   //       (This may have to change if this code changes!)
 390   assert(array_klass->is_klass(), "not a class");
 391   Handle holder(THREAD, array_klass->klass_holder()); // keep the klass alive
 392   Klass* elem_klass = ArrayKlass::cast(array_klass)->element_klass();
 393   if (elem_klass->is_value()) {
 394     arrayOop obj = oopFactory::new_valueArray(elem_klass, length, CHECK);
 395     thread->set_vm_result(obj);
 396   } else {
 397     objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK);
 398     thread->set_vm_result(obj);
 399   }
 400   // This is pretty rare but this runtime patch is stressful to deoptimization
 401   // if we deoptimize here so force a deopt to stress the path.
 402   if (DeoptimizeALot) {
 403     deopt_caller();
 404   }
 405 JRT_END
 406 
 407 
 408 JRT_ENTRY(void, Runtime1::new_multi_array(JavaThread* thread, Klass* klass, int rank, jint* dims))
 409   NOT_PRODUCT(_new_multi_array_slowcase_cnt++;)
 410 
 411   assert(klass->is_klass(), "not a class");
 412   assert(rank >= 1, "rank must be nonzero");
 413   Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
 414   oop obj = ArrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK);
 415   thread->set_vm_result(obj);
 416 JRT_END
 417 
 418 
 419 JRT_ENTRY(void, Runtime1::load_flattened_array(JavaThread* thread, valueArrayOopDesc* array, int index))
 420   NOT_PRODUCT(_load_flattened_array_slowcase_cnt++;)
 421   Klass* klass = array->klass();
 422   assert(klass->is_valueArray_klass(), "expected value array oop");
 423   assert(array->length() > 0 && index < array->length(), "already checked");
 424 
 425   ValueArrayKlass* vaklass = ValueArrayKlass::cast(klass);
 426   ValueKlass* vklass = vaklass->element_klass();
 427 
 428   // We have a non-empty flattened array, so the element type must have been initialized.
 429   assert(vklass->is_initialized(), "must be");
 430   Handle holder(THREAD, vklass->klass_holder()); // keep the vklass alive
 431   oop obj = vklass->allocate_instance(CHECK);
 432 
 433   void* src = array->value_at_addr(index, vaklass->layout_helper());
 434   vklass->value_store(src, vklass->data_for_oop(obj),
 435                       vaklass->element_byte_size(), true, false);
 436   thread->set_vm_result(obj);
 437 JRT_END
 438 
 439 
 440 JRT_ENTRY(void, Runtime1::store_flattened_array(JavaThread* thread, valueArrayOopDesc* array, int index, oopDesc* value))
 441   NOT_PRODUCT(_store_flattened_array_slowcase_cnt++;)
 442   if (value == NULL) {
 443     SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 444   } else {
 445     Klass* klass = array->klass();
 446     assert(klass->is_valueArray_klass(), "expected value array");
 447     assert(ArrayKlass::cast(klass)->element_klass() == value->klass(), "Store type incorrect");
 448 
 449     ValueArrayKlass* vaklass = ValueArrayKlass::cast(klass);
 450     ValueKlass* vklass = vaklass->element_klass();
 451     const int lh = vaklass->layout_helper();
 452     vklass->value_store(vklass->data_for_oop(value), array->value_at_addr(index, lh),
 453                         vaklass->element_byte_size(), true, false);
 454   }
 455 JRT_END
 456 
 457 
 458 JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* thread, StubID id))
 459   tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point", id);
 460 JRT_END
 461 
 462 
 463 JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* thread, oopDesc* obj))
 464   ResourceMark rm(thread);
 465   const char* klass_name = obj->klass()->external_name();
 466   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayStoreException(), klass_name);
 467 JRT_END
 468 
 469 
 470 // counter_overflow() is called from within C1-compiled methods. The enclosing method is the method
 471 // associated with the top activation record. The inlinee (that is possibly included in the enclosing
 472 // method) method oop is passed as an argument. In order to do that it is embedded in the code as
 473 // a constant.
 474 static nmethod* counter_overflow_helper(JavaThread* THREAD, int branch_bci, Method* m) {
 475   nmethod* osr_nm = NULL;
 476   methodHandle method(THREAD, m);
 477 
 478   RegisterMap map(THREAD, false);
 479   frame fr =  THREAD->last_frame().sender(&map);
 480   nmethod* nm = (nmethod*) fr.cb();
 481   assert(nm!= NULL && nm->is_nmethod(), "Sanity check");
 482   methodHandle enclosing_method(THREAD, nm->method());
 483 
 484   CompLevel level = (CompLevel)nm->comp_level();
 485   int bci = InvocationEntryBci;
 486   if (branch_bci != InvocationEntryBci) {
 487     // Compute destination bci
 488     address pc = method()->code_base() + branch_bci;
 489     Bytecodes::Code branch = Bytecodes::code_at(method(), pc);
 490     int offset = 0;
 491     switch (branch) {
 492       case Bytecodes::_if_icmplt: case Bytecodes::_iflt:
 493       case Bytecodes::_if_icmpgt: case Bytecodes::_ifgt:
 494       case Bytecodes::_if_icmple: case Bytecodes::_ifle:
 495       case Bytecodes::_if_icmpge: case Bytecodes::_ifge:
 496       case Bytecodes::_if_icmpeq: case Bytecodes::_if_acmpeq: case Bytecodes::_ifeq:
 497       case Bytecodes::_if_icmpne: case Bytecodes::_if_acmpne: case Bytecodes::_ifne:
 498       case Bytecodes::_ifnull: case Bytecodes::_ifnonnull: case Bytecodes::_goto:
 499         offset = (int16_t)Bytes::get_Java_u2(pc + 1);
 500         break;
 501       case Bytecodes::_goto_w:
 502         offset = Bytes::get_Java_u4(pc + 1);
 503         break;
 504       default: ;
 505     }
 506     bci = branch_bci + offset;
 507   }
 508   assert(!HAS_PENDING_EXCEPTION, "Should not have any exceptions pending");
 509   osr_nm = CompilationPolicy::policy()->event(enclosing_method, method, branch_bci, bci, level, nm, THREAD);
 510   assert(!HAS_PENDING_EXCEPTION, "Event handler should not throw any exceptions");
 511   return osr_nm;
 512 }
 513 
 514 JRT_BLOCK_ENTRY(address, Runtime1::counter_overflow(JavaThread* thread, int bci, Method* method))
 515   nmethod* osr_nm;
 516   JRT_BLOCK
 517     osr_nm = counter_overflow_helper(thread, bci, method);
 518     if (osr_nm != NULL) {
 519       RegisterMap map(thread, false);
 520       frame fr =  thread->last_frame().sender(&map);
 521       Deoptimization::deoptimize_frame(thread, fr.id());
 522     }
 523   JRT_BLOCK_END
 524   return NULL;
 525 JRT_END
 526 
 527 extern void vm_exit(int code);
 528 
 529 // Enter this method from compiled code handler below. This is where we transition
 530 // to VM mode. This is done as a helper routine so that the method called directly
 531 // from compiled code does not have to transition to VM. This allows the entry
 532 // method to see if the nmethod that we have just looked up a handler for has
 533 // been deoptimized while we were in the vm. This simplifies the assembly code
 534 // cpu directories.
