1 /* 2 * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/classLoaderData.hpp" 27 #include "classfile/symbolTable.hpp" 28 #include "classfile/systemDictionary.hpp" 29 #include "code/codeCache.hpp" 30 #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp" 31 #include "gc_implementation/concurrentMarkSweep/cmsCollectorPolicy.hpp" 32 #include "gc_implementation/concurrentMarkSweep/cmsGCAdaptivePolicyCounters.hpp" 33 #include "gc_implementation/concurrentMarkSweep/cmsOopClosures.inline.hpp" 34 #include "gc_implementation/concurrentMarkSweep/compactibleFreeListSpace.hpp" 35 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.inline.hpp" 36 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp" 37 #include "gc_implementation/concurrentMarkSweep/vmCMSOperations.hpp" 38 #include "gc_implementation/parNew/parNewGeneration.hpp" 39 #include "gc_implementation/shared/collectorCounters.hpp" 40 #include "gc_implementation/shared/gcTimer.hpp" 41 #include "gc_implementation/shared/gcTrace.hpp" 42 #include "gc_implementation/shared/gcTraceTime.hpp" 43 #include "gc_implementation/shared/isGCActiveMark.hpp" 44 #include "gc_interface/collectedHeap.inline.hpp" 45 #include "memory/allocation.hpp" 46 #include "memory/cardTableRS.hpp" 47 #include "memory/collectorPolicy.hpp" 48 #include "memory/gcLocker.inline.hpp" 49 #include "memory/genCollectedHeap.hpp" 50 #include "memory/genMarkSweep.hpp" 51 #include "memory/genOopClosures.inline.hpp" 52 #include "memory/iterator.hpp" 53 #include "memory/referencePolicy.hpp" 54 #include "memory/resourceArea.hpp" 55 #include "memory/tenuredGeneration.hpp" 56 #include "oops/oop.inline.hpp" 57 #include "prims/jvmtiExport.hpp" 58 #include "runtime/globals_extension.hpp" 59 #include "runtime/handles.inline.hpp" 60 #include "runtime/java.hpp" 61 #include "runtime/vmThread.hpp" 62 #include "services/memoryService.hpp" 63 #include "services/runtimeService.hpp" 64 65 // statics 66 CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL; 67 bool CMSCollector::_full_gc_requested = false; 68 GCCause::Cause CMSCollector::_full_gc_cause = GCCause::_no_gc; 69 70 ////////////////////////////////////////////////////////////////// 71 // In support of CMS/VM thread synchronization 72 ////////////////////////////////////////////////////////////////// 73 // We split use of the CGC_lock into 2 "levels". 74 // The low-level locking is of the usual CGC_lock monitor. We introduce 75 // a higher level "token" (hereafter "CMS token") built on top of the 76 // low level monitor (hereafter "CGC lock"). 77 // The token-passing protocol gives priority to the VM thread. The 78 // CMS-lock doesn't provide any fairness guarantees, but clients 79 // should ensure that it is only held for very short, bounded 80 // durations. 81 // 82 // When either of the CMS thread or the VM thread is involved in 83 // collection operations during which it does not want the other 84 // thread to interfere, it obtains the CMS token. 85 // 86 // If either thread tries to get the token while the other has 87 // it, that thread waits. However, if the VM thread and CMS thread 88 // both want the token, then the VM thread gets priority while the 89 // CMS thread waits. This ensures, for instance, that the "concurrent" 90 // phases of the CMS thread's work do not block out the VM thread 91 // for long periods of time as the CMS thread continues to hog 92 // the token. (See bug 4616232). 93 // 94 // The baton-passing functions are, however, controlled by the 95 // flags _foregroundGCShouldWait and _foregroundGCIsActive, 96 // and here the low-level CMS lock, not the high level token, 97 // ensures mutual exclusion. 98 // 99 // Two important conditions that we have to satisfy: 100 // 1. if a thread does a low-level wait on the CMS lock, then it 101 // relinquishes the CMS token if it were holding that token 102 // when it acquired the low-level CMS lock. 103 // 2. any low-level notifications on the low-level lock 104 // should only be sent when a thread has relinquished the token. 105 // 106 // In the absence of either property, we'd have potential deadlock. 107 // 108 // We protect each of the CMS (concurrent and sequential) phases 109 // with the CMS _token_, not the CMS _lock_. 110 // 111 // The only code protected by CMS lock is the token acquisition code 112 // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the 113 // baton-passing code. 114 // 115 // Unfortunately, i couldn't come up with a good abstraction to factor and 116 // hide the naked CGC_lock manipulation in the baton-passing code 117 // further below. That's something we should try to do. Also, the proof 118 // of correctness of this 2-level locking scheme is far from obvious, 119 // and potentially quite slippery. We have an uneasy supsicion, for instance, 120 // that there may be a theoretical possibility of delay/starvation in the 121 // low-level lock/wait/notify scheme used for the baton-passing because of 122 // potential intereference with the priority scheme embodied in the 123 // CMS-token-passing protocol. See related comments at a CGC_lock->wait() 124 // invocation further below and marked with "XXX 20011219YSR". 125 // Indeed, as we note elsewhere, this may become yet more slippery 126 // in the presence of multiple CMS and/or multiple VM threads. XXX 127 128 class CMSTokenSync: public StackObj { 129 private: 130 bool _is_cms_thread; 131 public: 132 CMSTokenSync(bool is_cms_thread): 133 _is_cms_thread(is_cms_thread) { 134 assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(), 135 "Incorrect argument to constructor"); 136 ConcurrentMarkSweepThread::synchronize(_is_cms_thread); 137 } 138 139 ~CMSTokenSync() { 140 assert(_is_cms_thread ? 141 ConcurrentMarkSweepThread::cms_thread_has_cms_token() : 142 ConcurrentMarkSweepThread::vm_thread_has_cms_token(), 143 "Incorrect state"); 144 ConcurrentMarkSweepThread::desynchronize(_is_cms_thread); 145 } 146 }; 147 148 // Convenience class that does a CMSTokenSync, and then acquires 149 // upto three locks. 150 class CMSTokenSyncWithLocks: public CMSTokenSync { 151 private: 152 // Note: locks are acquired in textual declaration order 153 // and released in the opposite order 154 MutexLockerEx _locker1, _locker2, _locker3; 155 public: 156 CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1, 157 Mutex* mutex2 = NULL, Mutex* mutex3 = NULL): 158 CMSTokenSync(is_cms_thread), 159 _locker1(mutex1, Mutex::_no_safepoint_check_flag), 160 _locker2(mutex2, Mutex::_no_safepoint_check_flag), 161 _locker3(mutex3, Mutex::_no_safepoint_check_flag) 162 { } 163 }; 164 165 166 // Wrapper class to temporarily disable icms during a foreground cms collection. 167 class ICMSDisabler: public StackObj { 168 public: 169 // The ctor disables icms and wakes up the thread so it notices the change; 170 // the dtor re-enables icms. Note that the CMSCollector methods will check 171 // CMSIncrementalMode. 172 ICMSDisabler() { CMSCollector::disable_icms(); CMSCollector::start_icms(); } 173 ~ICMSDisabler() { CMSCollector::enable_icms(); } 174 }; 175 176 ////////////////////////////////////////////////////////////////// 177 // Concurrent Mark-Sweep Generation ///////////////////////////// 178 ////////////////////////////////////////////////////////////////// 179 180 NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;) 181 182 // This struct contains per-thread things necessary to support parallel 183 // young-gen collection. 184 class CMSParGCThreadState: public CHeapObj<mtGC> { 185 public: 186 CFLS_LAB lab; 187 PromotionInfo promo; 188 189 // Constructor. 190 CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) { 191 promo.setSpace(cfls); 192 } 193 }; 194 195 ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration( 196 ReservedSpace rs, size_t initial_byte_size, int level, 197 CardTableRS* ct, bool use_adaptive_freelists, 198 FreeBlockDictionary<FreeChunk>::DictionaryChoice dictionaryChoice) : 199 CardGeneration(rs, initial_byte_size, level, ct), 200 _dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))), 201 _debug_collection_type(Concurrent_collection_type), 202 _did_compact(false) 203 { 204 HeapWord* bottom = (HeapWord*) _virtual_space.low(); 205 HeapWord* end = (HeapWord*) _virtual_space.high(); 206 207 _direct_allocated_words = 0; 208 NOT_PRODUCT( 209 _numObjectsPromoted = 0; 210 _numWordsPromoted = 0; 211 _numObjectsAllocated = 0; 212 _numWordsAllocated = 0; 213 ) 214 215 _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end), 216 use_adaptive_freelists, 217 dictionaryChoice); 218 NOT_PRODUCT(debug_cms_space = _cmsSpace;) 219 if (_cmsSpace == NULL) { 220 vm_exit_during_initialization( 221 "CompactibleFreeListSpace allocation failure"); 222 } 223 _cmsSpace->_gen = this; 224 225 _gc_stats = new CMSGCStats(); 226 227 // Verify the assumption that FreeChunk::_prev and OopDesc::_klass 228 // offsets match. The ability to tell free chunks from objects 229 // depends on this property. 230 debug_only( 231 FreeChunk* junk = NULL; 232 assert(UseCompressedKlassPointers || 233 junk->prev_addr() == (void*)(oop(junk)->klass_addr()), 234 "Offset of FreeChunk::_prev within FreeChunk must match" 235 " that of OopDesc::_klass within OopDesc"); 236 ) 237 if (CollectedHeap::use_parallel_gc_threads()) { 238 typedef CMSParGCThreadState* CMSParGCThreadStatePtr; 239 _par_gc_thread_states = 240 NEW_C_HEAP_ARRAY(CMSParGCThreadStatePtr, ParallelGCThreads, mtGC); 241 if (_par_gc_thread_states == NULL) { 242 vm_exit_during_initialization("Could not allocate par gc structs"); 243 } 244 for (uint i = 0; i < ParallelGCThreads; i++) { 245 _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace()); 246 if (_par_gc_thread_states[i] == NULL) { 247 vm_exit_during_initialization("Could not allocate par gc structs"); 248 } 249 } 250 } else { 251 _par_gc_thread_states = NULL; 252 } 253 _incremental_collection_failed = false; 254 // The "dilatation_factor" is the expansion that can occur on 255 // account of the fact that the minimum object size in the CMS 256 // generation may be larger than that in, say, a contiguous young 257 // generation. 258 // Ideally, in the calculation below, we'd compute the dilatation 259 // factor as: MinChunkSize/(promoting_gen's min object size) 260 // Since we do not have such a general query interface for the 261 // promoting generation, we'll instead just use the mimimum 262 // object size (which today is a header's worth of space); 263 // note that all arithmetic is in units of HeapWords. 264 assert(MinChunkSize >= CollectedHeap::min_fill_size(), "just checking"); 265 assert(_dilatation_factor >= 1.0, "from previous assert"); 266 } 267 268 269 // The field "_initiating_occupancy" represents the occupancy percentage 270 // at which we trigger a new collection cycle. Unless explicitly specified 271 // via CMSInitiatingOccupancyFraction (argument "io" below), it 272 // is calculated by: 273 // 274 // Let "f" be MinHeapFreeRatio in 275 // 276 // _intiating_occupancy = 100-f + 277 // f * (CMSTriggerRatio/100) 278 // where CMSTriggerRatio is the argument "tr" below. 279 // 280 // That is, if we assume the heap is at its desired maximum occupancy at the 281 // end of a collection, we let CMSTriggerRatio of the (purported) free 282 // space be allocated before initiating a new collection cycle. 283 // 284 void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, uintx tr) { 285 assert(io <= 100 && tr <= 100, "Check the arguments"); 286 if (io >= 0) { 287 _initiating_occupancy = (double)io / 100.0; 288 } else { 289 _initiating_occupancy = ((100 - MinHeapFreeRatio) + 290 (double)(tr * MinHeapFreeRatio) / 100.0) 291 / 100.0; 292 } 293 } 294 295 void ConcurrentMarkSweepGeneration::ref_processor_init() { 296 assert(collector() != NULL, "no collector"); 297 collector()->ref_processor_init(); 298 } 299 300 void CMSCollector::ref_processor_init() { 301 if (_ref_processor == NULL) { 302 // Allocate and initialize a reference processor 303 _ref_processor = 304 new ReferenceProcessor(_span, // span 305 (ParallelGCThreads > 1) && ParallelRefProcEnabled, // mt processing 306 (int) ParallelGCThreads, // mt processing degree 307 _cmsGen->refs_discovery_is_mt(), // mt discovery 308 (int) MAX2(ConcGCThreads, ParallelGCThreads), // mt discovery degree 309 _cmsGen->refs_discovery_is_atomic(), // discovery is not atomic 310 &_is_alive_closure, // closure for liveness info 311 false); // next field updates do not need write barrier 312 // Initialize the _ref_processor field of CMSGen 313 _cmsGen->set_ref_processor(_ref_processor); 314 315 } 316 } 317 318 CMSAdaptiveSizePolicy* CMSCollector::size_policy() { 319 GenCollectedHeap* gch = GenCollectedHeap::heap(); 320 assert(gch->kind() == CollectedHeap::GenCollectedHeap, 321 "Wrong type of heap"); 322 CMSAdaptiveSizePolicy* sp = (CMSAdaptiveSizePolicy*) 323 gch->gen_policy()->size_policy(); 324 assert(sp->is_gc_cms_adaptive_size_policy(), 325 "Wrong type of size policy"); 326 return sp; 327 } 328 329 CMSGCAdaptivePolicyCounters* CMSCollector::gc_adaptive_policy_counters() { 330 CMSGCAdaptivePolicyCounters* results = 331 (CMSGCAdaptivePolicyCounters*) collector_policy()->counters(); 332 assert( 333 results->kind() == GCPolicyCounters::CMSGCAdaptivePolicyCountersKind, 334 "Wrong gc policy counter kind"); 335 return results; 336 } 337 338 339 void ConcurrentMarkSweepGeneration::initialize_performance_counters() { 340 341 const char* gen_name = "old"; 342 343 // Generation Counters - generation 1, 1 subspace 344 _gen_counters = new GenerationCounters(gen_name, 1, 1, &_virtual_space); 345 346 _space_counters = new GSpaceCounters(gen_name, 0, 347 _virtual_space.reserved_size(), 348 this, _gen_counters); 349 } 350 351 CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha): 352 _cms_gen(cms_gen) 353 { 354 assert(alpha <= 100, "bad value"); 355 _saved_alpha = alpha; 356 357 // Initialize the alphas to the bootstrap value of 100. 358 _gc0_alpha = _cms_alpha = 100; 359 360 _cms_begin_time.update(); 361 _cms_end_time.update(); 362 363 _gc0_duration = 0.0; 364 _gc0_period = 0.0; 365 _gc0_promoted = 0; 366 367 _cms_duration = 0.0; 368 _cms_period = 0.0; 369 _cms_allocated = 0; 370 371 _cms_used_at_gc0_begin = 0; 372 _cms_used_at_gc0_end = 0; 373 _allow_duty_cycle_reduction = false; 374 _valid_bits = 0; 375 _icms_duty_cycle = CMSIncrementalDutyCycle; 376 } 377 378 double CMSStats::cms_free_adjustment_factor(size_t free) const { 379 // TBD: CR 6909490 380 return 1.0; 381 } 382 383 void CMSStats::adjust_cms_free_adjustment_factor(bool fail, size_t free) { 384 } 385 386 // If promotion failure handling is on use 387 // the padded average size of the promotion for each 388 // young generation collection. 389 double CMSStats::time_until_cms_gen_full() const { 390 size_t cms_free = _cms_gen->cmsSpace()->free(); 391 GenCollectedHeap* gch = GenCollectedHeap::heap(); 392 size_t expected_promotion = MIN2(gch->get_gen(0)->capacity(), 393 (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average()); 394 if (cms_free > expected_promotion) { 395 // Start a cms collection if there isn't enough space to promote 396 // for the next minor collection. Use the padded average as 397 // a safety factor. 398 cms_free -= expected_promotion; 399 400 // Adjust by the safety factor. 401 double cms_free_dbl = (double)cms_free; 402 double cms_adjustment = (100.0 - CMSIncrementalSafetyFactor)/100.0; 403 // Apply a further correction factor which tries to adjust 404 // for recent occurance of concurrent mode failures. 405 cms_adjustment = cms_adjustment * cms_free_adjustment_factor(cms_free); 406 cms_free_dbl = cms_free_dbl * cms_adjustment; 407 408 if (PrintGCDetails && Verbose) { 409 gclog_or_tty->print_cr("CMSStats::time_until_cms_gen_full: cms_free " 410 SIZE_FORMAT " expected_promotion " SIZE_FORMAT, 411 cms_free, expected_promotion); 412 gclog_or_tty->print_cr(" cms_free_dbl %f cms_consumption_rate %f", 413 cms_free_dbl, cms_consumption_rate() + 1.0); 414 } 415 // Add 1 in case the consumption rate goes to zero. 416 return cms_free_dbl / (cms_consumption_rate() + 1.0); 417 } 418 return 0.0; 419 } 420 421 // Compare the duration of the cms collection to the 422 // time remaining before the cms generation is empty. 423 // Note that the time from the start of the cms collection 424 // to the start of the cms sweep (less than the total 425 // duration of the cms collection) can be used. This 426 // has been tried and some applications experienced 427 // promotion failures early in execution. This was 428 // possibly because the averages were not accurate 429 // enough at the beginning. 430 double CMSStats::time_until_cms_start() const { 431 // We add "gc0_period" to the "work" calculation 432 // below because this query is done (mostly) at the 433 // end of a scavenge, so we need to conservatively 434 // account for that much possible delay 435 // in the query so as to avoid concurrent mode failures 436 // due to starting the collection just a wee bit too 437 // late. 438 double work = cms_duration() + gc0_period(); 439 double deadline = time_until_cms_gen_full(); 440 // If a concurrent mode failure occurred recently, we want to be 441 // more conservative and halve our expected time_until_cms_gen_full() 442 if (work > deadline) { 443 if (Verbose && PrintGCDetails) { 444 gclog_or_tty->print( 445 " CMSCollector: collect because of anticipated promotion " 446 "before full %3.7f + %3.7f > %3.7f ", cms_duration(), 447 gc0_period(), time_until_cms_gen_full()); 448 } 449 return 0.0; 450 } 451 return work - deadline; 452 } 453 454 // Return a duty cycle based on old_duty_cycle and new_duty_cycle, limiting the 455 // amount of change to prevent wild oscillation. 456 unsigned int CMSStats::icms_damped_duty_cycle(unsigned int old_duty_cycle, 457 unsigned int new_duty_cycle) { 458 assert(old_duty_cycle <= 100, "bad input value"); 459 assert(new_duty_cycle <= 100, "bad input value"); 460 461 // Note: use subtraction with caution since it may underflow (values are 462 // unsigned). Addition is safe since we're in the range 0-100. 463 unsigned int damped_duty_cycle = new_duty_cycle; 464 if (new_duty_cycle < old_duty_cycle) { 465 const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 5U); 466 if (new_duty_cycle + largest_delta < old_duty_cycle) { 467 damped_duty_cycle = old_duty_cycle - largest_delta; 468 } 469 } else if (new_duty_cycle > old_duty_cycle) { 470 const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 15U); 471 if (new_duty_cycle > old_duty_cycle + largest_delta) { 472 damped_duty_cycle = MIN2(old_duty_cycle + largest_delta, 100U); 473 } 474 } 475 assert(damped_duty_cycle <= 100, "invalid duty cycle computed"); 476 477 if (CMSTraceIncrementalPacing) { 478 gclog_or_tty->print(" [icms_damped_duty_cycle(%d,%d) = %d] ", 479 old_duty_cycle, new_duty_cycle, damped_duty_cycle); 480 } 481 return damped_duty_cycle; 482 } 483 484 unsigned int CMSStats::icms_update_duty_cycle_impl() { 485 assert(CMSIncrementalPacing && valid(), 486 "should be handled in icms_update_duty_cycle()"); 487 488 double cms_time_so_far = cms_timer().seconds(); 489 double scaled_duration = cms_duration_per_mb() * _cms_used_at_gc0_end / M; 490 double scaled_duration_remaining = fabsd(scaled_duration - cms_time_so_far); 491 492 // Avoid division by 0. 493 double time_until_full = MAX2(time_until_cms_gen_full(), 0.01); 494 double duty_cycle_dbl = 100.0 * scaled_duration_remaining / time_until_full; 495 496 unsigned int new_duty_cycle = MIN2((unsigned int)duty_cycle_dbl, 100U); 497 if (new_duty_cycle > _icms_duty_cycle) { 498 // Avoid very small duty cycles (1 or 2); 0 is allowed. 499 if (new_duty_cycle > 2) { 500 _icms_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle, 501 new_duty_cycle); 502 } 503 } else if (_allow_duty_cycle_reduction) { 504 // The duty cycle is reduced only once per cms cycle (see record_cms_end()). 505 new_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle, new_duty_cycle); 506 // Respect the minimum duty cycle. 507 unsigned int min_duty_cycle = (unsigned int)CMSIncrementalDutyCycleMin; 508 _icms_duty_cycle = MAX2(new_duty_cycle, min_duty_cycle); 509 } 510 511 if (PrintGCDetails || CMSTraceIncrementalPacing) { 512 gclog_or_tty->print(" icms_dc=%d ", _icms_duty_cycle); 513 } 514 515 _allow_duty_cycle_reduction = false; 516 return _icms_duty_cycle; 517 } 518 519 #ifndef PRODUCT 520 void CMSStats::print_on(outputStream *st) const { 521 st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha); 522 st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT, 523 gc0_duration(), gc0_period(), gc0_promoted()); 524 st->print(",cms_dur=%g,cms_dur_per_mb=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT, 525 cms_duration(), cms_duration_per_mb(), 526 cms_period(), cms_allocated()); 527 st->print(",cms_since_beg=%g,cms_since_end=%g", 528 cms_time_since_begin(), cms_time_since_end()); 529 st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT, 530 _cms_used_at_gc0_begin, _cms_used_at_gc0_end); 531 if (CMSIncrementalMode) { 532 st->print(",dc=%d", icms_duty_cycle()); 533 } 534 535 if (valid()) { 536 st->print(",promo_rate=%g,cms_alloc_rate=%g", 537 promotion_rate(), cms_allocation_rate()); 538 st->print(",cms_consumption_rate=%g,time_until_full=%g", 539 cms_consumption_rate(), time_until_cms_gen_full()); 540 } 541 st->print(" "); 542 } 543 #endif // #ifndef PRODUCT 544 545 CMSCollector::CollectorState CMSCollector::_collectorState = 546 CMSCollector::Idling; 547 bool CMSCollector::_foregroundGCIsActive = false; 548 bool CMSCollector::_foregroundGCShouldWait = false; 549 550 CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen, 551 CardTableRS* ct, 552 ConcurrentMarkSweepPolicy* cp): 553 _cmsGen(cmsGen), 554 _ct(ct), 555 _ref_processor(NULL), // will be set later 556 _conc_workers(NULL), // may be set later 557 _abort_preclean(false), 558 _start_sampling(false), 559 _between_prologue_and_epilogue(false), 560 _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"), 561 _modUnionTable((CardTableModRefBS::card_shift - LogHeapWordSize), 562 -1 /* lock-free */, "No_lock" /* dummy */), 563 _modUnionClosure(&_modUnionTable), 564 _modUnionClosurePar(&_modUnionTable), 565 // Adjust my span to cover old (cms) gen 566 _span(cmsGen->reserved()), 567 // Construct the is_alive_closure with _span & markBitMap 568 _is_alive_closure(_span, &_markBitMap), 569 _restart_addr(NULL), 570 _overflow_list(NULL), 571 _stats(cmsGen), 572 _eden_chunk_array(NULL), // may be set in ctor body 573 _eden_chunk_capacity(0), // -- ditto -- 574 _eden_chunk_index(0), // -- ditto -- 575 _survivor_plab_array(NULL), // -- ditto -- 576 _survivor_chunk_array(NULL), // -- ditto -- 577 _survivor_chunk_capacity(0), // -- ditto -- 578 _survivor_chunk_index(0), // -- ditto -- 579 _ser_pmc_preclean_ovflw(0), 580 _ser_kac_preclean_ovflw(0), 581 _ser_pmc_remark_ovflw(0), 582 _par_pmc_remark_ovflw(0), 583 _ser_kac_ovflw(0), 584 _par_kac_ovflw(0), 585 #ifndef PRODUCT 586 _num_par_pushes(0), 587 #endif 588 _collection_count_start(0), 589 _verifying(false), 590 _icms_start_limit(NULL), 591 _icms_stop_limit(NULL), 592 _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"), 593 _completed_initialization(false), 594 _collector_policy(cp), 595 _should_unload_classes(false), 596 _concurrent_cycles_since_last_unload(0), 597 _roots_scanning_options(0), 598 _inter_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding), 599 _intra_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding), 600 _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) CMSTracer()), 601 _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()), 602 _cms_start_registered(false) 603 { 604 if (ExplicitGCInvokesConcurrentAndUnloadsClasses) { 605 ExplicitGCInvokesConcurrent = true; 606 } 607 // Now expand the span and allocate the collection support structures 608 // (MUT, marking bit map etc.) to cover both generations subject to 609 // collection. 610 611 // For use by dirty card to oop closures. 612 _cmsGen->cmsSpace()->set_collector(this); 613 614 // Allocate MUT and marking bit map 615 { 616 MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag); 617 if (!_markBitMap.allocate(_span)) { 618 warning("Failed to allocate CMS Bit Map"); 619 return; 620 } 621 assert(_markBitMap.covers(_span), "_markBitMap inconsistency?"); 622 } 623 { 624 _modUnionTable.allocate(_span); 625 assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?"); 626 } 627 628 if (!_markStack.allocate(MarkStackSize)) { 629 warning("Failed to allocate CMS Marking Stack"); 630 return; 631 } 632 633 // Support for multi-threaded concurrent phases 634 if (CMSConcurrentMTEnabled) { 635 if (FLAG_IS_DEFAULT(ConcGCThreads)) { 636 // just for now 637 FLAG_SET_DEFAULT(ConcGCThreads, (ParallelGCThreads + 3)/4); 638 } 639 if (ConcGCThreads > 1) { 640 _conc_workers = new YieldingFlexibleWorkGang("Parallel CMS Threads", 641 ConcGCThreads, true); 642 if (_conc_workers == NULL) { 643 warning("GC/CMS: _conc_workers allocation failure: " 644 "forcing -CMSConcurrentMTEnabled"); 645 CMSConcurrentMTEnabled = false; 646 } else { 647 _conc_workers->initialize_workers(); 648 } 649 } else { 650 CMSConcurrentMTEnabled = false; 651 } 652 } 653 if (!CMSConcurrentMTEnabled) { 654 ConcGCThreads = 0; 655 } else { 656 // Turn off CMSCleanOnEnter optimization temporarily for 657 // the MT case where it's not fixed yet; see 6178663. 658 CMSCleanOnEnter = false; 659 } 660 assert((_conc_workers != NULL) == (ConcGCThreads > 1), 661 "Inconsistency"); 662 663 // Parallel task queues; these are shared for the 664 // concurrent and stop-world phases of CMS, but 665 // are not shared with parallel scavenge (ParNew). 666 { 667 uint i; 668 uint num_queues = (uint) MAX2(ParallelGCThreads, ConcGCThreads); 669 670 if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled 671 || ParallelRefProcEnabled) 672 && num_queues > 0) { 673 _task_queues = new OopTaskQueueSet(num_queues); 674 if (_task_queues == NULL) { 675 warning("task_queues allocation failure."); 676 return; 677 } 678 _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues, mtGC); 679 if (_hash_seed == NULL) { 680 warning("_hash_seed array allocation failure"); 681 return; 682 } 683 684 typedef Padded<OopTaskQueue> PaddedOopTaskQueue; 685 for (i = 0; i < num_queues; i++) { 686 PaddedOopTaskQueue *q = new PaddedOopTaskQueue(); 687 if (q == NULL) { 688 warning("work_queue allocation failure."); 689 return; 690 } 691 _task_queues->register_queue(i, q); 692 } 693 for (i = 0; i < num_queues; i++) { 694 _task_queues->queue(i)->initialize(); 695 _hash_seed[i] = 17; // copied from ParNew 696 } 697 } 698 } 699 700 _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio); 701 702 // Clip CMSBootstrapOccupancy between 0 and 100. 703 _bootstrap_occupancy = ((double)CMSBootstrapOccupancy)/(double)100; 704 705 _full_gcs_since_conc_gc = 0; 706 707 // Now tell CMS generations the identity of their collector 708 ConcurrentMarkSweepGeneration::set_collector(this); 709 710 // Create & start a CMS thread for this CMS collector 711 _cmsThread = ConcurrentMarkSweepThread::start(this); 712 assert(cmsThread() != NULL, "CMS Thread should have been created"); 713 assert(cmsThread()->collector() == this, 714 "CMS Thread should refer to this gen"); 715 assert(CGC_lock != NULL, "Where's the CGC_lock?"); 716 717 // Support for parallelizing young gen rescan 718 GenCollectedHeap* gch = GenCollectedHeap::heap(); 719 _young_gen = gch->prev_gen(_cmsGen); 720 if (gch->supports_inline_contig_alloc()) { 721 _top_addr = gch->top_addr(); 722 _end_addr = gch->end_addr(); 723 assert(_young_gen != NULL, "no _young_gen"); 724 _eden_chunk_index = 0; 725 _eden_chunk_capacity = (_young_gen->max_capacity()+CMSSamplingGrain)/CMSSamplingGrain; 726 _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity, mtGC); 727 if (_eden_chunk_array == NULL) { 728 _eden_chunk_capacity = 0; 729 warning("GC/CMS: _eden_chunk_array allocation failure"); 730 } 731 } 732 assert(_eden_chunk_array != NULL || _eden_chunk_capacity == 0, "Error"); 733 734 // Support for parallelizing survivor space rescan 735 if ((CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) || CMSParallelInitialMarkEnabled) { 736 const size_t max_plab_samples = 737 ((DefNewGeneration*)_young_gen)->max_survivor_size()/MinTLABSize; 738 739 _survivor_plab_array = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads, mtGC); 740 _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, 2*max_plab_samples, mtGC); 741 _cursor = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads, mtGC); 742 if (_survivor_plab_array == NULL || _survivor_chunk_array == NULL 743 || _cursor == NULL) { 744 warning("Failed to allocate survivor plab/chunk array"); 745 if (_survivor_plab_array != NULL) { 746 FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array, mtGC); 747 _survivor_plab_array = NULL; 748 } 749 if (_survivor_chunk_array != NULL) { 750 FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array, mtGC); 751 _survivor_chunk_array = NULL; 752 } 753 if (_cursor != NULL) { 754 FREE_C_HEAP_ARRAY(size_t, _cursor, mtGC); 755 _cursor = NULL; 756 } 757 } else { 758 _survivor_chunk_capacity = 2*max_plab_samples; 759 for (uint i = 0; i < ParallelGCThreads; i++) { 760 HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC); 761 if (vec == NULL) { 762 warning("Failed to allocate survivor plab array"); 763 for (int j = i; j > 0; j--) { 764 FREE_C_HEAP_ARRAY(HeapWord*, _survivor_plab_array[j-1].array(), mtGC); 765 } 766 FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array, mtGC); 767 FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array, mtGC); 768 _survivor_plab_array = NULL; 769 _survivor_chunk_array = NULL; 770 _survivor_chunk_capacity = 0; 771 break; 772 } else { 773 ChunkArray* cur = 774 ::new (&_survivor_plab_array[i]) ChunkArray(vec, 775 max_plab_samples); 776 assert(cur->end() == 0, "Should be 0"); 777 assert(cur->array() == vec, "Should be vec"); 778 assert(cur->capacity() == max_plab_samples, "Error"); 779 } 780 } 781 } 782 } 783 assert( ( _survivor_plab_array != NULL 784 && _survivor_chunk_array != NULL) 785 || ( _survivor_chunk_capacity == 0 786 && _survivor_chunk_index == 0), 787 "Error"); 788 789 // Choose what strong roots should be scanned depending on verification options 790 if (!CMSClassUnloadingEnabled) { 791 // If class unloading is disabled we want to include all classes into the root set. 792 add_root_scanning_option(SharedHeap::SO_AllClasses); 793 } else { 794 add_root_scanning_option(SharedHeap::SO_SystemClasses); 795 } 796 797 NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;) 798 _gc_counters = new CollectorCounters("CMS", 1); 799 _completed_initialization = true; 800 _inter_sweep_timer.start(); // start of time 801 } 802 803 const char* ConcurrentMarkSweepGeneration::name() const { 804 return "concurrent mark-sweep generation"; 805 } 806 void ConcurrentMarkSweepGeneration::update_counters() { 807 if (UsePerfData) { 808 _space_counters->update_all(); 809 _gen_counters->update_all(); 810 } 811 } 812 813 // this is an optimized version of update_counters(). it takes the 814 // used value as a parameter rather than computing it. 815 // 816 void ConcurrentMarkSweepGeneration::update_counters(size_t used) { 817 if (UsePerfData) { 818 _space_counters->update_used(used); 819 _space_counters->update_capacity(); 820 _gen_counters->update_all(); 821 } 822 } 823 824 void ConcurrentMarkSweepGeneration::print() const { 825 Generation::print(); 826 cmsSpace()->print(); 827 } 828 829 #ifndef PRODUCT 830 void ConcurrentMarkSweepGeneration::print_statistics() { 831 cmsSpace()->printFLCensus(0); 832 } 833 #endif 834 835 void ConcurrentMarkSweepGeneration::printOccupancy(const char *s) { 836 GenCollectedHeap* gch = GenCollectedHeap::heap(); 837 if (PrintGCDetails) { 838 if (Verbose) { 839 gclog_or_tty->print("[%d %s-%s: "SIZE_FORMAT"("SIZE_FORMAT")]", 840 level(), short_name(), s, used(), capacity()); 841 } else { 842 gclog_or_tty->print("[%d %s-%s: "SIZE_FORMAT"K("SIZE_FORMAT"K)]", 843 level(), short_name(), s, used() / K, capacity() / K); 844 } 845 } 846 if (Verbose) { 847 gclog_or_tty->print(" "SIZE_FORMAT"("SIZE_FORMAT")", 848 gch->used(), gch->capacity()); 849 } else { 850 gclog_or_tty->print(" "SIZE_FORMAT"K("SIZE_FORMAT"K)", 851 gch->used() / K, gch->capacity() / K); 852 } 853 } 854 855 size_t 856 ConcurrentMarkSweepGeneration::contiguous_available() const { 857 // dld proposes an improvement in precision here. If the committed 858 // part of the space ends in a free block we should add that to 859 // uncommitted size in the calculation below. Will make this 860 // change later, staying with the approximation below for the 861 // time being. -- ysr. 862 return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc()); 863 } 864 865 size_t 866 ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const { 867 return _cmsSpace->max_alloc_in_words() * HeapWordSize; 868 } 869 870 size_t ConcurrentMarkSweepGeneration::max_available() const { 871 return free() + _virtual_space.uncommitted_size(); 872 } 873 874 bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const { 875 size_t available = max_available(); 876 size_t av_promo = (size_t)gc_stats()->avg_promoted()->padded_average(); 877 bool res = (available >= av_promo) || (available >= max_promotion_in_bytes); 878 if (Verbose && PrintGCDetails) { 879 gclog_or_tty->print_cr( 880 "CMS: promo attempt is%s safe: available("SIZE_FORMAT") %s av_promo("SIZE_FORMAT")," 881 "max_promo("SIZE_FORMAT")", 882 res? "":" not", available, res? ">=":"<", 883 av_promo, max_promotion_in_bytes); 884 } 885 return res; 886 } 887 888 // At a promotion failure dump information on block layout in heap 889 // (cms old generation). 890 void ConcurrentMarkSweepGeneration::promotion_failure_occurred() { 891 if (CMSDumpAtPromotionFailure) { 892 cmsSpace()->dump_at_safepoint_with_locks(collector(), gclog_or_tty); 893 } 894 } 895 896 CompactibleSpace* 897 ConcurrentMarkSweepGeneration::first_compaction_space() const { 898 return _cmsSpace; 899 } 900 901 void ConcurrentMarkSweepGeneration::reset_after_compaction() { 902 // Clear the promotion information. These pointers can be adjusted 903 // along with all the other pointers into the heap but 904 // compaction is expected to be a rare event with 905 // a heap using cms so don't do it without seeing the need. 906 if (CollectedHeap::use_parallel_gc_threads()) { 907 for (uint i = 0; i < ParallelGCThreads; i++) { 908 _par_gc_thread_states[i]->promo.reset(); 909 } 910 } 911 } 912 913 void ConcurrentMarkSweepGeneration::space_iterate(SpaceClosure* blk, bool usedOnly) { 914 blk->do_space(_cmsSpace); 915 } 916 917 void ConcurrentMarkSweepGeneration::compute_new_size() { 918 assert_locked_or_safepoint(Heap_lock); 919 920 // If incremental collection failed, we just want to expand 921 // to the limit. 922 if (incremental_collection_failed()) { 923 clear_incremental_collection_failed(); 924 grow_to_reserved(); 925 return; 926 } 927 928 // The heap has been compacted but not reset yet. 929 // Any metric such as free() or used() will be incorrect. 930 931 CardGeneration::compute_new_size(); 932 933 // Reset again after a possible resizing 934 if (did_compact()) { 935 cmsSpace()->reset_after_compaction(); 936 } 937 } 938 939 void ConcurrentMarkSweepGeneration::compute_new_size_free_list() { 940 assert_locked_or_safepoint(Heap_lock); 941 942 // If incremental collection failed, we just want to expand 943 // to the limit. 944 if (incremental_collection_failed()) { 945 clear_incremental_collection_failed(); 946 grow_to_reserved(); 947 return; 948 } 949 950 double free_percentage = ((double) free()) / capacity(); 951 double desired_free_percentage = (double) MinHeapFreeRatio / 100; 952 double maximum_free_percentage = (double) MaxHeapFreeRatio / 100; 953 954 // compute expansion delta needed for reaching desired free percentage 955 if (free_percentage < desired_free_percentage) { 956 size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage)); 957 assert(desired_capacity >= capacity(), "invalid expansion size"); 958 size_t expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes); 959 if (PrintGCDetails && Verbose) { 960 size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage)); 961 gclog_or_tty->print_cr("\nFrom compute_new_size: "); 962 gclog_or_tty->print_cr(" Free fraction %f", free_percentage); 963 gclog_or_tty->print_cr(" Desired free fraction %f", 964 desired_free_percentage); 965 gclog_or_tty->print_cr(" Maximum free fraction %f", 966 maximum_free_percentage); 967 gclog_or_tty->print_cr(" Capactiy "SIZE_FORMAT, capacity()/1000); 968 gclog_or_tty->print_cr(" Desired capacity "SIZE_FORMAT, 969 desired_capacity/1000); 970 int prev_level = level() - 1; 971 if (prev_level >= 0) { 972 size_t prev_size = 0; 973 GenCollectedHeap* gch = GenCollectedHeap::heap(); 974 Generation* prev_gen = gch->_gens[prev_level]; 975 prev_size = prev_gen->capacity(); 976 gclog_or_tty->print_cr(" Younger gen size "SIZE_FORMAT, 977 prev_size/1000); 978 } 979 gclog_or_tty->print_cr(" unsafe_max_alloc_nogc "SIZE_FORMAT, 980 unsafe_max_alloc_nogc()/1000); 981 gclog_or_tty->print_cr(" contiguous available "SIZE_FORMAT, 982 contiguous_available()/1000); 983 gclog_or_tty->print_cr(" Expand by "SIZE_FORMAT" (bytes)", 984 expand_bytes); 985 } 986 // safe if expansion fails 987 expand(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio); 988 if (PrintGCDetails && Verbose) { 989 gclog_or_tty->print_cr(" Expanded free fraction %f", 990 ((double) free()) / capacity()); 991 } 992 } else { 993 size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage)); 994 assert(desired_capacity <= capacity(), "invalid expansion size"); 995 size_t shrink_bytes = capacity() - desired_capacity; 996 // Don't shrink unless the delta is greater than the minimum shrink we want 997 if (shrink_bytes >= MinHeapDeltaBytes) { 998 shrink_free_list_by(shrink_bytes); 999 } 1000 } 1001 } 1002 1003 Mutex* ConcurrentMarkSweepGeneration::freelistLock() const { 1004 return cmsSpace()->freelistLock(); 1005 } 1006 1007 HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size, 1008 bool tlab) { 1009 CMSSynchronousYieldRequest yr; 1010 MutexLockerEx x(freelistLock(), 1011 Mutex::_no_safepoint_check_flag); 1012 return have_lock_and_allocate(size, tlab); 1013 } 1014 1015 HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size, 1016 bool tlab /* ignored */) { 1017 assert_lock_strong(freelistLock()); 1018 size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size); 1019 HeapWord* res = cmsSpace()->allocate(adjustedSize); 1020 // Allocate the object live (grey) if the background collector has 1021 // started marking. This is necessary because the marker may 1022 // have passed this address and consequently this object will 1023 // not otherwise be greyed and would be incorrectly swept up. 1024 // Note that if this object contains references, the writing 1025 // of those references will dirty the card containing this object 1026 // allowing the object to be blackened (and its references scanned) 1027 // either during a preclean phase or at the final checkpoint. 1028 if (res != NULL) { 1029 // We may block here with an uninitialized object with 1030 // its mark-bit or P-bits not yet set. Such objects need 1031 // to be safely navigable by block_start(). 1032 assert(oop(res)->klass_or_null() == NULL, "Object should be uninitialized here."); 1033 assert(!((FreeChunk*)res)->is_free(), "Error, block will look free but show wrong size"); 1034 collector()->direct_allocated(res, adjustedSize); 1035 _direct_allocated_words += adjustedSize; 1036 // allocation counters 1037 NOT_PRODUCT( 1038 _numObjectsAllocated++; 1039 _numWordsAllocated += (int)adjustedSize; 1040 ) 1041 } 1042 return res; 1043 } 1044 1045 // In the case of direct allocation by mutators in a generation that 1046 // is being concurrently collected, the object must be allocated 1047 // live (grey) if the background collector has started marking. 1048 // This is necessary because the marker may 1049 // have passed this address and consequently this object will 1050 // not otherwise be greyed and would be incorrectly swept up. 1051 // Note that if this object contains references, the writing 1052 // of those references will dirty the card containing this object 1053 // allowing the object to be blackened (and its references scanned) 1054 // either during a preclean phase or at the final checkpoint. 1055 void CMSCollector::direct_allocated(HeapWord* start, size_t size) { 1056 assert(_markBitMap.covers(start, size), "Out of bounds"); 1057 if (_collectorState >= Marking) { 1058 MutexLockerEx y(_markBitMap.lock(), 1059 Mutex::_no_safepoint_check_flag); 1060 // [see comments preceding SweepClosure::do_blk() below for details] 1061 // 1062 // Can the P-bits be deleted now? JJJ 1063 // 1064 // 1. need to mark the object as live so it isn't collected 1065 // 2. need to mark the 2nd bit to indicate the object may be uninitialized 1066 // 3. need to mark the end of the object so marking, precleaning or sweeping 1067 // can skip over uninitialized or unparsable objects. An allocated 1068 // object is considered uninitialized for our purposes as long as 1069 // its klass word is NULL. All old gen objects are parsable 1070 // as soon as they are initialized.) 1071 _markBitMap.mark(start); // object is live 1072 _markBitMap.mark(start + 1); // object is potentially uninitialized? 1073 _markBitMap.mark(start + size - 1); 1074 // mark end of object 1075 } 1076 // check that oop looks uninitialized 1077 assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL"); 1078 } 1079 1080 void CMSCollector::promoted(bool par, HeapWord* start, 1081 bool is_obj_array, size_t obj_size) { 1082 assert(_markBitMap.covers(start), "Out of bounds"); 1083 // See comment in direct_allocated() about when objects should 1084 // be allocated live. 1085 if (_collectorState >= Marking) { 1086 // we already hold the marking bit map lock, taken in 1087 // the prologue 1088 if (par) { 1089 _markBitMap.par_mark(start); 1090 } else { 1091 _markBitMap.mark(start); 1092 } 1093 // We don't need to mark the object as uninitialized (as 1094 // in direct_allocated above) because this is being done with the 1095 // world stopped and the object will be initialized by the 1096 // time the marking, precleaning or sweeping get to look at it. 1097 // But see the code for copying objects into the CMS generation, 1098 // where we need to ensure that concurrent readers of the 1099 // block offset table are able to safely navigate a block that 1100 // is in flux from being free to being allocated (and in 1101 // transition while being copied into) and subsequently 1102 // becoming a bona-fide object when the copy/promotion is complete. 1103 assert(SafepointSynchronize::is_at_safepoint(), 1104 "expect promotion only at safepoints"); 1105 1106 if (_collectorState < Sweeping) { 1107 // Mark the appropriate cards in the modUnionTable, so that 1108 // this object gets scanned before the sweep. If this is 1109 // not done, CMS generation references in the object might 1110 // not get marked. 1111 // For the case of arrays, which are otherwise precisely 1112 // marked, we need to dirty the entire array, not just its head. 1113 if (is_obj_array) { 1114 // The [par_]mark_range() method expects mr.end() below to 1115 // be aligned to the granularity of a bit's representation 1116 // in the heap. In the case of the MUT below, that's a 1117 // card size. 1118 MemRegion mr(start, 1119 (HeapWord*)round_to((intptr_t)(start + obj_size), 1120 CardTableModRefBS::card_size /* bytes */)); 1121 if (par) { 1122 _modUnionTable.par_mark_range(mr); 1123 } else { 1124 _modUnionTable.mark_range(mr); 1125 } 1126 } else { // not an obj array; we can just mark the head 1127 if (par) { 1128 _modUnionTable.par_mark(start); 1129 } else { 1130 _modUnionTable.mark(start); 1131 } 1132 } 1133 } 1134 } 1135 } 1136 1137 static inline size_t percent_of_space(Space* space, HeapWord* addr) 1138 { 1139 size_t delta = pointer_delta(addr, space->bottom()); 1140 return (size_t)(delta * 100.0 / (space->capacity() / HeapWordSize)); 1141 } 1142 1143 void CMSCollector::icms_update_allocation_limits() 1144 { 1145 Generation* gen0 = GenCollectedHeap::heap()->get_gen(0); 1146 EdenSpace* eden = gen0->as_DefNewGeneration()->eden(); 1147 1148 const unsigned int duty_cycle = stats().icms_update_duty_cycle(); 1149 if (CMSTraceIncrementalPacing) { 1150 stats().print(); 1151 } 1152 1153 assert(duty_cycle <= 100, "invalid duty cycle"); 1154 if (duty_cycle != 0) { 1155 // The duty_cycle is a percentage between 0 and 100; convert to words and 1156 // then compute the offset from the endpoints of the space. 1157 size_t free_words = eden->free() / HeapWordSize; 1158 double free_words_dbl = (double)free_words; 1159 size_t duty_cycle_words = (size_t)(free_words_dbl * duty_cycle / 100.0); 1160 size_t offset_words = (free_words - duty_cycle_words) / 2; 1161 1162 _icms_start_limit = eden->top() + offset_words; 1163 _icms_stop_limit = eden->end() - offset_words; 1164 1165 // The limits may be adjusted (shifted to the right) by 1166 // CMSIncrementalOffset, to allow the application more mutator time after a 1167 // young gen gc (when all mutators were stopped) and before CMS starts and 1168 // takes away one or more cpus. 1169 if (CMSIncrementalOffset != 0) { 1170 double adjustment_dbl = free_words_dbl * CMSIncrementalOffset / 100.0; 1171 size_t adjustment = (size_t)adjustment_dbl; 1172 HeapWord* tmp_stop = _icms_stop_limit + adjustment; 1173 if (tmp_stop > _icms_stop_limit && tmp_stop < eden->end()) { 1174 _icms_start_limit += adjustment; 1175 _icms_stop_limit = tmp_stop; 1176 } 1177 } 1178 } 1179 if (duty_cycle == 0 || (_icms_start_limit == _icms_stop_limit)) { 1180 _icms_start_limit = _icms_stop_limit = eden->end(); 1181 } 1182 1183 // Install the new start limit. 1184 eden->set_soft_end(_icms_start_limit); 1185 1186 if (CMSTraceIncrementalMode) { 1187 gclog_or_tty->print(" icms alloc limits: " 1188 PTR_FORMAT "," PTR_FORMAT 1189 " (" SIZE_FORMAT "%%," SIZE_FORMAT "%%) ", 1190 _icms_start_limit, _icms_stop_limit, 1191 percent_of_space(eden, _icms_start_limit), 1192 percent_of_space(eden, _icms_stop_limit)); 1193 if (Verbose) { 1194 gclog_or_tty->print("eden: "); 1195 eden->print_on(gclog_or_tty); 1196 } 1197 } 1198 } 1199 1200 // Any changes here should try to maintain the invariant 1201 // that if this method is called with _icms_start_limit 1202 // and _icms_stop_limit both NULL, then it should return NULL 1203 // and not notify the icms thread. 1204 HeapWord* 1205 CMSCollector::allocation_limit_reached(Space* space, HeapWord* top, 1206 size_t word_size) 1207 { 1208 // A start_limit equal to end() means the duty cycle is 0, so treat that as a 1209 // nop. 1210 if (CMSIncrementalMode && _icms_start_limit != space->end()) { 1211 if (top <= _icms_start_limit) { 1212 if (CMSTraceIncrementalMode) { 1213 space->print_on(gclog_or_tty); 1214 gclog_or_tty->stamp(); 1215 gclog_or_tty->print_cr(" start limit top=" PTR_FORMAT 1216 ", new limit=" PTR_FORMAT 1217 " (" SIZE_FORMAT "%%)", 1218 top, _icms_stop_limit, 1219 percent_of_space(space, _icms_stop_limit)); 1220 } 1221 ConcurrentMarkSweepThread::start_icms(); 1222 assert(top < _icms_stop_limit, "Tautology"); 1223 if (word_size < pointer_delta(_icms_stop_limit, top)) { 1224 return _icms_stop_limit; 1225 } 1226 1227 // The allocation will cross both the _start and _stop limits, so do the 1228 // stop notification also and return end(). 