1 /*
   2  * Copyright (c) 2001, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderDataGraph.hpp"
  27 #include "classfile/metadataOnStackMark.hpp"
  28 #include "classfile/stringTable.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "gc/g1/g1Allocator.inline.hpp"
  32 #include "gc/g1/g1Arguments.hpp"
  33 #include "gc/g1/g1BarrierSet.hpp"
  34 #include "gc/g1/g1CardTableEntryClosure.hpp"
  35 #include "gc/g1/g1CollectedHeap.inline.hpp"
  36 #include "gc/g1/g1CollectionSet.hpp"
  37 #include "gc/g1/g1CollectorState.hpp"
  38 #include "gc/g1/g1ConcurrentRefine.hpp"
  39 #include "gc/g1/g1ConcurrentRefineThread.hpp"
  40 #include "gc/g1/g1ConcurrentMarkThread.inline.hpp"
  41 #include "gc/g1/g1DirtyCardQueue.hpp"
  42 #include "gc/g1/g1EvacStats.inline.hpp"
  43 #include "gc/g1/g1FullCollector.hpp"
  44 #include "gc/g1/g1GCParPhaseTimesTracker.hpp"
  45 #include "gc/g1/g1GCPhaseTimes.hpp"
  46 #include "gc/g1/g1HeapSizingPolicy.hpp"
  47 #include "gc/g1/g1HeapTransition.hpp"
  48 #include "gc/g1/g1HeapVerifier.hpp"
  49 #include "gc/g1/g1HotCardCache.hpp"
  50 #include "gc/g1/g1MemoryPool.hpp"
  51 #include "gc/g1/g1OopClosures.inline.hpp"
  52 #include "gc/g1/g1ParallelCleaning.hpp"
  53 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  54 #include "gc/g1/g1Policy.hpp"
  55 #include "gc/g1/g1RedirtyCardsQueue.hpp"
  56 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  57 #include "gc/g1/g1RemSet.hpp"
  58 #include "gc/g1/g1RootClosures.hpp"
  59 #include "gc/g1/g1RootProcessor.hpp"
  60 #include "gc/g1/g1SATBMarkQueueSet.hpp"
  61 #include "gc/g1/g1StringDedup.hpp"
  62 #include "gc/g1/g1ThreadLocalData.hpp"
  63 #include "gc/g1/g1Trace.hpp"
  64 #include "gc/g1/g1YCTypes.hpp"
  65 #include "gc/g1/g1YoungRemSetSamplingThread.hpp"
  66 #include "gc/g1/g1VMOperations.hpp"
  67 #include "gc/g1/heapRegion.inline.hpp"
  68 #include "gc/g1/heapRegionRemSet.hpp"
  69 #include "gc/g1/heapRegionSet.inline.hpp"
  70 #include "gc/shared/concurrentGCBreakpoints.hpp"
  71 #include "gc/shared/gcBehaviours.hpp"
  72 #include "gc/shared/gcHeapSummary.hpp"
  73 #include "gc/shared/gcId.hpp"
  74 #include "gc/shared/gcLocker.hpp"
  75 #include "gc/shared/gcTimer.hpp"
  76 #include "gc/shared/gcTraceTime.inline.hpp"
  77 #include "gc/shared/generationSpec.hpp"
  78 #include "gc/shared/isGCActiveMark.hpp"
  79 #include "gc/shared/locationPrinter.inline.hpp"
  80 #include "gc/shared/oopStorageParState.hpp"
  81 #include "gc/shared/preservedMarks.inline.hpp"
  82 #include "gc/shared/suspendibleThreadSet.hpp"
  83 #include "gc/shared/referenceProcessor.inline.hpp"
  84 #include "gc/shared/taskTerminator.hpp"
  85 #include "gc/shared/taskqueue.inline.hpp"
  86 #include "gc/shared/weakProcessor.inline.hpp"
  87 #include "gc/shared/workerPolicy.hpp"
  88 #include "logging/log.hpp"
  89 #include "memory/allocation.hpp"
  90 #include "memory/iterator.hpp"
  91 #include "memory/resourceArea.hpp"
  92 #include "memory/universe.hpp"
  93 #include "oops/access.inline.hpp"
  94 #include "oops/compressedOops.inline.hpp"
  95 #include "oops/oop.inline.hpp"
  96 #include "runtime/atomic.hpp"
  97 #include "runtime/flags/flagSetting.hpp"
  98 #include "runtime/handles.inline.hpp"
  99 #include "runtime/init.hpp"
 100 #include "runtime/orderAccess.hpp"
 101 #include "runtime/threadSMR.hpp"
 102 #include "runtime/vmThread.hpp"
 103 #include "utilities/align.hpp"
 104 #include "utilities/bitMap.inline.hpp"
 105 #include "utilities/globalDefinitions.hpp"
 106 #include "utilities/stack.inline.hpp"
 107 
 108 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
 109 
 110 // INVARIANTS/NOTES
 111 //
 112 // All allocation activity covered by the G1CollectedHeap interface is
 113 // serialized by acquiring the HeapLock.  This happens in mem_allocate
 114 // and allocate_new_tlab, which are the "entry" points to the
 115 // allocation code from the rest of the JVM.  (Note that this does not
 116 // apply to TLAB allocation, which is not part of this interface: it
 117 // is done by clients of this interface.)
 118 
 119 class RedirtyLoggedCardTableEntryClosure : public G1CardTableEntryClosure {
 120  private:
 121   size_t _num_dirtied;
 122   G1CollectedHeap* _g1h;
 123   G1CardTable* _g1_ct;
 124 
 125   HeapRegion* region_for_card(CardValue* card_ptr) const {
 126     return _g1h->heap_region_containing(_g1_ct->addr_for(card_ptr));
 127   }
 128 
 129   bool will_become_free(HeapRegion* hr) const {
 130     // A region will be freed by free_collection_set if the region is in the
 131     // collection set and has not had an evacuation failure.
 132     return _g1h->is_in_cset(hr) && !hr->evacuation_failed();
 133   }
 134 
 135  public:
 136   RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : G1CardTableEntryClosure(),
 137     _num_dirtied(0), _g1h(g1h), _g1_ct(g1h->card_table()) { }
 138 
 139   void do_card_ptr(CardValue* card_ptr, uint worker_id) {
 140     HeapRegion* hr = region_for_card(card_ptr);
 141 
 142     // Should only dirty cards in regions that won't be freed.
 143     if (!will_become_free(hr)) {
 144       *card_ptr = G1CardTable::dirty_card_val();
 145       _num_dirtied++;
 146     }
 147   }
 148 
 149   size_t num_dirtied()   const { return _num_dirtied; }
 150 };
 151 
 152 
 153 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 154   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 155 }
 156 
 157 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 158   // The from card cache is not the memory that is actually committed. So we cannot
 159   // take advantage of the zero_filled parameter.
 160   reset_from_card_cache(start_idx, num_regions);
 161 }
 162 
 163 Tickspan G1CollectedHeap::run_task(AbstractGangTask* task) {
 164   Ticks start = Ticks::now();
 165   workers()->run_task(task, workers()->active_workers());
 166   return Ticks::now() - start;
 167 }
 168 
 169 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
 170                                              MemRegion mr) {
 171   return new HeapRegion(hrs_index, bot(), mr);
 172 }
 173 
 174 // Private methods.
 175 
 176 HeapRegion* G1CollectedHeap::new_region(size_t word_size,
 177                                         HeapRegionType type,
 178                                         bool do_expand,
 179                                         uint node_index) {
 180   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 181          "the only time we use this to allocate a humongous region is "
 182          "when we are allocating a single humongous region");
 183 
 184   HeapRegion* res = _hrm->allocate_free_region(type, node_index);
 185 
 186   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 187     // Currently, only attempts to allocate GC alloc regions set
 188     // do_expand to true. So, we should only reach here during a
 189     // safepoint. If this assumption changes we might have to
 190     // reconsider the use of _expand_heap_after_alloc_failure.
 191     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 192 
 193     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
 194                               word_size * HeapWordSize);
 195 
 196     assert(word_size * HeapWordSize < HeapRegion::GrainBytes,
 197            "This kind of expansion should never be more than one region. Size: " SIZE_FORMAT,
 198            word_size * HeapWordSize);
 199     if (expand_single_region(node_index)) {
 200       // Given that expand_single_region() succeeded in expanding the heap, and we
 201       // always expand the heap by an amount aligned to the heap
 202       // region size, the free list should in theory not be empty.
 203       // In either case allocate_free_region() will check for NULL.
 204       res = _hrm->allocate_free_region(type, node_index);
 205     } else {
 206       _expand_heap_after_alloc_failure = false;
 207     }
 208   }
 209   return res;
 210 }
 211 
 212 HeapWord*
 213 G1CollectedHeap::humongous_obj_allocate_initialize_regions(HeapRegion* first_hr,
 214                                                            uint num_regions,
 215                                                            size_t word_size) {
 216   assert(first_hr != NULL, "pre-condition");
 217   assert(is_humongous(word_size), "word_size should be humongous");
 218   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 219 
 220   // Index of last region in the series.
 221   uint first = first_hr->hrm_index();
 222   uint last = first + num_regions - 1;
 223 
 224   // We need to initialize the region(s) we just discovered. This is
 225   // a bit tricky given that it can happen concurrently with
 226   // refinement threads refining cards on these regions and
 227   // potentially wanting to refine the BOT as they are scanning
 228   // those cards (this can happen shortly after a cleanup; see CR
 229   // 6991377). So we have to set up the region(s) carefully and in
 230   // a specific order.
 231 
 232   // The word size sum of all the regions we will allocate.
 233   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 234   assert(word_size <= word_size_sum, "sanity");
 235 
 236   // The passed in hr will be the "starts humongous" region. The header
 237   // of the new object will be placed at the bottom of this region.
 238   HeapWord* new_obj = first_hr->bottom();
 239   // This will be the new top of the new object.
 240   HeapWord* obj_top = new_obj + word_size;
 241 
 242   // First, we need to zero the header of the space that we will be
 243   // allocating. When we update top further down, some refinement
 244   // threads might try to scan the region. By zeroing the header we
 245   // ensure that any thread that will try to scan the region will
 246   // come across the zero klass word and bail out.
 247   //
 248   // NOTE: It would not have been correct to have used
 249   // CollectedHeap::fill_with_object() and make the space look like
 250   // an int array. The thread that is doing the allocation will
 251   // later update the object header to a potentially different array
 252   // type and, for a very short period of time, the klass and length
 253   // fields will be inconsistent. This could cause a refinement
 254   // thread to calculate the object size incorrectly.
 255   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 256 
 257   // Next, pad out the unused tail of the last region with filler
 258   // objects, for improved usage accounting.
 259   // How many words we use for filler objects.
 260   size_t word_fill_size = word_size_sum - word_size;
 261 
 262   // How many words memory we "waste" which cannot hold a filler object.
 263   size_t words_not_fillable = 0;
 264 
 265   if (word_fill_size >= min_fill_size()) {
 266     fill_with_objects(obj_top, word_fill_size);
 267   } else if (word_fill_size > 0) {
 268     // We have space to fill, but we cannot fit an object there.
 269     words_not_fillable = word_fill_size;
 270     word_fill_size = 0;
 271   }
 272 
 273   // We will set up the first region as "starts humongous". This
 274   // will also update the BOT covering all the regions to reflect
 275   // that there is a single object that starts at the bottom of the
 276   // first region.
 277   first_hr->set_starts_humongous(obj_top, word_fill_size);
 278   _policy->remset_tracker()->update_at_allocate(first_hr);
 279   // Then, if there are any, we will set up the "continues
 280   // humongous" regions.
 281   HeapRegion* hr = NULL;
 282   for (uint i = first + 1; i <= last; ++i) {
 283     hr = region_at(i);
 284     hr->set_continues_humongous(first_hr);
 285     _policy->remset_tracker()->update_at_allocate(hr);
 286   }
 287 
 288   // Up to this point no concurrent thread would have been able to
 289   // do any scanning on any region in this series. All the top
 290   // fields still point to bottom, so the intersection between
 291   // [bottom,top] and [card_start,card_end] will be empty. Before we
 292   // update the top fields, we'll do a storestore to make sure that
 293   // no thread sees the update to top before the zeroing of the
 294   // object header and the BOT initialization.
 295   OrderAccess::storestore();
 296 
 297   // Now, we will update the top fields of the "continues humongous"
 298   // regions except the last one.
 299   for (uint i = first; i < last; ++i) {
 300     hr = region_at(i);
 301     hr->set_top(hr->end());
 302   }
 303 
 304   hr = region_at(last);
 305   // If we cannot fit a filler object, we must set top to the end
 306   // of the humongous object, otherwise we cannot iterate the heap
 307   // and the BOT will not be complete.
 308   hr->set_top(hr->end() - words_not_fillable);
 309 
 310   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 311          "obj_top should be in last region");
 312 
 313   _verifier->check_bitmaps("Humongous Region Allocation", first_hr);
 314 
 315   assert(words_not_fillable == 0 ||
 316          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
 317          "Miscalculation in humongous allocation");
 318 
 319   increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
 320 
 321   for (uint i = first; i <= last; ++i) {
 322     hr = region_at(i);
 323     _humongous_set.add(hr);
 324     _hr_printer.alloc(hr);
 325   }
 326 
 327   return new_obj;
 328 }
 329 
 330 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
 331   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
 332   return align_up(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 333 }
 334 
 335 // If could fit into free regions w/o expansion, try.
 336 // Otherwise, if can expand, do so.
 337 // Otherwise, if using ex regions might help, try with ex given back.
 338 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 339   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 340 
 341   _verifier->verify_region_sets_optional();
 342 
 343   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
 344 
 345   // Policy: First try to allocate a humongous object in the free list.
 346   HeapRegion* humongous_start = _hrm->allocate_humongous(obj_regions);
 347   if (humongous_start == NULL) {
 348     // Policy: We could not find enough regions for the humongous object in the
 349     // free list. Look through the heap to find a mix of free and uncommitted regions.
 350     // If so, expand the heap and allocate the humongous object.
 351     humongous_start = _hrm->expand_and_allocate_humongous(obj_regions);
 352     if (humongous_start != NULL) {
 353       // We managed to find a region by expanding the heap.
 354       log_debug(gc, ergo, heap)("Heap expansion (humongous allocation request). Allocation request: " SIZE_FORMAT "B",
 355                                 word_size * HeapWordSize);
 356       policy()->record_new_heap_size(num_regions());
 357     } else {
 358       // Policy: Potentially trigger a defragmentation GC.
 359     }
 360   }
 361 
 362   HeapWord* result = NULL;
 363   if (humongous_start != NULL) {
 364     result = humongous_obj_allocate_initialize_regions(humongous_start, obj_regions, word_size);
 365     assert(result != NULL, "it should always return a valid result");
 366 
 367     // A successful humongous object allocation changes the used space
 368     // information of the old generation so we need to recalculate the
 369     // sizes and update the jstat counters here.
 370     g1mm()->update_sizes();
 371   }
 372 
 373   _verifier->verify_region_sets_optional();
 374 
 375   return result;
 376 }
 377 
 378 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t min_size,
 379                                              size_t requested_size,
 380                                              size_t* actual_size) {
 381   assert_heap_not_locked_and_not_at_safepoint();
 382   assert(!is_humongous(requested_size), "we do not allow humongous TLABs");
 383 
 384   return attempt_allocation(min_size, requested_size, actual_size);
 385 }
 386 
 387 HeapWord*
 388 G1CollectedHeap::mem_allocate(size_t word_size,
 389                               bool*  gc_overhead_limit_was_exceeded) {
 390   assert_heap_not_locked_and_not_at_safepoint();
 391 
 392   if (is_humongous(word_size)) {
 393     return attempt_allocation_humongous(word_size);
 394   }
 395   size_t dummy = 0;
 396   return attempt_allocation(word_size, word_size, &dummy);
 397 }
 398 
 399 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size) {
 400   ResourceMark rm; // For retrieving the thread names in log messages.
 401 
 402   // Make sure you read the note in attempt_allocation_humongous().
 403 
 404   assert_heap_not_locked_and_not_at_safepoint();
 405   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 406          "be called for humongous allocation requests");
 407 
 408   // We should only get here after the first-level allocation attempt
 409   // (attempt_allocation()) failed to allocate.
 410 
 411   // We will loop until a) we manage to successfully perform the
 412   // allocation or b) we successfully schedule a collection which
 413   // fails to perform the allocation. b) is the only case when we'll
 414   // return NULL.
 415   HeapWord* result = NULL;
 416   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 417     bool should_try_gc;
 418     uint gc_count_before;
 419 
 420     {
 421       MutexLocker x(Heap_lock);
 422       result = _allocator->attempt_allocation_locked(word_size);
 423       if (result != NULL) {
 424         return result;
 425       }
 426 
 427       // If the GCLocker is active and we are bound for a GC, try expanding young gen.
 428       // This is different to when only GCLocker::needs_gc() is set: try to avoid
 429       // waiting because the GCLocker is active to not wait too long.
 430       if (GCLocker::is_active_and_needs_gc() && policy()->can_expand_young_list()) {
 431         // No need for an ergo message here, can_expand_young_list() does this when
 432         // it returns true.
 433         result = _allocator->attempt_allocation_force(word_size);
 434         if (result != NULL) {
 435           return result;
 436         }
 437       }
 438       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 439       // the GCLocker initiated GC has been performed and then retry. This includes
 440       // the case when the GC Locker is not active but has not been performed.
 441       should_try_gc = !GCLocker::needs_gc();
 442       // Read the GC count while still holding the Heap_lock.
 443       gc_count_before = total_collections();
 444     }
 445 
 446     if (should_try_gc) {
 447       bool succeeded;
 448       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 449                                    GCCause::_g1_inc_collection_pause);
 450       if (result != NULL) {
 451         assert(succeeded, "only way to get back a non-NULL result");
 452         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 453                              Thread::current()->name(), p2i(result));
 454         return result;
 455       }
 456 
 457       if (succeeded) {
 458         // We successfully scheduled a collection which failed to allocate. No
 459         // point in trying to allocate further. We'll just return NULL.
 460         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 461                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 462         return NULL;
 463       }
 464       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT " words",
 465                            Thread::current()->name(), word_size);
 466     } else {
 467       // Failed to schedule a collection.
 468       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 469         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 470                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 471         return NULL;
 472       }
 473       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 474       // The GCLocker is either active or the GCLocker initiated
 475       // GC has not yet been performed. Stall until it is and
 476       // then retry the allocation.
 477       GCLocker::stall_until_clear();
 478       gclocker_retry_count += 1;
 479     }
 480 
 481     // We can reach here if we were unsuccessful in scheduling a
 482     // collection (because another thread beat us to it) or if we were
 483     // stalled due to the GC locker. In either can we should retry the
 484     // allocation attempt in case another thread successfully
 485     // performed a collection and reclaimed enough space. We do the
 486     // first attempt (without holding the Heap_lock) here and the
 487     // follow-on attempt will be at the start of the next loop
 488     // iteration (after taking the Heap_lock).
 489     size_t dummy = 0;
 490     result = _allocator->attempt_allocation(word_size, word_size, &dummy);
 491     if (result != NULL) {
 492       return result;
 493     }
 494 
 495     // Give a warning if we seem to be looping forever.
 496     if ((QueuedAllocationWarningCount > 0) &&
 497         (try_count % QueuedAllocationWarningCount == 0)) {
 498       log_warning(gc, alloc)("%s:  Retried allocation %u times for " SIZE_FORMAT " words",
 499                              Thread::current()->name(), try_count, word_size);
 500     }
 501   }
 502 
 503   ShouldNotReachHere();
 504   return NULL;
 505 }
 506 
 507 void G1CollectedHeap::begin_archive_alloc_range(bool open) {
 508   assert_at_safepoint_on_vm_thread();
 509   if (_archive_allocator == NULL) {
 510     _archive_allocator = G1ArchiveAllocator::create_allocator(this, open);
 511   }
 512 }
 513 
 514 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 515   // Allocations in archive regions cannot be of a size that would be considered
 516   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 517   // may be different at archive-restore time.
 518   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 519 }
 520 
 521 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 522   assert_at_safepoint_on_vm_thread();
 523   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 524   if (is_archive_alloc_too_large(word_size)) {
 525     return NULL;
 526   }
 527   return _archive_allocator->archive_mem_allocate(word_size);
 528 }
 529 
 530 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 531                                               size_t end_alignment_in_bytes) {
 532   assert_at_safepoint_on_vm_thread();
 533   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 534 
 535   // Call complete_archive to do the real work, filling in the MemRegion
 536   // array with the archive regions.
 537   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 538   delete _archive_allocator;
 539   _archive_allocator = NULL;
 540 }
 541 
 542 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 543   assert(ranges != NULL, "MemRegion array NULL");
 544   assert(count != 0, "No MemRegions provided");
 545   MemRegion reserved = _hrm->reserved();
 546   for (size_t i = 0; i < count; i++) {
 547     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 548       return false;
 549     }
 550   }
 551   return true;
 552 }
 553 
 554 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges,
 555                                             size_t count,
 556                                             bool open) {
 557   assert(!is_init_completed(), "Expect to be called at JVM init time");
 558   assert(ranges != NULL, "MemRegion array NULL");
 559   assert(count != 0, "No MemRegions provided");
 560   MutexLocker x(Heap_lock);
 561 
 562   MemRegion reserved = _hrm->reserved();
 563   HeapWord* prev_last_addr = NULL;
 564   HeapRegion* prev_last_region = NULL;
 565 
 566   // Temporarily disable pretouching of heap pages. This interface is used
 567   // when mmap'ing archived heap data in, so pre-touching is wasted.
 568   FlagSetting fs(AlwaysPreTouch, false);
 569 
 570   // Enable archive object checking used by G1MarkSweep. We have to let it know
 571   // about each archive range, so that objects in those ranges aren't marked.
 572   G1ArchiveAllocator::enable_archive_object_check();
 573 
 574   // For each specified MemRegion range, allocate the corresponding G1
 575   // regions and mark them as archive regions. We expect the ranges
 576   // in ascending starting address order, without overlap.
 577   for (size_t i = 0; i < count; i++) {
 578     MemRegion curr_range = ranges[i];
 579     HeapWord* start_address = curr_range.start();
 580     size_t word_size = curr_range.word_size();
 581     HeapWord* last_address = curr_range.last();
 582     size_t commits = 0;
 583 
 584     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 585               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 586               p2i(start_address), p2i(last_address));
 587     guarantee(start_address > prev_last_addr,
 588               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 589               p2i(start_address), p2i(prev_last_addr));
 590     prev_last_addr = last_address;
 591 
 592     // Check for ranges that start in the same G1 region in which the previous
 593     // range ended, and adjust the start address so we don't try to allocate
 594     // the same region again. If the current range is entirely within that
 595     // region, skip it, just adjusting the recorded top.
 596     HeapRegion* start_region = _hrm->addr_to_region(start_address);
 597     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 598       start_address = start_region->end();
 599       if (start_address > last_address) {
 600         increase_used(word_size * HeapWordSize);
 601         start_region->set_top(last_address + 1);
 602         continue;
 603       }
 604       start_region->set_top(start_address);
 605       curr_range = MemRegion(start_address, last_address + 1);
 606       start_region = _hrm->addr_to_region(start_address);
 607     }
 608 
 609     // Perform the actual region allocation, exiting if it fails.
 610     // Then note how much new space we have allocated.
 611     if (!_hrm->allocate_containing_regions(curr_range, &commits, workers())) {
 612       return false;
 613     }
 614     increase_used(word_size * HeapWordSize);
 615     if (commits != 0) {
 616       log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
 617                                 HeapRegion::GrainWords * HeapWordSize * commits);
 618 
 619     }
 620 
 621     // Mark each G1 region touched by the range as archive, add it to
 622     // the old set, and set top.