 535 //
 536 // We are entering here from exception stub (via the entry method below)
 537 // If there is a compiled exception handler in this method, we will continue there;
 538 // otherwise we will unwind the stack and continue at the caller of top frame method
 539 // Note: we enter in Java using a special JRT wrapper. This wrapper allows us to
 540 // control the area where we can allow a safepoint. After we exit the safepoint area we can
 541 // check to see if the handler we are going to return is now in a nmethod that has
 542 // been deoptimized. If that is the case we return the deopt blob
 543 // unpack_with_exception entry instead. This makes life for the exception blob easier
 544 // because making that same check and diverting is painful from assembly language.
 545 JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* thread, oopDesc* ex, address pc, nmethod*& nm))
 546   // Reset method handle flag.
 547   thread->set_is_method_handle_return(false);
 548 
 549   Handle exception(thread, ex);
 550   nm = CodeCache::find_nmethod(pc);
 551   assert(nm != NULL, "this is not an nmethod");
 552   // Adjust the pc as needed/
 553   if (nm->is_deopt_pc(pc)) {
 554     RegisterMap map(thread, false);
 555     frame exception_frame = thread->last_frame().sender(&map);
 556     // if the frame isn't deopted then pc must not correspond to the caller of last_frame
 557     assert(exception_frame.is_deoptimized_frame(), "must be deopted");
 558     pc = exception_frame.pc();
 559   }
 560 #ifdef ASSERT
 561   assert(exception.not_null(), "NULL exceptions should be handled by throw_exception");
 562   // Check that exception is a subclass of Throwable, otherwise we have a VerifyError
 563   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
 564     if (ExitVMOnVerifyError) vm_exit(-1);
 565     ShouldNotReachHere();
 566   }
 567 #endif
 568 
 569   // Check the stack guard pages and reenable them if necessary and there is
 570   // enough space on the stack to do so.  Use fast exceptions only if the guard
 571   // pages are enabled.
 572   bool guard_pages_enabled = thread->stack_guards_enabled();
 573   if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 574 
 575   if (JvmtiExport::can_post_on_exceptions()) {
 576     // To ensure correct notification of exception catches and throws
 577     // we have to deoptimize here.  If we attempted to notify the
 578     // catches and throws during this exception lookup it's possible
 579     // we could deoptimize on the way out of the VM and end back in
 580     // the interpreter at the throw site.  This would result in double
 581     // notifications since the interpreter would also notify about
 582     // these same catches and throws as it unwound the frame.
 583 
 584     RegisterMap reg_map(thread);
 585     frame stub_frame = thread->last_frame();
 586     frame caller_frame = stub_frame.sender(&reg_map);
 587 
 588     // We don't really want to deoptimize the nmethod itself since we
 589     // can actually continue in the exception handler ourselves but I
 590     // don't see an easy way to have the desired effect.
 591     Deoptimization::deoptimize_frame(thread, caller_frame.id());
 592     assert(caller_is_deopted(), "Must be deoptimized");
 593 
 594     return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 595   }
 596 
 597   // ExceptionCache is used only for exceptions at call sites and not for implicit exceptions
 598   if (guard_pages_enabled) {
 599     address fast_continuation = nm->handler_for_exception_and_pc(exception, pc);
 600     if (fast_continuation != NULL) {
 601       // Set flag if return address is a method handle call site.
 602       thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
 603       return fast_continuation;
 604     }
 605   }
 606 
 607   // If the stack guard pages are enabled, check whether there is a handler in
 608   // the current method.  Otherwise (guard pages disabled), force an unwind and
 609   // skip the exception cache update (i.e., just leave continuation==NULL).
 610   address continuation = NULL;
 611   if (guard_pages_enabled) {
 612 
 613     // New exception handling mechanism can support inlined methods
 614     // with exception handlers since the mappings are from PC to PC
 615 
 616     // debugging support
 617     // tracing
 618     if (log_is_enabled(Info, exceptions)) {
 619       ResourceMark rm;
 620       stringStream tempst;
 621       assert(nm->method() != NULL, "Unexpected NULL method()");
 622       tempst.print("compiled method <%s>\n"
 623                    " at PC" INTPTR_FORMAT " for thread " INTPTR_FORMAT,
 624                    nm->method()->print_value_string(), p2i(pc), p2i(thread));
 625       Exceptions::log_exception(exception, tempst);
 626     }
 627     // for AbortVMOnException flag
 628     Exceptions::debug_check_abort(exception);
 629 
 630     // Clear out the exception oop and pc since looking up an
 631     // exception handler can cause class loading, which might throw an
 632     // exception and those fields are expected to be clear during
 633     // normal bytecode execution.
 634     thread->clear_exception_oop_and_pc();
 635 
 636     bool recursive_exception = false;
 637     continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false, recursive_exception);
 638     // If an exception was thrown during exception dispatch, the exception oop may have changed
 639     thread->set_exception_oop(exception());
 640     thread->set_exception_pc(pc);
 641 
 642     // the exception cache is used only by non-implicit exceptions
 643     // Update the exception cache only when there didn't happen
 644     // another exception during the computation of the compiled
 645     // exception handler. Checking for exception oop equality is not
 646     // sufficient because some exceptions are pre-allocated and reused.
 647     if (continuation != NULL && !recursive_exception) {
 648       nm->add_handler_for_exception_and_pc(exception, pc, continuation);
 649     }
 650   }
 651 
 652   thread->set_vm_result(exception());
 653   // Set flag if return address is a method handle call site.
 654   thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
 655 
 656   if (log_is_enabled(Info, exceptions)) {
 657     ResourceMark rm;
 658     log_info(exceptions)("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT
 659                          " for exception thrown at PC " PTR_FORMAT,
 660                          p2i(thread), p2i(continuation), p2i(pc));
 661   }
 662 
 663   return continuation;
 664 JRT_END
 665 
 666 // Enter this method from compiled code only if there is a Java exception handler
 667 // in the method handling the exception.
 668 // We are entering here from exception stub. We don't do a normal VM transition here.
 669 // We do it in a helper. This is so we can check to see if the nmethod we have just
 670 // searched for an exception handler has been deoptimized in the meantime.
 671 address Runtime1::exception_handler_for_pc(JavaThread* thread) {
 672   oop exception = thread->exception_oop();
 673   address pc = thread->exception_pc();
 674   // Still in Java mode
 675   DEBUG_ONLY(ResetNoHandleMark rnhm);
 676   nmethod* nm = NULL;
 677   address continuation = NULL;
 678   {
 679     // Enter VM mode by calling the helper
 680     ResetNoHandleMark rnhm;
 681     continuation = exception_handler_for_pc_helper(thread, exception, pc, nm);
 682   }
 683   // Back in JAVA, use no oops DON'T safepoint
 684 
 685   // Now check to see if the nmethod we were called from is now deoptimized.