1229 if (CMSTraceIncrementalMode) { 1230 space->print_on(gclog_or_tty); 1231 gclog_or_tty->stamp(); 1232 gclog_or_tty->print_cr(" +stop limit top=" PTR_FORMAT 1233 ", new limit=" PTR_FORMAT 1234 " (" SIZE_FORMAT "%%)", 1235 top, space->end(), 1236 percent_of_space(space, space->end())); 1237 } 1238 ConcurrentMarkSweepThread::stop_icms(); 1239 return space->end(); 1240 } 1241 1242 if (top <= _icms_stop_limit) { 1243 if (CMSTraceIncrementalMode) { 1244 space->print_on(gclog_or_tty); 1245 gclog_or_tty->stamp(); 1246 gclog_or_tty->print_cr(" stop limit top=" PTR_FORMAT 1247 ", new limit=" PTR_FORMAT 1248 " (" SIZE_FORMAT "%%)", 1249 top, space->end(), 1250 percent_of_space(space, space->end())); 1251 } 1252 ConcurrentMarkSweepThread::stop_icms(); 1253 return space->end(); 1254 } 1255 1256 if (CMSTraceIncrementalMode) { 1257 space->print_on(gclog_or_tty); 1258 gclog_or_tty->stamp(); 1259 gclog_or_tty->print_cr(" end limit top=" PTR_FORMAT 1260 ", new limit=" PTR_FORMAT, 1261 top, NULL); 1262 } 1263 } 1264 1265 return NULL; 1266 } 1267 1268 oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) { 1269 assert(obj_size == (size_t)obj->size(), "bad obj_size passed in"); 1270 // allocate, copy and if necessary update promoinfo -- 1271 // delegate to underlying space. 1272 assert_lock_strong(freelistLock()); 1273 1274 #ifndef PRODUCT 1275 if (Universe::heap()->promotion_should_fail()) { 1276 return NULL; 1277 } 1278 #endif // #ifndef PRODUCT 1279 1280 oop res = _cmsSpace->promote(obj, obj_size); 1281 if (res == NULL) { 1282 // expand and retry 1283 size_t s = _cmsSpace->expansionSpaceRequired(obj_size); // HeapWords 1284 expand(s*HeapWordSize, MinHeapDeltaBytes, 1285 CMSExpansionCause::_satisfy_promotion); 1286 // Since there's currently no next generation, we don't try to promote 1287 // into a more senior generation. 1288 assert(next_gen() == NULL, "assumption, based upon which no attempt " 1289 "is made to pass on a possibly failing " 1290 "promotion to next generation"); 1291 res = _cmsSpace->promote(obj, obj_size); 1292 } 1293 if (res != NULL) { 1294 // See comment in allocate() about when objects should 1295 // be allocated live. 1296 assert(obj->is_oop(), "Will dereference klass pointer below"); 1297 collector()->promoted(false, // Not parallel 1298 (HeapWord*)res, obj->is_objArray(), obj_size); 1299 // promotion counters 1300 NOT_PRODUCT( 1301 _numObjectsPromoted++; 1302 _numWordsPromoted += 1303 (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size())); 1304 ) 1305 } 1306 return res; 1307 } 1308 1309 1310 HeapWord* 1311 ConcurrentMarkSweepGeneration::allocation_limit_reached(Space* space, 1312 HeapWord* top, 1313 size_t word_sz) 1314 { 1315 return collector()->allocation_limit_reached(space, top, word_sz); 1316 } 1317 1318 // IMPORTANT: Notes on object size recognition in CMS. 1319 // --------------------------------------------------- 1320 // A block of storage in the CMS generation is always in 1321 // one of three states. A free block (FREE), an allocated 1322 // object (OBJECT) whose size() method reports the correct size, 1323 // and an intermediate state (TRANSIENT) in which its size cannot 1324 // be accurately determined. 1325 // STATE IDENTIFICATION: (32 bit and 64 bit w/o COOPS) 1326 // ----------------------------------------------------- 1327 // FREE: klass_word & 1 == 1; mark_word holds block size 1328 // 1329 // OBJECT: klass_word installed; klass_word != 0 && klass_word & 1 == 0; 1330 // obj->size() computes correct size 1331 // 1332 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT 1333 // 1334 // STATE IDENTIFICATION: (64 bit+COOPS) 1335 // ------------------------------------ 1336 // FREE: mark_word & CMS_FREE_BIT == 1; mark_word & ~CMS_FREE_BIT gives block_size 1337 // 1338 // OBJECT: klass_word installed; klass_word != 0; 1339 // obj->size() computes correct size 1340 // 1341 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT 1342 // 1343 // 1344 // STATE TRANSITION DIAGRAM 1345 // 1346 // mut / parnew mut / parnew 1347 // FREE --------------------> TRANSIENT ---------------------> OBJECT --| 1348 // ^ | 1349 // |------------------------ DEAD <------------------------------------| 1350 // sweep mut 1351 // 1352 // While a block is in TRANSIENT state its size cannot be determined 1353 // so readers will either need to come back later or stall until 1354 // the size can be determined. Note that for the case of direct 1355 // allocation, P-bits, when available, may be used to determine the 1356 // size of an object that may not yet have been initialized. 1357 1358 // Things to support parallel young-gen collection. 1359 oop 1360 ConcurrentMarkSweepGeneration::par_promote(int thread_num, 1361 oop old, markOop m, 1362 size_t word_sz) { 1363 #ifndef PRODUCT 1364 if (Universe::heap()->promotion_should_fail()) { 1365 return NULL; 1366 } 1367 #endif // #ifndef PRODUCT 1368 1369 CMSParGCThreadState* ps = _par_gc_thread_states[thread_num]; 1370 PromotionInfo* promoInfo = &ps->promo; 1371 // if we are tracking promotions, then first ensure space for 1372 // promotion (including spooling space for saving header if necessary). 1373 // then allocate and copy, then track promoted info if needed. 1374 // When tracking (see PromotionInfo::track()), the mark word may 1375 // be displaced and in this case restoration of the mark word 1376 // occurs in the (oop_since_save_marks_)iterate phase. 1377 if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) { 1378 // Out of space for allocating spooling buffers; 1379 // try expanding and allocating spooling buffers. 1380 if (!expand_and_ensure_spooling_space(promoInfo)) { 1381 return NULL; 1382 } 1383 } 1384 assert(promoInfo->has_spooling_space(), "Control point invariant"); 1385 const size_t alloc_sz = CompactibleFreeListSpace::adjustObjectSize(word_sz); 1386 HeapWord* obj_ptr = ps->lab.alloc(alloc_sz); 1387 if (obj_ptr == NULL) { 1388 obj_ptr = expand_and_par_lab_allocate(ps, alloc_sz); 1389 if (obj_ptr == NULL) { 1390 return NULL; 1391 } 1392 } 1393 oop obj = oop(obj_ptr); 1394 OrderAccess::storestore(); 1395 assert(obj->klass_or_null() == NULL, "Object should be uninitialized here."); 1396 assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size"); 1397 // IMPORTANT: See note on object initialization for CMS above. 1398 // Otherwise, copy the object. Here we must be careful to insert the 1399 // klass pointer last, since this marks the block as an allocated object. 1400 // Except with compressed oops it's the mark word. 1401 HeapWord* old_ptr = (HeapWord*)old; 1402 // Restore the mark word copied above. 1403 obj->set_mark(m); 1404 assert(obj->klass_or_null() == NULL, "Object should be uninitialized here."); 1405 assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size"); 1406 OrderAccess::storestore(); 1407 1408 if (UseCompressedKlassPointers) { 1409 // Copy gap missed by (aligned) header size calculation below 1410 obj->set_klass_gap(old->klass_gap()); 1411 } 1412 if (word_sz > (size_t)oopDesc::header_size()) { 1413 Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(), 1414 obj_ptr + oopDesc::header_size(), 1415 word_sz - oopDesc::header_size()); 1416 } 1417 1418 // Now we can track the promoted object, if necessary. We take care 1419 // to delay the transition from uninitialized to full object 1420 // (i.e., insertion of klass pointer) until after, so that it 1421 // atomically becomes a promoted object. 1422 if (promoInfo->tracking()) { 1423 promoInfo->track((PromotedObject*)obj, old->klass()); 1424 } 1425 assert(obj->klass_or_null() == NULL, "Object should be uninitialized here."); 1426 assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size"); 1427 assert(old->is_oop(), "Will use and dereference old klass ptr below"); 1428 1429 // Finally, install the klass pointer (this should be volatile). 1430 OrderAccess::storestore(); 1431 obj->set_klass(old->klass()); 1432 // We should now be able to calculate the right size for this object 1433 assert(obj->is_oop() && obj->size() == (int)word_sz, "Error, incorrect size computed for promoted object"); 1434 1435 collector()->promoted(true, // parallel 1436 obj_ptr, old->is_objArray(), word_sz); 1437 1438 NOT_PRODUCT( 1439 Atomic::inc_ptr(&_numObjectsPromoted); 1440 Atomic::add_ptr(alloc_sz, &_numWordsPromoted); 1441 ) 1442 1443 return obj; 1444 } 1445 1446 void 1447 ConcurrentMarkSweepGeneration:: 1448 par_promote_alloc_undo(int thread_num, 1449 HeapWord* obj, size_t word_sz) { 1450 // CMS does not support promotion undo. 1451 ShouldNotReachHere(); 1452 } 1453 1454 void 1455 ConcurrentMarkSweepGeneration:: 1456 par_promote_alloc_done(int thread_num) { 1457 CMSParGCThreadState* ps = _par_gc_thread_states[thread_num]; 1458 ps->lab.retire(thread_num); 1459 } 1460 1461 void 1462 ConcurrentMarkSweepGeneration:: 1463 par_oop_since_save_marks_iterate_done(int thread_num) { 1464 CMSParGCThreadState* ps = _par_gc_thread_states[thread_num]; 1465 ParScanWithoutBarrierClosure* dummy_cl = NULL; 1466 ps->promo.promoted_oops_iterate_nv(dummy_cl); 1467 } 1468 1469 bool ConcurrentMarkSweepGeneration::should_collect(bool full, 1470 size_t size, 1471 bool tlab) 1472 { 1473 // We allow a STW collection only if a full 1474 // collection was requested. 1475 return full || should_allocate(size, tlab); // FIX ME !!! 1476 // This and promotion failure handling are connected at the 1477 // hip and should be fixed by untying them. 1478 } 1479 1480 bool CMSCollector::shouldConcurrentCollect() { 1481 if (_full_gc_requested) { 1482 if (Verbose && PrintGCDetails) { 1483 gclog_or_tty->print_cr("CMSCollector: collect because of explicit " 1484 " gc request (or gc_locker)"); 1485 } 1486 return true; 1487 } 1488 1489 // For debugging purposes, change the type of collection. 1490 // If the rotation is not on the concurrent collection 1491 // type, don't start a concurrent collection. 1492 NOT_PRODUCT( 1493 if (RotateCMSCollectionTypes && 1494 (_cmsGen->debug_collection_type() != 1495 ConcurrentMarkSweepGeneration::Concurrent_collection_type)) { 1496 assert(_cmsGen->debug_collection_type() != 1497 ConcurrentMarkSweepGeneration::Unknown_collection_type, 1498 "Bad cms collection type"); 1499 return false; 1500 } 1501 ) 1502 1503 FreelistLocker x(this); 1504 // ------------------------------------------------------------------ 1505 // Print out lots of information which affects the initiation of 1506 // a collection. 1507 if (PrintCMSInitiationStatistics && stats().valid()) { 1508 gclog_or_tty->print("CMSCollector shouldConcurrentCollect: "); 1509 gclog_or_tty->stamp(); 1510 gclog_or_tty->print_cr(""); 1511 stats().print_on(gclog_or_tty); 1512 gclog_or_tty->print_cr("time_until_cms_gen_full %3.7f", 1513 stats().time_until_cms_gen_full()); 1514 gclog_or_tty->print_cr("free="SIZE_FORMAT, _cmsGen->free()); 1515 gclog_or_tty->print_cr("contiguous_available="SIZE_FORMAT, 1516 _cmsGen->contiguous_available()); 1517 gclog_or_tty->print_cr("promotion_rate=%g", stats().promotion_rate()); 1518 gclog_or_tty->print_cr("cms_allocation_rate=%g", stats().cms_allocation_rate()); 1519 gclog_or_tty->print_cr("occupancy=%3.7f", _cmsGen->occupancy()); 1520 gclog_or_tty->print_cr("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy()); 1521 gclog_or_tty->print_cr("metadata initialized %d", 1522 MetaspaceGC::should_concurrent_collect()); 1523 } 1524 // ------------------------------------------------------------------ 1525 1526 // If the estimated time to complete a cms collection (cms_duration()) 1527 // is less than the estimated time remaining until the cms generation 1528 // is full, start a collection. 1529 if (!UseCMSInitiatingOccupancyOnly) { 1530 if (stats().valid()) { 1531 if (stats().time_until_cms_start() == 0.0) { 1532 return true; 1533 } 1534 } else { 1535 // We want to conservatively collect somewhat early in order 1536 // to try and "bootstrap" our CMS/promotion statistics; 1537 // this branch will not fire after the first successful CMS 1538 // collection because the stats should then be valid. 1539 if (_cmsGen->occupancy() >= _bootstrap_occupancy) { 1540 if (Verbose && PrintGCDetails) { 1541 gclog_or_tty->print_cr( 1542 " CMSCollector: collect for bootstrapping statistics:" 1543 " occupancy = %f, boot occupancy = %f", _cmsGen->occupancy(), 1544 _bootstrap_occupancy); 1545 } 1546 return true; 1547 } 1548 } 1549 } 1550 1551 // Otherwise, we start a collection cycle if 1552 // old gen want a collection cycle started. Each may use 1553 // an appropriate criterion for making this decision. 1554 // XXX We need to make sure that the gen expansion 1555 // criterion dovetails well with this. XXX NEED TO FIX THIS 1556 if (_cmsGen->should_concurrent_collect()) { 1557 if (Verbose && PrintGCDetails) { 1558 gclog_or_tty->print_cr("CMS old gen initiated"); 1559 } 1560 return true; 1561 } 1562 1563 // We start a collection if we believe an incremental collection may fail; 1564 // this is not likely to be productive in practice because it's probably too 1565 // late anyway. 1566 GenCollectedHeap* gch = GenCollectedHeap::heap(); 1567 assert(gch->collector_policy()->is_two_generation_policy(), 1568 "You may want to check the correctness of the following"); 1569 if (gch->incremental_collection_will_fail(true /* consult_young */)) { 1570 if (Verbose && PrintGCDetails) { 1571 gclog_or_tty->print("CMSCollector: collect because incremental collection will fail "); 1572 } 1573 return true; 1574 } 1575 1576 if (MetaspaceGC::should_concurrent_collect()) { 1577 if (Verbose && PrintGCDetails) { 1578 gclog_or_tty->print("CMSCollector: collect for metadata allocation "); 1579 } 1580 return true; 1581 } 1582 1583 return false; 1584 } 1585 1586 void CMSCollector::set_did_compact(bool v) { _cmsGen->set_did_compact(v); } 1587 1588 // Clear _expansion_cause fields of constituent generations 1589 void CMSCollector::clear_expansion_cause() { 1590 _cmsGen->clear_expansion_cause(); 1591 } 1592 1593 // We should be conservative in starting a collection cycle. To 1594 // start too eagerly runs the risk of collecting too often in the 1595 // extreme. To collect too rarely falls back on full collections, 1596 // which works, even if not optimum in terms of concurrent work. 1597 // As a work around for too eagerly collecting, use the flag 1598 // UseCMSInitiatingOccupancyOnly. This also has the advantage of 1599 // giving the user an easily understandable way of controlling the 1600 // collections. 1601 // We want to start a new collection cycle if any of the following 1602 // conditions hold: 1603 // . our current occupancy exceeds the configured initiating occupancy 1604 // for this generation, or 1605 // . we recently needed to expand this space and have not, since that 1606 // expansion, done a collection of this generation, or 1607 // . the underlying space believes that it may be a good idea to initiate 1608 // a concurrent collection (this may be based on criteria such as the 1609 // following: the space uses linear allocation and linear allocation is 1610 // going to fail, or there is believed to be excessive fragmentation in 1611 // the generation, etc... or ... 1612 // [.(currently done by CMSCollector::shouldConcurrentCollect() only for 1613 // the case of the old generation; see CR 6543076): 1614 // we may be approaching a point at which allocation requests may fail because 1615 // we will be out of sufficient free space given allocation rate estimates.] 1616 bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const { 1617 1618 assert_lock_strong(freelistLock()); 1619 if (occupancy() > initiating_occupancy()) { 1620 if (PrintGCDetails && Verbose) { 1621 gclog_or_tty->print(" %s: collect because of occupancy %f / %f ", 1622 short_name(), occupancy(), initiating_occupancy()); 1623 } 1624 return true; 1625 } 1626 if (UseCMSInitiatingOccupancyOnly) { 1627 return false; 1628 } 1629 if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) { 1630 if (PrintGCDetails && Verbose) { 1631 gclog_or_tty->print(" %s: collect because expanded for allocation ", 1632 short_name()); 1633 } 1634 return true; 1635 } 1636 if (_cmsSpace->should_concurrent_collect()) { 1637 if (PrintGCDetails && Verbose) { 1638 gclog_or_tty->print(" %s: collect because cmsSpace says so ", 1639 short_name()); 1640 } 1641 return true; 1642 } 1643 return false; 1644 } 1645 1646 void ConcurrentMarkSweepGeneration::collect(bool full, 1647 bool clear_all_soft_refs, 1648 size_t size, 1649 bool tlab) 1650 { 1651 collector()->collect(full, clear_all_soft_refs, size, tlab); 1652 } 1653 1654 void CMSCollector::collect(bool full, 1655 bool clear_all_soft_refs, 1656 size_t size, 1657 bool tlab) 1658 { 1659 if (!UseCMSCollectionPassing && _collectorState > Idling) { 1660 // For debugging purposes skip the collection if the state 1661 // is not currently idle 1662 if (TraceCMSState) { 1663 gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " skipped full:%d CMS state %d", 1664 Thread::current(), full, _collectorState); 1665 } 1666 return; 1667 } 1668 1669 // The following "if" branch is present for defensive reasons. 1670 // In the current uses of this interface, it can be replaced with: 1671 // assert(!GC_locker.is_active(), "Can't be called otherwise"); 1672 // But I am not placing that assert here to allow future 1673 // generality in invoking this interface. 1674 if (GC_locker::is_active()) { 1675 // A consistency test for GC_locker 1676 assert(GC_locker::needs_gc(), "Should have been set already"); 1677 // Skip this foreground collection, instead 1678 // expanding the heap if necessary. 1679 // Need the free list locks for the call to free() in compute_new_size() 1680 compute_new_size(); 1681 return; 1682 } 1683 acquire_control_and_collect(full, clear_all_soft_refs); 1684 _full_gcs_since_conc_gc++; 1685 } 1686 1687 void CMSCollector::request_full_gc(unsigned int full_gc_count, GCCause::Cause cause) { 1688 GenCollectedHeap* gch = GenCollectedHeap::heap(); 1689 unsigned int gc_count = gch->total_full_collections(); 1690 if (gc_count == full_gc_count) { 1691 MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag); 1692 _full_gc_requested = true; 1693 _full_gc_cause = cause; 1694 CGC_lock->notify(); // nudge CMS thread 1695 } else { 1696 assert(gc_count > full_gc_count, "Error: causal loop"); 1697 } 1698 } 1699 1700 bool CMSCollector::is_external_interruption() { 1701 GCCause::Cause cause = GenCollectedHeap::heap()->gc_cause(); 1702 return GCCause::is_user_requested_gc(cause) || 1703 GCCause::is_serviceability_requested_gc(cause); 1704 } 1705 1706 void CMSCollector::report_concurrent_mode_interruption() { 1707 if (is_external_interruption()) { 1708 if (PrintGCDetails) { 1709 gclog_or_tty->print(" (concurrent mode interrupted)"); 1710 } 1711 } else { 1712 if (PrintGCDetails) { 1713 gclog_or_tty->print(" (concurrent mode failure)"); 1714 } 1715 _gc_tracer_cm->report_concurrent_mode_failure(); 1716 } 1717 } 1718 1719 1720 // The foreground and background collectors need to coordinate in order 1721 // to make sure that they do not mutually interfere with CMS collections. 1722 // When a background collection is active, 1723 // the foreground collector may need to take over (preempt) and 1724 // synchronously complete an ongoing collection. Depending on the 1725 // frequency of the background collections and the heap usage 1726 // of the application, this preemption can be seldom or frequent. 1727 // There are only certain 1728 // points in the background collection that the "collection-baton" 1729 // can be passed to the foreground collector. 1730 // 1731 // The foreground collector will wait for the baton before 1732 // starting any part of the collection. The foreground collector 1733 // will only wait at one location. 1734 // 1735 // The background collector will yield the baton before starting a new 1736 // phase of the collection (e.g., before initial marking, marking from roots, 1737 // precleaning, final re-mark, sweep etc.) This is normally done at the head 1738 // of the loop which switches the phases. The background collector does some 1739 // of the phases (initial mark, final re-mark) with the world stopped. 1740 // Because of locking involved in stopping the world, 1741 // the foreground collector should not block waiting for the background 1742 // collector when it is doing a stop-the-world phase. The background 1743 // collector will yield the baton at an additional point just before 1744 // it enters a stop-the-world phase. Once the world is stopped, the 1745 // background collector checks the phase of the collection. If the 1746 // phase has not changed, it proceeds with the collection. If the 1747 // phase has changed, it skips that phase of the collection. See 1748 // the comments on the use of the Heap_lock in collect_in_background(). 1749 // 1750 // Variable used in baton passing. 1751 // _foregroundGCIsActive - Set to true by the foreground collector when 1752 // it wants the baton. The foreground clears it when it has finished 1753 // the collection. 1754 // _foregroundGCShouldWait - Set to true by the background collector 1755 // when it is running. The foreground collector waits while 1756 // _foregroundGCShouldWait is true. 1757 // CGC_lock - monitor used to protect access to the above variables 1758 // and to notify the foreground and background collectors. 1759 // _collectorState - current state of the CMS collection. 1760 // 1761 // The foreground collector 1762 // acquires the CGC_lock 1763 // sets _foregroundGCIsActive 1764 // waits on the CGC_lock for _foregroundGCShouldWait to be false 1765 // various locks acquired in preparation for the collection 1766 // are released so as not to block the background collector 1767 // that is in the midst of a collection 1768 // proceeds with the collection 1769 // clears _foregroundGCIsActive 1770 // returns 1771 // 1772 // The background collector in a loop iterating on the phases of the 1773 // collection 1774 // acquires the CGC_lock 1775 // sets _foregroundGCShouldWait 1776 // if _foregroundGCIsActive is set 1777 // clears _foregroundGCShouldWait, notifies _CGC_lock 1778 // waits on _CGC_lock for _foregroundGCIsActive to become false 1779 // and exits the loop. 1780 // otherwise 1781 // proceed with that phase of the collection 1782 // if the phase is a stop-the-world phase, 1783 // yield the baton once more just before enqueueing 1784 // the stop-world CMS operation (executed by the VM thread). 1785 // returns after all phases of the collection are done 1786 // 1787 1788 void CMSCollector::acquire_control_and_collect(bool full, 1789 bool clear_all_soft_refs) { 1790 assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint"); 1791 assert(!Thread::current()->is_ConcurrentGC_thread(), 1792 "shouldn't try to acquire control from self!"); 1793 1794 // Start the protocol for acquiring control of the 1795 // collection from the background collector (aka CMS thread). 1796 assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(), 1797 "VM thread should have CMS token"); 1798 // Remember the possibly interrupted state of an ongoing 1799 // concurrent collection 1800 CollectorState first_state = _collectorState; 1801 1802 // Signal to a possibly ongoing concurrent collection that 1803 // we want to do a foreground collection. 1804 _foregroundGCIsActive = true; 1805 1806 // Disable incremental mode during a foreground collection. 1807 ICMSDisabler icms_disabler; 1808 1809 // release locks and wait for a notify from the background collector 1810 // releasing the locks in only necessary for phases which 1811 // do yields to improve the granularity of the collection. 1812 assert_lock_strong(bitMapLock()); 1813 // We need to lock the Free list lock for the space that we are 1814 // currently collecting. 1815 assert(haveFreelistLocks(), "Must be holding free list locks"); 1816 bitMapLock()->unlock(); 1817 releaseFreelistLocks(); 1818 { 1819 MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag); 1820 if (_foregroundGCShouldWait) { 1821 // We are going to be waiting for action for the CMS thread; 1822 // it had better not be gone (for instance at shutdown)! 1823 assert(ConcurrentMarkSweepThread::cmst() != NULL, 1824 "CMS thread must be running"); 1825 // Wait here until the background collector gives us the go-ahead 1826 ConcurrentMarkSweepThread::clear_CMS_flag( 1827 ConcurrentMarkSweepThread::CMS_vm_has_token); // release token 1828 // Get a possibly blocked CMS thread going: 1829 // Note that we set _foregroundGCIsActive true above, 1830 // without protection of the CGC_lock. 1831 CGC_lock->notify(); 1832 assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(), 1833 "Possible deadlock"); 1834 while (_foregroundGCShouldWait) { 1835 // wait for notification 1836 CGC_lock->wait(Mutex::_no_safepoint_check_flag); 1837 // Possibility of delay/starvation here, since CMS token does 1838 // not know to give priority to VM thread? Actually, i think 1839 // there wouldn't be any delay/starvation, but the proof of 1840 // that "fact" (?) appears non-trivial. XXX 20011219YSR 1841 } 1842 ConcurrentMarkSweepThread::set_CMS_flag( 1843 ConcurrentMarkSweepThread::CMS_vm_has_token); 1844 } 1845 } 1846 // The CMS_token is already held. Get back the other locks. 1847 assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(), 1848 "VM thread should have CMS token"); 1849 getFreelistLocks(); 1850 bitMapLock()->lock_without_safepoint_check(); 1851 if (TraceCMSState) { 1852 gclog_or_tty->print_cr("CMS foreground collector has asked for control " 1853 INTPTR_FORMAT " with first state %d", Thread::current(), first_state); 1854 gclog_or_tty->print_cr(" gets control with state %d", _collectorState); 1855 } 1856 1857 // Check if we need to do a compaction, or if not, whether 1858 // we need to start the mark-sweep from scratch. 1859 bool should_compact = false; 1860 bool should_start_over = false; 1861 decide_foreground_collection_type(clear_all_soft_refs, 1862 &should_compact, &should_start_over); 1863 1864 NOT_PRODUCT( 1865 if (RotateCMSCollectionTypes) { 1866 if (_cmsGen->debug_collection_type() == 1867 ConcurrentMarkSweepGeneration::MSC_foreground_collection_type) { 1868 should_compact = true; 1869 } else if (_cmsGen->debug_collection_type() == 1870 ConcurrentMarkSweepGeneration::MS_foreground_collection_type) { 1871 should_compact = false; 1872 } 1873 } 1874 ) 1875 1876 if (first_state > Idling) { 1877 report_concurrent_mode_interruption(); 1878 } 1879 1880 set_did_compact(should_compact); 1881 if (should_compact) { 1882 // If the collection is being acquired from the background 1883 // collector, there may be references on the discovered 1884 // references lists that have NULL referents (being those 1885 // that were concurrently cleared by a mutator) or 1886 // that are no longer active (having been enqueued concurrently 1887 // by the mutator). 1888 // Scrub the list of those references because Mark-Sweep-Compact 1889 // code assumes referents are not NULL and that all discovered 1890 // Reference objects are active. 1891 ref_processor()->clean_up_discovered_references(); 1892 1893 if (first_state > Idling) { 1894 save_heap_summary(); 1895 } 1896 1897 do_compaction_work(clear_all_soft_refs); 1898 1899 // Has the GC time limit been exceeded? 1900 DefNewGeneration* young_gen = _young_gen->as_DefNewGeneration(); 1901 size_t max_eden_size = young_gen->max_capacity() - 1902 young_gen->to()->capacity() - 1903 young_gen->from()->capacity(); 1904 GenCollectedHeap* gch = GenCollectedHeap::heap(); 1905 GCCause::Cause gc_cause = gch->gc_cause(); 1906 size_policy()->check_gc_overhead_limit(_young_gen->used(), 1907 young_gen->eden()->used(), 1908 _cmsGen->max_capacity(), 1909 max_eden_size, 1910 full, 1911 gc_cause, 1912 gch->collector_policy()); 1913 } else { 1914 do_mark_sweep_work(clear_all_soft_refs, first_state, 1915 should_start_over); 1916 } 1917 // Reset the expansion cause, now that we just completed 1918 // a collection cycle. 1919 clear_expansion_cause(); 1920 _foregroundGCIsActive = false; 1921 return; 1922 } 1923 1924 // Resize the tenured generation 1925 // after obtaining the free list locks for the 1926 // two generations. 1927 void CMSCollector::compute_new_size() { 1928 assert_locked_or_safepoint(Heap_lock); 1929 FreelistLocker z(this); 1930 MetaspaceGC::compute_new_size(); 1931 _cmsGen->compute_new_size_free_list(); 1932 } 1933 1934 // A work method used by foreground collection to determine 1935 // what type of collection (compacting or not, continuing or fresh) 1936 // it should do. 1937 // NOTE: the intent is to make UseCMSCompactAtFullCollection 1938 // and CMSCompactWhenClearAllSoftRefs the default in the future 1939 // and do away with the flags after a suitable period. 1940 void CMSCollector::decide_foreground_collection_type( 1941 bool clear_all_soft_refs, bool* should_compact, 1942 bool* should_start_over) { 1943 // Normally, we'll compact only if the UseCMSCompactAtFullCollection 1944 // flag is set, and we have either requested a System.gc() or 1945 // the number of full gc's since the last concurrent cycle 1946 // has exceeded the threshold set by CMSFullGCsBeforeCompaction, 1947 // or if an incremental collection has failed 1948 GenCollectedHeap* gch = GenCollectedHeap::heap(); 1949 assert(gch->collector_policy()->is_two_generation_policy(), 1950 "You may want to check the correctness of the following"); 1951 // Inform cms gen if this was due to partial collection failing. 1952 // The CMS gen may use this fact to determine its expansion policy. 1953 if (gch->incremental_collection_will_fail(false /* don't consult_young */)) { 1954 assert(!_cmsGen->incremental_collection_failed(), 1955 "Should have been noticed, reacted to and cleared"); 1956 _cmsGen->set_incremental_collection_failed(); 1957 } 1958 *should_compact = 1959 UseCMSCompactAtFullCollection && 1960 ((_full_gcs_since_conc_gc >= CMSFullGCsBeforeCompaction) || 1961 GCCause::is_user_requested_gc(gch->gc_cause()) || 1962 gch->incremental_collection_will_fail(true /* consult_young */)); 1963 *should_start_over = false; 1964 if (clear_all_soft_refs && !*should_compact) { 1965 // We are about to do a last ditch collection attempt 1966 // so it would normally make sense to do a compaction 1967 // to reclaim as much space as possible. 1968 if (CMSCompactWhenClearAllSoftRefs) { 1969 // Default: The rationale is that in this case either 1970 // we are past the final marking phase, in which case 1971 // we'd have to start over, or so little has been done 1972 // that there's little point in saving that work. Compaction 1973 // appears to be the sensible choice in either case. 1974 *should_compact = true; 1975 } else { 1976 // We have been asked to clear all soft refs, but not to 1977 // compact. Make sure that we aren't past the final checkpoint 1978 // phase, for that is where we process soft refs. If we are already 1979 // past that phase, we'll need to redo the refs discovery phase and 1980 // if necessary clear soft refs that weren't previously 1981 // cleared. We do so by remembering the phase in which 1982 // we came in, and if we are past the refs processing 1983 // phase, we'll choose to just redo the mark-sweep 1984 // collection from scratch. 1985 if (_collectorState > FinalMarking) { 1986 // We are past the refs processing phase; 1987 // start over and do a fresh synchronous CMS cycle 1988 _collectorState = Resetting; // skip to reset to start new cycle 1989 reset(false /* == !asynch */); 1990 *should_start_over = true; 1991 } // else we can continue a possibly ongoing current cycle 1992 } 1993 } 1994 } 1995 1996 // A work method used by the foreground collector to do 1997 // a mark-sweep-compact. 1998 void CMSCollector::do_compaction_work(bool clear_all_soft_refs) { 1999 GenCollectedHeap* gch = GenCollectedHeap::heap(); 2000 2001 STWGCTimer* gc_timer = GenMarkSweep::gc_timer(); 2002 gc_timer->register_gc_start(os::elapsed_counter()); 2003 2004 SerialOldTracer* gc_tracer = GenMarkSweep::gc_tracer(); 2005 gc_tracer->report_gc_start(gch->gc_cause(), gc_timer->gc_start()); 2006 2007 GCTraceTime t("CMS:MSC ", PrintGCDetails && Verbose, true, NULL); 2008 if (PrintGC && Verbose && !(GCCause::is_user_requested_gc(gch->gc_cause()))) { 2009 gclog_or_tty->print_cr("Compact ConcurrentMarkSweepGeneration after %d " 2010 "collections passed to foreground collector", _full_gcs_since_conc_gc); 2011 } 2012 2013 // Sample collection interval time and reset for collection pause. 2014 if (UseAdaptiveSizePolicy) { 2015 size_policy()->msc_collection_begin(); 2016 } 2017 2018 // Temporarily widen the span of the weak reference processing to 2019 // the entire heap. 2020 MemRegion new_span(GenCollectedHeap::heap()->reserved_region()); 2021 ReferenceProcessorSpanMutator rp_mut_span(ref_processor(), new_span); 2022 // Temporarily, clear the "is_alive_non_header" field of the 2023 // reference processor. 2024 ReferenceProcessorIsAliveMutator rp_mut_closure(ref_processor(), NULL); 2025 // Temporarily make reference _processing_ single threaded (non-MT). 2026 ReferenceProcessorMTProcMutator rp_mut_mt_processing(ref_processor(), false); 2027 // Temporarily make refs discovery atomic 2028 ReferenceProcessorAtomicMutator rp_mut_atomic(ref_processor(), true); 2029 // Temporarily make reference _discovery_ single threaded (non-MT) 2030 ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false); 2031 2032 ref_processor()->set_enqueuing_is_done(false); 2033 ref_processor()->enable_discovery(false /*verify_disabled*/, false /*check_no_refs*/); 2034 ref_processor()->setup_policy(clear_all_soft_refs); 2035 // If an asynchronous collection finishes, the _modUnionTable is 2036 // all clear. If we are assuming the collection from an asynchronous 2037 // collection, clear the _modUnionTable. 2038 assert(_collectorState != Idling || _modUnionTable.isAllClear(), 2039 "_modUnionTable should be clear if the baton was not passed"); 2040 _modUnionTable.clear_all(); 2041 assert(_collectorState != Idling || _ct->klass_rem_set()->mod_union_is_clear(), 2042 "mod union for klasses should be clear if the baton was passed"); 2043 _ct->klass_rem_set()->clear_mod_union(); 2044 2045 // We must adjust the allocation statistics being maintained 2046 // in the free list space. We do so by reading and clearing 2047 // the sweep timer and updating the block flux rate estimates below. 2048 assert(!_intra_sweep_timer.is_active(), "_intra_sweep_timer should be inactive"); 2049 if (_inter_sweep_timer.is_active()) { 2050 _inter_sweep_timer.stop(); 2051 // Note that we do not use this sample to update the _inter_sweep_estimate. 2052 _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()), 2053 _inter_sweep_estimate.padded_average(), 2054 _intra_sweep_estimate.padded_average()); 2055 } 2056 2057 GenMarkSweep::invoke_at_safepoint(_cmsGen->level(), 2058 ref_processor(), clear_all_soft_refs); 2059 #ifdef ASSERT 2060 CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace(); 2061 size_t free_size = cms_space->free(); 2062 assert(free_size == 2063 pointer_delta(cms_space->end(), cms_space->compaction_top()) 2064 * HeapWordSize, 2065 "All the free space should be compacted into one chunk at top"); 2066 assert(cms_space->dictionary()->total_chunk_size( 2067 debug_only(cms_space->freelistLock())) == 0 || 2068 cms_space->totalSizeInIndexedFreeLists() == 0, 2069 "All the free space should be in a single chunk"); 2070 size_t num = cms_space->totalCount(); 2071 assert((free_size == 0 && num == 0) || 2072 (free_size > 0 && (num == 1 || num == 2)), 2073 "There should be at most 2 free chunks after compaction"); 2074 #endif // ASSERT 2075 _collectorState = Resetting; 2076 assert(_restart_addr == NULL, 2077 "Should have been NULL'd before baton was passed"); 2078 reset(false /* == !asynch */); 2079 _cmsGen->reset_after_compaction(); 2080 _concurrent_cycles_since_last_unload = 0; 2081 2082 // Clear any data recorded in the PLAB chunk arrays. 2083 if (_survivor_plab_array != NULL) { 2084 reset_survivor_plab_arrays(); 2085 } 2086 2087 // Adjust the per-size allocation stats for the next epoch. 2088 _cmsGen->cmsSpace()->endSweepFLCensus(sweep_count() /* fake */); 2089 // Restart the "inter sweep timer" for the next epoch. 2090 _inter_sweep_timer.reset(); 2091 _inter_sweep_timer.start(); 2092 2093 // Sample collection pause time and reset for collection interval. 2094 if (UseAdaptiveSizePolicy) { 2095 size_policy()->msc_collection_end(gch->gc_cause()); 2096 } 2097 2098 gc_timer->register_gc_end(os::elapsed_counter()); 2099 2100 gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions()); 2101 2102 // For a mark-sweep-compact, compute_new_size() will be called 2103 // in the heap's do_collection() method. 2104 } 2105 2106 // A work method used by the foreground collector to do 2107 // a mark-sweep, after taking over from a possibly on-going 2108 // concurrent mark-sweep collection. 2109 void CMSCollector::do_mark_sweep_work(bool clear_all_soft_refs, 2110 CollectorState first_state, bool should_start_over) { 2111 if (PrintGC && Verbose) { 2112 gclog_or_tty->print_cr("Pass concurrent collection to foreground " 2113 "collector with count %d", 2114 _full_gcs_since_conc_gc); 2115 } 2116 switch (_collectorState) { 2117 case Idling: 2118 if (first_state == Idling || should_start_over) { 2119 // The background GC was not active, or should 2120 // restarted from scratch; start the cycle. 2121 _collectorState = InitialMarking; 2122 } 2123 // If first_state was not Idling, then a background GC 2124 // was in progress and has now finished. No need to do it 2125 // again. Leave the state as Idling. 2126 break; 2127 case Precleaning: 2128 // In the foreground case don't do the precleaning since 2129 // it is not done concurrently and there is extra work 2130 // required. 2131 _collectorState = FinalMarking; 2132 } 2133 collect_in_foreground(clear_all_soft_refs, GenCollectedHeap::heap()->gc_cause()); 2134 2135 // For a mark-sweep, compute_new_size() will be called 2136 // in the heap's do_collection() method. 2137 } 2138 2139 2140 void CMSCollector::getFreelistLocks() const { 2141 // Get locks for all free lists in all generations that this 2142 // collector is responsible for 2143 _cmsGen->freelistLock()->lock_without_safepoint_check(); 2144 } 2145 2146 void CMSCollector::releaseFreelistLocks() const { 2147 // Release locks for all free lists in all generations that this 2148 // collector is responsible for 2149 _cmsGen->freelistLock()->unlock(); 2150 } 2151 2152 bool CMSCollector::haveFreelistLocks() const { 2153 // Check locks for all free lists in all generations that this 2154 // collector is responsible for 2155 assert_lock_strong(_cmsGen->freelistLock()); 2156 PRODUCT_ONLY(ShouldNotReachHere()); 2157 return true; 2158 } 2159 2160 // A utility class that is used by the CMS collector to 2161 // temporarily "release" the foreground collector from its 2162 // usual obligation to wait for the background collector to 2163 // complete an ongoing phase before proceeding. 2164 class ReleaseForegroundGC: public StackObj { 2165 private: 2166 CMSCollector* _c; 2167 public: 2168 ReleaseForegroundGC(CMSCollector* c) : _c(c) { 2169 assert(_c->_foregroundGCShouldWait, "Else should not need to call"); 2170 MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag); 2171 // allow a potentially blocked foreground collector to proceed 2172 _c->_foregroundGCShouldWait = false; 2173 if (_c->_foregroundGCIsActive) { 2174 CGC_lock->notify(); 2175 } 2176 assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 2177 "Possible deadlock"); 2178 } 2179 2180 ~ReleaseForegroundGC() { 2181 assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?"); 2182 MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag); 2183 _c->_foregroundGCShouldWait = true; 2184 } 2185 }; 2186 2187 // There are separate collect_in_background and collect_in_foreground because of 2188 // the different locking requirements of the background collector and the 2189 // foreground collector. There was originally an attempt to share 2190 // one "collect" method between the background collector and the foreground 2191 // collector but the if-then-else required made it cleaner to have 2192 // separate methods. 2193 void CMSCollector::collect_in_background(bool clear_all_soft_refs, GCCause::Cause cause) { 2194 assert(Thread::current()->is_ConcurrentGC_thread(), 2195 "A CMS asynchronous collection is only allowed on a CMS thread."); 2196 2197 GenCollectedHeap* gch = GenCollectedHeap::heap(); 2198 { 2199 bool safepoint_check = Mutex::_no_safepoint_check_flag; 2200 MutexLockerEx hl(Heap_lock, safepoint_check); 2201 FreelistLocker fll(this); 2202 MutexLockerEx x(CGC_lock, safepoint_check); 2203 if (_foregroundGCIsActive || !UseAsyncConcMarkSweepGC) { 2204 // The foreground collector is active or we're 2205 // not using asynchronous collections. Skip this 2206 // background collection. 2207 assert(!_foregroundGCShouldWait, "Should be clear"); 2208 return; 2209 } else { 2210 assert(_collectorState == Idling, "Should be idling before start."); 2211 _collectorState = InitialMarking; 2212 register_gc_start(cause); 2213 // Reset the expansion cause, now that we are about to begin 2214 // a new cycle. 2215 clear_expansion_cause(); 2216 2217 // Clear the MetaspaceGC flag since a concurrent collection 2218 // is starting but also clear it after the collection. 2219 MetaspaceGC::set_should_concurrent_collect(false); 2220 } 2221 // Decide if we want to enable class unloading as part of the 2222 // ensuing concurrent GC cycle. 2223 update_should_unload_classes(); 2224 _full_gc_requested = false; // acks all outstanding full gc requests 2225 _full_gc_cause = GCCause::_no_gc; 2226 // Signal that we are about to start a collection 2227 gch->increment_total_full_collections(); // ... starting a collection cycle 2228 _collection_count_start = gch->total_full_collections(); 2229 } 2230 2231 // Used for PrintGC 2232 size_t prev_used; 2233 if (PrintGC && Verbose) { 2234 prev_used = _cmsGen->used(); // XXXPERM 2235 } 2236 2237 // The change of the collection state is normally done at this level; 2238 // the exceptions are phases that are executed while the world is 2239 // stopped. For those phases the change of state is done while the 2240 // world is stopped. For baton passing purposes this allows the 2241 // background collector to finish the phase and change state atomically. 2242 // The foreground collector cannot wait on a phase that is done 2243 // while the world is stopped because the foreground collector already 2244 // has the world stopped and would deadlock. 2245 while (_collectorState != Idling) { 2246 if (TraceCMSState) { 2247 gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d", 2248 Thread::current(), _collectorState); 2249 } 2250 // The foreground collector 2251 // holds the Heap_lock throughout its collection. 2252 // holds the CMS token (but not the lock) 2253 // except while it is waiting for the background collector to yield. 2254 // 2255 // The foreground collector should be blocked (not for long) 2256 // if the background collector is about to start a phase 2257 // executed with world stopped. If the background 2258 // collector has already started such a phase, the 2259 // foreground collector is blocked waiting for the 2260 // Heap_lock. The stop-world phases (InitialMarking and FinalMarking) 2261 // are executed in the VM thread. 2262 // 2263 // The locking order is 2264 // PendingListLock (PLL) -- if applicable (FinalMarking) 2265 // Heap_lock (both this & PLL locked in VM_CMS_Operation::prologue()) 2266 // CMS token (claimed in 2267 // stop_world_and_do() --> 2268 // safepoint_synchronize() --> 2269 // CMSThread::synchronize()) 2270 2271 { 2272 // Check if the FG collector wants us to yield. 2273 CMSTokenSync x(true); // is cms thread 2274 if (waitForForegroundGC()) { 2275 // We yielded to a foreground GC, nothing more to be 2276 // done this round. 2277 assert(_foregroundGCShouldWait == false, "We set it to false in " 2278 "waitForForegroundGC()"); 2279 if (TraceCMSState) { 2280 gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT 2281 " exiting collection CMS state %d", 2282 Thread::current(), _collectorState); 2283 } 2284 return; 2285 } else { 2286 // The background collector can run but check to see if the 2287 // foreground collector has done a collection while the 2288 // background collector was waiting to get the CGC_lock 2289 // above. If yes, break so that _foregroundGCShouldWait 2290 // is cleared before returning. 2291 if (_collectorState == Idling) { 2292 break; 2293 } 2294 } 2295 } 2296 2297 assert(_foregroundGCShouldWait, "Foreground collector, if active, " 2298 "should be waiting"); 2299 2300 switch (_collectorState) { 2301 case InitialMarking: 2302 { 2303 ReleaseForegroundGC x(this); 2304 stats().record_cms_begin(); 2305 VM_CMS_Initial_Mark initial_mark_op(this); 2306 VMThread::execute(&initial_mark_op); 2307 } 2308 // The collector state may be any legal state at this point 2309 // since the background collector may have yielded to the 2310 // foreground collector. 2311 break; 2312 case Marking: 2313 // initial marking in checkpointRootsInitialWork has been completed 2314 if (markFromRoots(true)) { // we were successful 2315 assert(_collectorState == Precleaning, "Collector state should " 2316 "have changed"); 2317 } else { 2318 assert(_foregroundGCIsActive, "Internal state inconsistency"); 2319 } 2320 break; 2321 case Precleaning: 2322 if (UseAdaptiveSizePolicy) { 2323 size_policy()->concurrent_precleaning_begin(); 2324 } 2325 // marking from roots in markFromRoots has been completed 2326 preclean(); 2327 if (UseAdaptiveSizePolicy) { 2328 size_policy()->concurrent_precleaning_end(); 2329 } 2330 assert(_collectorState == AbortablePreclean || 2331 _collectorState == FinalMarking, 2332 "Collector state should have changed"); 2333 break; 2334 case AbortablePreclean: 2335 if (UseAdaptiveSizePolicy) { 2336 size_policy()->concurrent_phases_resume(); 2337 } 2338 abortable_preclean(); 2339 if (UseAdaptiveSizePolicy) { 2340 size_policy()->concurrent_precleaning_end(); 2341 } 2342 assert(_collectorState == FinalMarking, "Collector state should " 2343 "have changed"); 2344 break; 2345 case FinalMarking: 2346 { 2347 ReleaseForegroundGC x(this); 2348 2349 VM_CMS_Final_Remark final_remark_op(this); 2350 VMThread::execute(&final_remark_op); 2351 } 2352 assert(_foregroundGCShouldWait, "block post-condition"); 2353 break; 2354 case Sweeping: 2355 if (UseAdaptiveSizePolicy) { 2356 size_policy()->concurrent_sweeping_begin(); 2357 } 2358 // final marking in checkpointRootsFinal has been completed 2359 sweep(true); 2360 assert(_collectorState == Resizing, "Collector state change " 2361 "to Resizing must be done under the free_list_lock"); 2362 _full_gcs_since_conc_gc = 0; 2363 2364 // Stop the timers for adaptive size policy for the concurrent phases 2365 if (UseAdaptiveSizePolicy) { 2366 size_policy()->concurrent_sweeping_end(); 2367 size_policy()->concurrent_phases_end(gch->gc_cause(), 2368 gch->prev_gen(_cmsGen)->capacity(), 2369 _cmsGen->free()); 2370 } 2371 2372 case Resizing: { 2373 // Sweeping has been completed... 