 623     HeapRegion* curr_region = _hrm->addr_to_region(start_address);
 624     HeapRegion* last_region = _hrm->addr_to_region(last_address);
 625     prev_last_region = last_region;
 626 
 627     while (curr_region != NULL) {
 628       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 629              "Region already in use (index %u)", curr_region->hrm_index());
 630       if (open) {
 631         curr_region->set_open_archive();
 632       } else {
 633         curr_region->set_closed_archive();
 634       }
 635       _hr_printer.alloc(curr_region);
 636       _archive_set.add(curr_region);
 637       HeapWord* top;
 638       HeapRegion* next_region;
 639       if (curr_region != last_region) {
 640         top = curr_region->end();
 641         next_region = _hrm->next_region_in_heap(curr_region);
 642       } else {
 643         top = last_address + 1;
 644         next_region = NULL;
 645       }
 646       curr_region->set_top(top);
 647       curr_region = next_region;
 648     }
 649 
 650     // Notify mark-sweep of the archive
 651     G1ArchiveAllocator::set_range_archive(curr_range, open);
 652   }
 653   return true;
 654 }
 655 
 656 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 657   assert(!is_init_completed(), "Expect to be called at JVM init time");
 658   assert(ranges != NULL, "MemRegion array NULL");
 659   assert(count != 0, "No MemRegions provided");
 660   MemRegion reserved = _hrm->reserved();
 661   HeapWord *prev_last_addr = NULL;
 662   HeapRegion* prev_last_region = NULL;
 663 
 664   // For each MemRegion, create filler objects, if needed, in the G1 regions
 665   // that contain the address range. The address range actually within the
 666   // MemRegion will not be modified. That is assumed to have been initialized
 667   // elsewhere, probably via an mmap of archived heap data.
 668   MutexLocker x(Heap_lock);
 669   for (size_t i = 0; i < count; i++) {
 670     HeapWord* start_address = ranges[i].start();
 671     HeapWord* last_address = ranges[i].last();
 672 
 673     assert(reserved.contains(start_address) && reserved.contains(last_address),
 674            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 675            p2i(start_address), p2i(last_address));
 676     assert(start_address > prev_last_addr,
 677            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 678            p2i(start_address), p2i(prev_last_addr));
 679 
 680     HeapRegion* start_region = _hrm->addr_to_region(start_address);
 681     HeapRegion* last_region = _hrm->addr_to_region(last_address);
 682     HeapWord* bottom_address = start_region->bottom();
 683 
 684     // Check for a range beginning in the same region in which the
 685     // previous one ended.
 686     if (start_region == prev_last_region) {
 687       bottom_address = prev_last_addr + 1;
 688     }
 689 
 690     // Verify that the regions were all marked as archive regions by
 691     // alloc_archive_regions.
 692     HeapRegion* curr_region = start_region;
 693     while (curr_region != NULL) {
 694       guarantee(curr_region->is_archive(),
 695                 "Expected archive region at index %u", curr_region->hrm_index());
 696       if (curr_region != last_region) {
 697         curr_region = _hrm->next_region_in_heap(curr_region);
 698       } else {
 699         curr_region = NULL;
 700       }
 701     }
 702 
 703     prev_last_addr = last_address;
 704     prev_last_region = last_region;
 705 
 706     // Fill the memory below the allocated range with dummy object(s),
 707     // if the region bottom does not match the range start, or if the previous
 708     // range ended within the same G1 region, and there is a gap.
 709     if (start_address != bottom_address) {
 710       size_t fill_size = pointer_delta(start_address, bottom_address);
 711       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 712       increase_used(fill_size * HeapWordSize);
 713     }
 714   }
 715 }
 716 
 717 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t min_word_size,
 718                                                      size_t desired_word_size,
 719                                                      size_t* actual_word_size) {
 720   assert_heap_not_locked_and_not_at_safepoint();
 721   assert(!is_humongous(desired_word_size), "attempt_allocation() should not "
 722          "be called for humongous allocation requests");
 723 
 724   HeapWord* result = _allocator->attempt_allocation(min_word_size, desired_word_size, actual_word_size);
 725 
 726   if (result == NULL) {
 727     *actual_word_size = desired_word_size;
 728     result = attempt_allocation_slow(desired_word_size);
 729   }
 730 
 731   assert_heap_not_locked();
 732   if (result != NULL) {
 733     assert(*actual_word_size != 0, "Actual size must have been set here");
 734     dirty_young_block(result, *actual_word_size);
 735   } else {
 736     *actual_word_size = 0;
 737   }
 738 
 739   return result;
 740 }
 741 
 742 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
 743   assert(!is_init_completed(), "Expect to be called at JVM init time");
 744   assert(ranges != NULL, "MemRegion array NULL");
 745   assert(count != 0, "No MemRegions provided");
 746   MemRegion reserved = _hrm->reserved();
 747   HeapWord* prev_last_addr = NULL;
 748   HeapRegion* prev_last_region = NULL;
 749   size_t size_used = 0;
 750   size_t uncommitted_regions = 0;
 751 
 752   // For each Memregion, free the G1 regions that constitute it, and
 753   // notify mark-sweep that the range is no longer to be considered 'archive.'
 754   MutexLocker x(Heap_lock);
 755   for (size_t i = 0; i < count; i++) {
 756     HeapWord* start_address = ranges[i].start();
 757     HeapWord* last_address = ranges[i].last();
 758 
 759     assert(reserved.contains(start_address) && reserved.contains(last_address),
 760            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 761            p2i(start_address), p2i(last_address));
 762     assert(start_address > prev_last_addr,
 763            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 764            p2i(start_address), p2i(prev_last_addr));
 765     size_used += ranges[i].byte_size();
 766     prev_last_addr = last_address;
 767 
 768     HeapRegion* start_region = _hrm->addr_to_region(start_address);
 769     HeapRegion* last_region = _hrm->addr_to_region(last_address);
 770 
 771     // Check for ranges that start in the same G1 region in which the previous
 772     // range ended, and adjust the start address so we don't try to free
 773     // the same region again. If the current range is entirely within that
 774     // region, skip it.
 775     if (start_region == prev_last_region) {
 776       start_address = start_region->end();
 777       if (start_address > last_address) {
 778         continue;
 779       }
 780       start_region = _hrm->addr_to_region(start_address);
 781     }
 782     prev_last_region = last_region;
 783 
 784     // After verifying that each region was marked as an archive region by
 785     // alloc_archive_regions, set it free and empty and uncommit it.
 786     HeapRegion* curr_region = start_region;
 787     while (curr_region != NULL) {
 788       guarantee(curr_region->is_archive(),
 789                 "Expected archive region at index %u", curr_region->hrm_index());
 790       uint curr_index = curr_region->hrm_index();
 791       _archive_set.remove(curr_region);
 792       curr_region->set_free();
 793       curr_region->set_top(curr_region->bottom());
 794       if (curr_region != last_region) {
 795         curr_region = _hrm->next_region_in_heap(curr_region);
 796       } else {
 797         curr_region = NULL;
 798       }
 799       _hrm->shrink_at(curr_index, 1);
 800       uncommitted_regions++;
 801     }
 802 
 803     // Notify mark-sweep that this is no longer an archive range.
 804     G1ArchiveAllocator::clear_range_archive(ranges[i]);
 805   }
 806 
 807   if (uncommitted_regions != 0) {
 808     log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",
 809                               HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 810   }
 811   decrease_used(size_used);
 812 }
 813 
 814 oop G1CollectedHeap::materialize_archived_object(oop obj) {
 815   assert(obj != NULL, "archived obj is NULL");
 816   assert(G1ArchiveAllocator::is_archived_object(obj), "must be archived object");
 817 
 818   // Loading an archived object makes it strongly reachable. If it is
 819   // loaded during concurrent marking, it must be enqueued to the SATB
 820   // queue, shading the previously white object gray.
 821   G1BarrierSet::enqueue(obj);
 822 
 823   return obj;
 824 }
 825 
 826 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size) {
 827   ResourceMark rm; // For retrieving the thread names in log messages.
 828 
 829   // The structure of this method has a lot of similarities to
 830   // attempt_allocation_slow(). The reason these two were not merged
 831   // into a single one is that such a method would require several "if
 832   // allocation is not humongous do this, otherwise do that"
 833   // conditional paths which would obscure its flow. In fact, an early
 834   // version of this code did use a unified method which was harder to
 835   // follow and, as a result, it had subtle bugs that were hard to
 836   // track down. So keeping these two methods separate allows each to
 837   // be more readable. It will be good to keep these two in sync as
 838   // much as possible.
 839 
 840   assert_heap_not_locked_and_not_at_safepoint();
 841   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 842          "should only be called for humongous allocations");
 843 
 844   // Humongous objects can exhaust the heap quickly, so we should check if we
 845   // need to start a marking cycle at each humongous object allocation. We do
 846   // the check before we do the actual allocation. The reason for doing it
 847   // before the allocation is that we avoid having to keep track of the newly
 848   // allocated memory while we do a GC.
 849   if (policy()->need_to_start_conc_mark("concurrent humongous allocation",
 850                                            word_size)) {
 851     collect(GCCause::_g1_humongous_allocation);
 852   }
 853 
 854   // We will loop until a) we manage to successfully perform the
 855   // allocation or b) we successfully schedule a collection which
 856   // fails to perform the allocation. b) is the only case when we'll
 857   // return NULL.
 858   HeapWord* result = NULL;
 859   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 860     bool should_try_gc;
 861     uint gc_count_before;
 862 
 863 
 864     {
 865       MutexLocker x(Heap_lock);
 866 
 867       // Given that humongous objects are not allocated in young
 868       // regions, we'll first try to do the allocation without doing a
 869       // collection hoping that there's enough space in the heap.
 870       result = humongous_obj_allocate(word_size);
 871       if (result != NULL) {
 872         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
 873         policy()->add_bytes_allocated_in_old_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
 874         return result;
 875       }
 876 
 877       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 878       // the GCLocker initiated GC has been performed and then retry. This includes
 879       // the case when the GC Locker is not active but has not been performed.
 880       should_try_gc = !GCLocker::needs_gc();
 881       // Read the GC count while still holding the Heap_lock.
 882       gc_count_before = total_collections();
 883     }
 884 
 885     if (should_try_gc) {
 886       bool succeeded;
 887       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 888                                    GCCause::_g1_humongous_allocation);
 889       if (result != NULL) {
 890         assert(succeeded, "only way to get back a non-NULL result");
 891         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 892                              Thread::current()->name(), p2i(result));
 893         return result;
 894       }
 895 
 896       if (succeeded) {
 897         // We successfully scheduled a collection which failed to allocate. No
 898         // point in trying to allocate further. We'll just return NULL.
 899         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 900                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 901         return NULL;
 902       }
 903       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT "",
 904                            Thread::current()->name(), word_size);
 905     } else {
 906       // Failed to schedule a collection.
 907       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 908         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 909                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 910         return NULL;
 911       }
 912       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 913       // The GCLocker is either active or the GCLocker initiated
 914       // GC has not yet been performed. Stall until it is and
 915       // then retry the allocation.
 916       GCLocker::stall_until_clear();
 917       gclocker_retry_count += 1;
 918     }
 919 
 920 
 921     // We can reach here if we were unsuccessful in scheduling a
 922     // collection (because another thread beat us to it) or if we were
 923     // stalled due to the GC locker. In either can we should retry the
 924     // allocation attempt in case another thread successfully
 925     // performed a collection and reclaimed enough space.
 926     // Humongous object allocation always needs a lock, so we wait for the retry
 927     // in the next iteration of the loop, unlike for the regular iteration case.
 928     // Give a warning if we seem to be looping forever.
 929 
 930     if ((QueuedAllocationWarningCount > 0) &&
 931         (try_count % QueuedAllocationWarningCount == 0)) {
 932       log_warning(gc, alloc)("%s: Retried allocation %u times for " SIZE_FORMAT " words",
 933                              Thread::current()->name(), try_count, word_size);
 934     }
 935   }
 936 
 937   ShouldNotReachHere();
 938   return NULL;
 939 }
 940 
 941 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
 942                                                            bool expect_null_mutator_alloc_region) {
 943   assert_at_safepoint_on_vm_thread();
 944   assert(!_allocator->has_mutator_alloc_region() || !expect_null_mutator_alloc_region,
 945          "the current alloc region was unexpectedly found to be non-NULL");
 946 
 947   if (!is_humongous(word_size)) {
 948     return _allocator->attempt_allocation_locked(word_size);
 949   } else {
 950     HeapWord* result = humongous_obj_allocate(word_size);
 951     if (result != NULL && policy()->need_to_start_conc_mark("STW humongous allocation")) {
 952       collector_state()->set_initiate_conc_mark_if_possible(true);
 953     }
 954     return result;
 955   }
 956 
 957   ShouldNotReachHere();
 958 }
 959 
 960 class PostCompactionPrinterClosure: public HeapRegionClosure {
 961 private:
 962   G1HRPrinter* _hr_printer;
 963 public:
 964   bool do_heap_region(HeapRegion* hr) {
 965     assert(!hr->is_young(), "not expecting to find young regions");
 966     _hr_printer->post_compaction(hr);
 967     return false;
 968   }
 969 
 970   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
 971     : _hr_printer(hr_printer) { }
 972 };
 973 
 974 void G1CollectedHeap::print_hrm_post_compaction() {
 975   if (_hr_printer.is_active()) {
 976     PostCompactionPrinterClosure cl(hr_printer());
 977     heap_region_iterate(&cl);
 978   }
 979 }
 980 
 981 void G1CollectedHeap::abort_concurrent_cycle() {
 982   // If we start the compaction before the CM threads finish
 983   // scanning the root regions we might trip them over as we'll
 984   // be moving objects / updating references. So let's wait until
 985   // they are done. By telling them to abort, they should complete
 986   // early.
 987   _cm->root_regions()->abort();
 988   _cm->root_regions()->wait_until_scan_finished();
 989 
 990   // Disable discovery and empty the discovered lists
 991   // for the CM ref processor.
 992   _ref_processor_cm->disable_discovery();
 993   _ref_processor_cm->abandon_partial_discovery();
 994   _ref_processor_cm->verify_no_references_recorded();
 995 
 996   // Abandon current iterations of concurrent marking and concurrent
 997   // refinement, if any are in progress.
 998   concurrent_mark()->concurrent_cycle_abort();
 999 }
1000 
1001 void G1CollectedHeap::prepare_heap_for_full_collection() {
1002   // Make sure we'll choose a new allocation region afterwards.
1003   _allocator->release_mutator_alloc_regions();
1004   _allocator->abandon_gc_alloc_regions();
1005 
1006   // We may have added regions to the current incremental collection
1007   // set between the last GC or pause and now. We need to clear the
1008   // incremental collection set and then start rebuilding it afresh
1009   // after this full GC.
1010   abandon_collection_set(collection_set());
1011 
1012   tear_down_region_sets(false /* free_list_only */);
1013 
1014   hrm()->prepare_for_full_collection_start();
1015 }
1016 
1017 void G1CollectedHeap::verify_before_full_collection(bool explicit_gc) {
1018   assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1019   assert_used_and_recalculate_used_equal(this);
1020   _verifier->verify_region_sets_optional();
1021   _verifier->verify_before_gc(G1HeapVerifier::G1VerifyFull);
1022   _verifier->check_bitmaps("Full GC Start");
1023 }
1024 
1025 void G1CollectedHeap::prepare_heap_for_mutators() {
1026   hrm()->prepare_for_full_collection_end();
1027 
1028   // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1029   ClassLoaderDataGraph::purge();
1030   MetaspaceUtils::verify_metrics();
1031 
1032   // Prepare heap for normal collections.
1033   assert(num_free_regions() == 0, "we should not have added any free regions");
1034   rebuild_region_sets(false /* free_list_only */);
1035   abort_refinement();
1036   resize_heap_if_necessary();
1037 
1038   // Rebuild the strong code root lists for each region
1039   rebuild_strong_code_roots();
1040 
1041   // Purge code root memory
1042   purge_code_root_memory();
1043 
1044   // Start a new incremental collection set for the next pause
1045   start_new_collection_set();
1046 
1047   _allocator->init_mutator_alloc_regions();
1048 
1049   // Post collection state updates.
1050   MetaspaceGC::compute_new_size();
1051 }
1052 
1053 void G1CollectedHeap::abort_refinement() {
1054   if (_hot_card_cache->use_cache()) {
1055     _hot_card_cache->reset_hot_cache();
1056   }
1057 
1058   // Discard all remembered set updates and reset refinement statistics.
1059   G1BarrierSet::dirty_card_queue_set().abandon_logs();
1060   assert(G1BarrierSet::dirty_card_queue_set().num_cards() == 0,
1061          "DCQS should be empty");
1062   concurrent_refine()->get_and_reset_refinement_stats();
1063 }
1064 
1065 void G1CollectedHeap::verify_after_full_collection() {
1066   _hrm->verify_optional();
1067   _verifier->verify_region_sets_optional();
1068   _verifier->verify_after_gc(G1HeapVerifier::G1VerifyFull);
1069   // Clear the previous marking bitmap, if needed for bitmap verification.
1070   // Note we cannot do this when we clear the next marking bitmap in
1071   // G1ConcurrentMark::abort() above since VerifyDuringGC verifies the
1072   // objects marked during a full GC against the previous bitmap.
1073   // But we need to clear it before calling check_bitmaps below since
1074   // the full GC has compacted objects and updated TAMS but not updated
1075   // the prev bitmap.
1076   if (G1VerifyBitmaps) {
1077     GCTraceTime(Debug, gc) tm("Clear Prev Bitmap for Verification");
1078     _cm->clear_prev_bitmap(workers());
1079   }
1080   // This call implicitly verifies that the next bitmap is clear after Full GC.
1081   _verifier->check_bitmaps("Full GC End");
1082 
1083   // At this point there should be no regions in the
1084   // entire heap tagged as young.
1085   assert(check_young_list_empty(), "young list should be empty at this point");
1086 
1087   // Note: since we've just done a full GC, concurrent
1088   // marking is no longer active. Therefore we need not
1089   // re-enable reference discovery for the CM ref processor.
1090   // That will be done at the start of the next marking cycle.
1091   // We also know that the STW processor should no longer
1092   // discover any new references.
1093   assert(!_ref_processor_stw->discovery_enabled(), "Postcondition");
1094   assert(!_ref_processor_cm->discovery_enabled(), "Postcondition");
1095   _ref_processor_stw->verify_no_references_recorded();
1096   _ref_processor_cm->verify_no_references_recorded();
1097 }
1098 
1099 void G1CollectedHeap::print_heap_after_full_collection(G1HeapTransition* heap_transition) {
1100   // Post collection logging.
1101   // We should do this after we potentially resize the heap so
1102   // that all the COMMIT / UNCOMMIT events are generated before
1103   // the compaction events.
1104   print_hrm_post_compaction();
1105   heap_transition->print();
1106   print_heap_after_gc();
1107   print_heap_regions();
1108 }
1109 
1110 bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1111                                          bool clear_all_soft_refs) {
1112   assert_at_safepoint_on_vm_thread();
1113 
1114   if (GCLocker::check_active_before_gc()) {
1115     // Full GC was not completed.
1116     return false;
1117   }
1118 
1119   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1120       soft_ref_policy()->should_clear_all_soft_refs();
1121 
1122   G1FullCollector collector(this, explicit_gc, do_clear_all_soft_refs);
1123   GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
1124 
1125   collector.prepare_collection();
1126   collector.collect();
1127   collector.complete_collection();
1128 
1129   // Full collection was successfully completed.
1130   return true;
1131 }
1132 
1133 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1134   // Currently, there is no facility in the do_full_collection(bool) API to notify
1135   // the caller that the collection did not succeed (e.g., because it was locked
1136   // out by the GC locker). So, right now, we'll ignore the return value.
1137   bool dummy = do_full_collection(true,                /* explicit_gc */
1138                                   clear_all_soft_refs);
1139 }
1140 
1141 void G1CollectedHeap::resize_heap_if_necessary() {
1142   assert_at_safepoint_on_vm_thread();
1143 
1144   // Capacity, free and used after the GC counted as full regions to
1145   // include the waste in the following calculations.
1146   const size_t capacity_after_gc = capacity();
1147   const size_t used_after_gc = capacity_after_gc - unused_committed_regions_in_bytes();
1148 
1149   // This is enforced in arguments.cpp.
1150   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1151          "otherwise the code below doesn't make sense");
1152 
1153   // We don't have floating point command-line arguments
1154   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1155   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1156   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1157   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1158 
1159   // We have to be careful here as these two calculations can overflow
1160   // 32-bit size_t's.
1161   double used_after_gc_d = (double) used_after_gc;
1162   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1163   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1164 
1165   // Let's make sure that they are both under the max heap size, which
1166   // by default will make them fit into a size_t.
1167   double desired_capacity_upper_bound = (double) MaxHeapSize;
1168   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1169                                     desired_capacity_upper_bound);
1170   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1171                                     desired_capacity_upper_bound);
1172 
1173   // We can now safely turn them into size_t's.
1174   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1175   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1176 
1177   // This assert only makes sense here, before we adjust them
1178   // with respect to the min and max heap size.
1179   assert(minimum_desired_capacity <= maximum_desired_capacity,
1180          "minimum_desired_capacity = " SIZE_FORMAT ", "
1181          "maximum_desired_capacity = " SIZE_FORMAT,
1182          minimum_desired_capacity, maximum_desired_capacity);
1183 
1184   // Should not be greater than the heap max size. No need to adjust
1185   // it with respect to the heap min size as it's a lower bound (i.e.,
1186   // we'll try to make the capacity larger than it, not smaller).
1187   minimum_desired_capacity = MIN2(minimum_desired_capacity, MaxHeapSize);
1188   // Should not be less than the heap min size. No need to adjust it
1189   // with respect to the heap max size as it's an upper bound (i.e.,
1190   // we'll try to make the capacity smaller than it, not greater).
1191   maximum_desired_capacity =  MAX2(maximum_desired_capacity, MinHeapSize);
1192 
1193   if (capacity_after_gc < minimum_desired_capacity) {
1194     // Don't expand unless it's significant
1195     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1196 
1197     log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity). "
1198                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1199                               "min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1200                               capacity_after_gc, used_after_gc, used(), minimum_desired_capacity, MinHeapFreeRatio);
1201 
1202     expand(expand_bytes, _workers);
1203 
1204     // No expansion, now see if we want to shrink
1205   } else if (capacity_after_gc > maximum_desired_capacity) {
1206     // Capacity too large, compute shrinking size
1207     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1208 
1209     log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity). "
1210                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1211                               "maximum_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1212                               capacity_after_gc, used_after_gc, used(), maximum_desired_capacity, MaxHeapFreeRatio);
1213 
1214     shrink(shrink_bytes);
1215   }
1216 }
1217 
1218 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1219                                                             bool do_gc,
1220                                                             bool clear_all_soft_refs,
1221                                                             bool expect_null_mutator_alloc_region,
1222                                                             bool* gc_succeeded) {
1223   *gc_succeeded = true;
1224   // Let's attempt the allocation first.
1225   HeapWord* result =
1226     attempt_allocation_at_safepoint(word_size,
1227                                     expect_null_mutator_alloc_region);
1228   if (result != NULL) {
1229     return result;
1230   }
1231 
1232   // In a G1 heap, we're supposed to keep allocation from failing by
1233   // incremental pauses.  Therefore, at least for now, we'll favor
1234   // expansion over collection.  (This might change in the future if we can
1235   // do something smarter than full collection to satisfy a failed alloc.)
1236   result = expand_and_allocate(word_size);
1237   if (result != NULL) {
1238     return result;
1239   }
1240 
1241   if (do_gc) {
1242     // Expansion didn't work, we'll try to do a Full GC.
1243     *gc_succeeded = do_full_collection(false, /* explicit_gc */
1244                                        clear_all_soft_refs);
1245   }
1246 
1247   return NULL;
1248 }
1249 
1250 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1251                                                      bool* succeeded) {
1252   assert_at_safepoint_on_vm_thread();
1253 
1254   // Attempts to allocate followed by Full GC.
1255   HeapWord* result =
1256     satisfy_failed_allocation_helper(word_size,
1257                                      true,  /* do_gc */
1258                                      false, /* clear_all_soft_refs */
1259                                      false, /* expect_null_mutator_alloc_region */
1260                                      succeeded);
1261 
1262   if (result != NULL || !*succeeded) {
1263     return result;
1264   }
1265 
1266   // Attempts to allocate followed by Full GC that will collect all soft references.