 686   // If so we must return to the deopt blob and deoptimize the nmethod
 687   if (nm != NULL && caller_is_deopted()) {
 688     continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 689   }
 690 
 691   assert(continuation != NULL, "no handler found");
 692   return continuation;
 693 }
 694 
 695 
 696 JRT_ENTRY(void, Runtime1::throw_range_check_exception(JavaThread* thread, int index, arrayOopDesc* a))
 697   NOT_PRODUCT(_throw_range_check_exception_count++;)
 698   const int len = 35;
 699   assert(len < strlen("Index %d out of bounds for length %d"), "Must allocate more space for message.");
 700   char message[2 * jintAsStringSize + len];
 701   sprintf(message, "Index %d out of bounds for length %d", index, a->length());
 702   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message);
 703 JRT_END
 704 
 705 
 706 JRT_ENTRY(void, Runtime1::throw_index_exception(JavaThread* thread, int index))
 707   NOT_PRODUCT(_throw_index_exception_count++;)
 708   char message[16];
 709   sprintf(message, "%d", index);
 710   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IndexOutOfBoundsException(), message);
 711 JRT_END
 712 
 713 
 714 JRT_ENTRY(void, Runtime1::throw_div0_exception(JavaThread* thread))
 715   NOT_PRODUCT(_throw_div0_exception_count++;)
 716   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 717 JRT_END
 718 
 719 
 720 JRT_ENTRY(void, Runtime1::throw_null_pointer_exception(JavaThread* thread))
 721   NOT_PRODUCT(_throw_null_pointer_exception_count++;)
 722   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 723 JRT_END
 724 
 725 
 726 JRT_ENTRY(void, Runtime1::throw_class_cast_exception(JavaThread* thread, oopDesc* object))
 727   NOT_PRODUCT(_throw_class_cast_exception_count++;)
 728   ResourceMark rm(thread);
 729   char* message = SharedRuntime::generate_class_cast_message(
 730     thread, object->klass());
 731   SharedRuntime::throw_and_post_jvmti_exception(
 732     thread, vmSymbols::java_lang_ClassCastException(), message);
 733 JRT_END
 734 
 735 
 736 JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* thread))
 737   NOT_PRODUCT(_throw_incompatible_class_change_error_count++;)
 738   ResourceMark rm(thread);
 739   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError());
 740 JRT_END
 741 
 742 
 743 JRT_ENTRY(void, Runtime1::throw_illegal_monitor_state_exception(JavaThread* thread))
 744   NOT_PRODUCT(_throw_illegal_monitor_state_exception_count++;)
 745   ResourceMark rm(thread);
 746   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IllegalMonitorStateException());
 747 JRT_END
 748 
 749 
 750 JRT_ENTRY_NO_ASYNC(void, Runtime1::monitorenter(JavaThread* thread, oopDesc* obj, BasicObjectLock* lock))
 751   NOT_PRODUCT(_monitorenter_slowcase_cnt++;)
 752   if (PrintBiasedLockingStatistics) {
 753     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
 754   }
 755   Handle h_obj(thread, obj);
 756   if (UseBiasedLocking) {
 757     // Retry fast entry if bias is revoked to avoid unnecessary inflation
 758     ObjectSynchronizer::fast_enter(h_obj, lock->lock(), true, CHECK);
 759   } else {
 760     if (UseFastLocking) {
 761       // When using fast locking, the compiled code has already tried the fast case
 762       assert(obj == lock->obj(), "must match");
 763       ObjectSynchronizer::slow_enter(h_obj, lock->lock(), THREAD);
 764     } else {
 765       lock->set_obj(obj);
 766       ObjectSynchronizer::fast_enter(h_obj, lock->lock(), false, THREAD);
 767     }
 768   }
 769 JRT_END
 770 
 771 
 772 JRT_LEAF(void, Runtime1::monitorexit(JavaThread* thread, BasicObjectLock* lock))
 773   NOT_PRODUCT(_monitorexit_slowcase_cnt++;)
 774   assert(thread == JavaThread::current(), "threads must correspond");
 775   assert(thread->last_Java_sp(), "last_Java_sp must be set");
 776   // monitorexit is non-blocking (leaf routine) => no exceptions can be thrown
 777   EXCEPTION_MARK;
 778 
 779   oop obj = lock->obj();
 780   assert(oopDesc::is_oop(obj), "must be NULL or an object");
 781   if (UseFastLocking) {
 782     // When using fast locking, the compiled code has already tried the fast case
 783     ObjectSynchronizer::slow_exit(obj, lock->lock(), THREAD);
 784   } else {
 785     ObjectSynchronizer::fast_exit(obj, lock->lock(), THREAD);
 786   }
 787 JRT_END
 788 
 789 // Cf. OptoRuntime::deoptimize_caller_frame
 790 JRT_ENTRY(void, Runtime1::deoptimize(JavaThread* thread, jint trap_request))
 791   // Called from within the owner thread, so no need for safepoint
 792   RegisterMap reg_map(thread, false);
 793   frame stub_frame = thread->last_frame();
 794   assert(stub_frame.is_runtime_frame(), "Sanity check");
 795   frame caller_frame = stub_frame.sender(&reg_map);
 796   nmethod* nm = caller_frame.cb()->as_nmethod_or_null();
 797   assert(nm != NULL, "Sanity check");
 798   methodHandle method(thread, nm->method());
 799   assert(nm == CodeCache::find_nmethod(caller_frame.pc()), "Should be the same");
 800   Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
 801   Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
 802 
 803   if (action == Deoptimization::Action_make_not_entrant) {
 804     if (nm->make_not_entrant()) {
 805       if (reason == Deoptimization::Reason_tenured) {
 806         MethodData* trap_mdo = Deoptimization::get_method_data(thread, method, true /*create_if_missing*/);
 807         if (trap_mdo != NULL) {
 808           trap_mdo->inc_tenure_traps();
 809         }
 810       }
 811     }
 812   }
 813 
 814   // Deoptimize the caller frame.
 815   Deoptimization::deoptimize_frame(thread, caller_frame.id());
 816   // Return to the now deoptimized frame.
 817 JRT_END
 818 
 819 
 820 #ifndef DEOPTIMIZE_WHEN_PATCHING
 821 
 822 static Klass* resolve_field_return_klass(const methodHandle& caller, int bci, TRAPS) {
 823   Bytecode_field field_access(caller, bci);
 824   // This can be static or non-static field access
 825   Bytecodes::Code code       = field_access.code();
 826 
 827   // We must load class, initialize class and resolve the field
 828   fieldDescriptor result; // initialize class if needed
 829   constantPoolHandle constants(THREAD, caller->constants());
 830   LinkResolver::resolve_field_access(result, constants, field_access.index(), caller, Bytecodes::java_code(code), CHECK_NULL);
 831   return result.field_holder();
 832 }
 833 
 834 
 835 //
 836 // This routine patches sites where a class wasn't loaded or
 837 // initialized at the time the code was generated.  It handles
 838 // references to classes, fields and forcing of initialization.  Most
 839 // of the cases are straightforward and involving simply forcing
 840 // resolution of a class, rewriting the instruction stream with the
 841 // needed constant and replacing the call in this function with the
 842 // patched code.  The case for static field is more complicated since
 843 // the thread which is in the process of initializing a class can
 844 // access it's static fields but other threads can't so the code
 845 // either has to deoptimize when this case is detected or execute a
 846 // check that the current thread is the initializing thread.  The
 847 // current
 848 //
 849 // Patches basically look like this:
 850 //
 851 //
 852 // patch_site: jmp patch stub     ;; will be patched
 853 // continue:   ...