2374 // At this point the background collection has completed. 2375 // Don't move the call to compute_new_size() down 2376 // into code that might be executed if the background 2377 // collection was preempted. 2378 { 2379 ReleaseForegroundGC x(this); // unblock FG collection 2380 MutexLockerEx y(Heap_lock, Mutex::_no_safepoint_check_flag); 2381 CMSTokenSync z(true); // not strictly needed. 2382 if (_collectorState == Resizing) { 2383 compute_new_size(); 2384 save_heap_summary(); 2385 _collectorState = Resetting; 2386 } else { 2387 assert(_collectorState == Idling, "The state should only change" 2388 " because the foreground collector has finished the collection"); 2389 } 2390 } 2391 break; 2392 } 2393 case Resetting: 2394 // CMS heap resizing has been completed 2395 reset(true); 2396 assert(_collectorState == Idling, "Collector state should " 2397 "have changed"); 2398 2399 MetaspaceGC::set_should_concurrent_collect(false); 2400 2401 stats().record_cms_end(); 2402 // Don't move the concurrent_phases_end() and compute_new_size() 2403 // calls to here because a preempted background collection 2404 // has it's state set to "Resetting". 2405 break; 2406 case Idling: 2407 default: 2408 ShouldNotReachHere(); 2409 break; 2410 } 2411 if (TraceCMSState) { 2412 gclog_or_tty->print_cr(" Thread " INTPTR_FORMAT " done - next CMS state %d", 2413 Thread::current(), _collectorState); 2414 } 2415 assert(_foregroundGCShouldWait, "block post-condition"); 2416 } 2417 2418 // Should this be in gc_epilogue? 2419 collector_policy()->counters()->update_counters(); 2420 2421 { 2422 // Clear _foregroundGCShouldWait and, in the event that the 2423 // foreground collector is waiting, notify it, before 2424 // returning. 2425 MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag); 2426 _foregroundGCShouldWait = false; 2427 if (_foregroundGCIsActive) { 2428 CGC_lock->notify(); 2429 } 2430 assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 2431 "Possible deadlock"); 2432 } 2433 if (TraceCMSState) { 2434 gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT 2435 " exiting collection CMS state %d", 2436 Thread::current(), _collectorState); 2437 } 2438 if (PrintGC && Verbose) { 2439 _cmsGen->print_heap_change(prev_used); 2440 } 2441 } 2442 2443 void CMSCollector::register_foreground_gc_start(GCCause::Cause cause) { 2444 if (!_cms_start_registered) { 2445 register_gc_start(cause); 2446 } 2447 } 2448 2449 void CMSCollector::register_gc_start(GCCause::Cause cause) { 2450 _cms_start_registered = true; 2451 _gc_timer_cm->register_gc_start(os::elapsed_counter()); 2452 _gc_tracer_cm->report_gc_start(cause, _gc_timer_cm->gc_start()); 2453 } 2454 2455 void CMSCollector::register_gc_end() { 2456 if (_cms_start_registered) { 2457 report_heap_summary(GCWhen::AfterGC); 2458 2459 _gc_timer_cm->register_gc_end(os::elapsed_counter()); 2460 _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions()); 2461 _cms_start_registered = false; 2462 } 2463 } 2464 2465 void CMSCollector::save_heap_summary() { 2466 GenCollectedHeap* gch = GenCollectedHeap::heap(); 2467 _last_heap_summary = gch->create_heap_summary(); 2468 _last_metaspace_summary = gch->create_metaspace_summary(); 2469 } 2470 2471 void CMSCollector::report_heap_summary(GCWhen::Type when) { 2472 _gc_tracer_cm->report_gc_heap_summary(when, _last_heap_summary, _last_metaspace_summary); 2473 } 2474 2475 void CMSCollector::collect_in_foreground(bool clear_all_soft_refs, GCCause::Cause cause) { 2476 assert(_foregroundGCIsActive && !_foregroundGCShouldWait, 2477 "Foreground collector should be waiting, not executing"); 2478 assert(Thread::current()->is_VM_thread(), "A foreground collection" 2479 "may only be done by the VM Thread with the world stopped"); 2480 assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(), 2481 "VM thread should have CMS token"); 2482 2483 NOT_PRODUCT(GCTraceTime t("CMS:MS (foreground) ", PrintGCDetails && Verbose, 2484 true, NULL);) 2485 if (UseAdaptiveSizePolicy) { 2486 size_policy()->ms_collection_begin(); 2487 } 2488 COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact); 2489 2490 HandleMark hm; // Discard invalid handles created during verification 2491 2492 if (VerifyBeforeGC && 2493 GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) { 2494 Universe::verify(); 2495 } 2496 2497 // Snapshot the soft reference policy to be used in this collection cycle. 2498 ref_processor()->setup_policy(clear_all_soft_refs); 2499 2500 bool init_mark_was_synchronous = false; // until proven otherwise 2501 while (_collectorState != Idling) { 2502 if (TraceCMSState) { 2503 gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d", 2504 Thread::current(), _collectorState); 2505 } 2506 switch (_collectorState) { 2507 case InitialMarking: 2508 register_foreground_gc_start(cause); 2509 init_mark_was_synchronous = true; // fact to be exploited in re-mark 2510 checkpointRootsInitial(false); 2511 assert(_collectorState == Marking, "Collector state should have changed" 2512 " within checkpointRootsInitial()"); 2513 break; 2514 case Marking: 2515 // initial marking in checkpointRootsInitialWork has been completed 2516 if (VerifyDuringGC && 2517 GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) { 2518 Universe::verify("Verify before initial mark: "); 2519 } 2520 { 2521 bool res = markFromRoots(false); 2522 assert(res && _collectorState == FinalMarking, "Collector state should " 2523 "have changed"); 2524 break; 2525 } 2526 case FinalMarking: 2527 if (VerifyDuringGC && 2528 GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) { 2529 Universe::verify("Verify before re-mark: "); 2530 } 2531 checkpointRootsFinal(false, clear_all_soft_refs, 2532 init_mark_was_synchronous); 2533 assert(_collectorState == Sweeping, "Collector state should not " 2534 "have changed within checkpointRootsFinal()"); 2535 break; 2536 case Sweeping: 2537 // final marking in checkpointRootsFinal has been completed 2538 if (VerifyDuringGC && 2539 GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) { 2540 Universe::verify("Verify before sweep: "); 2541 } 2542 sweep(false); 2543 assert(_collectorState == Resizing, "Incorrect state"); 2544 break; 2545 case Resizing: { 2546 // Sweeping has been completed; the actual resize in this case 2547 // is done separately; nothing to be done in this state. 2548 _collectorState = Resetting; 2549 break; 2550 } 2551 case Resetting: 2552 // The heap has been resized. 2553 if (VerifyDuringGC && 2554 GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) { 2555 Universe::verify("Verify before reset: "); 2556 } 2557 save_heap_summary(); 2558 reset(false); 2559 assert(_collectorState == Idling, "Collector state should " 2560 "have changed"); 2561 break; 2562 case Precleaning: 2563 case AbortablePreclean: 2564 // Elide the preclean phase 2565 _collectorState = FinalMarking; 2566 break; 2567 default: 2568 ShouldNotReachHere(); 2569 } 2570 if (TraceCMSState) { 2571 gclog_or_tty->print_cr(" Thread " INTPTR_FORMAT " done - next CMS state %d", 2572 Thread::current(), _collectorState); 2573 } 2574 } 2575 2576 if (UseAdaptiveSizePolicy) { 2577 GenCollectedHeap* gch = GenCollectedHeap::heap(); 2578 size_policy()->ms_collection_end(gch->gc_cause()); 2579 } 2580 2581 if (VerifyAfterGC && 2582 GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) { 2583 Universe::verify(); 2584 } 2585 if (TraceCMSState) { 2586 gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT 2587 " exiting collection CMS state %d", 2588 Thread::current(), _collectorState); 2589 } 2590 } 2591 2592 bool CMSCollector::waitForForegroundGC() { 2593 bool res = false; 2594 assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 2595 "CMS thread should have CMS token"); 2596 // Block the foreground collector until the 2597 // background collectors decides whether to 2598 // yield. 2599 MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag); 2600 _foregroundGCShouldWait = true; 2601 if (_foregroundGCIsActive) { 2602 // The background collector yields to the 2603 // foreground collector and returns a value 2604 // indicating that it has yielded. The foreground 2605 // collector can proceed. 2606 res = true; 2607 _foregroundGCShouldWait = false; 2608 ConcurrentMarkSweepThread::clear_CMS_flag( 2609 ConcurrentMarkSweepThread::CMS_cms_has_token); 2610 ConcurrentMarkSweepThread::set_CMS_flag( 2611 ConcurrentMarkSweepThread::CMS_cms_wants_token); 2612 // Get a possibly blocked foreground thread going 2613 CGC_lock->notify(); 2614 if (TraceCMSState) { 2615 gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d", 2616 Thread::current(), _collectorState); 2617 } 2618 while (_foregroundGCIsActive) { 2619 CGC_lock->wait(Mutex::_no_safepoint_check_flag); 2620 } 2621 ConcurrentMarkSweepThread::set_CMS_flag( 2622 ConcurrentMarkSweepThread::CMS_cms_has_token); 2623 ConcurrentMarkSweepThread::clear_CMS_flag( 2624 ConcurrentMarkSweepThread::CMS_cms_wants_token); 2625 } 2626 if (TraceCMSState) { 2627 gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d", 2628 Thread::current(), _collectorState); 2629 } 2630 return res; 2631 } 2632 2633 // Because of the need to lock the free lists and other structures in 2634 // the collector, common to all the generations that the collector is 2635 // collecting, we need the gc_prologues of individual CMS generations 2636 // delegate to their collector. It may have been simpler had the 2637 // current infrastructure allowed one to call a prologue on a 2638 // collector. In the absence of that we have the generation's 2639 // prologue delegate to the collector, which delegates back 2640 // some "local" work to a worker method in the individual generations 2641 // that it's responsible for collecting, while itself doing any 2642 // work common to all generations it's responsible for. A similar 2643 // comment applies to the gc_epilogue()'s. 2644 // The role of the varaible _between_prologue_and_epilogue is to 2645 // enforce the invocation protocol. 2646 void CMSCollector::gc_prologue(bool full) { 2647 // Call gc_prologue_work() for the CMSGen 2648 // we are responsible for. 2649 2650 // The following locking discipline assumes that we are only called 2651 // when the world is stopped. 2652 assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption"); 2653 2654 // The CMSCollector prologue must call the gc_prologues for the 2655 // "generations" that it's responsible 2656 // for. 2657 2658 assert( Thread::current()->is_VM_thread() 2659 || ( CMSScavengeBeforeRemark 2660 && Thread::current()->is_ConcurrentGC_thread()), 2661 "Incorrect thread type for prologue execution"); 2662 2663 if (_between_prologue_and_epilogue) { 2664 // We have already been invoked; this is a gc_prologue delegation 2665 // from yet another CMS generation that we are responsible for, just 2666 // ignore it since all relevant work has already been done. 2667 return; 2668 } 2669 2670 // set a bit saying prologue has been called; cleared in epilogue 2671 _between_prologue_and_epilogue = true; 2672 // Claim locks for common data structures, then call gc_prologue_work() 2673 // for each CMSGen. 2674 2675 getFreelistLocks(); // gets free list locks on constituent spaces 2676 bitMapLock()->lock_without_safepoint_check(); 2677 2678 // Should call gc_prologue_work() for all cms gens we are responsible for 2679 bool duringMarking = _collectorState >= Marking 2680 && _collectorState < Sweeping; 2681 2682 // The young collections clear the modified oops state, which tells if 2683 // there are any modified oops in the class. The remark phase also needs 2684 // that information. Tell the young collection to save the union of all 2685 // modified klasses. 2686 if (duringMarking) { 2687 _ct->klass_rem_set()->set_accumulate_modified_oops(true); 2688 } 2689 2690 bool registerClosure = duringMarking; 2691 2692 ModUnionClosure* muc = CollectedHeap::use_parallel_gc_threads() ? 2693 &_modUnionClosurePar 2694 : &_modUnionClosure; 2695 _cmsGen->gc_prologue_work(full, registerClosure, muc); 2696 2697 if (!full) { 2698 stats().record_gc0_begin(); 2699 } 2700 } 2701 2702 void ConcurrentMarkSweepGeneration::gc_prologue(bool full) { 2703 2704 _capacity_at_prologue = capacity(); 2705 _used_at_prologue = used(); 2706 2707 // Delegate to CMScollector which knows how to coordinate between 2708 // this and any other CMS generations that it is responsible for 2709 // collecting. 2710 collector()->gc_prologue(full); 2711 } 2712 2713 // This is a "private" interface for use by this generation's CMSCollector. 2714 // Not to be called directly by any other entity (for instance, 2715 // GenCollectedHeap, which calls the "public" gc_prologue method above). 2716 void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full, 2717 bool registerClosure, ModUnionClosure* modUnionClosure) { 2718 assert(!incremental_collection_failed(), "Shouldn't be set yet"); 2719 assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL, 2720 "Should be NULL"); 2721 if (registerClosure) { 2722 cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure); 2723 } 2724 cmsSpace()->gc_prologue(); 2725 // Clear stat counters 2726 NOT_PRODUCT( 2727 assert(_numObjectsPromoted == 0, "check"); 2728 assert(_numWordsPromoted == 0, "check"); 2729 if (Verbose && PrintGC) { 2730 gclog_or_tty->print("Allocated "SIZE_FORMAT" objects, " 2731 SIZE_FORMAT" bytes concurrently", 2732 _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord)); 2733 } 2734 _numObjectsAllocated = 0; 2735 _numWordsAllocated = 0; 2736 ) 2737 } 2738 2739 void CMSCollector::gc_epilogue(bool full) { 2740 // The following locking discipline assumes that we are only called 2741 // when the world is stopped. 2742 assert(SafepointSynchronize::is_at_safepoint(), 2743 "world is stopped assumption"); 2744 2745 // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks 2746 // if linear allocation blocks need to be appropriately marked to allow the 2747 // the blocks to be parsable. We also check here whether we need to nudge the 2748 // CMS collector thread to start a new cycle (if it's not already active). 2749 assert( Thread::current()->is_VM_thread() 2750 || ( CMSScavengeBeforeRemark 2751 && Thread::current()->is_ConcurrentGC_thread()), 2752 "Incorrect thread type for epilogue execution"); 2753 2754 if (!_between_prologue_and_epilogue) { 2755 // We have already been invoked; this is a gc_epilogue delegation 2756 // from yet another CMS generation that we are responsible for, just 2757 // ignore it since all relevant work has already been done. 2758 return; 2759 } 2760 assert(haveFreelistLocks(), "must have freelist locks"); 2761 assert_lock_strong(bitMapLock()); 2762 2763 _ct->klass_rem_set()->set_accumulate_modified_oops(false); 2764 2765 _cmsGen->gc_epilogue_work(full); 2766 2767 if (_collectorState == AbortablePreclean || _collectorState == Precleaning) { 2768 // in case sampling was not already enabled, enable it 2769 _start_sampling = true; 2770 } 2771 // reset _eden_chunk_array so sampling starts afresh 2772 _eden_chunk_index = 0; 2773 2774 size_t cms_used = _cmsGen->cmsSpace()->used(); 2775 2776 // update performance counters - this uses a special version of 2777 // update_counters() that allows the utilization to be passed as a 2778 // parameter, avoiding multiple calls to used(). 2779 // 2780 _cmsGen->update_counters(cms_used); 2781 2782 if (CMSIncrementalMode) { 2783 icms_update_allocation_limits(); 2784 } 2785 2786 bitMapLock()->unlock(); 2787 releaseFreelistLocks(); 2788 2789 if (!CleanChunkPoolAsync) { 2790 Chunk::clean_chunk_pool(); 2791 } 2792 2793 set_did_compact(false); 2794 _between_prologue_and_epilogue = false; // ready for next cycle 2795 } 2796 2797 void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) { 2798 collector()->gc_epilogue(full); 2799 2800 // Also reset promotion tracking in par gc thread states. 2801 if (CollectedHeap::use_parallel_gc_threads()) { 2802 for (uint i = 0; i < ParallelGCThreads; i++) { 2803 _par_gc_thread_states[i]->promo.stopTrackingPromotions(i); 2804 } 2805 } 2806 } 2807 2808 void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) { 2809 assert(!incremental_collection_failed(), "Should have been cleared"); 2810 cmsSpace()->setPreconsumptionDirtyCardClosure(NULL); 2811 cmsSpace()->gc_epilogue(); 2812 // Print stat counters 2813 NOT_PRODUCT( 2814 assert(_numObjectsAllocated == 0, "check"); 2815 assert(_numWordsAllocated == 0, "check"); 2816 if (Verbose && PrintGC) { 2817 gclog_or_tty->print("Promoted "SIZE_FORMAT" objects, " 2818 SIZE_FORMAT" bytes", 2819 _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord)); 2820 } 2821 _numObjectsPromoted = 0; 2822 _numWordsPromoted = 0; 2823 ) 2824 2825 if (PrintGC && Verbose) { 2826 // Call down the chain in contiguous_available needs the freelistLock 2827 // so print this out before releasing the freeListLock. 2828 gclog_or_tty->print(" Contiguous available "SIZE_FORMAT" bytes ", 2829 contiguous_available()); 2830 } 2831 } 2832 2833 #ifndef PRODUCT 2834 bool CMSCollector::have_cms_token() { 2835 Thread* thr = Thread::current(); 2836 if (thr->is_VM_thread()) { 2837 return ConcurrentMarkSweepThread::vm_thread_has_cms_token(); 2838 } else if (thr->is_ConcurrentGC_thread()) { 2839 return ConcurrentMarkSweepThread::cms_thread_has_cms_token(); 2840 } else if (thr->is_GC_task_thread()) { 2841 return ConcurrentMarkSweepThread::vm_thread_has_cms_token() && 2842 ParGCRareEvent_lock->owned_by_self(); 2843 } 2844 return false; 2845 } 2846 #endif 2847 2848 // Check reachability of the given heap address in CMS generation, 2849 // treating all other generations as roots. 2850 bool CMSCollector::is_cms_reachable(HeapWord* addr) { 2851 // We could "guarantee" below, rather than assert, but i'll 2852 // leave these as "asserts" so that an adventurous debugger 2853 // could try this in the product build provided some subset of 2854 // the conditions were met, provided they were intersted in the 2855 // results and knew that the computation below wouldn't interfere 2856 // with other concurrent computations mutating the structures 2857 // being read or written. 2858 assert(SafepointSynchronize::is_at_safepoint(), 2859 "Else mutations in object graph will make answer suspect"); 2860 assert(have_cms_token(), "Should hold cms token"); 2861 assert(haveFreelistLocks(), "must hold free list locks"); 2862 assert_lock_strong(bitMapLock()); 2863 2864 // Clear the marking bit map array before starting, but, just 2865 // for kicks, first report if the given address is already marked 2866 gclog_or_tty->print_cr("Start: Address 0x%x is%s marked", addr, 2867 _markBitMap.isMarked(addr) ? "" : " not"); 2868 2869 if (verify_after_remark()) { 2870 MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag); 2871 bool result = verification_mark_bm()->isMarked(addr); 2872 gclog_or_tty->print_cr("TransitiveMark: Address 0x%x %s marked", addr, 2873 result ? "IS" : "is NOT"); 2874 return result; 2875 } else { 2876 gclog_or_tty->print_cr("Could not compute result"); 2877 return false; 2878 } 2879 } 2880 2881 2882 void 2883 CMSCollector::print_on_error(outputStream* st) { 2884 CMSCollector* collector = ConcurrentMarkSweepGeneration::_collector; 2885 if (collector != NULL) { 2886 CMSBitMap* bitmap = &collector->_markBitMap; 2887 st->print_cr("Marking Bits: (CMSBitMap*) " PTR_FORMAT, bitmap); 2888 bitmap->print_on_error(st, " Bits: "); 2889 2890 st->cr(); 2891 2892 CMSBitMap* mut_bitmap = &collector->_modUnionTable; 2893 st->print_cr("Mod Union Table: (CMSBitMap*) " PTR_FORMAT, mut_bitmap); 2894 mut_bitmap->print_on_error(st, " Bits: "); 2895 } 2896 } 2897 2898 //////////////////////////////////////////////////////// 2899 // CMS Verification Support 2900 //////////////////////////////////////////////////////// 2901 // Following the remark phase, the following invariant 2902 // should hold -- each object in the CMS heap which is 2903 // marked in markBitMap() should be marked in the verification_mark_bm(). 2904 2905 class VerifyMarkedClosure: public BitMapClosure { 2906 CMSBitMap* _marks; 2907 bool _failed; 2908 2909 public: 2910 VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {} 2911 2912 bool do_bit(size_t offset) { 2913 HeapWord* addr = _marks->offsetToHeapWord(offset); 2914 if (!_marks->isMarked(addr)) { 2915 oop(addr)->print_on(gclog_or_tty); 2916 gclog_or_tty->print_cr(" ("INTPTR_FORMAT" should have been marked)", addr); 2917 _failed = true; 2918 } 2919 return true; 2920 } 2921 2922 bool failed() { return _failed; } 2923 }; 2924 2925 bool CMSCollector::verify_after_remark(bool silent) { 2926 if (!silent) gclog_or_tty->print(" [Verifying CMS Marking... "); 2927 MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag); 2928 static bool init = false; 2929 2930 assert(SafepointSynchronize::is_at_safepoint(), 2931 "Else mutations in object graph will make answer suspect"); 2932 assert(have_cms_token(), 2933 "Else there may be mutual interference in use of " 2934 " verification data structures"); 2935 assert(_collectorState > Marking && _collectorState <= Sweeping, 2936 "Else marking info checked here may be obsolete"); 2937 assert(haveFreelistLocks(), "must hold free list locks"); 2938 assert_lock_strong(bitMapLock()); 2939 2940 2941 // Allocate marking bit map if not already allocated 2942 if (!init) { // first time 2943 if (!verification_mark_bm()->allocate(_span)) { 2944 return false; 2945 } 2946 init = true; 2947 } 2948 2949 assert(verification_mark_stack()->isEmpty(), "Should be empty"); 2950 2951 // Turn off refs discovery -- so we will be tracing through refs. 2952 // This is as intended, because by this time 2953 // GC must already have cleared any refs that need to be cleared, 2954 // and traced those that need to be marked; moreover, 2955 // the marking done here is not going to intefere in any 2956 // way with the marking information used by GC. 2957 NoRefDiscovery no_discovery(ref_processor()); 2958 2959 COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;) 2960 2961 // Clear any marks from a previous round 2962 verification_mark_bm()->clear_all(); 2963 assert(verification_mark_stack()->isEmpty(), "markStack should be empty"); 2964 verify_work_stacks_empty(); 2965 2966 GenCollectedHeap* gch = GenCollectedHeap::heap(); 2967 gch->ensure_parsability(false); // fill TLABs, but no need to retire them 2968 // Update the saved marks which may affect the root scans. 2969 gch->save_marks(); 2970 2971 if (CMSRemarkVerifyVariant == 1) { 2972 // In this first variant of verification, we complete 2973 // all marking, then check if the new marks-verctor is 2974 // a subset of the CMS marks-vector. 2975 verify_after_remark_work_1(); 2976 } else if (CMSRemarkVerifyVariant == 2) { 2977 // In this second variant of verification, we flag an error 2978 // (i.e. an object reachable in the new marks-vector not reachable 2979 // in the CMS marks-vector) immediately, also indicating the 2980 // identify of an object (A) that references the unmarked object (B) -- 2981 // presumably, a mutation to A failed to be picked up by preclean/remark? 2982 verify_after_remark_work_2(); 2983 } else { 2984 warning("Unrecognized value %d for CMSRemarkVerifyVariant", 2985 CMSRemarkVerifyVariant); 2986 } 2987 if (!silent) gclog_or_tty->print(" done] "); 2988 return true; 2989 } 2990 2991 void CMSCollector::verify_after_remark_work_1() { 2992 ResourceMark rm; 2993 HandleMark hm; 2994 GenCollectedHeap* gch = GenCollectedHeap::heap(); 2995 2996 // Get a clear set of claim bits for the strong roots processing to work with. 2997 ClassLoaderDataGraph::clear_claimed_marks(); 2998 2999 // Mark from roots one level into CMS 3000 MarkRefsIntoClosure notOlder(_span, verification_mark_bm()); 3001 gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel. 3002 3003 gch->gen_process_strong_roots(_cmsGen->level(), 3004 true, // younger gens are roots 3005 true, // activate StrongRootsScope 3006 false, // not scavenging 3007 SharedHeap::ScanningOption(roots_scanning_options()), 3008 ¬Older, 3009 true, // walk code active on stacks 3010 NULL, 3011 NULL); // SSS: Provide correct closure 3012 3013 // Now mark from the roots 3014 MarkFromRootsClosure markFromRootsClosure(this, _span, 3015 verification_mark_bm(), verification_mark_stack(), 3016 false /* don't yield */, true /* verifying */); 3017 assert(_restart_addr == NULL, "Expected pre-condition"); 3018 verification_mark_bm()->iterate(&markFromRootsClosure); 3019 while (_restart_addr != NULL) { 3020 // Deal with stack overflow: by restarting at the indicated 3021 // address. 3022 HeapWord* ra = _restart_addr; 3023 markFromRootsClosure.reset(ra); 3024 _restart_addr = NULL; 3025 verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end()); 3026 } 3027 assert(verification_mark_stack()->isEmpty(), "Should have been drained"); 3028 verify_work_stacks_empty(); 3029 3030 // Marking completed -- now verify that each bit marked in 3031 // verification_mark_bm() is also marked in markBitMap(); flag all 3032 // errors by printing corresponding objects. 3033 VerifyMarkedClosure vcl(markBitMap()); 3034 verification_mark_bm()->iterate(&vcl); 3035 if (vcl.failed()) { 3036 gclog_or_tty->print("Verification failed"); 3037 Universe::heap()->print_on(gclog_or_tty); 3038 fatal("CMS: failed marking verification after remark"); 3039 } 3040 } 3041 3042 class VerifyKlassOopsKlassClosure : public KlassClosure { 3043 class VerifyKlassOopsClosure : public OopClosure { 3044 CMSBitMap* _bitmap; 3045 public: 3046 VerifyKlassOopsClosure(CMSBitMap* bitmap) : _bitmap(bitmap) { } 3047 void do_oop(oop* p) { guarantee(*p == NULL || _bitmap->isMarked((HeapWord*) *p), "Should be marked"); } 3048 void do_oop(narrowOop* p) { ShouldNotReachHere(); } 3049 } _oop_closure; 3050 public: 3051 VerifyKlassOopsKlassClosure(CMSBitMap* bitmap) : _oop_closure(bitmap) {} 3052 void do_klass(Klass* k) { 3053 k->oops_do(&_oop_closure); 3054 } 3055 }; 3056 3057 void CMSCollector::verify_after_remark_work_2() { 3058 ResourceMark rm; 3059 HandleMark hm; 3060 GenCollectedHeap* gch = GenCollectedHeap::heap(); 3061 3062 // Get a clear set of claim bits for the strong roots processing to work with. 3063 ClassLoaderDataGraph::clear_claimed_marks(); 3064 3065 // Mark from roots one level into CMS 3066 MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(), 3067 markBitMap()); 3068 CMKlassClosure klass_closure(¬Older); 3069 3070 gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel. 3071 gch->gen_process_strong_roots(_cmsGen->level(), 3072 true, // younger gens are roots 3073 true, // activate StrongRootsScope 3074 false, // not scavenging 3075 SharedHeap::ScanningOption(roots_scanning_options()), 3076 ¬Older, 3077 true, // walk code active on stacks 3078 NULL, 3079 &klass_closure); 3080 3081 // Now mark from the roots 3082 MarkFromRootsVerifyClosure markFromRootsClosure(this, _span, 3083 verification_mark_bm(), markBitMap(), verification_mark_stack()); 3084 assert(_restart_addr == NULL, "Expected pre-condition"); 3085 verification_mark_bm()->iterate(&markFromRootsClosure); 3086 while (_restart_addr != NULL) { 3087 // Deal with stack overflow: by restarting at the indicated 3088 // address. 3089 HeapWord* ra = _restart_addr; 3090 markFromRootsClosure.reset(ra); 3091 _restart_addr = NULL; 3092 verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end()); 3093 } 3094 assert(verification_mark_stack()->isEmpty(), "Should have been drained"); 3095 verify_work_stacks_empty(); 3096 3097 VerifyKlassOopsKlassClosure verify_klass_oops(verification_mark_bm()); 3098 ClassLoaderDataGraph::classes_do(&verify_klass_oops); 3099 3100 // Marking completed -- now verify that each bit marked in 3101 // verification_mark_bm() is also marked in markBitMap(); flag all 3102 // errors by printing corresponding objects. 3103 VerifyMarkedClosure vcl(markBitMap()); 3104 verification_mark_bm()->iterate(&vcl); 3105 assert(!vcl.failed(), "Else verification above should not have succeeded"); 3106 } 3107 3108 void ConcurrentMarkSweepGeneration::save_marks() { 3109 // delegate to CMS space 3110 cmsSpace()->save_marks(); 3111 for (uint i = 0; i < ParallelGCThreads; i++) { 3112 _par_gc_thread_states[i]->promo.startTrackingPromotions(); 3113 } 3114 } 3115 3116 bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() { 3117 return cmsSpace()->no_allocs_since_save_marks(); 3118 } 3119 3120 #define CMS_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \ 3121 \ 3122 void ConcurrentMarkSweepGeneration:: \ 3123 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) { \ 3124 cl->set_generation(this); \ 3125 cmsSpace()->oop_since_save_marks_iterate##nv_suffix(cl); \ 3126 cl->reset_generation(); \ 3127 save_marks(); \ 3128 } 3129 3130 ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DEFN) 3131 3132 void 3133 ConcurrentMarkSweepGeneration::object_iterate_since_last_GC(ObjectClosure* blk) 3134 { 3135 // Not currently implemented; need to do the following. -- ysr. 3136 // dld -- I think that is used for some sort of allocation profiler. So it 3137 // really means the objects allocated by the mutator since the last 3138 // GC. We could potentially implement this cheaply by recording only 3139 // the direct allocations in a side data structure. 3140 // 3141 // I think we probably ought not to be required to support these 3142 // iterations at any arbitrary point; I think there ought to be some 3143 // call to enable/disable allocation profiling in a generation/space, 3144 // and the iterator ought to return the objects allocated in the 3145 // gen/space since the enable call, or the last iterator call (which 3146 // will probably be at a GC.) That way, for gens like CM&S that would 3147 // require some extra data structure to support this, we only pay the 3148 // cost when it's in use... 3149 cmsSpace()->object_iterate_since_last_GC(blk); 3150 } 3151 3152 void 3153 ConcurrentMarkSweepGeneration::younger_refs_iterate(OopsInGenClosure* cl) { 3154 cl->set_generation(this); 3155 younger_refs_in_space_iterate(_cmsSpace, cl); 3156 cl->reset_generation(); 3157 } 3158 3159 void 3160 ConcurrentMarkSweepGeneration::oop_iterate(MemRegion mr, ExtendedOopClosure* cl) { 3161 if (freelistLock()->owned_by_self()) { 3162 Generation::oop_iterate(mr, cl); 3163 } else { 3164 MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag); 3165 Generation::oop_iterate(mr, cl); 3166 } 3167 } 3168 3169 void 3170 ConcurrentMarkSweepGeneration::oop_iterate(ExtendedOopClosure* cl) { 3171 if (freelistLock()->owned_by_self()) { 3172 Generation::oop_iterate(cl); 3173 } else { 3174 MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag); 3175 Generation::oop_iterate(cl); 3176 } 3177 } 3178 3179 void 3180 ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) { 3181 if (freelistLock()->owned_by_self()) { 3182 Generation::object_iterate(cl); 3183 } else { 3184 MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag); 3185 Generation::object_iterate(cl); 3186 } 3187 } 3188 3189 void 3190 ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) { 3191 if (freelistLock()->owned_by_self()) { 3192 Generation::safe_object_iterate(cl); 3193 } else { 3194 MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag); 3195 Generation::safe_object_iterate(cl); 3196 } 3197 } 3198 3199 void 3200 ConcurrentMarkSweepGeneration::post_compact() { 3201 } 3202 3203 void 3204 ConcurrentMarkSweepGeneration::prepare_for_verify() { 3205 // Fix the linear allocation blocks to look like free blocks. 3206 3207 // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those 3208 // are not called when the heap is verified during universe initialization and 3209 // at vm shutdown. 3210 if (freelistLock()->owned_by_self()) { 3211 cmsSpace()->prepare_for_verify(); 3212 } else { 3213 MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag); 3214 cmsSpace()->prepare_for_verify(); 3215 } 3216 } 3217 3218 void 3219 ConcurrentMarkSweepGeneration::verify() { 3220 // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those 3221 // are not called when the heap is verified during universe initialization and 3222 // at vm shutdown. 3223 if (freelistLock()->owned_by_self()) { 3224 cmsSpace()->verify(); 3225 } else { 3226 MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag); 3227 cmsSpace()->verify(); 3228 } 3229 } 3230 3231 void CMSCollector::verify() { 3232 _cmsGen->verify(); 3233 } 3234 3235 #ifndef PRODUCT 3236 bool CMSCollector::overflow_list_is_empty() const { 3237 assert(_num_par_pushes >= 0, "Inconsistency"); 3238 if (_overflow_list == NULL) { 3239 assert(_num_par_pushes == 0, "Inconsistency"); 3240 } 3241 return _overflow_list == NULL; 3242 } 3243 3244 // The methods verify_work_stacks_empty() and verify_overflow_empty() 3245 // merely consolidate assertion checks that appear to occur together frequently. 3246 void CMSCollector::verify_work_stacks_empty() const { 3247 assert(_markStack.isEmpty(), "Marking stack should be empty"); 3248 assert(overflow_list_is_empty(), "Overflow list should be empty"); 3249 } 3250 3251 void CMSCollector::verify_overflow_empty() const { 3252 assert(overflow_list_is_empty(), "Overflow list should be empty"); 3253 assert(no_preserved_marks(), "No preserved marks"); 3254 } 3255 #endif // PRODUCT 3256 3257 // Decide if we want to enable class unloading as part of the 3258 // ensuing concurrent GC cycle. We will collect and 3259 // unload classes if it's the case that: 3260 // (1) an explicit gc request has been made and the flag 3261 // ExplicitGCInvokesConcurrentAndUnloadsClasses is set, OR 3262 // (2) (a) class unloading is enabled at the command line, and 3263 // (b) old gen is getting really full 3264 // NOTE: Provided there is no change in the state of the heap between 3265 // calls to this method, it should have idempotent results. Moreover, 3266 // its results should be monotonically increasing (i.e. going from 0 to 1, 3267 // but not 1 to 0) between successive calls between which the heap was 3268 // not collected. For the implementation below, it must thus rely on 3269 // the property that concurrent_cycles_since_last_unload() 3270 // will not decrease unless a collection cycle happened and that 3271 // _cmsGen->is_too_full() are 3272 // themselves also monotonic in that sense. See check_monotonicity() 3273 // below. 3274 void CMSCollector::update_should_unload_classes() { 3275 _should_unload_classes = false; 3276 // Condition 1 above 3277 if (_full_gc_requested && ExplicitGCInvokesConcurrentAndUnloadsClasses) { 3278 _should_unload_classes = true; 3279 } else if (CMSClassUnloadingEnabled) { // Condition 2.a above 3280 // Disjuncts 2.b.(i,ii,iii) above 3281 _should_unload_classes = (concurrent_cycles_since_last_unload() >= 3282 CMSClassUnloadingMaxInterval) 3283 || _cmsGen->is_too_full(); 3284 } 3285 } 3286 3287 bool ConcurrentMarkSweepGeneration::is_too_full() const { 3288 bool res = should_concurrent_collect(); 3289 res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0); 3290 return res; 3291 } 3292 3293 void CMSCollector::setup_cms_unloading_and_verification_state() { 3294 const bool should_verify = VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC 3295 || VerifyBeforeExit; 3296 const int rso = SharedHeap::SO_Strings | SharedHeap::SO_CodeCache; 3297 3298 if (should_unload_classes()) { // Should unload classes this cycle 3299 remove_root_scanning_option(rso); // Shrink the root set appropriately 3300 set_verifying(should_verify); // Set verification state for this cycle 3301 return; // Nothing else needs to be done at this time 3302 } 3303 3304 // Not unloading classes this cycle 3305 assert(!should_unload_classes(), "Inconsitency!"); 3306 if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) { 3307 // Include symbols, strings and code cache elements to prevent their resurrection. 3308 add_root_scanning_option(rso); 3309 set_verifying(true); 3310 } else if (verifying() && !should_verify) { 3311 // We were verifying, but some verification flags got disabled. 3312 set_verifying(false); 3313 // Exclude symbols, strings and code cache elements from root scanning to 3314 // reduce IM and RM pauses. 3315 remove_root_scanning_option(rso); 3316 } 3317 } 3318 3319 3320 #ifndef PRODUCT 3321 HeapWord* CMSCollector::block_start(const void* p) const { 3322 const HeapWord* addr = (HeapWord*)p; 3323 if (_span.contains(p)) { 3324 if (_cmsGen->cmsSpace()->is_in_reserved(addr)) { 3325 return _cmsGen->cmsSpace()->block_start(p); 3326 } 3327 } 3328 return NULL; 3329 } 3330 #endif 3331 3332 HeapWord* 3333 ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size, 3334 bool tlab, 3335 bool parallel) { 3336 CMSSynchronousYieldRequest yr; 3337 assert(!tlab, "Can't deal with TLAB allocation"); 3338 MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag); 3339 expand(word_size*HeapWordSize, MinHeapDeltaBytes, 3340 CMSExpansionCause::_satisfy_allocation); 3341 if (GCExpandToAllocateDelayMillis > 0) { 3342 os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false); 3343 } 3344 return have_lock_and_allocate(word_size, tlab); 3345 } 3346 3347 // YSR: All of this generation expansion/shrinking stuff is an exact copy of 3348 // OneContigSpaceCardGeneration, which makes me wonder if we should move this 3349 // to CardGeneration and share it... 3350 bool ConcurrentMarkSweepGeneration::expand(size_t bytes, size_t expand_bytes) { 3351 return CardGeneration::expand(bytes, expand_bytes); 3352 } 3353 3354 void ConcurrentMarkSweepGeneration::expand(size_t bytes, size_t expand_bytes, 3355 CMSExpansionCause::Cause cause) 3356 { 3357 3358 bool success = expand(bytes, expand_bytes); 3359 3360 // remember why we expanded; this information is used 3361 // by shouldConcurrentCollect() when making decisions on whether to start 3362 // a new CMS cycle. 3363 if (success) { 3364 set_expansion_cause(cause); 3365 if (PrintGCDetails && Verbose) { 3366 gclog_or_tty->print_cr("Expanded CMS gen for %s", 3367 CMSExpansionCause::to_string(cause)); 3368 } 3369 } 3370 } 3371 3372 HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) { 3373 HeapWord* res = NULL; 3374 MutexLocker x(ParGCRareEvent_lock); 3375 while (true) { 3376 // Expansion by some other thread might make alloc OK now: 3377 res = ps->lab.alloc(word_sz); 3378 if (res != NULL) return res; 3379 // If there's not enough expansion space available, give up. 3380 if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) { 3381 return NULL; 3382 } 3383 // Otherwise, we try expansion. 3384 expand(word_sz*HeapWordSize, MinHeapDeltaBytes, 3385 CMSExpansionCause::_allocate_par_lab); 3386 // Now go around the loop and try alloc again; 3387 // A competing par_promote might beat us to the expansion space, 3388 // so we may go around the loop again if promotion fails agaion. 3389 if (GCExpandToAllocateDelayMillis > 0) { 3390 os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false); 3391 } 3392 } 3393 } 3394 3395 3396 bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space( 3397 PromotionInfo* promo) { 3398 MutexLocker x(ParGCRareEvent_lock); 3399 size_t refill_size_bytes = promo->refillSize() * HeapWordSize; 3400 while (true) { 3401 // Expansion by some other thread might make alloc OK now: 3402 if (promo->ensure_spooling_space()) { 3403 assert(promo->has_spooling_space(), 3404 "Post-condition of successful ensure_spooling_space()"); 3405 return true; 3406 } 3407 // If there's not enough expansion space available, give up. 3408 if (_virtual_space.uncommitted_size() < refill_size_bytes) { 3409 return false; 3410 } 3411 // Otherwise, we try expansion. 3412 expand(refill_size_bytes, MinHeapDeltaBytes, 3413 CMSExpansionCause::_allocate_par_spooling_space); 3414 // Now go around the loop and try alloc again; 3415 // A competing allocation might beat us to the expansion space, 3416 // so we may go around the loop again if allocation fails again. 3417 if (GCExpandToAllocateDelayMillis > 0) { 3418 os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false); 3419 } 3420 } 3421 } 3422 3423 3424 void ConcurrentMarkSweepGeneration::shrink_by(size_t bytes) { 3425 assert_locked_or_safepoint(ExpandHeap_lock); 3426 // Shrink committed space 3427 _virtual_space.shrink_by(bytes); 3428 // Shrink space; this also shrinks the space's BOT 3429 _cmsSpace->set_end((HeapWord*) _virtual_space.high()); 3430 size_t new_word_size = heap_word_size(_cmsSpace->capacity()); 3431 // Shrink the shared block offset array 3432 _bts->resize(new_word_size); 3433 MemRegion mr(_cmsSpace->bottom(), new_word_size); 3434 // Shrink the card table 3435 Universe::heap()->barrier_set()->resize_covered_region(mr); 3436 3437 if (Verbose && PrintGC) { 3438 size_t new_mem_size = _virtual_space.committed_size(); 3439 size_t old_mem_size = new_mem_size + bytes; 3440 gclog_or_tty->print_cr("Shrinking %s from " SIZE_FORMAT "K to " SIZE_FORMAT "K", 3441 name(), old_mem_size/K, new_mem_size/K); 3442 } 3443 } 3444 3445 void ConcurrentMarkSweepGeneration::shrink(size_t bytes) { 3446 assert_locked_or_safepoint(Heap_lock); 3447 size_t size = ReservedSpace::page_align_size_down(bytes); 3448 if (size > 0) { 3449 shrink_by(size); 3450 } 3451 } 3452 3453 bool ConcurrentMarkSweepGeneration::grow_by(size_t bytes) { 3454 assert_locked_or_safepoint(Heap_lock); 3455 bool result = _virtual_space.expand_by(bytes); 3456 if (result) { 3457 size_t new_word_size = 3458 heap_word_size(_virtual_space.committed_size()); 3459 MemRegion mr(_cmsSpace->bottom(), new_word_size); 3460 _bts->resize(new_word_size); // resize the block offset shared array 3461 Universe::heap()->barrier_set()->resize_covered_region(mr); 3462 // Hmmmm... why doesn't CFLS::set_end verify locking? 3463 // This is quite ugly; FIX ME XXX 3464 _cmsSpace->assert_locked(freelistLock()); 3465 _cmsSpace->set_end((HeapWord*)_virtual_space.high()); 3466 3467 // update the space and generation capacity counters 3468 if (UsePerfData) { 3469 _space_counters->update_capacity(); 3470 _gen_counters->update_all(); 3471 } 3472 3473 if (Verbose && PrintGC) { 3474 size_t new_mem_size = _virtual_space.committed_size(); 3475 size_t old_mem_size = new_mem_size - bytes; 3476 gclog_or_tty->print_cr("Expanding %s from " SIZE_FORMAT "K by " SIZE_FORMAT "K to " SIZE_FORMAT "K", 3477 name(), old_mem_size/K, bytes/K, new_mem_size/K); 3478 } 3479 } 3480 return result; 3481 } 3482 3483 bool ConcurrentMarkSweepGeneration::grow_to_reserved() { 3484 assert_locked_or_safepoint(Heap_lock); 3485 bool success = true; 3486 const size_t remaining_bytes = _virtual_space.uncommitted_size(); 3487 if (remaining_bytes > 0) { 3488 success = grow_by(remaining_bytes); 3489 DEBUG_ONLY(if (!success) warning("grow to reserved failed");) 3490 } 3491 return success; 3492 } 3493 3494 void ConcurrentMarkSweepGeneration::shrink_free_list_by(size_t bytes) { 3495 assert_locked_or_safepoint(Heap_lock); 3496 assert_lock_strong(freelistLock()); 3497 if (PrintGCDetails && Verbose) { 3498 warning("Shrinking of CMS not yet implemented"); 3499 } 3500 return; 3501 } 3502 3503 3504 // Simple ctor/dtor wrapper for accounting & timer chores around concurrent 3505 // phases. 3506 class CMSPhaseAccounting: public StackObj { 3507 public: 3508 CMSPhaseAccounting(CMSCollector *collector, 3509 const char *phase, 3510 bool print_cr = true); 3511 ~CMSPhaseAccounting(); 3512 3513 private: 3514 CMSCollector *_collector; 3515 const char *_phase; 3516 elapsedTimer _wallclock; 3517 bool _print_cr; 3518 3519 public: 3520 // Not MT-safe; so do not pass around these StackObj's 3521 // where they may be accessed by other threads. 3522 jlong wallclock_millis() { 3523 assert(_wallclock.is_active(), "Wall clock should not stop"); 3524 _wallclock.stop(); // to record time 3525 jlong ret = _wallclock.milliseconds(); 3526 _wallclock.start(); // restart 3527 return ret; 3528 } 3529 }; 3530 3531 CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector, 3532 const char *phase, 3533 bool print_cr) : 3534 _collector(collector), _phase(phase), _print_cr(print_cr) { 3535 3536 if (PrintCMSStatistics != 0) { 3537 _collector->resetYields(); 3538 } 3539 if (PrintGCDetails) { 3540 gclog_or_tty->date_stamp(PrintGCDateStamps); 3541 gclog_or_tty->stamp(PrintGCTimeStamps); 3542 gclog_or_tty->print_cr("[%s-concurrent-%s-start]", 3543 _collector->cmsGen()->short_name(), _phase); 3544 } 3545 _collector->resetTimer(); 3546 _wallclock.start(); 3547 _collector->startTimer(); 3548 } 3549 3550 CMSPhaseAccounting::~CMSPhaseAccounting() { 3551 assert(_wallclock.is_active(), "Wall clock should not have stopped"); 3552 _collector->stopTimer(); 3553 _wallclock.stop(); 3554 if (PrintGCDetails) { 3555 gclog_or_tty->date_stamp(PrintGCDateStamps); 3556 gclog_or_tty->stamp(PrintGCTimeStamps); 3557 gclog_or_tty->print("[%s-concurrent-%s: %3.3f/%3.3f secs]", 3558 _collector->cmsGen()->short_name(), 3559 _phase, _collector->timerValue(), _wallclock.seconds()); 3560 if (_print_cr) { 3561 gclog_or_tty->print_cr(""); 3562 } 3563 if (PrintCMSStatistics != 0) { 3564 gclog_or_tty->print_cr(" (CMS-concurrent-%s yielded %d times)", _phase, 3565 _collector->yields()); 3566 } 3567 } 3568 } 3569 3570 // CMS work 3571 3572 // The common parts of CMSParInitialMarkTask and CMSParRemarkTask. 3573 class CMSParMarkTask : public AbstractGangTask { 3574 protected: 3575 CMSCollector* _collector; 3576 int _n_workers; 3577 CMSParMarkTask(const char* name, CMSCollector* collector, int n_workers) : 3578 AbstractGangTask(name), 3579 _collector(collector), 3580 _n_workers(n_workers) {} 3581 // Work method in support of parallel rescan ... of young gen spaces 3582 void do_young_space_rescan(uint worker_id, OopsInGenClosure* cl, 3583 ContiguousSpace* space, 3584 HeapWord** chunk_array, size_t chunk_top); 3585 void work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl); 3586 }; 3587 3588 // Parallel initial mark task 3589 class CMSParInitialMarkTask: public CMSParMarkTask { 3590 public: 3591 CMSParInitialMarkTask(CMSCollector* collector, int n_workers) : 3592 CMSParMarkTask("Scan roots and young gen for initial mark in parallel", 3593 collector, n_workers) {} 3594 void work(uint worker_id); 3595 }; 3596 3597 // Checkpoint the roots into this generation from outside 3598 // this generation. [Note this initial checkpoint need only 3599 // be approximate -- we'll do a catch up phase subsequently.] 3600 void CMSCollector::checkpointRootsInitial(bool asynch) { 3601 assert(_collectorState == InitialMarking, "Wrong collector state"); 3602 check_correct_thread_executing(); 3603 TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause()); 3604 3605 save_heap_summary(); 3606 report_heap_summary(GCWhen::BeforeGC); 3607 3608 ReferenceProcessor* rp = ref_processor(); 3609 SpecializationStats::clear(); 3610 assert(_restart_addr == NULL, "Control point invariant"); 3611 if (asynch) { 3612 // acquire locks for subsequent manipulations 3613 MutexLockerEx x(bitMapLock(), 3614 Mutex::_no_safepoint_check_flag); 3615 checkpointRootsInitialWork(asynch); 3616 // enable ("weak") refs discovery 3617 rp->enable_discovery(true /*verify_disabled*/, true /*check_no_refs*/); 3618 _collectorState = Marking; 3619 } else { 3620 // (Weak) Refs discovery: this is controlled from genCollectedHeap::do_collection 3621 // which recognizes if we are a CMS generation, and doesn't try to turn on 3622 // discovery; verify that they aren't meddling. 