1 /*
   2  * Copyright (c) 1999, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_CFGPrinter.hpp"
  27 #include "c1/c1_Canonicalizer.hpp"
  28 #include "c1/c1_Compilation.hpp"
  29 #include "c1/c1_GraphBuilder.hpp"
  30 #include "c1/c1_InstructionPrinter.hpp"
  31 #include "ci/ciCallSite.hpp"
  32 #include "ci/ciField.hpp"
  33 #include "ci/ciKlass.hpp"
  34 #include "ci/ciMemberName.hpp"
  35 #include "ci/ciUtilities.inline.hpp"
  36 #include "ci/ciValueKlass.hpp"
  37 #include "compiler/compileBroker.hpp"
  38 #include "interpreter/bytecode.hpp"
  39 #include "jfr/jfrEvents.hpp"
  40 #include "memory/resourceArea.hpp"
  41 #include "oops/oop.inline.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 #include "runtime/compilationPolicy.hpp"
  44 #include "runtime/vm_version.hpp"
  45 #include "utilities/bitMap.inline.hpp"
  46 
  47 class BlockListBuilder {
  48  private:
  49   Compilation* _compilation;
  50   IRScope*     _scope;
  51 
  52   BlockList    _blocks;                // internal list of all blocks
  53   BlockList*   _bci2block;             // mapping from bci to blocks for GraphBuilder
  54 
  55   // fields used by mark_loops
  56   ResourceBitMap _active;              // for iteration of control flow graph
  57   ResourceBitMap _visited;             // for iteration of control flow graph
  58   intArray       _loop_map;            // caches the information if a block is contained in a loop
  59   int            _next_loop_index;     // next free loop number
  60   int            _next_block_number;   // for reverse postorder numbering of blocks
  61 
  62   // accessors
  63   Compilation*  compilation() const              { return _compilation; }
  64   IRScope*      scope() const                    { return _scope; }
  65   ciMethod*     method() const                   { return scope()->method(); }
  66   XHandlers*    xhandlers() const                { return scope()->xhandlers(); }
  67 
  68   // unified bailout support
  69   void          bailout(const char* msg) const   { compilation()->bailout(msg); }
  70   bool          bailed_out() const               { return compilation()->bailed_out(); }
  71 
  72   // helper functions
  73   BlockBegin* make_block_at(int bci, BlockBegin* predecessor);
  74   void handle_exceptions(BlockBegin* current, int cur_bci);
  75   void handle_jsr(BlockBegin* current, int sr_bci, int next_bci);
  76   void store_one(BlockBegin* current, int local);
  77   void store_two(BlockBegin* current, int local);
  78   void set_entries(int osr_bci);
  79   void set_leaders();
  80 
  81   void make_loop_header(BlockBegin* block);
  82   void mark_loops();
  83   int  mark_loops(BlockBegin* b, bool in_subroutine);
  84 
  85   // debugging
  86 #ifndef PRODUCT
  87   void print();
  88 #endif
  89 
  90  public:
  91   // creation
  92   BlockListBuilder(Compilation* compilation, IRScope* scope, int osr_bci);
  93 
  94   // accessors for GraphBuilder
  95   BlockList*    bci2block() const                { return _bci2block; }
  96 };
  97 
  98 
  99 // Implementation of BlockListBuilder
 100 
 101 BlockListBuilder::BlockListBuilder(Compilation* compilation, IRScope* scope, int osr_bci)
 102  : _compilation(compilation)
 103  , _scope(scope)
 104  , _blocks(16)
 105  , _bci2block(new BlockList(scope->method()->code_size(), NULL))
 106  , _active()         // size not known yet
 107  , _visited()        // size not known yet
 108  , _loop_map() // size not known yet
 109  , _next_loop_index(0)
 110  , _next_block_number(0)
 111 {
 112   set_entries(osr_bci);
 113   set_leaders();
 114   CHECK_BAILOUT();
 115 
 116   mark_loops();
 117   NOT_PRODUCT(if (PrintInitialBlockList) print());
 118 
 119 #ifndef PRODUCT
 120   if (PrintCFGToFile) {
 121     stringStream title;
 122     title.print("BlockListBuilder ");
 123     scope->method()->print_name(&title);
 124     CFGPrinter::print_cfg(_bci2block, title.as_string(), false, false);
 125   }
 126 #endif
 127 }
 128 
 129 
 130 void BlockListBuilder::set_entries(int osr_bci) {
 131   // generate start blocks
 132   BlockBegin* std_entry = make_block_at(0, NULL);
 133   if (scope()->caller() == NULL) {
 134     std_entry->set(BlockBegin::std_entry_flag);
 135   }
 136   if (osr_bci != -1) {
 137     BlockBegin* osr_entry = make_block_at(osr_bci, NULL);
 138     osr_entry->set(BlockBegin::osr_entry_flag);
 139   }
 140 
 141   // generate exception entry blocks
 142   XHandlers* list = xhandlers();
 143   const int n = list->length();
 144   for (int i = 0; i < n; i++) {
 145     XHandler* h = list->handler_at(i);
 146     BlockBegin* entry = make_block_at(h->handler_bci(), NULL);
 147     entry->set(BlockBegin::exception_entry_flag);
 148     h->set_entry_block(entry);
 149   }
 150 }
 151 
 152 
 153 BlockBegin* BlockListBuilder::make_block_at(int cur_bci, BlockBegin* predecessor) {
 154   assert(method()->bci_block_start().at(cur_bci), "wrong block starts of MethodLivenessAnalyzer");
 155 
 156   BlockBegin* block = _bci2block->at(cur_bci);
 157   if (block == NULL) {
 158     block = new BlockBegin(cur_bci);
 159     block->init_stores_to_locals(method()->max_locals());
 160     _bci2block->at_put(cur_bci, block);
 161     _blocks.append(block);
 162 
 163     assert(predecessor == NULL || predecessor->bci() < cur_bci, "targets for backward branches must already exist");
 164   }
 165 
 166   if (predecessor != NULL) {
 167     if (block->is_set(BlockBegin::exception_entry_flag)) {
 168       BAILOUT_("Exception handler can be reached by both normal and exceptional control flow", block);
 169     }
 170 
 171     predecessor->add_successor(block);
 172     block->increment_total_preds();
 173   }
 174 
 175   return block;
 176 }
 177 
 178 
 179 inline void BlockListBuilder::store_one(BlockBegin* current, int local) {
 180   current->stores_to_locals().set_bit(local);
 181 }
 182 inline void BlockListBuilder::store_two(BlockBegin* current, int local) {
 183   store_one(current, local);
 184   store_one(current, local + 1);
 185 }
 186 
 187 
 188 void BlockListBuilder::handle_exceptions(BlockBegin* current, int cur_bci) {
 189   // Draws edges from a block to its exception handlers
 190   XHandlers* list = xhandlers();
 191   const int n = list->length();
 192 
 193   for (int i = 0; i < n; i++) {
 194     XHandler* h = list->handler_at(i);
 195 
 196     if (h->covers(cur_bci)) {
 197       BlockBegin* entry = h->entry_block();
 198       assert(entry != NULL && entry == _bci2block->at(h->handler_bci()), "entry must be set");
 199       assert(entry->is_set(BlockBegin::exception_entry_flag), "flag must be set");
 200 
 201       // add each exception handler only once
 202       if (!current->is_successor(entry)) {
 203         current->add_successor(entry);
 204         entry->increment_total_preds();
 205       }
 206 
 207       // stop when reaching catchall
 208       if (h->catch_type() == 0) break;
 209     }
 210   }
 211 }
 212 
 213 void BlockListBuilder::handle_jsr(BlockBegin* current, int sr_bci, int next_bci) {
 214   // start a new block after jsr-bytecode and link this block into cfg
 215   make_block_at(next_bci, current);
 216 
 217   // start a new block at the subroutine entry at mark it with special flag
 218   BlockBegin* sr_block = make_block_at(sr_bci, current);
 219   if (!sr_block->is_set(BlockBegin::subroutine_entry_flag)) {
 220     sr_block->set(BlockBegin::subroutine_entry_flag);
 221   }
 222 }
 223 
 224 
 225 void BlockListBuilder::set_leaders() {
 226   bool has_xhandlers = xhandlers()->has_handlers();
 227   BlockBegin* current = NULL;
 228 
 229   // The information which bci starts a new block simplifies the analysis
 230   // Without it, backward branches could jump to a bci where no block was created
 231   // during bytecode iteration. This would require the creation of a new block at the
 232   // branch target and a modification of the successor lists.
 233   const BitMap& bci_block_start = method()->bci_block_start();
 234 
 235   ciBytecodeStream s(method());
 236   while (s.next() != ciBytecodeStream::EOBC()) {
 237     int cur_bci = s.cur_bci();
 238 
 239     if (bci_block_start.at(cur_bci)) {
 240       current = make_block_at(cur_bci, current);
 241     }
 242     assert(current != NULL, "must have current block");
 243 
 244     if (has_xhandlers && GraphBuilder::can_trap(method(), s.cur_bc())) {
 245       handle_exceptions(current, cur_bci);
 246     }
 247 
 248     switch (s.cur_bc()) {
 249       // track stores to local variables for selective creation of phi functions
 250       case Bytecodes::_iinc:     store_one(current, s.get_index()); break;
 251       case Bytecodes::_istore:   store_one(current, s.get_index()); break;
 252       case Bytecodes::_lstore:   store_two(current, s.get_index()); break;
 253       case Bytecodes::_fstore:   store_one(current, s.get_index()); break;
 254       case Bytecodes::_dstore:   store_two(current, s.get_index()); break;
 255       case Bytecodes::_astore:   store_one(current, s.get_index()); break;
 256       case Bytecodes::_istore_0: store_one(current, 0); break;
 257       case Bytecodes::_istore_1: store_one(current, 1); break;
 258       case Bytecodes::_istore_2: store_one(current, 2); break;
 259       case Bytecodes::_istore_3: store_one(current, 3); break;
 260       case Bytecodes::_lstore_0: store_two(current, 0); break;
 261       case Bytecodes::_lstore_1: store_two(current, 1); break;
 262       case Bytecodes::_lstore_2: store_two(current, 2); break;
 263       case Bytecodes::_lstore_3: store_two(current, 3); break;
 264       case Bytecodes::_fstore_0: store_one(current, 0); break;
 265       case Bytecodes::_fstore_1: store_one(current, 1); break;
 266       case Bytecodes::_fstore_2: store_one(current, 2); break;
 267       case Bytecodes::_fstore_3: store_one(current, 3); break;
 268       case Bytecodes::_dstore_0: store_two(current, 0); break;
 269       case Bytecodes::_dstore_1: store_two(current, 1); break;
 270       case Bytecodes::_dstore_2: store_two(current, 2); break;
 271       case Bytecodes::_dstore_3: store_two(current, 3); break;
 272       case Bytecodes::_astore_0: store_one(current, 0); break;
 273       case Bytecodes::_astore_1: store_one(current, 1); break;
 274       case Bytecodes::_astore_2: store_one(current, 2); break;
 275       case Bytecodes::_astore_3: store_one(current, 3); break;
 276 
 277       // track bytecodes that affect the control flow
 278       case Bytecodes::_athrow:  // fall through
 279       case Bytecodes::_ret:     // fall through
 280       case Bytecodes::_ireturn: // fall through
 281       case Bytecodes::_lreturn: // fall through
 282       case Bytecodes::_freturn: // fall through
 283       case Bytecodes::_dreturn: // fall through
 284       case Bytecodes::_areturn: // fall through
 285       case Bytecodes::_return:
 286         current = NULL;
 287         break;
 288 
 289       case Bytecodes::_ifeq:      // fall through
 290       case Bytecodes::_ifne:      // fall through
 291       case Bytecodes::_iflt:      // fall through
 292       case Bytecodes::_ifge:      // fall through
 293       case Bytecodes::_ifgt:      // fall through
 294       case Bytecodes::_ifle:      // fall through
 295       case Bytecodes::_if_icmpeq: // fall through
 296       case Bytecodes::_if_icmpne: // fall through
 297       case Bytecodes::_if_icmplt: // fall through
 298       case Bytecodes::_if_icmpge: // fall through
 299       case Bytecodes::_if_icmpgt: // fall through
 300       case Bytecodes::_if_icmple: // fall through
 301       case Bytecodes::_if_acmpeq: // fall through
 302       case Bytecodes::_if_acmpne: // fall through
 303       case Bytecodes::_ifnull:    // fall through
 304       case Bytecodes::_ifnonnull:
 305         make_block_at(s.next_bci(), current);
 306         make_block_at(s.get_dest(), current);
 307         current = NULL;
 308         break;
 309 
 310       case Bytecodes::_goto:
 311         make_block_at(s.get_dest(), current);
 312         current = NULL;
 313         break;
 314 
 315       case Bytecodes::_goto_w:
 316         make_block_at(s.get_far_dest(), current);
 317         current = NULL;
 318         break;
 319 
 320       case Bytecodes::_jsr:
 321         handle_jsr(current, s.get_dest(), s.next_bci());
 322         current = NULL;
 323         break;
 324 
 325       case Bytecodes::_jsr_w:
 326         handle_jsr(current, s.get_far_dest(), s.next_bci());
 327         current = NULL;
 328         break;
 329 
 330       case Bytecodes::_tableswitch: {
 331         // set block for each case
 332         Bytecode_tableswitch sw(&s);
 333         int l = sw.length();
 334         for (int i = 0; i < l; i++) {
 335           make_block_at(cur_bci + sw.dest_offset_at(i), current);
 336         }
 337         make_block_at(cur_bci + sw.default_offset(), current);
 338         current = NULL;
 339         break;
 340       }
 341 
 342       case Bytecodes::_lookupswitch: {
 343         // set block for each case
 344         Bytecode_lookupswitch sw(&s);
 345         int l = sw.number_of_pairs();
 346         for (int i = 0; i < l; i++) {
 347           make_block_at(cur_bci + sw.pair_at(i).offset(), current);
 348         }
 349         make_block_at(cur_bci + sw.default_offset(), current);
 350         current = NULL;
 351         break;
 352       }
 353 
 354       default:
 355         break;
 356     }
 357   }
 358 }
 359 
 360 
 361 void BlockListBuilder::mark_loops() {
 362   ResourceMark rm;
 363 
 364   _active.initialize(BlockBegin::number_of_blocks());
 365   _visited.initialize(BlockBegin::number_of_blocks());
 366   _loop_map = intArray(BlockBegin::number_of_blocks(), BlockBegin::number_of_blocks(), 0);
 367   _next_loop_index = 0;
 368   _next_block_number = _blocks.length();
 369 
 370   // recursively iterate the control flow graph
 371   mark_loops(_bci2block->at(0), false);
 372   assert(_next_block_number >= 0, "invalid block numbers");
 373 
 374   // Remove dangling Resource pointers before the ResourceMark goes out-of-scope.
 375   _active.resize(0);
 376   _visited.resize(0);
 377 }
 378 
 379 void BlockListBuilder::make_loop_header(BlockBegin* block) {
 380   if (block->is_set(BlockBegin::exception_entry_flag)) {
 381     // exception edges may look like loops but don't mark them as such
 382     // since it screws up block ordering.
 383     return;
 384   }
 385   if (!block->is_set(BlockBegin::parser_loop_header_flag)) {
 386     block->set(BlockBegin::parser_loop_header_flag);
 387 
 388     assert(_loop_map.at(block->block_id()) == 0, "must not be set yet");
 389     assert(0 <= _next_loop_index && _next_loop_index < BitsPerInt, "_next_loop_index is used as a bit-index in integer");
 390     _loop_map.at_put(block->block_id(), 1 << _next_loop_index);
 391     if (_next_loop_index < 31) _next_loop_index++;
 392   } else {
 393     // block already marked as loop header
 394     assert(is_power_of_2((unsigned int)_loop_map.at(block->block_id())), "exactly one bit must be set");
 395   }
 396 }
 397 
 398 int BlockListBuilder::mark_loops(BlockBegin* block, bool in_subroutine) {
 399   int block_id = block->block_id();
 400 
 401   if (_visited.at(block_id)) {
 402     if (_active.at(block_id)) {
 403       // reached block via backward branch
 404       make_loop_header(block);
 405     }
 406     // return cached loop information for this block
 407     return _loop_map.at(block_id);
 408   }
 409 
 410   if (block->is_set(BlockBegin::subroutine_entry_flag)) {
 411     in_subroutine = true;
 412   }
 413 
 414   // set active and visited bits before successors are processed
 415   _visited.set_bit(block_id);
 416   _active.set_bit(block_id);
 417 
 418   intptr_t loop_state = 0;
 419   for (int i = block->number_of_sux() - 1; i >= 0; i--) {
 420     // recursively process all successors
 421     loop_state |= mark_loops(block->sux_at(i), in_subroutine);
 422   }
 423 
 424   // clear active-bit after all successors are processed
 425   _active.clear_bit(block_id);
 426 
 427   // reverse-post-order numbering of all blocks
 428   block->set_depth_first_number(_next_block_number);
 429   _next_block_number--;
 430 
 431   if (loop_state != 0 || in_subroutine ) {
 432     // block is contained at least in one loop, so phi functions are necessary
 433     // phi functions are also necessary for all locals stored in a subroutine
 434     scope()->requires_phi_function().set_union(block->stores_to_locals());
 435   }
 436 
 437   if (block->is_set(BlockBegin::parser_loop_header_flag)) {
 438     int header_loop_state = _loop_map.at(block_id);
 439     assert(is_power_of_2((unsigned)header_loop_state), "exactly one bit must be set");
 440 
 441     // If the highest bit is set (i.e. when integer value is negative), the method
 442     // has 32 or more loops. This bit is never cleared because it is used for multiple loops
 443     if (header_loop_state >= 0) {
 444       clear_bits(loop_state, header_loop_state);
 445     }
 446   }
 447 
 448   // cache and return loop information for this block
 449   _loop_map.at_put(block_id, loop_state);
 450   return loop_state;
 451 }
 452 
 453 
 454 #ifndef PRODUCT
 455 
 456 int compare_depth_first(BlockBegin** a, BlockBegin** b) {
 457   return (*a)->depth_first_number() - (*b)->depth_first_number();
 458 }
 459 
 460 void BlockListBuilder::print() {
 461   tty->print("----- initial block list of BlockListBuilder for method ");
 462   method()->print_short_name();
 463   tty->cr();
 464 
 465   // better readability if blocks are sorted in processing order
 466   _blocks.sort(compare_depth_first);
 467 
 468   for (int i = 0; i < _blocks.length(); i++) {
 469     BlockBegin* cur = _blocks.at(i);
 470     tty->print("%4d: B%-4d bci: %-4d  preds: %-4d ", cur->depth_first_number(), cur->block_id(), cur->bci(), cur->total_preds());
 471 
 472     tty->print(cur->is_set(BlockBegin::std_entry_flag)               ? " std" : "    ");
 473     tty->print(cur->is_set(BlockBegin::osr_entry_flag)               ? " osr" : "    ");
 474     tty->print(cur->is_set(BlockBegin::exception_entry_flag)         ? " ex" : "   ");
 475     tty->print(cur->is_set(BlockBegin::subroutine_entry_flag)        ? " sr" : "   ");
 476     tty->print(cur->is_set(BlockBegin::parser_loop_header_flag)      ? " lh" : "   ");
 477 
 478     if (cur->number_of_sux() > 0) {
 479       tty->print("    sux: ");
 480       for (int j = 0; j < cur->number_of_sux(); j++) {
 481         BlockBegin* sux = cur->sux_at(j);
 482         tty->print("B%d ", sux->block_id());
 483       }
 484     }
 485     tty->cr();
 486   }
 487 }
 488 
 489 #endif
 490 
 491 
 492 // A simple growable array of Values indexed by ciFields
 493 class FieldBuffer: public CompilationResourceObj {
 494  private:
 495   GrowableArray<Value> _values;
 496 
 497  public:
 498   FieldBuffer() {}
 499 
 500   void kill() {
 501     _values.trunc_to(0);
 502   }
 503 
 504   Value at(ciField* field) {
 505     assert(field->holder()->is_loaded(), "must be a loaded field");
 506     int offset = field->offset();
 507     if (offset < _values.length()) {
 508       return _values.at(offset);
 509     } else {
 510       return NULL;
 511     }
 512   }
 513 
 514   void at_put(ciField* field, Value value) {
 515     assert(field->holder()->is_loaded(), "must be a loaded field");
 516     int offset = field->offset();
 517     _values.at_put_grow(offset, value, NULL);
 518   }
 519 
 520 };
 521 
 522 
 523 // MemoryBuffer is fairly simple model of the current state of memory.
 524 // It partitions memory into several pieces.  The first piece is
 525 // generic memory where little is known about the owner of the memory.
 526 // This is conceptually represented by the tuple <O, F, V> which says
 527 // that the field F of object O has value V.  This is flattened so
 528 // that F is represented by the offset of the field and the parallel
 529 // arrays _objects and _values are used for O and V.  Loads of O.F can
 530 // simply use V.  Newly allocated objects are kept in a separate list
 531 // along with a parallel array for each object which represents the
 532 // current value of its fields.  Stores of the default value to fields
 533 // which have never been stored to before are eliminated since they
 534 // are redundant.  Once newly allocated objects are stored into
 535 // another object or they are passed out of the current compile they
 536 // are treated like generic memory.
 537 
 538 class MemoryBuffer: public CompilationResourceObj {
 539  private:
 540   FieldBuffer                 _values;
 541   GrowableArray<Value>        _objects;
 542   GrowableArray<Value>        _newobjects;
 543   GrowableArray<FieldBuffer*> _fields;
 544 
 545  public:
 546   MemoryBuffer() {}
 547 
 548   StoreField* store(StoreField* st) {
 549     if (!EliminateFieldAccess) {
 550       return st;
 551     }
 552 
 553     Value object = st->obj();
 554     Value value = st->value();
 555     ciField* field = st->field();
 556     if (field->holder()->is_loaded()) {
 557       int offset = field->offset();
 558       int index = _newobjects.find(object);
 559       if (index != -1) {
 560         // newly allocated object with no other stores performed on this field
 561         FieldBuffer* buf = _fields.at(index);
 562         if (buf->at(field) == NULL && is_default_value(value)) {
 563 #ifndef PRODUCT
 564           if (PrintIRDuringConstruction && Verbose) {
 565             tty->print_cr("Eliminated store for object %d:", index);
 566             st->print_line();
 567           }
 568 #endif
 569           return NULL;
 570         } else {
 571           buf->at_put(field, value);
 572         }
 573       } else {
 574         _objects.at_put_grow(offset, object, NULL);
 575         _values.at_put(field, value);
 576       }
 577 
 578       store_value(value);
 579     } else {
 580       // if we held onto field names we could alias based on names but
 581       // we don't know what's being stored to so kill it all.
 582       kill();
 583     }
 584     return st;
 585   }
 586 
 587 
 588   // return true if this value correspond to the default value of a field.
 589   bool is_default_value(Value value) {
 590     Constant* con = value->as_Constant();
 591     if (con) {
 592       switch (con->type()->tag()) {
 593         case intTag:    return con->type()->as_IntConstant()->value() == 0;
 594         case longTag:   return con->type()->as_LongConstant()->value() == 0;
 595         case floatTag:  return jint_cast(con->type()->as_FloatConstant()->value()) == 0;
 596         case doubleTag: return jlong_cast(con->type()->as_DoubleConstant()->value()) == jlong_cast(0);
 597         case objectTag: return con->type() == objectNull;
 598         default:  ShouldNotReachHere();
 599       }
 600     }
 601     return false;
 602   }
 603 
 604 
 605   // return either the actual value of a load or the load itself
 606   Value load(LoadField* load) {
 607     if (!EliminateFieldAccess) {
 608       return load;
 609     }
 610 
 611     if (RoundFPResults && UseSSE < 2 && load->type()->is_float_kind()) {
 612       // can't skip load since value might get rounded as a side effect
 613       return load;
 614     }
 615 
 616     ciField* field = load->field();
 617     Value object   = load->obj();
 618     if (field->holder()->is_loaded() && !field->is_volatile()) {
 619       int offset = field->offset();
 620       Value result = NULL;
 621       int index = _newobjects.find(object);
 622       if (index != -1) {
 623         result = _fields.at(index)->at(field);
 624       } else if (_objects.at_grow(offset, NULL) == object) {
 625         result = _values.at(field);
 626       }
 627       if (result != NULL) {
 628 #ifndef PRODUCT
 629         if (PrintIRDuringConstruction && Verbose) {
 630           tty->print_cr("Eliminated load: ");
 631           load->print_line();
 632         }
 633 #endif
 634         assert(result->type()->tag() == load->type()->tag(), "wrong types");
 635         return result;
 636       }
 637     }
 638     return load;
 639   }
 640 
 641   // Record this newly allocated object
 642   void new_instance(NewInstance* object) {
 643     int index = _newobjects.length();
 644     _newobjects.append(object);
 645     if (_fields.at_grow(index, NULL) == NULL) {
 646       _fields.at_put(index, new FieldBuffer());
 647     } else {
 648       _fields.at(index)->kill();
 649     }
 650   }
 651 
 652   // Record this newly allocated object
 653   void new_instance(NewValueTypeInstance* object) {
 654     int index = _newobjects.length();
 655     _newobjects.append(object);
 656     if (_fields.at_grow(index, NULL) == NULL) {
 657       _fields.at_put(index, new FieldBuffer());
 658     } else {
 659       _fields.at(index)->kill();
 660     }
 661   }
 662 
 663   void store_value(Value value) {
 664     int index = _newobjects.find(value);
 665     if (index != -1) {
 666       // stored a newly allocated object into another object.
