1 /*
   2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderData.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
  31 #include "gc_implementation/concurrentMarkSweep/cmsCollectorPolicy.hpp"
  32 #include "gc_implementation/concurrentMarkSweep/cmsGCAdaptivePolicyCounters.hpp"
  33 #include "gc_implementation/concurrentMarkSweep/cmsOopClosures.inline.hpp"
  34 #include "gc_implementation/concurrentMarkSweep/compactibleFreeListSpace.hpp"
  35 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.inline.hpp"
  36 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
  37 #include "gc_implementation/concurrentMarkSweep/vmCMSOperations.hpp"
  38 #include "gc_implementation/parNew/parNewGeneration.hpp"
  39 #include "gc_implementation/shared/collectorCounters.hpp"
  40 #include "gc_implementation/shared/gcTimer.hpp"
  41 #include "gc_implementation/shared/gcTrace.hpp"
  42 #include "gc_implementation/shared/gcTraceTime.hpp"
  43 #include "gc_implementation/shared/isGCActiveMark.hpp"
  44 #include "gc_interface/collectedHeap.inline.hpp"
  45 #include "memory/allocation.hpp"
  46 #include "memory/cardTableRS.hpp"
  47 #include "memory/collectorPolicy.hpp"
  48 #include "memory/gcLocker.inline.hpp"
  49 #include "memory/genCollectedHeap.hpp"
  50 #include "memory/genMarkSweep.hpp"
  51 #include "memory/genOopClosures.inline.hpp"
  52 #include "memory/iterator.hpp"
  53 #include "memory/referencePolicy.hpp"
  54 #include "memory/resourceArea.hpp"
  55 #include "memory/tenuredGeneration.hpp"
  56 #include "oops/oop.inline.hpp"
  57 #include "prims/jvmtiExport.hpp"
  58 #include "runtime/globals_extension.hpp"
  59 #include "runtime/handles.inline.hpp"
  60 #include "runtime/java.hpp"
  61 #include "runtime/vmThread.hpp"
  62 #include "services/memoryService.hpp"
  63 #include "services/runtimeService.hpp"
  64 
  65 // statics
  66 CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL;
  67 bool CMSCollector::_full_gc_requested = false;
  68 GCCause::Cause CMSCollector::_full_gc_cause = GCCause::_no_gc;
  69 
  70 //////////////////////////////////////////////////////////////////
  71 // In support of CMS/VM thread synchronization
  72 //////////////////////////////////////////////////////////////////
  73 // We split use of the CGC_lock into 2 "levels".
  74 // The low-level locking is of the usual CGC_lock monitor. We introduce
  75 // a higher level "token" (hereafter "CMS token") built on top of the
  76 // low level monitor (hereafter "CGC lock").
  77 // The token-passing protocol gives priority to the VM thread. The
  78 // CMS-lock doesn't provide any fairness guarantees, but clients
  79 // should ensure that it is only held for very short, bounded
  80 // durations.
  81 //
  82 // When either of the CMS thread or the VM thread is involved in
  83 // collection operations during which it does not want the other
  84 // thread to interfere, it obtains the CMS token.
  85 //
  86 // If either thread tries to get the token while the other has
  87 // it, that thread waits. However, if the VM thread and CMS thread
  88 // both want the token, then the VM thread gets priority while the
  89 // CMS thread waits. This ensures, for instance, that the "concurrent"
  90 // phases of the CMS thread's work do not block out the VM thread
  91 // for long periods of time as the CMS thread continues to hog
  92 // the token. (See bug 4616232).
  93 //
  94 // The baton-passing functions are, however, controlled by the
  95 // flags _foregroundGCShouldWait and _foregroundGCIsActive,
  96 // and here the low-level CMS lock, not the high level token,
  97 // ensures mutual exclusion.
  98 //
  99 // Two important conditions that we have to satisfy:
 100 // 1. if a thread does a low-level wait on the CMS lock, then it
 101 //    relinquishes the CMS token if it were holding that token
 102 //    when it acquired the low-level CMS lock.