1267   result = satisfy_failed_allocation_helper(word_size,
1268                                             true, /* do_gc */
1269                                             true, /* clear_all_soft_refs */
1270                                             true, /* expect_null_mutator_alloc_region */
1271                                             succeeded);
1272 
1273   if (result != NULL || !*succeeded) {
1274     return result;
1275   }
1276 
1277   // Attempts to allocate, no GC
1278   result = satisfy_failed_allocation_helper(word_size,
1279                                             false, /* do_gc */
1280                                             false, /* clear_all_soft_refs */
1281                                             true,  /* expect_null_mutator_alloc_region */
1282                                             succeeded);
1283 
1284   if (result != NULL) {
1285     return result;
1286   }
1287 
1288   assert(!soft_ref_policy()->should_clear_all_soft_refs(),
1289          "Flag should have been handled and cleared prior to this point");
1290 
1291   // What else?  We might try synchronous finalization later.  If the total
1292   // space available is large enough for the allocation, then a more
1293   // complete compaction phase than we've tried so far might be
1294   // appropriate.
1295   return NULL;
1296 }
1297 
1298 // Attempting to expand the heap sufficiently
1299 // to support an allocation of the given "word_size".  If
1300 // successful, perform the allocation and return the address of the
1301 // allocated block, or else "NULL".
1302 
1303 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1304   assert_at_safepoint_on_vm_thread();
1305 
1306   _verifier->verify_region_sets_optional();
1307 
1308   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1309   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
1310                             word_size * HeapWordSize);
1311 
1312 
1313   if (expand(expand_bytes, _workers)) {
1314     _hrm->verify_optional();
1315     _verifier->verify_region_sets_optional();
1316     return attempt_allocation_at_safepoint(word_size,
1317                                            false /* expect_null_mutator_alloc_region */);
1318   }
1319   return NULL;
1320 }
1321 
1322 bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, double* expand_time_ms) {
1323   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1324   aligned_expand_bytes = align_up(aligned_expand_bytes,
1325                                        HeapRegion::GrainBytes);
1326 
1327   log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount: " SIZE_FORMAT "B expansion amount: " SIZE_FORMAT "B",
1328                             expand_bytes, aligned_expand_bytes);
1329 
1330   if (is_maximal_no_gc()) {
1331     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1332     return false;
1333   }
1334 
1335   double expand_heap_start_time_sec = os::elapsedTime();
1336   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1337   assert(regions_to_expand > 0, "Must expand by at least one region");
1338 
1339   uint expanded_by = _hrm->expand_by(regions_to_expand, pretouch_workers);
1340   if (expand_time_ms != NULL) {
1341     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1342   }
1343 
1344   if (expanded_by > 0) {
1345     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1346     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1347     policy()->record_new_heap_size(num_regions());
1348   } else {
1349     log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)");
1350 
1351     // The expansion of the virtual storage space was unsuccessful.
1352     // Let's see if it was because we ran out of swap.
1353     if (G1ExitOnExpansionFailure &&
1354         _hrm->available() >= regions_to_expand) {
1355       // We had head room...
1356       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1357     }
1358   }
1359   return regions_to_expand > 0;
1360 }
1361 
1362 bool G1CollectedHeap::expand_single_region(uint node_index) {
1363   uint expanded_by = _hrm->expand_on_preferred_node(node_index);
1364 
1365   if (expanded_by == 0) {
1366     assert(is_maximal_no_gc(), "Should be no regions left, available: %u", _hrm->available());
1367     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1368     return false;
1369   }
1370 
1371   policy()->record_new_heap_size(num_regions());
1372   return true;
1373 }
1374 
1375 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1376   size_t aligned_shrink_bytes =
1377     ReservedSpace::page_align_size_down(shrink_bytes);
1378   aligned_shrink_bytes = align_down(aligned_shrink_bytes,
1379                                          HeapRegion::GrainBytes);
1380   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1381 
1382   uint num_regions_removed = _hrm->shrink_by(num_regions_to_remove);
1383   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1384 
1385   log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",
1386                             shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1387   if (num_regions_removed > 0) {
1388     policy()->record_new_heap_size(num_regions());
1389   } else {
1390     log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)");
1391   }
1392 }
1393 
1394 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1395   _verifier->verify_region_sets_optional();
1396 
1397   // We should only reach here at the end of a Full GC or during Remark which
1398   // means we should not not be holding to any GC alloc regions. The method
1399   // below will make sure of that and do any remaining clean up.
1400   _allocator->abandon_gc_alloc_regions();
1401 
1402   // Instead of tearing down / rebuilding the free lists here, we
1403   // could instead use the remove_all_pending() method on free_list to
1404   // remove only the ones that we need to remove.
1405   tear_down_region_sets(true /* free_list_only */);
1406   shrink_helper(shrink_bytes);
1407   rebuild_region_sets(true /* free_list_only */);
1408 
1409   _hrm->verify_optional();
1410   _verifier->verify_region_sets_optional();
1411 }
1412 
1413 class OldRegionSetChecker : public HeapRegionSetChecker {
1414 public:
1415   void check_mt_safety() {
1416     // Master Old Set MT safety protocol:
1417     // (a) If we're at a safepoint, operations on the master old set
1418     // should be invoked:
1419     // - by the VM thread (which will serialize them), or
1420     // - by the GC workers while holding the FreeList_lock, if we're
1421     //   at a safepoint for an evacuation pause (this lock is taken
1422     //   anyway when an GC alloc region is retired so that a new one
1423     //   is allocated from the free list), or
1424     // - by the GC workers while holding the OldSets_lock, if we're at a
1425     //   safepoint for a cleanup pause.
1426     // (b) If we're not at a safepoint, operations on the master old set
1427     // should be invoked while holding the Heap_lock.
1428 
1429     if (SafepointSynchronize::is_at_safepoint()) {
1430       guarantee(Thread::current()->is_VM_thread() ||
1431                 FreeList_lock->owned_by_self() || OldSets_lock->owned_by_self(),
1432                 "master old set MT safety protocol at a safepoint");
1433     } else {
1434       guarantee(Heap_lock->owned_by_self(), "master old set MT safety protocol outside a safepoint");
1435     }
1436   }
1437   bool is_correct_type(HeapRegion* hr) { return hr->is_old(); }
1438   const char* get_description() { return "Old Regions"; }
1439 };
1440 
1441 class ArchiveRegionSetChecker : public HeapRegionSetChecker {
1442 public:
1443   void check_mt_safety() {
1444     guarantee(!Universe::is_fully_initialized() || SafepointSynchronize::is_at_safepoint(),
1445               "May only change archive regions during initialization or safepoint.");
1446   }
1447   bool is_correct_type(HeapRegion* hr) { return hr->is_archive(); }
1448   const char* get_description() { return "Archive Regions"; }
1449 };
1450 
1451 class HumongousRegionSetChecker : public HeapRegionSetChecker {
1452 public:
1453   void check_mt_safety() {
1454     // Humongous Set MT safety protocol:
1455     // (a) If we're at a safepoint, operations on the master humongous
1456     // set should be invoked by either the VM thread (which will
1457     // serialize them) or by the GC workers while holding the
1458     // OldSets_lock.
1459     // (b) If we're not at a safepoint, operations on the master
1460     // humongous set should be invoked while holding the Heap_lock.
1461 
1462     if (SafepointSynchronize::is_at_safepoint()) {
1463       guarantee(Thread::current()->is_VM_thread() ||
1464                 OldSets_lock->owned_by_self(),
1465                 "master humongous set MT safety protocol at a safepoint");
1466     } else {
1467       guarantee(Heap_lock->owned_by_self(),
1468                 "master humongous set MT safety protocol outside a safepoint");
1469     }
1470   }
1471   bool is_correct_type(HeapRegion* hr) { return hr->is_humongous(); }
1472   const char* get_description() { return "Humongous Regions"; }
1473 };
1474 
1475 G1CollectedHeap::G1CollectedHeap() :
1476   CollectedHeap(),
1477   _young_gen_sampling_thread(NULL),
1478   _workers(NULL),
1479   _card_table(NULL),
1480   _soft_ref_policy(),
1481   _old_set("Old Region Set", new OldRegionSetChecker()),
1482   _archive_set("Archive Region Set", new ArchiveRegionSetChecker()),
1483   _humongous_set("Humongous Region Set", new HumongousRegionSetChecker()),
1484   _bot(NULL),
1485   _listener(),
1486   _numa(G1NUMA::create()),
1487   _hrm(NULL),
1488   _allocator(NULL),
1489   _verifier(NULL),
1490   _summary_bytes_used(0),
1491   _bytes_used_during_gc(0),
1492   _archive_allocator(NULL),
1493   _survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
1494   _old_evac_stats("Old", OldPLABSize, PLABWeight),
1495   _expand_heap_after_alloc_failure(true),
1496   _g1mm(NULL),
1497   _humongous_reclaim_candidates(),
1498   _has_humongous_reclaim_candidates(false),
1499   _hr_printer(),
1500   _collector_state(),
1501   _old_marking_cycles_started(0),
1502   _old_marking_cycles_completed(0),
1503   _eden(),
1504   _survivor(),
1505   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1506   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1507   _policy(G1Policy::create_policy(_gc_timer_stw)),
1508   _heap_sizing_policy(NULL),
1509   _collection_set(this, _policy),
1510   _hot_card_cache(NULL),
1511   _rem_set(NULL),
1512   _cm(NULL),
1513   _cm_thread(NULL),
1514   _cr(NULL),
1515   _task_queues(NULL),
1516   _evacuation_failed(false),
1517   _evacuation_failed_info_array(NULL),
1518   _preserved_marks_set(true /* in_c_heap */),
1519 #ifndef PRODUCT
1520   _evacuation_failure_alot_for_current_gc(false),
1521   _evacuation_failure_alot_gc_number(0),
1522   _evacuation_failure_alot_count(0),
1523 #endif
1524   _ref_processor_stw(NULL),
1525   _is_alive_closure_stw(this),
1526   _is_subject_to_discovery_stw(this),
1527   _ref_processor_cm(NULL),
1528   _is_alive_closure_cm(this),
1529   _is_subject_to_discovery_cm(this),
1530   _region_attr() {
1531 
1532   _verifier = new G1HeapVerifier(this);
1533 
1534   _allocator = new G1Allocator(this);
1535 
1536   _heap_sizing_policy = G1HeapSizingPolicy::create(this, _policy->analytics());
1537 
1538   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1539 
1540   // Override the default _filler_array_max_size so that no humongous filler
1541   // objects are created.
1542   _filler_array_max_size = _humongous_object_threshold_in_words;
1543 
1544   uint n_queues = ParallelGCThreads;
1545   _task_queues = new RefToScanQueueSet(n_queues);
1546 
1547   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1548 
1549   for (uint i = 0; i < n_queues; i++) {
1550     RefToScanQueue* q = new RefToScanQueue();
1551     q->initialize();
1552     _task_queues->register_queue(i, q);
1553     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1554   }
1555 
1556   // Initialize the G1EvacuationFailureALot counters and flags.
1557   NOT_PRODUCT(reset_evacuation_should_fail();)
1558   _gc_tracer_stw->initialize();
1559 
1560   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1561 }
1562 
1563 static size_t actual_reserved_page_size(ReservedSpace rs) {
1564   size_t page_size = os::vm_page_size();
1565   if (UseLargePages) {
1566     // There are two ways to manage large page memory.
1567     // 1. OS supports committing large page memory.
1568     // 2. OS doesn't support committing large page memory so ReservedSpace manages it.
1569     //    And ReservedSpace calls it 'special'. If we failed to set 'special',
1570     //    we reserved memory without large page.
1571     if (os::can_commit_large_page_memory() || rs.special()) {
1572       // An alignment at ReservedSpace comes from preferred page size or
1573       // heap alignment, and if the alignment came from heap alignment, it could be
1574       // larger than large pages size. So need to cap with the large page size.
1575       page_size = MIN2(rs.alignment(), os::large_page_size());
1576     }
1577   }
1578 
1579   return page_size;
1580 }
1581 
1582 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1583                                                                  size_t size,
1584                                                                  size_t translation_factor) {
1585   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1586   // Allocate a new reserved space, preferring to use large pages.
1587   ReservedSpace rs(size, preferred_page_size);
1588   size_t page_size = actual_reserved_page_size(rs);
1589   G1RegionToSpaceMapper* result  =
1590     G1RegionToSpaceMapper::create_mapper(rs,
1591                                          size,
1592                                          page_size,
1593                                          HeapRegion::GrainBytes,
1594                                          translation_factor,
1595                                          mtGC);
1596 
1597   os::trace_page_sizes_for_requested_size(description,
1598                                           size,
1599                                           preferred_page_size,
1600                                           page_size,
1601                                           rs.base(),
1602                                           rs.size());
1603 
1604   return result;
1605 }
1606 
1607 jint G1CollectedHeap::initialize_concurrent_refinement() {
1608   jint ecode = JNI_OK;
1609   _cr = G1ConcurrentRefine::create(&ecode);
1610   return ecode;
1611 }
1612 
1613 jint G1CollectedHeap::initialize_young_gen_sampling_thread() {
1614   _young_gen_sampling_thread = new G1YoungRemSetSamplingThread();
1615   if (_young_gen_sampling_thread->osthread() == NULL) {
1616     vm_shutdown_during_initialization("Could not create G1YoungRemSetSamplingThread");
1617     return JNI_ENOMEM;
1618   }
1619   return JNI_OK;
1620 }
1621 
1622 jint G1CollectedHeap::initialize() {
1623 
1624   // Necessary to satisfy locking discipline assertions.
1625 
1626   MutexLocker x(Heap_lock);
1627 
1628   // While there are no constraints in the GC code that HeapWordSize
1629   // be any particular value, there are multiple other areas in the
1630   // system which believe this to be true (e.g. oop->object_size in some
1631   // cases incorrectly returns the size in wordSize units rather than
1632   // HeapWordSize).
1633   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1634 
1635   size_t init_byte_size = InitialHeapSize;
1636   size_t reserved_byte_size = G1Arguments::heap_reserved_size_bytes();
1637 
1638   // Ensure that the sizes are properly aligned.
1639   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1640   Universe::check_alignment(reserved_byte_size, HeapRegion::GrainBytes, "g1 heap");
1641   Universe::check_alignment(reserved_byte_size, HeapAlignment, "g1 heap");
1642 
1643   // Reserve the maximum.
1644 
1645   // When compressed oops are enabled, the preferred heap base
1646   // is calculated by subtracting the requested size from the
1647   // 32Gb boundary and using the result as the base address for
1648   // heap reservation. If the requested size is not aligned to
1649   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1650   // into the ReservedHeapSpace constructor) then the actual
1651   // base of the reserved heap may end up differing from the
1652   // address that was requested (i.e. the preferred heap base).
1653   // If this happens then we could end up using a non-optimal
1654   // compressed oops mode.
1655 
1656   ReservedHeapSpace heap_rs = Universe::reserve_heap(reserved_byte_size,
1657                                                      HeapAlignment);
1658 
1659   initialize_reserved_region(heap_rs);
1660 
1661   // Create the barrier set for the entire reserved region.
1662   G1CardTable* ct = new G1CardTable(heap_rs.region());
1663   ct->initialize();
1664   G1BarrierSet* bs = new G1BarrierSet(ct);
1665   bs->initialize();
1666   assert(bs->is_a(BarrierSet::G1BarrierSet), "sanity");
1667   BarrierSet::set_barrier_set(bs);
1668   _card_table = ct;
1669 
1670   {
1671     G1SATBMarkQueueSet& satbqs = bs->satb_mark_queue_set();
1672     satbqs.set_process_completed_buffers_threshold(G1SATBProcessCompletedThreshold);
1673     satbqs.set_buffer_enqueue_threshold_percentage(G1SATBBufferEnqueueingThresholdPercent);
1674   }
1675 
1676   // Create the hot card cache.
1677   _hot_card_cache = new G1HotCardCache(this);
1678 
1679   // Carve out the G1 part of the heap.
1680   ReservedSpace g1_rs = heap_rs.first_part(reserved_byte_size);
1681   size_t page_size = actual_reserved_page_size(heap_rs);
1682   G1RegionToSpaceMapper* heap_storage =
1683     G1RegionToSpaceMapper::create_heap_mapper(g1_rs,
1684                                               g1_rs.size(),
1685                                               page_size,
1686                                               HeapRegion::GrainBytes,
1687                                               1,
1688                                               mtJavaHeap);
1689   if(heap_storage == NULL) {
1690     vm_shutdown_during_initialization("Could not initialize G1 heap");
1691     return JNI_ERR;
1692   }
1693 
1694   os::trace_page_sizes("Heap",
1695                        MinHeapSize,
1696                        reserved_byte_size,
1697                        page_size,
1698                        heap_rs.base(),
1699                        heap_rs.size());
1700   heap_storage->set_mapping_changed_listener(&_listener);
1701 
1702   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1703   G1RegionToSpaceMapper* bot_storage =
1704     create_aux_memory_mapper("Block Offset Table",
1705                              G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize),
1706                              G1BlockOffsetTable::heap_map_factor());
1707 
1708   G1RegionToSpaceMapper* cardtable_storage =
1709     create_aux_memory_mapper("Card Table",
1710                              G1CardTable::compute_size(g1_rs.size() / HeapWordSize),
1711                              G1CardTable::heap_map_factor());
1712 
1713   G1RegionToSpaceMapper* card_counts_storage =
1714     create_aux_memory_mapper("Card Counts Table",
1715                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1716                              G1CardCounts::heap_map_factor());
1717 
1718   size_t bitmap_size = G1CMBitMap::compute_size(g1_rs.size());
1719   G1RegionToSpaceMapper* prev_bitmap_storage =
1720     create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1721   G1RegionToSpaceMapper* next_bitmap_storage =
1722     create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1723 
1724   _hrm = HeapRegionManager::create_manager(this);
1725 
1726   _hrm->initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1727   _card_table->initialize(cardtable_storage);
1728 
1729   // Do later initialization work for concurrent refinement.
1730   _hot_card_cache->initialize(card_counts_storage);
1731 
1732   // 6843694 - ensure that the maximum region index can fit
1733   // in the remembered set structures.
1734   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1735   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1736 
1737   // The G1FromCardCache reserves card with value 0 as "invalid", so the heap must not
1738   // start within the first card.
1739   guarantee(g1_rs.base() >= (char*)G1CardTable::card_size, "Java heap must not start within the first card.");
1740   // Also create a G1 rem set.
1741   _rem_set = new G1RemSet(this, _card_table, _hot_card_cache);
1742   _rem_set->initialize(max_reserved_capacity(), max_regions());
1743 
1744   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1745   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1746   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1747             "too many cards per region");
1748 
1749   FreeRegionList::set_unrealistically_long_length(max_expandable_regions() + 1);
1750 
1751   _bot = new G1BlockOffsetTable(reserved_region(), bot_storage);
1752 
1753   {
1754     HeapWord* start = _hrm->reserved().start();
1755     HeapWord* end = _hrm->reserved().end();
1756     size_t granularity = HeapRegion::GrainBytes;
1757 
1758     _region_attr.initialize(start, end, granularity);
1759     _humongous_reclaim_candidates.initialize(start, end, granularity);
1760   }
1761 
1762   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1763                           true /* are_GC_task_threads */,
1764                           false /* are_ConcurrentGC_threads */);
1765   if (_workers == NULL) {
1766     return JNI_ENOMEM;
1767   }
1768   _workers->initialize_workers();
1769 
1770   _numa->set_region_info(HeapRegion::GrainBytes, page_size);
1771 
1772   // Create the G1ConcurrentMark data structure and thread.
1773   // (Must do this late, so that "max_regions" is defined.)
1774   _cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1775   _cm_thread = _cm->cm_thread();
1776 
1777   // Now expand into the initial heap size.
1778   if (!expand(init_byte_size, _workers)) {
1779     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1780     return JNI_ENOMEM;
1781   }
1782 
1783   // Perform any initialization actions delegated to the policy.
1784   policy()->init(this, &_collection_set);
1785 
1786   jint ecode = initialize_concurrent_refinement();
1787   if (ecode != JNI_OK) {
1788     return ecode;
1789   }
1790 
1791   ecode = initialize_young_gen_sampling_thread();
1792   if (ecode != JNI_OK) {
1793     return ecode;
1794   }
1795 
1796   {
1797     G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
1798     dcqs.set_process_cards_threshold(concurrent_refine()->yellow_zone());
1799     dcqs.set_max_cards(concurrent_refine()->red_zone());
1800   }
1801 
1802   // Here we allocate the dummy HeapRegion that is required by the
1803   // G1AllocRegion class.
1804   HeapRegion* dummy_region = _hrm->get_dummy_region();
1805 
1806   // We'll re-use the same region whether the alloc region will
1807   // require BOT updates or not and, if it doesn't, then a non-young
1808   // region will complain that it cannot support allocations without
1809   // BOT updates. So we'll tag the dummy region as eden to avoid that.
1810   dummy_region->set_eden();
1811   // Make sure it's full.
1812   dummy_region->set_top(dummy_region->end());
1813   G1AllocRegion::setup(this, dummy_region);
1814 
1815   _allocator->init_mutator_alloc_regions();
1816 
1817   // Do create of the monitoring and management support so that
1818   // values in the heap have been properly initialized.
1819   _g1mm = new G1MonitoringSupport(this);
1820 
1821   G1StringDedup::initialize();
1822 
1823   _preserved_marks_set.init(ParallelGCThreads);
1824 
1825   _collection_set.initialize(max_regions());
1826 
1827   return JNI_OK;
1828 }
1829 
1830 void G1CollectedHeap::stop() {
1831   // Stop all concurrent threads. We do this to make sure these threads
1832   // do not continue to execute and access resources (e.g. logging)
1833   // that are destroyed during shutdown.
1834   _cr->stop();
1835   _young_gen_sampling_thread->stop();
1836   _cm_thread->stop();
1837   if (G1StringDedup::is_enabled()) {
1838     G1StringDedup::stop();
1839   }
1840 }
1841 
1842 void G1CollectedHeap::safepoint_synchronize_begin() {
1843   SuspendibleThreadSet::synchronize();
1844 }
1845 
1846 void G1CollectedHeap::safepoint_synchronize_end() {
1847   SuspendibleThreadSet::desynchronize();
1848 }
1849 
1850 void G1CollectedHeap::post_initialize() {
1851   CollectedHeap::post_initialize();
1852   ref_processing_init();
1853 }
1854 
1855 void G1CollectedHeap::ref_processing_init() {
1856   // Reference processing in G1 currently works as follows:
1857   //
1858   // * There are two reference processor instances. One is
1859   //   used to record and process discovered references
1860   //   during concurrent marking; the other is used to
1861   //   record and process references during STW pauses
1862   //   (both full and incremental).
1863   // * Both ref processors need to 'span' the entire heap as
1864   //   the regions in the collection set may be dotted around.
1865   //
1866   // * For the concurrent marking ref processor:
1867   //   * Reference discovery is enabled at initial marking.
1868   //   * Reference discovery is disabled and the discovered
1869   //     references processed etc during remarking.
1870   //   * Reference discovery is MT (see below).
1871   //   * Reference discovery requires a barrier (see below).
1872   //   * Reference processing may or may not be MT
1873   //     (depending on the value of ParallelRefProcEnabled
1874   //     and ParallelGCThreads).
1875   //   * A full GC disables reference discovery by the CM
1876   //     ref processor and abandons any entries on it's
1877   //     discovered lists.
1878   //
1879   // * For the STW processor:
1880   //   * Non MT discovery is enabled at the start of a full GC.
1881   //   * Processing and enqueueing during a full GC is non-MT.
1882   //   * During a full GC, references are processed after marking.
1883   //
1884   //   * Discovery (may or may not be MT) is enabled at the start
1885   //     of an incremental evacuation pause.
1886   //   * References are processed near the end of a STW evacuation pause.
1887   //   * For both types of GC:
1888   //     * Discovery is atomic - i.e. not concurrent.