 667       // Assume we've lost track of it as separate slice of memory.
 668       // We could do better by keeping track of whether individual
 669       // fields could alias each other.
 670       _newobjects.remove_at(index);
 671       // pull out the field info and store it at the end up the list
 672       // of field info list to be reused later.
 673       _fields.append(_fields.at(index));
 674       _fields.remove_at(index);
 675     }
 676   }
 677 
 678   void kill() {
 679     _newobjects.trunc_to(0);
 680     _objects.trunc_to(0);
 681     _values.kill();
 682   }
 683 };
 684 
 685 
 686 // Implementation of GraphBuilder's ScopeData
 687 
 688 GraphBuilder::ScopeData::ScopeData(ScopeData* parent)
 689   : _parent(parent)
 690   , _bci2block(NULL)
 691   , _scope(NULL)
 692   , _has_handler(false)
 693   , _stream(NULL)
 694   , _work_list(NULL)
 695   , _caller_stack_size(-1)
 696   , _continuation(NULL)
 697   , _parsing_jsr(false)
 698   , _jsr_xhandlers(NULL)
 699   , _num_returns(0)
 700   , _cleanup_block(NULL)
 701   , _cleanup_return_prev(NULL)
 702   , _cleanup_state(NULL)
 703   , _ignore_return(false)
 704 {
 705   if (parent != NULL) {
 706     _max_inline_size = (intx) ((float) NestedInliningSizeRatio * (float) parent->max_inline_size() / 100.0f);
 707   } else {
 708     _max_inline_size = MaxInlineSize;
 709   }
 710   if (_max_inline_size < MaxTrivialSize) {
 711     _max_inline_size = MaxTrivialSize;
 712   }
 713 }
 714 
 715 
 716 void GraphBuilder::kill_all() {
 717   if (UseLocalValueNumbering) {
 718     vmap()->kill_all();
 719   }
 720   _memory->kill();
 721 }
 722 
 723 
 724 BlockBegin* GraphBuilder::ScopeData::block_at(int bci) {
 725   if (parsing_jsr()) {
 726     // It is necessary to clone all blocks associated with a
 727     // subroutine, including those for exception handlers in the scope
 728     // of the method containing the jsr (because those exception
 729     // handlers may contain ret instructions in some cases).
 730     BlockBegin* block = bci2block()->at(bci);
 731     if (block != NULL && block == parent()->bci2block()->at(bci)) {
 732       BlockBegin* new_block = new BlockBegin(block->bci());
 733       if (PrintInitialBlockList) {
 734         tty->print_cr("CFG: cloned block %d (bci %d) as block %d for jsr",
 735                       block->block_id(), block->bci(), new_block->block_id());
 736       }
 737       // copy data from cloned blocked
 738       new_block->set_depth_first_number(block->depth_first_number());
 739       if (block->is_set(BlockBegin::parser_loop_header_flag)) new_block->set(BlockBegin::parser_loop_header_flag);
 740       // Preserve certain flags for assertion checking
 741       if (block->is_set(BlockBegin::subroutine_entry_flag)) new_block->set(BlockBegin::subroutine_entry_flag);
 742       if (block->is_set(BlockBegin::exception_entry_flag))  new_block->set(BlockBegin::exception_entry_flag);
 743 
 744       // copy was_visited_flag to allow early detection of bailouts
 745       // if a block that is used in a jsr has already been visited before,
 746       // it is shared between the normal control flow and a subroutine
 747       // BlockBegin::try_merge returns false when the flag is set, this leads
 748       // to a compilation bailout
 749       if (block->is_set(BlockBegin::was_visited_flag))  new_block->set(BlockBegin::was_visited_flag);
 750 
 751       bci2block()->at_put(bci, new_block);
 752       block = new_block;
 753     }
 754     return block;
 755   } else {
 756     return bci2block()->at(bci);
 757   }
 758 }
 759 
 760 
 761 XHandlers* GraphBuilder::ScopeData::xhandlers() const {
 762   if (_jsr_xhandlers == NULL) {
 763     assert(!parsing_jsr(), "");
 764     return scope()->xhandlers();
 765   }
 766   assert(parsing_jsr(), "");
 767   return _jsr_xhandlers;
 768 }
 769 
 770 
 771 void GraphBuilder::ScopeData::set_scope(IRScope* scope) {
 772   _scope = scope;
 773   bool parent_has_handler = false;
 774   if (parent() != NULL) {
 775     parent_has_handler = parent()->has_handler();
 776   }
 777   _has_handler = parent_has_handler || scope->xhandlers()->has_handlers();
 778 }
 779 
 780 
 781 void GraphBuilder::ScopeData::set_inline_cleanup_info(BlockBegin* block,
 782                                                       Instruction* return_prev,
 783                                                       ValueStack* return_state) {
 784   _cleanup_block       = block;
 785   _cleanup_return_prev = return_prev;
 786   _cleanup_state       = return_state;
 787 }
 788 
 789 
 790 void GraphBuilder::ScopeData::add_to_work_list(BlockBegin* block) {
 791   if (_work_list == NULL) {
 792     _work_list = new BlockList();
 793   }
 794 
 795   if (!block->is_set(BlockBegin::is_on_work_list_flag)) {
 796     // Do not start parsing the continuation block while in a
 797     // sub-scope
 798     if (parsing_jsr()) {
 799       if (block == jsr_continuation()) {
 800         return;
 801       }
 802     } else {
 803       if (block == continuation()) {
 804         return;
 805       }
 806     }
 807     block->set(BlockBegin::is_on_work_list_flag);
 808     _work_list->push(block);
 809 
 810     sort_top_into_worklist(_work_list, block);
 811   }
 812 }
 813 
 814 
 815 void GraphBuilder::sort_top_into_worklist(BlockList* worklist, BlockBegin* top) {
 816   assert(worklist->top() == top, "");
 817   // sort block descending into work list
 818   const int dfn = top->depth_first_number();
 819   assert(dfn != -1, "unknown depth first number");
 820   int i = worklist->length()-2;
 821   while (i >= 0) {
 822     BlockBegin* b = worklist->at(i);
 823     if (b->depth_first_number() < dfn) {
 824       worklist->at_put(i+1, b);
 825     } else {
 826       break;
 827     }
 828     i --;
 829   }
 830   if (i >= -1) worklist->at_put(i + 1, top);
 831 }
 832 
 833 
 834 BlockBegin* GraphBuilder::ScopeData::remove_from_work_list() {
 835   if (is_work_list_empty()) {
 836     return NULL;
 837   }
 838   return _work_list->pop();
 839 }
 840 
 841 
 842 bool GraphBuilder::ScopeData::is_work_list_empty() const {
 843   return (_work_list == NULL || _work_list->length() == 0);
 844 }
 845 
 846 
 847 void GraphBuilder::ScopeData::setup_jsr_xhandlers() {
 848   assert(parsing_jsr(), "");
 849   // clone all the exception handlers from the scope
 850   XHandlers* handlers = new XHandlers(scope()->xhandlers());
 851   const int n = handlers->length();
 852   for (int i = 0; i < n; i++) {
 853     // The XHandlers need to be adjusted to dispatch to the cloned
 854     // handler block instead of the default one but the synthetic
 855     // unlocker needs to be handled specially.  The synthetic unlocker
 856     // should be left alone since there can be only one and all code
 857     // should dispatch to the same one.
 858     XHandler* h = handlers->handler_at(i);
 859     assert(h->handler_bci() != SynchronizationEntryBCI, "must be real");
 860     h->set_entry_block(block_at(h->handler_bci()));
 861   }
 862   _jsr_xhandlers = handlers;
 863 }
 864 
 865 
 866 int GraphBuilder::ScopeData::num_returns() {
 867   if (parsing_jsr()) {
 868     return parent()->num_returns();
 869   }
 870   return _num_returns;
 871 }
 872 
 873 
 874 void GraphBuilder::ScopeData::incr_num_returns() {
 875   if (parsing_jsr()) {
 876     parent()->incr_num_returns();
 877   } else {
 878     ++_num_returns;
 879   }
 880 }
 881 
 882 
 883 // Implementation of GraphBuilder
 884 
 885 #define INLINE_BAILOUT(msg)        { inline_bailout(msg); return false; }
 886 
 887 
 888 void GraphBuilder::load_constant() {
 889   ciConstant con = stream()->get_constant();
 890   if (con.basic_type() == T_ILLEGAL) {
 891     // FIXME: an unresolved Dynamic constant can get here,
 892     // and that should not terminate the whole compilation.
 893     BAILOUT("could not resolve a constant");
 894   } else {
 895     ValueType* t = illegalType;
 896     ValueStack* patch_state = NULL;
 897     switch (con.basic_type()) {
 898       case T_BOOLEAN: t = new IntConstant     (con.as_boolean()); break;
 899       case T_BYTE   : t = new IntConstant     (con.as_byte   ()); break;
 900       case T_CHAR   : t = new IntConstant     (con.as_char   ()); break;
 901       case T_SHORT  : t = new IntConstant     (con.as_short  ()); break;
 902       case T_INT    : t = new IntConstant     (con.as_int    ()); break;
 903       case T_LONG   : t = new LongConstant    (con.as_long   ()); break;
 904       case T_FLOAT  : t = new FloatConstant   (con.as_float  ()); break;
 905       case T_DOUBLE : t = new DoubleConstant  (con.as_double ()); break;
 906       case T_ARRAY  : t = new ArrayConstant   (con.as_object ()->as_array   ()); break;
 907       case T_OBJECT :
 908        {
 909         ciObject* obj = con.as_object();
 910         if (!obj->is_loaded()
 911             || (PatchALot && obj->klass() != ciEnv::current()->String_klass())) {
 912           // A Class, MethodType, MethodHandle, or String.
 913           // Unloaded condy nodes show up as T_ILLEGAL, above.
 914           patch_state = copy_state_before();
 915           t = new ObjectConstant(obj);
 916         } else {
 917           // Might be a Class, MethodType, MethodHandle, or Dynamic constant
 918           // result, which might turn out to be an array.
 919           if (obj->is_null_object())
 920             t = objectNull;
 921           else if (obj->is_array())
 922             t = new ArrayConstant(obj->as_array());
 923           else
 924             t = new InstanceConstant(obj->as_instance());
 925         }
 926         break;
 927        }
 928       default       : ShouldNotReachHere();
 929     }
 930     Value x;
 931     if (patch_state != NULL) {
 932       x = new Constant(t, patch_state);
 933     } else {
 934       x = new Constant(t);
 935     }
 936     push(t, append(x));
 937   }
 938 }
 939 
 940 
 941 void GraphBuilder::load_local(ValueType* type, int index) {
 942   Value x = state()->local_at(index);
 943   assert(x != NULL && !x->type()->is_illegal(), "access of illegal local variable");
 944   push(type, x);
 945 }
 946 
 947 
 948 void GraphBuilder::store_local(ValueType* type, int index) {
 949   Value x = pop(type);
 950   store_local(state(), x, index);
 951 }
 952 
 953 
 954 void GraphBuilder::store_local(ValueStack* state, Value x, int index) {
 955   if (parsing_jsr()) {
 956     // We need to do additional tracking of the location of the return
 957     // address for jsrs since we don't handle arbitrary jsr/ret
 958     // constructs. Here we are figuring out in which circumstances we
 959     // need to bail out.
 960     if (x->type()->is_address()) {
 961       scope_data()->set_jsr_return_address_local(index);
 962 
 963       // Also check parent jsrs (if any) at this time to see whether
 964       // they are using this local. We don't handle skipping over a
 965       // ret.
 966       for (ScopeData* cur_scope_data = scope_data()->parent();
 967            cur_scope_data != NULL && cur_scope_data->parsing_jsr() && cur_scope_data->scope() == scope();
 968            cur_scope_data = cur_scope_data->parent()) {
 969         if (cur_scope_data->jsr_return_address_local() == index) {
 970           BAILOUT("subroutine overwrites return address from previous subroutine");
 971         }
 972       }
 973     } else if (index == scope_data()->jsr_return_address_local()) {
 974       scope_data()->set_jsr_return_address_local(-1);
 975     }
 976   }
 977 
 978   state->store_local(index, round_fp(x));
 979 }
 980 
 981 
 982 void GraphBuilder::load_indexed(BasicType type) {
 983   // In case of in block code motion in range check elimination
 984   ValueStack* state_before = copy_state_indexed_access();
 985   compilation()->set_has_access_indexed(true);
 986   Value index = ipop();
 987   Value array = apop();
 988   Value length = NULL;
 989   if (CSEArrayLength ||
 990       (array->as_AccessField() && array->as_AccessField()->field()->is_constant()) ||
 991       (array->as_NewArray() && array->as_NewArray()->length() && array->as_NewArray()->length()->type()->is_constant())) {
 992     length = append(new ArrayLength(array, state_before));
 993   }
 994 
 995   if (array->is_loaded_flattened_array()) {
 996     ciType* array_type = array->declared_type();
 997     ciValueKlass* elem_klass = array_type->as_value_array_klass()->element_klass()->as_value_klass();
 998     NewValueTypeInstance* new_instance = new NewValueTypeInstance(elem_klass, state_before, false);
 999     _memory->new_instance(new_instance);
1000     apush(append_split(new_instance));
1001     LoadIndexed* load_indexed = new LoadIndexed(array, index, length, type, state_before);
1002     load_indexed->set_vt(new_instance);
1003     append(load_indexed);
1004   } else {
1005     push(as_ValueType(type), append(new LoadIndexed(array, index, length, type, state_before)));
1006   }
1007 }
1008 
1009 
1010 void GraphBuilder::store_indexed(BasicType type) {
1011   // In case of in block code motion in range check elimination
1012   ValueStack* state_before = copy_state_indexed_access();
1013   ValueStack* deopt_state = copy_state_before();
1014   compilation()->set_has_access_indexed(true);
1015   Value value = pop(as_ValueType(type));
1016   Value index = ipop();
1017   Value array = apop();
1018   Value length = NULL;
1019   if (CSEArrayLength ||
1020       (array->as_AccessField() && array->as_AccessField()->field()->is_constant()) ||
1021       (array->as_NewArray() && array->as_NewArray()->length() && array->as_NewArray()->length()->type()->is_constant())) {
1022     length = append(new ArrayLength(array, state_before));
1023   }
1024   ciType* array_type = array->declared_type();
1025   bool check_boolean = false;
1026   if (array_type != NULL) {
1027     if (array_type->is_loaded() &&
1028       array_type->as_array_klass()->element_type()->basic_type() == T_BOOLEAN) {
1029       assert(type == T_BYTE, "boolean store uses bastore");
1030       Value mask = append(new Constant(new IntConstant(1)));
1031       value = append(new LogicOp(Bytecodes::_iand, value, mask));
1032     }
1033   } else if (type == T_BYTE) {
1034     check_boolean = true;
1035   }
1036 
1037   if (array->is_flattened_array() && !array_type->is_loaded()) {
1038     // Value array access may be deoptimized. Need full "before" states.
1039     state_before = deopt_state;
1040   }
1041   StoreIndexed* result = new StoreIndexed(array, index, length, type, value, state_before, check_boolean);
1042   append(result);
1043   _memory->store_value(value);
1044 
1045   if (type == T_OBJECT && is_profiling()) {
1046     // Note that we'd collect profile data in this method if we wanted it.
1047     compilation()->set_would_profile(true);
1048 
1049     if (profile_checkcasts()) {
1050       result->set_profiled_method(method());
1051       result->set_profiled_bci(bci());
1052       result->set_should_profile(true);
1053     }
1054   }
1055 }
1056 
1057 
1058 void GraphBuilder::stack_op(Bytecodes::Code code) {
1059   switch (code) {
1060     case Bytecodes::_pop:
1061       { state()->raw_pop();
1062       }
1063       break;
1064     case Bytecodes::_pop2:
1065       { state()->raw_pop();
1066         state()->raw_pop();
1067       }
1068       break;
1069     case Bytecodes::_dup:
1070       { Value w = state()->raw_pop();
1071         state()->raw_push(w);
1072         state()->raw_push(w);
1073       }
1074       break;
1075     case Bytecodes::_dup_x1:
1076       { Value w1 = state()->raw_pop();
1077         Value w2 = state()->raw_pop();
1078         state()->raw_push(w1);
1079         state()->raw_push(w2);
1080         state()->raw_push(w1);
1081       }
1082       break;
1083     case Bytecodes::_dup_x2:
1084       { Value w1 = state()->raw_pop();
1085         Value w2 = state()->raw_pop();
1086         Value w3 = state()->raw_pop();
1087         state()->raw_push(w1);
1088         state()->raw_push(w3);
1089         state()->raw_push(w2);
1090         state()->raw_push(w1);
1091       }
1092       break;
1093     case Bytecodes::_dup2:
1094       { Value w1 = state()->raw_pop();
1095         Value w2 = state()->raw_pop();
1096         state()->raw_push(w2);
1097         state()->raw_push(w1);
1098         state()->raw_push(w2);
1099         state()->raw_push(w1);
1100       }
1101       break;
1102     case Bytecodes::_dup2_x1:
1103       { Value w1 = state()->raw_pop();
1104         Value w2 = state()->raw_pop();
1105         Value w3 = state()->raw_pop();
1106         state()->raw_push(w2);
1107         state()->raw_push(w1);
1108         state()->raw_push(w3);
1109         state()->raw_push(w2);
1110         state()->raw_push(w1);
1111       }
1112       break;
1113     case Bytecodes::_dup2_x2:
1114       { Value w1 = state()->raw_pop();
1115         Value w2 = state()->raw_pop();
1116         Value w3 = state()->raw_pop();
1117         Value w4 = state()->raw_pop();
1118         state()->raw_push(w2);
1119         state()->raw_push(w1);
1120         state()->raw_push(w4);
1121         state()->raw_push(w3);
1122         state()->raw_push(w2);
1123         state()->raw_push(w1);
1124       }
1125       break;
1126     case Bytecodes::_swap:
1127       { Value w1 = state()->raw_pop();
1128         Value w2 = state()->raw_pop();
1129         state()->raw_push(w1);
1130         state()->raw_push(w2);
1131       }
1132       break;
1133     default:
1134       ShouldNotReachHere();
1135       break;
1136   }
1137 }
1138 
1139 
1140 void GraphBuilder::arithmetic_op(ValueType* type, Bytecodes::Code code, ValueStack* state_before) {
1141   Value y = pop(type);
1142   Value x = pop(type);
1143   // NOTE: strictfp can be queried from current method since we don't
1144   // inline methods with differing strictfp bits
1145   Value res = new ArithmeticOp(code, x, y, method()->is_strict(), state_before);
1146   // Note: currently single-precision floating-point rounding on Intel is handled at the LIRGenerator level
1147   res = append(res);
1148   if (method()->is_strict()) {
1149     res = round_fp(res);
1150   }
1151   push(type, res);
1152 }
1153 
1154 
1155 void GraphBuilder::negate_op(ValueType* type) {
1156   push(type, append(new NegateOp(pop(type))));
1157 }
1158 
1159 
1160 void GraphBuilder::shift_op(ValueType* type, Bytecodes::Code code) {
1161   Value s = ipop();
1162   Value x = pop(type);
1163   // try to simplify
1164   // Note: This code should go into the canonicalizer as soon as it can
1165   //       can handle canonicalized forms that contain more than one node.
1166   if (CanonicalizeNodes && code == Bytecodes::_iushr) {
1167     // pattern: x >>> s
1168     IntConstant* s1 = s->type()->as_IntConstant();
1169     if (s1 != NULL) {
1170       // pattern: x >>> s1, with s1 constant
1171       ShiftOp* l = x->as_ShiftOp();
1172       if (l != NULL && l->op() == Bytecodes::_ishl) {
1173         // pattern: (a << b) >>> s1
1174         IntConstant* s0 = l->y()->type()->as_IntConstant();
1175         if (s0 != NULL) {
1176           // pattern: (a << s0) >>> s1
1177           const int s0c = s0->value() & 0x1F; // only the low 5 bits are significant for shifts
1178           const int s1c = s1->value() & 0x1F; // only the low 5 bits are significant for shifts
1179           if (s0c == s1c) {
1180             if (s0c == 0) {
1181               // pattern: (a << 0) >>> 0 => simplify to: a
1182               ipush(l->x());
1183             } else {
1184               // pattern: (a << s0c) >>> s0c => simplify to: a & m, with m constant
1185               assert(0 < s0c && s0c < BitsPerInt, "adjust code below to handle corner cases");
1186               const int m = (1 << (BitsPerInt - s0c)) - 1;
1187               Value s = append(new Constant(new IntConstant(m)));
1188               ipush(append(new LogicOp(Bytecodes::_iand, l->x(), s)));
1189             }
1190             return;
1191           }
1192         }
1193       }
1194     }
1195   }
1196   // could not simplify
1197   push(type, append(new ShiftOp(code, x, s)));
1198 }
1199 
1200 
1201 void GraphBuilder::logic_op(ValueType* type, Bytecodes::Code code) {
1202   Value y = pop(type);
1203   Value x = pop(type);
1204   push(type, append(new LogicOp(code, x, y)));
1205 }
1206 
1207 
1208 void GraphBuilder::compare_op(ValueType* type, Bytecodes::Code code) {
1209   ValueStack* state_before = copy_state_before();
1210   Value y = pop(type);
1211   Value x = pop(type);
1212   ipush(append(new CompareOp(code, x, y, state_before)));
1213 }
1214 
1215 
1216 void GraphBuilder::convert(Bytecodes::Code op, BasicType from, BasicType to) {
1217   push(as_ValueType(to), append(new Convert(op, pop(as_ValueType(from)), as_ValueType(to))));
1218 }
1219 
1220 
1221 void GraphBuilder::increment() {
1222   int index = stream()->get_index();
1223   int delta = stream()->is_wide() ? (signed short)Bytes::get_Java_u2(stream()->cur_bcp() + 4) : (signed char)(stream()->cur_bcp()[2]);
1224   load_local(intType, index);
1225   ipush(append(new Constant(new IntConstant(delta))));
1226   arithmetic_op(intType, Bytecodes::_iadd);
1227   store_local(intType, index);
1228 }
1229 
1230 
1231 void GraphBuilder::_goto(int from_bci, int to_bci) {
1232   Goto *x = new Goto(block_at(to_bci), to_bci <= from_bci);
1233   if (is_profiling()) {
1234     compilation()->set_would_profile(true);
1235     x->set_profiled_bci(bci());
1236     if (profile_branches()) {
1237       x->set_profiled_method(method());
1238       x->set_should_profile(true);
1239     }
1240   }
1241   append(x);
1242 }
1243 
1244 
1245 void GraphBuilder::if_node(Value x, If::Condition cond, Value y, ValueStack* state_before) {
1246   BlockBegin* tsux = block_at(stream()->get_dest());
1247   BlockBegin* fsux = block_at(stream()->next_bci());
1248   bool is_bb = tsux->bci() < stream()->cur_bci() || fsux->bci() < stream()->cur_bci();
1249   // In case of loop invariant code motion or predicate insertion
1250   // before the body of a loop the state is needed
1251   Instruction *i = append(new If(x, cond, false, y, tsux, fsux, (is_bb || compilation()->is_optimistic()) ? state_before : NULL, is_bb));
1252 
1253   assert(i->as_Goto() == NULL ||
1254          (i->as_Goto()->sux_at(0) == tsux  && i->as_Goto()->is_safepoint() == tsux->bci() < stream()->cur_bci()) ||
1255          (i->as_Goto()->sux_at(0) == fsux  && i->as_Goto()->is_safepoint() == fsux->bci() < stream()->cur_bci()),
1256          "safepoint state of Goto returned by canonicalizer incorrect");
1257 
1258   if (is_profiling()) {
1259     If* if_node = i->as_If();
1260     if (if_node != NULL) {
1261       // Note that we'd collect profile data in this method if we wanted it.
1262       compilation()->set_would_profile(true);
1263       // At level 2 we need the proper bci to count backedges
1264       if_node->set_profiled_bci(bci());
1265       if (profile_branches()) {
1266         // Successors can be rotated by the canonicalizer, check for this case.
1267         if_node->set_profiled_method(method());
1268         if_node->set_should_profile(true);
1269         if (if_node->tsux() == fsux) {
1270           if_node->set_swapped(true);
1271         }
1272       }
1273       return;
1274     }
1275 
1276     // Check if this If was reduced to Goto.
1277     Goto *goto_node = i->as_Goto();
1278     if (goto_node != NULL) {
1279       compilation()->set_would_profile(true);
1280       goto_node->set_profiled_bci(bci());
1281       if (profile_branches()) {
1282         goto_node->set_profiled_method(method());
1283         goto_node->set_should_profile(true);
1284         // Find out which successor is used.