 103 // 2. any low-level notifications on the low-level lock
 104 //    should only be sent when a thread has relinquished the token.
 105 //
 106 // In the absence of either property, we'd have potential deadlock.
 107 //
 108 // We protect each of the CMS (concurrent and sequential) phases
 109 // with the CMS _token_, not the CMS _lock_.
 110 //
 111 // The only code protected by CMS lock is the token acquisition code
 112 // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the
 113 // baton-passing code.
 114 //
 115 // Unfortunately, i couldn't come up with a good abstraction to factor and
 116 // hide the naked CGC_lock manipulation in the baton-passing code
 117 // further below. That's something we should try to do. Also, the proof
 118 // of correctness of this 2-level locking scheme is far from obvious,
 119 // and potentially quite slippery. We have an uneasy supsicion, for instance,
 120 // that there may be a theoretical possibility of delay/starvation in the
 121 // low-level lock/wait/notify scheme used for the baton-passing because of
 122 // potential intereference with the priority scheme embodied in the
 123 // CMS-token-passing protocol. See related comments at a CGC_lock->wait()
 124 // invocation further below and marked with "XXX 20011219YSR".
 125 // Indeed, as we note elsewhere, this may become yet more slippery
 126 // in the presence of multiple CMS and/or multiple VM threads. XXX
 127 
 128 class CMSTokenSync: public StackObj {
 129  private:
 130   bool _is_cms_thread;
 131  public:
 132   CMSTokenSync(bool is_cms_thread):
 133     _is_cms_thread(is_cms_thread) {
 134     assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(),
 135            "Incorrect argument to constructor");
 136     ConcurrentMarkSweepThread::synchronize(_is_cms_thread);
 137   }
 138 
 139   ~CMSTokenSync() {
 140     assert(_is_cms_thread ?
 141              ConcurrentMarkSweepThread::cms_thread_has_cms_token() :
 142              ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
 143           "Incorrect state");
 144     ConcurrentMarkSweepThread::desynchronize(_is_cms_thread);
 145   }
 146 };
 147 
 148 // Convenience class that does a CMSTokenSync, and then acquires
 149 // upto three locks.
 150 class CMSTokenSyncWithLocks: public CMSTokenSync {
 151  private:
 152   // Note: locks are acquired in textual declaration order
 153   // and released in the opposite order
 154   MutexLockerEx _locker1, _locker2, _locker3;
 155  public:
 156   CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1,
 157                         Mutex* mutex2 = NULL, Mutex* mutex3 = NULL):
 158     CMSTokenSync(is_cms_thread),
 159     _locker1(mutex1, Mutex::_no_safepoint_check_flag),
 160     _locker2(mutex2, Mutex::_no_safepoint_check_flag),
 161     _locker3(mutex3, Mutex::_no_safepoint_check_flag)
 162   { }
 163 };
 164 
 165 
 166 // Wrapper class to temporarily disable icms during a foreground cms collection.
 167 class ICMSDisabler: public StackObj {
 168  public:
 169   // The ctor disables icms and wakes up the thread so it notices the change;
 170   // the dtor re-enables icms.  Note that the CMSCollector methods will check
 171   // CMSIncrementalMode.
 172   ICMSDisabler()  { CMSCollector::disable_icms(); CMSCollector::start_icms(); }
 173   ~ICMSDisabler() { CMSCollector::enable_icms(); }
 174 };
 175 
 176 //////////////////////////////////////////////////////////////////
 177 //  Concurrent Mark-Sweep Generation /////////////////////////////
 178 //////////////////////////////////////////////////////////////////
 179 
 180 NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;)
 181 
 182 // This struct contains per-thread things necessary to support parallel
 183 // young-gen collection.
 184 class CMSParGCThreadState: public CHeapObj<mtGC> {
 185  public:
 186   CFLS_LAB lab;
 187   PromotionInfo promo;
 188 
 189   // Constructor.