3623 assert(!rp->discovery_is_atomic(), 3624 "incorrect setting of discovery predicate"); 3625 assert(!rp->discovery_enabled(), "genCollectedHeap shouldn't control " 3626 "ref discovery for this generation kind"); 3627 // already have locks 3628 checkpointRootsInitialWork(asynch); 3629 // now enable ("weak") refs discovery 3630 rp->enable_discovery(true /*verify_disabled*/, false /*verify_no_refs*/); 3631 _collectorState = Marking; 3632 } 3633 SpecializationStats::print(); 3634 } 3635 3636 void CMSCollector::checkpointRootsInitialWork(bool asynch) { 3637 assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped"); 3638 assert(_collectorState == InitialMarking, "just checking"); 3639 3640 // If there has not been a GC[n-1] since last GC[n] cycle completed, 3641 // precede our marking with a collection of all 3642 // younger generations to keep floating garbage to a minimum. 3643 // XXX: we won't do this for now -- it's an optimization to be done later. 3644 3645 // already have locks 3646 assert_lock_strong(bitMapLock()); 3647 assert(_markBitMap.isAllClear(), "was reset at end of previous cycle"); 3648 3649 // Setup the verification and class unloading state for this 3650 // CMS collection cycle. 3651 setup_cms_unloading_and_verification_state(); 3652 3653 NOT_PRODUCT(GCTraceTime t("\ncheckpointRootsInitialWork", 3654 PrintGCDetails && Verbose, true, _gc_timer_cm);) 3655 if (UseAdaptiveSizePolicy) { 3656 size_policy()->checkpoint_roots_initial_begin(); 3657 } 3658 3659 // Reset all the PLAB chunk arrays if necessary. 3660 if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) { 3661 reset_survivor_plab_arrays(); 3662 } 3663 3664 ResourceMark rm; 3665 HandleMark hm; 3666 3667 FalseClosure falseClosure; 3668 // In the case of a synchronous collection, we will elide the 3669 // remark step, so it's important to catch all the nmethod oops 3670 // in this step. 3671 // The final 'true' flag to gen_process_strong_roots will ensure this. 3672 // If 'async' is true, we can relax the nmethod tracing. 3673 MarkRefsIntoClosure notOlder(_span, &_markBitMap); 3674 GenCollectedHeap* gch = GenCollectedHeap::heap(); 3675 3676 verify_work_stacks_empty(); 3677 verify_overflow_empty(); 3678 3679 gch->ensure_parsability(false); // fill TLABs, but no need to retire them 3680 // Update the saved marks which may affect the root scans. 3681 gch->save_marks(); 3682 3683 // weak reference processing has not started yet. 3684 ref_processor()->set_enqueuing_is_done(false); 3685 3686 // Need to remember all newly created CLDs, 3687 // so that we can guarantee that the remark finds them. 3688 ClassLoaderDataGraph::remember_new_clds(true); 3689 3690 // Whenever a CLD is found, it will be claimed before proceeding to mark 3691 // the klasses. The claimed marks need to be cleared before marking starts. 3692 ClassLoaderDataGraph::clear_claimed_marks(); 3693 3694 { 3695 COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;) 3696 if (CMSParallelInitialMarkEnabled && CollectedHeap::use_parallel_gc_threads()) { 3697 // The parallel version. 3698 FlexibleWorkGang* workers = gch->workers(); 3699 assert(workers != NULL, "Need parallel worker threads."); 3700 int n_workers = workers->active_workers(); 3701 CMSParInitialMarkTask tsk(this, n_workers); 3702 gch->set_par_threads(n_workers); 3703 initialize_sequential_subtasks_for_young_gen_rescan(n_workers); 3704 if (n_workers > 1) { 3705 GenCollectedHeap::StrongRootsScope srs(gch); 3706 workers->run_task(&tsk); 3707 } else { 3708 GenCollectedHeap::StrongRootsScope srs(gch); 3709 tsk.work(0); 3710 } 3711 gch->set_par_threads(0); 3712 } else { 3713 // The serial version. 3714 CMKlassClosure klass_closure(¬Older); 3715 gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel. 3716 gch->gen_process_strong_roots(_cmsGen->level(), 3717 true, // younger gens are roots 3718 true, // activate StrongRootsScope 3719 false, // not scavenging 3720 SharedHeap::ScanningOption(roots_scanning_options()), 3721 ¬Older, 3722 true, // walk all of code cache if (so & SO_CodeCache) 3723 NULL, 3724 &klass_closure); 3725 } 3726 } 3727 3728 // Clear mod-union table; it will be dirtied in the prologue of 3729 // CMS generation per each younger generation collection. 3730 3731 assert(_modUnionTable.isAllClear(), 3732 "Was cleared in most recent final checkpoint phase" 3733 " or no bits are set in the gc_prologue before the start of the next " 3734 "subsequent marking phase."); 3735 3736 assert(_ct->klass_rem_set()->mod_union_is_clear(), "Must be"); 3737 3738 // Save the end of the used_region of the constituent generations 3739 // to be used to limit the extent of sweep in each generation. 3740 save_sweep_limits(); 3741 if (UseAdaptiveSizePolicy) { 3742 size_policy()->checkpoint_roots_initial_end(gch->gc_cause()); 3743 } 3744 verify_overflow_empty(); 3745 } 3746 3747 bool CMSCollector::markFromRoots(bool asynch) { 3748 // we might be tempted to assert that: 3749 // assert(asynch == !SafepointSynchronize::is_at_safepoint(), 3750 // "inconsistent argument?"); 3751 // However that wouldn't be right, because it's possible that 3752 // a safepoint is indeed in progress as a younger generation 3753 // stop-the-world GC happens even as we mark in this generation. 3754 assert(_collectorState == Marking, "inconsistent state?"); 3755 check_correct_thread_executing(); 3756 verify_overflow_empty(); 3757 3758 bool res; 3759 if (asynch) { 3760 3761 // Start the timers for adaptive size policy for the concurrent phases 3762 // Do it here so that the foreground MS can use the concurrent 3763 // timer since a foreground MS might has the sweep done concurrently 3764 // or STW. 3765 if (UseAdaptiveSizePolicy) { 3766 size_policy()->concurrent_marking_begin(); 3767 } 3768 3769 // Weak ref discovery note: We may be discovering weak 3770 // refs in this generation concurrent (but interleaved) with 3771 // weak ref discovery by a younger generation collector. 3772 3773 CMSTokenSyncWithLocks ts(true, bitMapLock()); 3774 TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty); 3775 CMSPhaseAccounting pa(this, "mark", !PrintGCDetails); 3776 res = markFromRootsWork(asynch); 3777 if (res) { 3778 _collectorState = Precleaning; 3779 } else { // We failed and a foreground collection wants to take over 3780 assert(_foregroundGCIsActive, "internal state inconsistency"); 3781 assert(_restart_addr == NULL, "foreground will restart from scratch"); 3782 if (PrintGCDetails) { 3783 gclog_or_tty->print_cr("bailing out to foreground collection"); 3784 } 3785 } 3786 if (UseAdaptiveSizePolicy) { 3787 size_policy()->concurrent_marking_end(); 3788 } 3789 } else { 3790 assert(SafepointSynchronize::is_at_safepoint(), 3791 "inconsistent with asynch == false"); 3792 if (UseAdaptiveSizePolicy) { 3793 size_policy()->ms_collection_marking_begin(); 3794 } 3795 // already have locks 3796 res = markFromRootsWork(asynch); 3797 _collectorState = FinalMarking; 3798 if (UseAdaptiveSizePolicy) { 3799 GenCollectedHeap* gch = GenCollectedHeap::heap(); 3800 size_policy()->ms_collection_marking_end(gch->gc_cause()); 3801 } 3802 } 3803 verify_overflow_empty(); 3804 return res; 3805 } 3806 3807 bool CMSCollector::markFromRootsWork(bool asynch) { 3808 // iterate over marked bits in bit map, doing a full scan and mark 3809 // from these roots using the following algorithm: 3810 // . if oop is to the right of the current scan pointer, 3811 // mark corresponding bit (we'll process it later) 3812 // . else (oop is to left of current scan pointer) 3813 // push oop on marking stack 3814 // . drain the marking stack 3815 3816 // Note that when we do a marking step we need to hold the 3817 // bit map lock -- recall that direct allocation (by mutators) 3818 // and promotion (by younger generation collectors) is also 3819 // marking the bit map. [the so-called allocate live policy.] 3820 // Because the implementation of bit map marking is not 3821 // robust wrt simultaneous marking of bits in the same word, 3822 // we need to make sure that there is no such interference 3823 // between concurrent such updates. 3824 3825 // already have locks 3826 assert_lock_strong(bitMapLock()); 3827 3828 verify_work_stacks_empty(); 3829 verify_overflow_empty(); 3830 bool result = false; 3831 if (CMSConcurrentMTEnabled && ConcGCThreads > 0) { 3832 result = do_marking_mt(asynch); 3833 } else { 3834 result = do_marking_st(asynch); 3835 } 3836 return result; 3837 } 3838 3839 // Forward decl 3840 class CMSConcMarkingTask; 3841 3842 class CMSConcMarkingTerminator: public ParallelTaskTerminator { 3843 CMSCollector* _collector; 3844 CMSConcMarkingTask* _task; 3845 public: 3846 virtual void yield(); 3847 3848 // "n_threads" is the number of threads to be terminated. 3849 // "queue_set" is a set of work queues of other threads. 3850 // "collector" is the CMS collector associated with this task terminator. 3851 // "yield" indicates whether we need the gang as a whole to yield. 3852 CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) : 3853 ParallelTaskTerminator(n_threads, queue_set), 3854 _collector(collector) { } 3855 3856 void set_task(CMSConcMarkingTask* task) { 3857 _task = task; 3858 } 3859 }; 3860 3861 class CMSConcMarkingTerminatorTerminator: public TerminatorTerminator { 3862 CMSConcMarkingTask* _task; 3863 public: 3864 bool should_exit_termination(); 3865 void set_task(CMSConcMarkingTask* task) { 3866 _task = task; 3867 } 3868 }; 3869 3870 // MT Concurrent Marking Task 3871 class CMSConcMarkingTask: public YieldingFlexibleGangTask { 3872 CMSCollector* _collector; 3873 int _n_workers; // requested/desired # workers 3874 bool _asynch; 3875 bool _result; 3876 CompactibleFreeListSpace* _cms_space; 3877 char _pad_front[64]; // padding to ... 3878 HeapWord* _global_finger; // ... avoid sharing cache line 3879 char _pad_back[64]; 3880 HeapWord* _restart_addr; 3881 3882 // Exposed here for yielding support 3883 Mutex* const _bit_map_lock; 3884 3885 // The per thread work queues, available here for stealing 3886 OopTaskQueueSet* _task_queues; 3887 3888 // Termination (and yielding) support 3889 CMSConcMarkingTerminator _term; 3890 CMSConcMarkingTerminatorTerminator _term_term; 3891 3892 public: 3893 CMSConcMarkingTask(CMSCollector* collector, 3894 CompactibleFreeListSpace* cms_space, 3895 bool asynch, 3896 YieldingFlexibleWorkGang* workers, 3897 OopTaskQueueSet* task_queues): 3898 YieldingFlexibleGangTask("Concurrent marking done multi-threaded"), 3899 _collector(collector), 3900 _cms_space(cms_space), 3901 _asynch(asynch), _n_workers(0), _result(true), 3902 _task_queues(task_queues), 3903 _term(_n_workers, task_queues, _collector), 3904 _bit_map_lock(collector->bitMapLock()) 3905 { 3906 _requested_size = _n_workers; 3907 _term.set_task(this); 3908 _term_term.set_task(this); 3909 _restart_addr = _global_finger = _cms_space->bottom(); 3910 } 3911 3912 3913 OopTaskQueueSet* task_queues() { return _task_queues; } 3914 3915 OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); } 3916 3917 HeapWord** global_finger_addr() { return &_global_finger; } 3918 3919 CMSConcMarkingTerminator* terminator() { return &_term; } 3920 3921 virtual void set_for_termination(int active_workers) { 3922 terminator()->reset_for_reuse(active_workers); 3923 } 3924 3925 void work(uint worker_id); 3926 bool should_yield() { 3927 return ConcurrentMarkSweepThread::should_yield() 3928 && !_collector->foregroundGCIsActive() 3929 && _asynch; 3930 } 3931 3932 virtual void coordinator_yield(); // stuff done by coordinator 3933 bool result() { return _result; } 3934 3935 void reset(HeapWord* ra) { 3936 assert(_global_finger >= _cms_space->end(), "Postcondition of ::work(i)"); 3937 _restart_addr = _global_finger = ra; 3938 _term.reset_for_reuse(); 3939 } 3940 3941 static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk, 3942 OopTaskQueue* work_q); 3943 3944 private: 3945 void do_scan_and_mark(int i, CompactibleFreeListSpace* sp); 3946 void do_work_steal(int i); 3947 void bump_global_finger(HeapWord* f); 3948 }; 3949 3950 bool CMSConcMarkingTerminatorTerminator::should_exit_termination() { 3951 assert(_task != NULL, "Error"); 3952 return _task->yielding(); 3953 // Note that we do not need the disjunct || _task->should_yield() above 3954 // because we want terminating threads to yield only if the task 3955 // is already in the midst of yielding, which happens only after at least one 3956 // thread has yielded. 3957 } 3958 3959 void CMSConcMarkingTerminator::yield() { 3960 if (_task->should_yield()) { 3961 _task->yield(); 3962 } else { 3963 ParallelTaskTerminator::yield(); 3964 } 3965 } 3966 3967 //////////////////////////////////////////////////////////////// 3968 // Concurrent Marking Algorithm Sketch 3969 //////////////////////////////////////////////////////////////// 3970 // Until all tasks exhausted (both spaces): 3971 // -- claim next available chunk 3972 // -- bump global finger via CAS 3973 // -- find first object that starts in this chunk 3974 // and start scanning bitmap from that position 3975 // -- scan marked objects for oops 3976 // -- CAS-mark target, and if successful: 3977 // . if target oop is above global finger (volatile read) 3978 // nothing to do 3979 // . if target oop is in chunk and above local finger 3980 // then nothing to do 3981 // . else push on work-queue 3982 // -- Deal with possible overflow issues: 3983 // . local work-queue overflow causes stuff to be pushed on 3984 // global (common) overflow queue 3985 // . always first empty local work queue 3986 // . then get a batch of oops from global work queue if any 3987 // . then do work stealing 3988 // -- When all tasks claimed (both spaces) 3989 // and local work queue empty, 3990 // then in a loop do: 3991 // . check global overflow stack; steal a batch of oops and trace 3992 // . try to steal from other threads oif GOS is empty 3993 // . if neither is available, offer termination 3994 // -- Terminate and return result 3995 // 3996 void CMSConcMarkingTask::work(uint worker_id) { 3997 elapsedTimer _timer; 3998 ResourceMark rm; 3999 HandleMark hm; 4000 4001 DEBUG_ONLY(_collector->verify_overflow_empty();) 4002 4003 // Before we begin work, our work queue should be empty 4004 assert(work_queue(worker_id)->size() == 0, "Expected to be empty"); 4005 // Scan the bitmap covering _cms_space, tracing through grey objects. 4006 _timer.start(); 4007 do_scan_and_mark(worker_id, _cms_space); 4008 _timer.stop(); 4009 if (PrintCMSStatistics != 0) { 4010 gclog_or_tty->print_cr("Finished cms space scanning in %dth thread: %3.3f sec", 4011 worker_id, _timer.seconds()); 4012 // XXX: need xxx/xxx type of notation, two timers 4013 } 4014 4015 // ... do work stealing 4016 _timer.reset(); 4017 _timer.start(); 4018 do_work_steal(worker_id); 4019 _timer.stop(); 4020 if (PrintCMSStatistics != 0) { 4021 gclog_or_tty->print_cr("Finished work stealing in %dth thread: %3.3f sec", 4022 worker_id, _timer.seconds()); 4023 // XXX: need xxx/xxx type of notation, two timers 4024 } 4025 assert(_collector->_markStack.isEmpty(), "Should have been emptied"); 4026 assert(work_queue(worker_id)->size() == 0, "Should have been emptied"); 4027 // Note that under the current task protocol, the 4028 // following assertion is true even of the spaces 4029 // expanded since the completion of the concurrent 4030 // marking. XXX This will likely change under a strict 4031 // ABORT semantics. 4032 // After perm removal the comparison was changed to 4033 // greater than or equal to from strictly greater than. 4034 // Before perm removal the highest address sweep would 4035 // have been at the end of perm gen but now is at the 4036 // end of the tenured gen. 4037 assert(_global_finger >= _cms_space->end(), 4038 "All tasks have been completed"); 4039 DEBUG_ONLY(_collector->verify_overflow_empty();) 4040 } 4041 4042 void CMSConcMarkingTask::bump_global_finger(HeapWord* f) { 4043 HeapWord* read = _global_finger; 4044 HeapWord* cur = read; 4045 while (f > read) { 4046 cur = read; 4047 read = (HeapWord*) Atomic::cmpxchg_ptr(f, &_global_finger, cur); 4048 if (cur == read) { 4049 // our cas succeeded 4050 assert(_global_finger >= f, "protocol consistency"); 4051 break; 4052 } 4053 } 4054 } 4055 4056 // This is really inefficient, and should be redone by 4057 // using (not yet available) block-read and -write interfaces to the 4058 // stack and the work_queue. XXX FIX ME !!! 4059 bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk, 4060 OopTaskQueue* work_q) { 4061 // Fast lock-free check 4062 if (ovflw_stk->length() == 0) { 4063 return false; 4064 } 4065 assert(work_q->size() == 0, "Shouldn't steal"); 4066 MutexLockerEx ml(ovflw_stk->par_lock(), 4067 Mutex::_no_safepoint_check_flag); 4068 // Grab up to 1/4 the size of the work queue 4069 size_t num = MIN2((size_t)(work_q->max_elems() - work_q->size())/4, 4070 (size_t)ParGCDesiredObjsFromOverflowList); 4071 num = MIN2(num, ovflw_stk->length()); 4072 for (int i = (int) num; i > 0; i--) { 4073 oop cur = ovflw_stk->pop(); 4074 assert(cur != NULL, "Counted wrong?"); 4075 work_q->push(cur); 4076 } 4077 return num > 0; 4078 } 4079 4080 void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) { 4081 SequentialSubTasksDone* pst = sp->conc_par_seq_tasks(); 4082 int n_tasks = pst->n_tasks(); 4083 // We allow that there may be no tasks to do here because 4084 // we are restarting after a stack overflow. 4085 assert(pst->valid() || n_tasks == 0, "Uninitialized use?"); 4086 uint nth_task = 0; 4087 4088 HeapWord* aligned_start = sp->bottom(); 4089 if (sp->used_region().contains(_restart_addr)) { 4090 // Align down to a card boundary for the start of 0th task 4091 // for this space. 4092 aligned_start = 4093 (HeapWord*)align_size_down((uintptr_t)_restart_addr, 4094 CardTableModRefBS::card_size); 4095 } 4096 4097 size_t chunk_size = sp->marking_task_size(); 4098 while (!pst->is_task_claimed(/* reference */ nth_task)) { 4099 // Having claimed the nth task in this space, 4100 // compute the chunk that it corresponds to: 4101 MemRegion span = MemRegion(aligned_start + nth_task*chunk_size, 4102 aligned_start + (nth_task+1)*chunk_size); 4103 // Try and bump the global finger via a CAS; 4104 // note that we need to do the global finger bump 4105 // _before_ taking the intersection below, because 4106 // the task corresponding to that region will be 4107 // deemed done even if the used_region() expands 4108 // because of allocation -- as it almost certainly will 4109 // during start-up while the threads yield in the 4110 // closure below. 4111 HeapWord* finger = span.end(); 4112 bump_global_finger(finger); // atomically 4113 // There are null tasks here corresponding to chunks 4114 // beyond the "top" address of the space. 4115 span = span.intersection(sp->used_region()); 4116 if (!span.is_empty()) { // Non-null task 4117 HeapWord* prev_obj; 4118 assert(!span.contains(_restart_addr) || nth_task == 0, 4119 "Inconsistency"); 4120 if (nth_task == 0) { 4121 // For the 0th task, we'll not need to compute a block_start. 4122 if (span.contains(_restart_addr)) { 4123 // In the case of a restart because of stack overflow, 4124 // we might additionally skip a chunk prefix. 4125 prev_obj = _restart_addr; 4126 } else { 4127 prev_obj = span.start(); 4128 } 4129 } else { 4130 // We want to skip the first object because 4131 // the protocol is to scan any object in its entirety 4132 // that _starts_ in this span; a fortiori, any 4133 // object starting in an earlier span is scanned 4134 // as part of an earlier claimed task. 4135 // Below we use the "careful" version of block_start 4136 // so we do not try to navigate uninitialized objects. 4137 prev_obj = sp->block_start_careful(span.start()); 4138 // Below we use a variant of block_size that uses the 4139 // Printezis bits to avoid waiting for allocated 4140 // objects to become initialized/parsable. 4141 while (prev_obj < span.start()) { 4142 size_t sz = sp->block_size_no_stall(prev_obj, _collector); 4143 if (sz > 0) { 4144 prev_obj += sz; 4145 } else { 4146 // In this case we may end up doing a bit of redundant 4147 // scanning, but that appears unavoidable, short of 4148 // locking the free list locks; see bug 6324141. 4149 break; 4150 } 4151 } 4152 } 4153 if (prev_obj < span.end()) { 4154 MemRegion my_span = MemRegion(prev_obj, span.end()); 4155 // Do the marking work within a non-empty span -- 4156 // the last argument to the constructor indicates whether the 4157 // iteration should be incremental with periodic yields. 4158 Par_MarkFromRootsClosure cl(this, _collector, my_span, 4159 &_collector->_markBitMap, 4160 work_queue(i), 4161 &_collector->_markStack, 4162 _asynch); 4163 _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end()); 4164 } // else nothing to do for this task 4165 } // else nothing to do for this task 4166 } 4167 // We'd be tempted to assert here that since there are no 4168 // more tasks left to claim in this space, the global_finger 4169 // must exceed space->top() and a fortiori space->end(). However, 4170 // that would not quite be correct because the bumping of 4171 // global_finger occurs strictly after the claiming of a task, 4172 // so by the time we reach here the global finger may not yet 4173 // have been bumped up by the thread that claimed the last 4174 // task. 4175 pst->all_tasks_completed(); 4176 } 4177 4178 class Par_ConcMarkingClosure: public CMSOopClosure { 4179 private: 4180 CMSCollector* _collector; 4181 CMSConcMarkingTask* _task; 4182 MemRegion _span; 4183 CMSBitMap* _bit_map; 4184 CMSMarkStack* _overflow_stack; 4185 OopTaskQueue* _work_queue; 4186 protected: 4187 DO_OOP_WORK_DEFN 4188 public: 4189 Par_ConcMarkingClosure(CMSCollector* collector, CMSConcMarkingTask* task, OopTaskQueue* work_queue, 4190 CMSBitMap* bit_map, CMSMarkStack* overflow_stack): 4191 CMSOopClosure(collector->ref_processor()), 4192 _collector(collector), 4193 _task(task), 4194 _span(collector->_span), 4195 _work_queue(work_queue), 4196 _bit_map(bit_map), 4197 _overflow_stack(overflow_stack) 4198 { } 4199 virtual void do_oop(oop* p); 4200 virtual void do_oop(narrowOop* p); 4201 4202 void trim_queue(size_t max); 4203 void handle_stack_overflow(HeapWord* lost); 4204 void do_yield_check() { 4205 if (_task->should_yield()) { 4206 _task->yield(); 4207 } 4208 } 4209 }; 4210 4211 // Grey object scanning during work stealing phase -- 4212 // the salient assumption here is that any references 4213 // that are in these stolen objects being scanned must 4214 // already have been initialized (else they would not have 4215 // been published), so we do not need to check for 4216 // uninitialized objects before pushing here. 4217 void Par_ConcMarkingClosure::do_oop(oop obj) { 4218 assert(obj->is_oop_or_null(true), "expected an oop or NULL"); 4219 HeapWord* addr = (HeapWord*)obj; 4220 // Check if oop points into the CMS generation 4221 // and is not marked 4222 if (_span.contains(addr) && !_bit_map->isMarked(addr)) { 4223 // a white object ... 4224 // If we manage to "claim" the object, by being the 4225 // first thread to mark it, then we push it on our 4226 // marking stack 4227 if (_bit_map->par_mark(addr)) { // ... now grey 4228 // push on work queue (grey set) 4229 bool simulate_overflow = false; 4230 NOT_PRODUCT( 4231 if (CMSMarkStackOverflowALot && 4232 _collector->simulate_overflow()) { 4233 // simulate a stack overflow 4234 simulate_overflow = true; 4235 } 4236 ) 4237 if (simulate_overflow || 4238 !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) { 4239 // stack overflow 4240 if (PrintCMSStatistics != 0) { 4241 gclog_or_tty->print_cr("CMS marking stack overflow (benign) at " 4242 SIZE_FORMAT, _overflow_stack->capacity()); 4243 } 4244 // We cannot assert that the overflow stack is full because 4245 // it may have been emptied since. 4246 assert(simulate_overflow || 4247 _work_queue->size() == _work_queue->max_elems(), 4248 "Else push should have succeeded"); 4249 handle_stack_overflow(addr); 4250 } 4251 } // Else, some other thread got there first 4252 do_yield_check(); 4253 } 4254 } 4255 4256 void Par_ConcMarkingClosure::do_oop(oop* p) { Par_ConcMarkingClosure::do_oop_work(p); } 4257 void Par_ConcMarkingClosure::do_oop(narrowOop* p) { Par_ConcMarkingClosure::do_oop_work(p); } 4258 4259 void Par_ConcMarkingClosure::trim_queue(size_t max) { 4260 while (_work_queue->size() > max) { 4261 oop new_oop; 4262 if (_work_queue->pop_local(new_oop)) { 4263 assert(new_oop->is_oop(), "Should be an oop"); 4264 assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object"); 4265 assert(_span.contains((HeapWord*)new_oop), "Not in span"); 4266 new_oop->oop_iterate(this); // do_oop() above 4267 do_yield_check(); 4268 } 4269 } 4270 } 4271 4272 // Upon stack overflow, we discard (part of) the stack, 4273 // remembering the least address amongst those discarded 4274 // in CMSCollector's _restart_address. 4275 void Par_ConcMarkingClosure::handle_stack_overflow(HeapWord* lost) { 4276 // We need to do this under a mutex to prevent other 4277 // workers from interfering with the work done below. 4278 MutexLockerEx ml(_overflow_stack->par_lock(), 4279 Mutex::_no_safepoint_check_flag); 4280 // Remember the least grey address discarded 4281 HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost); 4282 _collector->lower_restart_addr(ra); 4283 _overflow_stack->reset(); // discard stack contents 4284 _overflow_stack->expand(); // expand the stack if possible 4285 } 4286 4287 4288 void CMSConcMarkingTask::do_work_steal(int i) { 4289 OopTaskQueue* work_q = work_queue(i); 4290 oop obj_to_scan; 4291 CMSBitMap* bm = &(_collector->_markBitMap); 4292 CMSMarkStack* ovflw = &(_collector->_markStack); 4293 int* seed = _collector->hash_seed(i); 4294 Par_ConcMarkingClosure cl(_collector, this, work_q, bm, ovflw); 4295 while (true) { 4296 cl.trim_queue(0); 4297 assert(work_q->size() == 0, "Should have been emptied above"); 4298 if (get_work_from_overflow_stack(ovflw, work_q)) { 4299 // Can't assert below because the work obtained from the 4300 // overflow stack may already have been stolen from us. 4301 // assert(work_q->size() > 0, "Work from overflow stack"); 4302 continue; 4303 } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) { 4304 assert(obj_to_scan->is_oop(), "Should be an oop"); 4305 assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object"); 4306 obj_to_scan->oop_iterate(&cl); 4307 } else if (terminator()->offer_termination(&_term_term)) { 4308 assert(work_q->size() == 0, "Impossible!"); 4309 break; 4310 } else if (yielding() || should_yield()) { 4311 yield(); 4312 } 4313 } 4314 } 4315 4316 // This is run by the CMS (coordinator) thread. 4317 void CMSConcMarkingTask::coordinator_yield() { 4318 assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 4319 "CMS thread should hold CMS token"); 4320 // First give up the locks, then yield, then re-lock 4321 // We should probably use a constructor/destructor idiom to 4322 // do this unlock/lock or modify the MutexUnlocker class to 4323 // serve our purpose. XXX 4324 assert_lock_strong(_bit_map_lock); 4325 _bit_map_lock->unlock(); 4326 ConcurrentMarkSweepThread::desynchronize(true); 4327 ConcurrentMarkSweepThread::acknowledge_yield_request(); 4328 _collector->stopTimer(); 4329 if (PrintCMSStatistics != 0) { 4330 _collector->incrementYields(); 4331 } 4332 _collector->icms_wait(); 4333 4334 // It is possible for whichever thread initiated the yield request 4335 // not to get a chance to wake up and take the bitmap lock between 4336 // this thread releasing it and reacquiring it. So, while the 4337 // should_yield() flag is on, let's sleep for a bit to give the 4338 // other thread a chance to wake up. The limit imposed on the number 4339 // of iterations is defensive, to avoid any unforseen circumstances 4340 // putting us into an infinite loop. Since it's always been this 4341 // (coordinator_yield()) method that was observed to cause the 4342 // problem, we are using a parameter (CMSCoordinatorYieldSleepCount) 4343 // which is by default non-zero. For the other seven methods that 4344 // also perform the yield operation, as are using a different 4345 // parameter (CMSYieldSleepCount) which is by default zero. This way we 4346 // can enable the sleeping for those methods too, if necessary. 4347 // See 6442774. 4348 // 4349 // We really need to reconsider the synchronization between the GC 4350 // thread and the yield-requesting threads in the future and we 4351 // should really use wait/notify, which is the recommended 4352 // way of doing this type of interaction. Additionally, we should 4353 // consolidate the eight methods that do the yield operation and they 4354 // are almost identical into one for better maintenability and 4355 // readability. See 6445193. 4356 // 4357 // Tony 2006.06.29 4358 for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount && 4359 ConcurrentMarkSweepThread::should_yield() && 4360 !CMSCollector::foregroundGCIsActive(); ++i) { 4361 os::sleep(Thread::current(), 1, false); 4362 ConcurrentMarkSweepThread::acknowledge_yield_request(); 4363 } 4364 4365 ConcurrentMarkSweepThread::synchronize(true); 4366 _bit_map_lock->lock_without_safepoint_check(); 4367 _collector->startTimer(); 4368 } 4369 4370 bool CMSCollector::do_marking_mt(bool asynch) { 4371 assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition"); 4372 int num_workers = AdaptiveSizePolicy::calc_active_conc_workers( 4373 conc_workers()->total_workers(), 4374 conc_workers()->active_workers(), 4375 Threads::number_of_non_daemon_threads()); 4376 conc_workers()->set_active_workers(num_workers); 4377 4378 CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace(); 4379 4380 CMSConcMarkingTask tsk(this, 4381 cms_space, 4382 asynch, 4383 conc_workers(), 4384 task_queues()); 4385 4386 // Since the actual number of workers we get may be different 4387 // from the number we requested above, do we need to do anything different 4388 // below? In particular, may be we need to subclass the SequantialSubTasksDone 4389 // class?? XXX 4390 cms_space ->initialize_sequential_subtasks_for_marking(num_workers); 4391 4392 // Refs discovery is already non-atomic. 4393 assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic"); 4394 assert(ref_processor()->discovery_is_mt(), "Discovery should be MT"); 4395 conc_workers()->start_task(&tsk); 4396 while (tsk.yielded()) { 4397 tsk.coordinator_yield(); 4398 conc_workers()->continue_task(&tsk); 4399 } 4400 // If the task was aborted, _restart_addr will be non-NULL 4401 assert(tsk.completed() || _restart_addr != NULL, "Inconsistency"); 4402 while (_restart_addr != NULL) { 4403 // XXX For now we do not make use of ABORTED state and have not 4404 // yet implemented the right abort semantics (even in the original 4405 // single-threaded CMS case). That needs some more investigation 4406 // and is deferred for now; see CR# TBF. 07252005YSR. XXX 4407 assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency"); 4408 // If _restart_addr is non-NULL, a marking stack overflow 4409 // occurred; we need to do a fresh marking iteration from the 4410 // indicated restart address. 4411 if (_foregroundGCIsActive && asynch) { 4412 // We may be running into repeated stack overflows, having 4413 // reached the limit of the stack size, while making very 4414 // slow forward progress. It may be best to bail out and 4415 // let the foreground collector do its job. 4416 // Clear _restart_addr, so that foreground GC 4417 // works from scratch. This avoids the headache of 4418 // a "rescan" which would otherwise be needed because 4419 // of the dirty mod union table & card table. 4420 _restart_addr = NULL; 4421 return false; 4422 } 4423 // Adjust the task to restart from _restart_addr 4424 tsk.reset(_restart_addr); 4425 cms_space ->initialize_sequential_subtasks_for_marking(num_workers, 4426 _restart_addr); 4427 _restart_addr = NULL; 4428 // Get the workers going again 4429 conc_workers()->start_task(&tsk); 4430 while (tsk.yielded()) { 4431 tsk.coordinator_yield(); 4432 conc_workers()->continue_task(&tsk); 4433 } 4434 } 4435 assert(tsk.completed(), "Inconsistency"); 4436 assert(tsk.result() == true, "Inconsistency"); 4437 return true; 4438 } 4439 4440 bool CMSCollector::do_marking_st(bool asynch) { 4441 ResourceMark rm; 4442 HandleMark hm; 4443 4444 // Temporarily make refs discovery single threaded (non-MT) 4445 ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false); 4446 MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap, 4447 &_markStack, CMSYield && asynch); 4448 // the last argument to iterate indicates whether the iteration 4449 // should be incremental with periodic yields. 4450 _markBitMap.iterate(&markFromRootsClosure); 4451 // If _restart_addr is non-NULL, a marking stack overflow 4452 // occurred; we need to do a fresh iteration from the 4453 // indicated restart address. 4454 while (_restart_addr != NULL) { 4455 if (_foregroundGCIsActive && asynch) { 4456 // We may be running into repeated stack overflows, having 4457 // reached the limit of the stack size, while making very 4458 // slow forward progress. It may be best to bail out and 4459 // let the foreground collector do its job. 4460 // Clear _restart_addr, so that foreground GC 4461 // works from scratch. This avoids the headache of 4462 // a "rescan" which would otherwise be needed because 4463 // of the dirty mod union table & card table. 4464 _restart_addr = NULL; 4465 return false; // indicating failure to complete marking 4466 } 4467 // Deal with stack overflow: 4468 // we restart marking from _restart_addr 4469 HeapWord* ra = _restart_addr; 4470 markFromRootsClosure.reset(ra); 4471 _restart_addr = NULL; 4472 _markBitMap.iterate(&markFromRootsClosure, ra, _span.end()); 4473 } 4474 return true; 4475 } 4476 4477 void CMSCollector::preclean() { 4478 check_correct_thread_executing(); 4479 assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread"); 4480 verify_work_stacks_empty(); 4481 verify_overflow_empty(); 4482 _abort_preclean = false; 4483 if (CMSPrecleaningEnabled) { 4484 _eden_chunk_index = 0; 4485 size_t used = get_eden_used(); 4486 size_t capacity = get_eden_capacity(); 4487 // Don't start sampling unless we will get sufficiently 4488 // many samples. 4489 if (used < (capacity/(CMSScheduleRemarkSamplingRatio * 100) 4490 * CMSScheduleRemarkEdenPenetration)) { 4491 _start_sampling = true; 4492 } else { 4493 _start_sampling = false; 4494 } 4495 TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty); 4496 CMSPhaseAccounting pa(this, "preclean", !PrintGCDetails); 4497 preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1); 4498 } 4499 CMSTokenSync x(true); // is cms thread 4500 if (CMSPrecleaningEnabled) { 4501 sample_eden(); 4502 _collectorState = AbortablePreclean; 4503 } else { 4504 _collectorState = FinalMarking; 4505 } 4506 verify_work_stacks_empty(); 4507 verify_overflow_empty(); 4508 } 4509 4510 // Try and schedule the remark such that young gen 4511 // occupancy is CMSScheduleRemarkEdenPenetration %. 4512 void CMSCollector::abortable_preclean() { 4513 check_correct_thread_executing(); 4514 assert(CMSPrecleaningEnabled, "Inconsistent control state"); 4515 assert(_collectorState == AbortablePreclean, "Inconsistent control state"); 4516 4517 // If Eden's current occupancy is below this threshold, 4518 // immediately schedule the remark; else preclean 4519 // past the next scavenge in an effort to 4520 // schedule the pause as described avove. By choosing 4521 // CMSScheduleRemarkEdenSizeThreshold >= max eden size 4522 // we will never do an actual abortable preclean cycle. 4523 if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) { 4524 TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty); 4525 CMSPhaseAccounting pa(this, "abortable-preclean", !PrintGCDetails); 4526 // We need more smarts in the abortable preclean 4527 // loop below to deal with cases where allocation 4528 // in young gen is very very slow, and our precleaning 4529 // is running a losing race against a horde of 4530 // mutators intent on flooding us with CMS updates 4531 // (dirty cards). 4532 // One, admittedly dumb, strategy is to give up 4533 // after a certain number of abortable precleaning loops 4534 // or after a certain maximum time. We want to make 4535 // this smarter in the next iteration. 4536 // XXX FIX ME!!! YSR 4537 size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0; 4538 while (!(should_abort_preclean() || 4539 ConcurrentMarkSweepThread::should_terminate())) { 4540 workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2); 4541 cumworkdone += workdone; 4542 loops++; 4543 // Voluntarily terminate abortable preclean phase if we have 4544 // been at it for too long. 4545 if ((CMSMaxAbortablePrecleanLoops != 0) && 4546 loops >= CMSMaxAbortablePrecleanLoops) { 4547 if (PrintGCDetails) { 4548 gclog_or_tty->print(" CMS: abort preclean due to loops "); 4549 } 4550 break; 4551 } 4552 if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) { 4553 if (PrintGCDetails) { 4554 gclog_or_tty->print(" CMS: abort preclean due to time "); 4555 } 4556 break; 4557 } 4558 // If we are doing little work each iteration, we should 4559 // take a short break. 4560 if (workdone < CMSAbortablePrecleanMinWorkPerIteration) { 4561 // Sleep for some time, waiting for work to accumulate 4562 stopTimer(); 4563 cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis); 4564 startTimer(); 4565 waited++; 4566 } 4567 } 4568 if (PrintCMSStatistics > 0) { 4569 gclog_or_tty->print(" [%d iterations, %d waits, %d cards)] ", 4570 loops, waited, cumworkdone); 4571 } 4572 } 4573 CMSTokenSync x(true); // is cms thread 4574 if (_collectorState != Idling) { 4575 assert(_collectorState == AbortablePreclean, 4576 "Spontaneous state transition?"); 4577 _collectorState = FinalMarking; 4578 } // Else, a foreground collection completed this CMS cycle. 4579 return; 4580 } 4581 4582 // Respond to an Eden sampling opportunity 4583 void CMSCollector::sample_eden() { 4584 // Make sure a young gc cannot sneak in between our 4585 // reading and recording of a sample. 4586 assert(Thread::current()->is_ConcurrentGC_thread(), 4587 "Only the cms thread may collect Eden samples"); 4588 assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 4589 "Should collect samples while holding CMS token"); 4590 if (!_start_sampling) { 4591 return; 4592 } 4593 if (_eden_chunk_array) { 4594 if (_eden_chunk_index < _eden_chunk_capacity) { 4595 _eden_chunk_array[_eden_chunk_index] = *_top_addr; // take sample 4596 assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr, 4597 "Unexpected state of Eden"); 4598 // We'd like to check that what we just sampled is an oop-start address; 4599 // however, we cannot do that here since the object may not yet have been 4600 // initialized. So we'll instead do the check when we _use_ this sample 4601 // later. 4602 if (_eden_chunk_index == 0 || 4603 (pointer_delta(_eden_chunk_array[_eden_chunk_index], 4604 _eden_chunk_array[_eden_chunk_index-1]) 4605 >= CMSSamplingGrain)) { 4606 _eden_chunk_index++; // commit sample 4607 } 4608 } 4609 } 4610 if ((_collectorState == AbortablePreclean) && !_abort_preclean) { 4611 size_t used = get_eden_used(); 4612 size_t capacity = get_eden_capacity(); 4613 assert(used <= capacity, "Unexpected state of Eden"); 4614 if (used > (capacity/100 * CMSScheduleRemarkEdenPenetration)) { 4615 _abort_preclean = true; 4616 } 4617 } 4618 } 4619 4620 4621 size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) { 4622 assert(_collectorState == Precleaning || 4623 _collectorState == AbortablePreclean, "incorrect state"); 4624 ResourceMark rm; 4625 HandleMark hm; 4626 4627 // Precleaning is currently not MT but the reference processor 4628 // may be set for MT. Disable it temporarily here. 4629 ReferenceProcessor* rp = ref_processor(); 4630 ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false); 4631 4632 // Do one pass of scrubbing the discovered reference lists 4633 // to remove any reference objects with strongly-reachable 4634 // referents. 4635 if (clean_refs) { 4636 CMSPrecleanRefsYieldClosure yield_cl(this); 4637 assert(rp->span().equals(_span), "Spans should be equal"); 4638 CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap, 4639 &_markStack, true /* preclean */); 4640 CMSDrainMarkingStackClosure complete_trace(this, 4641 _span, &_markBitMap, &_markStack, 4642 &keep_alive, true /* preclean */); 4643 4644 // We don't want this step to interfere with a young 4645 // collection because we don't want to take CPU 4646 // or memory bandwidth away from the young GC threads 4647 // (which may be as many as there are CPUs). 4648 // Note that we don't need to protect ourselves from 4649 // interference with mutators because they can't 4650 // manipulate the discovered reference lists nor affect 4651 // the computed reachability of the referents, the 4652 // only properties manipulated by the precleaning 4653 // of these reference lists. 4654 stopTimer(); 4655 CMSTokenSyncWithLocks x(true /* is cms thread */, 4656 bitMapLock()); 4657 startTimer(); 4658 sample_eden(); 4659 4660 // The following will yield to allow foreground 4661 // collection to proceed promptly. XXX YSR: 4662 // The code in this method may need further 4663 // tweaking for better performance and some restructuring 4664 // for cleaner interfaces. 4665 GCTimer *gc_timer = NULL; // Currently not tracing concurrent phases 4666 rp->preclean_discovered_references( 4667 rp->is_alive_non_header(), &keep_alive, &complete_trace, &yield_cl, 4668 gc_timer); 4669 } 4670 4671 if (clean_survivor) { // preclean the active survivor space(s) 4672 assert(_young_gen->kind() == Generation::DefNew || 4673 _young_gen->kind() == Generation::ParNew || 4674 _young_gen->kind() == Generation::ASParNew, 4675 "incorrect type for cast"); 4676 DefNewGeneration* dng = (DefNewGeneration*)_young_gen; 4677 PushAndMarkClosure pam_cl(this, _span, ref_processor(), 4678 &_markBitMap, &_modUnionTable, 4679 &_markStack, true /* precleaning phase */); 4680 stopTimer(); 4681 CMSTokenSyncWithLocks ts(true /* is cms thread */, 4682 bitMapLock()); 4683 startTimer(); 4684 unsigned int before_count = 4685 GenCollectedHeap::heap()->total_collections(); 4686 SurvivorSpacePrecleanClosure 4687 sss_cl(this, _span, &_markBitMap, &_markStack, 4688 &pam_cl, before_count, CMSYield); 4689 dng->from()->object_iterate_careful(&sss_cl); 4690 dng->to()->object_iterate_careful(&sss_cl); 4691 } 4692 MarkRefsIntoAndScanClosure 4693 mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable, 4694 &_markStack, this, CMSYield, 4695 true /* precleaning phase */); 4696 // CAUTION: The following closure has persistent state that may need to 4697 // be reset upon a decrease in the sequence of addresses it 4698 // processes. 4699 ScanMarkedObjectsAgainCarefullyClosure 4700 smoac_cl(this, _span, 4701 &_markBitMap, &_markStack, &mrias_cl, CMSYield); 4702 4703 // Preclean dirty cards in ModUnionTable and CardTable using 4704 // appropriate convergence criterion; 4705 // repeat CMSPrecleanIter times unless we find that 4706 // we are losing. 4707 assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large"); 4708 assert(CMSPrecleanNumerator < CMSPrecleanDenominator, 4709 "Bad convergence multiplier"); 4710 assert(CMSPrecleanThreshold >= 100, 4711 "Unreasonably low CMSPrecleanThreshold"); 4712 4713 size_t numIter, cumNumCards, lastNumCards, curNumCards; 4714 for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0; 4715 numIter < CMSPrecleanIter; 4716 numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) { 4717 curNumCards = preclean_mod_union_table(_cmsGen, &smoac_cl); 4718 if (Verbose && PrintGCDetails) { 4719 gclog_or_tty->print(" (modUnionTable: %d cards)", curNumCards); 4720 } 4721 // Either there are very few dirty cards, so re-mark 4722 // pause will be small anyway, or our pre-cleaning isn't 4723 // that much faster than the rate at which cards are being 4724 // dirtied, so we might as well stop and re-mark since 4725 // precleaning won't improve our re-mark time by much. 4726 if (curNumCards <= CMSPrecleanThreshold || 4727 (numIter > 0 && 4728 (curNumCards * CMSPrecleanDenominator > 4729 lastNumCards * CMSPrecleanNumerator))) { 4730 numIter++; 4731 cumNumCards += curNumCards; 4732 break; 4733 } 4734 } 4735 4736 preclean_klasses(&mrias_cl, _cmsGen->freelistLock()); 4737 4738 curNumCards = preclean_card_table(_cmsGen, &smoac_cl); 4739 cumNumCards += curNumCards; 4740 if (PrintGCDetails && PrintCMSStatistics != 0) { 4741 gclog_or_tty->print_cr(" (cardTable: %d cards, re-scanned %d cards, %d iterations)", 4742 curNumCards, cumNumCards, numIter); 4743 } 4744 return cumNumCards; // as a measure of useful work done 4745 } 4746 4747 // PRECLEANING NOTES: 4748 // Precleaning involves: 4749 // . reading the bits of the modUnionTable and clearing the set bits. 4750 // . For the cards corresponding to the set bits, we scan the 4751 // objects on those cards. This means we need the free_list_lock 4752 // so that we can safely iterate over the CMS space when scanning 4753 // for oops. 4754 // . When we scan the objects, we'll be both reading and setting 4755 // marks in the marking bit map, so we'll need the marking bit map. 4756 // . For protecting _collector_state transitions, we take the CGC_lock. 4757 // Note that any races in the reading of of card table entries by the 4758 // CMS thread on the one hand and the clearing of those entries by the 4759 // VM thread or the setting of those entries by the mutator threads on the 4760 // other are quite benign. However, for efficiency it makes sense to keep 4761 // the VM thread from racing with the CMS thread while the latter is 4762 // dirty card info to the modUnionTable. We therefore also use the 4763 // CGC_lock to protect the reading of the card table and the mod union 4764 // table by the CM thread. 4765 // . We run concurrently with mutator updates, so scanning 4766 // needs to be done carefully -- we should not try to scan 4767 // potentially uninitialized objects. 4768 // 4769 // Locking strategy: While holding the CGC_lock, we scan over and 4770 // reset a maximal dirty range of the mod union / card tables, then lock 4771 // the free_list_lock and bitmap lock to do a full marking, then 4772 // release these locks; and repeat the cycle. This allows for a 4773 // certain amount of fairness in the sharing of these locks between 4774 // the CMS collector on the one hand, and the VM thread and the 4775 // mutators on the other. 4776 4777 // NOTE: preclean_mod_union_table() and preclean_card_table() 4778 // further below are largely identical; if you need to modify 4779 // one of these methods, please check the other method too. 4780 4781 size_t CMSCollector::preclean_mod_union_table( 4782 ConcurrentMarkSweepGeneration* gen, 4783 ScanMarkedObjectsAgainCarefullyClosure* cl) { 4784 verify_work_stacks_empty(); 4785 verify_overflow_empty(); 4786 4787 // strategy: starting with the first card, accumulate contiguous 4788 // ranges of dirty cards; clear these cards, then scan the region 4789 // covered by these cards. 4790 4791 // Since all of the MUT is committed ahead, we can just use 4792 // that, in case the generations expand while we are precleaning. 4793 // It might also be fine to just use the committed part of the 4794 // generation, but we might potentially miss cards when the 4795 // generation is rapidly expanding while we are in the midst 4796 // of precleaning. 