1285         if (goto_node->default_sux() == tsux) {
1286           goto_node->set_direction(Goto::taken);
1287         } else if (goto_node->default_sux() == fsux) {
1288           goto_node->set_direction(Goto::not_taken);
1289         } else {
1290           ShouldNotReachHere();
1291         }
1292       }
1293       return;
1294     }
1295   }
1296 }
1297 
1298 
1299 void GraphBuilder::if_zero(ValueType* type, If::Condition cond) {
1300   Value y = append(new Constant(intZero));
1301   ValueStack* state_before = copy_state_before();
1302   Value x = ipop();
1303   if_node(x, cond, y, state_before);
1304 }
1305 
1306 
1307 void GraphBuilder::if_null(ValueType* type, If::Condition cond) {
1308   Value y = append(new Constant(objectNull));
1309   ValueStack* state_before = copy_state_before();
1310   Value x = apop();
1311   if_node(x, cond, y, state_before);
1312 }
1313 
1314 
1315 void GraphBuilder::if_same(ValueType* type, If::Condition cond) {
1316   ValueStack* state_before = copy_state_before();
1317   Value y = pop(type);
1318   Value x = pop(type);
1319   if_node(x, cond, y, state_before);
1320 }
1321 
1322 
1323 void GraphBuilder::jsr(int dest) {
1324   // We only handle well-formed jsrs (those which are "block-structured").
1325   // If the bytecodes are strange (jumping out of a jsr block) then we
1326   // might end up trying to re-parse a block containing a jsr which
1327   // has already been activated. Watch for this case and bail out.
1328   for (ScopeData* cur_scope_data = scope_data();
1329        cur_scope_data != NULL && cur_scope_data->parsing_jsr() && cur_scope_data->scope() == scope();
1330        cur_scope_data = cur_scope_data->parent()) {
1331     if (cur_scope_data->jsr_entry_bci() == dest) {
1332       BAILOUT("too-complicated jsr/ret structure");
1333     }
1334   }
1335 
1336   push(addressType, append(new Constant(new AddressConstant(next_bci()))));
1337   if (!try_inline_jsr(dest)) {
1338     return; // bailed out while parsing and inlining subroutine
1339   }
1340 }
1341 
1342 
1343 void GraphBuilder::ret(int local_index) {
1344   if (!parsing_jsr()) BAILOUT("ret encountered while not parsing subroutine");
1345 
1346   if (local_index != scope_data()->jsr_return_address_local()) {
1347     BAILOUT("can not handle complicated jsr/ret constructs");
1348   }
1349 
1350   // Rets simply become (NON-SAFEPOINT) gotos to the jsr continuation
1351   append(new Goto(scope_data()->jsr_continuation(), false));
1352 }
1353 
1354 
1355 void GraphBuilder::table_switch() {
1356   Bytecode_tableswitch sw(stream());
1357   const int l = sw.length();
1358   if (CanonicalizeNodes && l == 1 && compilation()->env()->comp_level() != CompLevel_full_profile) {
1359     // total of 2 successors => use If instead of switch
1360     // Note: This code should go into the canonicalizer as soon as it can
1361     //       can handle canonicalized forms that contain more than one node.
1362     Value key = append(new Constant(new IntConstant(sw.low_key())));
1363     BlockBegin* tsux = block_at(bci() + sw.dest_offset_at(0));
1364     BlockBegin* fsux = block_at(bci() + sw.default_offset());
1365     bool is_bb = tsux->bci() < bci() || fsux->bci() < bci();
1366     // In case of loop invariant code motion or predicate insertion
1367     // before the body of a loop the state is needed
1368     ValueStack* state_before = copy_state_if_bb(is_bb);
1369     append(new If(ipop(), If::eql, true, key, tsux, fsux, state_before, is_bb));
1370   } else {
1371     // collect successors
1372     BlockList* sux = new BlockList(l + 1, NULL);
1373     int i;
1374     bool has_bb = false;
1375     for (i = 0; i < l; i++) {
1376       sux->at_put(i, block_at(bci() + sw.dest_offset_at(i)));
1377       if (sw.dest_offset_at(i) < 0) has_bb = true;
1378     }
1379     // add default successor
1380     if (sw.default_offset() < 0) has_bb = true;
1381     sux->at_put(i, block_at(bci() + sw.default_offset()));
1382     // In case of loop invariant code motion or predicate insertion
1383     // before the body of a loop the state is needed
1384     ValueStack* state_before = copy_state_if_bb(has_bb);
1385     Instruction* res = append(new TableSwitch(ipop(), sux, sw.low_key(), state_before, has_bb));
1386 #ifdef ASSERT
1387     if (res->as_Goto()) {
1388       for (i = 0; i < l; i++) {
1389         if (sux->at(i) == res->as_Goto()->sux_at(0)) {
1390           assert(res->as_Goto()->is_safepoint() == sw.dest_offset_at(i) < 0, "safepoint state of Goto returned by canonicalizer incorrect");
1391         }
1392       }
1393     }
1394 #endif
1395   }
1396 }
1397 
1398 
1399 void GraphBuilder::lookup_switch() {
1400   Bytecode_lookupswitch sw(stream());
1401   const int l = sw.number_of_pairs();
1402   if (CanonicalizeNodes && l == 1 && compilation()->env()->comp_level() != CompLevel_full_profile) {
1403     // total of 2 successors => use If instead of switch
1404     // Note: This code should go into the canonicalizer as soon as it can
1405     //       can handle canonicalized forms that contain more than one node.
1406     // simplify to If
1407     LookupswitchPair pair = sw.pair_at(0);
1408     Value key = append(new Constant(new IntConstant(pair.match())));
1409     BlockBegin* tsux = block_at(bci() + pair.offset());
1410     BlockBegin* fsux = block_at(bci() + sw.default_offset());
1411     bool is_bb = tsux->bci() < bci() || fsux->bci() < bci();
1412     // In case of loop invariant code motion or predicate insertion
1413     // before the body of a loop the state is needed
1414     ValueStack* state_before = copy_state_if_bb(is_bb);;
1415     append(new If(ipop(), If::eql, true, key, tsux, fsux, state_before, is_bb));
1416   } else {
1417     // collect successors & keys
1418     BlockList* sux = new BlockList(l + 1, NULL);
1419     intArray* keys = new intArray(l, l, 0);
1420     int i;
1421     bool has_bb = false;
1422     for (i = 0; i < l; i++) {
1423       LookupswitchPair pair = sw.pair_at(i);
1424       if (pair.offset() < 0) has_bb = true;
1425       sux->at_put(i, block_at(bci() + pair.offset()));
1426       keys->at_put(i, pair.match());
1427     }
1428     // add default successor
1429     if (sw.default_offset() < 0) has_bb = true;
1430     sux->at_put(i, block_at(bci() + sw.default_offset()));
1431     // In case of loop invariant code motion or predicate insertion
1432     // before the body of a loop the state is needed
1433     ValueStack* state_before = copy_state_if_bb(has_bb);
1434     Instruction* res = append(new LookupSwitch(ipop(), sux, keys, state_before, has_bb));
1435 #ifdef ASSERT
1436     if (res->as_Goto()) {
1437       for (i = 0; i < l; i++) {
1438         if (sux->at(i) == res->as_Goto()->sux_at(0)) {
1439           assert(res->as_Goto()->is_safepoint() == sw.pair_at(i).offset() < 0, "safepoint state of Goto returned by canonicalizer incorrect");
1440         }
1441       }
1442     }
1443 #endif
1444   }
1445 }
1446 
1447 void GraphBuilder::call_register_finalizer() {
1448   // If the receiver requires finalization then emit code to perform
1449   // the registration on return.
1450 
1451   // Gather some type information about the receiver
1452   Value receiver = state()->local_at(0);
1453   assert(receiver != NULL, "must have a receiver");
1454   ciType* declared_type = receiver->declared_type();
1455   ciType* exact_type = receiver->exact_type();
1456   if (exact_type == NULL &&
1457       receiver->as_Local() &&
1458       receiver->as_Local()->java_index() == 0) {
1459     ciInstanceKlass* ik = compilation()->method()->holder();
1460     if (ik->is_final()) {
1461       exact_type = ik;
1462     } else if (UseCHA && !(ik->has_subklass() || ik->is_interface())) {
1463       // test class is leaf class
1464       compilation()->dependency_recorder()->assert_leaf_type(ik);
1465       exact_type = ik;
1466     } else {
1467       declared_type = ik;
1468     }
1469   }
1470 
1471   // see if we know statically that registration isn't required
1472   bool needs_check = true;
1473   if (exact_type != NULL) {
1474     needs_check = exact_type->as_instance_klass()->has_finalizer();
1475   } else if (declared_type != NULL) {
1476     ciInstanceKlass* ik = declared_type->as_instance_klass();
1477     if (!Dependencies::has_finalizable_subclass(ik)) {
1478       compilation()->dependency_recorder()->assert_has_no_finalizable_subclasses(ik);
1479       needs_check = false;
1480     }
1481   }
1482 
1483   if (needs_check) {
1484     // Perform the registration of finalizable objects.
1485     ValueStack* state_before = copy_state_for_exception();
1486     load_local(objectType, 0);
1487     append_split(new Intrinsic(voidType, vmIntrinsics::_Object_init,
1488                                state()->pop_arguments(1),
1489                                true, state_before, true));
1490   }
1491 }
1492 
1493 
1494 void GraphBuilder::method_return(Value x, bool ignore_return) {
1495   if (RegisterFinalizersAtInit &&
1496       method()->intrinsic_id() == vmIntrinsics::_Object_init) {
1497     call_register_finalizer();
1498   }
1499 
1500   bool need_mem_bar = false;
1501   if (method()->name() == ciSymbol::object_initializer_name() &&
1502       (scope()->wrote_final() || (AlwaysSafeConstructors && scope()->wrote_fields())
1503                               || (support_IRIW_for_not_multiple_copy_atomic_cpu && scope()->wrote_volatile())
1504      )){
1505     need_mem_bar = true;
1506   }
1507 
1508   BasicType bt = method()->return_type()->basic_type();
1509   switch (bt) {
1510     case T_BYTE:
1511     {
1512       Value shift = append(new Constant(new IntConstant(24)));
1513       x = append(new ShiftOp(Bytecodes::_ishl, x, shift));
1514       x = append(new ShiftOp(Bytecodes::_ishr, x, shift));
1515       break;
1516     }
1517     case T_SHORT:
1518     {
1519       Value shift = append(new Constant(new IntConstant(16)));
1520       x = append(new ShiftOp(Bytecodes::_ishl, x, shift));
1521       x = append(new ShiftOp(Bytecodes::_ishr, x, shift));
1522       break;
1523     }
1524     case T_CHAR:
1525     {
1526       Value mask = append(new Constant(new IntConstant(0xFFFF)));
1527       x = append(new LogicOp(Bytecodes::_iand, x, mask));
1528       break;
1529     }
1530     case T_BOOLEAN:
1531     {
1532       Value mask = append(new Constant(new IntConstant(1)));
1533       x = append(new LogicOp(Bytecodes::_iand, x, mask));
1534       break;
1535     }
1536     default:
1537       break;
1538   }
1539 
1540   // Check to see whether we are inlining. If so, Return
1541   // instructions become Gotos to the continuation point.
1542   if (continuation() != NULL) {
1543 
1544     int invoke_bci = state()->caller_state()->bci();
1545 
1546     if (x != NULL  && !ignore_return) {
1547       ciMethod* caller = state()->scope()->caller()->method();
1548       Bytecodes::Code invoke_raw_bc = caller->raw_code_at_bci(invoke_bci);
1549       if (invoke_raw_bc == Bytecodes::_invokehandle || invoke_raw_bc == Bytecodes::_invokedynamic) {
1550         ciType* declared_ret_type = caller->get_declared_signature_at_bci(invoke_bci)->return_type();
1551         if (declared_ret_type->is_klass() && x->exact_type() == NULL &&
1552             x->declared_type() != declared_ret_type && declared_ret_type != compilation()->env()->Object_klass()) {
1553           x = append(new TypeCast(declared_ret_type->as_klass(), x, copy_state_before()));
1554         }
1555       }
1556     }
1557 
1558     assert(!method()->is_synchronized() || InlineSynchronizedMethods, "can not inline synchronized methods yet");
1559 
1560     if (compilation()->env()->dtrace_method_probes()) {
1561       // Report exit from inline methods
1562       Values* args = new Values(1);
1563       args->push(append(new Constant(new MethodConstant(method()))));
1564       append(new RuntimeCall(voidType, "dtrace_method_exit", CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), args));
1565     }
1566 
1567     // If the inlined method is synchronized, the monitor must be
1568     // released before we jump to the continuation block.
1569     if (method()->is_synchronized()) {
1570       assert(state()->locks_size() == 1, "receiver must be locked here");
1571       monitorexit(state()->lock_at(0), SynchronizationEntryBCI);
1572     }
1573 
1574     if (need_mem_bar) {
1575       append(new MemBar(lir_membar_storestore));
1576     }
1577 
1578     // State at end of inlined method is the state of the caller
1579     // without the method parameters on stack, including the
1580     // return value, if any, of the inlined method on operand stack.
1581     set_state(state()->caller_state()->copy_for_parsing());
1582     if (x != NULL) {
1583       if (!ignore_return) {
1584         state()->push(x->type(), x);
1585       }
1586       if (profile_return() && x->type()->is_object_kind()) {
1587         ciMethod* caller = state()->scope()->method();
1588         profile_return_type(x, method(), caller, invoke_bci);
1589       }
1590     }
1591     Goto* goto_callee = new Goto(continuation(), false);
1592 
1593     // See whether this is the first return; if so, store off some
1594     // of the state for later examination
1595     if (num_returns() == 0) {
1596       set_inline_cleanup_info();
1597     }
1598 
1599     // The current bci() is in the wrong scope, so use the bci() of
1600     // the continuation point.
1601     append_with_bci(goto_callee, scope_data()->continuation()->bci());
1602     incr_num_returns();
1603     return;
1604   }
1605 
1606   state()->truncate_stack(0);
1607   if (method()->is_synchronized()) {
1608     // perform the unlocking before exiting the method
1609     Value receiver;
1610     if (!method()->is_static()) {
1611       receiver = _initial_state->local_at(0);
1612     } else {
1613       receiver = append(new Constant(new ClassConstant(method()->holder())));
1614     }
1615     append_split(new MonitorExit(receiver, state()->unlock()));
1616   }
1617 
1618   if (need_mem_bar) {
1619       append(new MemBar(lir_membar_storestore));
1620   }
1621 
1622   assert(!ignore_return, "Ignoring return value works only for inlining");
1623   append(new Return(x));
1624 }
1625 
1626 Value GraphBuilder::make_constant(ciConstant field_value, ciField* field) {
1627   if (!field_value.is_valid())  return NULL;
1628 
1629   BasicType field_type = field_value.basic_type();
1630   ValueType* value = as_ValueType(field_value);
1631 
1632   // Attach dimension info to stable arrays.
1633   if (FoldStableValues &&
1634       field->is_stable() && field_type == T_ARRAY && !field_value.is_null_or_zero()) {
1635     ciArray* array = field_value.as_object()->as_array();
1636     jint dimension = field->type()->as_array_klass()->dimension();
1637     value = new StableArrayConstant(array, dimension);
1638   }
1639 
1640   switch (field_type) {
1641     case T_ARRAY:
1642     case T_OBJECT:
1643       if (field_value.as_object()->should_be_constant()) {
1644         return new Constant(value);
1645       }
1646       return NULL; // Not a constant.
1647     default:
1648       return new Constant(value);
1649   }
1650 }
1651 
1652 void GraphBuilder::copy_value_content(ciValueKlass* vk, Value src, int src_off, Value dest, int dest_off,
1653     ValueStack* state_before, bool needs_patching) {
1654   for (int i = 0; i < vk->nof_nonstatic_fields(); i++) {
1655     ciField* inner_field = vk->nonstatic_field_at(i);
1656     assert(!inner_field->is_flattened(), "the iteration over nested fields is handled by the loop itself");
1657     int off = inner_field->offset() - vk->first_field_offset();
1658     LoadField* load = new LoadField(src, src_off + off, inner_field, false, state_before, needs_patching);
1659     Value replacement = append(load);
1660     StoreField* store = new StoreField(dest, dest_off + off, inner_field, replacement, false, state_before, needs_patching);
1661     append(store);
1662   }
1663 }
1664 
1665 void GraphBuilder::access_field(Bytecodes::Code code) {
1666   bool will_link;
1667   ciField* field = stream()->get_field(will_link);
1668   ciInstanceKlass* holder = field->holder();
1669   BasicType field_type = field->type()->basic_type();
1670   ValueType* type = as_ValueType(field_type);
1671 
1672   // Null check and deopt for getting static value field
1673   ciValueKlass* value_klass = NULL;
1674   Value default_value = NULL;
1675   bool needs_deopt = false;
1676   if (code == Bytecodes::_getstatic && !field->is_static_constant() &&
1677       field->layout_type() == T_VALUETYPE) {
1678     value_klass = field->type()->as_value_klass();
1679     if (holder->is_loaded()) {
1680       ciInstance* mirror = field->holder()->java_mirror();
1681       ciObject* val = mirror->field_value(field).as_object();
1682       if (!val->is_null_object()) {
1683         // No need to perform null check on this static field
1684         value_klass = NULL;
1685       }
1686     }
1687     if (value_klass != NULL) {
1688       if (value_klass->is_loaded()) {
1689         default_value = new Constant(new InstanceConstant(value_klass->default_value_instance()));
1690       } else {
1691         needs_deopt = true;
1692       }
1693     }
1694   }
1695 
1696   // call will_link again to determine if the field is valid.
1697   const bool needs_patching = !holder->is_loaded() ||
1698                               !field->will_link(method(), code) ||
1699                               needs_deopt ||
1700                               PatchALot;
1701 
1702   ValueStack* state_before = NULL;
1703   if (!holder->is_initialized() || needs_patching) {
1704     // save state before instruction for debug info when
1705     // deoptimization happens during patching
1706     state_before = copy_state_before();
1707   }
1708 
1709   Value obj = NULL;
1710   if (code == Bytecodes::_getstatic || code == Bytecodes::_putstatic) {
1711     if (state_before != NULL) {
1712       // build a patching constant
1713       obj = new Constant(new InstanceConstant(holder->java_mirror()), state_before);
1714     } else {
1715       obj = new Constant(new InstanceConstant(holder->java_mirror()));
1716     }
1717   }
1718 
1719   if (field->is_final() && (code == Bytecodes::_putfield)) {
1720     scope()->set_wrote_final();
1721   }
1722 
1723   if (code == Bytecodes::_putfield) {
1724     scope()->set_wrote_fields();
1725     if (field->is_volatile()) {
1726       scope()->set_wrote_volatile();
1727     }
1728   }
1729 
1730   const int offset = !needs_patching ? field->offset() : -1;
1731   switch (code) {
1732     case Bytecodes::_getstatic: {
1733       // check for compile-time constants, i.e., initialized static final fields
1734       Value constant = NULL;
1735       if (field->is_static_constant() && !PatchALot) {
1736         ciConstant field_value = field->constant_value();
1737         assert(!field->is_stable() || !field_value.is_null_or_zero(),
1738                "stable static w/ default value shouldn't be a constant");
1739         constant = make_constant(field_value, field);
1740       }
1741       if (constant != NULL) {
1742         push(type, append(constant));
1743       } else {
1744         if (state_before == NULL) {
1745           state_before = copy_state_for_exception();
1746         }
1747         push(type, append(new LoadField(append(obj), offset, field, true,
1748                                         state_before, needs_patching,
1749                                         value_klass, default_value)));
1750       }
1751       break;
1752     }
1753     case Bytecodes::_putstatic: {
1754       Value val = pop(type);
1755       if (state_before == NULL) {
1756         state_before = copy_state_for_exception();
1757       }
1758       if (field->type()->basic_type() == T_BOOLEAN) {
1759         Value mask = append(new Constant(new IntConstant(1)));
1760         val = append(new LogicOp(Bytecodes::_iand, val, mask));
1761       }
1762       append(new StoreField(append(obj), offset, field, val, true, state_before, needs_patching));
1763       break;
1764     }
1765     case Bytecodes::_getfield: {
1766       // Check for compile-time constants, i.e., trusted final non-static fields.
1767       Value constant = NULL;
1768       obj = apop();
1769       ObjectType* obj_type = obj->type()->as_ObjectType();
1770       if (field->is_constant() && !field->is_flattened() && obj_type->is_constant() && !PatchALot) {
1771         ciObject* const_oop = obj_type->constant_value();
1772         if (!const_oop->is_null_object() && const_oop->is_loaded()) {
1773           ciConstant field_value = field->constant_value_of(const_oop);
1774           if (field_value.is_valid()) {
1775             constant = make_constant(field_value, field);
1776             // For CallSite objects add a dependency for invalidation of the optimization.
1777             if (field->is_call_site_target()) {
1778               ciCallSite* call_site = const_oop->as_call_site();
1779               if (!call_site->is_constant_call_site()) {
1780                 ciMethodHandle* target = field_value.as_object()->as_method_handle();
1781                 dependency_recorder()->assert_call_site_target_value(call_site, target);
1782               }
1783             }
1784           }
1785         }
1786       }
1787       if (constant != NULL) {
1788         push(type, append(constant));
1789       } else {
1790         if (state_before == NULL) {
1791           state_before = copy_state_for_exception();
1792         }
1793 
1794         if (!field->is_flattened()) {
1795           LoadField* load = new LoadField(obj, offset, field, false, state_before, needs_patching);
1796           Value replacement = !needs_patching ? _memory->load(load) : load;
1797           if (replacement != load) {
1798             assert(replacement->is_linked() || !replacement->can_be_linked(), "should already by linked");
1799             push(type, replacement);
1800           } else {
1801             push(type, append(load));
1802           }
1803         } else { // flattened field, not optimized solution: re-instantiate the flattened value
1804           assert(field->type()->is_valuetype(), "Sanity check");
1805           ciValueKlass* value_klass = field->type()->as_value_klass();
1806           int flattening_offset = field->offset() - value_klass->first_field_offset();
1807           assert(field->type()->is_valuetype(), "Sanity check");
1808           scope()->set_wrote_final();
1809           scope()->set_wrote_fields();
1810           NewValueTypeInstance* new_instance = new NewValueTypeInstance(value_klass, state_before, false);
1811           _memory->new_instance(new_instance);
1812           apush(append_split(new_instance));
1813           copy_value_content(value_klass, obj, field->offset() , new_instance, value_klass->first_field_offset(),
1814                        state_before, needs_patching);
1815         }
1816       }
1817       break;
1818     }
1819     case Bytecodes::_putfield: {
1820       Value val = pop(type);
1821       obj = apop();
1822       if (state_before == NULL) {
1823         state_before = copy_state_for_exception();
1824       }
1825       if (field->type()->basic_type() == T_BOOLEAN) {
1826         Value mask = append(new Constant(new IntConstant(1)));
1827         val = append(new LogicOp(Bytecodes::_iand, val, mask));
1828       }
1829 
1830       if (!field->is_flattened()) {
1831         StoreField* store = new StoreField(obj, offset, field, val, false, state_before, needs_patching);
1832         if (!needs_patching) store = _memory->store(store);
1833         if (store != NULL) {
1834           append(store);
1835         }
1836       } else {
1837         assert(field->type()->is_valuetype(), "Sanity check");
1838         ciValueKlass* value_klass = field->type()->as_value_klass();
1839         int flattening_offset = field->offset() - value_klass->first_field_offset();
1840         copy_value_content(value_klass, val, value_klass->first_field_offset(), obj, field->offset(),
1841                    state_before, needs_patching);
1842       }
1843       break;
1844     }
1845     default:
1846       ShouldNotReachHere();
1847       break;
1848   }
1849 }
1850 
1851 // Baseline version of withfield, allocate every time
1852 void GraphBuilder::withfield(int field_index)
1853 {
1854   bool will_link;
1855   ciField* field_modify = stream()->get_field(will_link);
1856   ciInstanceKlass* holder = field_modify->holder();
1857   assert(holder->is_valuetype(), "must be a value klass");
1858   BasicType field_type = field_modify->type()->basic_type();
1859   ValueType* type = as_ValueType(field_type);
1860 
1861   // call will_link again to determine if the field is valid.
1862   const bool needs_patching = !holder->is_loaded() ||
1863                               !field_modify->will_link(method(), Bytecodes::_withfield) ||
1864                               PatchALot;
1865 
1866 
1867   scope()->set_wrote_final();
1868   scope()->set_wrote_fields();
1869 
1870   const int offset = !needs_patching ? field_modify->offset() : -1;
1871   Value val = pop(type);
1872   Value obj = apop();
1873 
1874   ValueStack* state_before = copy_state_for_exception();
1875 
1876   NewValueTypeInstance* new_instance = new NewValueTypeInstance(holder->as_value_klass(), state_before, false);
1877   _memory->new_instance(new_instance);
1878   apush(append_split(new_instance));
1879 
1880   for (int i = 0; i < holder->nof_nonstatic_fields(); i++) {
1881     ciField* field = holder->nonstatic_field_at(i);
1882     int off = field->offset();
1883 
1884     if (field->offset() != offset) {
1885       if (field->is_flattened()) {
1886         assert(field->type()->is_valuetype(), "Sanity check");
1887         assert(field->type()->is_valuetype(), "Only value types can be flattened");
1888         ciValueKlass* vk = field->type()->as_value_klass();
1889         copy_value_content(vk, obj, off, new_instance, vk->first_field_offset(), state_before, needs_patching);
1890       } else {
1891         // Only load those fields who are not modified
1892         LoadField* load = new LoadField(obj, off, field, false, state_before, needs_patching);
1893         Value replacement = append(load);
1894         StoreField* store = new StoreField(new_instance, off, field, replacement, false, state_before, needs_patching);
1895         append(store);
1896       }
1897     }
1898   }
1899 
1900   // Field to modify
1901   if (field_modify->type()->basic_type() == T_BOOLEAN) {
1902     Value mask = append(new Constant(new IntConstant(1)));
1903     val = append(new LogicOp(Bytecodes::_iand, val, mask));
1904   }
1905   if (field_modify->is_flattened()) {
1906     assert(field_modify->type()->is_valuetype(), "Only value types can be flattened");
1907     ciValueKlass* vk = field_modify->type()->as_value_klass();
1908     copy_value_content(vk, val, vk->first_field_offset(), new_instance, field_modify->offset(), state_before, needs_patching);
1909   } else {
1910     StoreField* store = new StoreField(new_instance, offset, field_modify, val, false, state_before, needs_patching);
1911     append(store);
1912   }
1913 }
1914 
1915 Dependencies* GraphBuilder::dependency_recorder() const {
1916   assert(DeoptC1, "need debug information");
1917   return compilation()->dependency_recorder();
1918 }
1919 
1920 // How many arguments do we want to profile?