 854 //             ...
 855 //             ...
 856 //             ...
 857 //
 858 // They have a stub which looks like this:
 859 //
 860 //             ;; patch body
 861 //             movl <const>, reg           (for class constants)
 862 //        <or> movl [reg1 + <const>], reg  (for field offsets)
 863 //        <or> movl reg, [reg1 + <const>]  (for field offsets)
 864 //             <being_init offset> <bytes to copy> <bytes to skip>
 865 // patch_stub: call Runtime1::patch_code (through a runtime stub)
 866 //             jmp patch_site
 867 //
 868 //
 869 // A normal patch is done by rewriting the patch body, usually a move,
 870 // and then copying it into place over top of the jmp instruction
 871 // being careful to flush caches and doing it in an MP-safe way.  The
 872 // constants following the patch body are used to find various pieces
 873 // of the patch relative to the call site for Runtime1::patch_code.
 874 // The case for getstatic and putstatic is more complicated because
 875 // getstatic and putstatic have special semantics when executing while
 876 // the class is being initialized.  getstatic/putstatic on a class
 877 // which is being_initialized may be executed by the initializing
 878 // thread but other threads have to block when they execute it.  This
 879 // is accomplished in compiled code by executing a test of the current
 880 // thread against the initializing thread of the class.  It's emitted
 881 // as boilerplate in their stub which allows the patched code to be
 882 // executed before it's copied back into the main body of the nmethod.
 883 //
 884 // being_init: get_thread(<tmp reg>
 885 //             cmpl [reg1 + <init_thread_offset>], <tmp reg>
 886 //             jne patch_stub
 887 //             movl [reg1 + <const>], reg  (for field offsets)  <or>
 888 //             movl reg, [reg1 + <const>]  (for field offsets)
 889 //             jmp continue
 890 //             <being_init offset> <bytes to copy> <bytes to skip>
 891 // patch_stub: jmp Runtim1::patch_code (through a runtime stub)
 892 //             jmp patch_site
 893 //
 894 // If the class is being initialized the patch body is rewritten and
 895 // the patch site is rewritten to jump to being_init, instead of
 896 // patch_stub.  Whenever this code is executed it checks the current
 897 // thread against the intializing thread so other threads will enter
 898 // the runtime and end up blocked waiting the class to finish
 899 // initializing inside the calls to resolve_field below.  The
 900 // initializing class will continue on it's way.  Once the class is
 901 // fully_initialized, the intializing_thread of the class becomes
 902 // NULL, so the next thread to execute this code will fail the test,
 903 // call into patch_code and complete the patching process by copying
 904 // the patch body back into the main part of the nmethod and resume
 905 // executing.
 906 
 907 // NB:
 908 //
 909 // Patchable instruction sequences inherently exhibit race conditions,
 910 // where thread A is patching an instruction at the same time thread B
 911 // is executing it.  The algorithms we use ensure that any observation
 912 // that B can make on any intermediate states during A's patching will
 913 // always end up with a correct outcome.  This is easiest if there are
 914 // few or no intermediate states.  (Some inline caches have two
 915 // related instructions that must be patched in tandem.  For those,
 916 // intermediate states seem to be unavoidable, but we will get the
 917 // right answer from all possible observation orders.)
 918 //
 919 // When patching the entry instruction at the head of a method, or a
 920 // linkable call instruction inside of a method, we try very hard to
 921 // use a patch sequence which executes as a single memory transaction.
 922 // This means, in practice, that when thread A patches an instruction,
 923 // it should patch a 32-bit or 64-bit word that somehow overlaps the
 924 // instruction or is contained in it.  We believe that memory hardware
 925 // will never break up such a word write, if it is naturally aligned
 926 // for the word being written.  We also know that some CPUs work very
 927 // hard to create atomic updates even of naturally unaligned words,
 928 // but we don't want to bet the farm on this always working.
 929 //
 930 // Therefore, if there is any chance of a race condition, we try to
 931 // patch only naturally aligned words, as single, full-word writes.
 932 
 933 JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_id ))
 934   NOT_PRODUCT(_patch_code_slowcase_cnt++;)
 935 
 936   ResourceMark rm(thread);
 937   RegisterMap reg_map(thread, false);
 938   frame runtime_frame = thread->last_frame();
 939   frame caller_frame = runtime_frame.sender(&reg_map);
 940 
 941   // last java frame on stack
 942   vframeStream vfst(thread, true);
 943   assert(!vfst.at_end(), "Java frame must exist");
 944 
 945   methodHandle caller_method(THREAD, vfst.method());
 946   // Note that caller_method->code() may not be same as caller_code because of OSR's
 947   // Note also that in the presence of inlining it is not guaranteed
 948   // that caller_method() == caller_code->method()
 949 
 950   int bci = vfst.bci();
 951   Bytecodes::Code code = caller_method()->java_code_at(bci);
 952 
 953   // this is used by assertions in the access_field_patching_id
 954   BasicType patch_field_type = T_ILLEGAL;
 955   bool deoptimize_for_volatile = false;
 956   bool deoptimize_for_atomic = false;
 957   int patch_field_offset = -1;
 958   Klass* init_klass = NULL; // klass needed by load_klass_patching code
 959   Klass* load_klass = NULL; // klass needed by load_klass_patching code
 960   Handle mirror(THREAD, NULL);                    // oop needed by load_mirror_patching code
 961   Handle appendix(THREAD, NULL);                  // oop needed by appendix_patching code
 962   bool load_klass_or_mirror_patch_id =
 963     (stub_id == Runtime1::load_klass_patching_id || stub_id == Runtime1::load_mirror_patching_id);
 964 
 965   if (stub_id == Runtime1::access_field_patching_id) {
 966 
 967     Bytecode_field field_access(caller_method, bci);
 968     fieldDescriptor result; // initialize class if needed
 969     Bytecodes::Code code = field_access.code();
 970     constantPoolHandle constants(THREAD, caller_method->constants());
 971     LinkResolver::resolve_field_access(result, constants, field_access.index(), caller_method, Bytecodes::java_code(code), CHECK);
 972     patch_field_offset = result.offset();
 973 
 974     // If we're patching a field which is volatile then at compile it
 975     // must not have been know to be volatile, so the generated code
 976     // isn't correct for a volatile reference.  The nmethod has to be
 977     // deoptimized so that the code can be regenerated correctly.