4797 HeapWord* startAddr = gen->reserved().start(); 4798 HeapWord* endAddr = gen->reserved().end(); 4799 4800 cl->setFreelistLock(gen->freelistLock()); // needed for yielding 4801 4802 size_t numDirtyCards, cumNumDirtyCards; 4803 HeapWord *nextAddr, *lastAddr; 4804 for (cumNumDirtyCards = numDirtyCards = 0, 4805 nextAddr = lastAddr = startAddr; 4806 nextAddr < endAddr; 4807 nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) { 4808 4809 ResourceMark rm; 4810 HandleMark hm; 4811 4812 MemRegion dirtyRegion; 4813 { 4814 stopTimer(); 4815 // Potential yield point 4816 CMSTokenSync ts(true); 4817 startTimer(); 4818 sample_eden(); 4819 // Get dirty region starting at nextOffset (inclusive), 4820 // simultaneously clearing it. 4821 dirtyRegion = 4822 _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr); 4823 assert(dirtyRegion.start() >= nextAddr, 4824 "returned region inconsistent?"); 4825 } 4826 // Remember where the next search should begin. 4827 // The returned region (if non-empty) is a right open interval, 4828 // so lastOffset is obtained from the right end of that 4829 // interval. 4830 lastAddr = dirtyRegion.end(); 4831 // Should do something more transparent and less hacky XXX 4832 numDirtyCards = 4833 _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size()); 4834 4835 // We'll scan the cards in the dirty region (with periodic 4836 // yields for foreground GC as needed). 4837 if (!dirtyRegion.is_empty()) { 4838 assert(numDirtyCards > 0, "consistency check"); 4839 HeapWord* stop_point = NULL; 4840 stopTimer(); 4841 // Potential yield point 4842 CMSTokenSyncWithLocks ts(true, gen->freelistLock(), 4843 bitMapLock()); 4844 startTimer(); 4845 { 4846 verify_work_stacks_empty(); 4847 verify_overflow_empty(); 4848 sample_eden(); 4849 stop_point = 4850 gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl); 4851 } 4852 if (stop_point != NULL) { 4853 // The careful iteration stopped early either because it found an 4854 // uninitialized object, or because we were in the midst of an 4855 // "abortable preclean", which should now be aborted. Redirty 4856 // the bits corresponding to the partially-scanned or unscanned 4857 // cards. We'll either restart at the next block boundary or 4858 // abort the preclean. 4859 assert((_collectorState == AbortablePreclean && should_abort_preclean()), 4860 "Should only be AbortablePreclean."); 4861 _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end())); 4862 if (should_abort_preclean()) { 4863 break; // out of preclean loop 4864 } else { 4865 // Compute the next address at which preclean should pick up; 4866 // might need bitMapLock in order to read P-bits. 4867 lastAddr = next_card_start_after_block(stop_point); 4868 } 4869 } 4870 } else { 4871 assert(lastAddr == endAddr, "consistency check"); 4872 assert(numDirtyCards == 0, "consistency check"); 4873 break; 4874 } 4875 } 4876 verify_work_stacks_empty(); 4877 verify_overflow_empty(); 4878 return cumNumDirtyCards; 4879 } 4880 4881 // NOTE: preclean_mod_union_table() above and preclean_card_table() 4882 // below are largely identical; if you need to modify 4883 // one of these methods, please check the other method too. 4884 4885 size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* gen, 4886 ScanMarkedObjectsAgainCarefullyClosure* cl) { 4887 // strategy: it's similar to precleamModUnionTable above, in that 4888 // we accumulate contiguous ranges of dirty cards, mark these cards 4889 // precleaned, then scan the region covered by these cards. 4890 HeapWord* endAddr = (HeapWord*)(gen->_virtual_space.high()); 4891 HeapWord* startAddr = (HeapWord*)(gen->_virtual_space.low()); 4892 4893 cl->setFreelistLock(gen->freelistLock()); // needed for yielding 4894 4895 size_t numDirtyCards, cumNumDirtyCards; 4896 HeapWord *lastAddr, *nextAddr; 4897 4898 for (cumNumDirtyCards = numDirtyCards = 0, 4899 nextAddr = lastAddr = startAddr; 4900 nextAddr < endAddr; 4901 nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) { 4902 4903 ResourceMark rm; 4904 HandleMark hm; 4905 4906 MemRegion dirtyRegion; 4907 { 4908 // See comments in "Precleaning notes" above on why we 4909 // do this locking. XXX Could the locking overheads be 4910 // too high when dirty cards are sparse? [I don't think so.] 4911 stopTimer(); 4912 CMSTokenSync x(true); // is cms thread 4913 startTimer(); 4914 sample_eden(); 4915 // Get and clear dirty region from card table 4916 dirtyRegion = _ct->ct_bs()->dirty_card_range_after_reset( 4917 MemRegion(nextAddr, endAddr), 4918 true, 4919 CardTableModRefBS::precleaned_card_val()); 4920 4921 assert(dirtyRegion.start() >= nextAddr, 4922 "returned region inconsistent?"); 4923 } 4924 lastAddr = dirtyRegion.end(); 4925 numDirtyCards = 4926 dirtyRegion.word_size()/CardTableModRefBS::card_size_in_words; 4927 4928 if (!dirtyRegion.is_empty()) { 4929 stopTimer(); 4930 CMSTokenSyncWithLocks ts(true, gen->freelistLock(), bitMapLock()); 4931 startTimer(); 4932 sample_eden(); 4933 verify_work_stacks_empty(); 4934 verify_overflow_empty(); 4935 HeapWord* stop_point = 4936 gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl); 4937 if (stop_point != NULL) { 4938 assert((_collectorState == AbortablePreclean && should_abort_preclean()), 4939 "Should only be AbortablePreclean."); 4940 _ct->ct_bs()->invalidate(MemRegion(stop_point, dirtyRegion.end())); 4941 if (should_abort_preclean()) { 4942 break; // out of preclean loop 4943 } else { 4944 // Compute the next address at which preclean should pick up. 4945 lastAddr = next_card_start_after_block(stop_point); 4946 } 4947 } 4948 } else { 4949 break; 4950 } 4951 } 4952 verify_work_stacks_empty(); 4953 verify_overflow_empty(); 4954 return cumNumDirtyCards; 4955 } 4956 4957 class PrecleanKlassClosure : public KlassClosure { 4958 CMKlassClosure _cm_klass_closure; 4959 public: 4960 PrecleanKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {} 4961 void do_klass(Klass* k) { 4962 if (k->has_accumulated_modified_oops()) { 4963 k->clear_accumulated_modified_oops(); 4964 4965 _cm_klass_closure.do_klass(k); 4966 } 4967 } 4968 }; 4969 4970 // The freelist lock is needed to prevent asserts, is it really needed? 4971 void CMSCollector::preclean_klasses(MarkRefsIntoAndScanClosure* cl, Mutex* freelistLock) { 4972 4973 cl->set_freelistLock(freelistLock); 4974 4975 CMSTokenSyncWithLocks ts(true, freelistLock, bitMapLock()); 4976 4977 // SSS: Add equivalent to ScanMarkedObjectsAgainCarefullyClosure::do_yield_check and should_abort_preclean? 4978 // SSS: We should probably check if precleaning should be aborted, at suitable intervals? 4979 PrecleanKlassClosure preclean_klass_closure(cl); 4980 ClassLoaderDataGraph::classes_do(&preclean_klass_closure); 4981 4982 verify_work_stacks_empty(); 4983 verify_overflow_empty(); 4984 } 4985 4986 void CMSCollector::checkpointRootsFinal(bool asynch, 4987 bool clear_all_soft_refs, bool init_mark_was_synchronous) { 4988 assert(_collectorState == FinalMarking, "incorrect state transition?"); 4989 check_correct_thread_executing(); 4990 // world is stopped at this checkpoint 4991 assert(SafepointSynchronize::is_at_safepoint(), 4992 "world should be stopped"); 4993 TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause()); 4994 4995 verify_work_stacks_empty(); 4996 verify_overflow_empty(); 4997 4998 SpecializationStats::clear(); 4999 if (PrintGCDetails) { 5000 gclog_or_tty->print("[YG occupancy: "SIZE_FORMAT" K ("SIZE_FORMAT" K)]", 5001 _young_gen->used() / K, 5002 _young_gen->capacity() / K); 5003 } 5004 if (asynch) { 5005 if (CMSScavengeBeforeRemark) { 5006 GenCollectedHeap* gch = GenCollectedHeap::heap(); 5007 // Temporarily set flag to false, GCH->do_collection will 5008 // expect it to be false and set to true 5009 FlagSetting fl(gch->_is_gc_active, false); 5010 NOT_PRODUCT(GCTraceTime t("Scavenge-Before-Remark", 5011 PrintGCDetails && Verbose, true, _gc_timer_cm);) 5012 int level = _cmsGen->level() - 1; 5013 if (level >= 0) { 5014 gch->do_collection(true, // full (i.e. force, see below) 5015 false, // !clear_all_soft_refs 5016 0, // size 5017 false, // is_tlab 5018 level // max_level 5019 ); 5020 } 5021 } 5022 FreelistLocker x(this); 5023 MutexLockerEx y(bitMapLock(), 5024 Mutex::_no_safepoint_check_flag); 5025 assert(!init_mark_was_synchronous, "but that's impossible!"); 5026 checkpointRootsFinalWork(asynch, clear_all_soft_refs, false); 5027 } else { 5028 // already have all the locks 5029 checkpointRootsFinalWork(asynch, clear_all_soft_refs, 5030 init_mark_was_synchronous); 5031 } 5032 verify_work_stacks_empty(); 5033 verify_overflow_empty(); 5034 SpecializationStats::print(); 5035 } 5036 5037 void CMSCollector::checkpointRootsFinalWork(bool asynch, 5038 bool clear_all_soft_refs, bool init_mark_was_synchronous) { 5039 5040 NOT_PRODUCT(GCTraceTime tr("checkpointRootsFinalWork", PrintGCDetails, false, _gc_timer_cm);) 5041 5042 assert(haveFreelistLocks(), "must have free list locks"); 5043 assert_lock_strong(bitMapLock()); 5044 5045 if (UseAdaptiveSizePolicy) { 5046 size_policy()->checkpoint_roots_final_begin(); 5047 } 5048 5049 ResourceMark rm; 5050 HandleMark hm; 5051 5052 GenCollectedHeap* gch = GenCollectedHeap::heap(); 5053 5054 if (should_unload_classes()) { 5055 CodeCache::gc_prologue(); 5056 } 5057 assert(haveFreelistLocks(), "must have free list locks"); 5058 assert_lock_strong(bitMapLock()); 5059 5060 if (!init_mark_was_synchronous) { 5061 // We might assume that we need not fill TLAB's when 5062 // CMSScavengeBeforeRemark is set, because we may have just done 5063 // a scavenge which would have filled all TLAB's -- and besides 5064 // Eden would be empty. This however may not always be the case -- 5065 // for instance although we asked for a scavenge, it may not have 5066 // happened because of a JNI critical section. We probably need 5067 // a policy for deciding whether we can in that case wait until 5068 // the critical section releases and then do the remark following 5069 // the scavenge, and skip it here. In the absence of that policy, 5070 // or of an indication of whether the scavenge did indeed occur, 5071 // we cannot rely on TLAB's having been filled and must do 5072 // so here just in case a scavenge did not happen. 5073 gch->ensure_parsability(false); // fill TLAB's, but no need to retire them 5074 // Update the saved marks which may affect the root scans. 5075 gch->save_marks(); 5076 5077 { 5078 COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;) 5079 5080 // Note on the role of the mod union table: 5081 // Since the marker in "markFromRoots" marks concurrently with 5082 // mutators, it is possible for some reachable objects not to have been 5083 // scanned. For instance, an only reference to an object A was 5084 // placed in object B after the marker scanned B. Unless B is rescanned, 5085 // A would be collected. Such updates to references in marked objects 5086 // are detected via the mod union table which is the set of all cards 5087 // dirtied since the first checkpoint in this GC cycle and prior to 5088 // the most recent young generation GC, minus those cleaned up by the 5089 // concurrent precleaning. 5090 if (CMSParallelRemarkEnabled && CollectedHeap::use_parallel_gc_threads()) { 5091 GCTraceTime t("Rescan (parallel) ", PrintGCDetails, false, _gc_timer_cm); 5092 do_remark_parallel(); 5093 } else { 5094 GCTraceTime t("Rescan (non-parallel) ", PrintGCDetails, false, 5095 _gc_timer_cm); 5096 do_remark_non_parallel(); 5097 } 5098 } 5099 } else { 5100 assert(!asynch, "Can't have init_mark_was_synchronous in asynch mode"); 5101 // The initial mark was stop-world, so there's no rescanning to 5102 // do; go straight on to the next step below. 5103 } 5104 verify_work_stacks_empty(); 5105 verify_overflow_empty(); 5106 5107 { 5108 NOT_PRODUCT(GCTraceTime ts("refProcessingWork", PrintGCDetails, false, _gc_timer_cm);) 5109 refProcessingWork(asynch, clear_all_soft_refs); 5110 } 5111 verify_work_stacks_empty(); 5112 verify_overflow_empty(); 5113 5114 if (should_unload_classes()) { 5115 CodeCache::gc_epilogue(); 5116 } 5117 JvmtiExport::gc_epilogue(); 5118 5119 // If we encountered any (marking stack / work queue) overflow 5120 // events during the current CMS cycle, take appropriate 5121 // remedial measures, where possible, so as to try and avoid 5122 // recurrence of that condition. 5123 assert(_markStack.isEmpty(), "No grey objects"); 5124 size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw + 5125 _ser_kac_ovflw + _ser_kac_preclean_ovflw; 5126 if (ser_ovflw > 0) { 5127 if (PrintCMSStatistics != 0) { 5128 gclog_or_tty->print_cr("Marking stack overflow (benign) " 5129 "(pmc_pc="SIZE_FORMAT", pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT 5130 ", kac_preclean="SIZE_FORMAT")", 5131 _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw, 5132 _ser_kac_ovflw, _ser_kac_preclean_ovflw); 5133 } 5134 _markStack.expand(); 5135 _ser_pmc_remark_ovflw = 0; 5136 _ser_pmc_preclean_ovflw = 0; 5137 _ser_kac_preclean_ovflw = 0; 5138 _ser_kac_ovflw = 0; 5139 } 5140 if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) { 5141 if (PrintCMSStatistics != 0) { 5142 gclog_or_tty->print_cr("Work queue overflow (benign) " 5143 "(pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT")", 5144 _par_pmc_remark_ovflw, _par_kac_ovflw); 5145 } 5146 _par_pmc_remark_ovflw = 0; 5147 _par_kac_ovflw = 0; 5148 } 5149 if (PrintCMSStatistics != 0) { 5150 if (_markStack._hit_limit > 0) { 5151 gclog_or_tty->print_cr(" (benign) Hit max stack size limit ("SIZE_FORMAT")", 5152 _markStack._hit_limit); 5153 } 5154 if (_markStack._failed_double > 0) { 5155 gclog_or_tty->print_cr(" (benign) Failed stack doubling ("SIZE_FORMAT")," 5156 " current capacity "SIZE_FORMAT, 5157 _markStack._failed_double, 5158 _markStack.capacity()); 5159 } 5160 } 5161 _markStack._hit_limit = 0; 5162 _markStack._failed_double = 0; 5163 5164 if ((VerifyAfterGC || VerifyDuringGC) && 5165 GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) { 5166 verify_after_remark(); 5167 } 5168 5169 _gc_tracer_cm->report_object_count_after_gc(&_is_alive_closure); 5170 5171 // Change under the freelistLocks. 5172 _collectorState = Sweeping; 5173 // Call isAllClear() under bitMapLock 5174 assert(_modUnionTable.isAllClear(), 5175 "Should be clear by end of the final marking"); 5176 assert(_ct->klass_rem_set()->mod_union_is_clear(), 5177 "Should be clear by end of the final marking"); 5178 if (UseAdaptiveSizePolicy) { 5179 size_policy()->checkpoint_roots_final_end(gch->gc_cause()); 5180 } 5181 } 5182 5183 void CMSParInitialMarkTask::work(uint worker_id) { 5184 elapsedTimer _timer; 5185 ResourceMark rm; 5186 HandleMark hm; 5187 5188 // ---------- scan from roots -------------- 5189 _timer.start(); 5190 GenCollectedHeap* gch = GenCollectedHeap::heap(); 5191 Par_MarkRefsIntoClosure par_mri_cl(_collector->_span, &(_collector->_markBitMap)); 5192 CMKlassClosure klass_closure(&par_mri_cl); 5193 5194 // ---------- young gen roots -------------- 5195 { 5196 work_on_young_gen_roots(worker_id, &par_mri_cl); 5197 _timer.stop(); 5198 if (PrintCMSStatistics != 0) { 5199 gclog_or_tty->print_cr( 5200 "Finished young gen initial mark scan work in %dth thread: %3.3f sec", 5201 worker_id, _timer.seconds()); 5202 } 5203 } 5204 5205 // ---------- remaining roots -------------- 5206 _timer.reset(); 5207 _timer.start(); 5208 gch->gen_process_strong_roots(_collector->_cmsGen->level(), 5209 false, // yg was scanned above 5210 false, // this is parallel code 5211 false, // not scavenging 5212 SharedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()), 5213 &par_mri_cl, 5214 true, // walk all of code cache if (so & SO_CodeCache) 5215 NULL, 5216 &klass_closure); 5217 assert(_collector->should_unload_classes() 5218 || (_collector->CMSCollector::roots_scanning_options() & SharedHeap::SO_CodeCache), 5219 "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops"); 5220 _timer.stop(); 5221 if (PrintCMSStatistics != 0) { 5222 gclog_or_tty->print_cr( 5223 "Finished remaining root initial mark scan work in %dth thread: %3.3f sec", 5224 worker_id, _timer.seconds()); 5225 } 5226 } 5227 5228 // Parallel remark task 5229 class CMSParRemarkTask: public CMSParMarkTask { 5230 CompactibleFreeListSpace* _cms_space; 5231 5232 // The per-thread work queues, available here for stealing. 5233 OopTaskQueueSet* _task_queues; 5234 ParallelTaskTerminator _term; 5235 5236 public: 5237 // A value of 0 passed to n_workers will cause the number of 5238 // workers to be taken from the active workers in the work gang. 5239 CMSParRemarkTask(CMSCollector* collector, 5240 CompactibleFreeListSpace* cms_space, 5241 int n_workers, FlexibleWorkGang* workers, 5242 OopTaskQueueSet* task_queues): 5243 CMSParMarkTask("Rescan roots and grey objects in parallel", 5244 collector, n_workers), 5245 _cms_space(cms_space), 5246 _task_queues(task_queues), 5247 _term(n_workers, task_queues) { } 5248 5249 OopTaskQueueSet* task_queues() { return _task_queues; } 5250 5251 OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); } 5252 5253 ParallelTaskTerminator* terminator() { return &_term; } 5254 int n_workers() { return _n_workers; } 5255 5256 void work(uint worker_id); 5257 5258 private: 5259 // ... of dirty cards in old space 5260 void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i, 5261 Par_MarkRefsIntoAndScanClosure* cl); 5262 5263 // ... work stealing for the above 5264 void do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl, int* seed); 5265 }; 5266 5267 class RemarkKlassClosure : public KlassClosure { 5268 CMKlassClosure _cm_klass_closure; 5269 public: 5270 RemarkKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {} 5271 void do_klass(Klass* k) { 5272 // Check if we have modified any oops in the Klass during the concurrent marking. 5273 if (k->has_accumulated_modified_oops()) { 5274 k->clear_accumulated_modified_oops(); 5275 5276 // We could have transfered the current modified marks to the accumulated marks, 5277 // like we do with the Card Table to Mod Union Table. But it's not really necessary. 5278 } else if (k->has_modified_oops()) { 5279 // Don't clear anything, this info is needed by the next young collection. 5280 } else { 5281 // No modified oops in the Klass. 5282 return; 5283 } 5284 5285 // The klass has modified fields, need to scan the klass. 5286 _cm_klass_closure.do_klass(k); 5287 } 5288 }; 5289 5290 void CMSParMarkTask::work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl) { 5291 DefNewGeneration* dng = _collector->_young_gen->as_DefNewGeneration(); 5292 EdenSpace* eden_space = dng->eden(); 5293 ContiguousSpace* from_space = dng->from(); 5294 ContiguousSpace* to_space = dng->to(); 5295 5296 HeapWord** eca = _collector->_eden_chunk_array; 5297 size_t ect = _collector->_eden_chunk_index; 5298 HeapWord** sca = _collector->_survivor_chunk_array; 5299 size_t sct = _collector->_survivor_chunk_index; 5300 5301 assert(ect <= _collector->_eden_chunk_capacity, "out of bounds"); 5302 assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds"); 5303 5304 do_young_space_rescan(worker_id, cl, to_space, NULL, 0); 5305 do_young_space_rescan(worker_id, cl, from_space, sca, sct); 5306 do_young_space_rescan(worker_id, cl, eden_space, eca, ect); 5307 } 5308 5309 // work_queue(i) is passed to the closure 5310 // Par_MarkRefsIntoAndScanClosure. The "i" parameter 5311 // also is passed to do_dirty_card_rescan_tasks() and to 5312 // do_work_steal() to select the i-th task_queue. 5313 5314 void CMSParRemarkTask::work(uint worker_id) { 5315 elapsedTimer _timer; 5316 ResourceMark rm; 5317 HandleMark hm; 5318 5319 // ---------- rescan from roots -------------- 5320 _timer.start(); 5321 GenCollectedHeap* gch = GenCollectedHeap::heap(); 5322 Par_MarkRefsIntoAndScanClosure par_mrias_cl(_collector, 5323 _collector->_span, _collector->ref_processor(), 5324 &(_collector->_markBitMap), 5325 work_queue(worker_id)); 5326 5327 // Rescan young gen roots first since these are likely 5328 // coarsely partitioned and may, on that account, constitute 5329 // the critical path; thus, it's best to start off that 5330 // work first. 5331 // ---------- young gen roots -------------- 5332 { 5333 work_on_young_gen_roots(worker_id, &par_mrias_cl); 5334 _timer.stop(); 5335 if (PrintCMSStatistics != 0) { 5336 gclog_or_tty->print_cr( 5337 "Finished young gen rescan work in %dth thread: %3.3f sec", 5338 worker_id, _timer.seconds()); 5339 } 5340 } 5341 5342 // ---------- remaining roots -------------- 5343 _timer.reset(); 5344 _timer.start(); 5345 gch->gen_process_strong_roots(_collector->_cmsGen->level(), 5346 false, // yg was scanned above 5347 false, // this is parallel code 5348 false, // not scavenging 5349 SharedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()), 5350 &par_mrias_cl, 5351 true, // walk all of code cache if (so & SO_CodeCache) 5352 NULL, 5353 NULL); // The dirty klasses will be handled below 5354 assert(_collector->should_unload_classes() 5355 || (_collector->CMSCollector::roots_scanning_options() & SharedHeap::SO_CodeCache), 5356 "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops"); 5357 _timer.stop(); 5358 if (PrintCMSStatistics != 0) { 5359 gclog_or_tty->print_cr( 5360 "Finished remaining root rescan work in %dth thread: %3.3f sec", 5361 worker_id, _timer.seconds()); 5362 } 5363 5364 // ---------- unhandled CLD scanning ---------- 5365 if (worker_id == 0) { // Single threaded at the moment. 5366 _timer.reset(); 5367 _timer.start(); 5368 5369 // Scan all new class loader data objects and new dependencies that were 5370 // introduced during concurrent marking. 5371 ResourceMark rm; 5372 GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds(); 5373 for (int i = 0; i < array->length(); i++) { 5374 par_mrias_cl.do_class_loader_data(array->at(i)); 5375 } 5376 5377 // We don't need to keep track of new CLDs anymore. 5378 ClassLoaderDataGraph::remember_new_clds(false); 5379 5380 _timer.stop(); 5381 if (PrintCMSStatistics != 0) { 5382 gclog_or_tty->print_cr( 5383 "Finished unhandled CLD scanning work in %dth thread: %3.3f sec", 5384 worker_id, _timer.seconds()); 5385 } 5386 } 5387 5388 // ---------- dirty klass scanning ---------- 5389 if (worker_id == 0) { // Single threaded at the moment. 5390 _timer.reset(); 5391 _timer.start(); 5392 5393 // Scan all classes that was dirtied during the concurrent marking phase. 5394 RemarkKlassClosure remark_klass_closure(&par_mrias_cl); 5395 ClassLoaderDataGraph::classes_do(&remark_klass_closure); 5396 5397 _timer.stop(); 5398 if (PrintCMSStatistics != 0) { 5399 gclog_or_tty->print_cr( 5400 "Finished dirty klass scanning work in %dth thread: %3.3f sec", 5401 worker_id, _timer.seconds()); 5402 } 5403 } 5404 5405 // We might have added oops to ClassLoaderData::_handles during the 5406 // concurrent marking phase. These oops point to newly allocated objects 5407 // that are guaranteed to be kept alive. Either by the direct allocation 5408 // code, or when the young collector processes the strong roots. Hence, 5409 // we don't have to revisit the _handles block during the remark phase. 5410 5411 // ---------- rescan dirty cards ------------ 5412 _timer.reset(); 5413 _timer.start(); 5414 5415 // Do the rescan tasks for each of the two spaces 5416 // (cms_space) in turn. 5417 // "worker_id" is passed to select the task_queue for "worker_id" 5418 do_dirty_card_rescan_tasks(_cms_space, worker_id, &par_mrias_cl); 5419 _timer.stop(); 5420 if (PrintCMSStatistics != 0) { 5421 gclog_or_tty->print_cr( 5422 "Finished dirty card rescan work in %dth thread: %3.3f sec", 5423 worker_id, _timer.seconds()); 5424 } 5425 5426 // ---------- steal work from other threads ... 5427 // ---------- ... and drain overflow list. 5428 _timer.reset(); 5429 _timer.start(); 5430 do_work_steal(worker_id, &par_mrias_cl, _collector->hash_seed(worker_id)); 5431 _timer.stop(); 5432 if (PrintCMSStatistics != 0) { 5433 gclog_or_tty->print_cr( 5434 "Finished work stealing in %dth thread: %3.3f sec", 5435 worker_id, _timer.seconds()); 5436 } 5437 } 5438 5439 // Note that parameter "i" is not used. 5440 void 5441 CMSParMarkTask::do_young_space_rescan(uint worker_id, 5442 OopsInGenClosure* cl, ContiguousSpace* space, 5443 HeapWord** chunk_array, size_t chunk_top) { 5444 // Until all tasks completed: 5445 // . claim an unclaimed task 5446 // . compute region boundaries corresponding to task claimed 5447 // using chunk_array 5448 // . par_oop_iterate(cl) over that region 5449 5450 ResourceMark rm; 5451 HandleMark hm; 5452 5453 SequentialSubTasksDone* pst = space->par_seq_tasks(); 5454 assert(pst->valid(), "Uninitialized use?"); 5455 5456 uint nth_task = 0; 5457 uint n_tasks = pst->n_tasks(); 5458 5459 HeapWord *start, *end; 5460 while (!pst->is_task_claimed(/* reference */ nth_task)) { 5461 // We claimed task # nth_task; compute its boundaries. 5462 if (chunk_top == 0) { // no samples were taken 5463 assert(nth_task == 0 && n_tasks == 1, "Can have only 1 EdenSpace task"); 5464 start = space->bottom(); 5465 end = space->top(); 5466 } else if (nth_task == 0) { 5467 start = space->bottom(); 5468 end = chunk_array[nth_task]; 5469 } else if (nth_task < (uint)chunk_top) { 5470 assert(nth_task >= 1, "Control point invariant"); 5471 start = chunk_array[nth_task - 1]; 5472 end = chunk_array[nth_task]; 5473 } else { 5474 assert(nth_task == (uint)chunk_top, "Control point invariant"); 5475 start = chunk_array[chunk_top - 1]; 5476 end = space->top(); 5477 } 5478 MemRegion mr(start, end); 5479 // Verify that mr is in space 5480 assert(mr.is_empty() || space->used_region().contains(mr), 5481 "Should be in space"); 5482 // Verify that "start" is an object boundary 5483 assert(mr.is_empty() || oop(mr.start())->is_oop(), 5484 "Should be an oop"); 5485 space->par_oop_iterate(mr, cl); 5486 } 5487 pst->all_tasks_completed(); 5488 } 5489 5490 void 5491 CMSParRemarkTask::do_dirty_card_rescan_tasks( 5492 CompactibleFreeListSpace* sp, int i, 5493 Par_MarkRefsIntoAndScanClosure* cl) { 5494 // Until all tasks completed: 5495 // . claim an unclaimed task 5496 // . compute region boundaries corresponding to task claimed 5497 // . transfer dirty bits ct->mut for that region 5498 // . apply rescanclosure to dirty mut bits for that region 5499 5500 ResourceMark rm; 5501 HandleMark hm; 5502 5503 OopTaskQueue* work_q = work_queue(i); 5504 ModUnionClosure modUnionClosure(&(_collector->_modUnionTable)); 5505 // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! 5506 // CAUTION: This closure has state that persists across calls to 5507 // the work method dirty_range_iterate_clear() in that it has 5508 // imbedded in it a (subtype of) UpwardsObjectClosure. The 5509 // use of that state in the imbedded UpwardsObjectClosure instance 5510 // assumes that the cards are always iterated (even if in parallel 5511 // by several threads) in monotonically increasing order per each 5512 // thread. This is true of the implementation below which picks 5513 // card ranges (chunks) in monotonically increasing order globally 5514 // and, a-fortiori, in monotonically increasing order per thread 5515 // (the latter order being a subsequence of the former). 5516 // If the work code below is ever reorganized into a more chaotic 5517 // work-partitioning form than the current "sequential tasks" 5518 // paradigm, the use of that persistent state will have to be 5519 // revisited and modified appropriately. See also related 5520 // bug 4756801 work on which should examine this code to make 5521 // sure that the changes there do not run counter to the 5522 // assumptions made here and necessary for correctness and 5523 // efficiency. Note also that this code might yield inefficient 5524 // behaviour in the case of very large objects that span one or 5525 // more work chunks. Such objects would potentially be scanned 5526 // several times redundantly. Work on 4756801 should try and 5527 // address that performance anomaly if at all possible. XXX 5528 MemRegion full_span = _collector->_span; 5529 CMSBitMap* bm = &(_collector->_markBitMap); // shared 5530 MarkFromDirtyCardsClosure 5531 greyRescanClosure(_collector, full_span, // entire span of interest 5532 sp, bm, work_q, cl); 5533 5534 SequentialSubTasksDone* pst = sp->conc_par_seq_tasks(); 5535 assert(pst->valid(), "Uninitialized use?"); 5536 uint nth_task = 0; 5537 const int alignment = CardTableModRefBS::card_size * BitsPerWord; 5538 MemRegion span = sp->used_region(); 5539 HeapWord* start_addr = span.start(); 5540 HeapWord* end_addr = (HeapWord*)round_to((intptr_t)span.end(), 5541 alignment); 5542 const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units 5543 assert((HeapWord*)round_to((intptr_t)start_addr, alignment) == 5544 start_addr, "Check alignment"); 5545 assert((size_t)round_to((intptr_t)chunk_size, alignment) == 5546 chunk_size, "Check alignment"); 5547 5548 while (!pst->is_task_claimed(/* reference */ nth_task)) { 5549 // Having claimed the nth_task, compute corresponding mem-region, 5550 // which is a-fortiori aligned correctly (i.e. at a MUT bopundary). 5551 // The alignment restriction ensures that we do not need any 5552 // synchronization with other gang-workers while setting or 5553 // clearing bits in thus chunk of the MUT. 5554 MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size, 5555 start_addr + (nth_task+1)*chunk_size); 5556 // The last chunk's end might be way beyond end of the 5557 // used region. In that case pull back appropriately. 5558 if (this_span.end() > end_addr) { 5559 this_span.set_end(end_addr); 5560 assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)"); 5561 } 5562 // Iterate over the dirty cards covering this chunk, marking them 5563 // precleaned, and setting the corresponding bits in the mod union 5564 // table. Since we have been careful to partition at Card and MUT-word 5565 // boundaries no synchronization is needed between parallel threads. 5566 _collector->_ct->ct_bs()->dirty_card_iterate(this_span, 5567 &modUnionClosure); 5568 5569 // Having transferred these marks into the modUnionTable, 5570 // rescan the marked objects on the dirty cards in the modUnionTable. 5571 // Even if this is at a synchronous collection, the initial marking 5572 // may have been done during an asynchronous collection so there 5573 // may be dirty bits in the mod-union table. 5574 _collector->_modUnionTable.dirty_range_iterate_clear( 5575 this_span, &greyRescanClosure); 5576 _collector->_modUnionTable.verifyNoOneBitsInRange( 5577 this_span.start(), 5578 this_span.end()); 5579 } 5580 pst->all_tasks_completed(); // declare that i am done 5581 } 5582 5583 // . see if we can share work_queues with ParNew? XXX 5584 void 5585 CMSParRemarkTask::do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl, 5586 int* seed) { 5587 OopTaskQueue* work_q = work_queue(i); 5588 NOT_PRODUCT(int num_steals = 0;) 5589 oop obj_to_scan; 5590 CMSBitMap* bm = &(_collector->_markBitMap); 5591 5592 while (true) { 5593 // Completely finish any left over work from (an) earlier round(s) 5594 cl->trim_queue(0); 5595 size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4, 5596 (size_t)ParGCDesiredObjsFromOverflowList); 5597 // Now check if there's any work in the overflow list 5598 // Passing ParallelGCThreads as the third parameter, no_of_gc_threads, 5599 // only affects the number of attempts made to get work from the 5600 // overflow list and does not affect the number of workers. Just 5601 // pass ParallelGCThreads so this behavior is unchanged. 5602 if (_collector->par_take_from_overflow_list(num_from_overflow_list, 5603 work_q, 5604 ParallelGCThreads)) { 5605 // found something in global overflow list; 5606 // not yet ready to go stealing work from others. 5607 // We'd like to assert(work_q->size() != 0, ...) 5608 // because we just took work from the overflow list, 5609 // but of course we can't since all of that could have 5610 // been already stolen from us. 5611 // "He giveth and He taketh away." 5612 continue; 5613 } 5614 // Verify that we have no work before we resort to stealing 5615 assert(work_q->size() == 0, "Have work, shouldn't steal"); 5616 // Try to steal from other queues that have work 5617 if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) { 5618 NOT_PRODUCT(num_steals++;) 5619 assert(obj_to_scan->is_oop(), "Oops, not an oop!"); 5620 assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?"); 5621 // Do scanning work 5622 obj_to_scan->oop_iterate(cl); 5623 // Loop around, finish this work, and try to steal some more 5624 } else if (terminator()->offer_termination()) { 5625 break; // nirvana from the infinite cycle 5626 } 5627 } 5628 NOT_PRODUCT( 5629 if (PrintCMSStatistics != 0) { 5630 gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals); 5631 } 5632 ) 5633 assert(work_q->size() == 0 && _collector->overflow_list_is_empty(), 5634 "Else our work is not yet done"); 5635 } 5636 5637 // Return a thread-local PLAB recording array, as appropriate. 5638 void* CMSCollector::get_data_recorder(int thr_num) { 5639 if (_survivor_plab_array != NULL && 5640 (CMSPLABRecordAlways || 5641 (_collectorState > Marking && _collectorState < FinalMarking))) { 5642 assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds"); 5643 ChunkArray* ca = &_survivor_plab_array[thr_num]; 5644 ca->reset(); // clear it so that fresh data is recorded 5645 return (void*) ca; 5646 } else { 5647 return NULL; 5648 } 5649 } 5650 5651 // Reset all the thread-local PLAB recording arrays 5652 void CMSCollector::reset_survivor_plab_arrays() { 5653 for (uint i = 0; i < ParallelGCThreads; i++) { 5654 _survivor_plab_array[i].reset(); 5655 } 5656 } 5657 5658 // Merge the per-thread plab arrays into the global survivor chunk 5659 // array which will provide the partitioning of the survivor space 5660 // for CMS initial scan and rescan. 5661 void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv, 5662 int no_of_gc_threads) { 5663 assert(_survivor_plab_array != NULL, "Error"); 5664 assert(_survivor_chunk_array != NULL, "Error"); 5665 assert(_collectorState == FinalMarking || 5666 (CMSParallelInitialMarkEnabled && _collectorState == InitialMarking), "Error"); 5667 for (int j = 0; j < no_of_gc_threads; j++) { 5668 _cursor[j] = 0; 5669 } 5670 HeapWord* top = surv->top(); 5671 size_t i; 5672 for (i = 0; i < _survivor_chunk_capacity; i++) { // all sca entries 5673 HeapWord* min_val = top; // Higher than any PLAB address 5674 uint min_tid = 0; // position of min_val this round 5675 for (int j = 0; j < no_of_gc_threads; j++) { 5676 ChunkArray* cur_sca = &_survivor_plab_array[j]; 5677 if (_cursor[j] == cur_sca->end()) { 5678 continue; 5679 } 5680 assert(_cursor[j] < cur_sca->end(), "ctl pt invariant"); 5681 HeapWord* cur_val = cur_sca->nth(_cursor[j]); 5682 assert(surv->used_region().contains(cur_val), "Out of bounds value"); 5683 if (cur_val < min_val) { 5684 min_tid = j; 5685 min_val = cur_val; 5686 } else { 5687 assert(cur_val < top, "All recorded addresses should be less"); 5688 } 5689 } 5690 // At this point min_val and min_tid are respectively 5691 // the least address in _survivor_plab_array[j]->nth(_cursor[j]) 5692 // and the thread (j) that witnesses that address. 5693 // We record this address in the _survivor_chunk_array[i] 5694 // and increment _cursor[min_tid] prior to the next round i. 5695 if (min_val == top) { 5696 break; 5697 } 5698 _survivor_chunk_array[i] = min_val; 5699 _cursor[min_tid]++; 5700 } 5701 // We are all done; record the size of the _survivor_chunk_array 5702 _survivor_chunk_index = i; // exclusive: [0, i) 5703 if (PrintCMSStatistics > 0) { 5704 gclog_or_tty->print(" (Survivor:" SIZE_FORMAT "chunks) ", i); 5705 } 5706 // Verify that we used up all the recorded entries 5707 #ifdef ASSERT 5708 size_t total = 0; 5709 for (int j = 0; j < no_of_gc_threads; j++) { 5710 assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant"); 5711 total += _cursor[j]; 5712 } 5713 assert(total == _survivor_chunk_index, "Ctl Pt Invariant"); 5714 // Check that the merged array is in sorted order 5715 if (total > 0) { 5716 for (size_t i = 0; i < total - 1; i++) { 5717 if (PrintCMSStatistics > 0) { 5718 gclog_or_tty->print(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ", 5719 i, _survivor_chunk_array[i]); 5720 } 5721 assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1], 5722 "Not sorted"); 5723 } 5724 } 5725 #endif // ASSERT 5726 } 5727 5728 // Set up the space's par_seq_tasks structure for work claiming 5729 // for parallel initial scan and rescan of young gen. 5730 // See ParRescanTask where this is currently used. 5731 void 5732 CMSCollector:: 5733 initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) { 5734 assert(n_threads > 0, "Unexpected n_threads argument"); 5735 DefNewGeneration* dng = (DefNewGeneration*)_young_gen; 5736 5737 // Eden space 5738 { 5739 SequentialSubTasksDone* pst = dng->eden()->par_seq_tasks(); 5740 assert(!pst->valid(), "Clobbering existing data?"); 5741 // Each valid entry in [0, _eden_chunk_index) represents a task. 5742 size_t n_tasks = _eden_chunk_index + 1; 5743 assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error"); 5744 // Sets the condition for completion of the subtask (how many threads 5745 // need to finish in order to be done). 5746 pst->set_n_threads(n_threads); 5747 pst->set_n_tasks((int)n_tasks); 5748 } 5749 5750 // Merge the survivor plab arrays into _survivor_chunk_array 5751 if (_survivor_plab_array != NULL) { 5752 merge_survivor_plab_arrays(dng->from(), n_threads); 5753 } else { 5754 assert(_survivor_chunk_index == 0, "Error"); 5755 } 5756 5757 // To space 5758 { 5759 SequentialSubTasksDone* pst = dng->to()->par_seq_tasks(); 5760 assert(!pst->valid(), "Clobbering existing data?"); 5761 // Sets the condition for completion of the subtask (how many threads 5762 // need to finish in order to be done). 5763 pst->set_n_threads(n_threads); 5764 pst->set_n_tasks(1); 5765 assert(pst->valid(), "Error"); 5766 } 5767 5768 // From space 5769 { 5770 SequentialSubTasksDone* pst = dng->from()->par_seq_tasks(); 5771 assert(!pst->valid(), "Clobbering existing data?"); 5772 size_t n_tasks = _survivor_chunk_index + 1; 5773 assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error"); 5774 // Sets the condition for completion of the subtask (how many threads 5775 // need to finish in order to be done). 5776 pst->set_n_threads(n_threads); 5777 pst->set_n_tasks((int)n_tasks); 5778 assert(pst->valid(), "Error"); 5779 } 5780 } 5781 5782 // Parallel version of remark 5783 void CMSCollector::do_remark_parallel() { 5784 GenCollectedHeap* gch = GenCollectedHeap::heap(); 5785 FlexibleWorkGang* workers = gch->workers(); 5786 assert(workers != NULL, "Need parallel worker threads."); 5787 // Choose to use the number of GC workers most recently set 5788 // into "active_workers". If active_workers is not set, set it 5789 // to ParallelGCThreads. 5790 int n_workers = workers->active_workers(); 5791 if (n_workers == 0) { 5792 assert(n_workers > 0, "Should have been set during scavenge"); 5793 n_workers = ParallelGCThreads; 5794 workers->set_active_workers(n_workers); 5795 } 5796 CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace(); 5797 5798 CMSParRemarkTask tsk(this, 5799 cms_space, 5800 n_workers, workers, task_queues()); 5801 5802 // Set up for parallel process_strong_roots work. 5803 gch->set_par_threads(n_workers); 5804 // We won't be iterating over the cards in the card table updating 5805 // the younger_gen cards, so we shouldn't call the following else 5806 // the verification code as well as subsequent younger_refs_iterate 5807 // code would get confused. XXX 5808 // gch->rem_set()->prepare_for_younger_refs_iterate(true); // parallel 5809 5810 // The young gen rescan work will not be done as part of 5811 // process_strong_roots (which currently doesn't knw how to 5812 // parallelize such a scan), but rather will be broken up into 5813 // a set of parallel tasks (via the sampling that the [abortable] 5814 // preclean phase did of EdenSpace, plus the [two] tasks of 5815 // scanning the [two] survivor spaces. Further fine-grain 5816 // parallelization of the scanning of the survivor spaces 5817 // themselves, and of precleaning of the younger gen itself 5818 // is deferred to the future. 5819 initialize_sequential_subtasks_for_young_gen_rescan(n_workers); 5820 5821 // The dirty card rescan work is broken up into a "sequence" 5822 // of parallel tasks (per constituent space) that are dynamically 5823 // claimed by the parallel threads. 5824 cms_space->initialize_sequential_subtasks_for_rescan(n_workers); 5825 5826 // It turns out that even when we're using 1 thread, doing the work in a 5827 // separate thread causes wide variance in run times. We can't help this 5828 // in the multi-threaded case, but we special-case n=1 here to get 5829 // repeatable measurements of the 1-thread overhead of the parallel code. 5830 if (n_workers > 1) { 5831 // Make refs discovery MT-safe, if it isn't already: it may not 5832 // necessarily be so, since it's possible that we are doing 5833 // ST marking. 5834 ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), true); 5835 GenCollectedHeap::StrongRootsScope srs(gch); 5836 workers->run_task(&tsk); 5837 } else { 5838 ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false); 5839 GenCollectedHeap::StrongRootsScope srs(gch); 5840 tsk.work(0); 5841 } 5842 5843 gch->set_par_threads(0); // 0 ==> non-parallel. 5844 // restore, single-threaded for now, any preserved marks 5845 // as a result of work_q overflow 5846 restore_preserved_marks_if_any(); 5847 } 5848 5849 // Non-parallel version of remark 5850 void CMSCollector::do_remark_non_parallel() { 5851 ResourceMark rm; 5852 HandleMark hm; 5853 GenCollectedHeap* gch = GenCollectedHeap::heap(); 5854 ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false); 5855 5856 MarkRefsIntoAndScanClosure 5857 mrias_cl(_span, ref_processor(), &_markBitMap, NULL /* not precleaning */, 5858 &_markStack, this, 5859 false /* should_yield */, false /* not precleaning */); 5860 MarkFromDirtyCardsClosure 5861 markFromDirtyCardsClosure(this, _span, 5862 NULL, // space is set further below 5863 &_markBitMap, &_markStack, &mrias_cl); 5864 { 5865 GCTraceTime t("grey object rescan", PrintGCDetails, false, _gc_timer_cm); 5866 // Iterate over the dirty cards, setting the corresponding bits in the 5867 // mod union table. 5868 { 5869 ModUnionClosure modUnionClosure(&_modUnionTable); 5870 _ct->ct_bs()->dirty_card_iterate( 5871 _cmsGen->used_region(), 5872 &modUnionClosure); 5873 } 5874 // Having transferred these marks into the modUnionTable, we just need 5875 // to rescan the marked objects on the dirty cards in the modUnionTable. 5876 // The initial marking may have been done during an asynchronous 5877 // collection so there may be dirty bits in the mod-union table. 5878 const int alignment = 5879 CardTableModRefBS::card_size * BitsPerWord; 5880 { 5881 // ... First handle dirty cards in CMS gen 5882 markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace()); 5883 MemRegion ur = _cmsGen->used_region(); 5884 HeapWord* lb = ur.start(); 5885 HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment); 5886 MemRegion cms_span(lb, ub); 5887 _modUnionTable.dirty_range_iterate_clear(cms_span, 5888 &markFromDirtyCardsClosure); 5889 verify_work_stacks_empty(); 5890 if (PrintCMSStatistics != 0) { 5891 gclog_or_tty->print(" (re-scanned "SIZE_FORMAT" dirty cards in cms gen) ", 5892 markFromDirtyCardsClosure.num_dirty_cards()); 5893 } 5894 } 5895 } 5896 if (VerifyDuringGC && 5897 GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) { 5898 HandleMark hm; // Discard invalid handles created during verification 5899 Universe::verify(); 5900 } 5901 { 5902 GCTraceTime t("root rescan", PrintGCDetails, false, _gc_timer_cm); 5903 5904 verify_work_stacks_empty(); 5905 5906 gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel. 5907 GenCollectedHeap::StrongRootsScope srs(gch); 5908 gch->gen_process_strong_roots(_cmsGen->level(), 5909 true, // younger gens as roots 5910 false, // use the local StrongRootsScope 5911 false, // not scavenging 5912 SharedHeap::ScanningOption(roots_scanning_options()), 5913 &mrias_cl, 5914 true, // walk code active on stacks 5915 NULL, 5916 NULL); // The dirty klasses will be handled below 5917 5918 assert(should_unload_classes() 5919 || (roots_scanning_options() & SharedHeap::SO_CodeCache), 5920 "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops"); 5921 } 5922 5923 { 5924 GCTraceTime t("visit unhandled CLDs", PrintGCDetails, false, _gc_timer_cm); 5925 5926 verify_work_stacks_empty(); 5927 5928 // Scan all class loader data objects that might have been introduced 5929 // during concurrent marking. 5930 ResourceMark rm; 5931 GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds(); 5932 for (int i = 0; i < array->length(); i++) { 5933 mrias_cl.do_class_loader_data(array->at(i)); 5934 } 5935 5936 // We don't need to keep track of new CLDs anymore. 5937 ClassLoaderDataGraph::remember_new_clds(false); 5938 5939 verify_work_stacks_empty(); 5940 } 5941 5942 { 5943 GCTraceTime t("dirty klass scan", PrintGCDetails, false, _gc_timer_cm); 5944 5945 verify_work_stacks_empty(); 5946 5947 RemarkKlassClosure remark_klass_closure(&mrias_cl); 5948 ClassLoaderDataGraph::classes_do(&remark_klass_closure); 5949 5950 verify_work_stacks_empty(); 5951 } 5952 5953 // We might have added oops to ClassLoaderData::_handles during the 5954 // concurrent marking phase. These oops point to newly allocated objects 5955 // that are guaranteed to be kept alive. Either by the direct allocation 5956 // code, or when the young collector processes the strong roots. Hence, 5957 // we don't have to revisit the _handles block during the remark phase. 5958 5959 verify_work_stacks_empty(); 5960 // Restore evacuated mark words, if any, used for overflow list links 5961 if (!CMSOverflowEarlyRestoration) { 5962 restore_preserved_marks_if_any(); 5963 } 5964 verify_overflow_empty(); 5965 } 5966 5967 //////////////////////////////////////////////////////// 5968 // Parallel Reference Processing Task Proxy Class 5969 //////////////////////////////////////////////////////// 5970 class CMSRefProcTaskProxy: public AbstractGangTaskWOopQueues { 5971 typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask; 5972 CMSCollector* _collector; 5973 CMSBitMap* _mark_bit_map; 5974 const MemRegion _span; 5975 ProcessTask& _task; 5976 5977 public: 5978 CMSRefProcTaskProxy(ProcessTask& task, 5979 CMSCollector* collector, 5980 const MemRegion& span, 5981 CMSBitMap* mark_bit_map, 5982 AbstractWorkGang* workers, 5983 OopTaskQueueSet* task_queues): 5984 // XXX Should superclass AGTWOQ also know about AWG since it knows 5985 // about the task_queues used by the AWG? Then it could initialize 5986 // the terminator() object. See 6984287. The set_for_termination() 5987 // below is a temporary band-aid for the regression in 6984287. 5988 AbstractGangTaskWOopQueues("Process referents by policy in parallel", 5989 task_queues), 5990 _task(task), 5991 _collector(collector), _span(span), _mark_bit_map(mark_bit_map) 5992 { 5993 assert(_collector->_span.equals(_span) && !