 190   CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) {
 191     promo.setSpace(cfls);
 192   }
 193 };
 194 
 195 ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
 196      ReservedSpace rs, size_t initial_byte_size, int level,
 197      CardTableRS* ct, bool use_adaptive_freelists,
 198      FreeBlockDictionary<FreeChunk>::DictionaryChoice dictionaryChoice) :
 199   CardGeneration(rs, initial_byte_size, level, ct),
 200   _dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))),
 201   _debug_collection_type(Concurrent_collection_type),
 202   _did_compact(false)
 203 {
 204   HeapWord* bottom = (HeapWord*) _virtual_space.low();
 205   HeapWord* end    = (HeapWord*) _virtual_space.high();
 206 
 207   _direct_allocated_words = 0;
 208   NOT_PRODUCT(
 209     _numObjectsPromoted = 0;
 210     _numWordsPromoted = 0;
 211     _numObjectsAllocated = 0;
 212     _numWordsAllocated = 0;
 213   )
 214 
 215   _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end),
 216                                            use_adaptive_freelists,
 217                                            dictionaryChoice);
 218   NOT_PRODUCT(debug_cms_space = _cmsSpace;)
 219   if (_cmsSpace == NULL) {
 220     vm_exit_during_initialization(
 221       "CompactibleFreeListSpace allocation failure");
 222   }
 223   _cmsSpace->_gen = this;
 224 
 225   _gc_stats = new CMSGCStats();
 226 
 227   // Verify the assumption that FreeChunk::_prev and OopDesc::_klass
 228   // offsets match. The ability to tell free chunks from objects
 229   // depends on this property.
 230   debug_only(
 231     FreeChunk* junk = NULL;
 232     assert(UseCompressedKlassPointers ||
 233            junk->prev_addr() == (void*)(oop(junk)->klass_addr()),
 234            "Offset of FreeChunk::_prev within FreeChunk must match"
 235            "  that of OopDesc::_klass within OopDesc");
 236   )
 237   if (CollectedHeap::use_parallel_gc_threads()) {
 238     typedef CMSParGCThreadState* CMSParGCThreadStatePtr;
 239     _par_gc_thread_states =
 240       NEW_C_HEAP_ARRAY(CMSParGCThreadStatePtr, ParallelGCThreads, mtGC);
 241     if (_par_gc_thread_states == NULL) {
 242       vm_exit_during_initialization("Could not allocate par gc structs");
 243     }
 244     for (uint i = 0; i < ParallelGCThreads; i++) {
 245       _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace());
 246       if (_par_gc_thread_states[i] == NULL) {
 247         vm_exit_during_initialization("Could not allocate par gc structs");
 248       }
 249     }
 250   } else {
 251     _par_gc_thread_states = NULL;
 252   }
 253   _incremental_collection_failed = false;
 254   // The "dilatation_factor" is the expansion that can occur on
 255   // account of the fact that the minimum object size in the CMS
 256   // generation may be larger than that in, say, a contiguous young
 257   //  generation.
 258   // Ideally, in the calculation below, we'd compute the dilatation
 259   // factor as: MinChunkSize/(promoting_gen's min object size)
 260   // Since we do not have such a general query interface for the
 261   // promoting generation, we'll instead just use the mimimum
 262   // object size (which today is a header's worth of space);
 263   // note that all arithmetic is in units of HeapWords.
 264   assert(MinChunkSize >= CollectedHeap::min_fill_size(), "just checking");
 265   assert(_dilatation_factor >= 1.0, "from previous assert");
 266 }
 267 
 268 
 269 // The field "_initiating_occupancy" represents the occupancy percentage
 270 // at which we trigger a new collection cycle.  Unless explicitly specified
 271 // via CMSInitiatingOccupancyFraction (argument "io" below), it
 272 // is calculated by:
 273 //
 274 //   Let "f" be MinHeapFreeRatio in
 275 //
 276 //    _intiating_occupancy = 100-f +
 277 //                           f * (CMSTriggerRatio/100)
 278 //   where CMSTriggerRatio is the argument "tr" below.