1921 Values* GraphBuilder::args_list_for_profiling(ciMethod* target, int& start, bool may_have_receiver) {
1922   int n = 0;
1923   bool has_receiver = may_have_receiver && Bytecodes::has_receiver(method()->java_code_at_bci(bci()));
1924   start = has_receiver ? 1 : 0;
1925   if (profile_arguments()) {
1926     ciProfileData* data = method()->method_data()->bci_to_data(bci());
1927     if (data != NULL && (data->is_CallTypeData() || data->is_VirtualCallTypeData())) {
1928       n = data->is_CallTypeData() ? data->as_CallTypeData()->number_of_arguments() : data->as_VirtualCallTypeData()->number_of_arguments();
1929     }
1930   }
1931   // If we are inlining then we need to collect arguments to profile parameters for the target
1932   if (profile_parameters() && target != NULL) {
1933     if (target->method_data() != NULL && target->method_data()->parameters_type_data() != NULL) {
1934       // The receiver is profiled on method entry so it's included in
1935       // the number of parameters but here we're only interested in
1936       // actual arguments.
1937       n = MAX2(n, target->method_data()->parameters_type_data()->number_of_parameters() - start);
1938     }
1939   }
1940   if (n > 0) {
1941     return new Values(n);
1942   }
1943   return NULL;
1944 }
1945 
1946 void GraphBuilder::check_args_for_profiling(Values* obj_args, int expected) {
1947 #ifdef ASSERT
1948   bool ignored_will_link;
1949   ciSignature* declared_signature = NULL;
1950   ciMethod* real_target = method()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
1951   assert(expected == obj_args->max_length() || real_target->is_method_handle_intrinsic(), "missed on arg?");
1952 #endif
1953 }
1954 
1955 // Collect arguments that we want to profile in a list
1956 Values* GraphBuilder::collect_args_for_profiling(Values* args, ciMethod* target, bool may_have_receiver) {
1957   int start = 0;
1958   Values* obj_args = args_list_for_profiling(target, start, may_have_receiver);
1959   if (obj_args == NULL) {
1960     return NULL;
1961   }
1962   int s = obj_args->max_length();
1963   // if called through method handle invoke, some arguments may have been popped
1964   for (int i = start, j = 0; j < s && i < args->length(); i++) {
1965     if (args->at(i)->type()->is_object_kind()) {
1966       obj_args->push(args->at(i));
1967       j++;
1968     }
1969   }
1970   check_args_for_profiling(obj_args, s);
1971   return obj_args;
1972 }
1973 
1974 
1975 void GraphBuilder::invoke(Bytecodes::Code code) {
1976   bool will_link;
1977   ciSignature* declared_signature = NULL;
1978   ciMethod*             target = stream()->get_method(will_link, &declared_signature);
1979   ciKlass*              holder = stream()->get_declared_method_holder();
1980   const Bytecodes::Code bc_raw = stream()->cur_bc_raw();
1981   assert(declared_signature != NULL, "cannot be null");
1982   assert(will_link == target->is_loaded(), "");
1983 
1984   ciInstanceKlass* klass = target->holder();
1985   assert(!target->is_loaded() || klass->is_loaded(), "loaded target must imply loaded klass");
1986 
1987   // check if CHA possible: if so, change the code to invoke_special
1988   ciInstanceKlass* calling_klass = method()->holder();
1989   ciInstanceKlass* callee_holder = ciEnv::get_instance_klass_for_declared_method_holder(holder);
1990   ciInstanceKlass* actual_recv = callee_holder;
1991 
1992   CompileLog* log = compilation()->log();
1993   if (log != NULL)
1994       log->elem("call method='%d' instr='%s'",
1995                 log->identify(target),
1996                 Bytecodes::name(code));
1997 
1998   // invoke-special-super
1999   if (bc_raw == Bytecodes::_invokespecial && !target->is_object_initializer()) {
2000     ciInstanceKlass* sender_klass =
2001           calling_klass->is_unsafe_anonymous() ? calling_klass->unsafe_anonymous_host() :
2002                                                  calling_klass;
2003     if (sender_klass->is_interface()) {
2004       int index = state()->stack_size() - (target->arg_size_no_receiver() + 1);
2005       Value receiver = state()->stack_at(index);
2006       CheckCast* c = new CheckCast(sender_klass, receiver, copy_state_before());
2007       c->set_invokespecial_receiver_check();
2008       state()->stack_at_put(index, append_split(c));
2009     }
2010   }
2011 
2012   // Some methods are obviously bindable without any type checks so
2013   // convert them directly to an invokespecial or invokestatic.
2014   if (target->is_loaded() && !target->is_abstract() && target->can_be_statically_bound()) {
2015     switch (bc_raw) {
2016     case Bytecodes::_invokevirtual:
2017       code = Bytecodes::_invokespecial;
2018       break;
2019     case Bytecodes::_invokehandle:
2020       code = target->is_static() ? Bytecodes::_invokestatic : Bytecodes::_invokespecial;
2021       break;
2022     default:
2023       break;
2024     }
2025   } else {
2026     if (bc_raw == Bytecodes::_invokehandle) {
2027       assert(!will_link, "should come here only for unlinked call");
2028       code = Bytecodes::_invokespecial;
2029     }
2030   }
2031 
2032   // Push appendix argument (MethodType, CallSite, etc.), if one.
2033   bool patch_for_appendix = false;
2034   int patching_appendix_arg = 0;
2035   if (Bytecodes::has_optional_appendix(bc_raw) && (!will_link || PatchALot)) {
2036     Value arg = append(new Constant(new ObjectConstant(compilation()->env()->unloaded_ciinstance()), copy_state_before()));
2037     apush(arg);
2038     patch_for_appendix = true;
2039     patching_appendix_arg = (will_link && stream()->has_appendix()) ? 0 : 1;
2040   } else if (stream()->has_appendix()) {
2041     ciObject* appendix = stream()->get_appendix();
2042     Value arg = append(new Constant(new ObjectConstant(appendix)));
2043     apush(arg);
2044   }
2045 
2046   ciMethod* cha_monomorphic_target = NULL;
2047   ciMethod* exact_target = NULL;
2048   Value better_receiver = NULL;
2049   if (UseCHA && DeoptC1 && target->is_loaded() &&
2050       !(// %%% FIXME: Are both of these relevant?
2051         target->is_method_handle_intrinsic() ||
2052         target->is_compiled_lambda_form()) &&
2053       !patch_for_appendix) {
2054     Value receiver = NULL;
2055     ciInstanceKlass* receiver_klass = NULL;
2056     bool type_is_exact = false;
2057     // try to find a precise receiver type
2058     if (will_link && !target->is_static()) {
2059       int index = state()->stack_size() - (target->arg_size_no_receiver() + 1);
2060       receiver = state()->stack_at(index);
2061       ciType* type = receiver->exact_type();
2062       if (type != NULL && type->is_loaded() &&
2063           type->is_instance_klass() && !type->as_instance_klass()->is_interface()) {
2064         receiver_klass = (ciInstanceKlass*) type;
2065         type_is_exact = true;
2066       }
2067       if (type == NULL) {
2068         type = receiver->declared_type();
2069         if (type != NULL && type->is_loaded() &&
2070             type->is_instance_klass() && !type->as_instance_klass()->is_interface()) {
2071           receiver_klass = (ciInstanceKlass*) type;
2072           if (receiver_klass->is_leaf_type() && !receiver_klass->is_final()) {
2073             // Insert a dependency on this type since
2074             // find_monomorphic_target may assume it's already done.
2075             dependency_recorder()->assert_leaf_type(receiver_klass);
2076             type_is_exact = true;
2077           }
2078         }
2079       }
2080     }
2081     if (receiver_klass != NULL && type_is_exact &&
2082         receiver_klass->is_loaded() && code != Bytecodes::_invokespecial) {
2083       // If we have the exact receiver type we can bind directly to
2084       // the method to call.
2085       exact_target = target->resolve_invoke(calling_klass, receiver_klass);
2086       if (exact_target != NULL) {
2087         target = exact_target;
2088         code = Bytecodes::_invokespecial;
2089       }
2090     }
2091     if (receiver_klass != NULL &&
2092         receiver_klass->is_subtype_of(actual_recv) &&
2093         actual_recv->is_initialized()) {
2094       actual_recv = receiver_klass;
2095     }
2096 
2097     if ((code == Bytecodes::_invokevirtual && callee_holder->is_initialized()) ||
2098         (code == Bytecodes::_invokeinterface && callee_holder->is_initialized() && !actual_recv->is_interface())) {
2099       // Use CHA on the receiver to select a more precise method.
2100       cha_monomorphic_target = target->find_monomorphic_target(calling_klass, callee_holder, actual_recv);
2101     } else if (code == Bytecodes::_invokeinterface && callee_holder->is_loaded() && receiver != NULL) {
2102       // if there is only one implementor of this interface then we
2103       // may be able bind this invoke directly to the implementing
2104       // klass but we need both a dependence on the single interface
2105       // and on the method we bind to.  Additionally since all we know
2106       // about the receiver type is the it's supposed to implement the
2107       // interface we have to insert a check that it's the class we
2108       // expect.  Interface types are not checked by the verifier so
2109       // they are roughly equivalent to Object.
2110       ciInstanceKlass* singleton = NULL;
2111       if (target->holder()->nof_implementors() == 1) {
2112         singleton = target->holder()->implementor();
2113         assert(singleton != NULL && singleton != target->holder(),
2114                "just checking");
2115 
2116         assert(holder->is_interface(), "invokeinterface to non interface?");
2117         ciInstanceKlass* decl_interface = (ciInstanceKlass*)holder;
2118         // the number of implementors for decl_interface is less or
2119         // equal to the number of implementors for target->holder() so
2120         // if number of implementors of target->holder() == 1 then
2121         // number of implementors for decl_interface is 0 or 1. If
2122         // it's 0 then no class implements decl_interface and there's
2123         // no point in inlining.
2124         if (!holder->is_loaded() || decl_interface->nof_implementors() != 1 || decl_interface->has_nonstatic_concrete_methods()) {
2125           singleton = NULL;
2126         }
2127       }
2128       if (singleton) {
2129         cha_monomorphic_target = target->find_monomorphic_target(calling_klass, target->holder(), singleton);
2130         if (cha_monomorphic_target != NULL) {
2131           // If CHA is able to bind this invoke then update the class
2132           // to match that class, otherwise klass will refer to the
2133           // interface.
2134           klass = cha_monomorphic_target->holder();
2135           actual_recv = target->holder();
2136 
2137           // insert a check it's really the expected class.
2138           CheckCast* c = new CheckCast(klass, receiver, copy_state_for_exception());
2139           c->set_incompatible_class_change_check();
2140           c->set_direct_compare(klass->is_final());
2141           // pass the result of the checkcast so that the compiler has
2142           // more accurate type info in the inlinee
2143           better_receiver = append_split(c);
2144         }
2145       }
2146     }
2147   }
2148 
2149   if (cha_monomorphic_target != NULL) {
2150     if (cha_monomorphic_target->is_abstract()) {
2151       // Do not optimize for abstract methods
2152       cha_monomorphic_target = NULL;
2153     }
2154   }
2155 
2156   if (cha_monomorphic_target != NULL) {
2157     if (!(target->is_final_method())) {
2158       // If we inlined because CHA revealed only a single target method,
2159       // then we are dependent on that target method not getting overridden
2160       // by dynamic class loading.  Be sure to test the "static" receiver
2161       // dest_method here, as opposed to the actual receiver, which may
2162       // falsely lead us to believe that the receiver is final or private.
2163       dependency_recorder()->assert_unique_concrete_method(actual_recv, cha_monomorphic_target);
2164     }
2165     code = Bytecodes::_invokespecial;
2166   }
2167 
2168   // check if we could do inlining
2169   if (!PatchALot && Inline && target->is_loaded() &&
2170       (klass->is_initialized() || (klass->is_interface() && target->holder()->is_initialized()))
2171       && !patch_for_appendix) {
2172     // callee is known => check if we have static binding
2173     if (code == Bytecodes::_invokestatic  ||
2174         code == Bytecodes::_invokespecial ||
2175         (code == Bytecodes::_invokevirtual && target->is_final_method()) ||
2176         code == Bytecodes::_invokedynamic) {
2177       ciMethod* inline_target = (cha_monomorphic_target != NULL) ? cha_monomorphic_target : target;
2178       // static binding => check if callee is ok
2179       bool success = try_inline(inline_target, (cha_monomorphic_target != NULL) || (exact_target != NULL), false, code, better_receiver);
2180 
2181       CHECK_BAILOUT();
2182       clear_inline_bailout();
2183 
2184       if (success) {
2185         // Register dependence if JVMTI has either breakpoint
2186         // setting or hotswapping of methods capabilities since they may
2187         // cause deoptimization.
2188         if (compilation()->env()->jvmti_can_hotswap_or_post_breakpoint()) {
2189           dependency_recorder()->assert_evol_method(inline_target);
2190         }
2191         return;
2192       }
2193     } else {
2194       print_inlining(target, "no static binding", /*success*/ false);
2195     }
2196   } else {
2197     print_inlining(target, "not inlineable", /*success*/ false);
2198   }
2199 
2200   // If we attempted an inline which did not succeed because of a
2201   // bailout during construction of the callee graph, the entire
2202   // compilation has to be aborted. This is fairly rare and currently
2203   // seems to only occur for jasm-generated classes which contain
2204   // jsr/ret pairs which are not associated with finally clauses and
2205   // do not have exception handlers in the containing method, and are
2206   // therefore not caught early enough to abort the inlining without
2207   // corrupting the graph. (We currently bail out with a non-empty
2208   // stack at a ret in these situations.)
2209   CHECK_BAILOUT();
2210 
2211   // inlining not successful => standard invoke
2212   ValueType* result_type = as_ValueType(declared_signature->return_type());
2213   ValueStack* state_before = copy_state_exhandling();
2214 
2215   // The bytecode (code) might change in this method so we are checking this very late.
2216   const bool has_receiver =
2217     code == Bytecodes::_invokespecial   ||
2218     code == Bytecodes::_invokevirtual   ||
2219     code == Bytecodes::_invokeinterface;
2220   Values* args = state()->pop_arguments(target->arg_size_no_receiver() + patching_appendix_arg);
2221   Value recv = has_receiver ? apop() : NULL;
2222   int vtable_index = Method::invalid_vtable_index;
2223 
2224 #ifdef SPARC
2225   // Currently only supported on Sparc.
2226   // The UseInlineCaches only controls dispatch to invokevirtuals for
2227   // loaded classes which we weren't able to statically bind.
2228   if (!UseInlineCaches && target->is_loaded() && code == Bytecodes::_invokevirtual
2229       && !target->can_be_statically_bound()) {
2230     // Find a vtable index if one is available
2231     // For arrays, callee_holder is Object. Resolving the call with
2232     // Object would allow an illegal call to finalize() on an
2233     // array. We use holder instead: illegal calls to finalize() won't
2234     // be compiled as vtable calls (IC call resolution will catch the
2235     // illegal call) and the few legal calls on array types won't be
2236     // either.
2237     vtable_index = target->resolve_vtable_index(calling_klass, holder);
2238   }
2239 #endif
2240 
2241   // A null check is required here (when there is a receiver) for any of the following cases
2242   // - invokespecial, always need a null check.
2243   // - invokevirtual, when the target is final and loaded. Calls to final targets will become optimized
2244   //   and require null checking. If the target is loaded a null check is emitted here.
2245   //   If the target isn't loaded the null check must happen after the call resolution. We achieve that
2246   //   by using the target methods unverified entry point (see CompiledIC::compute_monomorphic_entry).
2247   //   (The JVM specification requires that LinkageError must be thrown before a NPE. An unloaded target may
2248   //   potentially fail, and can't have the null check before the resolution.)
2249   // - A call that will be profiled. (But we can't add a null check when the target is unloaded, by the same
2250   //   reason as above, so calls with a receiver to unloaded targets can't be profiled.)
2251   //
2252   // Normal invokevirtual will perform the null check during lookup
2253 
2254   bool need_null_check = (code == Bytecodes::_invokespecial) ||
2255       (target->is_loaded() && (target->is_final_method() || (is_profiling() && profile_calls())));
2256 
2257   if (need_null_check) {
2258     if (recv != NULL) {
2259       null_check(recv);
2260     }
2261 
2262     if (is_profiling()) {
2263       // Note that we'd collect profile data in this method if we wanted it.
2264       compilation()->set_would_profile(true);
2265 
2266       if (profile_calls()) {
2267         assert(cha_monomorphic_target == NULL || exact_target == NULL, "both can not be set");
2268         ciKlass* target_klass = NULL;
2269         if (cha_monomorphic_target != NULL) {
2270           target_klass = cha_monomorphic_target->holder();
2271         } else if (exact_target != NULL) {
2272           target_klass = exact_target->holder();
2273         }
2274         profile_call(target, recv, target_klass, collect_args_for_profiling(args, NULL, false), false);
2275       }
2276     }
2277   }
2278 
2279   Invoke* result = new Invoke(code, result_type, recv, args, vtable_index, target, state_before);
2280   // push result
2281   append_split(result);
2282 
2283   if (result_type != voidType) {
2284     if (method()->is_strict()) {
2285       push(result_type, round_fp(result));
2286     } else {
2287       push(result_type, result);
2288     }
2289   }
2290   if (profile_return() && result_type->is_object_kind()) {
2291     profile_return_type(result, target);
2292   }
2293 }
2294 
2295 
2296 void GraphBuilder::new_instance(int klass_index) {
2297   ValueStack* state_before = copy_state_exhandling();
2298   bool will_link;
2299   ciKlass* klass = stream()->get_klass(will_link);
2300   assert(klass->is_instance_klass(), "must be an instance klass");
2301   assert(!klass->is_valuetype(), "must not be a value klass");
2302   NewInstance* new_instance = new NewInstance(klass->as_instance_klass(), state_before, stream()->is_unresolved_klass());
2303   _memory->new_instance(new_instance);
2304   apush(append_split(new_instance));
2305 }
2306 
2307 void GraphBuilder::new_value_type_instance(int klass_index) {
2308   ValueStack* state_before = copy_state_exhandling();
2309   bool will_link;
2310   ciKlass* klass = stream()->get_klass(will_link);
2311   assert(klass->is_valuetype(), "must be a value klass");
2312   NewValueTypeInstance* new_instance = new NewValueTypeInstance(klass->as_value_klass(),
2313       state_before, stream()->is_unresolved_klass());
2314   _memory->new_instance(new_instance);
2315   apush(append_split(new_instance));
2316 }
2317 
2318 void GraphBuilder::new_type_array() {
2319   ValueStack* state_before = copy_state_exhandling();
2320   apush(append_split(new NewTypeArray(ipop(), (BasicType)stream()->get_index(), state_before)));
2321 }
2322 
2323 
2324 void GraphBuilder::new_object_array() {
2325   bool will_link;
2326   ciKlass* klass = stream()->get_klass(will_link);
2327   ValueStack* state_before = !klass->is_loaded() || PatchALot ? copy_state_before() : copy_state_exhandling();
2328   NewArray* n = new NewObjectArray(klass, ipop(), state_before);
2329   apush(append_split(n));
2330 }
2331 
2332 
2333 bool GraphBuilder::direct_compare(ciKlass* k) {
2334   if (k->is_loaded() && k->is_instance_klass() && !UseSlowPath) {
2335     ciInstanceKlass* ik = k->as_instance_klass();
2336     if (ik->is_final()) {
2337       return true;
2338     } else {
2339       if (DeoptC1 && UseCHA && !(ik->has_subklass() || ik->is_interface())) {
2340         // test class is leaf class
2341         dependency_recorder()->assert_leaf_type(ik);
2342         return true;
2343       }
2344     }
2345   }
2346   return false;
2347 }
2348 
2349 
2350 void GraphBuilder::check_cast(int klass_index) {
2351   bool will_link;
2352   ciKlass* klass = stream()->get_klass(will_link);
2353   bool never_null = stream()->is_klass_never_null();
2354   ValueStack* state_before = !klass->is_loaded() || PatchALot ? copy_state_before() : copy_state_for_exception();
2355   CheckCast* c = new CheckCast(klass, apop(), state_before, never_null);
2356   apush(append_split(c));
2357   c->set_direct_compare(direct_compare(klass));
2358 
2359   if (is_profiling()) {
2360     // Note that we'd collect profile data in this method if we wanted it.
2361     compilation()->set_would_profile(true);
2362 
2363     if (profile_checkcasts()) {
2364       c->set_profiled_method(method());
2365       c->set_profiled_bci(bci());
2366       c->set_should_profile(true);
2367     }
2368   }
2369 }
2370 
2371 
2372 void GraphBuilder::instance_of(int klass_index) {
2373   bool will_link;
2374   ciKlass* klass = stream()->get_klass(will_link);
2375   ValueStack* state_before = !klass->is_loaded() || PatchALot ? copy_state_before() : copy_state_exhandling();
2376   InstanceOf* i = new InstanceOf(klass, apop(), state_before);
2377   ipush(append_split(i));
2378   i->set_direct_compare(direct_compare(klass));
2379 
2380   if (is_profiling()) {
2381     // Note that we'd collect profile data in this method if we wanted it.
2382     compilation()->set_would_profile(true);
2383 
2384     if (profile_checkcasts()) {
2385       i->set_profiled_method(method());
2386       i->set_profiled_bci(bci());
2387       i->set_should_profile(true);
2388     }
2389   }
2390 }
2391 
2392 
2393 void GraphBuilder::monitorenter(Value x, int bci) {
2394   bool maybe_valuetype = false;
2395   if (bci == InvocationEntryBci) {
2396     // Called by GraphBuilder::inline_sync_entry.
2397 #ifdef ASSERT
2398     ciType* obj_type = x->declared_type();
2399     assert(obj_type == NULL || !obj_type->is_valuetype(), "valuetypes cannot have synchronized methods");
2400 #endif
2401   } else {
2402     // We are compiling a monitorenter bytecode
2403     if (EnableValhalla) {
2404       ciType* obj_type = x->declared_type();
2405       if (obj_type == NULL || obj_type->is_valuetype() || obj_type->as_klass()->is_java_lang_Object()) {
2406         // If we're (possibly) locking on a valuetype, check for markOopDesc::always_locked_pattern
2407         // and throw IMSE. (obj_type is null for Phi nodes, so let's just be conservative).
2408         maybe_valuetype = true;
2409       }
2410     }
2411   }
2412 
2413   // save state before locking in case of deoptimization after a NullPointerException
2414   ValueStack* state_before = copy_state_for_exception_with_bci(bci);
2415   append_with_bci(new MonitorEnter(x, state()->lock(x), state_before, maybe_valuetype), bci);
2416   kill_all();
2417 }
2418 
2419 
2420 void GraphBuilder::monitorexit(Value x, int bci) {
2421   append_with_bci(new MonitorExit(x, state()->unlock()), bci);
2422   kill_all();
2423 }
2424 
2425 
2426 void GraphBuilder::new_multi_array(int dimensions) {
2427   bool will_link;
2428   ciKlass* klass = stream()->get_klass(will_link);
2429   ValueStack* state_before = !klass->is_loaded() || PatchALot ? copy_state_before() : copy_state_exhandling();
2430 
2431   Values* dims = new Values(dimensions, dimensions, NULL);
2432   // fill in all dimensions
2433   int i = dimensions;
2434   while (i-- > 0) dims->at_put(i, ipop());
2435   // create array
2436   NewArray* n = new NewMultiArray(klass, dims, state_before);
2437   apush(append_split(n));
2438 }
2439 
2440 
2441 void GraphBuilder::throw_op(int bci) {
2442   // We require that the debug info for a Throw be the "state before"
2443   // the Throw (i.e., exception oop is still on TOS)
2444   ValueStack* state_before = copy_state_before_with_bci(bci);
2445   Throw* t = new Throw(apop(), state_before);
2446   // operand stack not needed after a throw
2447   state()->truncate_stack(0);
2448   append_with_bci(t, bci);
2449 }
2450 
2451 
2452 Value GraphBuilder::round_fp(Value fp_value) {
2453   // no rounding needed if SSE2 is used
2454   if (RoundFPResults && UseSSE < 2) {
2455     // Must currently insert rounding node for doubleword values that
2456     // are results of expressions (i.e., not loads from memory or
2457     // constants)
2458     if (fp_value->type()->tag() == doubleTag &&
2459         fp_value->as_Constant() == NULL &&
2460         fp_value->as_Local() == NULL &&       // method parameters need no rounding
2461         fp_value->as_RoundFP() == NULL) {
2462       return append(new RoundFP(fp_value));
2463     }
2464   }
2465   return fp_value;
2466 }
2467 
2468 
2469 Instruction* GraphBuilder::append_with_bci(Instruction* instr, int bci) {
2470   Canonicalizer canon(compilation(), instr, bci);
2471   Instruction* i1 = canon.canonical();
2472   if (i1->is_linked() || !i1->can_be_linked()) {
2473     // Canonicalizer returned an instruction which was already
2474     // appended so simply return it.