1889   //     * Reference discovery will not need a barrier.
1890 
1891   bool mt_processing = ParallelRefProcEnabled && (ParallelGCThreads > 1);
1892 
1893   // Concurrent Mark ref processor
1894   _ref_processor_cm =
1895     new ReferenceProcessor(&_is_subject_to_discovery_cm,
1896                            mt_processing,                                  // mt processing
1897                            ParallelGCThreads,                              // degree of mt processing
1898                            (ParallelGCThreads > 1) || (ConcGCThreads > 1), // mt discovery
1899                            MAX2(ParallelGCThreads, ConcGCThreads),         // degree of mt discovery
1900                            false,                                          // Reference discovery is not atomic
1901                            &_is_alive_closure_cm,                          // is alive closure
1902                            true);                                          // allow changes to number of processing threads
1903 
1904   // STW ref processor
1905   _ref_processor_stw =
1906     new ReferenceProcessor(&_is_subject_to_discovery_stw,
1907                            mt_processing,                        // mt processing
1908                            ParallelGCThreads,                    // degree of mt processing
1909                            (ParallelGCThreads > 1),              // mt discovery
1910                            ParallelGCThreads,                    // degree of mt discovery
1911                            true,                                 // Reference discovery is atomic
1912                            &_is_alive_closure_stw,               // is alive closure
1913                            true);                                // allow changes to number of processing threads
1914 }
1915 
1916 SoftRefPolicy* G1CollectedHeap::soft_ref_policy() {
1917   return &_soft_ref_policy;
1918 }
1919 
1920 size_t G1CollectedHeap::capacity() const {
1921   return _hrm->length() * HeapRegion::GrainBytes;
1922 }
1923 
1924 size_t G1CollectedHeap::unused_committed_regions_in_bytes() const {
1925   return _hrm->total_free_bytes();
1926 }
1927 
1928 void G1CollectedHeap::iterate_hcc_closure(G1CardTableEntryClosure* cl, uint worker_id) {
1929   _hot_card_cache->drain(cl, worker_id);
1930 }
1931 
1932 // Computes the sum of the storage used by the various regions.
1933 size_t G1CollectedHeap::used() const {
1934   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
1935   if (_archive_allocator != NULL) {
1936     result += _archive_allocator->used();
1937   }
1938   return result;
1939 }
1940 
1941 size_t G1CollectedHeap::used_unlocked() const {
1942   return _summary_bytes_used;
1943 }
1944 
1945 class SumUsedClosure: public HeapRegionClosure {
1946   size_t _used;
1947 public:
1948   SumUsedClosure() : _used(0) {}
1949   bool do_heap_region(HeapRegion* r) {
1950     _used += r->used();
1951     return false;
1952   }
1953   size_t result() { return _used; }
1954 };
1955 
1956 size_t G1CollectedHeap::recalculate_used() const {
1957   SumUsedClosure blk;
1958   heap_region_iterate(&blk);
1959   return blk.result();
1960 }
1961 
1962 bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
1963   switch (cause) {
1964     case GCCause::_java_lang_system_gc:                 return ExplicitGCInvokesConcurrent;
1965     case GCCause::_dcmd_gc_run:                         return ExplicitGCInvokesConcurrent;
1966     case GCCause::_wb_conc_mark:                        return true;
1967     default :                                           return false;
1968   }
1969 }
1970 
1971 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
1972   switch (cause) {
1973     case GCCause::_g1_humongous_allocation: return true;
1974     case GCCause::_g1_periodic_collection:  return G1PeriodicGCInvokesConcurrent;
1975     case GCCause::_wb_breakpoint:           return true;
1976     default:                                return is_user_requested_concurrent_full_gc(cause);
1977   }
1978 }
1979 
1980 bool G1CollectedHeap::should_upgrade_to_full_gc(GCCause::Cause cause) {
1981   if (policy()->force_upgrade_to_full()) {
1982     return true;
1983   } else if (should_do_concurrent_full_gc(_gc_cause)) {
1984     return false;
1985   } else if (has_regions_left_for_allocation()) {
1986     return false;
1987   } else {
1988     return true;
1989   }
1990 }
1991 
1992 #ifndef PRODUCT
1993 void G1CollectedHeap::allocate_dummy_regions() {
1994   // Let's fill up most of the region
1995   size_t word_size = HeapRegion::GrainWords - 1024;
1996   // And as a result the region we'll allocate will be humongous.
1997   guarantee(is_humongous(word_size), "sanity");
1998 
1999   // _filler_array_max_size is set to humongous object threshold
2000   // but temporarily change it to use CollectedHeap::fill_with_object().
2001   SizeTFlagSetting fs(_filler_array_max_size, word_size);
2002 
2003   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2004     // Let's use the existing mechanism for the allocation
2005     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
2006     if (dummy_obj != NULL) {
2007       MemRegion mr(dummy_obj, word_size);
2008       CollectedHeap::fill_with_object(mr);
2009     } else {
2010       // If we can't allocate once, we probably cannot allocate
2011       // again. Let's get out of the loop.
2012       break;
2013     }
2014   }
2015 }
2016 #endif // !PRODUCT
2017 
2018 void G1CollectedHeap::increment_old_marking_cycles_started() {
2019   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2020          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2021          "Wrong marking cycle count (started: %d, completed: %d)",
2022          _old_marking_cycles_started, _old_marking_cycles_completed);
2023 
2024   _old_marking_cycles_started++;
2025 }
2026 
2027 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2028   MonitorLocker ml(G1OldGCCount_lock, Mutex::_no_safepoint_check_flag);
2029 
2030   // We assume that if concurrent == true, then the caller is a
2031   // concurrent thread that was joined the Suspendible Thread
2032   // Set. If there's ever a cheap way to check this, we should add an
2033   // assert here.
2034 
2035   // Given that this method is called at the end of a Full GC or of a
2036   // concurrent cycle, and those can be nested (i.e., a Full GC can
2037   // interrupt a concurrent cycle), the number of full collections
2038   // completed should be either one (in the case where there was no
2039   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2040   // behind the number of full collections started.
2041 
2042   // This is the case for the inner caller, i.e. a Full GC.
2043   assert(concurrent ||
2044          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2045          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2046          "for inner caller (Full GC): _old_marking_cycles_started = %u "
2047          "is inconsistent with _old_marking_cycles_completed = %u",
2048          _old_marking_cycles_started, _old_marking_cycles_completed);
2049 
2050   // This is the case for the outer caller, i.e. the concurrent cycle.
2051   assert(!concurrent ||
2052          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2053          "for outer caller (concurrent cycle): "
2054          "_old_marking_cycles_started = %u "
2055          "is inconsistent with _old_marking_cycles_completed = %u",
2056          _old_marking_cycles_started, _old_marking_cycles_completed);
2057 
2058   _old_marking_cycles_completed += 1;
2059 
2060   // We need to clear the "in_progress" flag in the CM thread before
2061   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2062   // is set) so that if a waiter requests another System.gc() it doesn't
2063   // incorrectly see that a marking cycle is still in progress.
2064   if (concurrent) {
2065     _cm_thread->set_idle();
2066   }
2067 
2068   // Notify threads waiting in System.gc() (with ExplicitGCInvokesConcurrent)
2069   // for a full GC to finish that their wait is over.
2070   ml.notify_all();
2071 }
2072 
2073 void G1CollectedHeap::collect(GCCause::Cause cause) {
2074   try_collect(cause);
2075 }
2076 
2077 // Return true if (x < y) with allowance for wraparound.
2078 static bool gc_counter_less_than(uint x, uint y) {
2079   return (x - y) > (UINT_MAX/2);
2080 }
2081 
2082 // LOG_COLLECT_CONCURRENTLY(cause, msg, args...)
2083 // Macro so msg printing is format-checked.
2084 #define LOG_COLLECT_CONCURRENTLY(cause, ...)                            \
2085   do {                                                                  \
2086     LogTarget(Trace, gc) LOG_COLLECT_CONCURRENTLY_lt;                   \
2087     if (LOG_COLLECT_CONCURRENTLY_lt.is_enabled()) {                     \
2088       ResourceMark rm; /* For thread name. */                           \
2089       LogStream LOG_COLLECT_CONCURRENTLY_s(&LOG_COLLECT_CONCURRENTLY_lt); \
2090       LOG_COLLECT_CONCURRENTLY_s.print("%s: Try Collect Concurrently (%s): ", \
2091                                        Thread::current()->name(),       \
2092                                        GCCause::to_string(cause));      \
2093       LOG_COLLECT_CONCURRENTLY_s.print(__VA_ARGS__);                    \
2094     }                                                                   \
2095   } while (0)
2096 
2097 #define LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, result) \
2098   LOG_COLLECT_CONCURRENTLY(cause, "complete %s", BOOL_TO_STR(result))
2099 
2100 bool G1CollectedHeap::try_collect_concurrently(GCCause::Cause cause,
2101                                                uint gc_counter,
2102                                                uint old_marking_started_before) {
2103   assert_heap_not_locked();
2104   assert(should_do_concurrent_full_gc(cause),
2105          "Non-concurrent cause %s", GCCause::to_string(cause));
2106 
2107   for (uint i = 1; true; ++i) {
2108     // Try to schedule an initial-mark evacuation pause that will
2109     // start a concurrent cycle.
2110     LOG_COLLECT_CONCURRENTLY(cause, "attempt %u", i);
2111     VM_G1TryInitiateConcMark op(gc_counter,
2112                                 cause,
2113                                 policy()->max_pause_time_ms());
2114     VMThread::execute(&op);
2115 
2116     // Request is trivially finished.
2117     if (cause == GCCause::_g1_periodic_collection) {
2118       LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, op.gc_succeeded());
2119       return op.gc_succeeded();
2120     }
2121 
2122     // If VMOp skipped initiating concurrent marking cycle because
2123     // we're terminating, then we're done.
2124     if (op.terminating()) {
2125       LOG_COLLECT_CONCURRENTLY(cause, "skipped: terminating");
2126       return false;
2127     }
2128 
2129     // Lock to get consistent set of values.
2130     uint old_marking_started_after;
2131     uint old_marking_completed_after;
2132     {
2133       MutexLocker ml(Heap_lock);
2134       // Update gc_counter for retrying VMOp if needed. Captured here to be
2135       // consistent with the values we use below for termination tests.  If
2136       // a retry is needed after a possible wait, and another collection
2137       // occurs in the meantime, it will cause our retry to be skipped and
2138       // we'll recheck for termination with updated conditions from that
2139       // more recent collection.  That's what we want, rather than having
2140       // our retry possibly perform an unnecessary collection.
2141       gc_counter = total_collections();
2142       old_marking_started_after = _old_marking_cycles_started;
2143       old_marking_completed_after = _old_marking_cycles_completed;
2144     }
2145 
2146     if (cause == GCCause::_wb_breakpoint) {
2147       if (op.gc_succeeded()) {
2148         LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, true);
2149         return true;
2150       }
2151       // When _wb_breakpoint there can't be another cycle or deferred.
2152       assert(!op.cycle_already_in_progress(), "invariant");
2153       assert(!op.whitebox_attached(), "invariant");
2154       // Concurrent cycle attempt might have been cancelled by some other
2155       // collection, so retry.  Unlike other cases below, we want to retry
2156       // even if cancelled by a STW full collection, because we really want
2157       // to start a concurrent cycle.
2158       if (old_marking_started_before != old_marking_started_after) {
2159         LOG_COLLECT_CONCURRENTLY(cause, "ignoring STW full GC");
2160         old_marking_started_before = old_marking_started_after;
2161       }
2162     } else if (!GCCause::is_user_requested_gc(cause)) {
2163       // For an "automatic" (not user-requested) collection, we just need to
2164       // ensure that progress is made.
2165       //
2166       // Request is finished if any of
2167       // (1) the VMOp successfully performed a GC,
2168       // (2) a concurrent cycle was already in progress,
2169       // (3) whitebox is controlling concurrent cycles,
2170       // (4) a new cycle was started (by this thread or some other), or
2171       // (5) a Full GC was performed.
2172       // Cases (4) and (5) are detected together by a change to
2173       // _old_marking_cycles_started.
2174       //
2175       // Note that (1) does not imply (4).  If we're still in the mixed
2176       // phase of an earlier concurrent collection, the request to make the
2177       // collection an initial-mark won't be honored.  If we don't check for
2178       // both conditions we'll spin doing back-to-back collections.
2179       if (op.gc_succeeded() ||
2180           op.cycle_already_in_progress() ||
2181           op.whitebox_attached() ||
2182           (old_marking_started_before != old_marking_started_after)) {
2183         LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, true);
2184         return true;
2185       }
2186     } else {                    // User-requested GC.
2187       // For a user-requested collection, we want to ensure that a complete
2188       // full collection has been performed before returning, but without
2189       // waiting for more than needed.
2190 
2191       // For user-requested GCs (unlike non-UR), a successful VMOp implies a
2192       // new cycle was started.  That's good, because it's not clear what we
2193       // should do otherwise.  Trying again just does back to back GCs.
2194       // Can't wait for someone else to start a cycle.  And returning fails
2195       // to meet the goal of ensuring a full collection was performed.
2196       assert(!op.gc_succeeded() ||
2197              (old_marking_started_before != old_marking_started_after),
2198              "invariant: succeeded %s, started before %u, started after %u",
2199              BOOL_TO_STR(op.gc_succeeded()),
2200              old_marking_started_before, old_marking_started_after);
2201 
2202       // Request is finished if a full collection (concurrent or stw)
2203       // was started after this request and has completed, e.g.
2204       // started_before < completed_after.
2205       if (gc_counter_less_than(old_marking_started_before,
2206                                old_marking_completed_after)) {
2207         LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, true);
2208         return true;
2209       }
2210 
2211       if (old_marking_started_after != old_marking_completed_after) {
2212         // If there is an in-progress cycle (possibly started by us), then
2213         // wait for that cycle to complete, e.g.
2214         // while completed_now < started_after.
2215         LOG_COLLECT_CONCURRENTLY(cause, "wait");
2216         MonitorLocker ml(G1OldGCCount_lock);
2217         while (gc_counter_less_than(_old_marking_cycles_completed,
2218                                     old_marking_started_after)) {
2219           ml.wait();
2220         }
2221         // Request is finished if the collection we just waited for was
2222         // started after this request.
2223         if (old_marking_started_before != old_marking_started_after) {
2224           LOG_COLLECT_CONCURRENTLY(cause, "complete after wait");
2225           return true;
2226         }
2227       }
2228 
2229       // If VMOp was successful then it started a new cycle that the above
2230       // wait &etc should have recognized as finishing this request.  This
2231       // differs from a non-user-request, where gc_succeeded does not imply
2232       // a new cycle was started.
2233       assert(!op.gc_succeeded(), "invariant");
2234 
2235       if (op.cycle_already_in_progress()) {
2236         // If VMOp failed because a cycle was already in progress, it
2237         // is now complete.  But it didn't finish this user-requested
2238         // GC, so try again.
2239         LOG_COLLECT_CONCURRENTLY(cause, "retry after in-progress");
2240         continue;
2241       } else if (op.whitebox_attached()) {
2242         // If WhiteBox wants control, wait for notification of a state
2243         // change in the controller, then try again.  Don't wait for
2244         // release of control, since collections may complete while in
2245         // control.  Note: This won't recognize a STW full collection
2246         // while waiting; we can't wait on multiple monitors.
2247         LOG_COLLECT_CONCURRENTLY(cause, "whitebox control stall");
2248         MonitorLocker ml(ConcurrentGCBreakpoints::monitor());
2249         if (ConcurrentGCBreakpoints::is_controlled()) {
2250           ml.wait();
2251         }
2252         continue;
2253       }
2254     }
2255 
2256     // Collection failed and should be retried.
2257     assert(op.transient_failure(), "invariant");
2258 
2259     if (GCLocker::is_active_and_needs_gc()) {
2260       // If GCLocker is active, wait until clear before retrying.
2261       LOG_COLLECT_CONCURRENTLY(cause, "gc-locker stall");
2262       GCLocker::stall_until_clear();
2263     }
2264 
2265     LOG_COLLECT_CONCURRENTLY(cause, "retry");
2266   }
2267 }
2268 
2269 bool G1CollectedHeap::try_collect(GCCause::Cause cause) {
2270   assert_heap_not_locked();
2271 
2272   // Lock to get consistent set of values.
2273   uint gc_count_before;
2274   uint full_gc_count_before;
2275   uint old_marking_started_before;
2276   {
2277     MutexLocker ml(Heap_lock);
2278     gc_count_before = total_collections();
2279     full_gc_count_before = total_full_collections();
2280     old_marking_started_before = _old_marking_cycles_started;
2281   }
2282 
2283   if (should_do_concurrent_full_gc(cause)) {
2284     return try_collect_concurrently(cause,
2285                                     gc_count_before,
2286                                     old_marking_started_before);
2287   } else if (GCLocker::should_discard(cause, gc_count_before)) {
2288     // Indicate failure to be consistent with VMOp failure due to
2289     // another collection slipping in after our gc_count but before
2290     // our request is processed.
2291     return false;
2292   } else if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2293              DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2294 
2295     // Schedule a standard evacuation pause. We're setting word_size
2296     // to 0 which means that we are not requesting a post-GC allocation.
2297     VM_G1CollectForAllocation op(0,     /* word_size */
2298                                  gc_count_before,
2299                                  cause,
2300                                  policy()->max_pause_time_ms());
2301     VMThread::execute(&op);
2302     return op.gc_succeeded();
2303   } else {
2304     // Schedule a Full GC.
2305     VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2306     VMThread::execute(&op);
2307     return op.gc_succeeded();
2308   }
2309 }
2310 
2311 bool G1CollectedHeap::is_in(const void* p) const {
2312   if (_hrm->reserved().contains(p)) {
2313     // Given that we know that p is in the reserved space,
2314     // heap_region_containing() should successfully
2315     // return the containing region.
2316     HeapRegion* hr = heap_region_containing(p);
2317     return hr->is_in(p);
2318   } else {
2319     return false;
2320   }
2321 }
2322 
2323 #ifdef ASSERT
2324 bool G1CollectedHeap::is_in_exact(const void* p) const {
2325   bool contains = reserved_region().contains(p);
2326   bool available = _hrm->is_available(addr_to_region((HeapWord*)p));
2327   if (contains && available) {
2328     return true;
2329   } else {
2330     return false;
2331   }
2332 }
2333 #endif
2334 
2335 // Iteration functions.
2336 
2337 // Iterates an ObjectClosure over all objects within a HeapRegion.
2338 
2339 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2340   ObjectClosure* _cl;
2341 public:
2342   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2343   bool do_heap_region(HeapRegion* r) {
2344     if (!r->is_continues_humongous()) {
2345       r->object_iterate(_cl);
2346     }
2347     return false;
2348   }
2349 };
2350 
2351 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2352   IterateObjectClosureRegionClosure blk(cl);
2353   heap_region_iterate(&blk);
2354 }
2355 
2356 void G1CollectedHeap::keep_alive(oop obj) {
2357   G1BarrierSet::enqueue(obj);
2358 }
2359 
2360 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2361   _hrm->iterate(cl);
2362 }
2363 
2364 void G1CollectedHeap::heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl,
2365                                                                  HeapRegionClaimer *hrclaimer,
2366                                                                  uint worker_id) const {
2367   _hrm->par_iterate(cl, hrclaimer, hrclaimer->offset_for_worker(worker_id));
2368 }
2369 
2370 void G1CollectedHeap::heap_region_par_iterate_from_start(HeapRegionClosure* cl,
2371                                                          HeapRegionClaimer *hrclaimer) const {
2372   _hrm->par_iterate(cl, hrclaimer, 0);
2373 }
2374 
2375 void G1CollectedHeap::collection_set_iterate_all(HeapRegionClosure* cl) {
2376   _collection_set.iterate(cl);
2377 }
2378 
2379 void G1CollectedHeap::collection_set_par_iterate_all(HeapRegionClosure* cl, HeapRegionClaimer* hr_claimer, uint worker_id) {
2380   _collection_set.par_iterate(cl, hr_claimer, worker_id, workers()->active_workers());
2381 }
2382 
2383 void G1CollectedHeap::collection_set_iterate_increment_from(HeapRegionClosure *cl, HeapRegionClaimer* hr_claimer, uint worker_id) {
2384   _collection_set.iterate_incremental_part_from(cl, hr_claimer, worker_id, workers()->active_workers());
2385 }
2386 
2387 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2388   HeapRegion* hr = heap_region_containing(addr);
2389   return hr->block_start(addr);
2390 }
2391 
2392 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2393   HeapRegion* hr = heap_region_containing(addr);
2394   return hr->block_is_obj(addr);
2395 }
2396 
2397 bool G1CollectedHeap::supports_tlab_allocation() const {
2398   return true;
2399 }
2400 
2401 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2402   return (_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes;
2403 }
2404 
2405 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2406   return _eden.length() * HeapRegion::GrainBytes;
2407 }
2408 
2409 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2410 // must be equal to the humongous object limit.
2411 size_t G1CollectedHeap::max_tlab_size() const {
2412   return align_down(_humongous_object_threshold_in_words, MinObjAlignment);
2413 }
2414 
2415 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2416   return _allocator->unsafe_max_tlab_alloc();
2417 }
2418 
2419 size_t G1CollectedHeap::max_capacity() const {
2420   return _hrm->max_expandable_length() * HeapRegion::GrainBytes;
2421 }
2422 
2423 size_t G1CollectedHeap::max_reserved_capacity() const {
2424   return _hrm->max_length() * HeapRegion::GrainBytes;
2425 }
2426 
2427 jlong G1CollectedHeap::millis_since_last_gc() {
2428   // See the notes in GenCollectedHeap::millis_since_last_gc()
2429   // for more information about the implementation.
2430   jlong ret_val = (os::javaTimeNanos() / NANOSECS_PER_MILLISEC) -
2431                   _policy->collection_pause_end_millis();
2432   if (ret_val < 0) {
2433     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
2434       ". returning zero instead.", ret_val);
2435     return 0;
2436   }
2437   return ret_val;
2438 }
2439 
2440 void G1CollectedHeap::deduplicate_string(oop str) {
2441   assert(java_lang_String::is_instance(str), "invariant");
2442 
2443   if (G1StringDedup::is_enabled()) {
2444     G1StringDedup::deduplicate(str);
2445   }
2446 }
2447 
2448 void G1CollectedHeap::prepare_for_verify() {
2449   _verifier->prepare_for_verify();
2450 }
2451 
2452 void G1CollectedHeap::verify(VerifyOption vo) {
2453   _verifier->verify(vo);
2454 }
2455 
2456 bool G1CollectedHeap::supports_concurrent_gc_breakpoints() const {
2457   return true;
2458 }
2459 
2460 bool G1CollectedHeap::is_heterogeneous_heap() const {
2461   return G1Arguments::is_heterogeneous_heap();
2462 }
2463 
2464 class PrintRegionClosure: public HeapRegionClosure {
2465   outputStream* _st;
2466 public:
2467   PrintRegionClosure(outputStream* st) : _st(st) {}
2468   bool do_heap_region(HeapRegion* r) {
2469     r->print_on(_st);
2470     return false;
2471   }
2472 };
2473 
2474 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2475                                        const HeapRegion* hr,
2476                                        const VerifyOption vo) const {
2477   switch (vo) {
2478   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
2479   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
2480   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj, hr);
2481   default:                            ShouldNotReachHere();
2482   }
2483   return false; // keep some compilers happy
2484 }
2485 
2486 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2487                                        const VerifyOption vo) const {
2488   switch (vo) {
2489   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
2490   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
2491   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj);
2492   default:                            ShouldNotReachHere();
2493   }
2494   return false; // keep some compilers happy
2495 }
2496 
2497 void G1CollectedHeap::print_heap_regions() const {
2498   LogTarget(Trace, gc, heap, region) lt;
2499   if (lt.is_enabled()) {
2500     LogStream ls(lt);
2501     print_regions_on(&ls);
2502   }
2503 }
2504 
2505 void G1CollectedHeap::print_on(outputStream* st) const {
2506   st->print(" %-20s", "garbage-first heap");
2507   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2508             capacity()/K, used_unlocked()/K);
2509   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ")",
2510             p2i(_hrm->reserved().start()),
2511             p2i(_hrm->reserved().end()));
2512   st->cr();
2513   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
2514   uint young_regions = young_regions_count();
2515   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
2516             (size_t) young_regions * HeapRegion::GrainBytes / K);
2517   uint survivor_regions = survivor_regions_count();
2518   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
2519             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
2520   st->cr();
2521   if (_numa->is_enabled()) {
2522     uint num_nodes = _numa->num_active_nodes();
2523     st->print("  remaining free region(s) on each NUMA node: ");
2524     const int* node_ids = _numa->node_ids();
2525     for (uint node_index = 0; node_index < num_nodes; node_index++) {
2526       st->print("%d=%u ", node_ids[node_index], _hrm->num_free_regions(node_index));
2527     }
2528     st->cr();
2529   }
2530   MetaspaceUtils::print_on(st);
2531 }
2532 
2533 void G1CollectedHeap::print_regions_on(outputStream* st) const {
2534   st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
2535                "HS=humongous(starts), HC=humongous(continues), "
2536                "CS=collection set, F=free, "
2537                "OA=open archive, CA=closed archive, "
2538                "TAMS=top-at-mark-start (previous, next)");
2539   PrintRegionClosure blk(st);
2540   heap_region_iterate(&blk);
2541 }
2542 
2543 void G1CollectedHeap::print_extended_on(outputStream* st) const {
2544   print_on(st);
2545 
2546   // Print the per-region information.