 279 //
 280 // That is, if we assume the heap is at its desired maximum occupancy at the
 281 // end of a collection, we let CMSTriggerRatio of the (purported) free
 282 // space be allocated before initiating a new collection cycle.
 283 //
 284 void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, uintx tr) {
 285   assert(io <= 100 && tr <= 100, "Check the arguments");
 286   if (io >= 0) {
 287     _initiating_occupancy = (double)io / 100.0;
 288   } else {
 289     _initiating_occupancy = ((100 - MinHeapFreeRatio) +
 290                              (double)(tr * MinHeapFreeRatio) / 100.0)
 291                             / 100.0;
 292   }
 293 }
 294 
 295 void ConcurrentMarkSweepGeneration::ref_processor_init() {
 296   assert(collector() != NULL, "no collector");
 297   collector()->ref_processor_init();
 298 }
 299 
 300 void CMSCollector::ref_processor_init() {
 301   if (_ref_processor == NULL) {
 302     // Allocate and initialize a reference processor
 303     _ref_processor =
 304       new ReferenceProcessor(_span,                               // span
 305                              (ParallelGCThreads > 1) && ParallelRefProcEnabled, // mt processing
 306                              (int) ParallelGCThreads,             // mt processing degree
 307                              _cmsGen->refs_discovery_is_mt(),     // mt discovery
 308                              (int) MAX2(ConcGCThreads, ParallelGCThreads), // mt discovery degree
 309                              _cmsGen->refs_discovery_is_atomic(), // discovery is not atomic
 310                              &_is_alive_closure,                  // closure for liveness info
 311                              false);                              // next field updates do not need write barrier
 312     // Initialize the _ref_processor field of CMSGen
 313     _cmsGen->set_ref_processor(_ref_processor);
 314 
 315   }
 316 }
 317 
 318 CMSAdaptiveSizePolicy* CMSCollector::size_policy() {
 319   GenCollectedHeap* gch = GenCollectedHeap::heap();
 320   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
 321     "Wrong type of heap");
 322   CMSAdaptiveSizePolicy* sp = (CMSAdaptiveSizePolicy*)
 323     gch->gen_policy()->size_policy();
 324   assert(sp->is_gc_cms_adaptive_size_policy(),
 325     "Wrong type of size policy");
 326   return sp;
 327 }
 328 
 329 CMSGCAdaptivePolicyCounters* CMSCollector::gc_adaptive_policy_counters() {
 330   CMSGCAdaptivePolicyCounters* results =
 331     (CMSGCAdaptivePolicyCounters*) collector_policy()->counters();
 332   assert(
 333     results->kind() == GCPolicyCounters::CMSGCAdaptivePolicyCountersKind,
 334     "Wrong gc policy counter kind");
 335   return results;
 336 }
 337 
 338 
 339 void ConcurrentMarkSweepGeneration::initialize_performance_counters() {
 340 
 341   const char* gen_name = "old";
 342 
 343   // Generation Counters - generation 1, 1 subspace
 344   _gen_counters = new GenerationCounters(gen_name, 1, 1, &_virtual_space);
 345 
 346   _space_counters = new GSpaceCounters(gen_name, 0,
 347                                        _virtual_space.reserved_size(),
 348                                        this, _gen_counters);
 349 }
 350 
 351 CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha):
 352   _cms_gen(cms_gen)
 353 {
 354   assert(alpha <= 100, "bad value");
 355   _saved_alpha = alpha;
 356 
 357   // Initialize the alphas to the bootstrap value of 100.
 358   _gc0_alpha = _cms_alpha = 100;
 359 
 360   _cms_begin_time.update();
 361   _cms_end_time.update();
 362 
 363   _gc0_duration = 0.0;
 364   _gc0_period = 0.0;
 365   _gc0_promoted = 0;
 366 
 367   _cms_duration = 0.0;
 368   _cms_period = 0.0;
 369   _cms_allocated = 0;
 370 
 371   _cms_used_at_gc0_begin = 0;
 372   _cms_used_at_gc0_end = 0;
 373   _allow_duty_cycle_reduction = false;
 374   _valid_bits = 0;
 375   _icms_duty_cycle = CMSIncrementalDutyCycle;
 376 }
 377 
 378 double CMSStats::cms_free_adjustment_factor(size_t free) const {
 379   // TBD: CR 6909490
 380   return 1.0;
 381 }
 382 
 383 void CMSStats::adjust_cms_free_adjustment_factor(bool fail, size_t free) {
 384 }
 385 
 386 // If promotion failure handling is on use
 387 // the padded average size of the promotion for each
 388 // young generation collection.