2475     return i1;
2476   }
2477 
2478   if (UseLocalValueNumbering) {
2479     // Lookup the instruction in the ValueMap and add it to the map if
2480     // it's not found.
2481     Instruction* i2 = vmap()->find_insert(i1);
2482     if (i2 != i1) {
2483       // found an entry in the value map, so just return it.
2484       assert(i2->is_linked(), "should already be linked");
2485       return i2;
2486     }
2487     ValueNumberingEffects vne(vmap());
2488     i1->visit(&vne);
2489   }
2490 
2491   // i1 was not eliminated => append it
2492   assert(i1->next() == NULL, "shouldn't already be linked");
2493   _last = _last->set_next(i1, canon.bci());
2494 
2495   if (++_instruction_count >= InstructionCountCutoff && !bailed_out()) {
2496     // set the bailout state but complete normal processing.  We
2497     // might do a little more work before noticing the bailout so we
2498     // want processing to continue normally until it's noticed.
2499     bailout("Method and/or inlining is too large");
2500   }
2501 
2502 #ifndef PRODUCT
2503   if (PrintIRDuringConstruction) {
2504     InstructionPrinter ip;
2505     ip.print_line(i1);
2506     if (Verbose) {
2507       state()->print();
2508     }
2509   }
2510 #endif
2511 
2512   // save state after modification of operand stack for StateSplit instructions
2513   StateSplit* s = i1->as_StateSplit();
2514   if (s != NULL) {
2515     if (EliminateFieldAccess) {
2516       Intrinsic* intrinsic = s->as_Intrinsic();
2517       if (s->as_Invoke() != NULL || (intrinsic && !intrinsic->preserves_state())) {
2518         _memory->kill();
2519       }
2520     }
2521     s->set_state(state()->copy(ValueStack::StateAfter, canon.bci()));
2522   }
2523 
2524   // set up exception handlers for this instruction if necessary
2525   if (i1->can_trap()) {
2526     i1->set_exception_handlers(handle_exception(i1));
2527     assert(i1->exception_state() != NULL || !i1->needs_exception_state() || bailed_out(), "handle_exception must set exception state");
2528   }
2529   return i1;
2530 }
2531 
2532 
2533 Instruction* GraphBuilder::append(Instruction* instr) {
2534   assert(instr->as_StateSplit() == NULL || instr->as_BlockEnd() != NULL, "wrong append used");
2535   return append_with_bci(instr, bci());
2536 }
2537 
2538 
2539 Instruction* GraphBuilder::append_split(StateSplit* instr) {
2540   return append_with_bci(instr, bci());
2541 }
2542 
2543 
2544 void GraphBuilder::null_check(Value value) {
2545   if (value->as_NewArray() != NULL || value->as_NewInstance() != NULL) {
2546     return;
2547   } else {
2548     Constant* con = value->as_Constant();
2549     if (con) {
2550       ObjectType* c = con->type()->as_ObjectType();
2551       if (c && c->is_loaded()) {
2552         ObjectConstant* oc = c->as_ObjectConstant();
2553         if (!oc || !oc->value()->is_null_object()) {
2554           return;
2555         }
2556       }
2557     }
2558   }
2559   append(new NullCheck(value, copy_state_for_exception()));
2560 }
2561 
2562 
2563 
2564 XHandlers* GraphBuilder::handle_exception(Instruction* instruction) {
2565   if (!has_handler() && (!instruction->needs_exception_state() || instruction->exception_state() != NULL)) {
2566     assert(instruction->exception_state() == NULL
2567            || instruction->exception_state()->kind() == ValueStack::EmptyExceptionState
2568            || (instruction->exception_state()->kind() == ValueStack::ExceptionState && _compilation->env()->should_retain_local_variables()),
2569            "exception_state should be of exception kind");
2570     return new XHandlers();
2571   }
2572 
2573   XHandlers*  exception_handlers = new XHandlers();
2574   ScopeData*  cur_scope_data = scope_data();
2575   ValueStack* cur_state = instruction->state_before();
2576   ValueStack* prev_state = NULL;
2577   int scope_count = 0;
2578 
2579   assert(cur_state != NULL, "state_before must be set");
2580   do {
2581     int cur_bci = cur_state->bci();
2582     assert(cur_scope_data->scope() == cur_state->scope(), "scopes do not match");
2583     assert(cur_bci == SynchronizationEntryBCI || cur_bci == cur_scope_data->stream()->cur_bci(), "invalid bci");
2584 
2585     // join with all potential exception handlers
2586     XHandlers* list = cur_scope_data->xhandlers();
2587     const int n = list->length();
2588     for (int i = 0; i < n; i++) {
2589       XHandler* h = list->handler_at(i);
2590       if (h->covers(cur_bci)) {
2591         // h is a potential exception handler => join it
2592         compilation()->set_has_exception_handlers(true);
2593 
2594         BlockBegin* entry = h->entry_block();
2595         if (entry == block()) {
2596           // It's acceptable for an exception handler to cover itself
2597           // but we don't handle that in the parser currently.  It's
2598           // very rare so we bailout instead of trying to handle it.
2599           BAILOUT_("exception handler covers itself", exception_handlers);
2600         }
2601         assert(entry->bci() == h->handler_bci(), "must match");
2602         assert(entry->bci() == -1 || entry == cur_scope_data->block_at(entry->bci()), "blocks must correspond");
2603 
2604         // previously this was a BAILOUT, but this is not necessary
2605         // now because asynchronous exceptions are not handled this way.
2606         assert(entry->state() == NULL || cur_state->total_locks_size() == entry->state()->total_locks_size(), "locks do not match");
2607 
2608         // xhandler start with an empty expression stack
2609         if (cur_state->stack_size() != 0) {
2610           cur_state = cur_state->copy(ValueStack::ExceptionState, cur_state->bci());
2611         }
2612         if (instruction->exception_state() == NULL) {
2613           instruction->set_exception_state(cur_state);
2614         }
2615 
2616         // Note: Usually this join must work. However, very
2617         // complicated jsr-ret structures where we don't ret from
2618         // the subroutine can cause the objects on the monitor
2619         // stacks to not match because blocks can be parsed twice.
2620         // The only test case we've seen so far which exhibits this
2621         // problem is caught by the infinite recursion test in
2622         // GraphBuilder::jsr() if the join doesn't work.
2623         if (!entry->try_merge(cur_state)) {
2624           BAILOUT_("error while joining with exception handler, prob. due to complicated jsr/rets", exception_handlers);
2625         }
2626 
2627         // add current state for correct handling of phi functions at begin of xhandler
2628         int phi_operand = entry->add_exception_state(cur_state);
2629 
2630         // add entry to the list of xhandlers of this block
2631         _block->add_exception_handler(entry);
2632 
2633         // add back-edge from xhandler entry to this block
2634         if (!entry->is_predecessor(_block)) {
2635           entry->add_predecessor(_block);
2636         }
2637 
2638         // clone XHandler because phi_operand and scope_count can not be shared
2639         XHandler* new_xhandler = new XHandler(h);
2640         new_xhandler->set_phi_operand(phi_operand);
2641         new_xhandler->set_scope_count(scope_count);
2642         exception_handlers->append(new_xhandler);
2643 
2644         // fill in exception handler subgraph lazily
2645         assert(!entry->is_set(BlockBegin::was_visited_flag), "entry must not be visited yet");
2646         cur_scope_data->add_to_work_list(entry);
2647 
2648         // stop when reaching catchall
2649         if (h->catch_type() == 0) {
2650           return exception_handlers;
2651         }
2652       }
2653     }
2654 
2655     if (exception_handlers->length() == 0) {
2656       // This scope and all callees do not handle exceptions, so the local
2657       // variables of this scope are not needed. However, the scope itself is
2658       // required for a correct exception stack trace -> clear out the locals.
2659       if (_compilation->env()->should_retain_local_variables()) {
2660         cur_state = cur_state->copy(ValueStack::ExceptionState, cur_state->bci());
2661       } else {
2662         cur_state = cur_state->copy(ValueStack::EmptyExceptionState, cur_state->bci());
2663       }
2664       if (prev_state != NULL) {
2665         prev_state->set_caller_state(cur_state);
2666       }
2667       if (instruction->exception_state() == NULL) {
2668         instruction->set_exception_state(cur_state);
2669       }
2670     }
2671 
2672     // Set up iteration for next time.
2673     // If parsing a jsr, do not grab exception handlers from the
2674     // parent scopes for this method (already got them, and they
2675     // needed to be cloned)
2676 
2677     while (cur_scope_data->parsing_jsr()) {
2678       cur_scope_data = cur_scope_data->parent();
2679     }
2680 
2681     assert(cur_scope_data->scope() == cur_state->scope(), "scopes do not match");
2682     assert(cur_state->locks_size() == 0 || cur_state->locks_size() == 1, "unlocking must be done in a catchall exception handler");
2683 
2684     prev_state = cur_state;
2685     cur_state = cur_state->caller_state();
2686     cur_scope_data = cur_scope_data->parent();
2687     scope_count++;
2688   } while (cur_scope_data != NULL);
2689 
2690   return exception_handlers;
2691 }
2692 
2693 
2694 // Helper class for simplifying Phis.
2695 class PhiSimplifier : public BlockClosure {
2696  private:
2697   bool _has_substitutions;
2698   Value simplify(Value v);
2699 
2700  public:
2701   PhiSimplifier(BlockBegin* start) : _has_substitutions(false) {
2702     start->iterate_preorder(this);
2703     if (_has_substitutions) {
2704       SubstitutionResolver sr(start);
2705     }
2706   }
2707   void block_do(BlockBegin* b);
2708   bool has_substitutions() const { return _has_substitutions; }
2709 };
2710 
2711 
2712 Value PhiSimplifier::simplify(Value v) {
2713   Phi* phi = v->as_Phi();
2714 
2715   if (phi == NULL) {
2716     // no phi function
2717     return v;
2718   } else if (v->has_subst()) {
2719     // already substituted; subst can be phi itself -> simplify
2720     return simplify(v->subst());
2721   } else if (phi->is_set(Phi::cannot_simplify)) {
2722     // already tried to simplify phi before
2723     return phi;
2724   } else if (phi->is_set(Phi::visited)) {
2725     // break cycles in phi functions
2726     return phi;
2727   } else if (phi->type()->is_illegal()) {
2728     // illegal phi functions are ignored anyway
2729     return phi;
2730 
2731   } else {
2732     // mark phi function as processed to break cycles in phi functions
2733     phi->set(Phi::visited);
2734 
2735     // simplify x = [y, x] and x = [y, y] to y
2736     Value subst = NULL;
2737     int opd_count = phi->operand_count();
2738     for (int i = 0; i < opd_count; i++) {
2739       Value opd = phi->operand_at(i);
2740       assert(opd != NULL, "Operand must exist!");
2741 
2742       if (opd->type()->is_illegal()) {
2743         // if one operand is illegal, the entire phi function is illegal
2744         phi->make_illegal();
2745         phi->clear(Phi::visited);
2746         return phi;
2747       }
2748 
2749       Value new_opd = simplify(opd);
2750       assert(new_opd != NULL, "Simplified operand must exist!");
2751 
2752       if (new_opd != phi && new_opd != subst) {
2753         if (subst == NULL) {
2754           subst = new_opd;
2755         } else {
2756           // no simplification possible
2757           phi->set(Phi::cannot_simplify);
2758           phi->clear(Phi::visited);
2759           return phi;
2760         }
2761       }
2762     }
2763 
2764     // sucessfully simplified phi function
2765     assert(subst != NULL, "illegal phi function");
2766     _has_substitutions = true;
2767     phi->clear(Phi::visited);
2768     phi->set_subst(subst);
2769 
2770 #ifndef PRODUCT
2771     if (PrintPhiFunctions) {
2772       tty->print_cr("simplified phi function %c%d to %c%d (Block B%d)", phi->type()->tchar(), phi->id(), subst->type()->tchar(), subst->id(), phi->block()->block_id());
2773     }
2774 #endif
2775 
2776     return subst;
2777   }
2778 }
2779 
2780 
2781 void PhiSimplifier::block_do(BlockBegin* b) {
2782   for_each_phi_fun(b, phi,
2783     simplify(phi);
2784   );
2785 
2786 #ifdef ASSERT
2787   for_each_phi_fun(b, phi,
2788                    assert(phi->operand_count() != 1 || phi->subst() != phi, "missed trivial simplification");
2789   );
2790 
2791   ValueStack* state = b->state()->caller_state();
2792   for_each_state_value(state, value,
2793     Phi* phi = value->as_Phi();
2794     assert(phi == NULL || phi->block() != b, "must not have phi function to simplify in caller state");
2795   );
2796 #endif
2797 }
2798 
2799 // This method is called after all blocks are filled with HIR instructions
2800 // It eliminates all Phi functions of the form x = [y, y] and x = [y, x]
2801 void GraphBuilder::eliminate_redundant_phis(BlockBegin* start) {
2802   PhiSimplifier simplifier(start);
2803 }
2804 
2805 
2806 void GraphBuilder::connect_to_end(BlockBegin* beg) {
2807   // setup iteration
2808   kill_all();
2809   _block = beg;
2810   _state = beg->state()->copy_for_parsing();
2811   _last  = beg;
2812   iterate_bytecodes_for_block(beg->bci());
2813 }
2814 
2815 
2816 BlockEnd* GraphBuilder::iterate_bytecodes_for_block(int bci) {
2817 #ifndef PRODUCT
2818   if (PrintIRDuringConstruction) {
2819     tty->cr();
2820     InstructionPrinter ip;
2821     ip.print_instr(_block); tty->cr();
2822     ip.print_stack(_block->state()); tty->cr();
2823     ip.print_inline_level(_block);
2824     ip.print_head();
2825     tty->print_cr("locals size: %d stack size: %d", state()->locals_size(), state()->stack_size());
2826   }
2827 #endif
2828   _skip_block = false;
2829   assert(state() != NULL, "ValueStack missing!");
2830   CompileLog* log = compilation()->log();
2831   ciBytecodeStream s(method());
2832   s.reset_to_bci(bci);
2833   int prev_bci = bci;
2834   scope_data()->set_stream(&s);
2835   // iterate
2836   Bytecodes::Code code = Bytecodes::_illegal;
2837   bool push_exception = false;
2838 
2839   if (block()->is_set(BlockBegin::exception_entry_flag) && block()->next() == NULL) {
2840     // first thing in the exception entry block should be the exception object.
2841     push_exception = true;
2842   }
2843 
2844   bool ignore_return = scope_data()->ignore_return();
2845 
2846   while (!bailed_out() && last()->as_BlockEnd() == NULL &&
2847          (code = stream()->next()) != ciBytecodeStream::EOBC() &&
2848          (block_at(s.cur_bci()) == NULL || block_at(s.cur_bci()) == block())) {
2849     assert(state()->kind() == ValueStack::Parsing, "invalid state kind");
2850 
2851     if (log != NULL)
2852       log->set_context("bc code='%d' bci='%d'", (int)code, s.cur_bci());
2853 
2854     // Check for active jsr during OSR compilation
2855     if (compilation()->is_osr_compile()
2856         && scope()->is_top_scope()
2857         && parsing_jsr()
2858         && s.cur_bci() == compilation()->osr_bci()) {
2859       bailout("OSR not supported while a jsr is active");
2860     }
2861 
2862     if (push_exception) {
2863       apush(append(new ExceptionObject()));
2864       push_exception = false;
2865     }
2866 
2867     // handle bytecode
2868     switch (code) {
2869       case Bytecodes::_nop            : /* nothing to do */ break;
2870       case Bytecodes::_aconst_null    : apush(append(new Constant(objectNull            ))); break;
2871       case Bytecodes::_iconst_m1      : ipush(append(new Constant(new IntConstant   (-1)))); break;
2872       case Bytecodes::_iconst_0       : ipush(append(new Constant(intZero               ))); break;
2873       case Bytecodes::_iconst_1       : ipush(append(new Constant(intOne                ))); break;
2874       case Bytecodes::_iconst_2       : ipush(append(new Constant(new IntConstant   ( 2)))); break;
2875       case Bytecodes::_iconst_3       : ipush(append(new Constant(new IntConstant   ( 3)))); break;
2876       case Bytecodes::_iconst_4       : ipush(append(new Constant(new IntConstant   ( 4)))); break;
2877       case Bytecodes::_iconst_5       : ipush(append(new Constant(new IntConstant   ( 5)))); break;
2878       case Bytecodes::_lconst_0       : lpush(append(new Constant(new LongConstant  ( 0)))); break;
2879       case Bytecodes::_lconst_1       : lpush(append(new Constant(new LongConstant  ( 1)))); break;
2880       case Bytecodes::_fconst_0       : fpush(append(new Constant(new FloatConstant ( 0)))); break;
2881       case Bytecodes::_fconst_1       : fpush(append(new Constant(new FloatConstant ( 1)))); break;
2882       case Bytecodes::_fconst_2       : fpush(append(new Constant(new FloatConstant ( 2)))); break;
2883       case Bytecodes::_dconst_0       : dpush(append(new Constant(new DoubleConstant( 0)))); break;
2884       case Bytecodes::_dconst_1       : dpush(append(new Constant(new DoubleConstant( 1)))); break;
2885       case Bytecodes::_bipush         : ipush(append(new Constant(new IntConstant(((signed char*)s.cur_bcp())[1])))); break;
2886       case Bytecodes::_sipush         : ipush(append(new Constant(new IntConstant((short)Bytes::get_Java_u2(s.cur_bcp()+1))))); break;
2887       case Bytecodes::_ldc            : // fall through
2888       case Bytecodes::_ldc_w          : // fall through
2889       case Bytecodes::_ldc2_w         : load_constant(); break;
2890       case Bytecodes::_iload          : load_local(intType     , s.get_index()); break;
2891       case Bytecodes::_lload          : load_local(longType    , s.get_index()); break;
2892       case Bytecodes::_fload          : load_local(floatType   , s.get_index()); break;
2893       case Bytecodes::_dload          : load_local(doubleType  , s.get_index()); break;
2894       case Bytecodes::_aload          : load_local(instanceType, s.get_index()); break;
2895       case Bytecodes::_iload_0        : load_local(intType   , 0); break;
2896       case Bytecodes::_iload_1        : load_local(intType   , 1); break;
2897       case Bytecodes::_iload_2        : load_local(intType   , 2); break;
2898       case Bytecodes::_iload_3        : load_local(intType   , 3); break;
2899       case Bytecodes::_lload_0        : load_local(longType  , 0); break;
2900       case Bytecodes::_lload_1        : load_local(longType  , 1); break;
2901       case Bytecodes::_lload_2        : load_local(longType  , 2); break;
2902       case Bytecodes::_lload_3        : load_local(longType  , 3); break;
2903       case Bytecodes::_fload_0        : load_local(floatType , 0); break;
2904       case Bytecodes::_fload_1        : load_local(floatType , 1); break;
2905       case Bytecodes::_fload_2        : load_local(floatType , 2); break;
2906       case Bytecodes::_fload_3        : load_local(floatType , 3); break;
2907       case Bytecodes::_dload_0        : load_local(doubleType, 0); break;
2908       case Bytecodes::_dload_1        : load_local(doubleType, 1); break;
2909       case Bytecodes::_dload_2        : load_local(doubleType, 2); break;
2910       case Bytecodes::_dload_3        : load_local(doubleType, 3); break;
2911       case Bytecodes::_aload_0        : load_local(objectType, 0); break;
2912       case Bytecodes::_aload_1        : load_local(objectType, 1); break;
2913       case Bytecodes::_aload_2        : load_local(objectType, 2); break;
2914       case Bytecodes::_aload_3        : load_local(objectType, 3); break;
2915       case Bytecodes::_iaload         : load_indexed(T_INT   ); break;
2916       case Bytecodes::_laload         : load_indexed(T_LONG  ); break;
2917       case Bytecodes::_faload         : load_indexed(T_FLOAT ); break;
2918       case Bytecodes::_daload         : load_indexed(T_DOUBLE); break;
2919       case Bytecodes::_aaload         : load_indexed(T_OBJECT); break;
2920       case Bytecodes::_baload         : load_indexed(T_BYTE  ); break;
2921       case Bytecodes::_caload         : load_indexed(T_CHAR  ); break;
2922       case Bytecodes::_saload         : load_indexed(T_SHORT ); break;
2923       case Bytecodes::_istore         : store_local(intType   , s.get_index()); break;
2924       case Bytecodes::_lstore         : store_local(longType  , s.get_index()); break;
2925       case Bytecodes::_fstore         : store_local(floatType , s.get_index()); break;
2926       case Bytecodes::_dstore         : store_local(doubleType, s.get_index()); break;
2927       case Bytecodes::_astore         : store_local(objectType, s.get_index()); break;
2928       case Bytecodes::_istore_0       : store_local(intType   , 0); break;
2929       case Bytecodes::_istore_1       : store_local(intType   , 1); break;
2930       case Bytecodes::_istore_2       : store_local(intType   , 2); break;
2931       case Bytecodes::_istore_3       : store_local(intType   , 3); break;
2932       case Bytecodes::_lstore_0       : store_local(longType  , 0); break;
2933       case Bytecodes::_lstore_1       : store_local(longType  , 1); break;
2934       case Bytecodes::_lstore_2       : store_local(longType  , 2); break;
2935       case Bytecodes::_lstore_3       : store_local(longType  , 3); break;
2936       case Bytecodes::_fstore_0       : store_local(floatType , 0); break;
2937       case Bytecodes::_fstore_1       : store_local(floatType , 1); break;
2938       case Bytecodes::_fstore_2       : store_local(floatType , 2); break;
2939       case Bytecodes::_fstore_3       : store_local(floatType , 3); break;
2940       case Bytecodes::_dstore_0       : store_local(doubleType, 0); break;
2941       case Bytecodes::_dstore_1       : store_local(doubleType, 1); break;
2942       case Bytecodes::_dstore_2       : store_local(doubleType, 2); break;
2943       case Bytecodes::_dstore_3       : store_local(doubleType, 3); break;
2944       case Bytecodes::_astore_0       : store_local(objectType, 0); break;
2945       case Bytecodes::_astore_1       : store_local(objectType, 1); break;
2946       case Bytecodes::_astore_2       : store_local(objectType, 2); break;
2947       case Bytecodes::_astore_3       : store_local(objectType, 3); break;
2948       case Bytecodes::_iastore        : store_indexed(T_INT   ); break;
2949       case Bytecodes::_lastore        : store_indexed(T_LONG  ); break;
2950       case Bytecodes::_fastore        : store_indexed(T_FLOAT ); break;
2951       case Bytecodes::_dastore        : store_indexed(T_DOUBLE); break;
2952       case Bytecodes::_aastore        : store_indexed(T_OBJECT); break;
2953       case Bytecodes::_bastore        : store_indexed(T_BYTE  ); break;
2954       case Bytecodes::_castore        : store_indexed(T_CHAR  ); break;
2955       case Bytecodes::_sastore        : store_indexed(T_SHORT ); break;
2956       case Bytecodes::_pop            : // fall through
2957       case Bytecodes::_pop2           : // fall through
2958       case Bytecodes::_dup            : // fall through
2959       case Bytecodes::_dup_x1         : // fall through
2960       case Bytecodes::_dup_x2         : // fall through
2961       case Bytecodes::_dup2           : // fall through
2962       case Bytecodes::_dup2_x1        : // fall through
2963       case Bytecodes::_dup2_x2        : // fall through
2964       case Bytecodes::_swap           : stack_op(code); break;
2965       case Bytecodes::_iadd           : arithmetic_op(intType   , code); break;
2966       case Bytecodes::_ladd           : arithmetic_op(longType  , code); break;
2967       case Bytecodes::_fadd           : arithmetic_op(floatType , code); break;
2968       case Bytecodes::_dadd           : arithmetic_op(doubleType, code); break;
2969       case Bytecodes::_isub           : arithmetic_op(intType   , code); break;
2970       case Bytecodes::_lsub           : arithmetic_op(longType  , code); break;
2971       case Bytecodes::_fsub           : arithmetic_op(floatType , code); break;
2972       case Bytecodes::_dsub           : arithmetic_op(doubleType, code); break;
2973       case Bytecodes::_imul           : arithmetic_op(intType   , code); break;
2974       case Bytecodes::_lmul           : arithmetic_op(longType  , code); break;
2975       case Bytecodes::_fmul           : arithmetic_op(floatType , code); break;
2976       case Bytecodes::_dmul           : arithmetic_op(doubleType, code); break;
2977       case Bytecodes::_idiv           : arithmetic_op(intType   , code, copy_state_for_exception()); break;