_span.is_empty(), 5994 "Inconsistency in _span"); 5995 set_for_termination(workers->active_workers()); 5996 } 5997 5998 OopTaskQueueSet* task_queues() { return queues(); } 5999 6000 OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); } 6001 6002 void do_work_steal(int i, 6003 CMSParDrainMarkingStackClosure* drain, 6004 CMSParKeepAliveClosure* keep_alive, 6005 int* seed); 6006 6007 virtual void work(uint worker_id); 6008 }; 6009 6010 void CMSRefProcTaskProxy::work(uint worker_id) { 6011 assert(_collector->_span.equals(_span), "Inconsistency in _span"); 6012 CMSParKeepAliveClosure par_keep_alive(_collector, _span, 6013 _mark_bit_map, 6014 work_queue(worker_id)); 6015 CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span, 6016 _mark_bit_map, 6017 work_queue(worker_id)); 6018 CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map); 6019 _task.work(worker_id, is_alive_closure, par_keep_alive, par_drain_stack); 6020 if (_task.marks_oops_alive()) { 6021 do_work_steal(worker_id, &par_drain_stack, &par_keep_alive, 6022 _collector->hash_seed(worker_id)); 6023 } 6024 assert(work_queue(worker_id)->size() == 0, "work_queue should be empty"); 6025 assert(_collector->_overflow_list == NULL, "non-empty _overflow_list"); 6026 } 6027 6028 class CMSRefEnqueueTaskProxy: public AbstractGangTask { 6029 typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask; 6030 EnqueueTask& _task; 6031 6032 public: 6033 CMSRefEnqueueTaskProxy(EnqueueTask& task) 6034 : AbstractGangTask("Enqueue reference objects in parallel"), 6035 _task(task) 6036 { } 6037 6038 virtual void work(uint worker_id) 6039 { 6040 _task.work(worker_id); 6041 } 6042 }; 6043 6044 CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector, 6045 MemRegion span, CMSBitMap* bit_map, OopTaskQueue* work_queue): 6046 _span(span), 6047 _bit_map(bit_map), 6048 _work_queue(work_queue), 6049 _mark_and_push(collector, span, bit_map, work_queue), 6050 _low_water_mark(MIN2((uint)(work_queue->max_elems()/4), 6051 (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads))) 6052 { } 6053 6054 // . see if we can share work_queues with ParNew? XXX 6055 void CMSRefProcTaskProxy::do_work_steal(int i, 6056 CMSParDrainMarkingStackClosure* drain, 6057 CMSParKeepAliveClosure* keep_alive, 6058 int* seed) { 6059 OopTaskQueue* work_q = work_queue(i); 6060 NOT_PRODUCT(int num_steals = 0;) 6061 oop obj_to_scan; 6062 6063 while (true) { 6064 // Completely finish any left over work from (an) earlier round(s) 6065 drain->trim_queue(0); 6066 size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4, 6067 (size_t)ParGCDesiredObjsFromOverflowList); 6068 // Now check if there's any work in the overflow list 6069 // Passing ParallelGCThreads as the third parameter, no_of_gc_threads, 6070 // only affects the number of attempts made to get work from the 6071 // overflow list and does not affect the number of workers. Just 6072 // pass ParallelGCThreads so this behavior is unchanged. 6073 if (_collector->par_take_from_overflow_list(num_from_overflow_list, 6074 work_q, 6075 ParallelGCThreads)) { 6076 // Found something in global overflow list; 6077 // not yet ready to go stealing work from others. 6078 // We'd like to assert(work_q->size() != 0, ...) 6079 // because we just took work from the overflow list, 6080 // but of course we can't, since all of that might have 6081 // been already stolen from us. 6082 continue; 6083 } 6084 // Verify that we have no work before we resort to stealing 6085 assert(work_q->size() == 0, "Have work, shouldn't steal"); 6086 // Try to steal from other queues that have work 6087 if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) { 6088 NOT_PRODUCT(num_steals++;) 6089 assert(obj_to_scan->is_oop(), "Oops, not an oop!"); 6090 assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?"); 6091 // Do scanning work 6092 obj_to_scan->oop_iterate(keep_alive); 6093 // Loop around, finish this work, and try to steal some more 6094 } else if (terminator()->offer_termination()) { 6095 break; // nirvana from the infinite cycle 6096 } 6097 } 6098 NOT_PRODUCT( 6099 if (PrintCMSStatistics != 0) { 6100 gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals); 6101 } 6102 ) 6103 } 6104 6105 void CMSRefProcTaskExecutor::execute(ProcessTask& task) 6106 { 6107 GenCollectedHeap* gch = GenCollectedHeap::heap(); 6108 FlexibleWorkGang* workers = gch->workers(); 6109 assert(workers != NULL, "Need parallel worker threads."); 6110 CMSRefProcTaskProxy rp_task(task, &_collector, 6111 _collector.ref_processor()->span(), 6112 _collector.markBitMap(), 6113 workers, _collector.task_queues()); 6114 workers->run_task(&rp_task); 6115 } 6116 6117 void CMSRefProcTaskExecutor::execute(EnqueueTask& task) 6118 { 6119 6120 GenCollectedHeap* gch = GenCollectedHeap::heap(); 6121 FlexibleWorkGang* workers = gch->workers(); 6122 assert(workers != NULL, "Need parallel worker threads."); 6123 CMSRefEnqueueTaskProxy enq_task(task); 6124 workers->run_task(&enq_task); 6125 } 6126 6127 void CMSCollector::refProcessingWork(bool asynch, bool clear_all_soft_refs) { 6128 6129 ResourceMark rm; 6130 HandleMark hm; 6131 6132 ReferenceProcessor* rp = ref_processor(); 6133 assert(rp->span().equals(_span), "Spans should be equal"); 6134 assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete"); 6135 // Process weak references. 6136 rp->setup_policy(clear_all_soft_refs); 6137 verify_work_stacks_empty(); 6138 6139 CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap, 6140 &_markStack, false /* !preclean */); 6141 CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this, 6142 _span, &_markBitMap, &_markStack, 6143 &cmsKeepAliveClosure, false /* !preclean */); 6144 { 6145 GCTraceTime t("weak refs processing", PrintGCDetails, false, _gc_timer_cm); 6146 6147 ReferenceProcessorStats stats; 6148 if (rp->processing_is_mt()) { 6149 // Set the degree of MT here. If the discovery is done MT, there 6150 // may have been a different number of threads doing the discovery 6151 // and a different number of discovered lists may have Ref objects. 6152 // That is OK as long as the Reference lists are balanced (see 6153 // balance_all_queues() and balance_queues()). 6154 GenCollectedHeap* gch = GenCollectedHeap::heap(); 6155 int active_workers = ParallelGCThreads; 6156 FlexibleWorkGang* workers = gch->workers(); 6157 if (workers != NULL) { 6158 active_workers = workers->active_workers(); 6159 // The expectation is that active_workers will have already 6160 // been set to a reasonable value. If it has not been set, 6161 // investigate. 6162 assert(active_workers > 0, "Should have been set during scavenge"); 6163 } 6164 rp->set_active_mt_degree(active_workers); 6165 CMSRefProcTaskExecutor task_executor(*this); 6166 stats = rp->process_discovered_references(&_is_alive_closure, 6167 &cmsKeepAliveClosure, 6168 &cmsDrainMarkingStackClosure, 6169 &task_executor, 6170 _gc_timer_cm); 6171 } else { 6172 stats = rp->process_discovered_references(&_is_alive_closure, 6173 &cmsKeepAliveClosure, 6174 &cmsDrainMarkingStackClosure, 6175 NULL, 6176 _gc_timer_cm); 6177 } 6178 _gc_tracer_cm->report_gc_reference_stats(stats); 6179 6180 } 6181 6182 // This is the point where the entire marking should have completed. 6183 verify_work_stacks_empty(); 6184 6185 if (should_unload_classes()) { 6186 { 6187 GCTraceTime t("class unloading", PrintGCDetails, false, _gc_timer_cm); 6188 6189 // Unload classes and purge the SystemDictionary. 6190 bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure); 6191 6192 // Unload nmethods. 6193 CodeCache::do_unloading(&_is_alive_closure, purged_class); 6194 6195 // Prune dead klasses from subklass/sibling/implementor lists. 6196 Klass::clean_weak_klass_links(&_is_alive_closure); 6197 } 6198 6199 { 6200 GCTraceTime t("scrub symbol table", PrintGCDetails, false, _gc_timer_cm); 6201 // Clean up unreferenced symbols in symbol table. 6202 SymbolTable::unlink(); 6203 } 6204 } 6205 6206 // CMS doesn't use the StringTable as hard roots when class unloading is turned off. 6207 // Need to check if we really scanned the StringTable. 6208 if ((roots_scanning_options() & SharedHeap::SO_Strings) == 0) { 6209 GCTraceTime t("scrub string table", PrintGCDetails, false, _gc_timer_cm); 6210 // Delete entries for dead interned strings. 6211 StringTable::unlink(&_is_alive_closure); 6212 } 6213 6214 // Restore any preserved marks as a result of mark stack or 6215 // work queue overflow 6216 restore_preserved_marks_if_any(); // done single-threaded for now 6217 6218 rp->set_enqueuing_is_done(true); 6219 if (rp->processing_is_mt()) { 6220 rp->balance_all_queues(); 6221 CMSRefProcTaskExecutor task_executor(*this); 6222 rp->enqueue_discovered_references(&task_executor); 6223 } else { 6224 rp->enqueue_discovered_references(NULL); 6225 } 6226 rp->verify_no_references_recorded(); 6227 assert(!rp->discovery_enabled(), "should have been disabled"); 6228 } 6229 6230 #ifndef PRODUCT 6231 void CMSCollector::check_correct_thread_executing() { 6232 Thread* t = Thread::current(); 6233 // Only the VM thread or the CMS thread should be here. 6234 assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(), 6235 "Unexpected thread type"); 6236 // If this is the vm thread, the foreground process 6237 // should not be waiting. Note that _foregroundGCIsActive is 6238 // true while the foreground collector is waiting. 6239 if (_foregroundGCShouldWait) { 6240 // We cannot be the VM thread 6241 assert(t->is_ConcurrentGC_thread(), 6242 "Should be CMS thread"); 6243 } else { 6244 // We can be the CMS thread only if we are in a stop-world 6245 // phase of CMS collection. 6246 if (t->is_ConcurrentGC_thread()) { 6247 assert(_collectorState == InitialMarking || 6248 _collectorState == FinalMarking, 6249 "Should be a stop-world phase"); 6250 // The CMS thread should be holding the CMS_token. 6251 assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 6252 "Potential interference with concurrently " 6253 "executing VM thread"); 6254 } 6255 } 6256 } 6257 #endif 6258 6259 void CMSCollector::sweep(bool asynch) { 6260 assert(_collectorState == Sweeping, "just checking"); 6261 check_correct_thread_executing(); 6262 verify_work_stacks_empty(); 6263 verify_overflow_empty(); 6264 increment_sweep_count(); 6265 TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause()); 6266 6267 _inter_sweep_timer.stop(); 6268 _inter_sweep_estimate.sample(_inter_sweep_timer.seconds()); 6269 size_policy()->avg_cms_free_at_sweep()->sample(_cmsGen->free()); 6270 6271 assert(!_intra_sweep_timer.is_active(), "Should not be active"); 6272 _intra_sweep_timer.reset(); 6273 _intra_sweep_timer.start(); 6274 if (asynch) { 6275 TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty); 6276 CMSPhaseAccounting pa(this, "sweep", !PrintGCDetails); 6277 // First sweep the old gen 6278 { 6279 CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(), 6280 bitMapLock()); 6281 sweepWork(_cmsGen, asynch); 6282 } 6283 6284 // Update Universe::_heap_*_at_gc figures. 6285 // We need all the free list locks to make the abstract state 6286 // transition from Sweeping to Resetting. See detailed note 6287 // further below. 6288 { 6289 CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock()); 6290 // Update heap occupancy information which is used as 6291 // input to soft ref clearing policy at the next gc. 6292 Universe::update_heap_info_at_gc(); 6293 _collectorState = Resizing; 6294 } 6295 } else { 6296 // already have needed locks 6297 sweepWork(_cmsGen, asynch); 6298 // Update heap occupancy information which is used as 6299 // input to soft ref clearing policy at the next gc. 6300 Universe::update_heap_info_at_gc(); 6301 _collectorState = Resizing; 6302 } 6303 verify_work_stacks_empty(); 6304 verify_overflow_empty(); 6305 6306 if (should_unload_classes()) { 6307 ClassLoaderDataGraph::purge(); 6308 } 6309 6310 _intra_sweep_timer.stop(); 6311 _intra_sweep_estimate.sample(_intra_sweep_timer.seconds()); 6312 6313 _inter_sweep_timer.reset(); 6314 _inter_sweep_timer.start(); 6315 6316 // We need to use a monotonically non-deccreasing time in ms 6317 // or we will see time-warp warnings and os::javaTimeMillis() 6318 // does not guarantee monotonicity. 6319 jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC; 6320 update_time_of_last_gc(now); 6321 6322 // NOTE on abstract state transitions: 6323 // Mutators allocate-live and/or mark the mod-union table dirty 6324 // based on the state of the collection. The former is done in 6325 // the interval [Marking, Sweeping] and the latter in the interval 6326 // [Marking, Sweeping). Thus the transitions into the Marking state 6327 // and out of the Sweeping state must be synchronously visible 6328 // globally to the mutators. 6329 // The transition into the Marking state happens with the world 6330 // stopped so the mutators will globally see it. Sweeping is 6331 // done asynchronously by the background collector so the transition 6332 // from the Sweeping state to the Resizing state must be done 6333 // under the freelistLock (as is the check for whether to 6334 // allocate-live and whether to dirty the mod-union table). 6335 assert(_collectorState == Resizing, "Change of collector state to" 6336 " Resizing must be done under the freelistLocks (plural)"); 6337 6338 // Now that sweeping has been completed, we clear 6339 // the incremental_collection_failed flag, 6340 // thus inviting a younger gen collection to promote into 6341 // this generation. If such a promotion may still fail, 6342 // the flag will be set again when a young collection is 6343 // attempted. 6344 GenCollectedHeap* gch = GenCollectedHeap::heap(); 6345 gch->clear_incremental_collection_failed(); // Worth retrying as fresh space may have been freed up 6346 gch->update_full_collections_completed(_collection_count_start); 6347 } 6348 6349 // FIX ME!!! Looks like this belongs in CFLSpace, with 6350 // CMSGen merely delegating to it. 6351 void ConcurrentMarkSweepGeneration::setNearLargestChunk() { 6352 double nearLargestPercent = FLSLargestBlockCoalesceProximity; 6353 HeapWord* minAddr = _cmsSpace->bottom(); 6354 HeapWord* largestAddr = 6355 (HeapWord*) _cmsSpace->dictionary()->find_largest_dict(); 6356 if (largestAddr == NULL) { 6357 // The dictionary appears to be empty. In this case 6358 // try to coalesce at the end of the heap. 6359 largestAddr = _cmsSpace->end(); 6360 } 6361 size_t largestOffset = pointer_delta(largestAddr, minAddr); 6362 size_t nearLargestOffset = 6363 (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize; 6364 if (PrintFLSStatistics != 0) { 6365 gclog_or_tty->print_cr( 6366 "CMS: Large Block: " PTR_FORMAT ";" 6367 " Proximity: " PTR_FORMAT " -> " PTR_FORMAT, 6368 largestAddr, 6369 _cmsSpace->nearLargestChunk(), minAddr + nearLargestOffset); 6370 } 6371 _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset); 6372 } 6373 6374 bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) { 6375 return addr >= _cmsSpace->nearLargestChunk(); 6376 } 6377 6378 FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() { 6379 return _cmsSpace->find_chunk_at_end(); 6380 } 6381 6382 void ConcurrentMarkSweepGeneration::update_gc_stats(int current_level, 6383 bool full) { 6384 // The next lower level has been collected. Gather any statistics 6385 // that are of interest at this point. 6386 if (!full && (current_level + 1) == level()) { 6387 // Gather statistics on the young generation collection. 6388 collector()->stats().record_gc0_end(used()); 6389 } 6390 } 6391 6392 CMSAdaptiveSizePolicy* ConcurrentMarkSweepGeneration::size_policy() { 6393 GenCollectedHeap* gch = GenCollectedHeap::heap(); 6394 assert(gch->kind() == CollectedHeap::GenCollectedHeap, 6395 "Wrong type of heap"); 6396 CMSAdaptiveSizePolicy* sp = (CMSAdaptiveSizePolicy*) 6397 gch->gen_policy()->size_policy(); 6398 assert(sp->is_gc_cms_adaptive_size_policy(), 6399 "Wrong type of size policy"); 6400 return sp; 6401 } 6402 6403 void ConcurrentMarkSweepGeneration::rotate_debug_collection_type() { 6404 if (PrintGCDetails && Verbose) { 6405 gclog_or_tty->print("Rotate from %d ", _debug_collection_type); 6406 } 6407 _debug_collection_type = (CollectionTypes) (_debug_collection_type + 1); 6408 _debug_collection_type = 6409 (CollectionTypes) (_debug_collection_type % Unknown_collection_type); 6410 if (PrintGCDetails && Verbose) { 6411 gclog_or_tty->print_cr("to %d ", _debug_collection_type); 6412 } 6413 } 6414 6415 void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* gen, 6416 bool asynch) { 6417 // We iterate over the space(s) underlying this generation, 6418 // checking the mark bit map to see if the bits corresponding 6419 // to specific blocks are marked or not. Blocks that are 6420 // marked are live and are not swept up. All remaining blocks 6421 // are swept up, with coalescing on-the-fly as we sweep up 6422 // contiguous free and/or garbage blocks: 6423 // We need to ensure that the sweeper synchronizes with allocators 6424 // and stop-the-world collectors. In particular, the following 6425 // locks are used: 6426 // . CMS token: if this is held, a stop the world collection cannot occur 6427 // . freelistLock: if this is held no allocation can occur from this 6428 // generation by another thread 6429 // . bitMapLock: if this is held, no other thread can access or update 6430 // 6431 6432 // Note that we need to hold the freelistLock if we use 6433 // block iterate below; else the iterator might go awry if 6434 // a mutator (or promotion) causes block contents to change 6435 // (for instance if the allocator divvies up a block). 6436 // If we hold the free list lock, for all practical purposes 6437 // young generation GC's can't occur (they'll usually need to 6438 // promote), so we might as well prevent all young generation 6439 // GC's while we do a sweeping step. For the same reason, we might 6440 // as well take the bit map lock for the entire duration 6441 6442 // check that we hold the requisite locks 6443 assert(have_cms_token(), "Should hold cms token"); 6444 assert( (asynch && ConcurrentMarkSweepThread::cms_thread_has_cms_token()) 6445 || (!asynch && ConcurrentMarkSweepThread::vm_thread_has_cms_token()), 6446 "Should possess CMS token to sweep"); 6447 assert_lock_strong(gen->freelistLock()); 6448 assert_lock_strong(bitMapLock()); 6449 6450 assert(!_inter_sweep_timer.is_active(), "Was switched off in an outer context"); 6451 assert(_intra_sweep_timer.is_active(), "Was switched on in an outer context"); 6452 gen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()), 6453 _inter_sweep_estimate.padded_average(), 6454 _intra_sweep_estimate.padded_average()); 6455 gen->setNearLargestChunk(); 6456 6457 { 6458 SweepClosure sweepClosure(this, gen, &_markBitMap, 6459 CMSYield && asynch); 6460 gen->cmsSpace()->blk_iterate_careful(&sweepClosure); 6461 // We need to free-up/coalesce garbage/blocks from a 6462 // co-terminal free run. This is done in the SweepClosure 6463 // destructor; so, do not remove this scope, else the 6464 // end-of-sweep-census below will be off by a little bit. 6465 } 6466 gen->cmsSpace()->sweep_completed(); 6467 gen->cmsSpace()->endSweepFLCensus(sweep_count()); 6468 if (should_unload_classes()) { // unloaded classes this cycle, 6469 _concurrent_cycles_since_last_unload = 0; // ... reset count 6470 } else { // did not unload classes, 6471 _concurrent_cycles_since_last_unload++; // ... increment count 6472 } 6473 } 6474 6475 // Reset CMS data structures (for now just the marking bit map) 6476 // preparatory for the next cycle. 6477 void CMSCollector::reset(bool asynch) { 6478 GenCollectedHeap* gch = GenCollectedHeap::heap(); 6479 CMSAdaptiveSizePolicy* sp = size_policy(); 6480 AdaptiveSizePolicyOutput(sp, gch->total_collections()); 6481 if (asynch) { 6482 CMSTokenSyncWithLocks ts(true, bitMapLock()); 6483 6484 // If the state is not "Resetting", the foreground thread 6485 // has done a collection and the resetting. 6486 if (_collectorState != Resetting) { 6487 assert(_collectorState == Idling, "The state should only change" 6488 " because the foreground collector has finished the collection"); 6489 return; 6490 } 6491 6492 // Clear the mark bitmap (no grey objects to start with) 6493 // for the next cycle. 6494 TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty); 6495 CMSPhaseAccounting cmspa(this, "reset", !PrintGCDetails); 6496 6497 HeapWord* curAddr = _markBitMap.startWord(); 6498 while (curAddr < _markBitMap.endWord()) { 6499 size_t remaining = pointer_delta(_markBitMap.endWord(), curAddr); 6500 MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining)); 6501 _markBitMap.clear_large_range(chunk); 6502 if (ConcurrentMarkSweepThread::should_yield() && 6503 !foregroundGCIsActive() && 6504 CMSYield) { 6505 assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 6506 "CMS thread should hold CMS token"); 6507 assert_lock_strong(bitMapLock()); 6508 bitMapLock()->unlock(); 6509 ConcurrentMarkSweepThread::desynchronize(true); 6510 ConcurrentMarkSweepThread::acknowledge_yield_request(); 6511 stopTimer(); 6512 if (PrintCMSStatistics != 0) { 6513 incrementYields(); 6514 } 6515 icms_wait(); 6516 6517 // See the comment in coordinator_yield() 6518 for (unsigned i = 0; i < CMSYieldSleepCount && 6519 ConcurrentMarkSweepThread::should_yield() && 6520 !CMSCollector::foregroundGCIsActive(); ++i) { 6521 os::sleep(Thread::current(), 1, false); 6522 ConcurrentMarkSweepThread::acknowledge_yield_request(); 6523 } 6524 6525 ConcurrentMarkSweepThread::synchronize(true); 6526 bitMapLock()->lock_without_safepoint_check(); 6527 startTimer(); 6528 } 6529 curAddr = chunk.end(); 6530 } 6531 // A successful mostly concurrent collection has been done. 6532 // Because only the full (i.e., concurrent mode failure) collections 6533 // are being measured for gc overhead limits, clean the "near" flag 6534 // and count. 6535 sp->reset_gc_overhead_limit_count(); 6536 _collectorState = Idling; 6537 } else { 6538 // already have the lock 6539 assert(_collectorState == Resetting, "just checking"); 6540 assert_lock_strong(bitMapLock()); 6541 _markBitMap.clear_all(); 6542 _collectorState = Idling; 6543 } 6544 6545 // Stop incremental mode after a cycle completes, so that any future cycles 6546 // are triggered by allocation. 6547 stop_icms(); 6548 6549 NOT_PRODUCT( 6550 if (RotateCMSCollectionTypes) { 6551 _cmsGen->rotate_debug_collection_type(); 6552 } 6553 ) 6554 6555 register_gc_end(); 6556 } 6557 6558 void CMSCollector::do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause) { 6559 gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps); 6560 TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty); 6561 GCTraceTime t(GCCauseString("GC", gc_cause), PrintGC, !PrintGCDetails, NULL); 6562 TraceCollectorStats tcs(counters()); 6563 6564 switch (op) { 6565 case CMS_op_checkpointRootsInitial: { 6566 SvcGCMarker sgcm(SvcGCMarker::OTHER); 6567 checkpointRootsInitial(true); // asynch 6568 if (PrintGC) { 6569 _cmsGen->printOccupancy("initial-mark"); 6570 } 6571 break; 6572 } 6573 case CMS_op_checkpointRootsFinal: { 6574 SvcGCMarker sgcm(SvcGCMarker::OTHER); 6575 checkpointRootsFinal(true, // asynch 6576 false, // !clear_all_soft_refs 6577 false); // !init_mark_was_synchronous 6578 if (PrintGC) { 6579 _cmsGen->printOccupancy("remark"); 6580 } 6581 break; 6582 } 6583 default: 6584 fatal("No such CMS_op"); 6585 } 6586 } 6587 6588 #ifndef PRODUCT 6589 size_t const CMSCollector::skip_header_HeapWords() { 6590 return FreeChunk::header_size(); 6591 } 6592 6593 // Try and collect here conditions that should hold when 6594 // CMS thread is exiting. The idea is that the foreground GC 6595 // thread should not be blocked if it wants to terminate 6596 // the CMS thread and yet continue to run the VM for a while 6597 // after that. 6598 void CMSCollector::verify_ok_to_terminate() const { 6599 assert(Thread::current()->is_ConcurrentGC_thread(), 6600 "should be called by CMS thread"); 6601 assert(!_foregroundGCShouldWait, "should be false"); 6602 // We could check here that all the various low-level locks 6603 // are not held by the CMS thread, but that is overkill; see 6604 // also CMSThread::verify_ok_to_terminate() where the CGC_lock 6605 // is checked. 6606 } 6607 #endif 6608 6609 size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const { 6610 assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1), 6611 "missing Printezis mark?"); 6612 HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2); 6613 size_t size = pointer_delta(nextOneAddr + 1, addr); 6614 assert(size == CompactibleFreeListSpace::adjustObjectSize(size), 6615 "alignment problem"); 6616 assert(size >= 3, "Necessary for Printezis marks to work"); 6617 return size; 6618 } 6619 6620 // A variant of the above (block_size_using_printezis_bits()) except 6621 // that we return 0 if the P-bits are not yet set. 6622 size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const { 6623 if (_markBitMap.isMarked(addr + 1)) { 6624 assert(_markBitMap.isMarked(addr), "P-bit can be set only for marked objects"); 6625 HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2); 6626 size_t size = pointer_delta(nextOneAddr + 1, addr); 6627 assert(size == CompactibleFreeListSpace::adjustObjectSize(size), 6628 "alignment problem"); 6629 assert(size >= 3, "Necessary for Printezis marks to work"); 6630 return size; 6631 } 6632 return 0; 6633 } 6634 6635 HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const { 6636 size_t sz = 0; 6637 oop p = (oop)addr; 6638 if (p->klass_or_null() != NULL) { 6639 sz = CompactibleFreeListSpace::adjustObjectSize(p->size()); 6640 } else { 6641 sz = block_size_using_printezis_bits(addr); 6642 } 6643 assert(sz > 0, "size must be nonzero"); 6644 HeapWord* next_block = addr + sz; 6645 HeapWord* next_card = (HeapWord*)round_to((uintptr_t)next_block, 6646 CardTableModRefBS::card_size); 6647 assert(round_down((uintptr_t)addr, CardTableModRefBS::card_size) < 6648 round_down((uintptr_t)next_card, CardTableModRefBS::card_size), 6649 "must be different cards"); 6650 return next_card; 6651 } 6652 6653 6654 // CMS Bit Map Wrapper ///////////////////////////////////////// 6655 6656 // Construct a CMS bit map infrastructure, but don't create the 6657 // bit vector itself. That is done by a separate call CMSBitMap::allocate() 6658 // further below. 6659 CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name): 6660 _bm(), 6661 _shifter(shifter), 6662 _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true) : NULL) 6663 { 6664 _bmStartWord = 0; 6665 _bmWordSize = 0; 6666 } 6667 6668 bool CMSBitMap::allocate(MemRegion mr) { 6669 _bmStartWord = mr.start(); 6670 _bmWordSize = mr.word_size(); 6671 ReservedSpace brs(ReservedSpace::allocation_align_size_up( 6672 (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1)); 6673 if (!brs.is_reserved()) { 6674 warning("CMS bit map allocation failure"); 6675 return false; 6676 } 6677 // For now we'll just commit all of the bit map up fromt. 6678 // Later on we'll try to be more parsimonious with swap. 6679 if (!_virtual_space.initialize(brs, brs.size())) { 6680 warning("CMS bit map backing store failure"); 6681 return false; 6682 } 6683 assert(_virtual_space.committed_size() == brs.size(), 6684 "didn't reserve backing store for all of CMS bit map?"); 6685 _bm.set_map((BitMap::bm_word_t*)_virtual_space.low()); 6686 assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >= 6687 _bmWordSize, "inconsistency in bit map sizing"); 6688 _bm.set_size(_bmWordSize >> _shifter); 6689 6690 // bm.clear(); // can we rely on getting zero'd memory? verify below 6691 assert(isAllClear(), 6692 "Expected zero'd memory from ReservedSpace constructor"); 6693 assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()), 6694 "consistency check"); 6695 return true; 6696 } 6697 6698 void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) { 6699 HeapWord *next_addr, *end_addr, *last_addr; 6700 assert_locked(); 6701 assert(covers(mr), "out-of-range error"); 6702 // XXX assert that start and end are appropriately aligned 6703 for (next_addr = mr.start(), end_addr = mr.end(); 6704 next_addr < end_addr; next_addr = last_addr) { 6705 MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr); 6706 last_addr = dirty_region.end(); 6707 if (!dirty_region.is_empty()) { 6708 cl->do_MemRegion(dirty_region); 6709 } else { 6710 assert(last_addr == end_addr, "program logic"); 6711 return; 6712 } 6713 } 6714 } 6715 6716 void CMSBitMap::print_on_error(outputStream* st, const char* prefix) const { 6717 _bm.print_on_error(st, prefix); 6718 } 6719 6720 #ifndef PRODUCT 6721 void CMSBitMap::assert_locked() const { 6722 CMSLockVerifier::assert_locked(lock()); 6723 } 6724 6725 bool CMSBitMap::covers(MemRegion mr) const { 6726 // assert(_bm.map() == _virtual_space.low(), "map inconsistency"); 6727 assert((size_t)_bm.size() == (_bmWordSize >> _shifter), 6728 "size inconsistency"); 6729 return (mr.start() >= _bmStartWord) && 6730 (mr.end() <= endWord()); 6731 } 6732 6733 bool CMSBitMap::covers(HeapWord* start, size_t size) const { 6734 return (start >= _bmStartWord && (start + size) <= endWord()); 6735 } 6736 6737 void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) { 6738 // verify that there are no 1 bits in the interval [left, right) 6739 FalseBitMapClosure falseBitMapClosure; 6740 iterate(&falseBitMapClosure, left, right); 6741 } 6742 6743 void CMSBitMap::region_invariant(MemRegion mr) 6744 { 6745 assert_locked(); 6746 // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize)); 6747 assert(!mr.is_empty(), "unexpected empty region"); 6748 assert(covers(mr), "mr should be covered by bit map"); 6749 // convert address range into offset range 6750 size_t start_ofs = heapWordToOffset(mr.start()); 6751 // Make sure that end() is appropriately aligned 6752 assert(mr.end() == (HeapWord*)round_to((intptr_t)mr.end(), 6753 (1 << (_shifter+LogHeapWordSize))), 6754 "Misaligned mr.end()"); 6755 size_t end_ofs = heapWordToOffset(mr.end()); 6756 assert(end_ofs > start_ofs, "Should mark at least one bit"); 6757 } 6758 6759 #endif 6760 6761 bool CMSMarkStack::allocate(size_t size) { 6762 // allocate a stack of the requisite depth 6763 ReservedSpace rs(ReservedSpace::allocation_align_size_up( 6764 size * sizeof(oop))); 6765 if (!rs.is_reserved()) { 6766 warning("CMSMarkStack allocation failure"); 6767 return false; 6768 } 6769 if (!_virtual_space.initialize(rs, rs.size())) { 6770 warning("CMSMarkStack backing store failure"); 6771 return false; 6772 } 6773 assert(_virtual_space.committed_size() == rs.size(), 6774 "didn't reserve backing store for all of CMS stack?"); 6775 _base = (oop*)(_virtual_space.low()); 6776 _index = 0; 6777 _capacity = size; 6778 NOT_PRODUCT(_max_depth = 0); 6779 return true; 6780 } 6781 6782 // XXX FIX ME !!! In the MT case we come in here holding a 6783 // leaf lock. For printing we need to take a further lock 6784 // which has lower rank. We need to recallibrate the two 6785 // lock-ranks involved in order to be able to rpint the 6786 // messages below. (Or defer the printing to the caller. 6787 // For now we take the expedient path of just disabling the 6788 // messages for the problematic case.) 6789 void CMSMarkStack::expand() { 6790 assert(_capacity <= MarkStackSizeMax, "stack bigger than permitted"); 6791 if (_capacity == MarkStackSizeMax) { 6792 if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) { 6793 // We print a warning message only once per CMS cycle. 6794 gclog_or_tty->print_cr(" (benign) Hit CMSMarkStack max size limit"); 6795 } 6796 return; 6797 } 6798 // Double capacity if possible 6799 size_t new_capacity = MIN2(_capacity*2, MarkStackSizeMax); 6800 // Do not give up existing stack until we have managed to 6801 // get the double capacity that we desired. 6802 ReservedSpace rs(ReservedSpace::allocation_align_size_up( 6803 new_capacity * sizeof(oop))); 6804 if (rs.is_reserved()) { 6805 // Release the backing store associated with old stack 6806 _virtual_space.release(); 6807 // Reinitialize virtual space for new stack 6808 if (!_virtual_space.initialize(rs, rs.size())) { 6809 fatal("Not enough swap for expanded marking stack"); 6810 } 6811 _base = (oop*)(_virtual_space.low()); 6812 _index = 0; 6813 _capacity = new_capacity; 6814 } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) { 6815 // Failed to double capacity, continue; 6816 // we print a detail message only once per CMS cycle. 6817 gclog_or_tty->print(" (benign) Failed to expand marking stack from "SIZE_FORMAT"K to " 6818 SIZE_FORMAT"K", 6819 _capacity / K, new_capacity / K); 6820 } 6821 } 6822 6823 6824 // Closures 6825 // XXX: there seems to be a lot of code duplication here; 6826 // should refactor and consolidate common code. 6827 6828 // This closure is used to mark refs into the CMS generation in 6829 // the CMS bit map. Called at the first checkpoint. This closure 6830 // assumes that we do not need to re-mark dirty cards; if the CMS 6831 // generation on which this is used is not an oldest 6832 // generation then this will lose younger_gen cards! 6833 6834 MarkRefsIntoClosure::MarkRefsIntoClosure( 6835 MemRegion span, CMSBitMap* bitMap): 6836 _span(span), 6837 _bitMap(bitMap) 6838 { 6839 assert(_ref_processor == NULL, "deliberately left NULL"); 6840 assert(_bitMap->covers(_span), "_bitMap/_span mismatch"); 6841 } 6842 6843 void MarkRefsIntoClosure::do_oop(oop obj) { 6844 // if p points into _span, then mark corresponding bit in _markBitMap 6845 assert(obj->is_oop(), "expected an oop"); 6846 HeapWord* addr = (HeapWord*)obj; 6847 if (_span.contains(addr)) { 6848 // this should be made more efficient 6849 _bitMap->mark(addr); 6850 } 6851 } 6852 6853 void MarkRefsIntoClosure::do_oop(oop* p) { MarkRefsIntoClosure::do_oop_work(p); } 6854 void MarkRefsIntoClosure::do_oop(narrowOop* p) { MarkRefsIntoClosure::do_oop_work(p); } 6855 6856 Par_MarkRefsIntoClosure::Par_MarkRefsIntoClosure( 6857 MemRegion span, CMSBitMap* bitMap): 6858 _span(span), 6859 _bitMap(bitMap) 6860 { 6861 assert(_ref_processor == NULL, "deliberately left NULL"); 6862 assert(_bitMap->covers(_span), "_bitMap/_span mismatch"); 6863 } 6864 6865 void Par_MarkRefsIntoClosure::do_oop(oop obj) { 6866 // if p points into _span, then mark corresponding bit in _markBitMap 6867 assert(obj->is_oop(), "expected an oop"); 6868 HeapWord* addr = (HeapWord*)obj; 6869 if (_span.contains(addr)) { 6870 // this should be made more efficient 6871 _bitMap->par_mark(addr); 6872 } 6873 } 6874 6875 void Par_MarkRefsIntoClosure::do_oop(oop* p) { Par_MarkRefsIntoClosure::do_oop_work(p); } 6876 void Par_MarkRefsIntoClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoClosure::do_oop_work(p); } 6877 6878 // A variant of the above, used for CMS marking verification. 6879 MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure( 6880 MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm): 6881 _span(span), 6882 _verification_bm(verification_bm), 6883 _cms_bm(cms_bm) 6884 { 6885 assert(_ref_processor == NULL, "deliberately left NULL"); 6886 assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch"); 6887 } 6888 6889 void MarkRefsIntoVerifyClosure::do_oop(oop obj) { 6890 // if p points into _span, then mark corresponding bit in _markBitMap 6891 assert(obj->is_oop(), "expected an oop"); 6892 HeapWord* addr = (HeapWord*)obj; 6893 if (_span.contains(addr)) { 6894 _verification_bm->mark(addr); 6895 if (!_cms_bm->isMarked(addr)) { 6896 oop(addr)->print(); 6897 gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)", addr); 6898 fatal("... aborting"); 6899 } 6900 } 6901 } 6902 6903 void MarkRefsIntoVerifyClosure::do_oop(oop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); } 6904 void MarkRefsIntoVerifyClosure::do_oop(narrowOop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); } 6905 6906 ////////////////////////////////////////////////// 6907 // MarkRefsIntoAndScanClosure 6908 ////////////////////////////////////////////////// 6909 6910 MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span, 6911 ReferenceProcessor* rp, 6912 CMSBitMap* bit_map, 6913 CMSBitMap* mod_union_table, 6914 CMSMarkStack* mark_stack, 6915 CMSCollector* collector, 6916 bool should_yield, 6917 bool concurrent_precleaning): 6918 _collector(collector), 6919 _span(span), 6920 _bit_map(bit_map), 6921 _mark_stack(mark_stack), 6922 _pushAndMarkClosure(collector, span, rp, bit_map, mod_union_table, 6923 mark_stack, concurrent_precleaning), 6924 _yield(should_yield), 6925 _concurrent_precleaning(concurrent_precleaning), 6926 _freelistLock(NULL) 6927 { 6928 _ref_processor = rp; 6929 assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL"); 6930 } 6931 6932 // This closure is used to mark refs into the CMS generation at the 6933 // second (final) checkpoint, and to scan and transitively follow 6934 // the unmarked oops. It is also used during the concurrent precleaning 6935 // phase while scanning objects on dirty cards in the CMS generation. 6936 // The marks are made in the marking bit map and the marking stack is 6937 // used for keeping the (newly) grey objects during the scan. 6938 // The parallel version (Par_...) appears further below. 6939 void MarkRefsIntoAndScanClosure::do_oop(oop obj) { 6940 if (obj != NULL) { 6941 assert(obj->is_oop(), "expected an oop"); 6942 HeapWord* addr = (HeapWord*)obj; 6943 assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)"); 6944 assert(_collector->overflow_list_is_empty(), 6945 "overflow list should be empty"); 6946 if (_span.contains(addr) && 6947 !_bit_map->isMarked(addr)) { 6948 // mark bit map (object is now grey) 6949 _bit_map->mark(addr); 6950 // push on marking stack (stack should be empty), and drain the 6951 // stack by applying this closure to the oops in the oops popped 6952 // from the stack (i.e. blacken the grey objects) 6953 bool res = _mark_stack->push(obj); 6954 assert(res, "Should have space to push on empty stack"); 6955 do { 6956 oop new_oop = _mark_stack->pop(); 6957 assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop"); 6958 assert(_bit_map->isMarked((HeapWord*)new_oop), 6959 "only grey objects on this stack"); 6960 // iterate over the oops in this oop, marking and pushing 6961 // the ones in CMS heap (i.e. in _span). 6962 new_oop->oop_iterate(&_pushAndMarkClosure); 6963 // check if it's time to yield 6964 do_yield_check(); 6965 } while (!_mark_stack->isEmpty() || 6966 (!_concurrent_precleaning && take_from_overflow_list())); 6967 // if marking stack is empty, and we are not doing this 6968 // during precleaning, then check the overflow list 6969 } 6970 assert(_mark_stack->isEmpty(), "post-condition (eager drainage)"); 6971 assert(_collector->overflow_list_is_empty(), 6972 "overflow list was drained above"); 6973 // We could restore evacuated mark words, if any, used for 6974 // overflow list links here because the overflow list is 6975 // provably empty here. That would reduce the maximum 6976 // size requirements for preserved_{oop,mark}_stack. 6977 // But we'll just postpone it until we are all done 6978 // so we can just stream through. 6979 if (!_concurrent_precleaning && CMSOverflowEarlyRestoration) { 6980 _collector->restore_preserved_marks_if_any(); 6981 assert(_collector->no_preserved_marks(), "No preserved marks"); 6982 } 6983 assert(!CMSOverflowEarlyRestoration || _collector->no_preserved_marks(), 6984 "All preserved marks should have been restored above"); 6985 } 6986 } 6987 6988 void MarkRefsIntoAndScanClosure::do_oop(oop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); } 6989 void MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); } 6990 6991 void MarkRefsIntoAndScanClosure::do_yield_work() { 6992 assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 6993 "CMS thread should hold CMS token"); 6994 assert_lock_strong(_freelistLock); 6995 assert_lock_strong(_bit_map->lock()); 6996 // relinquish the free_list_lock and bitMaplock() 6997 _bit_map->lock()->unlock(); 6998 _freelistLock->unlock(); 6999 ConcurrentMarkSweepThread::desynchronize(true); 7000 ConcurrentMarkSweepThread::acknowledge_yield_request(); 7001 _collector->stopTimer(); 7002 GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr()); 7003 if (PrintCMSStatistics != 0) { 7004 _collector->incrementYields(); 7005 } 7006 _collector->icms_wait(); 7007 7008 // See the comment in coordinator_yield() 7009 for (unsigned i = 0; 7010 i < CMSYieldSleepCount && 7011 ConcurrentMarkSweepThread::should_yield() && 7012 !CMSCollector::foregroundGCIsActive(); 7013 ++i) { 7014 os::sleep(Thread::current(), 1, false); 7015 ConcurrentMarkSweepThread::acknowledge_yield_request(); 7016 } 7017 7018 ConcurrentMarkSweepThread::synchronize(true); 7019 _freelistLock->lock_without_safepoint_check(); 7020 _bit_map->lock()->lock_without_safepoint_check(); 7021 _collector->startTimer(); 7022 } 7023 7024 /////////////////////////////////////////////////////////// 7025 // Par_MarkRefsIntoAndScanClosure: a parallel version of 7026 // MarkRefsIntoAndScanClosure 7027 /////////////////////////////////////////////////////////// 7028 Par_MarkRefsIntoAndScanClosure::Par_MarkRefsIntoAndScanClosure( 7029 CMSCollector* collector, MemRegion span, ReferenceProcessor* rp, 7030 CMSBitMap* bit_map, OopTaskQueue* work_queue): 7031 _span(span), 7032 _bit_map(bit_map), 7033 _work_queue(work_queue), 7034 _low_water_mark(MIN2((uint)(work_queue->max_elems()/4), 7035 (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads))), 7036 _par_pushAndMarkClosure(collector, span, rp, bit_map, work_queue) 7037 { 7038 _ref_processor = rp; 7039 assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL"); 7040 } 7041 7042 // This closure is used to mark refs into the CMS generation at the 7043 // second (final) checkpoint, and to scan and transitively follow 7044 // the unmarked oops. The marks are made in the marking bit map and 7045 // the work_queue is used for keeping the (newly) grey objects during 7046 // the scan phase whence they are also available for stealing by parallel 7047 // threads. Since the marking bit map is shared, updates are 7048 // synchronized (via CAS). 7049 void Par_MarkRefsIntoAndScanClosure::do_oop(oop obj) { 7050 if (obj != NULL) { 7051 // Ignore mark word because this could be an already marked oop 7052 // that may be chained at the end of the overflow list. 7053 assert(obj->is_oop(true), "expected an oop"); 7054 HeapWord* addr = (HeapWord*)obj; 7055 if (_span.contains(addr) && 7056 !_bit_map->isMarked(addr)) { 7057 // mark bit map (object will become grey): 7058 // It is possible for several threads to be 7059 // trying to "claim" this object concurrently; 7060 // the unique thread that succeeds in marking the 7061 // object first will do the subsequent push on 7062 // to the work queue (or overflow list). 7063 if (_bit_map->par_mark(addr)) { 7064 // push on work_queue (which may not be empty), and trim the 7065 // queue to an appropriate length by applying this closure to 7066 // the oops in the oops popped from the stack (i.e. blacken the 7067 // grey objects) 7068 bool res = _work_queue->push(obj); 7069 assert(res, "Low water mark should be less than capacity?"); 7070 trim_queue(_low_water_mark); 7071 } // Else, another thread claimed the object 7072 } 7073 } 7074 } 7075 7076 void Par_MarkRefsIntoAndScanClosure::do_oop(oop* p) { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); } 7077 void Par_MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); } 7078 7079 // This closure is used to rescan the marked objects on the dirty cards 7080 // in the mod union table and the card table proper. 7081 size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m( 7082 oop p, MemRegion mr) { 7083 7084 size_t size = 0; 7085 HeapWord* addr = (HeapWord*)p; 7086 DEBUG_ONLY(_collector->verify_work_stacks_empty();) 7087 assert(_span.contains(addr), "we are scanning the CMS generation"); 7088 // check if it's time to yield 7089 if (do_yield_check()) { 7090 // We yielded for some foreground stop-world work, 7091 // and we have been asked to abort this ongoing preclean cycle. 7092 return 0; 7093 } 7094 if (_bitMap->isMarked(addr)) { 7095 // it's marked; is it potentially uninitialized? 7096 if (p->klass_or_null() != NULL) { 7097 // an initialized object; ignore mark word in verification below 7098 // since we are running concurrent with mutators 7099 assert(p->is_oop(true), "should be an oop"); 7100 if (p->is_objArray()) { 7101 // objArrays are precisely marked; restrict scanning 7102 // to dirty cards only. 7103 size = CompactibleFreeListSpace::adjustObjectSize( 7104 p->oop_iterate(_scanningClosure, mr)); 7105 } else { 7106 // A non-array may have been imprecisely marked; we need 7107 // to scan object in its entirety. 7108 size = CompactibleFreeListSpace::adjustObjectSize( 7109 p->oop_iterate(_scanningClosure)); 7110 } 7111 #ifdef ASSERT 7112 size_t direct_size = 7113 CompactibleFreeListSpace::adjustObjectSize(p->size()); 7114 assert(size == direct_size, "Inconsistency in size"); 7115 assert(size >= 3, "Necessary for Printezis marks to work"); 7116 if (!_bitMap->isMarked(addr+1)) { 7117 _bitMap->verifyNoOneBitsInRange(addr+2, addr+size); 7118 } else { 7119 _bitMap->verifyNoOneBitsInRange(addr+2, addr+size-1); 7120 assert(_bitMap->isMarked(addr+size-1), 7121 "inconsistent Printezis mark"); 7122 } 7123 #endif // ASSERT 7124 } else { 7125 // an unitialized object 7126 assert(_bitMap->isMarked(addr+1), "missing Printezis mark?"); 7127 HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2); 7128 size = pointer_delta(nextOneAddr + 1, addr); 7129 assert(size == CompactibleFreeListSpace::adjustObjectSize(size), 7130 "alignment problem"); 7131 // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass() 7132 // will dirty the card when the klass pointer is installed in the 7133 // object (signalling the completion of initialization). 7134 } 7135 } else { 7136 // Either a not yet marked object or an uninitialized object 7137 if (p->klass_or_null() == NULL) { 7138 // An uninitialized object, skip to the next card, since 7139 // we may not be able to read its P-bits yet. 7140 assert(size == 0, "Initial value"); 7141 } else { 7142 // An object not (yet) reached by marking: we merely need to 7143 // compute its size so as to go look at the next block. 7144 assert(p->is_oop(true), "should be an oop"); 7145 size = CompactibleFreeListSpace::adjustObjectSize(p->size()); 7146 } 7147 } 7148 DEBUG_ONLY(_collector->verify_work_stacks_empty();) 7149 return size; 7150 } 7151 7152 void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() { 7153 assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 7154 "CMS thread should hold CMS token"); 7155 assert_lock_strong(_freelistLock); 7156 assert_lock_strong(_bitMap->lock()); 7157 // relinquish the free_list_lock and bitMaplock() 7158 _bitMap->lock()->unlock(); 7159 _freelistLock->unlock(); 7160 ConcurrentMarkSweepThread::desynchronize(true); 7161 ConcurrentMarkSweepThread::acknowledge_yield_request(); 7162 _collector->stopTimer(); 7163 GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr()); 7164 if (PrintCMSStatistics != 0) { 7165 _collector->incrementYields(); 7166 } 7167 _collector->icms_wait(); 7168 7169 // See the comment in coordinator_yield() 7170 for (unsigned i = 0; i < CMSYieldSleepCount && 7171 ConcurrentMarkSweepThread::should_yield() && 7172 !CMSCollector::foregroundGCIsActive(); ++i) { 7173 os::sleep(Thread::current(), 1, false); 7174 ConcurrentMarkSweepThread::acknowledge_yield_request(); 7175 } 7176 7177 ConcurrentMarkSweepThread::synchronize(true); 7178 _freelistLock->lock_without_safepoint_check(); 7179 _bitMap->lock()->lock_without_safepoint_check(); 7180 _collector->startTimer(); 7181 } 7182 7183 7184 ////////////////////////////////////////////////////////////////// 7185 // SurvivorSpacePrecleanClosure 7186 ////////////////////////////////////////////////////////////////// 7187 // This (single-threaded) closure is used to preclean the oops in 7188 // the survivor spaces. 