 389 double CMSStats::time_until_cms_gen_full() const {
 390   size_t cms_free = _cms_gen->cmsSpace()->free();
 391   GenCollectedHeap* gch = GenCollectedHeap::heap();
 392   size_t expected_promotion = MIN2(gch->get_gen(0)->capacity(),
 393                                    (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average());
 394   if (cms_free > expected_promotion) {
 395     // Start a cms collection if there isn't enough space to promote
 396     // for the next minor collection.  Use the padded average as
 397     // a safety factor.
 398     cms_free -= expected_promotion;
 399 
 400     // Adjust by the safety factor.
 401     double cms_free_dbl = (double)cms_free;
 402     double cms_adjustment = (100.0 - CMSIncrementalSafetyFactor)/100.0;
 403     // Apply a further correction factor which tries to adjust
 404     // for recent occurance of concurrent mode failures.
 405     cms_adjustment = cms_adjustment * cms_free_adjustment_factor(cms_free);
 406     cms_free_dbl = cms_free_dbl * cms_adjustment;
 407 
 408     if (PrintGCDetails && Verbose) {
 409       gclog_or_tty->print_cr("CMSStats::time_until_cms_gen_full: cms_free "
 410         SIZE_FORMAT " expected_promotion " SIZE_FORMAT,
 411         cms_free, expected_promotion);
 412       gclog_or_tty->print_cr("  cms_free_dbl %f cms_consumption_rate %f",
 413         cms_free_dbl, cms_consumption_rate() + 1.0);
 414     }
 415     // Add 1 in case the consumption rate goes to zero.
 416     return cms_free_dbl / (cms_consumption_rate() + 1.0);
 417   }
 418   return 0.0;
 419 }
 420 
 421 // Compare the duration of the cms collection to the
 422 // time remaining before the cms generation is empty.
 423 // Note that the time from the start of the cms collection
 424 // to the start of the cms sweep (less than the total
 425 // duration of the cms collection) can be used.  This
 426 // has been tried and some applications experienced
 427 // promotion failures early in execution.  This was
 428 // possibly because the averages were not accurate
 429 // enough at the beginning.
 430 double CMSStats::time_until_cms_start() const {
 431   // We add "gc0_period" to the "work" calculation
 432   // below because this query is done (mostly) at the
 433   // end of a scavenge, so we need to conservatively
 434   // account for that much possible delay
 435   // in the query so as to avoid concurrent mode failures
 436   // due to starting the collection just a wee bit too
 437   // late.
 438   double work = cms_duration() + gc0_period();
 439   double deadline = time_until_cms_gen_full();
 440   // If a concurrent mode failure occurred recently, we want to be
 441   // more conservative and halve our expected time_until_cms_gen_full()
 442   if (work > deadline) {
 443     if (Verbose && PrintGCDetails) {
 444       gclog_or_tty->print(
 445         " CMSCollector: collect because of anticipated promotion "
 446         "before full %3.7f + %3.7f > %3.7f ", cms_duration(),
 447         gc0_period(), time_until_cms_gen_full());
 448     }
 449     return 0.0;
 450   }
 451   return work - deadline;
 452 }
 453 
 454 // Return a duty cycle based on old_duty_cycle and new_duty_cycle, limiting the
 455 // amount of change to prevent wild oscillation.
 456 unsigned int CMSStats::icms_damped_duty_cycle(unsigned int old_duty_cycle,
 457                                               unsigned int new_duty_cycle) {
 458   assert(old_duty_cycle <= 100, "bad input value");
 459   assert(new_duty_cycle <= 100, "bad input value");
 460 
 461   // Note:  use subtraction with caution since it may underflow (values are
 462   // unsigned).  Addition is safe since we're in the range 0-100.