2978       case Bytecodes::_ldiv           : arithmetic_op(longType  , code, copy_state_for_exception()); break;
2979       case Bytecodes::_fdiv           : arithmetic_op(floatType , code); break;
2980       case Bytecodes::_ddiv           : arithmetic_op(doubleType, code); break;
2981       case Bytecodes::_irem           : arithmetic_op(intType   , code, copy_state_for_exception()); break;
2982       case Bytecodes::_lrem           : arithmetic_op(longType  , code, copy_state_for_exception()); break;
2983       case Bytecodes::_frem           : arithmetic_op(floatType , code); break;
2984       case Bytecodes::_drem           : arithmetic_op(doubleType, code); break;
2985       case Bytecodes::_ineg           : negate_op(intType   ); break;
2986       case Bytecodes::_lneg           : negate_op(longType  ); break;
2987       case Bytecodes::_fneg           : negate_op(floatType ); break;
2988       case Bytecodes::_dneg           : negate_op(doubleType); break;
2989       case Bytecodes::_ishl           : shift_op(intType , code); break;
2990       case Bytecodes::_lshl           : shift_op(longType, code); break;
2991       case Bytecodes::_ishr           : shift_op(intType , code); break;
2992       case Bytecodes::_lshr           : shift_op(longType, code); break;
2993       case Bytecodes::_iushr          : shift_op(intType , code); break;
2994       case Bytecodes::_lushr          : shift_op(longType, code); break;
2995       case Bytecodes::_iand           : logic_op(intType , code); break;
2996       case Bytecodes::_land           : logic_op(longType, code); break;
2997       case Bytecodes::_ior            : logic_op(intType , code); break;
2998       case Bytecodes::_lor            : logic_op(longType, code); break;
2999       case Bytecodes::_ixor           : logic_op(intType , code); break;
3000       case Bytecodes::_lxor           : logic_op(longType, code); break;
3001       case Bytecodes::_iinc           : increment(); break;
3002       case Bytecodes::_i2l            : convert(code, T_INT   , T_LONG  ); break;
3003       case Bytecodes::_i2f            : convert(code, T_INT   , T_FLOAT ); break;
3004       case Bytecodes::_i2d            : convert(code, T_INT   , T_DOUBLE); break;
3005       case Bytecodes::_l2i            : convert(code, T_LONG  , T_INT   ); break;
3006       case Bytecodes::_l2f            : convert(code, T_LONG  , T_FLOAT ); break;
3007       case Bytecodes::_l2d            : convert(code, T_LONG  , T_DOUBLE); break;
3008       case Bytecodes::_f2i            : convert(code, T_FLOAT , T_INT   ); break;
3009       case Bytecodes::_f2l            : convert(code, T_FLOAT , T_LONG  ); break;
3010       case Bytecodes::_f2d            : convert(code, T_FLOAT , T_DOUBLE); break;
3011       case Bytecodes::_d2i            : convert(code, T_DOUBLE, T_INT   ); break;
3012       case Bytecodes::_d2l            : convert(code, T_DOUBLE, T_LONG  ); break;
3013       case Bytecodes::_d2f            : convert(code, T_DOUBLE, T_FLOAT ); break;
3014       case Bytecodes::_i2b            : convert(code, T_INT   , T_BYTE  ); break;
3015       case Bytecodes::_i2c            : convert(code, T_INT   , T_CHAR  ); break;
3016       case Bytecodes::_i2s            : convert(code, T_INT   , T_SHORT ); break;
3017       case Bytecodes::_lcmp           : compare_op(longType  , code); break;
3018       case Bytecodes::_fcmpl          : compare_op(floatType , code); break;
3019       case Bytecodes::_fcmpg          : compare_op(floatType , code); break;
3020       case Bytecodes::_dcmpl          : compare_op(doubleType, code); break;
3021       case Bytecodes::_dcmpg          : compare_op(doubleType, code); break;
3022       case Bytecodes::_ifeq           : if_zero(intType   , If::eql); break;
3023       case Bytecodes::_ifne           : if_zero(intType   , If::neq); break;
3024       case Bytecodes::_iflt           : if_zero(intType   , If::lss); break;
3025       case Bytecodes::_ifge           : if_zero(intType   , If::geq); break;
3026       case Bytecodes::_ifgt           : if_zero(intType   , If::gtr); break;
3027       case Bytecodes::_ifle           : if_zero(intType   , If::leq); break;
3028       case Bytecodes::_if_icmpeq      : if_same(intType   , If::eql); break;
3029       case Bytecodes::_if_icmpne      : if_same(intType   , If::neq); break;
3030       case Bytecodes::_if_icmplt      : if_same(intType   , If::lss); break;
3031       case Bytecodes::_if_icmpge      : if_same(intType   , If::geq); break;
3032       case Bytecodes::_if_icmpgt      : if_same(intType   , If::gtr); break;
3033       case Bytecodes::_if_icmple      : if_same(intType   , If::leq); break;
3034       case Bytecodes::_if_acmpeq      : if_same(objectType, If::eql); break;
3035       case Bytecodes::_if_acmpne      : if_same(objectType, If::neq); break;
3036       case Bytecodes::_goto           : _goto(s.cur_bci(), s.get_dest()); break;
3037       case Bytecodes::_jsr            : jsr(s.get_dest()); break;
3038       case Bytecodes::_ret            : ret(s.get_index()); break;
3039       case Bytecodes::_tableswitch    : table_switch(); break;
3040       case Bytecodes::_lookupswitch   : lookup_switch(); break;
3041       case Bytecodes::_ireturn        : method_return(ipop(), ignore_return); break;
3042       case Bytecodes::_lreturn        : method_return(lpop(), ignore_return); break;
3043       case Bytecodes::_freturn        : method_return(fpop(), ignore_return); break;
3044       case Bytecodes::_dreturn        : method_return(dpop(), ignore_return); break;
3045       case Bytecodes::_areturn        : method_return(apop(), ignore_return); break;
3046       case Bytecodes::_return         : method_return(NULL  , ignore_return); break;
3047       case Bytecodes::_getstatic      : // fall through
3048       case Bytecodes::_putstatic      : // fall through
3049       case Bytecodes::_getfield       : // fall through
3050       case Bytecodes::_putfield       : access_field(code); break;
3051       case Bytecodes::_invokevirtual  : // fall through
3052       case Bytecodes::_invokespecial  : // fall through
3053       case Bytecodes::_invokestatic   : // fall through
3054       case Bytecodes::_invokedynamic  : // fall through
3055       case Bytecodes::_invokeinterface: invoke(code); break;
3056       case Bytecodes::_new            : new_instance(s.get_index_u2()); break;
3057       case Bytecodes::_newarray       : new_type_array(); break;
3058       case Bytecodes::_anewarray      : new_object_array(); break;
3059       case Bytecodes::_arraylength    : { ValueStack* state_before = copy_state_for_exception(); ipush(append(new ArrayLength(apop(), state_before))); break; }
3060       case Bytecodes::_athrow         : throw_op(s.cur_bci()); break;
3061       case Bytecodes::_checkcast      : check_cast(s.get_index_u2()); break;
3062       case Bytecodes::_instanceof     : instance_of(s.get_index_u2()); break;
3063       case Bytecodes::_monitorenter   : monitorenter(apop(), s.cur_bci()); break;
3064       case Bytecodes::_monitorexit    : monitorexit (apop(), s.cur_bci()); break;
3065       case Bytecodes::_wide           : ShouldNotReachHere(); break;
3066       case Bytecodes::_multianewarray : new_multi_array(s.cur_bcp()[3]); break;
3067       case Bytecodes::_ifnull         : if_null(objectType, If::eql); break;
3068       case Bytecodes::_ifnonnull      : if_null(objectType, If::neq); break;
3069       case Bytecodes::_goto_w         : _goto(s.cur_bci(), s.get_far_dest()); break;
3070       case Bytecodes::_jsr_w          : jsr(s.get_far_dest()); break;
3071       case Bytecodes::_defaultvalue   : new_value_type_instance(s.get_index_u2()); break;
3072       case Bytecodes::_withfield      : withfield(s.get_index_u2()); break;
3073       case Bytecodes::_breakpoint     : BAILOUT_("concurrent setting of breakpoint", NULL);
3074       default                         : ShouldNotReachHere(); break;
3075     }
3076 
3077     if (log != NULL)
3078       log->clear_context(); // skip marker if nothing was printed
3079 
3080     // save current bci to setup Goto at the end
3081     prev_bci = s.cur_bci();
3082 
3083   }
3084   CHECK_BAILOUT_(NULL);
3085   // stop processing of this block (see try_inline_full)
3086   if (_skip_block) {
3087     _skip_block = false;
3088     assert(_last && _last->as_BlockEnd(), "");
3089     return _last->as_BlockEnd();
3090   }
3091   // if there are any, check if last instruction is a BlockEnd instruction
3092   BlockEnd* end = last()->as_BlockEnd();
3093   if (end == NULL) {
3094     // all blocks must end with a BlockEnd instruction => add a Goto
3095     end = new Goto(block_at(s.cur_bci()), false);
3096     append(end);
3097   }
3098   assert(end == last()->as_BlockEnd(), "inconsistency");
3099 
3100   assert(end->state() != NULL, "state must already be present");
3101   assert(end->as_Return() == NULL || end->as_Throw() == NULL || end->state()->stack_size() == 0, "stack not needed for return and throw");
3102 
3103   // connect to begin & set state
3104   // NOTE that inlining may have changed the block we are parsing
3105   block()->set_end(end);
3106   // propagate state
3107   for (int i = end->number_of_sux() - 1; i >= 0; i--) {
3108     BlockBegin* sux = end->sux_at(i);
3109     assert(sux->is_predecessor(block()), "predecessor missing");
3110     // be careful, bailout if bytecodes are strange
3111     if (!sux->try_merge(end->state())) BAILOUT_("block join failed", NULL);
3112     scope_data()->add_to_work_list(end->sux_at(i));
3113   }
3114 
3115   scope_data()->set_stream(NULL);
3116 
3117   // done
3118   return end;
3119 }
3120 
3121 
3122 void GraphBuilder::iterate_all_blocks(bool start_in_current_block_for_inlining) {
3123   do {
3124     if (start_in_current_block_for_inlining && !bailed_out()) {
3125       iterate_bytecodes_for_block(0);
3126       start_in_current_block_for_inlining = false;
3127     } else {
3128       BlockBegin* b;
3129       while ((b = scope_data()->remove_from_work_list()) != NULL) {
3130         if (!b->is_set(BlockBegin::was_visited_flag)) {
3131           if (b->is_set(BlockBegin::osr_entry_flag)) {
3132             // we're about to parse the osr entry block, so make sure
3133             // we setup the OSR edge leading into this block so that
3134             // Phis get setup correctly.
3135             setup_osr_entry_block();
3136             // this is no longer the osr entry block, so clear it.
3137             b->clear(BlockBegin::osr_entry_flag);
3138           }
3139           b->set(BlockBegin::was_visited_flag);
3140           connect_to_end(b);
3141         }
3142       }
3143     }
3144   } while (!bailed_out() && !scope_data()->is_work_list_empty());
3145 }
3146 
3147 
3148 bool GraphBuilder::_can_trap      [Bytecodes::number_of_java_codes];
3149 
3150 void GraphBuilder::initialize() {
3151   // the following bytecodes are assumed to potentially
3152   // throw exceptions in compiled code - note that e.g.
3153   // monitorexit & the return bytecodes do not throw
3154   // exceptions since monitor pairing proved that they
3155   // succeed (if monitor pairing succeeded)
3156   Bytecodes::Code can_trap_list[] =
3157     { Bytecodes::_ldc
3158     , Bytecodes::_ldc_w
3159     , Bytecodes::_ldc2_w
3160     , Bytecodes::_iaload
3161     , Bytecodes::_laload
3162     , Bytecodes::_faload
3163     , Bytecodes::_daload
3164     , Bytecodes::_aaload
3165     , Bytecodes::_baload
3166     , Bytecodes::_caload
3167     , Bytecodes::_saload
3168     , Bytecodes::_iastore
3169     , Bytecodes::_lastore
3170     , Bytecodes::_fastore
3171     , Bytecodes::_dastore
3172     , Bytecodes::_aastore
3173     , Bytecodes::_bastore
3174     , Bytecodes::_castore
3175     , Bytecodes::_sastore
3176     , Bytecodes::_idiv
3177     , Bytecodes::_ldiv
3178     , Bytecodes::_irem
3179     , Bytecodes::_lrem
3180     , Bytecodes::_getstatic
3181     , Bytecodes::_putstatic
3182     , Bytecodes::_getfield
3183     , Bytecodes::_putfield
3184     , Bytecodes::_invokevirtual
3185     , Bytecodes::_invokespecial
3186     , Bytecodes::_invokestatic
3187     , Bytecodes::_invokedynamic
3188     , Bytecodes::_invokeinterface
3189     , Bytecodes::_new
3190     , Bytecodes::_newarray
3191     , Bytecodes::_anewarray
3192     , Bytecodes::_arraylength
3193     , Bytecodes::_athrow
3194     , Bytecodes::_checkcast
3195     , Bytecodes::_instanceof
3196     , Bytecodes::_monitorenter
3197     , Bytecodes::_multianewarray
3198     };
3199 
3200   // inititialize trap tables
3201   for (int i = 0; i < Bytecodes::number_of_java_codes; i++) {
3202     _can_trap[i] = false;
3203   }
3204   // set standard trap info
3205   for (uint j = 0; j < ARRAY_SIZE(can_trap_list); j++) {
3206     _can_trap[can_trap_list[j]] = true;
3207   }
3208 }
3209 
3210 
3211 BlockBegin* GraphBuilder::header_block(BlockBegin* entry, BlockBegin::Flag f, ValueStack* state) {
3212   assert(entry->is_set(f), "entry/flag mismatch");
3213   // create header block
3214   BlockBegin* h = new BlockBegin(entry->bci());
3215   h->set_depth_first_number(0);
3216 
3217   Value l = h;
3218   BlockEnd* g = new Goto(entry, false);
3219   l->set_next(g, entry->bci());
3220   h->set_end(g);
3221   h->set(f);
3222   // setup header block end state
3223   ValueStack* s = state->copy(ValueStack::StateAfter, entry->bci()); // can use copy since stack is empty (=> no phis)
3224   assert(s->stack_is_empty(), "must have empty stack at entry point");
3225   g->set_state(s);
3226   return h;
3227 }
3228 
3229 
3230 
3231 BlockBegin* GraphBuilder::setup_start_block(int osr_bci, BlockBegin* std_entry, BlockBegin* osr_entry, ValueStack* state) {
3232   BlockBegin* start = new BlockBegin(0);
3233 
3234   // This code eliminates the empty start block at the beginning of
3235   // each method.  Previously, each method started with the
3236   // start-block created below, and this block was followed by the
3237   // header block that was always empty.  This header block is only
3238   // necesary if std_entry is also a backward branch target because
3239   // then phi functions may be necessary in the header block.  It's
3240   // also necessary when profiling so that there's a single block that
3241   // can increment the interpreter_invocation_count.
3242   BlockBegin* new_header_block;
3243   if (std_entry->number_of_preds() > 0 || count_invocations() || count_backedges()) {
3244     new_header_block = header_block(std_entry, BlockBegin::std_entry_flag, state);
3245   } else {
3246     new_header_block = std_entry;
3247   }
3248 
3249   // setup start block (root for the IR graph)
3250   Base* base =
3251     new Base(
3252       new_header_block,
3253       osr_entry
3254     );
3255   start->set_next(base, 0);
3256   start->set_end(base);
3257   // create & setup state for start block
3258   start->set_state(state->copy(ValueStack::StateAfter, std_entry->bci()));
3259   base->set_state(state->copy(ValueStack::StateAfter, std_entry->bci()));
3260 
3261   if (base->std_entry()->state() == NULL) {
3262     // setup states for header blocks
3263     base->std_entry()->merge(state);
3264   }
3265 
3266   assert(base->std_entry()->state() != NULL, "");
3267   return start;
3268 }
3269 
3270 
3271 void GraphBuilder::setup_osr_entry_block() {
3272   assert(compilation()->is_osr_compile(), "only for osrs");
3273 
3274   int osr_bci = compilation()->osr_bci();
3275   ciBytecodeStream s(method());
3276   s.reset_to_bci(osr_bci);
3277   s.next();
3278   scope_data()->set_stream(&s);
3279 
3280   // create a new block to be the osr setup code
3281   _osr_entry = new BlockBegin(osr_bci);
3282   _osr_entry->set(BlockBegin::osr_entry_flag);
3283   _osr_entry->set_depth_first_number(0);
3284   BlockBegin* target = bci2block()->at(osr_bci);
3285   assert(target != NULL && target->is_set(BlockBegin::osr_entry_flag), "must be there");
3286   // the osr entry has no values for locals
3287   ValueStack* state = target->state()->copy();
3288   _osr_entry->set_state(state);
3289 
3290   kill_all();
3291   _block = _osr_entry;
3292   _state = _osr_entry->state()->copy();
3293   assert(_state->bci() == osr_bci, "mismatch");
3294   _last  = _osr_entry;
3295   Value e = append(new OsrEntry());
3296   e->set_needs_null_check(false);
3297 
3298   // OSR buffer is
3299   //
3300   // locals[nlocals-1..0]
3301   // monitors[number_of_locks-1..0]
3302   //
3303   // locals is a direct copy of the interpreter frame so in the osr buffer
3304   // so first slot in the local array is the last local from the interpreter
3305   // and last slot is local[0] (receiver) from the interpreter
3306   //
3307   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
3308   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
3309   // in the interpreter frame (the method lock if a sync method)
3310 
3311   // Initialize monitors in the compiled activation.
3312 
3313   int index;
3314   Value local;
3315 
3316   // find all the locals that the interpreter thinks contain live oops
3317   const ResourceBitMap live_oops = method()->live_local_oops_at_bci(osr_bci);
3318 
3319   // compute the offset into the locals so that we can treat the buffer
3320   // as if the locals were still in the interpreter frame
3321   int locals_offset = BytesPerWord * (method()->max_locals() - 1);
3322   for_each_local_value(state, index, local) {
3323     int offset = locals_offset - (index + local->type()->size() - 1) * BytesPerWord;
3324     Value get;
3325     if (local->type()->is_object_kind() && !live_oops.at(index)) {
3326       // The interpreter thinks this local is dead but the compiler
3327       // doesn't so pretend that the interpreter passed in null.
3328       get = append(new Constant(objectNull));
3329     } else {
3330       get = append(new UnsafeGetRaw(as_BasicType(local->type()), e,
3331                                     append(new Constant(new IntConstant(offset))),
3332                                     0,
3333                                     true /*unaligned*/, true /*wide*/));
3334     }
3335     _state->store_local(index, get);
3336   }
3337 
3338   // the storage for the OSR buffer is freed manually in the LIRGenerator.
3339 
3340   assert(state->caller_state() == NULL, "should be top scope");
3341   state->clear_locals();
3342   Goto* g = new Goto(target, false);
3343   append(g);
3344   _osr_entry->set_end(g);
3345   target->merge(_osr_entry->end()->state());
3346 
3347   scope_data()->set_stream(NULL);
3348 }
3349 
3350 
3351 ValueStack* GraphBuilder::state_at_entry() {
3352   ValueStack* state = new ValueStack(scope(), NULL);
3353 
3354   // Set up locals for receiver
3355   int idx = 0;
3356   if (!method()->is_static()) {
3357     // we should always see the receiver
3358     state->store_local(idx, new Local(method()->holder(), objectType, idx, true));
3359     idx = 1;
3360   }
3361 
3362   // Set up locals for incoming arguments
3363   ciSignature* sig = method()->signature();
3364   for (int i = 0; i < sig->count(); i++) {
3365     ciType* type = sig->type_at(i);
3366     BasicType basic_type = type->basic_type();
3367     // don't allow T_ARRAY to propagate into locals types
3368     if (basic_type == T_ARRAY || basic_type == T_VALUETYPE) basic_type = T_OBJECT;
3369     ValueType* vt = as_ValueType(basic_type);
3370     state->store_local(idx, new Local(type, vt, idx, false));
3371     idx += type->size();
3372   }
3373 
3374   // lock synchronized method
3375   if (method()->is_synchronized()) {
3376     state->lock(NULL);
3377   }
3378 
3379   return state;
3380 }
3381 
3382 
3383 GraphBuilder::GraphBuilder(Compilation* compilation, IRScope* scope)
3384   : _scope_data(NULL)
3385   , _compilation(compilation)
3386   , _memory(new MemoryBuffer())
3387   , _inline_bailout_msg(NULL)
3388   , _instruction_count(0)
3389   , _osr_entry(NULL)
3390 {
3391   int osr_bci = compilation->osr_bci();
3392 
3393   // determine entry points and bci2block mapping
3394   BlockListBuilder blm(compilation, scope, osr_bci);
3395   CHECK_BAILOUT();
3396 
3397   BlockList* bci2block = blm.bci2block();
3398   BlockBegin* start_block = bci2block->at(0);
3399 
3400   push_root_scope(scope, bci2block, start_block);
3401 
3402   // setup state for std entry
3403   _initial_state = state_at_entry();
3404   start_block->merge(_initial_state);
3405 
3406   // complete graph
3407   _vmap        = new ValueMap();
3408   switch (scope->method()->intrinsic_id()) {
3409   case vmIntrinsics::_dabs          : // fall through
3410   case vmIntrinsics::_dsqrt         : // fall through
3411   case vmIntrinsics::_dsin          : // fall through
3412   case vmIntrinsics::_dcos          : // fall through
3413   case vmIntrinsics::_dtan          : // fall through
3414   case vmIntrinsics::_dlog          : // fall through
3415   case vmIntrinsics::_dlog10        : // fall through
3416   case vmIntrinsics::_dexp          : // fall through
3417   case vmIntrinsics::_dpow          : // fall through
3418     {
3419       // Compiles where the root method is an intrinsic need a special
3420       // compilation environment because the bytecodes for the method
3421       // shouldn't be parsed during the compilation, only the special
3422       // Intrinsic node should be emitted.  If this isn't done the the
3423       // code for the inlined version will be different than the root
3424       // compiled version which could lead to monotonicity problems on
3425       // intel.
3426       if (CheckIntrinsics && !scope->method()->intrinsic_candidate()) {
3427         BAILOUT("failed to inline intrinsic, method not annotated");
3428       }
3429 
3430       // Set up a stream so that appending instructions works properly.
3431       ciBytecodeStream s(scope->method());
3432       s.reset_to_bci(0);
3433       scope_data()->set_stream(&s);
3434       s.next();
3435 
3436       // setup the initial block state
3437       _block = start_block;
3438       _state = start_block->state()->copy_for_parsing();
3439       _last  = start_block;
3440       load_local(doubleType, 0);
3441       if (scope->method()->intrinsic_id() == vmIntrinsics::_dpow) {
3442         load_local(doubleType, 2);
3443       }
3444 
3445       // Emit the intrinsic node.
3446       bool result = try_inline_intrinsics(scope->method());
3447       if (!result) BAILOUT("failed to inline intrinsic");
3448       method_return(dpop());
3449 
3450       // connect the begin and end blocks and we're all done.
3451       BlockEnd* end = last()->as_BlockEnd();
3452       block()->set_end(end);
3453       break;
3454     }
3455 
3456   case vmIntrinsics::_Reference_get:
3457     {
3458       {
3459         // With java.lang.ref.reference.get() we must go through the
3460         // intrinsic - when G1 is enabled - even when get() is the root
3461         // method of the compile so that, if necessary, the value in
3462         // the referent field of the reference object gets recorded by
3463         // the pre-barrier code.
3464         // Specifically, if G1 is enabled, the value in the referent
3465         // field is recorded by the G1 SATB pre barrier. This will
3466         // result in the referent being marked live and the reference
3467         // object removed from the list of discovered references during
3468         // reference processing.
3469         if (CheckIntrinsics && !scope->method()->intrinsic_candidate()) {
3470           BAILOUT("failed to inline intrinsic, method not annotated");
3471         }
3472 
3473         // Also we need intrinsic to prevent commoning reads from this field
3474         // across safepoint since GC can change its value.
3475 
3476         // Set up a stream so that appending instructions works properly.
3477         ciBytecodeStream s(scope->method());
3478         s.reset_to_bci(0);
3479         scope_data()->set_stream(&s);
3480         s.next();
3481 
3482         // setup the initial block state
3483         _block = start_block;
3484         _state = start_block->state()->copy_for_parsing();
3485         _last  = start_block;
3486         load_local(objectType, 0);
3487 
3488         // Emit the intrinsic node.
3489         bool result = try_inline_intrinsics(scope->method());
3490         if (!result) BAILOUT("failed to inline intrinsic");
3491         method_return(apop());
3492 
3493         // connect the begin and end blocks and we're all done.