7189 size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) { 7190 7191 HeapWord* addr = (HeapWord*)p; 7192 DEBUG_ONLY(_collector->verify_work_stacks_empty();) 7193 assert(!_span.contains(addr), "we are scanning the survivor spaces"); 7194 assert(p->klass_or_null() != NULL, "object should be initializd"); 7195 // an initialized object; ignore mark word in verification below 7196 // since we are running concurrent with mutators 7197 assert(p->is_oop(true), "should be an oop"); 7198 // Note that we do not yield while we iterate over 7199 // the interior oops of p, pushing the relevant ones 7200 // on our marking stack. 7201 size_t size = p->oop_iterate(_scanning_closure); 7202 do_yield_check(); 7203 // Observe that below, we do not abandon the preclean 7204 // phase as soon as we should; rather we empty the 7205 // marking stack before returning. This is to satisfy 7206 // some existing assertions. In general, it may be a 7207 // good idea to abort immediately and complete the marking 7208 // from the grey objects at a later time. 7209 while (!_mark_stack->isEmpty()) { 7210 oop new_oop = _mark_stack->pop(); 7211 assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop"); 7212 assert(_bit_map->isMarked((HeapWord*)new_oop), 7213 "only grey objects on this stack"); 7214 // iterate over the oops in this oop, marking and pushing 7215 // the ones in CMS heap (i.e. in _span). 7216 new_oop->oop_iterate(_scanning_closure); 7217 // check if it's time to yield 7218 do_yield_check(); 7219 } 7220 unsigned int after_count = 7221 GenCollectedHeap::heap()->total_collections(); 7222 bool abort = (_before_count != after_count) || 7223 _collector->should_abort_preclean(); 7224 return abort ? 0 : size; 7225 } 7226 7227 void SurvivorSpacePrecleanClosure::do_yield_work() { 7228 assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 7229 "CMS thread should hold CMS token"); 7230 assert_lock_strong(_bit_map->lock()); 7231 // Relinquish the bit map lock 7232 _bit_map->lock()->unlock(); 7233 ConcurrentMarkSweepThread::desynchronize(true); 7234 ConcurrentMarkSweepThread::acknowledge_yield_request(); 7235 _collector->stopTimer(); 7236 GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr()); 7237 if (PrintCMSStatistics != 0) { 7238 _collector->incrementYields(); 7239 } 7240 _collector->icms_wait(); 7241 7242 // See the comment in coordinator_yield() 7243 for (unsigned i = 0; i < CMSYieldSleepCount && 7244 ConcurrentMarkSweepThread::should_yield() && 7245 !CMSCollector::foregroundGCIsActive(); ++i) { 7246 os::sleep(Thread::current(), 1, false); 7247 ConcurrentMarkSweepThread::acknowledge_yield_request(); 7248 } 7249 7250 ConcurrentMarkSweepThread::synchronize(true); 7251 _bit_map->lock()->lock_without_safepoint_check(); 7252 _collector->startTimer(); 7253 } 7254 7255 // This closure is used to rescan the marked objects on the dirty cards 7256 // in the mod union table and the card table proper. In the parallel 7257 // case, although the bitMap is shared, we do a single read so the 7258 // isMarked() query is "safe". 7259 bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) { 7260 // Ignore mark word because we are running concurrent with mutators 7261 assert(p->is_oop_or_null(true), "expected an oop or null"); 7262 HeapWord* addr = (HeapWord*)p; 7263 assert(_span.contains(addr), "we are scanning the CMS generation"); 7264 bool is_obj_array = false; 7265 #ifdef ASSERT 7266 if (!_parallel) { 7267 assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)"); 7268 assert(_collector->overflow_list_is_empty(), 7269 "overflow list should be empty"); 7270 7271 } 7272 #endif // ASSERT 7273 if (_bit_map->isMarked(addr)) { 7274 // Obj arrays are precisely marked, non-arrays are not; 7275 // so we scan objArrays precisely and non-arrays in their 7276 // entirety. 7277 if (p->is_objArray()) { 7278 is_obj_array = true; 7279 if (_parallel) { 7280 p->oop_iterate(_par_scan_closure, mr); 7281 } else { 7282 p->oop_iterate(_scan_closure, mr); 7283 } 7284 } else { 7285 if (_parallel) { 7286 p->oop_iterate(_par_scan_closure); 7287 } else { 7288 p->oop_iterate(_scan_closure); 7289 } 7290 } 7291 } 7292 #ifdef ASSERT 7293 if (!_parallel) { 7294 assert(_mark_stack->isEmpty(), "post-condition (eager drainage)"); 7295 assert(_collector->overflow_list_is_empty(), 7296 "overflow list should be empty"); 7297 7298 } 7299 #endif // ASSERT 7300 return is_obj_array; 7301 } 7302 7303 MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector, 7304 MemRegion span, 7305 CMSBitMap* bitMap, CMSMarkStack* markStack, 7306 bool should_yield, bool verifying): 7307 _collector(collector), 7308 _span(span), 7309 _bitMap(bitMap), 7310 _mut(&collector->_modUnionTable), 7311 _markStack(markStack), 7312 _yield(should_yield), 7313 _skipBits(0) 7314 { 7315 assert(_markStack->isEmpty(), "stack should be empty"); 7316 _finger = _bitMap->startWord(); 7317 _threshold = _finger; 7318 assert(_collector->_restart_addr == NULL, "Sanity check"); 7319 assert(_span.contains(_finger), "Out of bounds _finger?"); 7320 DEBUG_ONLY(_verifying = verifying;) 7321 } 7322 7323 void MarkFromRootsClosure::reset(HeapWord* addr) { 7324 assert(_markStack->isEmpty(), "would cause duplicates on stack"); 7325 assert(_span.contains(addr), "Out of bounds _finger?"); 7326 _finger = addr; 7327 _threshold = (HeapWord*)round_to( 7328 (intptr_t)_finger, CardTableModRefBS::card_size); 7329 } 7330 7331 // Should revisit to see if this should be restructured for 7332 // greater efficiency. 7333 bool MarkFromRootsClosure::do_bit(size_t offset) { 7334 if (_skipBits > 0) { 7335 _skipBits--; 7336 return true; 7337 } 7338 // convert offset into a HeapWord* 7339 HeapWord* addr = _bitMap->startWord() + offset; 7340 assert(_bitMap->endWord() && addr < _bitMap->endWord(), 7341 "address out of range"); 7342 assert(_bitMap->isMarked(addr), "tautology"); 7343 if (_bitMap->isMarked(addr+1)) { 7344 // this is an allocated but not yet initialized object 7345 assert(_skipBits == 0, "tautology"); 7346 _skipBits = 2; // skip next two marked bits ("Printezis-marks") 7347 oop p = oop(addr); 7348 if (p->klass_or_null() == NULL) { 7349 DEBUG_ONLY(if (!_verifying) {) 7350 // We re-dirty the cards on which this object lies and increase 7351 // the _threshold so that we'll come back to scan this object 7352 // during the preclean or remark phase. (CMSCleanOnEnter) 7353 if (CMSCleanOnEnter) { 7354 size_t sz = _collector->block_size_using_printezis_bits(addr); 7355 HeapWord* end_card_addr = (HeapWord*)round_to( 7356 (intptr_t)(addr+sz), CardTableModRefBS::card_size); 7357 MemRegion redirty_range = MemRegion(addr, end_card_addr); 7358 assert(!redirty_range.is_empty(), "Arithmetical tautology"); 7359 // Bump _threshold to end_card_addr; note that 7360 // _threshold cannot possibly exceed end_card_addr, anyhow. 7361 // This prevents future clearing of the card as the scan proceeds 7362 // to the right. 7363 assert(_threshold <= end_card_addr, 7364 "Because we are just scanning into this object"); 7365 if (_threshold < end_card_addr) { 7366 _threshold = end_card_addr; 7367 } 7368 if (p->klass_or_null() != NULL) { 7369 // Redirty the range of cards... 7370 _mut->mark_range(redirty_range); 7371 } // ...else the setting of klass will dirty the card anyway. 7372 } 7373 DEBUG_ONLY(}) 7374 return true; 7375 } 7376 } 7377 scanOopsInOop(addr); 7378 return true; 7379 } 7380 7381 // We take a break if we've been at this for a while, 7382 // so as to avoid monopolizing the locks involved. 7383 void MarkFromRootsClosure::do_yield_work() { 7384 // First give up the locks, then yield, then re-lock 7385 // We should probably use a constructor/destructor idiom to 7386 // do this unlock/lock or modify the MutexUnlocker class to 7387 // serve our purpose. XXX 7388 assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 7389 "CMS thread should hold CMS token"); 7390 assert_lock_strong(_bitMap->lock()); 7391 _bitMap->lock()->unlock(); 7392 ConcurrentMarkSweepThread::desynchronize(true); 7393 ConcurrentMarkSweepThread::acknowledge_yield_request(); 7394 _collector->stopTimer(); 7395 GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr()); 7396 if (PrintCMSStatistics != 0) { 7397 _collector->incrementYields(); 7398 } 7399 _collector->icms_wait(); 7400 7401 // See the comment in coordinator_yield() 7402 for (unsigned i = 0; i < CMSYieldSleepCount && 7403 ConcurrentMarkSweepThread::should_yield() && 7404 !CMSCollector::foregroundGCIsActive(); ++i) { 7405 os::sleep(Thread::current(), 1, false); 7406 ConcurrentMarkSweepThread::acknowledge_yield_request(); 7407 } 7408 7409 ConcurrentMarkSweepThread::synchronize(true); 7410 _bitMap->lock()->lock_without_safepoint_check(); 7411 _collector->startTimer(); 7412 } 7413 7414 void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) { 7415 assert(_bitMap->isMarked(ptr), "expected bit to be set"); 7416 assert(_markStack->isEmpty(), 7417 "should drain stack to limit stack usage"); 7418 // convert ptr to an oop preparatory to scanning 7419 oop obj = oop(ptr); 7420 // Ignore mark word in verification below, since we 7421 // may be running concurrent with mutators. 7422 assert(obj->is_oop(true), "should be an oop"); 7423 assert(_finger <= ptr, "_finger runneth ahead"); 7424 // advance the finger to right end of this object 7425 _finger = ptr + obj->size(); 7426 assert(_finger > ptr, "we just incremented it above"); 7427 // On large heaps, it may take us some time to get through 7428 // the marking phase (especially if running iCMS). During 7429 // this time it's possible that a lot of mutations have 7430 // accumulated in the card table and the mod union table -- 7431 // these mutation records are redundant until we have 7432 // actually traced into the corresponding card. 7433 // Here, we check whether advancing the finger would make 7434 // us cross into a new card, and if so clear corresponding 7435 // cards in the MUT (preclean them in the card-table in the 7436 // future). 7437 7438 DEBUG_ONLY(if (!_verifying) {) 7439 // The clean-on-enter optimization is disabled by default, 7440 // until we fix 6178663. 7441 if (CMSCleanOnEnter && (_finger > _threshold)) { 7442 // [_threshold, _finger) represents the interval 7443 // of cards to be cleared in MUT (or precleaned in card table). 7444 // The set of cards to be cleared is all those that overlap 7445 // with the interval [_threshold, _finger); note that 7446 // _threshold is always kept card-aligned but _finger isn't 7447 // always card-aligned. 7448 HeapWord* old_threshold = _threshold; 7449 assert(old_threshold == (HeapWord*)round_to( 7450 (intptr_t)old_threshold, CardTableModRefBS::card_size), 7451 "_threshold should always be card-aligned"); 7452 _threshold = (HeapWord*)round_to( 7453 (intptr_t)_finger, CardTableModRefBS::card_size); 7454 MemRegion mr(old_threshold, _threshold); 7455 assert(!mr.is_empty(), "Control point invariant"); 7456 assert(_span.contains(mr), "Should clear within span"); 7457 _mut->clear_range(mr); 7458 } 7459 DEBUG_ONLY(}) 7460 // Note: the finger doesn't advance while we drain 7461 // the stack below. 7462 PushOrMarkClosure pushOrMarkClosure(_collector, 7463 _span, _bitMap, _markStack, 7464 _finger, this); 7465 bool res = _markStack->push(obj); 7466 assert(res, "Empty non-zero size stack should have space for single push"); 7467 while (!_markStack->isEmpty()) { 7468 oop new_oop = _markStack->pop(); 7469 // Skip verifying header mark word below because we are 7470 // running concurrent with mutators. 7471 assert(new_oop->is_oop(true), "Oops! expected to pop an oop"); 7472 // now scan this oop's oops 7473 new_oop->oop_iterate(&pushOrMarkClosure); 7474 do_yield_check(); 7475 } 7476 assert(_markStack->isEmpty(), "tautology, emphasizing post-condition"); 7477 } 7478 7479 Par_MarkFromRootsClosure::Par_MarkFromRootsClosure(CMSConcMarkingTask* task, 7480 CMSCollector* collector, MemRegion span, 7481 CMSBitMap* bit_map, 7482 OopTaskQueue* work_queue, 7483 CMSMarkStack* overflow_stack, 7484 bool should_yield): 7485 _collector(collector), 7486 _whole_span(collector->_span), 7487 _span(span), 7488 _bit_map(bit_map), 7489 _mut(&collector->_modUnionTable), 7490 _work_queue(work_queue), 7491 _overflow_stack(overflow_stack), 7492 _yield(should_yield), 7493 _skip_bits(0), 7494 _task(task) 7495 { 7496 assert(_work_queue->size() == 0, "work_queue should be empty"); 7497 _finger = span.start(); 7498 _threshold = _finger; // XXX Defer clear-on-enter optimization for now 7499 assert(_span.contains(_finger), "Out of bounds _finger?"); 7500 } 7501 7502 // Should revisit to see if this should be restructured for 7503 // greater efficiency. 7504 bool Par_MarkFromRootsClosure::do_bit(size_t offset) { 7505 if (_skip_bits > 0) { 7506 _skip_bits--; 7507 return true; 7508 } 7509 // convert offset into a HeapWord* 7510 HeapWord* addr = _bit_map->startWord() + offset; 7511 assert(_bit_map->endWord() && addr < _bit_map->endWord(), 7512 "address out of range"); 7513 assert(_bit_map->isMarked(addr), "tautology"); 7514 if (_bit_map->isMarked(addr+1)) { 7515 // this is an allocated object that might not yet be initialized 7516 assert(_skip_bits == 0, "tautology"); 7517 _skip_bits = 2; // skip next two marked bits ("Printezis-marks") 7518 oop p = oop(addr); 7519 if (p->klass_or_null() == NULL) { 7520 // in the case of Clean-on-Enter optimization, redirty card 7521 // and avoid clearing card by increasing the threshold. 7522 return true; 7523 } 7524 } 7525 scan_oops_in_oop(addr); 7526 return true; 7527 } 7528 7529 void Par_MarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) { 7530 assert(_bit_map->isMarked(ptr), "expected bit to be set"); 7531 // Should we assert that our work queue is empty or 7532 // below some drain limit? 7533 assert(_work_queue->size() == 0, 7534 "should drain stack to limit stack usage"); 7535 // convert ptr to an oop preparatory to scanning 7536 oop obj = oop(ptr); 7537 // Ignore mark word in verification below, since we 7538 // may be running concurrent with mutators. 7539 assert(obj->is_oop(true), "should be an oop"); 7540 assert(_finger <= ptr, "_finger runneth ahead"); 7541 // advance the finger to right end of this object 7542 _finger = ptr + obj->size(); 7543 assert(_finger > ptr, "we just incremented it above"); 7544 // On large heaps, it may take us some time to get through 7545 // the marking phase (especially if running iCMS). During 7546 // this time it's possible that a lot of mutations have 7547 // accumulated in the card table and the mod union table -- 7548 // these mutation records are redundant until we have 7549 // actually traced into the corresponding card. 7550 // Here, we check whether advancing the finger would make 7551 // us cross into a new card, and if so clear corresponding 7552 // cards in the MUT (preclean them in the card-table in the 7553 // future). 7554 7555 // The clean-on-enter optimization is disabled by default, 7556 // until we fix 6178663. 7557 if (CMSCleanOnEnter && (_finger > _threshold)) { 7558 // [_threshold, _finger) represents the interval 7559 // of cards to be cleared in MUT (or precleaned in card table). 7560 // The set of cards to be cleared is all those that overlap 7561 // with the interval [_threshold, _finger); note that 7562 // _threshold is always kept card-aligned but _finger isn't 7563 // always card-aligned. 7564 HeapWord* old_threshold = _threshold; 7565 assert(old_threshold == (HeapWord*)round_to( 7566 (intptr_t)old_threshold, CardTableModRefBS::card_size), 7567 "_threshold should always be card-aligned"); 7568 _threshold = (HeapWord*)round_to( 7569 (intptr_t)_finger, CardTableModRefBS::card_size); 7570 MemRegion mr(old_threshold, _threshold); 7571 assert(!mr.is_empty(), "Control point invariant"); 7572 assert(_span.contains(mr), "Should clear within span"); // _whole_span ?? 7573 _mut->clear_range(mr); 7574 } 7575 7576 // Note: the local finger doesn't advance while we drain 7577 // the stack below, but the global finger sure can and will. 7578 HeapWord** gfa = _task->global_finger_addr(); 7579 Par_PushOrMarkClosure pushOrMarkClosure(_collector, 7580 _span, _bit_map, 7581 _work_queue, 7582 _overflow_stack, 7583 _finger, 7584 gfa, this); 7585 bool res = _work_queue->push(obj); // overflow could occur here 7586 assert(res, "Will hold once we use workqueues"); 7587 while (true) { 7588 oop new_oop; 7589 if (!_work_queue->pop_local(new_oop)) { 7590 // We emptied our work_queue; check if there's stuff that can 7591 // be gotten from the overflow stack. 7592 if (CMSConcMarkingTask::get_work_from_overflow_stack( 7593 _overflow_stack, _work_queue)) { 7594 do_yield_check(); 7595 continue; 7596 } else { // done 7597 break; 7598 } 7599 } 7600 // Skip verifying header mark word below because we are 7601 // running concurrent with mutators. 7602 assert(new_oop->is_oop(true), "Oops! expected to pop an oop"); 7603 // now scan this oop's oops 7604 new_oop->oop_iterate(&pushOrMarkClosure); 7605 do_yield_check(); 7606 } 7607 assert(_work_queue->size() == 0, "tautology, emphasizing post-condition"); 7608 } 7609 7610 // Yield in response to a request from VM Thread or 7611 // from mutators. 7612 void Par_MarkFromRootsClosure::do_yield_work() { 7613 assert(_task != NULL, "sanity"); 7614 _task->yield(); 7615 } 7616 7617 // A variant of the above used for verifying CMS marking work. 7618 MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector, 7619 MemRegion span, 7620 CMSBitMap* verification_bm, CMSBitMap* cms_bm, 7621 CMSMarkStack* mark_stack): 7622 _collector(collector), 7623 _span(span), 7624 _verification_bm(verification_bm), 7625 _cms_bm(cms_bm), 7626 _mark_stack(mark_stack), 7627 _pam_verify_closure(collector, span, verification_bm, cms_bm, 7628 mark_stack) 7629 { 7630 assert(_mark_stack->isEmpty(), "stack should be empty"); 7631 _finger = _verification_bm->startWord(); 7632 assert(_collector->_restart_addr == NULL, "Sanity check"); 7633 assert(_span.contains(_finger), "Out of bounds _finger?"); 7634 } 7635 7636 void MarkFromRootsVerifyClosure::reset(HeapWord* addr) { 7637 assert(_mark_stack->isEmpty(), "would cause duplicates on stack"); 7638 assert(_span.contains(addr), "Out of bounds _finger?"); 7639 _finger = addr; 7640 } 7641 7642 // Should revisit to see if this should be restructured for 7643 // greater efficiency. 7644 bool MarkFromRootsVerifyClosure::do_bit(size_t offset) { 7645 // convert offset into a HeapWord* 7646 HeapWord* addr = _verification_bm->startWord() + offset; 7647 assert(_verification_bm->endWord() && addr < _verification_bm->endWord(), 7648 "address out of range"); 7649 assert(_verification_bm->isMarked(addr), "tautology"); 7650 assert(_cms_bm->isMarked(addr), "tautology"); 7651 7652 assert(_mark_stack->isEmpty(), 7653 "should drain stack to limit stack usage"); 7654 // convert addr to an oop preparatory to scanning 7655 oop obj = oop(addr); 7656 assert(obj->is_oop(), "should be an oop"); 7657 assert(_finger <= addr, "_finger runneth ahead"); 7658 // advance the finger to right end of this object 7659 _finger = addr + obj->size(); 7660 assert(_finger > addr, "we just incremented it above"); 7661 // Note: the finger doesn't advance while we drain 7662 // the stack below. 7663 bool res = _mark_stack->push(obj); 7664 assert(res, "Empty non-zero size stack should have space for single push"); 7665 while (!_mark_stack->isEmpty()) { 7666 oop new_oop = _mark_stack->pop(); 7667 assert(new_oop->is_oop(), "Oops! expected to pop an oop"); 7668 // now scan this oop's oops 7669 new_oop->oop_iterate(&_pam_verify_closure); 7670 } 7671 assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition"); 7672 return true; 7673 } 7674 7675 PushAndMarkVerifyClosure::PushAndMarkVerifyClosure( 7676 CMSCollector* collector, MemRegion span, 7677 CMSBitMap* verification_bm, CMSBitMap* cms_bm, 7678 CMSMarkStack* mark_stack): 7679 CMSOopClosure(collector->ref_processor()), 7680 _collector(collector), 7681 _span(span), 7682 _verification_bm(verification_bm), 7683 _cms_bm(cms_bm), 7684 _mark_stack(mark_stack) 7685 { } 7686 7687 void PushAndMarkVerifyClosure::do_oop(oop* p) { PushAndMarkVerifyClosure::do_oop_work(p); } 7688 void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); } 7689 7690 // Upon stack overflow, we discard (part of) the stack, 7691 // remembering the least address amongst those discarded 7692 // in CMSCollector's _restart_address. 7693 void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) { 7694 // Remember the least grey address discarded 7695 HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost); 7696 _collector->lower_restart_addr(ra); 7697 _mark_stack->reset(); // discard stack contents 7698 _mark_stack->expand(); // expand the stack if possible 7699 } 7700 7701 void PushAndMarkVerifyClosure::do_oop(oop obj) { 7702 assert(obj->is_oop_or_null(), "expected an oop or NULL"); 7703 HeapWord* addr = (HeapWord*)obj; 7704 if (_span.contains(addr) && !_verification_bm->isMarked(addr)) { 7705 // Oop lies in _span and isn't yet grey or black 7706 _verification_bm->mark(addr); // now grey 7707 if (!_cms_bm->isMarked(addr)) { 7708 oop(addr)->print(); 7709 gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)", 7710 addr); 7711 fatal("... aborting"); 7712 } 7713 7714 if (!_mark_stack->push(obj)) { // stack overflow 7715 if (PrintCMSStatistics != 0) { 7716 gclog_or_tty->print_cr("CMS marking stack overflow (benign) at " 7717 SIZE_FORMAT, _mark_stack->capacity()); 7718 } 7719 assert(_mark_stack->isFull(), "Else push should have succeeded"); 7720 handle_stack_overflow(addr); 7721 } 7722 // anything including and to the right of _finger 7723 // will be scanned as we iterate over the remainder of the 7724 // bit map 7725 } 7726 } 7727 7728 PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector, 7729 MemRegion span, 7730 CMSBitMap* bitMap, CMSMarkStack* markStack, 7731 HeapWord* finger, MarkFromRootsClosure* parent) : 7732 CMSOopClosure(collector->ref_processor()), 7733 _collector(collector), 7734 _span(span), 7735 _bitMap(bitMap), 7736 _markStack(markStack), 7737 _finger(finger), 7738 _parent(parent) 7739 { } 7740 7741 Par_PushOrMarkClosure::Par_PushOrMarkClosure(CMSCollector* collector, 7742 MemRegion span, 7743 CMSBitMap* bit_map, 7744 OopTaskQueue* work_queue, 7745 CMSMarkStack* overflow_stack, 7746 HeapWord* finger, 7747 HeapWord** global_finger_addr, 7748 Par_MarkFromRootsClosure* parent) : 7749 CMSOopClosure(collector->ref_processor()), 7750 _collector(collector), 7751 _whole_span(collector->_span), 7752 _span(span), 7753 _bit_map(bit_map), 7754 _work_queue(work_queue), 7755 _overflow_stack(overflow_stack), 7756 _finger(finger), 7757 _global_finger_addr(global_finger_addr), 7758 _parent(parent) 7759 { } 7760 7761 // Assumes thread-safe access by callers, who are 7762 // responsible for mutual exclusion. 7763 void CMSCollector::lower_restart_addr(HeapWord* low) { 7764 assert(_span.contains(low), "Out of bounds addr"); 7765 if (_restart_addr == NULL) { 7766 _restart_addr = low; 7767 } else { 7768 _restart_addr = MIN2(_restart_addr, low); 7769 } 7770 } 7771 7772 // Upon stack overflow, we discard (part of) the stack, 7773 // remembering the least address amongst those discarded 7774 // in CMSCollector's _restart_address. 7775 void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) { 7776 // Remember the least grey address discarded 7777 HeapWord* ra = (HeapWord*)_markStack->least_value(lost); 7778 _collector->lower_restart_addr(ra); 7779 _markStack->reset(); // discard stack contents 7780 _markStack->expand(); // expand the stack if possible 7781 } 7782 7783 // Upon stack overflow, we discard (part of) the stack, 7784 // remembering the least address amongst those discarded 7785 // in CMSCollector's _restart_address. 7786 void Par_PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) { 7787 // We need to do this under a mutex to prevent other 7788 // workers from interfering with the work done below. 7789 MutexLockerEx ml(_overflow_stack->par_lock(), 7790 Mutex::_no_safepoint_check_flag); 7791 // Remember the least grey address discarded 7792 HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost); 7793 _collector->lower_restart_addr(ra); 7794 _overflow_stack->reset(); // discard stack contents 7795 _overflow_stack->expand(); // expand the stack if possible 7796 } 7797 7798 void CMKlassClosure::do_klass(Klass* k) { 7799 assert(_oop_closure != NULL, "Not initialized?"); 7800 k->oops_do(_oop_closure); 7801 } 7802 7803 void PushOrMarkClosure::do_oop(oop obj) { 7804 // Ignore mark word because we are running concurrent with mutators. 7805 assert(obj->is_oop_or_null(true), "expected an oop or NULL"); 7806 HeapWord* addr = (HeapWord*)obj; 7807 if (_span.contains(addr) && !_bitMap->isMarked(addr)) { 7808 // Oop lies in _span and isn't yet grey or black 7809 _bitMap->mark(addr); // now grey 7810 if (addr < _finger) { 7811 // the bit map iteration has already either passed, or 7812 // sampled, this bit in the bit map; we'll need to 7813 // use the marking stack to scan this oop's oops. 7814 bool simulate_overflow = false; 7815 NOT_PRODUCT( 7816 if (CMSMarkStackOverflowALot && 7817 _collector->simulate_overflow()) { 7818 // simulate a stack overflow 7819 simulate_overflow = true; 7820 } 7821 ) 7822 if (simulate_overflow || !_markStack->push(obj)) { // stack overflow 7823 if (PrintCMSStatistics != 0) { 7824 gclog_or_tty->print_cr("CMS marking stack overflow (benign) at " 7825 SIZE_FORMAT, _markStack->capacity()); 7826 } 7827 assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded"); 7828 handle_stack_overflow(addr); 7829 } 7830 } 7831 // anything including and to the right of _finger 7832 // will be scanned as we iterate over the remainder of the 7833 // bit map 7834 do_yield_check(); 7835 } 7836 } 7837 7838 void PushOrMarkClosure::do_oop(oop* p) { PushOrMarkClosure::do_oop_work(p); } 7839 void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); } 7840 7841 void Par_PushOrMarkClosure::do_oop(oop obj) { 7842 // Ignore mark word because we are running concurrent with mutators. 7843 assert(obj->is_oop_or_null(true), "expected an oop or NULL"); 7844 HeapWord* addr = (HeapWord*)obj; 7845 if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) { 7846 // Oop lies in _span and isn't yet grey or black 7847 // We read the global_finger (volatile read) strictly after marking oop 7848 bool res = _bit_map->par_mark(addr); // now grey 7849 volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr; 7850 // Should we push this marked oop on our stack? 7851 // -- if someone else marked it, nothing to do 7852 // -- if target oop is above global finger nothing to do 7853 // -- if target oop is in chunk and above local finger 7854 // then nothing to do 7855 // -- else push on work queue 7856 if ( !res // someone else marked it, they will deal with it 7857 || (addr >= *gfa) // will be scanned in a later task 7858 || (_span.contains(addr) && addr >= _finger)) { // later in this chunk 7859 return; 7860 } 7861 // the bit map iteration has already either passed, or 7862 // sampled, this bit in the bit map; we'll need to 7863 // use the marking stack to scan this oop's oops. 7864 bool simulate_overflow = false; 7865 NOT_PRODUCT( 7866 if (CMSMarkStackOverflowALot && 7867 _collector->simulate_overflow()) { 7868 // simulate a stack overflow 7869 simulate_overflow = true; 7870 } 7871 ) 7872 if (simulate_overflow || 7873 !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) { 7874 // stack overflow 7875 if (PrintCMSStatistics != 0) { 7876 gclog_or_tty->print_cr("CMS marking stack overflow (benign) at " 7877 SIZE_FORMAT, _overflow_stack->capacity()); 7878 } 7879 // We cannot assert that the overflow stack is full because 7880 // it may have been emptied since. 7881 assert(simulate_overflow || 7882 _work_queue->size() == _work_queue->max_elems(), 7883 "Else push should have succeeded"); 7884 handle_stack_overflow(addr); 7885 } 7886 do_yield_check(); 7887 } 7888 } 7889 7890 void Par_PushOrMarkClosure::do_oop(oop* p) { Par_PushOrMarkClosure::do_oop_work(p); } 7891 void Par_PushOrMarkClosure::do_oop(narrowOop* p) { Par_PushOrMarkClosure::do_oop_work(p); } 7892 7893 PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector, 7894 MemRegion span, 7895 ReferenceProcessor* rp, 7896 CMSBitMap* bit_map, 7897 CMSBitMap* mod_union_table, 7898 CMSMarkStack* mark_stack, 7899 bool concurrent_precleaning): 7900 CMSOopClosure(rp), 7901 _collector(collector), 7902 _span(span), 7903 _bit_map(bit_map), 7904 _mod_union_table(mod_union_table), 7905 _mark_stack(mark_stack), 7906 _concurrent_precleaning(concurrent_precleaning) 7907 { 7908 assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL"); 7909 } 7910 7911 // Grey object rescan during pre-cleaning and second checkpoint phases -- 7912 // the non-parallel version (the parallel version appears further below.) 7913 void PushAndMarkClosure::do_oop(oop obj) { 7914 // Ignore mark word verification. If during concurrent precleaning, 7915 // the object monitor may be locked. If during the checkpoint 7916 // phases, the object may already have been reached by a different 7917 // path and may be at the end of the global overflow list (so 7918 // the mark word may be NULL). 7919 assert(obj->is_oop_or_null(true /* ignore mark word */), 7920 "expected an oop or NULL"); 7921 HeapWord* addr = (HeapWord*)obj; 7922 // Check if oop points into the CMS generation 7923 // and is not marked 7924 if (_span.contains(addr) && !_bit_map->isMarked(addr)) { 7925 // a white object ... 7926 _bit_map->mark(addr); // ... now grey 7927 // push on the marking stack (grey set) 7928 bool simulate_overflow = false; 7929 NOT_PRODUCT( 7930 if (CMSMarkStackOverflowALot && 7931 _collector->simulate_overflow()) { 7932 // simulate a stack overflow 7933 simulate_overflow = true; 7934 } 7935 ) 7936 if (simulate_overflow || !_mark_stack->push(obj)) { 7937 if (_concurrent_precleaning) { 7938 // During precleaning we can just dirty the appropriate card(s) 7939 // in the mod union table, thus ensuring that the object remains 7940 // in the grey set and continue. In the case of object arrays 7941 // we need to dirty all of the cards that the object spans, 7942 // since the rescan of object arrays will be limited to the 7943 // dirty cards. 7944 // Note that no one can be intefering with us in this action 7945 // of dirtying the mod union table, so no locking or atomics 7946 // are required. 7947 if (obj->is_objArray()) { 7948 size_t sz = obj->size(); 7949 HeapWord* end_card_addr = (HeapWord*)round_to( 7950 (intptr_t)(addr+sz), CardTableModRefBS::card_size); 7951 MemRegion redirty_range = MemRegion(addr, end_card_addr); 7952 assert(!redirty_range.is_empty(), "Arithmetical tautology"); 7953 _mod_union_table->mark_range(redirty_range); 7954 } else { 7955 _mod_union_table->mark(addr); 7956 } 7957 _collector->_ser_pmc_preclean_ovflw++; 7958 } else { 7959 // During the remark phase, we need to remember this oop 7960 // in the overflow list. 7961 _collector->push_on_overflow_list(obj); 7962 _collector->_ser_pmc_remark_ovflw++; 7963 } 7964 } 7965 } 7966 } 7967 7968 Par_PushAndMarkClosure::Par_PushAndMarkClosure(CMSCollector* collector, 7969 MemRegion span, 7970 ReferenceProcessor* rp, 7971 CMSBitMap* bit_map, 7972 OopTaskQueue* work_queue): 7973 CMSOopClosure(rp), 7974 _collector(collector), 7975 _span(span), 7976 _bit_map(bit_map), 7977 _work_queue(work_queue) 7978 { 7979 assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL"); 7980 } 7981 7982 void PushAndMarkClosure::do_oop(oop* p) { PushAndMarkClosure::do_oop_work(p); } 7983 void PushAndMarkClosure::do_oop(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); } 7984 7985 // Grey object rescan during second checkpoint phase -- 7986 // the parallel version. 7987 void Par_PushAndMarkClosure::do_oop(oop obj) { 7988 // In the assert below, we ignore the mark word because 7989 // this oop may point to an already visited object that is 7990 // on the overflow stack (in which case the mark word has 7991 // been hijacked for chaining into the overflow stack -- 7992 // if this is the last object in the overflow stack then 7993 // its mark word will be NULL). Because this object may 7994 // have been subsequently popped off the global overflow 7995 // stack, and the mark word possibly restored to the prototypical 7996 // value, by the time we get to examined this failing assert in 7997 // the debugger, is_oop_or_null(false) may subsequently start 7998 // to hold. 7999 assert(obj->is_oop_or_null(true), 8000 "expected an oop or NULL"); 8001 HeapWord* addr = (HeapWord*)obj; 8002 // Check if oop points into the CMS generation 8003 // and is not marked 8004 if (_span.contains(addr) && !_bit_map->isMarked(addr)) { 8005 // a white object ... 8006 // If we manage to "claim" the object, by being the 8007 // first thread to mark it, then we push it on our 8008 // marking stack 8009 if (_bit_map->par_mark(addr)) { // ... now grey 8010 // push on work queue (grey set) 8011 bool simulate_overflow = false; 8012 NOT_PRODUCT( 8013 if (CMSMarkStackOverflowALot && 8014 _collector->par_simulate_overflow()) { 8015 // simulate a stack overflow 8016 simulate_overflow = true; 8017 } 8018 ) 8019 if (simulate_overflow || !_work_queue->push(obj)) { 8020 _collector->par_push_on_overflow_list(obj); 8021 _collector->_par_pmc_remark_ovflw++; // imprecise OK: no need to CAS 8022 } 8023 } // Else, some other thread got there first 8024 } 8025 } 8026 8027 void Par_PushAndMarkClosure::do_oop(oop* p) { Par_PushAndMarkClosure::do_oop_work(p); } 8028 void Par_PushAndMarkClosure::do_oop(narrowOop* p) { Par_PushAndMarkClosure::do_oop_work(p); } 8029 8030 void CMSPrecleanRefsYieldClosure::do_yield_work() { 8031 Mutex* bml = _collector->bitMapLock(); 8032 assert_lock_strong(bml); 8033 assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 8034 "CMS thread should hold CMS token"); 8035 8036 bml->unlock(); 8037 ConcurrentMarkSweepThread::desynchronize(true); 8038 8039 ConcurrentMarkSweepThread::acknowledge_yield_request(); 8040 8041 _collector->stopTimer(); 8042 GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr()); 8043 if (PrintCMSStatistics != 0) { 8044 _collector->incrementYields(); 8045 } 8046 _collector->icms_wait(); 8047 8048 // See the comment in coordinator_yield() 8049 for (unsigned i = 0; i < CMSYieldSleepCount && 8050 ConcurrentMarkSweepThread::should_yield() && 8051 !CMSCollector::foregroundGCIsActive(); ++i) { 8052 os::sleep(Thread::current(), 1, false); 8053 ConcurrentMarkSweepThread::acknowledge_yield_request(); 8054 } 8055 8056 ConcurrentMarkSweepThread::synchronize(true); 8057 bml->lock(); 8058 8059 _collector->startTimer(); 8060 } 8061 8062 bool CMSPrecleanRefsYieldClosure::should_return() { 8063 if (ConcurrentMarkSweepThread::should_yield()) { 8064 do_yield_work(); 8065 } 8066 return _collector->foregroundGCIsActive(); 8067 } 8068 8069 void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) { 8070 assert(((size_t)mr.start())%CardTableModRefBS::card_size_in_words == 0, 8071 "mr should be aligned to start at a card boundary"); 8072 // We'd like to assert: 8073 // assert(mr.word_size()%CardTableModRefBS::card_size_in_words == 0, 8074 // "mr should be a range of cards"); 8075 // However, that would be too strong in one case -- the last 8076 // partition ends at _unallocated_block which, in general, can be 8077 // an arbitrary boundary, not necessarily card aligned. 8078 if (PrintCMSStatistics != 0) { 8079 _num_dirty_cards += 8080 mr.word_size()/CardTableModRefBS::card_size_in_words; 8081 } 8082 _space->object_iterate_mem(mr, &_scan_cl); 8083 } 8084 8085 SweepClosure::SweepClosure(CMSCollector* collector, 8086 ConcurrentMarkSweepGeneration* g, 8087 CMSBitMap* bitMap, bool should_yield) : 8088 _collector(collector), 8089 _g(g), 8090 _sp(g->cmsSpace()), 8091 _limit(_sp->sweep_limit()), 8092 _freelistLock(_sp->freelistLock()), 8093 _bitMap(bitMap), 8094 _yield(should_yield), 8095 _inFreeRange(false), // No free range at beginning of sweep 8096 _freeRangeInFreeLists(false), // No free range at beginning of sweep 8097 _lastFreeRangeCoalesced(false), 8098 _freeFinger(g->used_region().start()) 8099 { 8100 NOT_PRODUCT( 8101 _numObjectsFreed = 0; 8102 _numWordsFreed = 0; 8103 _numObjectsLive = 0; 8104 _numWordsLive = 0; 8105 _numObjectsAlreadyFree = 0; 8106 _numWordsAlreadyFree = 0; 8107 _last_fc = NULL; 8108 8109 _sp->initializeIndexedFreeListArrayReturnedBytes(); 8110 _sp->dictionary()->initialize_dict_returned_bytes(); 8111 ) 8112 assert(_limit >= _sp->bottom() && _limit <= _sp->end(), 8113 "sweep _limit out of bounds"); 8114 if (CMSTraceSweeper) { 8115 gclog_or_tty->print_cr("\n====================\nStarting new sweep with limit " PTR_FORMAT, 8116 _limit); 8117 } 8118 } 8119 8120 void SweepClosure::print_on(outputStream* st) const { 8121 tty->print_cr("_sp = [" PTR_FORMAT "," PTR_FORMAT ")", 8122 _sp->bottom(), _sp->end()); 8123 tty->print_cr("_limit = " PTR_FORMAT, _limit); 8124 tty->print_cr("_freeFinger = " PTR_FORMAT, _freeFinger); 8125 NOT_PRODUCT(tty->print_cr("_last_fc = " PTR_FORMAT, _last_fc);) 8126 tty->print_cr("_inFreeRange = %d, _freeRangeInFreeLists = %d, _lastFreeRangeCoalesced = %d", 8127 _inFreeRange, _freeRangeInFreeLists, _lastFreeRangeCoalesced); 8128 } 8129 8130 #ifndef PRODUCT 8131 // Assertion checking only: no useful work in product mode -- 8132 // however, if any of the flags below become product flags, 8133 // you may need to review this code to see if it needs to be 8134 // enabled in product mode. 8135 SweepClosure::~SweepClosure() { 8136 assert_lock_strong(_freelistLock); 8137 assert(_limit >= _sp->bottom() && _limit <= _sp->end(), 8138 "sweep _limit out of bounds"); 8139 if (inFreeRange()) { 8140 warning("inFreeRange() should have been reset; dumping state of SweepClosure"); 8141 print(); 8142 ShouldNotReachHere(); 8143 } 8144 if (Verbose && PrintGC) { 8145 gclog_or_tty->print("Collected "SIZE_FORMAT" objects, " SIZE_FORMAT " bytes", 8146 _numObjectsFreed, _numWordsFreed*sizeof(HeapWord)); 8147 gclog_or_tty->print_cr("\nLive "SIZE_FORMAT" objects, " 8148 SIZE_FORMAT" bytes " 8149 "Already free "SIZE_FORMAT" objects, "SIZE_FORMAT" bytes", 8150 _numObjectsLive, _numWordsLive*sizeof(HeapWord), 8151 _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord)); 8152 size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree) 8153 * sizeof(HeapWord); 8154 gclog_or_tty->print_cr("Total sweep: "SIZE_FORMAT" bytes", totalBytes); 8155 8156 if (PrintCMSStatistics && CMSVerifyReturnedBytes) { 8157 size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes(); 8158 size_t dict_returned_bytes = _sp->dictionary()->sum_dict_returned_bytes(); 8159 size_t returned_bytes = indexListReturnedBytes + dict_returned_bytes; 8160 gclog_or_tty->print("Returned "SIZE_FORMAT" bytes", returned_bytes); 8161 gclog_or_tty->print(" Indexed List Returned "SIZE_FORMAT" bytes", 8162 indexListReturnedBytes); 8163 gclog_or_tty->print_cr(" Dictionary Returned "SIZE_FORMAT" bytes", 8164 dict_returned_bytes); 8165 } 8166 } 8167 if (CMSTraceSweeper) { 8168 gclog_or_tty->print_cr("end of sweep with _limit = " PTR_FORMAT "\n================", 8169 _limit); 8170 } 8171 } 8172 #endif // PRODUCT 8173 8174 void SweepClosure::initialize_free_range(HeapWord* freeFinger, 8175 bool freeRangeInFreeLists) { 8176 if (CMSTraceSweeper) { 8177 gclog_or_tty->print("---- Start free range at 0x%x with free block (%d)\n", 8178 freeFinger, freeRangeInFreeLists); 8179 } 8180 assert(!inFreeRange(), "Trampling existing free range"); 8181 set_inFreeRange(true); 8182 set_lastFreeRangeCoalesced(false); 8183 8184 set_freeFinger(freeFinger); 8185 set_freeRangeInFreeLists(freeRangeInFreeLists); 8186 if (CMSTestInFreeList) { 8187 if (freeRangeInFreeLists) { 8188 FreeChunk* fc = (FreeChunk*) freeFinger; 8189 assert(fc->is_free(), "A chunk on the free list should be free."); 8190 assert(fc->size() > 0, "Free range should have a size"); 8191 assert(_sp->verify_chunk_in_free_list(fc), "Chunk is not in free lists"); 8192 } 8193 } 8194 } 8195 8196 // Note that the sweeper runs concurrently with mutators. Thus, 8197 // it is possible for direct allocation in this generation to happen 8198 // in the middle of the sweep. Note that the sweeper also coalesces 8199 // contiguous free blocks. Thus, unless the sweeper and the allocator 8200 // synchronize appropriately freshly allocated blocks may get swept up. 8201 // This is accomplished by the sweeper locking the free lists while 8202 // it is sweeping. Thus blocks that are determined to be free are 8203 // indeed free. There is however one additional complication: 8204 // blocks that have been allocated since the final checkpoint and 8205 // mark, will not have been marked and so would be treated as 8206 // unreachable and swept up. To prevent this, the allocator marks 8207 // the bit map when allocating during the sweep phase. This leads, 8208 // however, to a further complication -- objects may have been allocated 8209 // but not yet initialized -- in the sense that the header isn't yet 8210 // installed. The sweeper can not then determine the size of the block 8211 // in order to skip over it. To deal with this case, we use a technique 8212 // (due to Printezis) to encode such uninitialized block sizes in the 8213 // bit map. Since the bit map uses a bit per every HeapWord, but the 8214 // CMS generation has a minimum object size of 3 HeapWords, it follows 8215 // that "normal marks" won't be adjacent in the bit map (there will 8216 // always be at least two 0 bits between successive 1 bits). We make use 8217 // of these "unused" bits to represent uninitialized blocks -- the bit 8218 // corresponding to the start of the uninitialized object and the next 8219 // bit are both set. Finally, a 1 bit marks the end of the object that 8220 // started with the two consecutive 1 bits to indicate its potentially 8221 // uninitialized state. 8222 8223 size_t SweepClosure::do_blk_careful(HeapWord* addr) { 8224 FreeChunk* fc = (FreeChunk*)addr; 8225 size_t res; 8226 8227 // Check if we are done sweeping. Below we check "addr >= _limit" rather 8228 // than "addr == _limit" because although _limit was a block boundary when 8229 // we started the sweep, it may no longer be one because heap expansion 8230 // may have caused us to coalesce the block ending at the address _limit 8231 // with a newly expanded chunk (this happens when _limit was set to the 8232 // previous _end of the space), so we may have stepped past _limit: 8233 // see the following Zeno-like trail of CRs 6977970, 7008136, 7042740. 8234 if (addr >= _limit) { // we have swept up to or past the limit: finish up 8235 assert(_limit >= _sp->bottom() && _limit <= _sp->end(), 8236 "sweep _limit out of bounds"); 8237 assert(addr < _sp->end(), "addr out of bounds"); 8238 // Flush any free range we might be holding as a single 8239 // coalesced chunk to the appropriate free list. 8240 if (inFreeRange()) { 8241 assert(freeFinger() >= _sp->bottom() && freeFinger() < _limit, 8242 err_msg("freeFinger() " PTR_FORMAT" is out-of-bounds", freeFinger())); 8243 flush_cur_free_chunk(freeFinger(), 8244 pointer_delta(addr, freeFinger())); 8245 if (CMSTraceSweeper) { 8246 gclog_or_tty->print("Sweep: last chunk: "); 8247 gclog_or_tty->print("put_free_blk 0x%x ("SIZE_FORMAT") " 8248 "[coalesced:"SIZE_FORMAT"]\n", 8249 freeFinger(), pointer_delta(addr, freeFinger()), 8250 lastFreeRangeCoalesced()); 8251 } 8252 } 8253 8254 // help the iterator loop finish 8255 return pointer_delta(_sp->end(), addr); 8256 } 8257 8258 assert(addr < _limit, "sweep invariant"); 8259 // check if we should yield 8260 do_yield_check(addr); 8261 if (fc->is_free()) { 8262 // Chunk that is already free 8263 res = fc->size(); 8264 do_already_free_chunk(fc); 8265 debug_only(_sp->verifyFreeLists()); 8266 // If we flush the chunk at hand in lookahead_and_flush() 8267 // and it's coalesced with a preceding chunk, then the 8268 // process of "mangling" the payload of the coalesced block 8269 // will cause erasure of the size information from the 8270 // (erstwhile) header of all the coalesced blocks but the 8271 // first, so the first disjunct in the assert will not hold 8272 // in that specific case (in which case the second disjunct 8273 // will hold). 8274 assert(res == fc->size() || ((HeapWord*)fc) + res >= _limit, 8275 "Otherwise the size info doesn't change at this step"); 8276 NOT_PRODUCT( 8277 _numObjectsAlreadyFree++; 8278 _numWordsAlreadyFree += res; 8279 ) 8280 NOT_PRODUCT(_last_fc = fc;) 8281 } else if (!_bitMap->isMarked(addr)) { 8282 // Chunk is fresh garbage 8283 res = do_garbage_chunk(fc); 8284 debug_only(_sp->verifyFreeLists()); 8285 NOT_PRODUCT( 8286 _numObjectsFreed++; 8287 _numWordsFreed += res; 8288 ) 8289 } else { 8290 // Chunk that is alive. 8291 res = do_live_chunk(fc); 8292 debug_only(_sp->verifyFreeLists()); 8293 NOT_PRODUCT( 8294 _numObjectsLive++; 8295 _numWordsLive += res; 8296 ) 8297 } 8298 return res; 8299 } 8300 8301 // For the smart allocation, record following 8302 // split deaths - a free chunk is removed from its free list because 8303 // it is being split into two or more chunks. 8304 // split birth - a free chunk is being added to its free list because 8305 // a larger free chunk has been split and resulted in this free chunk. 8306 // coal death - a free chunk is being removed from its free list because 8307 // it is being coalesced into a large free chunk. 8308 // coal birth - a free chunk is being added to its free list because 8309 // it was created when two or more free chunks where coalesced into 8310 // this free chunk. 8311 // 8312 // These statistics are used to determine the desired number of free 8313 // chunks of a given size. The desired number is chosen to be relative 8314 // to the end of a CMS sweep. The desired number at the end of a sweep 8315 // is the 8316 // count-at-end-of-previous-sweep (an amount that was enough) 8317 // - count-at-beginning-of-current-sweep (the excess) 8318 // + split-births (gains in this size during interval) 8319 // - split-deaths (demands on this size during interval) 8320 // where the interval is from the end of one sweep to the end of the 8321 // next. 8322 // 8323 // When sweeping the sweeper maintains an accumulated chunk which is 8324 // the chunk that is made up of chunks that have been coalesced. That 8325 // will be termed the left-hand chunk. A new chunk of garbage that 8326 // is being considered for coalescing will be referred to as the 8327 // right-hand chunk. 8328 // 8329 // When making a decision on whether to coalesce a right-hand chunk with 8330 // the current left-hand chunk, the current count vs. the desired count 8331 // of the left-hand chunk is considered. Also if the right-hand chunk 8332 // is near the large chunk at the end of the heap (see 8333 // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the 8334 // left-hand chunk is coalesced. 