 978     // This check is only needed for access_field_patching since this
 979     // is the path for patching field offsets.  load_klass is only
 980     // used for patching references to oops which don't need special
 981     // handling in the volatile case.
 982 
 983     deoptimize_for_volatile = result.access_flags().is_volatile();
 984 
 985     // If we are patching a field which should be atomic, then
 986     // the generated code is not correct either, force deoptimizing.
 987     // We need to only cover T_LONG and T_DOUBLE fields, as we can
 988     // break access atomicity only for them.
 989 
 990     // Strictly speaking, the deoptimization on 64-bit platforms
 991     // is unnecessary, and T_LONG stores on 32-bit platforms need
 992     // to be handled by special patching code when AlwaysAtomicAccesses
 993     // becomes product feature. At this point, we are still going
 994     // for the deoptimization for consistency against volatile
 995     // accesses.
 996 
 997     patch_field_type = result.field_type();
 998     deoptimize_for_atomic = (AlwaysAtomicAccesses && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG));
 999 
1000   } else if (load_klass_or_mirror_patch_id) {
1001     Klass* k = NULL;
1002     switch (code) {
1003       case Bytecodes::_putstatic:
1004       case Bytecodes::_getstatic:
1005         { Klass* klass = resolve_field_return_klass(caller_method, bci, CHECK);
1006           init_klass = klass;
1007           mirror = Handle(THREAD, klass->java_mirror());
1008         }
1009         break;
1010       case Bytecodes::_new:
1011         { Bytecode_new bnew(caller_method(), caller_method->bcp_from(bci));
1012           k = caller_method->constants()->klass_at(bnew.index(), CHECK);
1013         }
1014         break;
1015       case Bytecodes::_defaultvalue:
1016         { Bytecode_defaultvalue bdefaultvalue(caller_method(), caller_method->bcp_from(bci));
1017           k = caller_method->constants()->klass_at(bdefaultvalue.index(), CHECK);
1018         }
1019         break;
1020       case Bytecodes::_multianewarray:
1021         { Bytecode_multianewarray mna(caller_method(), caller_method->bcp_from(bci));
1022           k = caller_method->constants()->klass_at(mna.index(), CHECK);
1023         }
1024         break;
1025       case Bytecodes::_instanceof:
1026         { Bytecode_instanceof io(caller_method(), caller_method->bcp_from(bci));
1027           k = caller_method->constants()->klass_at(io.index(), CHECK);
1028         }
1029         break;
1030       case Bytecodes::_checkcast:
1031         { Bytecode_checkcast cc(caller_method(), caller_method->bcp_from(bci));
1032           k = caller_method->constants()->klass_at(cc.index(), CHECK);
1033         }
1034         break;
1035       case Bytecodes::_anewarray:
1036         { Bytecode_anewarray anew(caller_method(), caller_method->bcp_from(bci));
1037           Klass* ek = caller_method->constants()->klass_at(anew.index(), CHECK);
1038           k = ek->array_klass(CHECK);
1039         }
1040         break;
1041       case Bytecodes::_ldc:
1042       case Bytecodes::_ldc_w:
1043         {
1044           Bytecode_loadconstant cc(caller_method, bci);
1045           oop m = cc.resolve_constant(CHECK);
1046           mirror = Handle(THREAD, m);
1047         }
1048         break;
1049       default: fatal("unexpected bytecode for load_klass_or_mirror_patch_id");
1050     }
1051     load_klass = k;
1052   } else if (stub_id == load_appendix_patching_id) {
1053     Bytecode_invoke bytecode(caller_method, bci);
1054     Bytecodes::Code bc = bytecode.invoke_code();
1055 
1056     CallInfo info;
1057     constantPoolHandle pool(thread, caller_method->constants());
1058     int index = bytecode.index();
1059     LinkResolver::resolve_invoke(info, Handle(), pool, index, bc, CHECK);
1060     switch (bc) {
1061       case Bytecodes::_invokehandle: {
1062         int cache_index = ConstantPool::decode_cpcache_index(index, true);
1063         assert(cache_index >= 0 && cache_index < pool->cache()->length(), "unexpected cache index");
1064         ConstantPoolCacheEntry* cpce = pool->cache()->entry_at(cache_index);
1065         cpce->set_method_handle(pool, info);
1066         appendix = Handle(THREAD, cpce->appendix_if_resolved(pool)); // just in case somebody already resolved the entry
1067         break;
1068       }
1069       case Bytecodes::_invokedynamic: {
1070         ConstantPoolCacheEntry* cpce = pool->invokedynamic_cp_cache_entry_at(index);
1071         cpce->set_dynamic_call(pool, info);
1072         appendix = Handle(THREAD, cpce->appendix_if_resolved(pool)); // just in case somebody already resolved the entry
1073         break;
1074       }
1075       default: fatal("unexpected bytecode for load_appendix_patching_id");
1076     }
1077   } else {
1078     ShouldNotReachHere();
1079   }
1080 
1081   if (deoptimize_for_volatile || deoptimize_for_atomic) {
1082     // At compile time we assumed the field wasn't volatile/atomic but after
1083     // loading it turns out it was volatile/atomic so we have to throw the
1084     // compiled code out and let it be regenerated.
1085     if (TracePatching) {
1086       if (deoptimize_for_volatile) {
1087         tty->print_cr("Deoptimizing for patching volatile field reference");
1088       }
1089       if (deoptimize_for_atomic) {
1090         tty->print_cr("Deoptimizing for patching atomic field reference");
1091       }
1092     }
1093 
1094     // It's possible the nmethod was invalidated in the last
1095     // safepoint, but if it's still alive then make it not_entrant.
1096     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1097     if (nm != NULL) {
1098       nm->make_not_entrant();
1099     }
1100 
1101     Deoptimization::deoptimize_frame(thread, caller_frame.id());
1102 
1103     // Return to the now deoptimized frame.
1104   }
1105 
1106   // Now copy code back
1107 
1108   {
1109     MutexLockerEx ml_patch (Patching_lock, Mutex::_no_safepoint_check_flag);
1110     //
1111     // Deoptimization may have happened while we waited for the lock.
1112     // In that case we don't bother to do any patching we just return
1113     // and let the deopt happen
1114     if (!caller_is_deopted()) {
1115       NativeGeneralJump* jump = nativeGeneralJump_at(caller_frame.pc());
1116       address instr_pc = jump->jump_destination();
1117       NativeInstruction* ni = nativeInstruction_at(instr_pc);
1118       if (ni->is_jump() ) {
1119         // the jump has not been patched yet
1120         // The jump destination is slow case and therefore not part of the stubs
1121         // (stubs are only for StaticCalls)
1122 
1123         // format of buffer
1124         //    ....
1125         //    instr byte 0     <-- copy_buff
1126         //    instr byte 1
1127         //    ..