2547   print_regions_on(st);
2548 }
2549 
2550 void G1CollectedHeap::print_on_error(outputStream* st) const {
2551   this->CollectedHeap::print_on_error(st);
2552 
2553   if (_cm != NULL) {
2554     st->cr();
2555     _cm->print_on_error(st);
2556   }
2557 }
2558 
2559 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
2560   workers()->print_worker_threads_on(st);
2561   _cm_thread->print_on(st);
2562   st->cr();
2563   _cm->print_worker_threads_on(st);
2564   _cr->print_threads_on(st);
2565   _young_gen_sampling_thread->print_on(st);
2566   if (G1StringDedup::is_enabled()) {
2567     G1StringDedup::print_worker_threads_on(st);
2568   }
2569 }
2570 
2571 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2572   workers()->threads_do(tc);
2573   tc->do_thread(_cm_thread);
2574   _cm->threads_do(tc);
2575   _cr->threads_do(tc);
2576   tc->do_thread(_young_gen_sampling_thread);
2577   if (G1StringDedup::is_enabled()) {
2578     G1StringDedup::threads_do(tc);
2579   }
2580 }
2581 
2582 void G1CollectedHeap::print_tracing_info() const {
2583   rem_set()->print_summary_info();
2584   concurrent_mark()->print_summary_info();
2585 }
2586 
2587 #ifndef PRODUCT
2588 // Helpful for debugging RSet issues.
2589 
2590 class PrintRSetsClosure : public HeapRegionClosure {
2591 private:
2592   const char* _msg;
2593   size_t _occupied_sum;
2594 
2595 public:
2596   bool do_heap_region(HeapRegion* r) {
2597     HeapRegionRemSet* hrrs = r->rem_set();
2598     size_t occupied = hrrs->occupied();
2599     _occupied_sum += occupied;
2600 
2601     tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r));
2602     if (occupied == 0) {
2603       tty->print_cr("  RSet is empty");
2604     } else {
2605       hrrs->print();
2606     }
2607     tty->print_cr("----------");
2608     return false;
2609   }
2610 
2611   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
2612     tty->cr();
2613     tty->print_cr("========================================");
2614     tty->print_cr("%s", msg);
2615     tty->cr();
2616   }
2617 
2618   ~PrintRSetsClosure() {
2619     tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
2620     tty->print_cr("========================================");
2621     tty->cr();
2622   }
2623 };
2624 
2625 void G1CollectedHeap::print_cset_rsets() {
2626   PrintRSetsClosure cl("Printing CSet RSets");
2627   collection_set_iterate_all(&cl);
2628 }
2629 
2630 void G1CollectedHeap::print_all_rsets() {
2631   PrintRSetsClosure cl("Printing All RSets");;
2632   heap_region_iterate(&cl);
2633 }
2634 #endif // PRODUCT
2635 
2636 bool G1CollectedHeap::print_location(outputStream* st, void* addr) const {
2637   return BlockLocationPrinter<G1CollectedHeap>::print_location(st, addr);
2638 }
2639 
2640 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
2641 
2642   size_t eden_used_bytes = _eden.used_bytes();
2643   size_t survivor_used_bytes = _survivor.used_bytes();
2644   size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2645 
2646   size_t eden_capacity_bytes =
2647     (policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
2648 
2649   VirtualSpaceSummary heap_summary = create_heap_space_summary();
2650   return G1HeapSummary(heap_summary, heap_used, eden_used_bytes,
2651                        eden_capacity_bytes, survivor_used_bytes, num_regions());
2652 }
2653 
2654 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
2655   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
2656                        stats->unused(), stats->used(), stats->region_end_waste(),
2657                        stats->regions_filled(), stats->direct_allocated(),
2658                        stats->failure_used(), stats->failure_waste());
2659 }
2660 
2661 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
2662   const G1HeapSummary& heap_summary = create_g1_heap_summary();
2663   gc_tracer->report_gc_heap_summary(when, heap_summary);
2664 
2665   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
2666   gc_tracer->report_metaspace_summary(when, metaspace_summary);
2667 }
2668 
2669 G1CollectedHeap* G1CollectedHeap::heap() {
2670   CollectedHeap* heap = Universe::heap();
2671   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
2672   assert(heap->kind() == CollectedHeap::G1, "Invalid name");
2673   return (G1CollectedHeap*)heap;
2674 }
2675 
2676 void G1CollectedHeap::gc_prologue(bool full) {
2677   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
2678 
2679   // This summary needs to be printed before incrementing total collections.
2680   rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());
2681 
2682   // Update common counters.
2683   increment_total_collections(full /* full gc */);
2684   if (full || collector_state()->in_initial_mark_gc()) {
2685     increment_old_marking_cycles_started();
2686   }
2687 
2688   // Fill TLAB's and such
2689   {
2690     Ticks start = Ticks::now();
2691     ensure_parsability(true);
2692     Tickspan dt = Ticks::now() - start;
2693     phase_times()->record_prepare_tlab_time_ms(dt.seconds() * MILLIUNITS);
2694   }
2695 
2696   if (!full) {
2697     // Flush dirty card queues to qset, so later phases don't need to account
2698     // for partially filled per-thread queues and such.  Not needed for full
2699     // collections, which ignore those logs.
2700     Ticks start = Ticks::now();
2701     G1BarrierSet::dirty_card_queue_set().concatenate_logs();
2702     Tickspan dt = Ticks::now() - start;
2703     phase_times()->record_concatenate_dirty_card_logs_time_ms(dt.seconds() * MILLIUNITS);
2704   }
2705 }
2706 
2707 void G1CollectedHeap::gc_epilogue(bool full) {
2708   // Update common counters.
2709   if (full) {
2710     // Update the number of full collections that have been completed.
2711     increment_old_marking_cycles_completed(false /* concurrent */);
2712   }
2713 
2714   // We are at the end of the GC. Total collections has already been increased.
2715   rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);
2716 
2717   // FIXME: what is this about?
2718   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
2719   // is set.
2720 #if COMPILER2_OR_JVMCI
2721   assert(DerivedPointerTable::is_empty(), "derived pointer present");
2722 #endif
2723 
2724   double start = os::elapsedTime();
2725   resize_all_tlabs();
2726   phase_times()->record_resize_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2727 
2728   MemoryService::track_memory_usage();
2729   // We have just completed a GC. Update the soft reference
2730   // policy with the new heap occupancy
2731   Universe::update_heap_info_at_gc();
2732 
2733   // Print NUMA statistics.
2734   _numa->print_statistics();
2735 }
2736 
2737 void G1CollectedHeap::verify_numa_regions(const char* desc) {
2738   LogTarget(Trace, gc, heap, verify) lt;
2739 
2740   if (lt.is_enabled()) {
2741     LogStream ls(lt);
2742     // Iterate all heap regions to print matching between preferred numa id and actual numa id.
2743     G1NodeIndexCheckClosure cl(desc, _numa, &ls);
2744     heap_region_iterate(&cl);
2745   }
2746 }
2747 
2748 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
2749                                                uint gc_count_before,
2750                                                bool* succeeded,
2751                                                GCCause::Cause gc_cause) {
2752   assert_heap_not_locked_and_not_at_safepoint();
2753   VM_G1CollectForAllocation op(word_size,
2754                                gc_count_before,
2755                                gc_cause,
2756                                policy()->max_pause_time_ms());
2757   VMThread::execute(&op);
2758 
2759   HeapWord* result = op.result();
2760   bool ret_succeeded = op.prologue_succeeded() && op.gc_succeeded();
2761   assert(result == NULL || ret_succeeded,
2762          "the result should be NULL if the VM did not succeed");
2763   *succeeded = ret_succeeded;
2764 
2765   assert_heap_not_locked();
2766   return result;
2767 }
2768 
2769 void G1CollectedHeap::do_concurrent_mark() {
2770   MutexLocker x(CGC_lock, Mutex::_no_safepoint_check_flag);
2771   if (!_cm_thread->in_progress()) {
2772     _cm_thread->set_started();
2773     CGC_lock->notify();
2774   }
2775 }
2776 
2777 bool G1CollectedHeap::is_potential_eager_reclaim_candidate(HeapRegion* r) const {
2778   // We don't nominate objects with many remembered set entries, on
2779   // the assumption that such objects are likely still live.
2780   HeapRegionRemSet* rem_set = r->rem_set();
2781 
2782   return G1EagerReclaimHumongousObjectsWithStaleRefs ?
2783          rem_set->occupancy_less_or_equal_than(G1RSetSparseRegionEntries) :
2784          G1EagerReclaimHumongousObjects && rem_set->is_empty();
2785 }
2786 
2787 #ifndef PRODUCT
2788 void G1CollectedHeap::verify_region_attr_remset_update() {
2789   class VerifyRegionAttrRemSet : public HeapRegionClosure {
2790   public:
2791     virtual bool do_heap_region(HeapRegion* r) {
2792       G1CollectedHeap* g1h = G1CollectedHeap::heap();
2793       bool const needs_remset_update = g1h->region_attr(r->bottom()).needs_remset_update();
2794       assert(r->rem_set()->is_tracked() == needs_remset_update,
2795              "Region %u remset tracking status (%s) different to region attribute (%s)",
2796              r->hrm_index(), BOOL_TO_STR(r->rem_set()->is_tracked()), BOOL_TO_STR(needs_remset_update));
2797       return false;
2798     }
2799   } cl;
2800   heap_region_iterate(&cl);
2801 }
2802 #endif
2803 
2804 class VerifyRegionRemSetClosure : public HeapRegionClosure {
2805   public:
2806     bool do_heap_region(HeapRegion* hr) {
2807       if (!hr->is_archive() && !hr->is_continues_humongous()) {
2808         hr->verify_rem_set();
2809       }
2810       return false;
2811     }
2812 };
2813 
2814 uint G1CollectedHeap::num_task_queues() const {
2815   return _task_queues->size();
2816 }
2817 
2818 #if TASKQUEUE_STATS
2819 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
2820   st->print_raw_cr("GC Task Stats");
2821   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
2822   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
2823 }
2824 
2825 void G1CollectedHeap::print_taskqueue_stats() const {
2826   if (!log_is_enabled(Trace, gc, task, stats)) {
2827     return;
2828   }
2829   Log(gc, task, stats) log;
2830   ResourceMark rm;
2831   LogStream ls(log.trace());
2832   outputStream* st = &ls;
2833 
2834   print_taskqueue_stats_hdr(st);
2835 
2836   TaskQueueStats totals;
2837   const uint n = num_task_queues();
2838   for (uint i = 0; i < n; ++i) {
2839     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
2840     totals += task_queue(i)->stats;
2841   }
2842   st->print_raw("tot "); totals.print(st); st->cr();
2843 
2844   DEBUG_ONLY(totals.verify());
2845 }
2846 
2847 void G1CollectedHeap::reset_taskqueue_stats() {
2848   const uint n = num_task_queues();
2849   for (uint i = 0; i < n; ++i) {
2850     task_queue(i)->stats.reset();
2851   }
2852 }
2853 #endif // TASKQUEUE_STATS
2854 
2855 void G1CollectedHeap::wait_for_root_region_scanning() {
2856   double scan_wait_start = os::elapsedTime();
2857   // We have to wait until the CM threads finish scanning the
2858   // root regions as it's the only way to ensure that all the
2859   // objects on them have been correctly scanned before we start
2860   // moving them during the GC.
2861   bool waited = _cm->root_regions()->wait_until_scan_finished();
2862   double wait_time_ms = 0.0;
2863   if (waited) {
2864     double scan_wait_end = os::elapsedTime();
2865     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
2866   }
2867   phase_times()->record_root_region_scan_wait_time(wait_time_ms);
2868 }
2869 
2870 class G1PrintCollectionSetClosure : public HeapRegionClosure {
2871 private:
2872   G1HRPrinter* _hr_printer;
2873 public:
2874   G1PrintCollectionSetClosure(G1HRPrinter* hr_printer) : HeapRegionClosure(), _hr_printer(hr_printer) { }
2875 
2876   virtual bool do_heap_region(HeapRegion* r) {
2877     _hr_printer->cset(r);
2878     return false;
2879   }
2880 };
2881 
2882 void G1CollectedHeap::start_new_collection_set() {
2883   double start = os::elapsedTime();
2884 
2885   collection_set()->start_incremental_building();
2886 
2887   clear_region_attr();
2888 
2889   guarantee(_eden.length() == 0, "eden should have been cleared");
2890   policy()->transfer_survivors_to_cset(survivor());
2891 
2892   // We redo the verification but now wrt to the new CSet which
2893   // has just got initialized after the previous CSet was freed.
2894   _cm->verify_no_collection_set_oops();
2895 
2896   phase_times()->record_start_new_cset_time_ms((os::elapsedTime() - start) * 1000.0);
2897 }
2898 
2899 void G1CollectedHeap::calculate_collection_set(G1EvacuationInfo& evacuation_info, double target_pause_time_ms) {
2900 
2901   _collection_set.finalize_initial_collection_set(target_pause_time_ms, &_survivor);
2902   evacuation_info.set_collectionset_regions(collection_set()->region_length() +
2903                                             collection_set()->optional_region_length());
2904 
2905   _cm->verify_no_collection_set_oops();
2906 
2907   if (_hr_printer.is_active()) {
2908     G1PrintCollectionSetClosure cl(&_hr_printer);
2909     _collection_set.iterate(&cl);
2910     _collection_set.iterate_optional(&cl);
2911   }
2912 }
2913 
2914 G1HeapVerifier::G1VerifyType G1CollectedHeap::young_collection_verify_type() const {
2915   if (collector_state()->in_initial_mark_gc()) {
2916     return G1HeapVerifier::G1VerifyConcurrentStart;
2917   } else if (collector_state()->in_young_only_phase()) {
2918     return G1HeapVerifier::G1VerifyYoungNormal;
2919   } else {
2920     return G1HeapVerifier::G1VerifyMixed;
2921   }
2922 }
2923 
2924 void G1CollectedHeap::verify_before_young_collection(G1HeapVerifier::G1VerifyType type) {
2925   if (VerifyRememberedSets) {
2926     log_info(gc, verify)("[Verifying RemSets before GC]");
2927     VerifyRegionRemSetClosure v_cl;
2928     heap_region_iterate(&v_cl);
2929   }
2930   _verifier->verify_before_gc(type);
2931   _verifier->check_bitmaps("GC Start");
2932   verify_numa_regions("GC Start");
2933 }
2934 
2935 void G1CollectedHeap::verify_after_young_collection(G1HeapVerifier::G1VerifyType type) {
2936   if (VerifyRememberedSets) {
2937     log_info(gc, verify)("[Verifying RemSets after GC]");
2938     VerifyRegionRemSetClosure v_cl;
2939     heap_region_iterate(&v_cl);
2940   }
2941   _verifier->verify_after_gc(type);
2942   _verifier->check_bitmaps("GC End");
2943   verify_numa_regions("GC End");
2944 }
2945 
2946 void G1CollectedHeap::expand_heap_after_young_collection(){
2947   size_t expand_bytes = _heap_sizing_policy->expansion_amount();
2948   if (expand_bytes > 0) {
2949     // No need for an ergo logging here,
2950     // expansion_amount() does this when it returns a value > 0.
2951     double expand_ms;
2952     if (!expand(expand_bytes, _workers, &expand_ms)) {
2953       // We failed to expand the heap. Cannot do anything about it.
2954     }
2955     phase_times()->record_expand_heap_time(expand_ms);
2956   }
2957 }
2958 
2959 const char* G1CollectedHeap::young_gc_name() const {
2960   if (collector_state()->in_initial_mark_gc()) {
2961     return "Pause Young (Concurrent Start)";
2962   } else if (collector_state()->in_young_only_phase()) {
2963     if (collector_state()->in_young_gc_before_mixed()) {
2964       return "Pause Young (Prepare Mixed)";
2965     } else {
2966       return "Pause Young (Normal)";
2967     }
2968   } else {
2969     return "Pause Young (Mixed)";
2970   }
2971 }
2972 
2973 bool G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
2974   assert_at_safepoint_on_vm_thread();
2975   guarantee(!is_gc_active(), "collection is not reentrant");
2976 
2977   if (GCLocker::check_active_before_gc()) {
2978     return false;
2979   }
2980 
2981   do_collection_pause_at_safepoint_helper(target_pause_time_ms);
2982   if (should_upgrade_to_full_gc(gc_cause())) {
2983     log_info(gc, ergo)("Attempting maximally compacting collection");
2984     bool result = do_full_collection(false /* explicit gc */,
2985                                      true /* clear_all_soft_refs */);
2986     // do_full_collection only fails if blocked by GC locker, but
2987     // we've already checked for that above.
2988     assert(result, "invariant");
2989   }
2990   return true;
2991 }
2992 
2993 void G1CollectedHeap::do_collection_pause_at_safepoint_helper(double target_pause_time_ms) {
2994   GCIdMark gc_id_mark;
2995 
2996   SvcGCMarker sgcm(SvcGCMarker::MINOR);
2997   ResourceMark rm;
2998 
2999   policy()->note_gc_start();
3000 
3001   _gc_timer_stw->register_gc_start();
3002   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3003 
3004   wait_for_root_region_scanning();
3005 
3006   print_heap_before_gc();
3007   print_heap_regions();
3008   trace_heap_before_gc(_gc_tracer_stw);
3009 
3010   _verifier->verify_region_sets_optional();
3011   _verifier->verify_dirty_young_regions();
3012 
3013   // We should not be doing initial mark unless the conc mark thread is running
3014   if (!_cm_thread->should_terminate()) {
3015     // This call will decide whether this pause is an initial-mark
3016     // pause. If it is, in_initial_mark_gc() will return true
3017     // for the duration of this pause.
3018     policy()->decide_on_conc_mark_initiation();
3019   }
3020 
3021   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3022   assert(!collector_state()->in_initial_mark_gc() ||
3023          collector_state()->in_young_only_phase(), "sanity");
3024   // We also do not allow mixed GCs during marking.
3025   assert(!collector_state()->mark_or_rebuild_in_progress() || collector_state()->in_young_only_phase(), "sanity");
3026 
3027   // Record whether this pause is an initial mark. When the current
3028   // thread has completed its logging output and it's safe to signal
3029   // the CM thread, the flag's value in the policy has been reset.
3030   bool should_start_conc_mark = collector_state()->in_initial_mark_gc();
3031   if (should_start_conc_mark) {
3032     _cm->gc_tracer_cm()->set_gc_cause(gc_cause());
3033   }
3034 
3035   // Inner scope for scope based logging, timers, and stats collection
3036   {
3037     G1EvacuationInfo evacuation_info;
3038 
3039     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
3040 
3041     GCTraceCPUTime tcpu;
3042 
3043     GCTraceTime(Info, gc) tm(young_gc_name(), NULL, gc_cause(), true);
3044 
3045     uint active_workers = WorkerPolicy::calc_active_workers(workers()->total_workers(),
3046                                                             workers()->active_workers(),
3047                                                             Threads::number_of_non_daemon_threads());
3048     active_workers = workers()->update_active_workers(active_workers);
3049     log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers()->total_workers());
3050 
3051     G1MonitoringScope ms(g1mm(),
3052                          false /* full_gc */,
3053                          collector_state()->yc_type() == Mixed /* all_memory_pools_affected */);
3054 
3055     G1HeapTransition heap_transition(this);
3056 
3057     {
3058       IsGCActiveMark x;
3059 
3060       gc_prologue(false);
3061 
3062       G1HeapVerifier::G1VerifyType verify_type = young_collection_verify_type();
3063       verify_before_young_collection(verify_type);
3064 
3065       {
3066         // The elapsed time induced by the start time below deliberately elides
3067         // the possible verification above.
3068         double sample_start_time_sec = os::elapsedTime();
3069 
3070         // Please see comment in g1CollectedHeap.hpp and
3071         // G1CollectedHeap::ref_processing_init() to see how
3072         // reference processing currently works in G1.
3073         _ref_processor_stw->enable_discovery();
3074 
3075         // We want to temporarily turn off discovery by the
3076         // CM ref processor, if necessary, and turn it back on
3077         // on again later if we do. Using a scoped
3078         // NoRefDiscovery object will do this.
3079         NoRefDiscovery no_cm_discovery(_ref_processor_cm);
3080 
3081         policy()->record_collection_pause_start(sample_start_time_sec);
3082 
3083         // Forget the current allocation region (we might even choose it to be part
3084         // of the collection set!).
3085         _allocator->release_mutator_alloc_regions();
3086 
3087         calculate_collection_set(evacuation_info, target_pause_time_ms);
3088 
3089         G1RedirtyCardsQueueSet rdcqs(G1BarrierSet::dirty_card_queue_set().allocator());
3090         G1ParScanThreadStateSet per_thread_states(this,
3091                                                   &rdcqs,
3092                                                   workers()->active_workers(),
3093                                                   collection_set()->young_region_length(),
3094                                                   collection_set()->optional_region_length());
3095         pre_evacuate_collection_set(evacuation_info, &per_thread_states);
3096 
3097         // Actually do the work...
3098         evacuate_initial_collection_set(&per_thread_states);
3099 
3100         if (_collection_set.optional_region_length() != 0) {
3101           evacuate_optional_collection_set(&per_thread_states);
3102         }
3103         post_evacuate_collection_set(evacuation_info, &rdcqs, &per_thread_states);
3104 
3105         start_new_collection_set();
3106 
3107         _survivor_evac_stats.adjust_desired_plab_sz();
3108         _old_evac_stats.adjust_desired_plab_sz();
3109 
3110         if (should_start_conc_mark) {
3111           // We have to do this before we notify the CM threads that
3112           // they can start working to make sure that all the
3113           // appropriate initialization is done on the CM object.
3114           concurrent_mark()->post_initial_mark();
3115           // Note that we don't actually trigger the CM thread at
3116           // this point. We do that later when we're sure that
3117           // the current thread has completed its logging output.
3118         }
3119 
3120         allocate_dummy_regions();
3121 
3122         _allocator->init_mutator_alloc_regions();
3123 
3124         expand_heap_after_young_collection();
3125 
3126         double sample_end_time_sec = os::elapsedTime();
3127         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3128         policy()->record_collection_pause_end(pause_time_ms);
3129       }
3130 
3131       verify_after_young_collection(verify_type);
3132 
3133       gc_epilogue(false);
3134     }
3135 
3136     // Print the remainder of the GC log output.
3137     if (evacuation_failed()) {
3138       log_info(gc)("To-space exhausted");
3139     }
3140 
3141     policy()->print_phases();
3142     heap_transition.print();
3143 
3144     _hrm->verify_optional();
3145     _verifier->verify_region_sets_optional();
3146 
3147     TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
3148     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3149 
3150     print_heap_after_gc();
3151     print_heap_regions();
3152     trace_heap_after_gc(_gc_tracer_stw);
3153 
3154     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3155     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3156     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3157     // before any GC notifications are raised.