8335 // 8336 // When making a decision about whether to split a chunk, the desired count 8337 // vs. the current count of the candidate to be split is also considered. 8338 // If the candidate is underpopulated (currently fewer chunks than desired) 8339 // a chunk of an overpopulated (currently more chunks than desired) size may 8340 // be chosen. The "hint" associated with a free list, if non-null, points 8341 // to a free list which may be overpopulated. 8342 // 8343 8344 void SweepClosure::do_already_free_chunk(FreeChunk* fc) { 8345 const size_t size = fc->size(); 8346 // Chunks that cannot be coalesced are not in the 8347 // free lists. 8348 if (CMSTestInFreeList && !fc->cantCoalesce()) { 8349 assert(_sp->verify_chunk_in_free_list(fc), 8350 "free chunk should be in free lists"); 8351 } 8352 // a chunk that is already free, should not have been 8353 // marked in the bit map 8354 HeapWord* const addr = (HeapWord*) fc; 8355 assert(!_bitMap->isMarked(addr), "free chunk should be unmarked"); 8356 // Verify that the bit map has no bits marked between 8357 // addr and purported end of this block. 8358 _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size); 8359 8360 // Some chunks cannot be coalesced under any circumstances. 8361 // See the definition of cantCoalesce(). 8362 if (!fc->cantCoalesce()) { 8363 // This chunk can potentially be coalesced. 8364 if (_sp->adaptive_freelists()) { 8365 // All the work is done in 8366 do_post_free_or_garbage_chunk(fc, size); 8367 } else { // Not adaptive free lists 8368 // this is a free chunk that can potentially be coalesced by the sweeper; 8369 if (!inFreeRange()) { 8370 // if the next chunk is a free block that can't be coalesced 8371 // it doesn't make sense to remove this chunk from the free lists 8372 FreeChunk* nextChunk = (FreeChunk*)(addr + size); 8373 assert((HeapWord*)nextChunk <= _sp->end(), "Chunk size out of bounds?"); 8374 if ((HeapWord*)nextChunk < _sp->end() && // There is another free chunk to the right ... 8375 nextChunk->is_free() && // ... which is free... 8376 nextChunk->cantCoalesce()) { // ... but can't be coalesced 8377 // nothing to do 8378 } else { 8379 // Potentially the start of a new free range: 8380 // Don't eagerly remove it from the free lists. 8381 // No need to remove it if it will just be put 8382 // back again. (Also from a pragmatic point of view 8383 // if it is a free block in a region that is beyond 8384 // any allocated blocks, an assertion will fail) 8385 // Remember the start of a free run. 8386 initialize_free_range(addr, true); 8387 // end - can coalesce with next chunk 8388 } 8389 } else { 8390 // the midst of a free range, we are coalescing 8391 print_free_block_coalesced(fc); 8392 if (CMSTraceSweeper) { 8393 gclog_or_tty->print(" -- pick up free block 0x%x (%d)\n", fc, size); 8394 } 8395 // remove it from the free lists 8396 _sp->removeFreeChunkFromFreeLists(fc); 8397 set_lastFreeRangeCoalesced(true); 8398 // If the chunk is being coalesced and the current free range is 8399 // in the free lists, remove the current free range so that it 8400 // will be returned to the free lists in its entirety - all 8401 // the coalesced pieces included. 8402 if (freeRangeInFreeLists()) { 8403 FreeChunk* ffc = (FreeChunk*) freeFinger(); 8404 assert(ffc->size() == pointer_delta(addr, freeFinger()), 8405 "Size of free range is inconsistent with chunk size."); 8406 if (CMSTestInFreeList) { 8407 assert(_sp->verify_chunk_in_free_list(ffc), 8408 "free range is not in free lists"); 8409 } 8410 _sp->removeFreeChunkFromFreeLists(ffc); 8411 set_freeRangeInFreeLists(false); 8412 } 8413 } 8414 } 8415 // Note that if the chunk is not coalescable (the else arm 8416 // below), we unconditionally flush, without needing to do 8417 // a "lookahead," as we do below. 8418 if (inFreeRange()) lookahead_and_flush(fc, size); 8419 } else { 8420 // Code path common to both original and adaptive free lists. 8421 8422 // cant coalesce with previous block; this should be treated 8423 // as the end of a free run if any 8424 if (inFreeRange()) { 8425 // we kicked some butt; time to pick up the garbage 8426 assert(freeFinger() < addr, "freeFinger points too high"); 8427 flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger())); 8428 } 8429 // else, nothing to do, just continue 8430 } 8431 } 8432 8433 size_t SweepClosure::do_garbage_chunk(FreeChunk* fc) { 8434 // This is a chunk of garbage. It is not in any free list. 8435 // Add it to a free list or let it possibly be coalesced into 8436 // a larger chunk. 8437 HeapWord* const addr = (HeapWord*) fc; 8438 const size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()); 8439 8440 if (_sp->adaptive_freelists()) { 8441 // Verify that the bit map has no bits marked between 8442 // addr and purported end of just dead object. 8443 _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size); 8444 8445 do_post_free_or_garbage_chunk(fc, size); 8446 } else { 8447 if (!inFreeRange()) { 8448 // start of a new free range 8449 assert(size > 0, "A free range should have a size"); 8450 initialize_free_range(addr, false); 8451 } else { 8452 // this will be swept up when we hit the end of the 8453 // free range 8454 if (CMSTraceSweeper) { 8455 gclog_or_tty->print(" -- pick up garbage 0x%x (%d) \n", fc, size); 8456 } 8457 // If the chunk is being coalesced and the current free range is 8458 // in the free lists, remove the current free range so that it 8459 // will be returned to the free lists in its entirety - all 8460 // the coalesced pieces included. 8461 if (freeRangeInFreeLists()) { 8462 FreeChunk* ffc = (FreeChunk*)freeFinger(); 8463 assert(ffc->size() == pointer_delta(addr, freeFinger()), 8464 "Size of free range is inconsistent with chunk size."); 8465 if (CMSTestInFreeList) { 8466 assert(_sp->verify_chunk_in_free_list(ffc), 8467 "free range is not in free lists"); 8468 } 8469 _sp->removeFreeChunkFromFreeLists(ffc); 8470 set_freeRangeInFreeLists(false); 8471 } 8472 set_lastFreeRangeCoalesced(true); 8473 } 8474 // this will be swept up when we hit the end of the free range 8475 8476 // Verify that the bit map has no bits marked between 8477 // addr and purported end of just dead object. 8478 _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size); 8479 } 8480 assert(_limit >= addr + size, 8481 "A freshly garbage chunk can't possibly straddle over _limit"); 8482 if (inFreeRange()) lookahead_and_flush(fc, size); 8483 return size; 8484 } 8485 8486 size_t SweepClosure::do_live_chunk(FreeChunk* fc) { 8487 HeapWord* addr = (HeapWord*) fc; 8488 // The sweeper has just found a live object. Return any accumulated 8489 // left hand chunk to the free lists. 8490 if (inFreeRange()) { 8491 assert(freeFinger() < addr, "freeFinger points too high"); 8492 flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger())); 8493 } 8494 8495 // This object is live: we'd normally expect this to be 8496 // an oop, and like to assert the following: 8497 // assert(oop(addr)->is_oop(), "live block should be an oop"); 8498 // However, as we commented above, this may be an object whose 8499 // header hasn't yet been initialized. 8500 size_t size; 8501 assert(_bitMap->isMarked(addr), "Tautology for this control point"); 8502 if (_bitMap->isMarked(addr + 1)) { 8503 // Determine the size from the bit map, rather than trying to 8504 // compute it from the object header. 8505 HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2); 8506 size = pointer_delta(nextOneAddr + 1, addr); 8507 assert(size == CompactibleFreeListSpace::adjustObjectSize(size), 8508 "alignment problem"); 8509 8510 #ifdef ASSERT 8511 if (oop(addr)->klass_or_null() != NULL) { 8512 // Ignore mark word because we are running concurrent with mutators 8513 assert(oop(addr)->is_oop(true), "live block should be an oop"); 8514 assert(size == 8515 CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()), 8516 "P-mark and computed size do not agree"); 8517 } 8518 #endif 8519 8520 } else { 8521 // This should be an initialized object that's alive. 8522 assert(oop(addr)->klass_or_null() != NULL, 8523 "Should be an initialized object"); 8524 // Ignore mark word because we are running concurrent with mutators 8525 assert(oop(addr)->is_oop(true), "live block should be an oop"); 8526 // Verify that the bit map has no bits marked between 8527 // addr and purported end of this block. 8528 size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()); 8529 assert(size >= 3, "Necessary for Printezis marks to work"); 8530 assert(!_bitMap->isMarked(addr+1), "Tautology for this control point"); 8531 DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);) 8532 } 8533 return size; 8534 } 8535 8536 void SweepClosure::do_post_free_or_garbage_chunk(FreeChunk* fc, 8537 size_t chunkSize) { 8538 // do_post_free_or_garbage_chunk() should only be called in the case 8539 // of the adaptive free list allocator. 8540 const bool fcInFreeLists = fc->is_free(); 8541 assert(_sp->adaptive_freelists(), "Should only be used in this case."); 8542 assert((HeapWord*)fc <= _limit, "sweep invariant"); 8543 if (CMSTestInFreeList && fcInFreeLists) { 8544 assert(_sp->verify_chunk_in_free_list(fc), "free chunk is not in free lists"); 8545 } 8546 8547 if (CMSTraceSweeper) { 8548 gclog_or_tty->print_cr(" -- pick up another chunk at 0x%x (%d)", fc, chunkSize); 8549 } 8550 8551 HeapWord* const fc_addr = (HeapWord*) fc; 8552 8553 bool coalesce; 8554 const size_t left = pointer_delta(fc_addr, freeFinger()); 8555 const size_t right = chunkSize; 8556 switch (FLSCoalescePolicy) { 8557 // numeric value forms a coalition aggressiveness metric 8558 case 0: { // never coalesce 8559 coalesce = false; 8560 break; 8561 } 8562 case 1: { // coalesce if left & right chunks on overpopulated lists 8563 coalesce = _sp->coalOverPopulated(left) && 8564 _sp->coalOverPopulated(right); 8565 break; 8566 } 8567 case 2: { // coalesce if left chunk on overpopulated list (default) 8568 coalesce = _sp->coalOverPopulated(left); 8569 break; 8570 } 8571 case 3: { // coalesce if left OR right chunk on overpopulated list 8572 coalesce = _sp->coalOverPopulated(left) || 8573 _sp->coalOverPopulated(right); 8574 break; 8575 } 8576 case 4: { // always coalesce 8577 coalesce = true; 8578 break; 8579 } 8580 default: 8581 ShouldNotReachHere(); 8582 } 8583 8584 // Should the current free range be coalesced? 8585 // If the chunk is in a free range and either we decided to coalesce above 8586 // or the chunk is near the large block at the end of the heap 8587 // (isNearLargestChunk() returns true), then coalesce this chunk. 8588 const bool doCoalesce = inFreeRange() 8589 && (coalesce || _g->isNearLargestChunk(fc_addr)); 8590 if (doCoalesce) { 8591 // Coalesce the current free range on the left with the new 8592 // chunk on the right. If either is on a free list, 8593 // it must be removed from the list and stashed in the closure. 8594 if (freeRangeInFreeLists()) { 8595 FreeChunk* const ffc = (FreeChunk*)freeFinger(); 8596 assert(ffc->size() == pointer_delta(fc_addr, freeFinger()), 8597 "Size of free range is inconsistent with chunk size."); 8598 if (CMSTestInFreeList) { 8599 assert(_sp->verify_chunk_in_free_list(ffc), 8600 "Chunk is not in free lists"); 8601 } 8602 _sp->coalDeath(ffc->size()); 8603 _sp->removeFreeChunkFromFreeLists(ffc); 8604 set_freeRangeInFreeLists(false); 8605 } 8606 if (fcInFreeLists) { 8607 _sp->coalDeath(chunkSize); 8608 assert(fc->size() == chunkSize, 8609 "The chunk has the wrong size or is not in the free lists"); 8610 _sp->removeFreeChunkFromFreeLists(fc); 8611 } 8612 set_lastFreeRangeCoalesced(true); 8613 print_free_block_coalesced(fc); 8614 } else { // not in a free range and/or should not coalesce 8615 // Return the current free range and start a new one. 8616 if (inFreeRange()) { 8617 // In a free range but cannot coalesce with the right hand chunk. 8618 // Put the current free range into the free lists. 8619 flush_cur_free_chunk(freeFinger(), 8620 pointer_delta(fc_addr, freeFinger())); 8621 } 8622 // Set up for new free range. Pass along whether the right hand 8623 // chunk is in the free lists. 8624 initialize_free_range((HeapWord*)fc, fcInFreeLists); 8625 } 8626 } 8627 8628 // Lookahead flush: 8629 // If we are tracking a free range, and this is the last chunk that 8630 // we'll look at because its end crosses past _limit, we'll preemptively 8631 // flush it along with any free range we may be holding on to. Note that 8632 // this can be the case only for an already free or freshly garbage 8633 // chunk. If this block is an object, it can never straddle 8634 // over _limit. The "straddling" occurs when _limit is set at 8635 // the previous end of the space when this cycle started, and 8636 // a subsequent heap expansion caused the previously co-terminal 8637 // free block to be coalesced with the newly expanded portion, 8638 // thus rendering _limit a non-block-boundary making it dangerous 8639 // for the sweeper to step over and examine. 8640 void SweepClosure::lookahead_and_flush(FreeChunk* fc, size_t chunk_size) { 8641 assert(inFreeRange(), "Should only be called if currently in a free range."); 8642 HeapWord* const eob = ((HeapWord*)fc) + chunk_size; 8643 assert(_sp->used_region().contains(eob - 1), 8644 err_msg("eob = " PTR_FORMAT " out of bounds wrt _sp = [" PTR_FORMAT "," PTR_FORMAT ")" 8645 " when examining fc = " PTR_FORMAT "(" SIZE_FORMAT ")", 8646 _limit, _sp->bottom(), _sp->end(), fc, chunk_size)); 8647 if (eob >= _limit) { 8648 assert(eob == _limit || fc->is_free(), "Only a free chunk should allow us to cross over the limit"); 8649 if (CMSTraceSweeper) { 8650 gclog_or_tty->print_cr("_limit " PTR_FORMAT " reached or crossed by block " 8651 "[" PTR_FORMAT "," PTR_FORMAT ") in space " 8652 "[" PTR_FORMAT "," PTR_FORMAT ")", 8653 _limit, fc, eob, _sp->bottom(), _sp->end()); 8654 } 8655 // Return the storage we are tracking back into the free lists. 8656 if (CMSTraceSweeper) { 8657 gclog_or_tty->print_cr("Flushing ... "); 8658 } 8659 assert(freeFinger() < eob, "Error"); 8660 flush_cur_free_chunk( freeFinger(), pointer_delta(eob, freeFinger())); 8661 } 8662 } 8663 8664 void SweepClosure::flush_cur_free_chunk(HeapWord* chunk, size_t size) { 8665 assert(inFreeRange(), "Should only be called if currently in a free range."); 8666 assert(size > 0, 8667 "A zero sized chunk cannot be added to the free lists."); 8668 if (!freeRangeInFreeLists()) { 8669 if (CMSTestInFreeList) { 8670 FreeChunk* fc = (FreeChunk*) chunk; 8671 fc->set_size(size); 8672 assert(!_sp->verify_chunk_in_free_list(fc), 8673 "chunk should not be in free lists yet"); 8674 } 8675 if (CMSTraceSweeper) { 8676 gclog_or_tty->print_cr(" -- add free block 0x%x (%d) to free lists", 8677 chunk, size); 8678 } 8679 // A new free range is going to be starting. The current 8680 // free range has not been added to the free lists yet or 8681 // was removed so add it back. 8682 // If the current free range was coalesced, then the death 8683 // of the free range was recorded. Record a birth now. 8684 if (lastFreeRangeCoalesced()) { 8685 _sp->coalBirth(size); 8686 } 8687 _sp->addChunkAndRepairOffsetTable(chunk, size, 8688 lastFreeRangeCoalesced()); 8689 } else if (CMSTraceSweeper) { 8690 gclog_or_tty->print_cr("Already in free list: nothing to flush"); 8691 } 8692 set_inFreeRange(false); 8693 set_freeRangeInFreeLists(false); 8694 } 8695 8696 // We take a break if we've been at this for a while, 8697 // so as to avoid monopolizing the locks involved. 8698 void SweepClosure::do_yield_work(HeapWord* addr) { 8699 // Return current free chunk being used for coalescing (if any) 8700 // to the appropriate freelist. After yielding, the next 8701 // free block encountered will start a coalescing range of 8702 // free blocks. If the next free block is adjacent to the 8703 // chunk just flushed, they will need to wait for the next 8704 // sweep to be coalesced. 8705 if (inFreeRange()) { 8706 flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger())); 8707 } 8708 8709 // First give up the locks, then yield, then re-lock. 8710 // We should probably use a constructor/destructor idiom to 8711 // do this unlock/lock or modify the MutexUnlocker class to 8712 // serve our purpose. XXX 8713 assert_lock_strong(_bitMap->lock()); 8714 assert_lock_strong(_freelistLock); 8715 assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), 8716 "CMS thread should hold CMS token"); 8717 _bitMap->lock()->unlock(); 8718 _freelistLock->unlock(); 8719 ConcurrentMarkSweepThread::desynchronize(true); 8720 ConcurrentMarkSweepThread::acknowledge_yield_request(); 8721 _collector->stopTimer(); 8722 GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr()); 8723 if (PrintCMSStatistics != 0) { 8724 _collector->incrementYields(); 8725 } 8726 _collector->icms_wait(); 8727 8728 // See the comment in coordinator_yield() 8729 for (unsigned i = 0; i < CMSYieldSleepCount && 8730 ConcurrentMarkSweepThread::should_yield() && 8731 !CMSCollector::foregroundGCIsActive(); ++i) { 8732 os::sleep(Thread::current(), 1, false); 8733 ConcurrentMarkSweepThread::acknowledge_yield_request(); 8734 } 8735 8736 ConcurrentMarkSweepThread::synchronize(true); 8737 _freelistLock->lock(); 8738 _bitMap->lock()->lock_without_safepoint_check(); 8739 _collector->startTimer(); 8740 } 8741 8742 #ifndef PRODUCT 8743 // This is actually very useful in a product build if it can 8744 // be called from the debugger. Compile it into the product 8745 // as needed. 8746 bool debug_verify_chunk_in_free_list(FreeChunk* fc) { 8747 return debug_cms_space->verify_chunk_in_free_list(fc); 8748 } 8749 #endif 8750 8751 void SweepClosure::print_free_block_coalesced(FreeChunk* fc) const { 8752 if (CMSTraceSweeper) { 8753 gclog_or_tty->print_cr("Sweep:coal_free_blk " PTR_FORMAT " (" SIZE_FORMAT ")", 8754 fc, fc->size()); 8755 } 8756 } 8757 8758 // CMSIsAliveClosure 8759 bool CMSIsAliveClosure::do_object_b(oop obj) { 8760 HeapWord* addr = (HeapWord*)obj; 8761 return addr != NULL && 8762 (!_span.contains(addr) || _bit_map->isMarked(addr)); 8763 } 8764 8765 8766 CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector, 8767 MemRegion span, 8768 CMSBitMap* bit_map, CMSMarkStack* mark_stack, 8769 bool cpc): 8770 _collector(collector), 8771 _span(span), 8772 _bit_map(bit_map), 8773 _mark_stack(mark_stack), 8774 _concurrent_precleaning(cpc) { 8775 assert(!_span.is_empty(), "Empty span could spell trouble"); 8776 } 8777 8778 8779 // CMSKeepAliveClosure: the serial version 8780 void CMSKeepAliveClosure::do_oop(oop obj) { 8781 HeapWord* addr = (HeapWord*)obj; 8782 if (_span.contains(addr) && 8783 !_bit_map->isMarked(addr)) { 8784 _bit_map->mark(addr); 8785 bool simulate_overflow = false; 8786 NOT_PRODUCT( 8787 if (CMSMarkStackOverflowALot && 8788 _collector->simulate_overflow()) { 8789 // simulate a stack overflow 8790 simulate_overflow = true; 8791 } 8792 ) 8793 if (simulate_overflow || !_mark_stack->push(obj)) { 8794 if (_concurrent_precleaning) { 8795 // We dirty the overflown object and let the remark 8796 // phase deal with it. 8797 assert(_collector->overflow_list_is_empty(), "Error"); 8798 // In the case of object arrays, we need to dirty all of 8799 // the cards that the object spans. No locking or atomics 8800 // are needed since no one else can be mutating the mod union 8801 // table. 8802 if (obj->is_objArray()) { 8803 size_t sz = obj->size(); 8804 HeapWord* end_card_addr = 8805 (HeapWord*)round_to((intptr_t)(addr+sz), CardTableModRefBS::card_size); 8806 MemRegion redirty_range = MemRegion(addr, end_card_addr); 8807 assert(!redirty_range.is_empty(), "Arithmetical tautology"); 8808 _collector->_modUnionTable.mark_range(redirty_range); 8809 } else { 8810 _collector->_modUnionTable.mark(addr); 8811 } 8812 _collector->_ser_kac_preclean_ovflw++; 8813 } else { 8814 _collector->push_on_overflow_list(obj); 8815 _collector->_ser_kac_ovflw++; 8816 } 8817 } 8818 } 8819 } 8820 8821 void CMSKeepAliveClosure::do_oop(oop* p) { CMSKeepAliveClosure::do_oop_work(p); } 8822 void CMSKeepAliveClosure::do_oop(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); } 8823 8824 // CMSParKeepAliveClosure: a parallel version of the above. 8825 // The work queues are private to each closure (thread), 8826 // but (may be) available for stealing by other threads. 8827 void CMSParKeepAliveClosure::do_oop(oop obj) { 8828 HeapWord* addr = (HeapWord*)obj; 8829 if (_span.contains(addr) && 8830 !_bit_map->isMarked(addr)) { 8831 // In general, during recursive tracing, several threads 8832 // may be concurrently getting here; the first one to 8833 // "tag" it, claims it. 8834 if (_bit_map->par_mark(addr)) { 8835 bool res = _work_queue->push(obj); 8836 assert(res, "Low water mark should be much less than capacity"); 8837 // Do a recursive trim in the hope that this will keep 8838 // stack usage lower, but leave some oops for potential stealers 8839 trim_queue(_low_water_mark); 8840 } // Else, another thread got there first 8841 } 8842 } 8843 8844 void CMSParKeepAliveClosure::do_oop(oop* p) { CMSParKeepAliveClosure::do_oop_work(p); } 8845 void CMSParKeepAliveClosure::do_oop(narrowOop* p) { CMSParKeepAliveClosure::do_oop_work(p); } 8846 8847 void CMSParKeepAliveClosure::trim_queue(uint max) { 8848 while (_work_queue->size() > max) { 8849 oop new_oop; 8850 if (_work_queue->pop_local(new_oop)) { 8851 assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop"); 8852 assert(_bit_map->isMarked((HeapWord*)new_oop), 8853 "no white objects on this stack!"); 8854 assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop"); 8855 // iterate over the oops in this oop, marking and pushing 8856 // the ones in CMS heap (i.e. in _span). 8857 new_oop->oop_iterate(&_mark_and_push); 8858 } 8859 } 8860 } 8861 8862 CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure( 8863 CMSCollector* collector, 8864 MemRegion span, CMSBitMap* bit_map, 8865 OopTaskQueue* work_queue): 8866 _collector(collector), 8867 _span(span), 8868 _bit_map(bit_map), 8869 _work_queue(work_queue) { } 8870 8871 void CMSInnerParMarkAndPushClosure::do_oop(oop obj) { 8872 HeapWord* addr = (HeapWord*)obj; 8873 if (_span.contains(addr) && 8874 !_bit_map->isMarked(addr)) { 8875 if (_bit_map->par_mark(addr)) { 8876 bool simulate_overflow = false; 8877 NOT_PRODUCT( 8878 if (CMSMarkStackOverflowALot && 8879 _collector->par_simulate_overflow()) { 8880 // simulate a stack overflow 8881 simulate_overflow = true; 8882 } 8883 ) 8884 if (simulate_overflow || !_work_queue->push(obj)) { 8885 _collector->par_push_on_overflow_list(obj); 8886 _collector->_par_kac_ovflw++; 8887 } 8888 } // Else another thread got there already 8889 } 8890 } 8891 8892 void CMSInnerParMarkAndPushClosure::do_oop(oop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); } 8893 void CMSInnerParMarkAndPushClosure::do_oop(narrowOop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); } 8894 8895 ////////////////////////////////////////////////////////////////// 8896 // CMSExpansionCause ///////////////////////////// 8897 ////////////////////////////////////////////////////////////////// 8898 const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) { 8899 switch (cause) { 8900 case _no_expansion: 8901 return "No expansion"; 8902 case _satisfy_free_ratio: 8903 return "Free ratio"; 8904 case _satisfy_promotion: 8905 return "Satisfy promotion"; 8906 case _satisfy_allocation: 8907 return "allocation"; 8908 case _allocate_par_lab: 8909 return "Par LAB"; 8910 case _allocate_par_spooling_space: 8911 return "Par Spooling Space"; 8912 case _adaptive_size_policy: 8913 return "Ergonomics"; 8914 default: 8915 return "unknown"; 8916 } 8917 } 8918 8919 void CMSDrainMarkingStackClosure::do_void() { 8920 // the max number to take from overflow list at a time 8921 const size_t num = _mark_stack->capacity()/4; 8922 assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(), 8923 "Overflow list should be NULL during concurrent phases"); 8924 while (!_mark_stack->isEmpty() || 8925 // if stack is empty, check the overflow list 8926 _collector->take_from_overflow_list(num, _mark_stack)) { 8927 oop obj = _mark_stack->pop(); 8928 HeapWord* addr = (HeapWord*)obj; 8929 assert(_span.contains(addr), "Should be within span"); 8930 assert(_bit_map->isMarked(addr), "Should be marked"); 8931 assert(obj->is_oop(), "Should be an oop"); 8932 obj->oop_iterate(_keep_alive); 8933 } 8934 } 8935 8936 void CMSParDrainMarkingStackClosure::do_void() { 8937 // drain queue 8938 trim_queue(0); 8939 } 8940 8941 // Trim our work_queue so its length is below max at return 8942 void CMSParDrainMarkingStackClosure::trim_queue(uint max) { 8943 while (_work_queue->size() > max) { 8944 oop new_oop; 8945 if (_work_queue->pop_local(new_oop)) { 8946 assert(new_oop->is_oop(), "Expected an oop"); 8947 assert(_bit_map->isMarked((HeapWord*)new_oop), 8948 "no white objects on this stack!"); 8949 assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop"); 8950 // iterate over the oops in this oop, marking and pushing 8951 // the ones in CMS heap (i.e. in _span). 8952 new_oop->oop_iterate(&_mark_and_push); 8953 } 8954 } 8955 } 8956 8957 //////////////////////////////////////////////////////////////////// 8958 // Support for Marking Stack Overflow list handling and related code 8959 //////////////////////////////////////////////////////////////////// 8960 // Much of the following code is similar in shape and spirit to the 8961 // code used in ParNewGC. We should try and share that code 8962 // as much as possible in the future. 8963 8964 #ifndef PRODUCT 8965 // Debugging support for CMSStackOverflowALot 8966 8967 // It's OK to call this multi-threaded; the worst thing 8968 // that can happen is that we'll get a bunch of closely 8969 // spaced simulated oveflows, but that's OK, in fact 8970 // probably good as it would exercise the overflow code 8971 // under contention. 8972 bool CMSCollector::simulate_overflow() { 8973 if (_overflow_counter-- <= 0) { // just being defensive 8974 _overflow_counter = CMSMarkStackOverflowInterval; 8975 return true; 8976 } else { 8977 return false; 8978 } 8979 } 8980 8981 bool CMSCollector::par_simulate_overflow() { 8982 return simulate_overflow(); 8983 } 8984 #endif 8985 8986 // Single-threaded 8987 bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) { 8988 assert(stack->isEmpty(), "Expected precondition"); 8989 assert(stack->capacity() > num, "Shouldn't bite more than can chew"); 8990 size_t i = num; 8991 oop cur = _overflow_list; 8992 const markOop proto = markOopDesc::prototype(); 8993 NOT_PRODUCT(ssize_t n = 0;) 8994 for (oop next; i > 0 && cur != NULL; cur = next, i--) { 8995 next = oop(cur->mark()); 8996 cur->set_mark(proto); // until proven otherwise 8997 assert(cur->is_oop(), "Should be an oop"); 8998 bool res = stack->push(cur); 8999 assert(res, "Bit off more than can chew?"); 9000 NOT_PRODUCT(n++;) 9001 } 9002 _overflow_list = cur; 9003 #ifndef PRODUCT 9004 assert(_num_par_pushes >= n, "Too many pops?"); 9005 _num_par_pushes -=n; 9006 #endif 9007 return !stack->isEmpty(); 9008 } 9009 9010 #define BUSY (oop(0x1aff1aff)) 9011 // (MT-safe) Get a prefix of at most "num" from the list. 9012 // The overflow list is chained through the mark word of 9013 // each object in the list. We fetch the entire list, 9014 // break off a prefix of the right size and return the 9015 // remainder. If other threads try to take objects from 9016 // the overflow list at that time, they will wait for 9017 // some time to see if data becomes available. If (and 9018 // only if) another thread places one or more object(s) 9019 // on the global list before we have returned the suffix 9020 // to the global list, we will walk down our local list 9021 // to find its end and append the global list to 9022 // our suffix before returning it. This suffix walk can 9023 // prove to be expensive (quadratic in the amount of traffic) 9024 // when there are many objects in the overflow list and 9025 // there is much producer-consumer contention on the list. 9026 // *NOTE*: The overflow list manipulation code here and 9027 // in ParNewGeneration:: are very similar in shape, 9028 // except that in the ParNew case we use the old (from/eden) 9029 // copy of the object to thread the list via its klass word. 9030 // Because of the common code, if you make any changes in 9031 // the code below, please check the ParNew version to see if 9032 // similar changes might be needed. 9033 // CR 6797058 has been filed to consolidate the common code. 9034 bool CMSCollector::par_take_from_overflow_list(size_t num, 9035 OopTaskQueue* work_q, 9036 int no_of_gc_threads) { 9037 assert(work_q->size() == 0, "First empty local work queue"); 9038 assert(num < work_q->max_elems(), "Can't bite more than we can chew"); 9039 if (_overflow_list == NULL) { 9040 return false; 9041 } 9042 // Grab the entire list; we'll put back a suffix 9043 oop prefix = (oop)Atomic::xchg_ptr(BUSY, &_overflow_list); 9044 Thread* tid = Thread::current(); 9045 // Before "no_of_gc_threads" was introduced CMSOverflowSpinCount was 9046 // set to ParallelGCThreads. 9047 size_t CMSOverflowSpinCount = (size_t) no_of_gc_threads; // was ParallelGCThreads; 9048 size_t sleep_time_millis = MAX2((size_t)1, num/100); 9049 // If the list is busy, we spin for a short while, 9050 // sleeping between attempts to get the list. 9051 for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) { 9052 os::sleep(tid, sleep_time_millis, false); 9053 if (_overflow_list == NULL) { 9054 // Nothing left to take 9055 return false; 9056 } else if (_overflow_list != BUSY) { 9057 // Try and grab the prefix 9058 prefix = (oop)Atomic::xchg_ptr(BUSY, &_overflow_list); 9059 } 9060 } 9061 // If the list was found to be empty, or we spun long 9062 // enough, we give up and return empty-handed. If we leave 9063 // the list in the BUSY state below, it must be the case that 9064 // some other thread holds the overflow list and will set it 9065 // to a non-BUSY state in the future. 9066 if (prefix == NULL || prefix == BUSY) { 9067 // Nothing to take or waited long enough 9068 if (prefix == NULL) { 9069 // Write back the NULL in case we overwrote it with BUSY above 9070 // and it is still the same value. 9071 (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY); 9072 } 9073 return false; 9074 } 9075 assert(prefix != NULL && prefix != BUSY, "Error"); 9076 size_t i = num; 9077 oop cur = prefix; 9078 // Walk down the first "num" objects, unless we reach the end. 9079 for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--); 9080 if (cur->mark() == NULL) { 9081 // We have "num" or fewer elements in the list, so there 9082 // is nothing to return to the global list. 9083 // Write back the NULL in lieu of the BUSY we wrote 9084 // above, if it is still the same value. 9085 if (_overflow_list == BUSY) { 9086 (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY); 9087 } 9088 } else { 9089 // Chop off the suffix and rerturn it to the global list. 9090 assert(cur->mark() != BUSY, "Error"); 9091 oop suffix_head = cur->mark(); // suffix will be put back on global list 9092 cur->set_mark(NULL); // break off suffix 9093 // It's possible that the list is still in the empty(busy) state 9094 // we left it in a short while ago; in that case we may be 9095 // able to place back the suffix without incurring the cost 9096 // of a walk down the list. 9097 oop observed_overflow_list = _overflow_list; 9098 oop cur_overflow_list = observed_overflow_list; 9099 bool attached = false; 9100 while (observed_overflow_list == BUSY || observed_overflow_list == NULL) { 9101 observed_overflow_list = 9102 (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list); 9103 if (cur_overflow_list == observed_overflow_list) { 9104 attached = true; 9105 break; 9106 } else cur_overflow_list = observed_overflow_list; 9107 } 9108 if (!attached) { 9109 // Too bad, someone else sneaked in (at least) an element; we'll need 9110 // to do a splice. Find tail of suffix so we can prepend suffix to global 9111 // list. 9112 for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark())); 9113 oop suffix_tail = cur; 9114 assert(suffix_tail != NULL && suffix_tail->mark() == NULL, 9115 "Tautology"); 9116 observed_overflow_list = _overflow_list; 9117 do { 9118 cur_overflow_list = observed_overflow_list; 9119 if (cur_overflow_list != BUSY) { 9120 // Do the splice ... 9121 suffix_tail->set_mark(markOop(cur_overflow_list)); 9122 } else { // cur_overflow_list == BUSY 9123 suffix_tail->set_mark(NULL); 9124 } 9125 // ... and try to place spliced list back on overflow_list ... 9126 observed_overflow_list = 9127 (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list); 9128 } while (cur_overflow_list != observed_overflow_list); 9129 // ... until we have succeeded in doing so. 9130 } 9131 } 9132 9133 // Push the prefix elements on work_q 9134 assert(prefix != NULL, "control point invariant"); 9135 const markOop proto = markOopDesc::prototype(); 9136 oop next; 9137 NOT_PRODUCT(ssize_t n = 0;) 9138 for (cur = prefix; cur != NULL; cur = next) { 9139 next = oop(cur->mark()); 9140 cur->set_mark(proto); // until proven otherwise 9141 assert(cur->is_oop(), "Should be an oop"); 9142 bool res = work_q->push(cur); 9143 assert(res, "Bit off more than we can chew?"); 9144 NOT_PRODUCT(n++;) 9145 } 9146 #ifndef PRODUCT 9147 assert(_num_par_pushes >= n, "Too many pops?"); 9148 Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes); 9149 #endif 9150 return true; 9151 } 9152 9153 // Single-threaded 9154 void CMSCollector::push_on_overflow_list(oop p) { 9155 NOT_PRODUCT(_num_par_pushes++;) 9156 assert(p->is_oop(), "Not an oop"); 9157 preserve_mark_if_necessary(p); 9158 p->set_mark((markOop)_overflow_list); 9159 _overflow_list = p; 9160 } 9161 9162 // Multi-threaded; use CAS to prepend to overflow list 9163 void CMSCollector::par_push_on_overflow_list(oop p) { 9164 NOT_PRODUCT(Atomic::inc_ptr(&_num_par_pushes);) 9165 assert(p->is_oop(), "Not an oop"); 9166 par_preserve_mark_if_necessary(p); 9167 oop observed_overflow_list = _overflow_list; 9168 oop cur_overflow_list; 9169 do { 9170 cur_overflow_list = observed_overflow_list; 9171 if (cur_overflow_list != BUSY) { 9172 p->set_mark(markOop(cur_overflow_list)); 9173 } else { 9174 p->set_mark(NULL); 9175 } 9176 observed_overflow_list = 9177 (oop) Atomic::cmpxchg_ptr(p, &_overflow_list, cur_overflow_list); 9178 } while (cur_overflow_list != observed_overflow_list); 9179 } 9180 #undef BUSY 9181 9182 // Single threaded 9183 // General Note on GrowableArray: pushes may silently fail 9184 // because we are (temporarily) out of C-heap for expanding 9185 // the stack. The problem is quite ubiquitous and affects 9186 // a lot of code in the JVM. The prudent thing for GrowableArray 9187 // to do (for now) is to exit with an error. However, that may 9188 // be too draconian in some cases because the caller may be 9189 // able to recover without much harm. For such cases, we 9190 // should probably introduce a "soft_push" method which returns 9191 // an indication of success or failure with the assumption that 9192 // the caller may be able to recover from a failure; code in 9193 // the VM can then be changed, incrementally, to deal with such 9194 // failures where possible, thus, incrementally hardening the VM 9195 // in such low resource situations. 9196 void CMSCollector::preserve_mark_work(oop p, markOop m) { 9197 _preserved_oop_stack.push(p); 9198 _preserved_mark_stack.push(m); 9199 assert(m == p->mark(), "Mark word changed"); 9200 assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(), 9201 "bijection"); 9202 } 9203 9204 // Single threaded 9205 void CMSCollector::preserve_mark_if_necessary(oop p) { 9206 markOop m = p->mark(); 9207 if (m->must_be_preserved(p)) { 9208 preserve_mark_work(p, m); 9209 } 9210 } 9211 9212 void CMSCollector::par_preserve_mark_if_necessary(oop p) { 9213 markOop m = p->mark(); 9214 if (m->must_be_preserved(p)) { 9215 MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag); 9216 // Even though we read the mark word without holding 9217 // the lock, we are assured that it will not change 9218 // because we "own" this oop, so no other thread can 9219 // be trying to push it on the overflow list; see 9220 // the assertion in preserve_mark_work() that checks 9221 // that m == p->mark(). 9222 preserve_mark_work(p, m); 9223 } 9224 } 9225 9226 // We should be able to do this multi-threaded, 9227 // a chunk of stack being a task (this is 9228 // correct because each oop only ever appears 9229 // once in the overflow list. However, it's 9230 // not very easy to completely overlap this with 9231 // other operations, so will generally not be done 9232 // until all work's been completed. Because we 9233 // expect the preserved oop stack (set) to be small, 9234 // it's probably fine to do this single-threaded. 9235 // We can explore cleverer concurrent/overlapped/parallel 9236 // processing of preserved marks if we feel the 9237 // need for this in the future. Stack overflow should 9238 // be so rare in practice and, when it happens, its 9239 // effect on performance so great that this will 9240 // likely just be in the noise anyway. 9241 void CMSCollector::restore_preserved_marks_if_any() { 9242 assert(SafepointSynchronize::is_at_safepoint(), 9243 "world should be stopped"); 9244 assert(Thread::current()->is_ConcurrentGC_thread() || 9245 Thread::current()->is_VM_thread(), 9246 "should be single-threaded"); 9247 assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(), 9248 "bijection"); 9249 9250 while (!_preserved_oop_stack.is_empty()) { 9251 oop p = _preserved_oop_stack.pop(); 9252 assert(p->is_oop(), "Should be an oop"); 9253 assert(_span.contains(p), "oop should be in _span"); 9254 assert(p->mark() == markOopDesc::prototype(), 9255 "Set when taken from overflow list"); 9256 markOop m = _preserved_mark_stack.pop(); 9257 p->set_mark(m); 9258 } 9259 assert(_preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(), 9260 "stacks were cleared above"); 9261 } 9262 9263 #ifndef PRODUCT 9264 bool CMSCollector::no_preserved_marks() const { 9265 return _preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(); 9266 } 9267 #endif 9268 9269 CMSAdaptiveSizePolicy* ASConcurrentMarkSweepGeneration::cms_size_policy() const 9270 { 9271 GenCollectedHeap* gch = (GenCollectedHeap*) GenCollectedHeap::heap(); 9272 CMSAdaptiveSizePolicy* size_policy = 9273 (CMSAdaptiveSizePolicy*) gch->gen_policy()->size_policy(); 9274 assert(size_policy->is_gc_cms_adaptive_size_policy(), 9275 "Wrong type for size policy"); 9276 return size_policy; 9277 } 9278 9279 void ASConcurrentMarkSweepGeneration::resize(size_t cur_promo_size, 9280 size_t desired_promo_size) { 9281 if (cur_promo_size < desired_promo_size) { 9282 size_t expand_bytes = desired_promo_size - cur_promo_size; 9283 if (PrintAdaptiveSizePolicy && Verbose) { 9284 gclog_or_tty->print_cr(" ASConcurrentMarkSweepGeneration::resize " 9285 "Expanding tenured generation by " SIZE_FORMAT " (bytes)", 9286 expand_bytes); 9287 } 9288 expand(expand_bytes, 9289 MinHeapDeltaBytes, 9290 CMSExpansionCause::_adaptive_size_policy); 9291 } else if (desired_promo_size < cur_promo_size) { 9292 size_t shrink_bytes = cur_promo_size - desired_promo_size; 9293 if (PrintAdaptiveSizePolicy && Verbose) { 9294 gclog_or_tty->print_cr(" ASConcurrentMarkSweepGeneration::resize " 9295 "Shrinking tenured generation by " SIZE_FORMAT " (bytes)", 9296 shrink_bytes); 9297 } 9298 shrink(shrink_bytes); 9299 } 9300 } 9301 9302 CMSGCAdaptivePolicyCounters* ASConcurrentMarkSweepGeneration::gc_adaptive_policy_counters() { 9303 GenCollectedHeap* gch = GenCollectedHeap::heap(); 9304 CMSGCAdaptivePolicyCounters* counters = 9305 (CMSGCAdaptivePolicyCounters*) gch->collector_policy()->counters(); 9306 assert(counters->kind() == GCPolicyCounters::CMSGCAdaptivePolicyCountersKind, 9307 "Wrong kind of counters"); 9308 return counters; 9309 } 9310 9311 9312 void ASConcurrentMarkSweepGeneration::update_counters() { 9313 if (UsePerfData) { 9314 _space_counters->update_all(); 9315 _gen_counters->update_all(); 9316 CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters(); 9317 GenCollectedHeap* gch = GenCollectedHeap::heap(); 9318 CMSGCStats* gc_stats_l = (CMSGCStats*) gc_stats(); 9319 assert(gc_stats_l->kind() == GCStats::CMSGCStatsKind, 9320 "Wrong gc statistics type"); 9321 counters->update_counters(gc_stats_l); 9322 } 9323 } 9324 9325 void ASConcurrentMarkSweepGeneration::update_counters(size_t used) { 9326 if (UsePerfData) { 9327 _space_counters->update_used(used); 9328 _space_counters->update_capacity(); 9329 _gen_counters->update_all(); 9330 9331 CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters(); 9332 GenCollectedHeap* gch = GenCollectedHeap::heap(); 9333 CMSGCStats* gc_stats_l = (CMSGCStats*) gc_stats(); 9334 assert(gc_stats_l->kind() == GCStats::CMSGCStatsKind, 9335 "Wrong gc statistics type"); 9336 counters->update_counters(gc_stats_l); 9337 } 9338 } 9339 9340 void ASConcurrentMarkSweepGeneration::shrink_by(size_t desired_bytes) { 9341 assert_locked_or_safepoint(Heap_lock); 9342 assert_lock_strong(freelistLock()); 9343 HeapWord* old_end = _cmsSpace->end(); 9344 HeapWord* unallocated_start = _cmsSpace->unallocated_block(); 9345 assert(old_end >= unallocated_start, "Miscalculation of unallocated_start"); 9346 FreeChunk* chunk_at_end = find_chunk_at_end(); 9347 if (chunk_at_end == NULL) { 9348 // No room to shrink 9349 if (PrintGCDetails && Verbose) { 9350 gclog_or_tty->print_cr("No room to shrink: old_end " 9351 PTR_FORMAT " unallocated_start " PTR_FORMAT 9352 " chunk_at_end " PTR_FORMAT, 9353 old_end, unallocated_start, chunk_at_end); 9354 } 9355 return; 9356 } else { 9357 9358 // Find the chunk at the end of the space and determine 9359 // how much it can be shrunk. 9360 size_t shrinkable_size_in_bytes = chunk_at_end->size(); 9361 size_t aligned_shrinkable_size_in_bytes = 9362 align_size_down(shrinkable_size_in_bytes, os::vm_page_size()); 9363 assert(unallocated_start <= (HeapWord*) chunk_at_end->end(), 9364 "Inconsistent chunk at end of space"); 9365 size_t bytes = MIN2(desired_bytes, aligned_shrinkable_size_in_bytes); 9366 size_t word_size_before = heap_word_size(_virtual_space.committed_size()); 9367 9368 // Shrink the underlying space 9369 _virtual_space.shrink_by(bytes); 9370 if (PrintGCDetails && Verbose) { 9371 gclog_or_tty->print_cr("ConcurrentMarkSweepGeneration::shrink_by:" 9372 " desired_bytes " SIZE_FORMAT 9373 " shrinkable_size_in_bytes " SIZE_FORMAT 9374 " aligned_shrinkable_size_in_bytes " SIZE_FORMAT 9375 " bytes " SIZE_FORMAT, 9376 desired_bytes, shrinkable_size_in_bytes, 9377 aligned_shrinkable_size_in_bytes, bytes); 9378 gclog_or_tty->print_cr(" old_end " SIZE_FORMAT 9379 " unallocated_start " SIZE_FORMAT, 9380 old_end, unallocated_start); 9381 } 9382 9383 // If the space did shrink (shrinking is not guaranteed), 9384 // shrink the chunk at the end by the appropriate amount. 9385 if (((HeapWord*)_virtual_space.high()) < old_end) { 9386 size_t new_word_size = 9387 heap_word_size(_virtual_space.committed_size()); 9388 9389 // Have to remove the chunk from the dictionary because it is changing 9390 // size and might be someplace elsewhere in the dictionary. 9391 9392 // Get the chunk at end, shrink it, and put it 9393 // back. 9394 _cmsSpace->removeChunkFromDictionary(chunk_at_end); 9395 size_t word_size_change = word_size_before - new_word_size; 9396 size_t chunk_at_end_old_size = chunk_at_end->size(); 9397 assert(chunk_at_end_old_size >= word_size_change, 9398 "Shrink is too large"); 9399 chunk_at_end->set_size(chunk_at_end_old_size - 9400 word_size_change); 9401 _cmsSpace->freed((HeapWord*) chunk_at_end->end(), 9402 word_size_change); 9403 9404 _cmsSpace->returnChunkToDictionary(chunk_at_end); 9405 9406 MemRegion mr(_cmsSpace->bottom(), new_word_size); 9407 _bts->resize(new_word_size); // resize the block offset shared array 9408 Universe::heap()->barrier_set()->resize_covered_region(mr); 9409 _cmsSpace->assert_locked(); 9410 _cmsSpace->set_end((HeapWord*)_virtual_space.high()); 9411 9412 NOT_PRODUCT(_cmsSpace->dictionary()->verify()); 9413 9414 // update the space and generation capacity counters 9415 if (UsePerfData) { 9416 _space_counters->update_capacity(); 9417 _gen_counters->update_all(); 9418 } 9419 9420 if (Verbose && PrintGCDetails) { 9421 size_t new_mem_size = _virtual_space.committed_size(); 9422 size_t old_mem_size = new_mem_size + bytes; 9423 gclog_or_tty->print_cr("Shrinking %s from " SIZE_FORMAT "K by " SIZE_FORMAT "K to " SIZE_FORMAT "K", 9424 name(), old_mem_size/K, bytes/K, new_mem_size/K); 9425 } 9426 } 9427 9428 assert(_cmsSpace->unallocated_block() <= _cmsSpace->end(), 9429 "Inconsistency at end of space"); 9430 assert(chunk_at_end->end() == (uintptr_t*) _cmsSpace->end(), 9431 "Shrinking is inconsistent"); 9432 return; 9433 } 9434 } 9435 9436 // Transfer some number of overflown objects to usual marking 9437 // stack. Return true if some objects were transferred. 9438 bool MarkRefsIntoAndScanClosure::take_from_overflow_list() { 9439 size_t num = MIN2((size_t)(_mark_stack->capacity() - _mark_stack->length())/4, 9440 (size_t)ParGCDesiredObjsFromOverflowList); 9441 9442 bool res = _collector->take_from_overflow_list(num, _mark_stack); 9443 assert(_collector->overflow_list_is_empty() || res, 9444 "If list is not empty, we should have taken something"); 9445 assert(!res || !_mark_stack->isEmpty(), 9446 "If we took something, it should now be on our stack"); 9447 return res; 9448 } 9449 9450 size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) { 9451 size_t res = _sp->block_size_no_stall(addr, _collector); 9452 if (_sp->block_is_obj(addr)) { 9453 if (_live_bit_map->isMarked(addr)) { 9454 // It can't have been dead in a previous cycle 9455 guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!"); 9456 } else { 9457 _dead_bit_map->mark(addr); // mark the dead object 9458 } 9459 } 9460 // Could be 0, if the block size could not be computed without stalling. 9461 return res; 9462 } 9463 9464 TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause): TraceMemoryManagerStats() { 9465 9466 switch (phase) { 9467 case CMSCollector::InitialMarking: 9468 initialize(true /* fullGC */ , 9469 cause /* cause of the GC */, 9470 true /* recordGCBeginTime */, 9471 true /* recordPreGCUsage */, 9472 false /* recordPeakUsage */, 9473 false /* recordPostGCusage */, 9474 true /* recordAccumulatedGCTime */, 9475 false /* recordGCEndTime */, 9476 false /* countCollection */ ); 9477 break; 9478 9479 case CMSCollector::FinalMarking: 9480 initialize(true /* fullGC */ , 9481 cause /* cause of the GC */, 9482 false /* recordGCBeginTime */, 9483 false /* recordPreGCUsage */, 9484 false /* recordPeakUsage */, 9485 false /* recordPostGCusage */, 9486 true /* recordAccumulatedGCTime */, 9487 false /* recordGCEndTime */, 9488 false /* countCollection */ ); 9489 break; 9490 9491 case CMSCollector::Sweeping: 9492 initialize(true /* fullGC */ , 9493 cause /* cause of the GC */, 9494 false /* recordGCBeginTime */, 9495 false /* recordPreGCUsage */, 9496 true /* recordPeakUsage */, 9497 true /* recordPostGCusage */, 9498 false /* recordAccumulatedGCTime */, 9499 true /* recordGCEndTime */, 9500 true /* countCollection */ ); 9501 break; 9502 9503 default: 9504 ShouldNotReachHere(); 9505 } 9506 } --- EOF ---