1128         //    instr byte n-1
1129         //      n
1130         //    ....             <-- call destination
1131 
1132         address stub_location = caller_frame.pc() + PatchingStub::patch_info_offset();
1133         unsigned char* byte_count = (unsigned char*) (stub_location - 1);
1134         unsigned char* byte_skip = (unsigned char*) (stub_location - 2);
1135         unsigned char* being_initialized_entry_offset = (unsigned char*) (stub_location - 3);
1136         address copy_buff = stub_location - *byte_skip - *byte_count;
1137         address being_initialized_entry = stub_location - *being_initialized_entry_offset;
1138         if (TracePatching) {
1139           ttyLocker ttyl;
1140           tty->print_cr(" Patching %s at bci %d at address " INTPTR_FORMAT "  (%s)", Bytecodes::name(code), bci,
1141                         p2i(instr_pc), (stub_id == Runtime1::access_field_patching_id) ? "field" : "klass");
1142           nmethod* caller_code = CodeCache::find_nmethod(caller_frame.pc());
1143           assert(caller_code != NULL, "nmethod not found");
1144 
1145           // NOTE we use pc() not original_pc() because we already know they are
1146           // identical otherwise we'd have never entered this block of code
1147 
1148           const ImmutableOopMap* map = caller_code->oop_map_for_return_address(caller_frame.pc());
1149           assert(map != NULL, "null check");
1150           map->print();
1151           tty->cr();
1152 
1153           Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1154         }
1155         // depending on the code below, do_patch says whether to copy the patch body back into the nmethod
1156         bool do_patch = true;
1157         if (stub_id == Runtime1::access_field_patching_id) {
1158           // The offset may not be correct if the class was not loaded at code generation time.
1159           // Set it now.
1160           NativeMovRegMem* n_move = nativeMovRegMem_at(copy_buff);
1161           assert(n_move->offset() == 0 || (n_move->offset() == 4 && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)), "illegal offset for type");
1162           assert(patch_field_offset >= 0, "illegal offset");
1163           n_move->add_offset_in_bytes(patch_field_offset);
1164         } else if (load_klass_or_mirror_patch_id) {
1165           // If a getstatic or putstatic is referencing a klass which
1166           // isn't fully initialized, the patch body isn't copied into
1167           // place until initialization is complete.  In this case the
1168           // patch site is setup so that any threads besides the
1169           // initializing thread are forced to come into the VM and
1170           // block.
1171           do_patch = (code != Bytecodes::_getstatic && code != Bytecodes::_putstatic) ||
1172                      InstanceKlass::cast(init_klass)->is_initialized();
1173           NativeGeneralJump* jump = nativeGeneralJump_at(instr_pc);
1174           if (jump->jump_destination() == being_initialized_entry) {
1175             assert(do_patch == true, "initialization must be complete at this point");
1176           } else {
1177             // patch the instruction <move reg, klass>
1178             NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
1179 
1180             assert(n_copy->data() == 0 ||
1181                    n_copy->data() == (intptr_t)Universe::non_oop_word(),
1182                    "illegal init value");
1183             if (stub_id == Runtime1::load_klass_patching_id) {
1184               assert(load_klass != NULL, "klass not set");
1185               n_copy->set_data((intx) (load_klass));
1186             } else {
1187               assert(mirror() != NULL, "klass not set");
1188               // Don't need a G1 pre-barrier here since we assert above that data isn't an oop.
1189               n_copy->set_data(cast_from_oop<intx>(mirror()));
1190             }
1191 
1192             if (TracePatching) {
1193               Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1194             }
1195           }
1196         } else if (stub_id == Runtime1::load_appendix_patching_id) {
1197           NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
1198           assert(n_copy->data() == 0 ||
1199                  n_copy->data() == (intptr_t)Universe::non_oop_word(),
1200                  "illegal init value");
1201           n_copy->set_data(cast_from_oop<intx>(appendix()));
1202 
1203           if (TracePatching) {
1204             Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1205           }
1206         } else {
1207           ShouldNotReachHere();
1208         }
1209 
1210 #if defined(SPARC) || defined(PPC32)
1211         if (load_klass_or_mirror_patch_id ||
1212             stub_id == Runtime1::load_appendix_patching_id) {
1213           // Update the location in the nmethod with the proper
1214           // metadata.  When the code was generated, a NULL was stuffed
1215           // in the metadata table and that table needs to be update to
1216           // have the right value.  On intel the value is kept
1217           // directly in the instruction instead of in the metadata
1218           // table, so set_data above effectively updated the value.
1219           nmethod* nm = CodeCache::find_nmethod(instr_pc);
1220           assert(nm != NULL, "invalid nmethod_pc");
1221           RelocIterator mds(nm, copy_buff, copy_buff + 1);
1222           bool found = false;
1223           while (mds.next() && !found) {
1224             if (mds.type() == relocInfo::oop_type) {
1225               assert(stub_id == Runtime1::load_mirror_patching_id ||
1226                      stub_id == Runtime1::load_appendix_patching_id, "wrong stub id");
1227               oop_Relocation* r = mds.oop_reloc();
1228               oop* oop_adr = r->oop_addr();
1229               *oop_adr = stub_id == Runtime1::load_mirror_patching_id ? mirror() : appendix();
1230               r->fix_oop_relocation();
1231               found = true;
1232             } else if (mds.type() == relocInfo::metadata_type) {
1233               assert(stub_id == Runtime1::load_klass_patching_id, "wrong stub id");
1234               metadata_Relocation* r = mds.metadata_reloc();
1235               Metadata** metadata_adr = r->metadata_addr();
1236               *metadata_adr = load_klass;
1237               r->fix_metadata_relocation();
1238               found = true;
1239             }
1240           }
1241           assert(found, "the metadata must exist!");
1242         }
1243 #endif
1244         if (do_patch) {
1245           // replace instructions
1246           // first replace the tail, then the call
1247 #ifdef ARM
1248           if((load_klass_or_mirror_patch_id ||
1249               stub_id == Runtime1::load_appendix_patching_id) &&
1250               nativeMovConstReg_at(copy_buff)->is_pc_relative()) {
1251             nmethod* nm = CodeCache::find_nmethod(instr_pc);
1252             address addr = NULL;
1253             assert(nm != NULL, "invalid nmethod_pc");
1254             RelocIterator mds(nm, copy_buff, copy_buff + 1);
1255             while (mds.next()) {
1256               if (mds.type() == relocInfo::oop_type) {
1257                 assert(stub_id == Runtime1::load_mirror_patching_id ||
1258                        stub_id == Runtime1::load_appendix_patching_id, "wrong stub id");
1259                 oop_Relocation* r = mds.oop_reloc();
1260                 addr = (address)r->oop_addr();
1261                 break;
1262               } else if (mds.type() == relocInfo::metadata_type) {
1263                 assert(stub_id == Runtime1::load_klass_patching_id, "wrong stub id");
1264                 metadata_Relocation* r = mds.metadata_reloc();
1265                 addr = (address)r->metadata_addr();
1266                 break;
1267               }
1268             }
1269             assert(addr != NULL, "metadata relocation must exist");
1270             copy_buff -= *byte_count;
1271             NativeMovConstReg* n_copy2 = nativeMovConstReg_at(copy_buff);
1272             n_copy2->set_pc_relative_offset(addr, instr_pc);
1273           }
1274 #endif
1275 
1276           for (int i = NativeGeneralJump::instruction_size; i < *byte_count; i++) {
1277             address ptr = copy_buff + i;
1278             int a_byte = (*ptr) & 0xFF;
1279             address dst = instr_pc + i;
1280             *(unsigned char*)dst = (unsigned char) a_byte;
1281           }
1282           ICache::invalidate_range(instr_pc, *byte_count);
1283           NativeGeneralJump::replace_mt_safe(instr_pc, copy_buff);
1284 
1285           if (load_klass_or_mirror_patch_id ||
1286               stub_id == Runtime1::load_appendix_patching_id) {
1287             relocInfo::relocType rtype =
1288               (stub_id == Runtime1::load_klass_patching_id) ?