3158     g1mm()->update_sizes();
3159 
3160     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3161     _gc_tracer_stw->report_tenuring_threshold(_policy->tenuring_threshold());
3162     _gc_timer_stw->register_gc_end();
3163     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3164   }
3165   // It should now be safe to tell the concurrent mark thread to start
3166   // without its logging output interfering with the logging output
3167   // that came from the pause.
3168 
3169   if (should_start_conc_mark) {
3170     // CAUTION: after the doConcurrentMark() call below, the concurrent marking
3171     // thread(s) could be running concurrently with us. Make sure that anything
3172     // after this point does not assume that we are the only GC thread running.
3173     // Note: of course, the actual marking work will not start until the safepoint
3174     // itself is released in SuspendibleThreadSet::desynchronize().
3175     do_concurrent_mark();
3176     ConcurrentGCBreakpoints::notify_idle_to_active();
3177   }
3178 }
3179 
3180 void G1CollectedHeap::remove_self_forwarding_pointers(G1RedirtyCardsQueueSet* rdcqs) {
3181   G1ParRemoveSelfForwardPtrsTask rsfp_task(rdcqs);
3182   workers()->run_task(&rsfp_task);
3183 }
3184 
3185 void G1CollectedHeap::restore_after_evac_failure(G1RedirtyCardsQueueSet* rdcqs) {
3186   double remove_self_forwards_start = os::elapsedTime();
3187 
3188   remove_self_forwarding_pointers(rdcqs);
3189   _preserved_marks_set.restore(workers());
3190 
3191   phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
3192 }
3193 
3194 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markWord m) {
3195   if (!_evacuation_failed) {
3196     _evacuation_failed = true;
3197   }
3198 
3199   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
3200   _preserved_marks_set.get(worker_id)->push_if_necessary(obj, m);
3201 }
3202 
3203 bool G1ParEvacuateFollowersClosure::offer_termination() {
3204   EventGCPhaseParallel event;
3205   G1ParScanThreadState* const pss = par_scan_state();
3206   start_term_time();
3207   const bool res = terminator()->offer_termination();
3208   end_term_time();
3209   event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(G1GCPhaseTimes::Termination));
3210   return res;
3211 }
3212 
3213 void G1ParEvacuateFollowersClosure::do_void() {
3214   EventGCPhaseParallel event;
3215   G1ParScanThreadState* const pss = par_scan_state();
3216   pss->trim_queue();
3217   event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(_phase));
3218   do {
3219     EventGCPhaseParallel event;
3220     pss->steal_and_trim_queue(queues());
3221     event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(_phase));
3222   } while (!offer_termination());
3223 }
3224 
3225 void G1CollectedHeap::complete_cleaning(BoolObjectClosure* is_alive,
3226                                         bool class_unloading_occurred) {
3227   uint num_workers = workers()->active_workers();
3228   G1ParallelCleaningTask unlink_task(is_alive, num_workers, class_unloading_occurred, false);
3229   workers()->run_task(&unlink_task);
3230 }
3231 
3232 // Clean string dedup data structures.
3233 // Ideally we would prefer to use a StringDedupCleaningTask here, but we want to
3234 // record the durations of the phases. Hence the almost-copy.
3235 class G1StringDedupCleaningTask : public AbstractGangTask {
3236   BoolObjectClosure* _is_alive;
3237   OopClosure* _keep_alive;
3238   G1GCPhaseTimes* _phase_times;
3239 
3240 public:
3241   G1StringDedupCleaningTask(BoolObjectClosure* is_alive,
3242                             OopClosure* keep_alive,
3243                             G1GCPhaseTimes* phase_times) :
3244     AbstractGangTask("Partial Cleaning Task"),
3245     _is_alive(is_alive),
3246     _keep_alive(keep_alive),
3247     _phase_times(phase_times)
3248   {
3249     assert(G1StringDedup::is_enabled(), "String deduplication disabled.");
3250     StringDedup::gc_prologue(true);
3251   }
3252 
3253   ~G1StringDedupCleaningTask() {
3254     StringDedup::gc_epilogue();
3255   }
3256 
3257   void work(uint worker_id) {
3258     StringDedupUnlinkOrOopsDoClosure cl(_is_alive, _keep_alive);
3259     {
3260       G1GCParPhaseTimesTracker x(_phase_times, G1GCPhaseTimes::StringDedupQueueFixup, worker_id);
3261       StringDedupQueue::unlink_or_oops_do(&cl);
3262     }
3263     {
3264       G1GCParPhaseTimesTracker x(_phase_times, G1GCPhaseTimes::StringDedupTableFixup, worker_id);
3265       StringDedupTable::unlink_or_oops_do(&cl, worker_id);
3266     }
3267   }
3268 };
3269 
3270 void G1CollectedHeap::string_dedup_cleaning(BoolObjectClosure* is_alive,
3271                                             OopClosure* keep_alive,
3272                                             G1GCPhaseTimes* phase_times) {
3273   G1StringDedupCleaningTask cl(is_alive, keep_alive, phase_times);
3274   workers()->run_task(&cl);
3275 }
3276 
3277 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
3278  private:
3279   G1RedirtyCardsQueueSet* _qset;
3280   G1CollectedHeap* _g1h;
3281   BufferNode* volatile _nodes;
3282 
3283   void par_apply(RedirtyLoggedCardTableEntryClosure* cl, uint worker_id) {
3284     size_t buffer_size = _qset->buffer_size();
3285     BufferNode* next = Atomic::load(&_nodes);
3286     while (next != NULL) {
3287       BufferNode* node = next;
3288       next = Atomic::cmpxchg(&_nodes, node, node->next());
3289       if (next == node) {
3290         cl->apply_to_buffer(node, buffer_size, worker_id);
3291         next = node->next();
3292       }
3293     }
3294   }
3295 
3296  public:
3297   G1RedirtyLoggedCardsTask(G1RedirtyCardsQueueSet* qset, G1CollectedHeap* g1h) :
3298     AbstractGangTask("Redirty Cards"),
3299     _qset(qset), _g1h(g1h), _nodes(qset->all_completed_buffers()) { }
3300 
3301   virtual void work(uint worker_id) {
3302     G1GCPhaseTimes* p = _g1h->phase_times();
3303     G1GCParPhaseTimesTracker x(p, G1GCPhaseTimes::RedirtyCards, worker_id);
3304 
3305     RedirtyLoggedCardTableEntryClosure cl(_g1h);
3306     par_apply(&cl, worker_id);
3307 
3308     p->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied());
3309   }
3310 };
3311 
3312 void G1CollectedHeap::redirty_logged_cards(G1RedirtyCardsQueueSet* rdcqs) {
3313   double redirty_logged_cards_start = os::elapsedTime();
3314 
3315   G1RedirtyLoggedCardsTask redirty_task(rdcqs, this);
3316   workers()->run_task(&redirty_task);
3317 
3318   G1DirtyCardQueueSet& dcq = G1BarrierSet::dirty_card_queue_set();
3319   dcq.merge_bufferlists(rdcqs);
3320 
3321   phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
3322 }
3323 
3324 // Weak Reference Processing support
3325 
3326 bool G1STWIsAliveClosure::do_object_b(oop p) {
3327   // An object is reachable if it is outside the collection set,
3328   // or is inside and copied.
3329   return !_g1h->is_in_cset(p) || p->is_forwarded();
3330 }
3331 
3332 bool G1STWSubjectToDiscoveryClosure::do_object_b(oop obj) {
3333   assert(obj != NULL, "must not be NULL");
3334   assert(_g1h->is_in_reserved(obj), "Trying to discover obj " PTR_FORMAT " not in heap", p2i(obj));
3335   // The areas the CM and STW ref processor manage must be disjoint. The is_in_cset() below
3336   // may falsely indicate that this is not the case here: however the collection set only
3337   // contains old regions when concurrent mark is not running.
3338   return _g1h->is_in_cset(obj) || _g1h->heap_region_containing(obj)->is_survivor();
3339 }
3340 
3341 // Non Copying Keep Alive closure
3342 class G1KeepAliveClosure: public OopClosure {
3343   G1CollectedHeap*_g1h;
3344 public:
3345   G1KeepAliveClosure(G1CollectedHeap* g1h) :_g1h(g1h) {}
3346   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
3347   void do_oop(oop* p) {
3348     oop obj = *p;
3349     assert(obj != NULL, "the caller should have filtered out NULL values");
3350 
3351     const G1HeapRegionAttr region_attr =_g1h->region_attr(obj);
3352     if (!region_attr.is_in_cset_or_humongous()) {
3353       return;
3354     }
3355     if (region_attr.is_in_cset()) {
3356       assert( obj->is_forwarded(), "invariant" );
3357       *p = obj->forwardee();
3358     } else {
3359       assert(!obj->is_forwarded(), "invariant" );
3360       assert(region_attr.is_humongous(),
3361              "Only allowed G1HeapRegionAttr state is IsHumongous, but is %d", region_attr.type());
3362      _g1h->set_humongous_is_live(obj);
3363     }
3364   }
3365 };
3366 
3367 // Copying Keep Alive closure - can be called from both
3368 // serial and parallel code as long as different worker
3369 // threads utilize different G1ParScanThreadState instances
3370 // and different queues.
3371 
3372 class G1CopyingKeepAliveClosure: public OopClosure {
3373   G1CollectedHeap*         _g1h;
3374   G1ParScanThreadState*    _par_scan_state;
3375 
3376 public:
3377   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
3378                             G1ParScanThreadState* pss):
3379     _g1h(g1h),
3380     _par_scan_state(pss)
3381   {}
3382 
3383   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
3384   virtual void do_oop(      oop* p) { do_oop_work(p); }
3385 
3386   template <class T> void do_oop_work(T* p) {
3387     oop obj = RawAccess<>::oop_load(p);
3388 
3389     if (_g1h->is_in_cset_or_humongous(obj)) {
3390       // If the referent object has been forwarded (either copied
3391       // to a new location or to itself in the event of an
3392       // evacuation failure) then we need to update the reference
3393       // field and, if both reference and referent are in the G1
3394       // heap, update the RSet for the referent.
3395       //
3396       // If the referent has not been forwarded then we have to keep
3397       // it alive by policy. Therefore we have copy the referent.
3398       //
3399       // When the queue is drained (after each phase of reference processing)
3400       // the object and it's followers will be copied, the reference field set
3401       // to point to the new location, and the RSet updated.
3402       _par_scan_state->push_on_queue(p);
3403     }
3404   }
3405 };
3406 
3407 // Serial drain queue closure. Called as the 'complete_gc'
3408 // closure for each discovered list in some of the
3409 // reference processing phases.
3410 
3411 class G1STWDrainQueueClosure: public VoidClosure {
3412 protected:
3413   G1CollectedHeap* _g1h;
3414   G1ParScanThreadState* _par_scan_state;
3415 
3416   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
3417 
3418 public:
3419   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
3420     _g1h(g1h),
3421     _par_scan_state(pss)
3422   { }
3423 
3424   void do_void() {
3425     G1ParScanThreadState* const pss = par_scan_state();
3426     pss->trim_queue();
3427   }
3428 };
3429 
3430 // Parallel Reference Processing closures
3431 
3432 // Implementation of AbstractRefProcTaskExecutor for parallel reference
3433 // processing during G1 evacuation pauses.
3434 
3435 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
3436 private:
3437   G1CollectedHeap*          _g1h;
3438   G1ParScanThreadStateSet*  _pss;
3439   RefToScanQueueSet*        _queues;
3440   WorkGang*                 _workers;
3441 
3442 public:
3443   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
3444                            G1ParScanThreadStateSet* per_thread_states,
3445                            WorkGang* workers,
3446                            RefToScanQueueSet *task_queues) :
3447     _g1h(g1h),
3448     _pss(per_thread_states),
3449     _queues(task_queues),
3450     _workers(workers)
3451   {
3452     g1h->ref_processor_stw()->set_active_mt_degree(workers->active_workers());
3453   }
3454 
3455   // Executes the given task using concurrent marking worker threads.
3456   virtual void execute(ProcessTask& task, uint ergo_workers);
3457 };
3458 
3459 // Gang task for possibly parallel reference processing
3460 
3461 class G1STWRefProcTaskProxy: public AbstractGangTask {
3462   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
3463   ProcessTask&     _proc_task;
3464   G1CollectedHeap* _g1h;
3465   G1ParScanThreadStateSet* _pss;
3466   RefToScanQueueSet* _task_queues;
3467   TaskTerminator* _terminator;
3468 
3469 public:
3470   G1STWRefProcTaskProxy(ProcessTask& proc_task,
3471                         G1CollectedHeap* g1h,
3472                         G1ParScanThreadStateSet* per_thread_states,
3473                         RefToScanQueueSet *task_queues,
3474                         TaskTerminator* terminator) :
3475     AbstractGangTask("Process reference objects in parallel"),
3476     _proc_task(proc_task),
3477     _g1h(g1h),
3478     _pss(per_thread_states),
3479     _task_queues(task_queues),
3480     _terminator(terminator)
3481   {}
3482 
3483   virtual void work(uint worker_id) {
3484     // The reference processing task executed by a single worker.
3485     ResourceMark rm;
3486     HandleMark   hm;
3487 
3488     G1STWIsAliveClosure is_alive(_g1h);
3489 
3490     G1ParScanThreadState* pss = _pss->state_for_worker(worker_id);
3491     pss->set_ref_discoverer(NULL);
3492 
3493     // Keep alive closure.
3494     G1CopyingKeepAliveClosure keep_alive(_g1h, pss);
3495 
3496     // Complete GC closure
3497     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator, G1GCPhaseTimes::ObjCopy);
3498 
3499     // Call the reference processing task's work routine.
3500     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
3501 
3502     // Note we cannot assert that the refs array is empty here as not all
3503     // of the processing tasks (specifically phase2 - pp2_work) execute
3504     // the complete_gc closure (which ordinarily would drain the queue) so
3505     // the queue may not be empty.
3506   }
3507 };
3508 
3509 // Driver routine for parallel reference processing.
3510 // Creates an instance of the ref processing gang
3511 // task and has the worker threads execute it.
3512 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task, uint ergo_workers) {
3513   assert(_workers != NULL, "Need parallel worker threads.");
3514 
3515   assert(_workers->active_workers() >= ergo_workers,
3516          "Ergonomically chosen workers (%u) should be less than or equal to active workers (%u)",
3517          ergo_workers, _workers->active_workers());
3518   TaskTerminator terminator(ergo_workers, _queues);
3519   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
3520 
3521   _workers->run_task(&proc_task_proxy, ergo_workers);
3522 }
3523 
3524 // End of weak reference support closures
3525 
3526 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
3527   double ref_proc_start = os::elapsedTime();
3528 
3529   ReferenceProcessor* rp = _ref_processor_stw;
3530   assert(rp->discovery_enabled(), "should have been enabled");
3531 
3532   // Closure to test whether a referent is alive.
3533   G1STWIsAliveClosure is_alive(this);
3534 
3535   // Even when parallel reference processing is enabled, the processing
3536   // of JNI refs is serial and performed serially by the current thread
3537   // rather than by a worker. The following PSS will be used for processing
3538   // JNI refs.
3539 
3540   // Use only a single queue for this PSS.
3541   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
3542   pss->set_ref_discoverer(NULL);
3543   assert(pss->queue_is_empty(), "pre-condition");
3544 
3545   // Keep alive closure.
3546   G1CopyingKeepAliveClosure keep_alive(this, pss);
3547 
3548   // Serial Complete GC closure
3549   G1STWDrainQueueClosure drain_queue(this, pss);
3550 
3551   // Setup the soft refs policy...
3552   rp->setup_policy(false);
3553 
3554   ReferenceProcessorPhaseTimes* pt = phase_times()->ref_phase_times();
3555 
3556   ReferenceProcessorStats stats;
3557   if (!rp->processing_is_mt()) {
3558     // Serial reference processing...
3559     stats = rp->process_discovered_references(&is_alive,
3560                                               &keep_alive,
3561                                               &drain_queue,
3562                                               NULL,
3563                                               pt);
3564   } else {
3565     uint no_of_gc_workers = workers()->active_workers();
3566 
3567     // Parallel reference processing
3568     assert(no_of_gc_workers <= rp->max_num_queues(),
3569            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
3570            no_of_gc_workers,  rp->max_num_queues());
3571 
3572     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues);
3573     stats = rp->process_discovered_references(&is_alive,
3574                                               &keep_alive,
3575                                               &drain_queue,
3576                                               &par_task_executor,
3577                                               pt);
3578   }
3579 
3580   _gc_tracer_stw->report_gc_reference_stats(stats);
3581 
3582   // We have completed copying any necessary live referent objects.
3583   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
3584 
3585   make_pending_list_reachable();
3586 
3587   assert(!rp->discovery_enabled(), "Postcondition");
3588   rp->verify_no_references_recorded();
3589 
3590   double ref_proc_time = os::elapsedTime() - ref_proc_start;
3591   phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
3592 }
3593 
3594 void G1CollectedHeap::make_pending_list_reachable() {
3595   if (collector_state()->in_initial_mark_gc()) {
3596     oop pll_head = Universe::reference_pending_list();
3597     if (pll_head != NULL) {
3598       // Any valid worker id is fine here as we are in the VM thread and single-threaded.
3599       _cm->mark_in_next_bitmap(0 /* worker_id */, pll_head);
3600     }
3601   }
3602 }
3603 
3604 void G1CollectedHeap::merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states) {
3605   Ticks start = Ticks::now();
3606   per_thread_states->flush();
3607   phase_times()->record_or_add_time_secs(G1GCPhaseTimes::MergePSS, 0 /* worker_id */, (Ticks::now() - start).seconds());
3608 }
3609 
3610 class G1PrepareEvacuationTask : public AbstractGangTask {
3611   class G1PrepareRegionsClosure : public HeapRegionClosure {
3612     G1CollectedHeap* _g1h;
3613     G1PrepareEvacuationTask* _parent_task;
3614     size_t _worker_humongous_total;
3615     size_t _worker_humongous_candidates;
3616 
3617     bool humongous_region_is_candidate(HeapRegion* region) const {
3618       assert(region->is_starts_humongous(), "Must start a humongous object");
3619 
3620       oop obj = oop(region->bottom());
3621 
3622       // Dead objects cannot be eager reclaim candidates. Due to class
3623       // unloading it is unsafe to query their classes so we return early.
3624       if (_g1h->is_obj_dead(obj, region)) {
3625         return false;
3626       }
3627 
3628       // If we do not have a complete remembered set for the region, then we can
3629       // not be sure that we have all references to it.
3630       if (!region->rem_set()->is_complete()) {
3631         return false;
3632       }
3633       // Candidate selection must satisfy the following constraints
3634       // while concurrent marking is in progress:
3635       //
3636       // * In order to maintain SATB invariants, an object must not be
3637       // reclaimed if it was allocated before the start of marking and
3638       // has not had its references scanned.  Such an object must have
3639       // its references (including type metadata) scanned to ensure no
3640       // live objects are missed by the marking process.  Objects
3641       // allocated after the start of concurrent marking don't need to
3642       // be scanned.
3643       //
3644       // * An object must not be reclaimed if it is on the concurrent
3645       // mark stack.  Objects allocated after the start of concurrent
3646       // marking are never pushed on the mark stack.
3647       //
3648       // Nominating only objects allocated after the start of concurrent
3649       // marking is sufficient to meet both constraints.  This may miss
3650       // some objects that satisfy the constraints, but the marking data
3651       // structures don't support efficiently performing the needed
3652       // additional tests or scrubbing of the mark stack.
3653       //
3654       // However, we presently only nominate is_typeArray() objects.
3655       // A humongous object containing references induces remembered
3656       // set entries on other regions.  In order to reclaim such an
3657       // object, those remembered sets would need to be cleaned up.
3658       //
3659       // We also treat is_typeArray() objects specially, allowing them
3660       // to be reclaimed even if allocated before the start of
3661       // concurrent mark.  For this we rely on mark stack insertion to
3662       // exclude is_typeArray() objects, preventing reclaiming an object
3663       // that is in the mark stack.  We also rely on the metadata for
3664       // such objects to be built-in and so ensured to be kept live.
3665       // Frequent allocation and drop of large binary blobs is an
3666       // important use case for eager reclaim, and this special handling
3667       // may reduce needed headroom.
3668 
3669       return obj->is_typeArray() &&
3670              _g1h->is_potential_eager_reclaim_candidate(region);
3671     }
3672 
3673   public:
3674     G1PrepareRegionsClosure(G1CollectedHeap* g1h, G1PrepareEvacuationTask* parent_task) :
3675       _g1h(g1h),
3676       _parent_task(parent_task),
3677       _worker_humongous_total(0),
3678       _worker_humongous_candidates(0) { }
3679 
3680     ~G1PrepareRegionsClosure() {
3681       _parent_task->add_humongous_candidates(_worker_humongous_candidates);
3682       _parent_task->add_humongous_total(_worker_humongous_total);
3683     }
3684 
3685     virtual bool do_heap_region(HeapRegion* hr) {
3686       // First prepare the region for scanning
3687       _g1h->rem_set()->prepare_region_for_scan(hr);
3688 
3689       // Now check if region is a humongous candidate
3690       if (!hr->is_starts_humongous()) {
3691         _g1h->register_region_with_region_attr(hr);
3692         return false;
3693       }
3694 
3695       uint index = hr->hrm_index();
3696       if (humongous_region_is_candidate(hr)) {
3697         _g1h->set_humongous_reclaim_candidate(index, true);
3698         _g1h->register_humongous_region_with_region_attr(index);
3699         _worker_humongous_candidates++;
3700         // We will later handle the remembered sets of these regions.
3701       } else {
3702         _g1h->set_humongous_reclaim_candidate(index, false);
3703         _g1h->register_region_with_region_attr(hr);
3704       }
3705       _worker_humongous_total++;
3706 
3707       return false;
3708     }
3709   };
3710 
3711   G1CollectedHeap* _g1h;
3712   HeapRegionClaimer _claimer;
3713   volatile size_t _humongous_total;
3714   volatile size_t _humongous_candidates;
3715 public:
3716   G1PrepareEvacuationTask(G1CollectedHeap* g1h) :
3717     AbstractGangTask("Prepare Evacuation"),
3718     _g1h(g1h),
3719     _claimer(_g1h->workers()->active_workers()),
3720     _humongous_total(0),
3721     _humongous_candidates(0) { }
3722 
3723   ~G1PrepareEvacuationTask() {
3724     _g1h->set_has_humongous_reclaim_candidate(_humongous_candidates > 0);
3725   }
3726 
3727   void work(uint worker_id) {
3728     G1PrepareRegionsClosure cl(_g1h, this);
3729     _g1h->heap_region_par_iterate_from_worker_offset(&cl, &_claimer, worker_id);
3730   }
3731 
3732   void add_humongous_candidates(size_t candidates) {
3733     Atomic::add(&_humongous_candidates, candidates);
3734   }
3735 
3736   void add_humongous_total(size_t total) {
3737     Atomic::add(&_humongous_total, total);
3738   }
3739 
3740   size_t humongous_candidates() {
3741     return _humongous_candidates;
3742   }
3743 
3744   size_t humongous_total() {
3745     return _humongous_total;
3746   }
3747 };
3748 
3749 void G1CollectedHeap::pre_evacuate_collection_set(G1EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
3750   _bytes_used_during_gc = 0;
3751 
3752   _expand_heap_after_alloc_failure = true;
3753   _evacuation_failed = false;
3754 
3755   // Disable the hot card cache.
3756   _hot_card_cache->reset_hot_cache_claimed_index();
3757   _hot_card_cache->set_use_cache(false);
3758 
3759   // Initialize the GC alloc regions.