 463   unsigned int damped_duty_cycle = new_duty_cycle;
 464   if (new_duty_cycle < old_duty_cycle) {
 465     const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 5U);
 466     if (new_duty_cycle + largest_delta < old_duty_cycle) {
 467       damped_duty_cycle = old_duty_cycle - largest_delta;
 468     }
 469   } else if (new_duty_cycle > old_duty_cycle) {
 470     const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 15U);
 471     if (new_duty_cycle > old_duty_cycle + largest_delta) {
 472       damped_duty_cycle = MIN2(old_duty_cycle + largest_delta, 100U);
 473     }
 474   }
 475   assert(damped_duty_cycle <= 100, "invalid duty cycle computed");
 476 
 477   if (CMSTraceIncrementalPacing) {
 478     gclog_or_tty->print(" [icms_damped_duty_cycle(%d,%d) = %d] ",
 479                            old_duty_cycle, new_duty_cycle, damped_duty_cycle);
 480   }
 481   return damped_duty_cycle;
 482 }
 483 
 484 unsigned int CMSStats::icms_update_duty_cycle_impl() {
 485   assert(CMSIncrementalPacing && valid(),
 486          "should be handled in icms_update_duty_cycle()");
 487 
 488   double cms_time_so_far = cms_timer().seconds();
 489   double scaled_duration = cms_duration_per_mb() * _cms_used_at_gc0_end / M;
 490   double scaled_duration_remaining = fabsd(scaled_duration - cms_time_so_far);
 491 
 492   // Avoid division by 0.
 493   double time_until_full = MAX2(time_until_cms_gen_full(), 0.01);
 494   double duty_cycle_dbl = 100.0 * scaled_duration_remaining / time_until_full;
 495 
 496   unsigned int new_duty_cycle = MIN2((unsigned int)duty_cycle_dbl, 100U);
 497   if (new_duty_cycle > _icms_duty_cycle) {
 498     // Avoid very small duty cycles (1 or 2); 0 is allowed.
 499     if (new_duty_cycle > 2) {
 500       _icms_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle,
 501                                                 new_duty_cycle);
 502     }
 503   } else if (_allow_duty_cycle_reduction) {
 504     // The duty cycle is reduced only once per cms cycle (see record_cms_end()).
 505     new_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle, new_duty_cycle);
 506     // Respect the minimum duty cycle.
 507     unsigned int min_duty_cycle = (unsigned int)CMSIncrementalDutyCycleMin;
 508     _icms_duty_cycle = MAX2(new_duty_cycle, min_duty_cycle);
 509   }
 510 
 511   if (PrintGCDetails || CMSTraceIncrementalPacing) {
 512     gclog_or_tty->print(" icms_dc=%d ", _icms_duty_cycle);
 513   }
 514 
 515   _allow_duty_cycle_reduction = false;
 516   return _icms_duty_cycle;
 517 }
 518 
 519 #ifndef PRODUCT
 520 void CMSStats::print_on(outputStream *st) const {
 521   st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha);
 522   st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT,
 523                gc0_duration(), gc0_period(), gc0_promoted());
 524   st->print(",cms_dur=%g,cms_dur_per_mb=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT,
 525             cms_duration(), cms_duration_per_mb(),
 526             cms_period(), cms_allocated());
 527   st->print(",cms_since_beg=%g,cms_since_end=%g",
 528             cms_time_since_begin(), cms_time_since_end());
 529   st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT,
 530             _cms_used_at_gc0_begin, _cms_used_at_gc0_end);
 531   if (CMSIncrementalMode) {
 532     st->print(",dc=%d", icms_duty_cycle());
 533   }
 534 
 535   if (valid()) {
 536     st->print(",promo_rate=%g,cms_alloc_rate=%g",
 537               promotion_rate(), cms_allocation_rate());
 538     st->print(",cms_consumption_rate=%g,time_until_full=%g",
 539               cms_consumption_rate(), time_until_cms_gen_full());
 540   }
 541   st->print(" ");
 542 }