1289                                    relocInfo::metadata_type :
1290                                    relocInfo::oop_type;
1291             // update relocInfo to metadata
1292             nmethod* nm = CodeCache::find_nmethod(instr_pc);
1293             assert(nm != NULL, "invalid nmethod_pc");
1294 
1295             // The old patch site is now a move instruction so update
1296             // the reloc info so that it will get updated during
1297             // future GCs.
1298             RelocIterator iter(nm, (address)instr_pc, (address)(instr_pc + 1));
1299             relocInfo::change_reloc_info_for_address(&iter, (address) instr_pc,
1300                                                      relocInfo::none, rtype);
1301 #ifdef SPARC
1302             // Sparc takes two relocations for an metadata so update the second one.
1303             address instr_pc2 = instr_pc + NativeMovConstReg::add_offset;
1304             RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
1305             relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2,
1306                                                      relocInfo::none, rtype);
1307 #endif
1308 #ifdef PPC32
1309           { address instr_pc2 = instr_pc + NativeMovConstReg::lo_offset;
1310             RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
1311             relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2,
1312                                                      relocInfo::none, rtype);
1313           }
1314 #endif
1315           }
1316 
1317         } else {
1318           ICache::invalidate_range(copy_buff, *byte_count);
1319           NativeGeneralJump::insert_unconditional(instr_pc, being_initialized_entry);
1320         }
1321       }
1322     }
1323   }
1324 
1325   // If we are patching in a non-perm oop, make sure the nmethod
1326   // is on the right list.
1327   if (ScavengeRootsInCode) {
1328     MutexLockerEx ml_code (CodeCache_lock, Mutex::_no_safepoint_check_flag);
1329     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1330     guarantee(nm != NULL, "only nmethods can contain non-perm oops");
1331 
1332     // Since we've patched some oops in the nmethod,
1333     // (re)register it with the heap.
1334     Universe::heap()->register_nmethod(nm);
1335   }
1336 JRT_END
1337 
1338 #else // DEOPTIMIZE_WHEN_PATCHING
1339 
1340 JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_id ))
1341   RegisterMap reg_map(thread, false);
1342 
1343   NOT_PRODUCT(_patch_code_slowcase_cnt++;)
1344   if (TracePatching) {
1345     tty->print_cr("Deoptimizing because patch is needed");
1346   }
1347 
1348   frame runtime_frame = thread->last_frame();
1349   frame caller_frame = runtime_frame.sender(&reg_map);
1350 
1351   // It's possible the nmethod was invalidated in the last
1352   // safepoint, but if it's still alive then make it not_entrant.
1353   nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1354   if (nm != NULL) {
1355     nm->make_not_entrant();
1356   }
1357 
1358   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1359 
1360   // Return to the now deoptimized frame.
1361 JRT_END
1362 
1363 #endif // DEOPTIMIZE_WHEN_PATCHING
1364 
1365 //
1366 // Entry point for compiled code. We want to patch a nmethod.
1367 // We don't do a normal VM transition here because we want to
1368 // know after the patching is complete and any safepoint(s) are taken
1369 // if the calling nmethod was deoptimized. We do this by calling a
1370 // helper method which does the normal VM transition and when it
1371 // completes we can check for deoptimization. This simplifies the
1372 // assembly code in the cpu directories.
1373 //
1374 int Runtime1::move_klass_patching(JavaThread* thread) {
1375 //
1376 // NOTE: we are still in Java
1377 //
1378   Thread* THREAD = thread;
1379   debug_only(NoHandleMark nhm;)
1380   {
1381     // Enter VM mode
1382 
1383     ResetNoHandleMark rnhm;
1384     patch_code(thread, load_klass_patching_id);
1385   }
1386   // Back in JAVA, use no oops DON'T safepoint
1387 
1388   // Return true if calling code is deoptimized
1389 
1390   return caller_is_deopted();
1391 }
1392 
1393 int Runtime1::move_mirror_patching(JavaThread* thread) {
1394 //
1395 // NOTE: we are still in Java
1396 //
1397   Thread* THREAD = thread;
1398   debug_only(NoHandleMark nhm;)
1399   {
1400     // Enter VM mode
1401 
1402     ResetNoHandleMark rnhm;
1403     patch_code(thread, load_mirror_patching_id);
1404   }
1405   // Back in JAVA, use no oops DON'T safepoint
1406 
1407   // Return true if calling code is deoptimized
1408 
1409   return caller_is_deopted();
1410 }
1411 
1412 int Runtime1::move_appendix_patching(JavaThread* thread) {
1413 //
1414 // NOTE: we are still in Java
1415 //
1416   Thread* THREAD = thread;
1417   debug_only(NoHandleMark nhm;)
1418   {
1419     // Enter VM mode
1420 
1421     ResetNoHandleMark rnhm;
1422     patch_code(thread, load_appendix_patching_id);
1423   }
1424   // Back in JAVA, use no oops DON'T safepoint
1425 
1426   // Return true if calling code is deoptimized
1427 
1428   return caller_is_deopted();
1429 }
1430 //
1431 // Entry point for compiled code. We want to patch a nmethod.
1432 // We don't do a normal VM transition here because we want to
1433 // know after the patching is complete and any safepoint(s) are taken
1434 // if the calling nmethod was deoptimized. We do this by calling a
1435 // helper method which does the normal VM transition and when it
1436 // completes we can check for deoptimization. This simplifies the
1437 // assembly code in the cpu directories.
1438 //
1439 
1440 int Runtime1::access_field_patching(JavaThread* thread) {
1441 //
1442 // NOTE: we are still in Java
1443 //
1444   Thread* THREAD = thread;
1445   debug_only(NoHandleMark nhm;)
1446   {
1447     // Enter VM mode
1448 
1449     ResetNoHandleMark rnhm;
1450     patch_code(thread, access_field_patching_id);
1451   }
1452   // Back in JAVA, use no oops DON'T safepoint
1453 
1454   // Return true if calling code is deoptimized
1455 
1456   return caller_is_deopted();
1457 JRT_END
1458 
1459 
1460 JRT_LEAF(void, Runtime1::trace_block_entry(jint block_id))
1461   // for now we just print out the block id
1462   tty->print("%d ", block_id);
1463 JRT_END
1464 
1465 
1466 JRT_LEAF(int, Runtime1::is_instance_of(oopDesc* mirror, oopDesc* obj))
1467   // had to return int instead of bool, otherwise there may be a mismatch
1468   // between the C calling convention and the Java one.