3494         BlockEnd* end = last()->as_BlockEnd();
3495         block()->set_end(end);
3496         break;
3497       }
3498       // Otherwise, fall thru
3499     }
3500 
3501   default:
3502     scope_data()->add_to_work_list(start_block);
3503     iterate_all_blocks();
3504     break;
3505   }
3506   CHECK_BAILOUT();
3507 
3508   _start = setup_start_block(osr_bci, start_block, _osr_entry, _initial_state);
3509 
3510   eliminate_redundant_phis(_start);
3511 
3512   NOT_PRODUCT(if (PrintValueNumbering && Verbose) print_stats());
3513   // for osr compile, bailout if some requirements are not fulfilled
3514   if (osr_bci != -1) {
3515     BlockBegin* osr_block = blm.bci2block()->at(osr_bci);
3516     if (!osr_block->is_set(BlockBegin::was_visited_flag)) {
3517       BAILOUT("osr entry must have been visited for osr compile");
3518     }
3519 
3520     // check if osr entry point has empty stack - we cannot handle non-empty stacks at osr entry points
3521     if (!osr_block->state()->stack_is_empty()) {
3522       BAILOUT("stack not empty at OSR entry point");
3523     }
3524   }
3525 #ifndef PRODUCT
3526   if (PrintCompilation && Verbose) tty->print_cr("Created %d Instructions", _instruction_count);
3527 #endif
3528 }
3529 
3530 
3531 ValueStack* GraphBuilder::copy_state_before() {
3532   return copy_state_before_with_bci(bci());
3533 }
3534 
3535 ValueStack* GraphBuilder::copy_state_exhandling() {
3536   return copy_state_exhandling_with_bci(bci());
3537 }
3538 
3539 ValueStack* GraphBuilder::copy_state_for_exception() {
3540   return copy_state_for_exception_with_bci(bci());
3541 }
3542 
3543 ValueStack* GraphBuilder::copy_state_before_with_bci(int bci) {
3544   return state()->copy(ValueStack::StateBefore, bci);
3545 }
3546 
3547 ValueStack* GraphBuilder::copy_state_exhandling_with_bci(int bci) {
3548   if (!has_handler()) return NULL;
3549   return state()->copy(ValueStack::StateBefore, bci);
3550 }
3551 
3552 ValueStack* GraphBuilder::copy_state_for_exception_with_bci(int bci) {
3553   ValueStack* s = copy_state_exhandling_with_bci(bci);
3554   if (s == NULL) {
3555     if (_compilation->env()->should_retain_local_variables()) {
3556       s = state()->copy(ValueStack::ExceptionState, bci);
3557     } else {
3558       s = state()->copy(ValueStack::EmptyExceptionState, bci);
3559     }
3560   }
3561   return s;
3562 }
3563 
3564 int GraphBuilder::recursive_inline_level(ciMethod* cur_callee) const {
3565   int recur_level = 0;
3566   for (IRScope* s = scope(); s != NULL; s = s->caller()) {
3567     if (s->method() == cur_callee) {
3568       ++recur_level;
3569     }
3570   }
3571   return recur_level;
3572 }
3573 
3574 
3575 bool GraphBuilder::try_inline(ciMethod* callee, bool holder_known, bool ignore_return, Bytecodes::Code bc, Value receiver) {
3576   const char* msg = NULL;
3577 
3578   // clear out any existing inline bailout condition
3579   clear_inline_bailout();
3580 
3581   // exclude methods we don't want to inline
3582   msg = should_not_inline(callee);
3583   if (msg != NULL) {
3584     print_inlining(callee, msg, /*success*/ false);
3585     return false;
3586   }
3587 
3588   // method handle invokes
3589   if (callee->is_method_handle_intrinsic()) {
3590     if (try_method_handle_inline(callee, ignore_return)) {
3591       if (callee->has_reserved_stack_access()) {
3592         compilation()->set_has_reserved_stack_access(true);
3593       }
3594       return true;
3595     }
3596     return false;
3597   }
3598 
3599   // handle intrinsics
3600   if (callee->intrinsic_id() != vmIntrinsics::_none &&
3601       (CheckIntrinsics ? callee->intrinsic_candidate() : true)) {
3602     if (try_inline_intrinsics(callee, ignore_return)) {
3603       print_inlining(callee, "intrinsic");
3604       if (callee->has_reserved_stack_access()) {
3605         compilation()->set_has_reserved_stack_access(true);
3606       }
3607       return true;
3608     }
3609     // try normal inlining
3610   }
3611 
3612   // certain methods cannot be parsed at all
3613   msg = check_can_parse(callee);
3614   if (msg != NULL) {
3615     print_inlining(callee, msg, /*success*/ false);
3616     return false;
3617   }
3618 
3619   // If bytecode not set use the current one.
3620   if (bc == Bytecodes::_illegal) {
3621     bc = code();
3622   }
3623   if (try_inline_full(callee, holder_known, ignore_return, bc, receiver)) {
3624     if (callee->has_reserved_stack_access()) {
3625       compilation()->set_has_reserved_stack_access(true);
3626     }
3627     return true;
3628   }
3629 
3630   // Entire compilation could fail during try_inline_full call.
3631   // In that case printing inlining decision info is useless.
3632   if (!bailed_out())
3633     print_inlining(callee, _inline_bailout_msg, /*success*/ false);
3634 
3635   return false;
3636 }
3637 
3638 
3639 const char* GraphBuilder::check_can_parse(ciMethod* callee) const {
3640   // Certain methods cannot be parsed at all:
3641   if ( callee->is_native())            return "native method";
3642   if ( callee->is_abstract())          return "abstract method";
3643   if (!callee->can_be_compiled())      return "not compilable (disabled)";
3644   if (!callee->can_be_parsed())        return "cannot be parsed";
3645   return NULL;
3646 }
3647 
3648 // negative filter: should callee NOT be inlined?  returns NULL, ok to inline, or rejection msg
3649 const char* GraphBuilder::should_not_inline(ciMethod* callee) const {
3650   if ( compilation()->directive()->should_not_inline(callee)) return "disallowed by CompileCommand";
3651   if ( callee->dont_inline())          return "don't inline by annotation";
3652   return NULL;
3653 }
3654 
3655 void GraphBuilder::build_graph_for_intrinsic(ciMethod* callee, bool ignore_return) {
3656   vmIntrinsics::ID id = callee->intrinsic_id();
3657   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
3658 
3659   // Some intrinsics need special IR nodes.
3660   switch(id) {
3661   case vmIntrinsics::_getReference       : append_unsafe_get_obj(callee, T_OBJECT,  false); return;
3662   case vmIntrinsics::_getBoolean         : append_unsafe_get_obj(callee, T_BOOLEAN, false); return;
3663   case vmIntrinsics::_getByte            : append_unsafe_get_obj(callee, T_BYTE,    false); return;
3664   case vmIntrinsics::_getShort           : append_unsafe_get_obj(callee, T_SHORT,   false); return;
3665   case vmIntrinsics::_getChar            : append_unsafe_get_obj(callee, T_CHAR,    false); return;
3666   case vmIntrinsics::_getInt             : append_unsafe_get_obj(callee, T_INT,     false); return;
3667   case vmIntrinsics::_getLong            : append_unsafe_get_obj(callee, T_LONG,    false); return;
3668   case vmIntrinsics::_getFloat           : append_unsafe_get_obj(callee, T_FLOAT,   false); return;
3669   case vmIntrinsics::_getDouble          : append_unsafe_get_obj(callee, T_DOUBLE,  false); return;
3670   case vmIntrinsics::_putReference       : append_unsafe_put_obj(callee, T_OBJECT,  false); return;
3671   case vmIntrinsics::_putBoolean         : append_unsafe_put_obj(callee, T_BOOLEAN, false); return;
3672   case vmIntrinsics::_putByte            : append_unsafe_put_obj(callee, T_BYTE,    false); return;
3673   case vmIntrinsics::_putShort           : append_unsafe_put_obj(callee, T_SHORT,   false); return;
3674   case vmIntrinsics::_putChar            : append_unsafe_put_obj(callee, T_CHAR,    false); return;
3675   case vmIntrinsics::_putInt             : append_unsafe_put_obj(callee, T_INT,     false); return;
3676   case vmIntrinsics::_putLong            : append_unsafe_put_obj(callee, T_LONG,    false); return;
3677   case vmIntrinsics::_putFloat           : append_unsafe_put_obj(callee, T_FLOAT,   false); return;
3678   case vmIntrinsics::_putDouble          : append_unsafe_put_obj(callee, T_DOUBLE,  false); return;
3679   case vmIntrinsics::_getShortUnaligned  : append_unsafe_get_obj(callee, T_SHORT,   false); return;
3680   case vmIntrinsics::_getCharUnaligned   : append_unsafe_get_obj(callee, T_CHAR,    false); return;
3681   case vmIntrinsics::_getIntUnaligned    : append_unsafe_get_obj(callee, T_INT,     false); return;
3682   case vmIntrinsics::_getLongUnaligned   : append_unsafe_get_obj(callee, T_LONG,    false); return;
3683   case vmIntrinsics::_putShortUnaligned  : append_unsafe_put_obj(callee, T_SHORT,   false); return;
3684   case vmIntrinsics::_putCharUnaligned   : append_unsafe_put_obj(callee, T_CHAR,    false); return;
3685   case vmIntrinsics::_putIntUnaligned    : append_unsafe_put_obj(callee, T_INT,     false); return;
3686   case vmIntrinsics::_putLongUnaligned   : append_unsafe_put_obj(callee, T_LONG,    false); return;
3687   case vmIntrinsics::_getReferenceVolatile  : append_unsafe_get_obj(callee, T_OBJECT,  true); return;
3688   case vmIntrinsics::_getBooleanVolatile : append_unsafe_get_obj(callee, T_BOOLEAN, true); return;
3689   case vmIntrinsics::_getByteVolatile    : append_unsafe_get_obj(callee, T_BYTE,    true); return;
3690   case vmIntrinsics::_getShortVolatile   : append_unsafe_get_obj(callee, T_SHORT,   true); return;
3691   case vmIntrinsics::_getCharVolatile    : append_unsafe_get_obj(callee, T_CHAR,    true); return;
3692   case vmIntrinsics::_getIntVolatile     : append_unsafe_get_obj(callee, T_INT,     true); return;
3693   case vmIntrinsics::_getLongVolatile    : append_unsafe_get_obj(callee, T_LONG,    true); return;
3694   case vmIntrinsics::_getFloatVolatile   : append_unsafe_get_obj(callee, T_FLOAT,   true); return;
3695   case vmIntrinsics::_getDoubleVolatile  : append_unsafe_get_obj(callee, T_DOUBLE,  true); return;
3696   case vmIntrinsics::_putReferenceVolatile : append_unsafe_put_obj(callee, T_OBJECT,  true); return;
3697   case vmIntrinsics::_putBooleanVolatile : append_unsafe_put_obj(callee, T_BOOLEAN, true); return;
3698   case vmIntrinsics::_putByteVolatile    : append_unsafe_put_obj(callee, T_BYTE,    true); return;
3699   case vmIntrinsics::_putShortVolatile   : append_unsafe_put_obj(callee, T_SHORT,   true); return;
3700   case vmIntrinsics::_putCharVolatile    : append_unsafe_put_obj(callee, T_CHAR,    true); return;
3701   case vmIntrinsics::_putIntVolatile     : append_unsafe_put_obj(callee, T_INT,     true); return;
3702   case vmIntrinsics::_putLongVolatile    : append_unsafe_put_obj(callee, T_LONG,    true); return;
3703   case vmIntrinsics::_putFloatVolatile   : append_unsafe_put_obj(callee, T_FLOAT,   true); return;
3704   case vmIntrinsics::_putDoubleVolatile  : append_unsafe_put_obj(callee, T_DOUBLE,  true); return;
3705   case vmIntrinsics::_compareAndSetLong:
3706   case vmIntrinsics::_compareAndSetInt:
3707   case vmIntrinsics::_compareAndSetReference : append_unsafe_CAS(callee); return;
3708   case vmIntrinsics::_getAndAddInt:
3709   case vmIntrinsics::_getAndAddLong      : append_unsafe_get_and_set_obj(callee, true); return;
3710   case vmIntrinsics::_getAndSetInt       :
3711   case vmIntrinsics::_getAndSetLong      :
3712   case vmIntrinsics::_getAndSetReference : append_unsafe_get_and_set_obj(callee, false); return;
3713   case vmIntrinsics::_getCharStringU     : append_char_access(callee, false); return;
3714   case vmIntrinsics::_putCharStringU     : append_char_access(callee, true); return;
3715   default:
3716     break;
3717   }
3718 
3719   // create intrinsic node
3720   const bool has_receiver = !callee->is_static();
3721   ValueType* result_type = as_ValueType(callee->return_type());
3722   ValueStack* state_before = copy_state_for_exception();
3723 
3724   Values* args = state()->pop_arguments(callee->arg_size());
3725 
3726   if (is_profiling()) {
3727     // Don't profile in the special case where the root method
3728     // is the intrinsic
3729     if (callee != method()) {
3730       // Note that we'd collect profile data in this method if we wanted it.
3731       compilation()->set_would_profile(true);
3732       if (profile_calls()) {
3733         Value recv = NULL;
3734         if (has_receiver) {
3735           recv = args->at(0);
3736           null_check(recv);
3737         }
3738         profile_call(callee, recv, NULL, collect_args_for_profiling(args, callee, true), true);
3739       }
3740     }
3741   }
3742 
3743   Intrinsic* result = new Intrinsic(result_type, callee->intrinsic_id(),
3744                                     args, has_receiver, state_before,
3745                                     vmIntrinsics::preserves_state(id),
3746                                     vmIntrinsics::can_trap(id));
3747   // append instruction & push result
3748   Value value = append_split(result);
3749   if (result_type != voidType && !ignore_return) {
3750     push(result_type, value);
3751   }
3752 
3753   if (callee != method() && profile_return() && result_type->is_object_kind()) {
3754     profile_return_type(result, callee);
3755   }
3756 }
3757 
3758 bool GraphBuilder::try_inline_intrinsics(ciMethod* callee, bool ignore_return) {
3759   // For calling is_intrinsic_available we need to transition to
3760   // the '_thread_in_vm' state because is_intrinsic_available()
3761   // accesses critical VM-internal data.
3762   bool is_available = false;
3763   {
3764     VM_ENTRY_MARK;
3765     methodHandle mh(THREAD, callee->get_Method());
3766     is_available = _compilation->compiler()->is_intrinsic_available(mh, _compilation->directive());
3767   }
3768 
3769   if (!is_available) {
3770     if (!InlineNatives) {
3771       // Return false and also set message that the inlining of
3772       // intrinsics has been disabled in general.
3773       INLINE_BAILOUT("intrinsic method inlining disabled");
3774     } else {
3775       return false;
3776     }
3777   }
3778   build_graph_for_intrinsic(callee, ignore_return);
3779   return true;
3780 }
3781 
3782 
3783 bool GraphBuilder::try_inline_jsr(int jsr_dest_bci) {
3784   // Introduce a new callee continuation point - all Ret instructions
3785   // will be replaced with Gotos to this point.
3786   BlockBegin* cont = block_at(next_bci());
3787   assert(cont != NULL, "continuation must exist (BlockListBuilder starts a new block after a jsr");
3788 
3789   // Note: can not assign state to continuation yet, as we have to
3790   // pick up the state from the Ret instructions.
3791 
3792   // Push callee scope
3793   push_scope_for_jsr(cont, jsr_dest_bci);
3794 
3795   // Temporarily set up bytecode stream so we can append instructions
3796   // (only using the bci of this stream)
3797   scope_data()->set_stream(scope_data()->parent()->stream());
3798 
3799   BlockBegin* jsr_start_block = block_at(jsr_dest_bci);
3800   assert(jsr_start_block != NULL, "jsr start block must exist");
3801   assert(!jsr_start_block->is_set(BlockBegin::was_visited_flag), "should not have visited jsr yet");
3802   Goto* goto_sub = new Goto(jsr_start_block, false);
3803   // Must copy state to avoid wrong sharing when parsing bytecodes
3804   assert(jsr_start_block->state() == NULL, "should have fresh jsr starting block");
3805   jsr_start_block->set_state(copy_state_before_with_bci(jsr_dest_bci));
3806   append(goto_sub);
3807   _block->set_end(goto_sub);
3808   _last = _block = jsr_start_block;
3809 
3810   // Clear out bytecode stream
3811   scope_data()->set_stream(NULL);
3812 
3813   scope_data()->add_to_work_list(jsr_start_block);
3814 
3815   // Ready to resume parsing in subroutine
3816   iterate_all_blocks();
3817 
3818   // If we bailed out during parsing, return immediately (this is bad news)
3819   CHECK_BAILOUT_(false);
3820 
3821   // Detect whether the continuation can actually be reached. If not,
3822   // it has not had state set by the join() operations in
3823   // iterate_bytecodes_for_block()/ret() and we should not touch the
3824   // iteration state. The calling activation of
3825   // iterate_bytecodes_for_block will then complete normally.
3826   if (cont->state() != NULL) {
3827     if (!cont->is_set(BlockBegin::was_visited_flag)) {
3828       // add continuation to work list instead of parsing it immediately
3829       scope_data()->parent()->add_to_work_list(cont);
3830     }
3831   }
3832 
3833   assert(jsr_continuation() == cont, "continuation must not have changed");
3834   assert(!jsr_continuation()->is_set(BlockBegin::was_visited_flag) ||
3835          jsr_continuation()->is_set(BlockBegin::parser_loop_header_flag),
3836          "continuation can only be visited in case of backward branches");
3837   assert(_last && _last->as_BlockEnd(), "block must have end");
3838 
3839   // continuation is in work list, so end iteration of current block
3840   _skip_block = true;
3841   pop_scope_for_jsr();
3842 
3843   return true;
3844 }
3845 
3846 
3847 // Inline the entry of a synchronized method as a monitor enter and
3848 // register the exception handler which releases the monitor if an
3849 // exception is thrown within the callee. Note that the monitor enter
3850 // cannot throw an exception itself, because the receiver is
3851 // guaranteed to be non-null by the explicit null check at the
3852 // beginning of inlining.
3853 void GraphBuilder::inline_sync_entry(Value lock, BlockBegin* sync_handler) {
3854   assert(lock != NULL && sync_handler != NULL, "lock or handler missing");
3855 
3856   monitorenter(lock, SynchronizationEntryBCI);
3857   assert(_last->as_MonitorEnter() != NULL, "monitor enter expected");
3858   _last->set_needs_null_check(false);
3859 
3860   sync_handler->set(BlockBegin::exception_entry_flag);
3861   sync_handler->set(BlockBegin::is_on_work_list_flag);
3862 
3863   ciExceptionHandler* desc = new ciExceptionHandler(method()->holder(), 0, method()->code_size(), -1, 0);
3864   XHandler* h = new XHandler(desc);
3865   h->set_entry_block(sync_handler);
3866   scope_data()->xhandlers()->append(h);
3867   scope_data()->set_has_handler();
3868 }
3869 
3870 
3871 // If an exception is thrown and not handled within an inlined
3872 // synchronized method, the monitor must be released before the
3873 // exception is rethrown in the outer scope. Generate the appropriate
3874 // instructions here.
3875 void GraphBuilder::fill_sync_handler(Value lock, BlockBegin* sync_handler, bool default_handler) {
3876   BlockBegin* orig_block = _block;
3877   ValueStack* orig_state = _state;
3878   Instruction* orig_last = _last;
3879   _last = _block = sync_handler;
3880   _state = sync_handler->state()->copy();
3881 
3882   assert(sync_handler != NULL, "handler missing");
3883   assert(!sync_handler->is_set(BlockBegin::was_visited_flag), "is visited here");
3884 
3885   assert(lock != NULL || default_handler, "lock or handler missing");
3886 
3887   XHandler* h = scope_data()->xhandlers()->remove_last();
3888   assert(h->entry_block() == sync_handler, "corrupt list of handlers");
3889 
3890   block()->set(BlockBegin::was_visited_flag);
3891   Value exception = append_with_bci(new ExceptionObject(), SynchronizationEntryBCI);
3892   assert(exception->is_pinned(), "must be");
3893 
3894   int bci = SynchronizationEntryBCI;
3895   if (compilation()->env()->dtrace_method_probes()) {
3896     // Report exit from inline methods.  We don't have a stream here
3897     // so pass an explicit bci of SynchronizationEntryBCI.
3898     Values* args = new Values(1);
3899     args->push(append_with_bci(new Constant(new MethodConstant(method())), bci));
3900     append_with_bci(new RuntimeCall(voidType, "dtrace_method_exit", CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), args), bci);
3901   }
3902 
3903   if (lock) {
3904     assert(state()->locks_size() > 0 && state()->lock_at(state()->locks_size() - 1) == lock, "lock is missing");
3905     if (!lock->is_linked()) {
3906       lock = append_with_bci(lock, bci);
3907     }
3908 
3909     // exit the monitor in the context of the synchronized method
3910     monitorexit(lock, bci);
3911 
3912     // exit the context of the synchronized method
3913     if (!default_handler) {
3914       pop_scope();
3915       bci = _state->caller_state()->bci();
3916       _state = _state->caller_state()->copy_for_parsing();
3917     }
3918   }
3919 
3920   // perform the throw as if at the the call site
3921   apush(exception);
3922   throw_op(bci);
3923 
3924   BlockEnd* end = last()->as_BlockEnd();
3925   block()->set_end(end);
3926 
3927   _block = orig_block;
3928   _state = orig_state;
3929   _last = orig_last;
3930 }
3931 
3932 
3933 bool GraphBuilder::try_inline_full(ciMethod* callee, bool holder_known, bool ignore_return, Bytecodes::Code bc, Value receiver) {
3934   assert(!callee->is_native(), "callee must not be native");
3935   if (CompilationPolicy::policy()->should_not_inline(compilation()->env(), callee)) {
3936     INLINE_BAILOUT("inlining prohibited by policy");
3937   }
3938   // first perform tests of things it's not possible to inline
3939   if (callee->has_exception_handlers() &&
3940       !InlineMethodsWithExceptionHandlers) INLINE_BAILOUT("callee has exception handlers");
3941   if (callee->is_synchronized() &&
3942       !InlineSynchronizedMethods         ) INLINE_BAILOUT("callee is synchronized");
3943   if (!callee->holder()->is_initialized()) INLINE_BAILOUT("callee's klass not initialized yet");
3944   if (!callee->has_balanced_monitors())    INLINE_BAILOUT("callee's monitors do not match");
3945 
3946   // Proper inlining of methods with jsrs requires a little more work.
3947   if (callee->has_jsrs()                 ) INLINE_BAILOUT("jsrs not handled properly by inliner yet");
3948 
3949   // When SSE2 is used on intel, then no special handling is needed
3950   // for strictfp because the enum-constant is fixed at compile time,
3951   // the check for UseSSE2 is needed here
3952   if (strict_fp_requires_explicit_rounding && UseSSE < 2 && method()->is_strict() != callee->is_strict()) {
3953     INLINE_BAILOUT("caller and callee have different strict fp requirements");
3954   }
3955 
3956   if (is_profiling() && !callee->ensure_method_data()) {
3957     INLINE_BAILOUT("mdo allocation failed");
3958   }
3959 
3960   // now perform tests that are based on flag settings
3961   bool inlinee_by_directive = compilation()->directive()->should_inline(callee);
3962   if (callee->force_inline() || inlinee_by_directive) {
3963     if (inline_level() > MaxForceInlineLevel                    ) INLINE_BAILOUT("MaxForceInlineLevel");
3964     if (recursive_inline_level(callee) > MaxRecursiveInlineLevel) INLINE_BAILOUT("recursive inlining too deep");
3965 
3966     const char* msg = "";
3967     if (callee->force_inline())  msg = "force inline by annotation";
3968     if (inlinee_by_directive)    msg = "force inline by CompileCommand";
3969     print_inlining(callee, msg);
3970   } else {
3971     // use heuristic controls on inlining
3972     if (inline_level() > MaxInlineLevel                         ) INLINE_BAILOUT("inlining too deep");
3973     if (recursive_inline_level(callee) > MaxRecursiveInlineLevel) INLINE_BAILOUT("recursive inlining too deep");
3974     if (callee->code_size_for_inlining() > max_inline_size()    ) INLINE_BAILOUT("callee is too large");
3975 
3976     // don't inline throwable methods unless the inlining tree is rooted in a throwable class
3977     if (callee->name() == ciSymbol::object_initializer_name() &&
3978         callee->holder()->is_subclass_of(ciEnv::current()->Throwable_klass())) {
3979       // Throwable constructor call
3980       IRScope* top = scope();
3981       while (top->caller() != NULL) {
3982         top = top->caller();
3983       }
3984       if (!top->method()->holder()->is_subclass_of(ciEnv::current()->Throwable_klass())) {
3985         INLINE_BAILOUT("don't inline Throwable constructors");
3986       }
3987     }
3988 
3989     if (compilation()->env()->num_inlined_bytecodes() > DesiredMethodLimit) {
3990       INLINE_BAILOUT("total inlining greater than DesiredMethodLimit");
3991     }
3992     // printing
3993     print_inlining(callee);
3994   }
3995 
3996   // NOTE: Bailouts from this point on, which occur at the
3997   // GraphBuilder level, do not cause bailout just of the inlining but
3998   // in fact of the entire compilation.