3760   _allocator->init_gc_alloc_regions(evacuation_info);
3761 
3762   {
3763     Ticks start = Ticks::now();
3764     rem_set()->prepare_for_scan_heap_roots();
3765     phase_times()->record_prepare_heap_roots_time_ms((Ticks::now() - start).seconds() * 1000.0);
3766   }
3767 
3768   {
3769     G1PrepareEvacuationTask g1_prep_task(this);
3770     Tickspan task_time = run_task(&g1_prep_task);
3771 
3772     phase_times()->record_register_regions(task_time.seconds() * 1000.0,
3773                                            g1_prep_task.humongous_total(),
3774                                            g1_prep_task.humongous_candidates());
3775   }
3776 
3777   assert(_verifier->check_region_attr_table(), "Inconsistency in the region attributes table.");
3778   _preserved_marks_set.assert_empty();
3779 
3780 #if COMPILER2_OR_JVMCI
3781   DerivedPointerTable::clear();
3782 #endif
3783 
3784   // InitialMark needs claim bits to keep track of the marked-through CLDs.
3785   if (collector_state()->in_initial_mark_gc()) {
3786     concurrent_mark()->pre_initial_mark();
3787 
3788     double start_clear_claimed_marks = os::elapsedTime();
3789 
3790     ClassLoaderDataGraph::clear_claimed_marks();
3791 
3792     double recorded_clear_claimed_marks_time_ms = (os::elapsedTime() - start_clear_claimed_marks) * 1000.0;
3793     phase_times()->record_clear_claimed_marks_time_ms(recorded_clear_claimed_marks_time_ms);
3794   }
3795 
3796   // Should G1EvacuationFailureALot be in effect for this GC?
3797   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
3798 }
3799 
3800 class G1EvacuateRegionsBaseTask : public AbstractGangTask {
3801 protected:
3802   G1CollectedHeap* _g1h;
3803   G1ParScanThreadStateSet* _per_thread_states;
3804   RefToScanQueueSet* _task_queues;
3805   TaskTerminator _terminator;
3806   uint _num_workers;
3807 
3808   void evacuate_live_objects(G1ParScanThreadState* pss,
3809                              uint worker_id,
3810                              G1GCPhaseTimes::GCParPhases objcopy_phase,
3811                              G1GCPhaseTimes::GCParPhases termination_phase) {
3812     G1GCPhaseTimes* p = _g1h->phase_times();
3813 
3814     Ticks start = Ticks::now();
3815     G1ParEvacuateFollowersClosure cl(_g1h, pss, _task_queues, &_terminator, objcopy_phase);
3816     cl.do_void();
3817 
3818     assert(pss->queue_is_empty(), "should be empty");
3819 
3820     Tickspan evac_time = (Ticks::now() - start);
3821     p->record_or_add_time_secs(objcopy_phase, worker_id, evac_time.seconds() - cl.term_time());
3822 
3823     if (termination_phase == G1GCPhaseTimes::Termination) {
3824       p->record_time_secs(termination_phase, worker_id, cl.term_time());
3825       p->record_thread_work_item(termination_phase, worker_id, cl.term_attempts());
3826     } else {
3827       p->record_or_add_time_secs(termination_phase, worker_id, cl.term_time());
3828       p->record_or_add_thread_work_item(termination_phase, worker_id, cl.term_attempts());
3829     }
3830     assert(pss->trim_ticks().seconds() == 0.0, "Unexpected partial trimming during evacuation");
3831   }
3832 
3833   virtual void start_work(uint worker_id) { }
3834 
3835   virtual void end_work(uint worker_id) { }
3836 
3837   virtual void scan_roots(G1ParScanThreadState* pss, uint worker_id) = 0;
3838 
3839   virtual void evacuate_live_objects(G1ParScanThreadState* pss, uint worker_id) = 0;
3840 
3841 public:
3842   G1EvacuateRegionsBaseTask(const char* name, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet* task_queues, uint num_workers) :
3843     AbstractGangTask(name),
3844     _g1h(G1CollectedHeap::heap()),
3845     _per_thread_states(per_thread_states),
3846     _task_queues(task_queues),
3847     _terminator(num_workers, _task_queues),
3848     _num_workers(num_workers)
3849   { }
3850 
3851   void work(uint worker_id) {
3852     start_work(worker_id);
3853 
3854     {
3855       ResourceMark rm;
3856       HandleMark   hm;
3857 
3858       G1ParScanThreadState* pss = _per_thread_states->state_for_worker(worker_id);
3859       pss->set_ref_discoverer(_g1h->ref_processor_stw());
3860 
3861       scan_roots(pss, worker_id);
3862       evacuate_live_objects(pss, worker_id);
3863     }
3864 
3865     end_work(worker_id);
3866   }
3867 };
3868 
3869 class G1EvacuateRegionsTask : public G1EvacuateRegionsBaseTask {
3870   G1RootProcessor* _root_processor;
3871 
3872   void scan_roots(G1ParScanThreadState* pss, uint worker_id) {
3873     _root_processor->evacuate_roots(pss, worker_id);
3874     _g1h->rem_set()->scan_heap_roots(pss, worker_id, G1GCPhaseTimes::ScanHR, G1GCPhaseTimes::ObjCopy);
3875     _g1h->rem_set()->scan_collection_set_regions(pss, worker_id, G1GCPhaseTimes::ScanHR, G1GCPhaseTimes::CodeRoots, G1GCPhaseTimes::ObjCopy);
3876   }
3877 
3878   void evacuate_live_objects(G1ParScanThreadState* pss, uint worker_id) {
3879     G1EvacuateRegionsBaseTask::evacuate_live_objects(pss, worker_id, G1GCPhaseTimes::ObjCopy, G1GCPhaseTimes::Termination);
3880   }
3881 
3882   void start_work(uint worker_id) {
3883     _g1h->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, Ticks::now().seconds());
3884   }
3885 
3886   void end_work(uint worker_id) {
3887     _g1h->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, Ticks::now().seconds());
3888   }
3889 
3890 public:
3891   G1EvacuateRegionsTask(G1CollectedHeap* g1h,
3892                         G1ParScanThreadStateSet* per_thread_states,
3893                         RefToScanQueueSet* task_queues,
3894                         G1RootProcessor* root_processor,
3895                         uint num_workers) :
3896     G1EvacuateRegionsBaseTask("G1 Evacuate Regions", per_thread_states, task_queues, num_workers),
3897     _root_processor(root_processor)
3898   { }
3899 };
3900 
3901 void G1CollectedHeap::evacuate_initial_collection_set(G1ParScanThreadStateSet* per_thread_states) {
3902   G1GCPhaseTimes* p = phase_times();
3903 
3904   {
3905     Ticks start = Ticks::now();
3906     rem_set()->merge_heap_roots(true /* initial_evacuation */);
3907     p->record_merge_heap_roots_time((Ticks::now() - start).seconds() * 1000.0);
3908   }
3909 
3910   Tickspan task_time;
3911   const uint num_workers = workers()->active_workers();
3912 
3913   Ticks start_processing = Ticks::now();
3914   {
3915     G1RootProcessor root_processor(this, num_workers);
3916     G1EvacuateRegionsTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, num_workers);
3917     task_time = run_task(&g1_par_task);
3918     // Closing the inner scope will execute the destructor for the G1RootProcessor object.
3919     // To extract its code root fixup time we measure total time of this scope and
3920     // subtract from the time the WorkGang task took.
3921   }
3922   Tickspan total_processing = Ticks::now() - start_processing;
3923 
3924   p->record_initial_evac_time(task_time.seconds() * 1000.0);
3925   p->record_or_add_code_root_fixup_time((total_processing - task_time).seconds() * 1000.0);
3926 }
3927 
3928 class G1EvacuateOptionalRegionsTask : public G1EvacuateRegionsBaseTask {
3929 
3930   void scan_roots(G1ParScanThreadState* pss, uint worker_id) {
3931     _g1h->rem_set()->scan_heap_roots(pss, worker_id, G1GCPhaseTimes::OptScanHR, G1GCPhaseTimes::OptObjCopy);
3932     _g1h->rem_set()->scan_collection_set_regions(pss, worker_id, G1GCPhaseTimes::OptScanHR, G1GCPhaseTimes::OptCodeRoots, G1GCPhaseTimes::OptObjCopy);
3933   }
3934 
3935   void evacuate_live_objects(G1ParScanThreadState* pss, uint worker_id) {
3936     G1EvacuateRegionsBaseTask::evacuate_live_objects(pss, worker_id, G1GCPhaseTimes::OptObjCopy, G1GCPhaseTimes::OptTermination);
3937   }
3938 
3939 public:
3940   G1EvacuateOptionalRegionsTask(G1ParScanThreadStateSet* per_thread_states,
3941                                 RefToScanQueueSet* queues,
3942                                 uint num_workers) :
3943     G1EvacuateRegionsBaseTask("G1 Evacuate Optional Regions", per_thread_states, queues, num_workers) {
3944   }
3945 };
3946 
3947 void G1CollectedHeap::evacuate_next_optional_regions(G1ParScanThreadStateSet* per_thread_states) {
3948   class G1MarkScope : public MarkScope { };
3949 
3950   Tickspan task_time;
3951 
3952   Ticks start_processing = Ticks::now();
3953   {
3954     G1MarkScope code_mark_scope;
3955     G1EvacuateOptionalRegionsTask task(per_thread_states, _task_queues, workers()->active_workers());
3956     task_time = run_task(&task);
3957     // See comment in evacuate_collection_set() for the reason of the scope.
3958   }
3959   Tickspan total_processing = Ticks::now() - start_processing;
3960 
3961   G1GCPhaseTimes* p = phase_times();
3962   p->record_or_add_code_root_fixup_time((total_processing - task_time).seconds() * 1000.0);
3963 }
3964 
3965 void G1CollectedHeap::evacuate_optional_collection_set(G1ParScanThreadStateSet* per_thread_states) {
3966   const double gc_start_time_ms = phase_times()->cur_collection_start_sec() * 1000.0;
3967 
3968   while (!evacuation_failed() && _collection_set.optional_region_length() > 0) {
3969 
3970     double time_used_ms = os::elapsedTime() * 1000.0 - gc_start_time_ms;
3971     double time_left_ms = MaxGCPauseMillis - time_used_ms;
3972 
3973     if (time_left_ms < 0 ||
3974         !_collection_set.finalize_optional_for_evacuation(time_left_ms * policy()->optional_evacuation_fraction())) {
3975       log_trace(gc, ergo, cset)("Skipping evacuation of %u optional regions, no more regions can be evacuated in %.3fms",
3976                                 _collection_set.optional_region_length(), time_left_ms);
3977       break;
3978     }
3979 
3980     {
3981       Ticks start = Ticks::now();
3982       rem_set()->merge_heap_roots(false /* initial_evacuation */);
3983       phase_times()->record_or_add_optional_merge_heap_roots_time((Ticks::now() - start).seconds() * 1000.0);
3984     }
3985 
3986     {
3987       Ticks start = Ticks::now();
3988       evacuate_next_optional_regions(per_thread_states);
3989       phase_times()->record_or_add_optional_evac_time((Ticks::now() - start).seconds() * 1000.0);
3990     }
3991   }
3992 
3993   _collection_set.abandon_optional_collection_set(per_thread_states);
3994 }
3995 
3996 void G1CollectedHeap::post_evacuate_collection_set(G1EvacuationInfo& evacuation_info,
3997                                                    G1RedirtyCardsQueueSet* rdcqs,
3998                                                    G1ParScanThreadStateSet* per_thread_states) {
3999   G1GCPhaseTimes* p = phase_times();
4000 
4001   rem_set()->cleanup_after_scan_heap_roots();
4002 
4003   // Process any discovered reference objects - we have
4004   // to do this _before_ we retire the GC alloc regions
4005   // as we may have to copy some 'reachable' referent
4006   // objects (and their reachable sub-graphs) that were
4007   // not copied during the pause.
4008   process_discovered_references(per_thread_states);
4009 
4010   G1STWIsAliveClosure is_alive(this);
4011   G1KeepAliveClosure keep_alive(this);
4012 
4013   WeakProcessor::weak_oops_do(workers(), &is_alive, &keep_alive, p->weak_phase_times());
4014 
4015   if (G1StringDedup::is_enabled()) {
4016     double string_dedup_time_ms = os::elapsedTime();
4017 
4018     string_dedup_cleaning(&is_alive, &keep_alive, p);
4019 
4020     double string_cleanup_time_ms = (os::elapsedTime() - string_dedup_time_ms) * 1000.0;
4021     p->record_string_deduplication_time(string_cleanup_time_ms);
4022   }
4023 
4024   _allocator->release_gc_alloc_regions(evacuation_info);
4025 
4026   if (evacuation_failed()) {
4027     restore_after_evac_failure(rdcqs);
4028 
4029     // Reset the G1EvacuationFailureALot counters and flags
4030     NOT_PRODUCT(reset_evacuation_should_fail();)
4031 
4032     double recalculate_used_start = os::elapsedTime();
4033     set_used(recalculate_used());
4034     p->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
4035 
4036     if (_archive_allocator != NULL) {
4037       _archive_allocator->clear_used();
4038     }
4039     for (uint i = 0; i < ParallelGCThreads; i++) {
4040       if (_evacuation_failed_info_array[i].has_failed()) {
4041         _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
4042       }
4043     }
4044   } else {
4045     // The "used" of the the collection set have already been subtracted
4046     // when they were freed.  Add in the bytes used.
4047     increase_used(_bytes_used_during_gc);
4048   }
4049 
4050   _preserved_marks_set.assert_empty();
4051 
4052   merge_per_thread_state_info(per_thread_states);
4053 
4054   // Reset and re-enable the hot card cache.
4055   // Note the counts for the cards in the regions in the
4056   // collection set are reset when the collection set is freed.
4057   _hot_card_cache->reset_hot_cache();
4058   _hot_card_cache->set_use_cache(true);
4059 
4060   purge_code_root_memory();
4061 
4062   redirty_logged_cards(rdcqs);
4063 
4064   free_collection_set(&_collection_set, evacuation_info, per_thread_states->surviving_young_words());
4065 
4066   eagerly_reclaim_humongous_regions();
4067 
4068   record_obj_copy_mem_stats();
4069 
4070   evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before());
4071   evacuation_info.set_bytes_used(_bytes_used_during_gc);
4072 
4073 #if COMPILER2_OR_JVMCI
4074   double start = os::elapsedTime();
4075   DerivedPointerTable::update_pointers();
4076   phase_times()->record_derived_pointer_table_update_time((os::elapsedTime() - start) * 1000.0);
4077 #endif
4078   policy()->print_age_table();
4079 }
4080 
4081 void G1CollectedHeap::record_obj_copy_mem_stats() {
4082   policy()->add_bytes_allocated_in_old_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
4083 
4084   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
4085                                                create_g1_evac_summary(&_old_evac_stats));
4086 }
4087 
4088 void G1CollectedHeap::free_region(HeapRegion* hr, FreeRegionList* free_list) {
4089   assert(!hr->is_free(), "the region should not be free");
4090   assert(!hr->is_empty(), "the region should not be empty");
4091   assert(_hrm->is_available(hr->hrm_index()), "region should be committed");
4092 
4093   if (G1VerifyBitmaps) {
4094     MemRegion mr(hr->bottom(), hr->end());
4095     concurrent_mark()->clear_range_in_prev_bitmap(mr);
4096   }
4097 
4098   // Clear the card counts for this region.
4099   // Note: we only need to do this if the region is not young
4100   // (since we don't refine cards in young regions).
4101   if (!hr->is_young()) {
4102     _hot_card_cache->reset_card_counts(hr);
4103   }
4104 
4105   // Reset region metadata to allow reuse.
4106   hr->hr_clear(true /* clear_space */);
4107   _policy->remset_tracker()->update_at_free(hr);
4108 
4109   if (free_list != NULL) {
4110     free_list->add_ordered(hr);
4111   }
4112 }
4113 
4114 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
4115                                             FreeRegionList* free_list) {
4116   assert(hr->is_humongous(), "this is only for humongous regions");
4117   assert(free_list != NULL, "pre-condition");
4118   hr->clear_humongous();
4119   free_region(hr, free_list);
4120 }
4121 
4122 void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed,
4123                                            const uint humongous_regions_removed) {
4124   if (old_regions_removed > 0 || humongous_regions_removed > 0) {
4125     MutexLocker x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4126     _old_set.bulk_remove(old_regions_removed);
4127     _humongous_set.bulk_remove(humongous_regions_removed);
4128   }
4129 
4130 }
4131 
4132 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
4133   assert(list != NULL, "list can't be null");
4134   if (!list->is_empty()) {
4135     MutexLocker x(FreeList_lock, Mutex::_no_safepoint_check_flag);
4136     _hrm->insert_list_into_free_list(list);
4137   }
4138 }
4139 
4140 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
4141   decrease_used(bytes);
4142 }
4143 
4144 class G1FreeCollectionSetTask : public AbstractGangTask {
4145   // Helper class to keep statistics for the collection set freeing
4146   class FreeCSetStats {
4147     size_t _before_used_bytes;   // Usage in regions successfully evacutate
4148     size_t _after_used_bytes;    // Usage in regions failing evacuation
4149     size_t _bytes_allocated_in_old_since_last_gc; // Size of young regions turned into old
4150     size_t _failure_used_words;  // Live size in failed regions
4151     size_t _failure_waste_words; // Wasted size in failed regions
4152     size_t _rs_length;           // Remembered set size
4153     uint _regions_freed;         // Number of regions freed
4154   public:
4155     FreeCSetStats() :
4156         _before_used_bytes(0),
4157         _after_used_bytes(0),
4158         _bytes_allocated_in_old_since_last_gc(0),
4159         _failure_used_words(0),
4160         _failure_waste_words(0),
4161         _rs_length(0),
4162         _regions_freed(0) { }
4163 
4164     void merge_stats(FreeCSetStats* other) {
4165       assert(other != NULL, "invariant");
4166       _before_used_bytes += other->_before_used_bytes;
4167       _after_used_bytes += other->_after_used_bytes;
4168       _bytes_allocated_in_old_since_last_gc += other->_bytes_allocated_in_old_since_last_gc;
4169       _failure_used_words += other->_failure_used_words;
4170       _failure_waste_words += other->_failure_waste_words;
4171       _rs_length += other->_rs_length;
4172       _regions_freed += other->_regions_freed;
4173     }
4174 
4175     void report(G1CollectedHeap* g1h, G1EvacuationInfo* evacuation_info) {
4176       evacuation_info->set_regions_freed(_regions_freed);
4177       evacuation_info->increment_collectionset_used_after(_after_used_bytes);
4178 
4179       g1h->decrement_summary_bytes(_before_used_bytes);
4180       g1h->alloc_buffer_stats(G1HeapRegionAttr::Old)->add_failure_used_and_waste(_failure_used_words, _failure_waste_words);
4181 
4182       G1Policy *policy = g1h->policy();
4183       policy->add_bytes_allocated_in_old_since_last_gc(_bytes_allocated_in_old_since_last_gc);
4184       policy->record_rs_length(_rs_length);
4185       policy->cset_regions_freed();
4186     }
4187 
4188     void account_failed_region(HeapRegion* r) {
4189       size_t used_words = r->marked_bytes() / HeapWordSize;
4190       _failure_used_words += used_words;
4191       _failure_waste_words += HeapRegion::GrainWords - used_words;
4192       _after_used_bytes += r->used();
4193 
4194       // When moving a young gen region to old gen, we "allocate" that whole
4195       // region there. This is in addition to any already evacuated objects.
4196       // Notify the policy about that. Old gen regions do not cause an
4197       // additional allocation: both the objects still in the region and the
4198       // ones already moved are accounted for elsewhere.
4199       if (r->is_young()) {
4200         _bytes_allocated_in_old_since_last_gc += HeapRegion::GrainBytes;
4201       }
4202     }
4203 
4204     void account_evacuated_region(HeapRegion* r) {
4205       _before_used_bytes += r->used();
4206       _regions_freed += 1;
4207     }
4208 
4209     void account_rs_length(HeapRegion* r) {
4210       _rs_length += r->rem_set()->occupied();
4211     }
4212   };
4213 
4214   // Closure applied to all regions in the collection set.
4215   class FreeCSetClosure : public HeapRegionClosure {
4216     // Helper to send JFR events for regions.
4217     class JFREventForRegion {
4218       EventGCPhaseParallel _event;
4219     public:
4220       JFREventForRegion(HeapRegion* region, uint worker_id) : _event() {
4221         _event.set_gcId(GCId::current());
4222         _event.set_gcWorkerId(worker_id);
4223         if (region->is_young()) {
4224           _event.set_name(G1GCPhaseTimes::phase_name(G1GCPhaseTimes::YoungFreeCSet));
4225         } else {
4226           _event.set_name(G1GCPhaseTimes::phase_name(G1GCPhaseTimes::NonYoungFreeCSet));
4227         }
4228       }
4229 
4230       ~JFREventForRegion() {
4231         _event.commit();
4232       }
4233     };
4234 
4235     // Helper to do timing for region work.
4236     class TimerForRegion {
4237       Tickspan& _time;
4238       Ticks     _start_time;
4239     public:
4240       TimerForRegion(Tickspan& time) : _time(time), _start_time(Ticks::now()) { }
4241       ~TimerForRegion() {
4242         _time += Ticks::now() - _start_time;
4243       }
4244     };
4245 
4246     // FreeCSetClosure members
4247     G1CollectedHeap* _g1h;
4248     const size_t*    _surviving_young_words;
4249     uint             _worker_id;
4250     Tickspan         _young_time;
4251     Tickspan         _non_young_time;
4252     FreeCSetStats*   _stats;
4253 
4254     void assert_in_cset(HeapRegion* r) {
4255       assert(r->young_index_in_cset() != 0 &&
4256              (uint)r->young_index_in_cset() <= _g1h->collection_set()->young_region_length(),
4257              "Young index %u is wrong for region %u of type %s with %u young regions",
4258              r->young_index_in_cset(), r->hrm_index(), r->get_type_str(), _g1h->collection_set()->young_region_length());
4259     }
4260 
4261     void handle_evacuated_region(HeapRegion* r) {
4262       assert(!r->is_empty(), "Region %u is an empty region in the collection set.", r->hrm_index());
4263       stats()->account_evacuated_region(r);
4264 
4265       // Free the region and and its remembered set.
4266       _g1h->free_region(r, NULL);
4267     }
4268 
4269     void handle_failed_region(HeapRegion* r) {
4270       // Do some allocation statistics accounting. Regions that failed evacuation
4271       // are always made old, so there is no need to update anything in the young
4272       // gen statistics, but we need to update old gen statistics.
4273       stats()->account_failed_region(r);
4274 
4275       // Update the region state due to the failed evacuation.
4276       r->handle_evacuation_failure();
4277 
4278       // Add region to old set, need to hold lock.