1469   // e.g., on x86, GCC may clear only %al when returning a bool false, but
1470   // JVM takes the whole %eax as the return value, which may misinterpret
1471   // the return value as a boolean true.
1472 
1473   assert(mirror != NULL, "should null-check on mirror before calling");
1474   Klass* k = java_lang_Class::as_Klass(mirror);
1475   return (k != NULL && obj != NULL && obj->is_a(k)) ? 1 : 0;
1476 JRT_END
1477 
1478 JRT_ENTRY(void, Runtime1::predicate_failed_trap(JavaThread* thread))
1479   ResourceMark rm;
1480 
1481   assert(!TieredCompilation, "incompatible with tiered compilation");
1482 
1483   RegisterMap reg_map(thread, false);
1484   frame runtime_frame = thread->last_frame();
1485   frame caller_frame = runtime_frame.sender(&reg_map);
1486 
1487   nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1488   assert (nm != NULL, "no more nmethod?");
1489   nm->make_not_entrant();
1490 
1491   methodHandle m(nm->method());
1492   MethodData* mdo = m->method_data();
1493 
1494   if (mdo == NULL && !HAS_PENDING_EXCEPTION) {
1495     // Build an MDO.  Ignore errors like OutOfMemory;
1496     // that simply means we won't have an MDO to update.
1497     Method::build_interpreter_method_data(m, THREAD);
1498     if (HAS_PENDING_EXCEPTION) {
1499       assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
1500       CLEAR_PENDING_EXCEPTION;
1501     }
1502     mdo = m->method_data();
1503   }
1504 
1505   if (mdo != NULL) {
1506     mdo->inc_trap_count(Deoptimization::Reason_none);
1507   }
1508 
1509   if (TracePredicateFailedTraps) {
1510     stringStream ss1, ss2;
1511     vframeStream vfst(thread);
1512     methodHandle inlinee = methodHandle(vfst.method());
1513     inlinee->print_short_name(&ss1);
1514     m->print_short_name(&ss2);
1515     tty->print_cr("Predicate failed trap in method %s at bci %d inlined in %s at pc " INTPTR_FORMAT, ss1.as_string(), vfst.bci(), ss2.as_string(), p2i(caller_frame.pc()));
1516   }
1517 
1518 
1519   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1520 
1521 JRT_END
1522 
1523 #ifndef PRODUCT
1524 void Runtime1::print_statistics() {
1525   tty->print_cr("C1 Runtime statistics:");
1526   tty->print_cr(" _resolve_invoke_virtual_cnt:     %d", SharedRuntime::_resolve_virtual_ctr);
1527   tty->print_cr(" _resolve_invoke_opt_virtual_cnt: %d", SharedRuntime::_resolve_opt_virtual_ctr);
1528   tty->print_cr(" _resolve_invoke_static_cnt:      %d", SharedRuntime::_resolve_static_ctr);
1529   tty->print_cr(" _handle_wrong_method_cnt:        %d", SharedRuntime::_wrong_method_ctr);
1530   tty->print_cr(" _ic_miss_cnt:                    %d", SharedRuntime::_ic_miss_ctr);
1531   tty->print_cr(" _generic_arraycopy_cnt:          %d", _generic_arraycopy_cnt);
1532   tty->print_cr(" _generic_arraycopystub_cnt:      %d", _generic_arraycopystub_cnt);
1533   tty->print_cr(" _byte_arraycopy_cnt:             %d", _byte_arraycopy_stub_cnt);
1534   tty->print_cr(" _short_arraycopy_cnt:            %d", _short_arraycopy_stub_cnt);
1535   tty->print_cr(" _int_arraycopy_cnt:              %d", _int_arraycopy_stub_cnt);
1536   tty->print_cr(" _long_arraycopy_cnt:             %d", _long_arraycopy_stub_cnt);
1537   tty->print_cr(" _oop_arraycopy_cnt:              %d", _oop_arraycopy_stub_cnt);
1538   tty->print_cr(" _arraycopy_slowcase_cnt:         %d", _arraycopy_slowcase_cnt);
1539   tty->print_cr(" _arraycopy_checkcast_cnt:        %d", _arraycopy_checkcast_cnt);
1540   tty->print_cr(" _arraycopy_checkcast_attempt_cnt:%d", _arraycopy_checkcast_attempt_cnt);
1541 
1542   tty->print_cr(" _new_type_array_slowcase_cnt:    %d", _new_type_array_slowcase_cnt);
1543   tty->print_cr(" _new_object_array_slowcase_cnt:  %d", _new_object_array_slowcase_cnt);
1544   tty->print_cr(" _new_instance_slowcase_cnt:      %d", _new_instance_slowcase_cnt);
1545   tty->print_cr(" _new_multi_array_slowcase_cnt:   %d", _new_multi_array_slowcase_cnt);
1546   tty->print_cr(" _load_flattened_array_slowcase_cnt: %d", _load_flattened_array_slowcase_cnt);
1547   tty->print_cr(" _store_flattened_array_slowcase_cnt:%d", _store_flattened_array_slowcase_cnt);
1548   tty->print_cr(" _monitorenter_slowcase_cnt:      %d", _monitorenter_slowcase_cnt);
1549   tty->print_cr(" _monitorexit_slowcase_cnt:       %d", _monitorexit_slowcase_cnt);
1550   tty->print_cr(" _patch_code_slowcase_cnt:        %d", _patch_code_slowcase_cnt);
1551 
1552   tty->print_cr(" _throw_range_check_exception_count:            %d:", _throw_range_check_exception_count);
1553   tty->print_cr(" _throw_index_exception_count:                  %d:", _throw_index_exception_count);
1554   tty->print_cr(" _throw_div0_exception_count:                   %d:", _throw_div0_exception_count);
1555   tty->print_cr(" _throw_null_pointer_exception_count:           %d:", _throw_null_pointer_exception_count);
1556   tty->print_cr(" _throw_class_cast_exception_count:             %d:", _throw_class_cast_exception_count);
1557   tty->print_cr(" _throw_incompatible_class_change_error_count:  %d:", _throw_incompatible_class_change_error_count);
1558   tty->print_cr(" _throw_illegal_monitor_state_exception_count:  %d:", _throw_illegal_monitor_state_exception_count);
1559   tty->print_cr(" _throw_array_store_exception_count:            %d:", _throw_array_store_exception_count);
1560   tty->print_cr(" _throw_count:                                  %d:", _throw_count);
1561 
1562   SharedRuntime::print_ic_miss_histogram();
1563   tty->cr();
1564 }
1565 #endif // PRODUCT
--- EOF ---