3999 
4000   BlockBegin* orig_block = block();
4001 
4002   const bool is_invokedynamic = bc == Bytecodes::_invokedynamic;
4003   const bool has_receiver = (bc != Bytecodes::_invokestatic && !is_invokedynamic);
4004 
4005   const int args_base = state()->stack_size() - callee->arg_size();
4006   assert(args_base >= 0, "stack underflow during inlining");
4007 
4008   // Insert null check if necessary
4009   Value recv = NULL;
4010   if (has_receiver) {
4011     // note: null check must happen even if first instruction of callee does
4012     //       an implicit null check since the callee is in a different scope
4013     //       and we must make sure exception handling does the right thing
4014     assert(!callee->is_static(), "callee must not be static");
4015     assert(callee->arg_size() > 0, "must have at least a receiver");
4016     recv = state()->stack_at(args_base);
4017     null_check(recv);
4018   }
4019 
4020   if (is_profiling()) {
4021     // Note that we'd collect profile data in this method if we wanted it.
4022     // this may be redundant here...
4023     compilation()->set_would_profile(true);
4024 
4025     if (profile_calls()) {
4026       int start = 0;
4027       Values* obj_args = args_list_for_profiling(callee, start, has_receiver);
4028       if (obj_args != NULL) {
4029         int s = obj_args->max_length();
4030         // if called through method handle invoke, some arguments may have been popped
4031         for (int i = args_base+start, j = 0; j < obj_args->max_length() && i < state()->stack_size(); ) {
4032           Value v = state()->stack_at_inc(i);
4033           if (v->type()->is_object_kind()) {
4034             obj_args->push(v);
4035             j++;
4036           }
4037         }
4038         check_args_for_profiling(obj_args, s);
4039       }
4040       profile_call(callee, recv, holder_known ? callee->holder() : NULL, obj_args, true);
4041     }
4042   }
4043 
4044   // Introduce a new callee continuation point - if the callee has
4045   // more than one return instruction or the return does not allow
4046   // fall-through of control flow, all return instructions of the
4047   // callee will need to be replaced by Goto's pointing to this
4048   // continuation point.
4049   BlockBegin* cont = block_at(next_bci());
4050   bool continuation_existed = true;
4051   if (cont == NULL) {
4052     cont = new BlockBegin(next_bci());
4053     // low number so that continuation gets parsed as early as possible
4054     cont->set_depth_first_number(0);
4055     if (PrintInitialBlockList) {
4056       tty->print_cr("CFG: created block %d (bci %d) as continuation for inline at bci %d",
4057                     cont->block_id(), cont->bci(), bci());
4058     }
4059     continuation_existed = false;
4060   }
4061   // Record number of predecessors of continuation block before
4062   // inlining, to detect if inlined method has edges to its
4063   // continuation after inlining.
4064   int continuation_preds = cont->number_of_preds();
4065 
4066   // Push callee scope
4067   push_scope(callee, cont);
4068 
4069   // the BlockListBuilder for the callee could have bailed out
4070   if (bailed_out())
4071       return false;
4072 
4073   // Temporarily set up bytecode stream so we can append instructions
4074   // (only using the bci of this stream)
4075   scope_data()->set_stream(scope_data()->parent()->stream());
4076 
4077   // Pass parameters into callee state: add assignments
4078   // note: this will also ensure that all arguments are computed before being passed
4079   ValueStack* callee_state = state();
4080   ValueStack* caller_state = state()->caller_state();
4081   for (int i = args_base; i < caller_state->stack_size(); ) {
4082     const int arg_no = i - args_base;
4083     Value arg = caller_state->stack_at_inc(i);
4084     store_local(callee_state, arg, arg_no);
4085   }
4086 
4087   // Remove args from stack.
4088   // Note that we preserve locals state in case we can use it later
4089   // (see use of pop_scope() below)
4090   caller_state->truncate_stack(args_base);
4091   assert(callee_state->stack_size() == 0, "callee stack must be empty");
4092 
4093   Value lock = NULL;
4094   BlockBegin* sync_handler = NULL;
4095 
4096   // Inline the locking of the receiver if the callee is synchronized
4097   if (callee->is_synchronized()) {
4098     lock = callee->is_static() ? append(new Constant(new InstanceConstant(callee->holder()->java_mirror())))
4099                                : state()->local_at(0);
4100     sync_handler = new BlockBegin(SynchronizationEntryBCI);
4101     inline_sync_entry(lock, sync_handler);
4102   }
4103 
4104   if (compilation()->env()->dtrace_method_probes()) {
4105     Values* args = new Values(1);
4106     args->push(append(new Constant(new MethodConstant(method()))));
4107     append(new RuntimeCall(voidType, "dtrace_method_entry", CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), args));
4108   }
4109 
4110   if (profile_inlined_calls()) {
4111     profile_invocation(callee, copy_state_before_with_bci(SynchronizationEntryBCI));
4112   }
4113 
4114   BlockBegin* callee_start_block = block_at(0);
4115   if (callee_start_block != NULL) {
4116     assert(callee_start_block->is_set(BlockBegin::parser_loop_header_flag), "must be loop header");
4117     Goto* goto_callee = new Goto(callee_start_block, false);
4118     // The state for this goto is in the scope of the callee, so use
4119     // the entry bci for the callee instead of the call site bci.
4120     append_with_bci(goto_callee, 0);
4121     _block->set_end(goto_callee);
4122     callee_start_block->merge(callee_state);
4123 
4124     _last = _block = callee_start_block;
4125 
4126     scope_data()->add_to_work_list(callee_start_block);
4127   }
4128 
4129   // Clear out bytecode stream
4130   scope_data()->set_stream(NULL);
4131   scope_data()->set_ignore_return(ignore_return);
4132 
4133   CompileLog* log = compilation()->log();
4134   if (log != NULL) log->head("parse method='%d'", log->identify(callee));
4135 
4136   // Ready to resume parsing in callee (either in the same block we
4137   // were in before or in the callee's start block)
4138   iterate_all_blocks(callee_start_block == NULL);
4139 
4140   if (log != NULL) log->done("parse");
4141 
4142   // If we bailed out during parsing, return immediately (this is bad news)
4143   if (bailed_out())
4144       return false;
4145 
4146   // iterate_all_blocks theoretically traverses in random order; in
4147   // practice, we have only traversed the continuation if we are
4148   // inlining into a subroutine
4149   assert(continuation_existed ||
4150          !continuation()->is_set(BlockBegin::was_visited_flag),
4151          "continuation should not have been parsed yet if we created it");
4152 
4153   // At this point we are almost ready to return and resume parsing of
4154   // the caller back in the GraphBuilder. The only thing we want to do
4155   // first is an optimization: during parsing of the callee we
4156   // generated at least one Goto to the continuation block. If we
4157   // generated exactly one, and if the inlined method spanned exactly
4158   // one block (and we didn't have to Goto its entry), then we snip
4159   // off the Goto to the continuation, allowing control to fall
4160   // through back into the caller block and effectively performing
4161   // block merging. This allows load elimination and CSE to take place
4162   // across multiple callee scopes if they are relatively simple, and
4163   // is currently essential to making inlining profitable.
4164   if (num_returns() == 1
4165       && block() == orig_block
4166       && block() == inline_cleanup_block()) {
4167     _last  = inline_cleanup_return_prev();
4168     _state = inline_cleanup_state();
4169   } else if (continuation_preds == cont->number_of_preds()) {
4170     // Inlining caused that the instructions after the invoke in the
4171     // caller are not reachable any more. So skip filling this block
4172     // with instructions!
4173     assert(cont == continuation(), "");
4174     assert(_last && _last->as_BlockEnd(), "");
4175     _skip_block = true;
4176   } else {
4177     // Resume parsing in continuation block unless it was already parsed.
4178     // Note that if we don't change _last here, iteration in
4179     // iterate_bytecodes_for_block will stop when we return.
4180     if (!continuation()->is_set(BlockBegin::was_visited_flag)) {
4181       // add continuation to work list instead of parsing it immediately
4182       assert(_last && _last->as_BlockEnd(), "");
4183       scope_data()->parent()->add_to_work_list(continuation());
4184       _skip_block = true;
4185     }
4186   }
4187 
4188   // Fill the exception handler for synchronized methods with instructions
4189   if (callee->is_synchronized() && sync_handler->state() != NULL) {
4190     fill_sync_handler(lock, sync_handler);
4191   } else {
4192     pop_scope();
4193   }
4194 
4195   compilation()->notice_inlined_method(callee);
4196 
4197   return true;
4198 }
4199 
4200 
4201 bool GraphBuilder::try_method_handle_inline(ciMethod* callee, bool ignore_return) {
4202   ValueStack* state_before = copy_state_before();
4203   vmIntrinsics::ID iid = callee->intrinsic_id();
4204   switch (iid) {
4205   case vmIntrinsics::_invokeBasic:
4206     {
4207       // get MethodHandle receiver
4208       const int args_base = state()->stack_size() - callee->arg_size();
4209       ValueType* type = state()->stack_at(args_base)->type();
4210       if (type->is_constant()) {
4211         ciMethod* target = type->as_ObjectType()->constant_value()->as_method_handle()->get_vmtarget();
4212         // We don't do CHA here so only inline static and statically bindable methods.
4213         if (target->is_static() || target->can_be_statically_bound()) {
4214           if (ciMethod::is_consistent_info(callee, target)) {
4215             Bytecodes::Code bc = target->is_static() ? Bytecodes::_invokestatic : Bytecodes::_invokevirtual;
4216             ignore_return = ignore_return || (callee->return_type()->is_void() && !target->return_type()->is_void());
4217             if (try_inline(target, /*holder_known*/ true, ignore_return, bc)) {
4218               return true;
4219             }
4220           } else {
4221             print_inlining(target, "signatures mismatch", /*success*/ false);
4222           }
4223         } else {
4224           print_inlining(target, "not static or statically bindable", /*success*/ false);
4225         }
4226       } else {
4227         print_inlining(callee, "receiver not constant", /*success*/ false);
4228       }
4229     }
4230     break;
4231 
4232   case vmIntrinsics::_linkToVirtual:
4233   case vmIntrinsics::_linkToStatic:
4234   case vmIntrinsics::_linkToSpecial:
4235   case vmIntrinsics::_linkToInterface:
4236     {
4237       // pop MemberName argument
4238       const int args_base = state()->stack_size() - callee->arg_size();
4239       ValueType* type = apop()->type();
4240       if (type->is_constant()) {
4241         ciMethod* target = type->as_ObjectType()->constant_value()->as_member_name()->get_vmtarget();
4242         ignore_return = ignore_return || (callee->return_type()->is_void() && !target->return_type()->is_void());
4243         // If the target is another method handle invoke, try to recursively get
4244         // a better target.
4245         if (target->is_method_handle_intrinsic()) {
4246           if (try_method_handle_inline(target, ignore_return)) {
4247             return true;
4248           }
4249         } else if (!ciMethod::is_consistent_info(callee, target)) {
4250           print_inlining(target, "signatures mismatch", /*success*/ false);
4251         } else {
4252           ciSignature* signature = target->signature();
4253           const int receiver_skip = target->is_static() ? 0 : 1;
4254           // Cast receiver to its type.
4255           if (!target->is_static()) {
4256             ciKlass* tk = signature->accessing_klass();
4257             Value obj = state()->stack_at(args_base);
4258             if (obj->exact_type() == NULL &&
4259                 obj->declared_type() != tk && tk != compilation()->env()->Object_klass()) {
4260               TypeCast* c = new TypeCast(tk, obj, state_before);
4261               append(c);
4262               state()->stack_at_put(args_base, c);
4263             }
4264           }
4265           // Cast reference arguments to its type.
4266           for (int i = 0, j = 0; i < signature->count(); i++) {
4267             ciType* t = signature->type_at(i);
4268             if (t->is_klass()) {
4269               ciKlass* tk = t->as_klass();
4270               Value obj = state()->stack_at(args_base + receiver_skip + j);
4271               if (obj->exact_type() == NULL &&
4272                   obj->declared_type() != tk && tk != compilation()->env()->Object_klass()) {
4273                 TypeCast* c = new TypeCast(t, obj, state_before);
4274                 append(c);
4275                 state()->stack_at_put(args_base + receiver_skip + j, c);
4276               }
4277             }
4278             j += t->size();  // long and double take two slots
4279           }
4280           // We don't do CHA here so only inline static and statically bindable methods.
4281           if (target->is_static() || target->can_be_statically_bound()) {
4282             Bytecodes::Code bc = target->is_static() ? Bytecodes::_invokestatic : Bytecodes::_invokevirtual;
4283             if (try_inline(target, /*holder_known*/ true, ignore_return, bc)) {
4284               return true;
4285             }
4286           } else {
4287             print_inlining(target, "not static or statically bindable", /*success*/ false);
4288           }
4289         }
4290       } else {
4291         print_inlining(callee, "MemberName not constant", /*success*/ false);
4292       }
4293     }
4294     break;
4295 
4296   default:
4297     fatal("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid));
4298     break;
4299   }
4300   set_state(state_before->copy_for_parsing());
4301   return false;
4302 }
4303 
4304 
4305 void GraphBuilder::inline_bailout(const char* msg) {
4306   assert(msg != NULL, "inline bailout msg must exist");
4307   _inline_bailout_msg = msg;
4308 }
4309 
4310 
4311 void GraphBuilder::clear_inline_bailout() {
4312   _inline_bailout_msg = NULL;
4313 }
4314 
4315 
4316 void GraphBuilder::push_root_scope(IRScope* scope, BlockList* bci2block, BlockBegin* start) {
4317   ScopeData* data = new ScopeData(NULL);
4318   data->set_scope(scope);
4319   data->set_bci2block(bci2block);
4320   _scope_data = data;
4321   _block = start;
4322 }
4323 
4324 
4325 void GraphBuilder::push_scope(ciMethod* callee, BlockBegin* continuation) {
4326   IRScope* callee_scope = new IRScope(compilation(), scope(), bci(), callee, -1, false);
4327   scope()->add_callee(callee_scope);
4328 
4329   BlockListBuilder blb(compilation(), callee_scope, -1);
4330   CHECK_BAILOUT();
4331 
4332   if (!blb.bci2block()->at(0)->is_set(BlockBegin::parser_loop_header_flag)) {
4333     // this scope can be inlined directly into the caller so remove
4334     // the block at bci 0.
4335     blb.bci2block()->at_put(0, NULL);
4336   }
4337 
4338   set_state(new ValueStack(callee_scope, state()->copy(ValueStack::CallerState, bci())));
4339 
4340   ScopeData* data = new ScopeData(scope_data());
4341   data->set_scope(callee_scope);
4342   data->set_bci2block(blb.bci2block());
4343   data->set_continuation(continuation);
4344   _scope_data = data;
4345 }
4346 
4347 
4348 void GraphBuilder::push_scope_for_jsr(BlockBegin* jsr_continuation, int jsr_dest_bci) {
4349   ScopeData* data = new ScopeData(scope_data());
4350   data->set_parsing_jsr();
4351   data->set_jsr_entry_bci(jsr_dest_bci);
4352   data->set_jsr_return_address_local(-1);
4353   // Must clone bci2block list as we will be mutating it in order to
4354   // properly clone all blocks in jsr region as well as exception
4355   // handlers containing rets
4356   BlockList* new_bci2block = new BlockList(bci2block()->length());
4357   new_bci2block->appendAll(bci2block());
4358   data->set_bci2block(new_bci2block);
4359   data->set_scope(scope());
4360   data->setup_jsr_xhandlers();
4361   data->set_continuation(continuation());
4362   data->set_jsr_continuation(jsr_continuation);
4363   _scope_data = data;
4364 }
4365 
4366 
4367 void GraphBuilder::pop_scope() {
4368   int number_of_locks = scope()->number_of_locks();
4369   _scope_data = scope_data()->parent();
4370   // accumulate minimum number of monitor slots to be reserved
4371   scope()->set_min_number_of_locks(number_of_locks);
4372 }
4373 
4374 
4375 void GraphBuilder::pop_scope_for_jsr() {
4376   _scope_data = scope_data()->parent();
4377 }
4378 
4379 void GraphBuilder::append_unsafe_get_obj(ciMethod* callee, BasicType t, bool is_volatile) {
4380   Values* args = state()->pop_arguments(callee->arg_size());
4381   null_check(args->at(0));
4382   Instruction* offset = args->at(2);
4383 #ifndef _LP64
4384   offset = append(new Convert(Bytecodes::_l2i, offset, as_ValueType(T_INT)));
4385 #endif
4386   Instruction* op = append(new UnsafeGetObject(t, args->at(1), offset, is_volatile));
4387   push(op->type(), op);
4388   compilation()->set_has_unsafe_access(true);
4389 }
4390 
4391 
4392 void GraphBuilder::append_unsafe_put_obj(ciMethod* callee, BasicType t, bool is_volatile) {
4393   Values* args = state()->pop_arguments(callee->arg_size());
4394   null_check(args->at(0));
4395   Instruction* offset = args->at(2);
4396 #ifndef _LP64
4397   offset = append(new Convert(Bytecodes::_l2i, offset, as_ValueType(T_INT)));
4398 #endif
4399   Value val = args->at(3);
4400   if (t == T_BOOLEAN) {
4401     Value mask = append(new Constant(new IntConstant(1)));
4402     val = append(new LogicOp(Bytecodes::_iand, val, mask));
4403   }
4404   Instruction* op = append(new UnsafePutObject(t, args->at(1), offset, val, is_volatile));
4405   compilation()->set_has_unsafe_access(true);
4406   kill_all();
4407 }
4408 
4409 
4410 void GraphBuilder::append_unsafe_get_raw(ciMethod* callee, BasicType t) {
4411   Values* args = state()->pop_arguments(callee->arg_size());
4412   null_check(args->at(0));
4413   Instruction* op = append(new UnsafeGetRaw(t, args->at(1), false));
4414   push(op->type(), op);
4415   compilation()->set_has_unsafe_access(true);
4416 }
4417 
4418 
4419 void GraphBuilder::append_unsafe_put_raw(ciMethod* callee, BasicType t) {
4420   Values* args = state()->pop_arguments(callee->arg_size());
4421   null_check(args->at(0));
4422   Instruction* op = append(new UnsafePutRaw(t, args->at(1), args->at(2)));
4423   compilation()->set_has_unsafe_access(true);
4424 }
4425 
4426 
4427 void GraphBuilder::append_unsafe_CAS(ciMethod* callee) {
4428   ValueStack* state_before = copy_state_for_exception();
4429   ValueType* result_type = as_ValueType(callee->return_type());
4430   assert(result_type->is_int(), "int result");
4431   Values* args = state()->pop_arguments(callee->arg_size());
4432 
4433   // Pop off some args to specially handle, then push back
4434   Value newval = args->pop();
4435   Value cmpval = args->pop();
4436   Value offset = args->pop();
4437   Value src = args->pop();
4438   Value unsafe_obj = args->pop();
4439 
4440   // Separately handle the unsafe arg. It is not needed for code
4441   // generation, but must be null checked
4442   null_check(unsafe_obj);
4443 
4444 #ifndef _LP64
4445   offset = append(new Convert(Bytecodes::_l2i, offset, as_ValueType(T_INT)));
4446 #endif
4447 
4448   args->push(src);
4449   args->push(offset);
4450   args->push(cmpval);
4451   args->push(newval);
4452 
4453   // An unsafe CAS can alias with other field accesses, but we don't
4454   // know which ones so mark the state as no preserved.  This will
4455   // cause CSE to invalidate memory across it.
4456   bool preserves_state = false;
4457   Intrinsic* result = new Intrinsic(result_type, callee->intrinsic_id(), args, false, state_before, preserves_state);
4458   append_split(result);
4459   push(result_type, result);
4460   compilation()->set_has_unsafe_access(true);
4461 }
4462 
4463 void GraphBuilder::append_char_access(ciMethod* callee, bool is_store) {
4464   // This intrinsic accesses byte[] array as char[] array. Computing the offsets
4465   // correctly requires matched array shapes.
4466   assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE),
4467           "sanity: byte[] and char[] bases agree");
4468   assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2,
4469           "sanity: byte[] and char[] scales agree");
4470 
4471   ValueStack* state_before = copy_state_indexed_access();
4472   compilation()->set_has_access_indexed(true);
4473   Values* args = state()->pop_arguments(callee->arg_size());
4474   Value array = args->at(0);
4475   Value index = args->at(1);
4476   if (is_store) {
4477     Value value = args->at(2);
4478     Instruction* store = append(new StoreIndexed(array, index, NULL, T_CHAR, value, state_before, false, true));
4479     store->set_flag(Instruction::NeedsRangeCheckFlag, false);
4480     _memory->store_value(value);
4481   } else {
4482     Instruction* load = append(new LoadIndexed(array, index, NULL, T_CHAR, state_before, true));
4483     load->set_flag(Instruction::NeedsRangeCheckFlag, false);
4484     push(load->type(), load);
4485   }
4486 }
4487 
4488 static void post_inlining_event(EventCompilerInlining* event,
4489                                 int compile_id,
4490                                 const char* msg,
4491                                 bool success,
4492                                 int bci,
4493                                 ciMethod* caller,
4494                                 ciMethod* callee) {
4495   assert(caller != NULL, "invariant");
4496   assert(callee != NULL, "invariant");
4497   assert(event != NULL, "invariant");
4498   assert(event->should_commit(), "invariant");
4499   JfrStructCalleeMethod callee_struct;
4500   callee_struct.set_type(callee->holder()->name()->as_utf8());
4501   callee_struct.set_name(callee->name()->as_utf8());
4502   callee_struct.set_descriptor(callee->signature()->as_symbol()->as_utf8());
4503   event->set_compileId(compile_id);
4504   event->set_message(msg);
4505   event->set_succeeded(success);
4506   event->set_bci(bci);
4507   event->set_caller(caller->get_Method());
4508   event->set_callee(callee_struct);
4509   event->commit();
4510 }
4511 
4512 void GraphBuilder::print_inlining(ciMethod* callee, const char* msg, bool success) {
4513   CompileLog* log = compilation()->log();
4514   if (log != NULL) {
4515     if (success) {
4516       if (msg != NULL)
4517         log->inline_success(msg);
4518       else
4519         log->inline_success("receiver is statically known");
4520     } else {
4521       if (msg != NULL)
4522         log->inline_fail(msg);
4523       else
4524         log->inline_fail("reason unknown");
4525     }
4526   }
4527   EventCompilerInlining event;
4528   if (event.should_commit()) {
4529     post_inlining_event(&event, compilation()->env()->task()->compile_id(), msg, success, bci(), method(), callee);
4530   }
4531 
4532   CompileTask::print_inlining_ul(callee, scope()->level(), bci(), msg);
4533 
4534   if (!compilation()->directive()->PrintInliningOption) {
4535     return;
4536   }
4537   CompileTask::print_inlining_tty(callee, scope()->level(), bci(), msg);
4538   if (success && CIPrintMethodCodes) {
4539     callee->print_codes();
4540   }
4541 }
4542 
4543 void GraphBuilder::append_unsafe_get_and_set_obj(ciMethod* callee, bool is_add) {
4544   Values* args = state()->pop_arguments(callee->arg_size());
4545   BasicType t = callee->return_type()->basic_type();
4546   null_check(args->at(0));
4547   Instruction* offset = args->at(2);
4548 #ifndef _LP64
4549   offset = append(new Convert(Bytecodes::_l2i, offset, as_ValueType(T_INT)));
4550 #endif
4551   Instruction* op = append(new UnsafeGetAndSetObject(t, args->at(1), offset, args->at(3), is_add));
4552   compilation()->set_has_unsafe_access(true);
4553   kill_all();
4554   push(op->type(), op);
4555 }
4556 
4557 #ifndef PRODUCT
4558 void GraphBuilder::print_stats() {
4559   vmap()->print();
4560 }
4561 #endif // PRODUCT
4562 
4563 void GraphBuilder::profile_call(ciMethod* callee, Value recv, ciKlass* known_holder, Values* obj_args, bool inlined) {
4564   assert(known_holder == NULL || (known_holder->is_instance_klass() &&
4565                                   (!known_holder->is_interface() ||
4566                                    ((ciInstanceKlass*)known_holder)->has_nonstatic_concrete_methods())), "should be non-static concrete method");
4567   if (known_holder != NULL) {
4568     if (known_holder->exact_klass() == NULL) {
4569       known_holder = compilation()->cha_exact_type(known_holder);
4570     }
4571   }
4572 
4573   append(new ProfileCall(method(), bci(), callee, recv, known_holder, obj_args, inlined));
4574 }
4575 
4576 void GraphBuilder::profile_return_type(Value ret, ciMethod* callee, ciMethod* m, int invoke_bci) {
4577   assert((m == NULL) == (invoke_bci < 0), "invalid method and invalid bci together");
4578   if (m == NULL) {
4579     m = method();
4580   }
4581   if (invoke_bci < 0) {
4582     invoke_bci = bci();
4583   }
4584   ciMethodData* md = m->method_data_or_null();
4585   ciProfileData* data = md->bci_to_data(invoke_bci);
4586   if (data != NULL && (data->is_CallTypeData() || data->is_VirtualCallTypeData())) {
4587     bool has_return = data->is_CallTypeData() ? ((ciCallTypeData*)data)->has_return() : ((ciVirtualCallTypeData*)data)->has_return();
4588     if (has_return) {
4589       append(new ProfileReturnType(m , invoke_bci, callee, ret));
4590     }
4591   }
4592 }
4593 
4594 void GraphBuilder::profile_invocation(ciMethod* callee, ValueStack* state) {
4595   append(new ProfileInvoke(callee, state));
4596 }