4279       MutexLocker x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4280       _g1h->old_set_add(r);
4281     }
4282 
4283     Tickspan& timer_for_region(HeapRegion* r) {
4284       return r->is_young() ? _young_time : _non_young_time;
4285     }
4286 
4287     FreeCSetStats* stats() {
4288       return _stats;
4289     }
4290   public:
4291     FreeCSetClosure(const size_t* surviving_young_words,
4292                     uint worker_id,
4293                     FreeCSetStats* stats) :
4294         HeapRegionClosure(),
4295         _g1h(G1CollectedHeap::heap()),
4296         _surviving_young_words(surviving_young_words),
4297         _worker_id(worker_id),
4298         _young_time(),
4299         _non_young_time(),
4300         _stats(stats) { }
4301 
4302     virtual bool do_heap_region(HeapRegion* r) {
4303       assert(r->in_collection_set(), "Invariant: %u missing from CSet", r->hrm_index());
4304       JFREventForRegion event(r, _worker_id);
4305       TimerForRegion timer(timer_for_region(r));
4306 
4307       _g1h->clear_region_attr(r);
4308       stats()->account_rs_length(r);
4309 
4310       if (r->is_young()) {
4311         assert_in_cset(r);
4312         r->record_surv_words_in_group(_surviving_young_words[r->young_index_in_cset()]);
4313       }
4314 
4315       if (r->evacuation_failed()) {
4316         handle_failed_region(r);
4317       } else {
4318         handle_evacuated_region(r);
4319       }
4320       assert(!_g1h->is_on_master_free_list(r), "sanity");
4321 
4322       return false;
4323     }
4324 
4325     void report_timing(Tickspan parallel_time) {
4326       G1GCPhaseTimes* pt = _g1h->phase_times();
4327       pt->record_time_secs(G1GCPhaseTimes::ParFreeCSet, _worker_id, parallel_time.seconds());
4328       if (_young_time.value() > 0) {
4329         pt->record_time_secs(G1GCPhaseTimes::YoungFreeCSet, _worker_id, _young_time.seconds());
4330       }
4331       if (_non_young_time.value() > 0) {
4332         pt->record_time_secs(G1GCPhaseTimes::NonYoungFreeCSet, _worker_id, _non_young_time.seconds());
4333       }
4334     }
4335   };
4336 
4337   // G1FreeCollectionSetTask members
4338   G1CollectedHeap*  _g1h;
4339   G1EvacuationInfo* _evacuation_info;
4340   FreeCSetStats*    _worker_stats;
4341   HeapRegionClaimer _claimer;
4342   const size_t*     _surviving_young_words;
4343   uint              _active_workers;
4344 
4345   FreeCSetStats* worker_stats(uint worker) {
4346     return &_worker_stats[worker];
4347   }
4348 
4349   void report_statistics() {
4350     // Merge the accounting
4351     FreeCSetStats total_stats;
4352     for (uint worker = 0; worker < _active_workers; worker++) {
4353       total_stats.merge_stats(worker_stats(worker));
4354     }
4355     total_stats.report(_g1h, _evacuation_info);
4356   }
4357 
4358 public:
4359   G1FreeCollectionSetTask(G1EvacuationInfo* evacuation_info, const size_t* surviving_young_words, uint active_workers) :
4360       AbstractGangTask("G1 Free Collection Set"),
4361       _g1h(G1CollectedHeap::heap()),
4362       _evacuation_info(evacuation_info),
4363       _worker_stats(NEW_C_HEAP_ARRAY(FreeCSetStats, active_workers, mtGC)),
4364       _claimer(active_workers),
4365       _surviving_young_words(surviving_young_words),
4366       _active_workers(active_workers) {
4367     for (uint worker = 0; worker < active_workers; worker++) {
4368       ::new (&_worker_stats[worker]) FreeCSetStats();
4369     }
4370   }
4371 
4372   ~G1FreeCollectionSetTask() {
4373     Ticks serial_time = Ticks::now();
4374     report_statistics();
4375     for (uint worker = 0; worker < _active_workers; worker++) {
4376       _worker_stats[worker].~FreeCSetStats();
4377     }
4378     FREE_C_HEAP_ARRAY(FreeCSetStats, _worker_stats);
4379     _g1h->phase_times()->record_serial_free_cset_time_ms((Ticks::now() - serial_time).seconds() * 1000.0);
4380   }
4381 
4382   virtual void work(uint worker_id) {
4383     EventGCPhaseParallel event;
4384     Ticks start = Ticks::now();
4385     FreeCSetClosure cl(_surviving_young_words, worker_id, worker_stats(worker_id));
4386     _g1h->collection_set_par_iterate_all(&cl, &_claimer, worker_id);
4387 
4388     // Report the total parallel time along with some more detailed metrics.
4389     cl.report_timing(Ticks::now() - start);
4390     event.commit(GCId::current(), worker_id, G1GCPhaseTimes::phase_name(G1GCPhaseTimes::ParFreeCSet));
4391   }
4392 };
4393 
4394 void G1CollectedHeap::free_collection_set(G1CollectionSet* collection_set, G1EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
4395   _eden.clear();
4396 
4397   // The free collections set is split up in two tasks, the first
4398   // frees the collection set and records what regions are free,
4399   // and the second one rebuilds the free list. This proved to be
4400   // more efficient than adding a sorted list to another.
4401 
4402   Ticks free_cset_start_time = Ticks::now();
4403   {
4404     uint const num_cs_regions = _collection_set.region_length();
4405     uint const num_workers = clamp(num_cs_regions, 1u, workers()->active_workers());
4406     G1FreeCollectionSetTask cl(&evacuation_info, surviving_young_words, num_workers);
4407 
4408     log_debug(gc, ergo)("Running %s using %u workers for collection set length %u (%u)",
4409                         cl.name(), num_workers, num_cs_regions, num_regions());
4410     workers()->run_task(&cl, num_workers);
4411   }
4412 
4413   Ticks free_cset_end_time = Ticks::now();
4414   phase_times()->record_total_free_cset_time_ms((free_cset_end_time - free_cset_start_time).seconds() * 1000.0);
4415 
4416   // Now rebuild the free region list.
4417   hrm()->rebuild_free_list(workers());
4418   phase_times()->record_total_rebuild_freelist_time_ms((Ticks::now() - free_cset_end_time).seconds() * 1000.0);
4419 
4420   collection_set->clear();
4421 }
4422 
4423 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
4424  private:
4425   FreeRegionList* _free_region_list;
4426   HeapRegionSet* _proxy_set;
4427   uint _humongous_objects_reclaimed;
4428   uint _humongous_regions_reclaimed;
4429   size_t _freed_bytes;
4430  public:
4431 
4432   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
4433     _free_region_list(free_region_list), _proxy_set(NULL), _humongous_objects_reclaimed(0), _humongous_regions_reclaimed(0), _freed_bytes(0) {
4434   }
4435 
4436   virtual bool do_heap_region(HeapRegion* r) {
4437     if (!r->is_starts_humongous()) {
4438       return false;
4439     }
4440 
4441     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4442 
4443     oop obj = (oop)r->bottom();
4444     G1CMBitMap* next_bitmap = g1h->concurrent_mark()->next_mark_bitmap();
4445 
4446     // The following checks whether the humongous object is live are sufficient.
4447     // The main additional check (in addition to having a reference from the roots
4448     // or the young gen) is whether the humongous object has a remembered set entry.
4449     //
4450     // A humongous object cannot be live if there is no remembered set for it
4451     // because:
4452     // - there can be no references from within humongous starts regions referencing
4453     // the object because we never allocate other objects into them.
4454     // (I.e. there are no intra-region references that may be missed by the
4455     // remembered set)
4456     // - as soon there is a remembered set entry to the humongous starts region
4457     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
4458     // until the end of a concurrent mark.
4459     //
4460     // It is not required to check whether the object has been found dead by marking
4461     // or not, in fact it would prevent reclamation within a concurrent cycle, as
4462     // all objects allocated during that time are considered live.
4463     // SATB marking is even more conservative than the remembered set.
4464     // So if at this point in the collection there is no remembered set entry,
4465     // nobody has a reference to it.
4466     // At the start of collection we flush all refinement logs, and remembered sets
4467     // are completely up-to-date wrt to references to the humongous object.
4468     //
4469     // Other implementation considerations:
4470     // - never consider object arrays at this time because they would pose
4471     // considerable effort for cleaning up the the remembered sets. This is
4472     // required because stale remembered sets might reference locations that
4473     // are currently allocated into.
4474     uint region_idx = r->hrm_index();
4475     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
4476         !r->rem_set()->is_empty()) {
4477       log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4478                                region_idx,
4479                                (size_t)obj->size() * HeapWordSize,
4480                                p2i(r->bottom()),
4481                                r->rem_set()->occupied(),
4482                                r->rem_set()->strong_code_roots_list_length(),
4483                                next_bitmap->is_marked(r->bottom()),
4484                                g1h->is_humongous_reclaim_candidate(region_idx),
4485                                obj->is_typeArray()
4486                               );
4487       return false;
4488     }
4489 
4490     guarantee(obj->is_typeArray(),
4491               "Only eagerly reclaiming type arrays is supported, but the object "
4492               PTR_FORMAT " is not.", p2i(r->bottom()));
4493 
4494     log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4495                              region_idx,
4496                              (size_t)obj->size() * HeapWordSize,
4497                              p2i(r->bottom()),
4498                              r->rem_set()->occupied(),
4499                              r->rem_set()->strong_code_roots_list_length(),
4500                              next_bitmap->is_marked(r->bottom()),
4501                              g1h->is_humongous_reclaim_candidate(region_idx),
4502                              obj->is_typeArray()
4503                             );
4504 
4505     G1ConcurrentMark* const cm = g1h->concurrent_mark();
4506     cm->humongous_object_eagerly_reclaimed(r);
4507     assert(!cm->is_marked_in_prev_bitmap(obj) && !cm->is_marked_in_next_bitmap(obj),
4508            "Eagerly reclaimed humongous region %u should not be marked at all but is in prev %s next %s",
4509            region_idx,
4510            BOOL_TO_STR(cm->is_marked_in_prev_bitmap(obj)),
4511            BOOL_TO_STR(cm->is_marked_in_next_bitmap(obj)));
4512     _humongous_objects_reclaimed++;
4513     do {
4514       HeapRegion* next = g1h->next_region_in_humongous(r);
4515       _freed_bytes += r->used();
4516       r->set_containing_set(NULL);
4517       _humongous_regions_reclaimed++;
4518       g1h->free_humongous_region(r, _free_region_list);
4519       r = next;
4520     } while (r != NULL);
4521 
4522     return false;
4523   }
4524 
4525   uint humongous_objects_reclaimed() {
4526     return _humongous_objects_reclaimed;
4527   }
4528 
4529   uint humongous_regions_reclaimed() {
4530     return _humongous_regions_reclaimed;
4531   }
4532 
4533   size_t bytes_freed() const {
4534     return _freed_bytes;
4535   }
4536 };
4537 
4538 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
4539   assert_at_safepoint_on_vm_thread();
4540 
4541   if (!G1EagerReclaimHumongousObjects ||
4542       (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) {
4543     phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
4544     return;
4545   }
4546 
4547   double start_time = os::elapsedTime();
4548 
4549   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
4550 
4551   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
4552   heap_region_iterate(&cl);
4553 
4554   remove_from_old_sets(0, cl.humongous_regions_reclaimed());
4555 
4556   G1HRPrinter* hrp = hr_printer();
4557   if (hrp->is_active()) {
4558     FreeRegionListIterator iter(&local_cleanup_list);
4559     while (iter.more_available()) {
4560       HeapRegion* hr = iter.get_next();
4561       hrp->cleanup(hr);
4562     }
4563   }
4564 
4565   prepend_to_freelist(&local_cleanup_list);
4566   decrement_summary_bytes(cl.bytes_freed());
4567 
4568   phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
4569                                                        cl.humongous_objects_reclaimed());
4570 }
4571 
4572 class G1AbandonCollectionSetClosure : public HeapRegionClosure {
4573 public:
4574   virtual bool do_heap_region(HeapRegion* r) {
4575     assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index());
4576     G1CollectedHeap::heap()->clear_region_attr(r);
4577     r->clear_young_index_in_cset();
4578     return false;
4579   }
4580 };
4581 
4582 void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) {
4583   G1AbandonCollectionSetClosure cl;
4584   collection_set_iterate_all(&cl);
4585 
4586   collection_set->clear();
4587   collection_set->stop_incremental_building();
4588 }
4589 
4590 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
4591   return _allocator->is_retained_old_region(hr);
4592 }
4593 
4594 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
4595   _eden.add(hr);
4596   _policy->set_region_eden(hr);
4597 }
4598 
4599 #ifdef ASSERT
4600 
4601 class NoYoungRegionsClosure: public HeapRegionClosure {
4602 private:
4603   bool _success;
4604 public:
4605   NoYoungRegionsClosure() : _success(true) { }
4606   bool do_heap_region(HeapRegion* r) {
4607     if (r->is_young()) {
4608       log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
4609                             p2i(r->bottom()), p2i(r->end()));
4610       _success = false;
4611     }
4612     return false;
4613   }
4614   bool success() { return _success; }
4615 };
4616 
4617 bool G1CollectedHeap::check_young_list_empty() {
4618   bool ret = (young_regions_count() == 0);
4619 
4620   NoYoungRegionsClosure closure;
4621   heap_region_iterate(&closure);
4622   ret = ret && closure.success();
4623 
4624   return ret;
4625 }
4626 
4627 #endif // ASSERT
4628 
4629 class TearDownRegionSetsClosure : public HeapRegionClosure {
4630   HeapRegionSet *_old_set;
4631 
4632 public:
4633   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
4634 
4635   bool do_heap_region(HeapRegion* r) {
4636     if (r->is_old()) {
4637       _old_set->remove(r);
4638     } else if(r->is_young()) {
4639       r->uninstall_surv_rate_group();
4640     } else {
4641       // We ignore free regions, we'll empty the free list afterwards.
4642       // We ignore humongous and archive regions, we're not tearing down these
4643       // sets.
4644       assert(r->is_archive() || r->is_free() || r->is_humongous(),
4645              "it cannot be another type");
4646     }
4647     return false;
4648   }
4649 
4650   ~TearDownRegionSetsClosure() {
4651     assert(_old_set->is_empty(), "post-condition");
4652   }
4653 };
4654 
4655 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
4656   assert_at_safepoint_on_vm_thread();
4657 
4658   if (!free_list_only) {
4659     TearDownRegionSetsClosure cl(&_old_set);
4660     heap_region_iterate(&cl);
4661 
4662     // Note that emptying the _young_list is postponed and instead done as
4663     // the first step when rebuilding the regions sets again. The reason for
4664     // this is that during a full GC string deduplication needs to know if
4665     // a collected region was young or old when the full GC was initiated.
4666   }
4667   _hrm->remove_all_free_regions();
4668 }
4669 
4670 void G1CollectedHeap::increase_used(size_t bytes) {
4671   _summary_bytes_used += bytes;
4672 }
4673 
4674 void G1CollectedHeap::decrease_used(size_t bytes) {
4675   assert(_summary_bytes_used >= bytes,
4676          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
4677          _summary_bytes_used, bytes);
4678   _summary_bytes_used -= bytes;
4679 }
4680 
4681 void G1CollectedHeap::set_used(size_t bytes) {
4682   _summary_bytes_used = bytes;
4683 }
4684 
4685 class RebuildRegionSetsClosure : public HeapRegionClosure {
4686 private:
4687   bool _free_list_only;
4688 
4689   HeapRegionSet* _old_set;
4690   HeapRegionManager* _hrm;
4691 
4692   size_t _total_used;
4693 
4694 public:
4695   RebuildRegionSetsClosure(bool free_list_only,
4696                            HeapRegionSet* old_set,
4697                            HeapRegionManager* hrm) :
4698     _free_list_only(free_list_only),
4699     _old_set(old_set), _hrm(hrm), _total_used(0) {
4700     assert(_hrm->num_free_regions() == 0, "pre-condition");
4701     if (!free_list_only) {
4702       assert(_old_set->is_empty(), "pre-condition");
4703     }
4704   }
4705 
4706   bool do_heap_region(HeapRegion* r) {
4707     if (r->is_empty()) {
4708       assert(r->rem_set()->is_empty(), "Empty regions should have empty remembered sets.");
4709       // Add free regions to the free list
4710       r->set_free();
4711       _hrm->insert_into_free_list(r);
4712     } else if (!_free_list_only) {
4713       assert(r->rem_set()->is_empty(), "At this point remembered sets must have been cleared.");
4714 
4715       if (r->is_archive() || r->is_humongous()) {
4716         // We ignore archive and humongous regions. We left these sets unchanged.
4717       } else {
4718         assert(r->is_young() || r->is_free() || r->is_old(), "invariant");
4719         // We now move all (non-humongous, non-old, non-archive) regions to old gen, and register them as such.
4720         r->move_to_old();
4721         _old_set->add(r);
4722       }
4723       _total_used += r->used();
4724     }
4725 
4726     return false;
4727   }
4728 
4729   size_t total_used() {
4730     return _total_used;
4731   }
4732 };
4733 
4734 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
4735   assert_at_safepoint_on_vm_thread();
4736 
4737   if (!free_list_only) {
4738     _eden.clear();
4739     _survivor.clear();
4740   }
4741 
4742   RebuildRegionSetsClosure cl(free_list_only, &_old_set, _hrm);
4743   heap_region_iterate(&cl);
4744 
4745   if (!free_list_only) {
4746     set_used(cl.total_used());
4747     if (_archive_allocator != NULL) {
4748       _archive_allocator->clear_used();
4749     }
4750   }
4751   assert_used_and_recalculate_used_equal(this);
4752 }
4753 
4754 // Methods for the mutator alloc region
4755 
4756 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
4757                                                       bool force,
4758                                                       uint node_index) {
4759   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4760   bool should_allocate = policy()->should_allocate_mutator_region();
4761   if (force || should_allocate) {
4762     HeapRegion* new_alloc_region = new_region(word_size,
4763                                               HeapRegionType::Eden,
4764                                               false /* do_expand */,
4765                                               node_index);
4766     if (new_alloc_region != NULL) {
4767       set_region_short_lived_locked(new_alloc_region);
4768       _hr_printer.alloc(new_alloc_region, !should_allocate);
4769       _verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region);
4770       _policy->remset_tracker()->update_at_allocate(new_alloc_region);
4771       return new_alloc_region;
4772     }
4773   }
4774   return NULL;
4775 }
4776 
4777 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
4778                                                   size_t allocated_bytes) {
4779   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4780   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
4781 
4782   collection_set()->add_eden_region(alloc_region);
4783   increase_used(allocated_bytes);
4784   _eden.add_used_bytes(allocated_bytes);
4785   _hr_printer.retire(alloc_region);
4786 
4787   // We update the eden sizes here, when the region is retired,
4788   // instead of when it's allocated, since this is the point that its
4789   // used space has been recorded in _summary_bytes_used.
4790   g1mm()->update_eden_size();
4791 }
4792 
4793 // Methods for the GC alloc regions
4794 
4795 bool G1CollectedHeap::has_more_regions(G1HeapRegionAttr dest) {
4796   if (dest.is_old()) {
4797     return true;
4798   } else {
4799     return survivor_regions_count() < policy()->max_survivor_regions();
4800   }
4801 }
4802 
4803 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, G1HeapRegionAttr dest, uint node_index) {
4804   assert(FreeList_lock->owned_by_self(), "pre-condition");
4805 
4806   if (!has_more_regions(dest)) {
4807     return NULL;
4808   }
4809 
4810   HeapRegionType type;
4811   if (dest.is_young()) {
4812     type = HeapRegionType::Survivor;
4813   } else {
4814     type = HeapRegionType::Old;
4815   }
4816 
4817   HeapRegion* new_alloc_region = new_region(word_size,
4818                                             type,
4819                                             true /* do_expand */,
4820                                             node_index);
4821 
4822   if (new_alloc_region != NULL) {
4823     if (type.is_survivor()) {
4824       new_alloc_region->set_survivor();
4825       _survivor.add(new_alloc_region);
4826       _verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region);
4827     } else {
4828       new_alloc_region->set_old();
4829       _verifier->check_bitmaps("Old Region Allocation", new_alloc_region);
4830     }
4831     _policy->remset_tracker()->update_at_allocate(new_alloc_region);
4832     register_region_with_region_attr(new_alloc_region);
4833     _hr_printer.alloc(new_alloc_region);
4834     return new_alloc_region;
4835   }
4836   return NULL;
4837 }
4838 
4839 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
4840                                              size_t allocated_bytes,
4841                                              G1HeapRegionAttr dest) {
4842   _bytes_used_during_gc += allocated_bytes;
4843   if (dest.is_old()) {
4844     old_set_add(alloc_region);
4845   } else {
4846     assert(dest.is_young(), "Retiring alloc region should be young (%d)", dest.type());
4847     _survivor.add_used_bytes(allocated_bytes);
4848   }
4849 
4850   bool const during_im = collector_state()->in_initial_mark_gc();
4851   if (during_im && allocated_bytes > 0) {
4852     _cm->root_regions()->add(alloc_region->next_top_at_mark_start(), alloc_region->top());
4853   }
4854   _hr_printer.retire(alloc_region);
4855 }
4856 
4857 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
4858   bool expanded = false;
4859   uint index = _hrm->find_highest_free(&expanded);
4860 
4861   if (index != G1_NO_HRM_INDEX) {
4862     if (expanded) {
4863       log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
4864                                 HeapRegion::GrainWords * HeapWordSize);
4865     }
4866     return _hrm->allocate_free_regions_starting_at(index, 1);
4867   }
4868   return NULL;
4869 }
4870 
4871 // Optimized nmethod scanning
4872 
4873 class RegisterNMethodOopClosure: public OopClosure {
4874   G1CollectedHeap* _g1h;
4875   nmethod* _nm;
4876 
4877   template <class T> void do_oop_work(T* p) {
4878     T heap_oop = RawAccess<>::oop_load(p);
4879     if (!CompressedOops::is_null(heap_oop)) {
4880       oop obj = CompressedOops::decode_not_null(heap_oop);
4881       HeapRegion* hr = _g1h->heap_region_containing(obj);
4882       assert(!hr->is_continues_humongous(),
4883              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
4884              " starting at " HR_FORMAT,
4885              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
4886 
4887       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
4888       hr->add_strong_code_root_locked(_nm);
4889     }
4890   }
4891 
4892 public:
4893   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
4894     _g1h(g1h), _nm(nm) {}
4895 
4896   void do_oop(oop* p)       { do_oop_work(p); }
4897   void do_oop(narrowOop* p) { do_oop_work(p); }
4898 };
4899 
4900 class UnregisterNMethodOopClosure: public OopClosure {
4901   G1CollectedHeap* _g1h;
4902   nmethod* _nm;
4903 
4904   template <class T> void do_oop_work(T* p) {
4905     T heap_oop = RawAccess<>::oop_load(p);
4906     if (!CompressedOops::is_null(heap_oop)) {
4907       oop obj = CompressedOops::decode_not_null(heap_oop);
4908       HeapRegion* hr = _g1h->heap_region_containing(obj);
4909       assert(!hr->is_continues_humongous(),
4910              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
4911              " starting at " HR_FORMAT,
4912              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
4913 
4914       hr->remove_strong_code_root(_nm);
4915     }
4916   }
4917 
4918 public:
4919   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
4920     _g1h(g1h), _nm(nm) {}
4921 
4922   void do_oop(oop* p)       { do_oop_work(p); }
4923   void do_oop(narrowOop* p) { do_oop_work(p); }
4924 };
4925 
4926 void G1CollectedHeap::register_nmethod(nmethod* nm) {
4927   guarantee(nm != NULL, "sanity");
4928   RegisterNMethodOopClosure reg_cl(this, nm);
4929   nm->oops_do(&reg_cl);
4930 }
4931 
4932 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
4933   guarantee(nm != NULL, "sanity");
4934   UnregisterNMethodOopClosure reg_cl(this, nm);
4935   nm->oops_do(&reg_cl, true);
4936 }
4937 
4938 void G1CollectedHeap::purge_code_root_memory() {
4939   double purge_start = os::elapsedTime();
4940   G1CodeRootSet::purge();
4941   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
4942   phase_times()->record_strong_code_root_purge_time(purge_time_ms);
4943 }
4944 
4945 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
4946   G1CollectedHeap* _g1h;
4947 
4948 public:
4949   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
4950     _g1h(g1h) {}
4951 
4952   void do_code_blob(CodeBlob* cb) {
4953     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
4954     if (nm == NULL) {
4955       return;
4956     }
4957 
4958     _g1h->register_nmethod(nm);
4959   }
4960 };
4961 
4962 void G1CollectedHeap::rebuild_strong_code_roots() {
4963   RebuildStrongCodeRootClosure blob_cl(this);
4964   CodeCache::blobs_do(&blob_cl);
4965 }
4966 
4967 void G1CollectedHeap::initialize_serviceability() {
4968   _g1mm->initialize_serviceability();
4969 }
4970 
4971 MemoryUsage G1CollectedHeap::memory_usage() {
4972   return _g1mm->memory_usage();
4973 }
4974 
4975 GrowableArray<GCMemoryManager*> G1CollectedHeap::memory_managers() {
4976   return _g1mm->memory_managers();
4977 }
4978 
4979 GrowableArray<MemoryPool*> G1CollectedHeap::memory_pools() {
4980   return _g1mm->memory_pools();
4981 }