 543 #endif // #ifndef PRODUCT
 544 
 545 CMSCollector::CollectorState CMSCollector::_collectorState =
 546                              CMSCollector::Idling;
 547 bool CMSCollector::_foregroundGCIsActive = false;
 548 bool CMSCollector::_foregroundGCShouldWait = false;
 549 
 550 CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
 551                            CardTableRS*                   ct,
 552                            ConcurrentMarkSweepPolicy*     cp):
 553   _cmsGen(cmsGen),
 554   _ct(ct),
 555   _ref_processor(NULL),    // will be set later
 556   _conc_workers(NULL),     // may be set later
 557   _abort_preclean(false),
 558   _start_sampling(false),
 559   _between_prologue_and_epilogue(false),
 560   _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"),
 561   _modUnionTable((CardTableModRefBS::card_shift - LogHeapWordSize),
 562                  -1 /* lock-free */, "No_lock" /* dummy */),
 563   _modUnionClosure(&_modUnionTable),
 564   _modUnionClosurePar(&_modUnionTable),
 565   // Adjust my span to cover old (cms) gen
 566   _span(cmsGen->reserved()),
 567   // Construct the is_alive_closure with _span & markBitMap
 568   _is_alive_closure(_span, &_markBitMap),
 569   _restart_addr(NULL),
 570   _overflow_list(NULL),
 571   _stats(cmsGen),
 572   _eden_chunk_array(NULL),     // may be set in ctor body
 573   _eden_chunk_capacity(0),     // -- ditto --
 574   _eden_chunk_index(0),        // -- ditto --
 575   _survivor_plab_array(NULL),  // -- ditto --
 576   _survivor_chunk_array(NULL), // -- ditto --
 577   _survivor_chunk_capacity(0), // -- ditto --
 578   _survivor_chunk_index(0),    // -- ditto --
 579   _ser_pmc_preclean_ovflw(0),
 580   _ser_kac_preclean_ovflw(0),
 581   _ser_pmc_remark_ovflw(0),
 582   _par_pmc_remark_ovflw(0),
 583   _ser_kac_ovflw(0),
 584   _par_kac_ovflw(0),
 585 #ifndef PRODUCT
 586   _num_par_pushes(0),
 587 #endif
 588   _collection_count_start(0),
 589   _verifying(false),
 590   _icms_start_limit(NULL),
 591   _icms_stop_limit(NULL),
 592   _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"),
 593   _completed_initialization(false),
 594   _collector_policy(cp),
 595   _should_unload_classes(false),
 596   _concurrent_cycles_since_last_unload(0),
 597   _roots_scanning_options(0),
 598   _inter_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 599   _intra_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 600   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) CMSTracer()),
 601   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 602   _cms_start_registered(false)
 603 {
 604   if (ExplicitGCInvokesConcurrentAndUnloadsClasses) {
 605     ExplicitGCInvokesConcurrent = true;
 606   }
 607   // Now expand the span and allocate the collection support structures
 608   // (MUT, marking bit map etc.) to cover both generations subject to
 609   // collection.
 610 
 611   // For use by dirty card to oop closures.
 612   _cmsGen->cmsSpace()->set_collector(this);
 613 
 614   // Allocate MUT and marking bit map
 615   {
 616     MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag);
 617     if (!_markBitMap.allocate(_span)) {
 618       warning("Failed to allocate CMS Bit Map");
 619       return;
 620     }
 621     assert(_markBitMap.covers(_span), "_markBitMap inconsistency?");
 622   }
 623   {
 624     _modUnionTable.allocate(_span);
 625     assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?");
 626   }
 627 
 628   if (!_markStack.allocate(MarkStackSize)) {
 629     warning("Failed to allocate CMS Marking Stack");
 630     return;
 631   }
 632 
 633   // Support for multi-threaded concurrent phases
 634   if (CMSConcurrentMTEnabled) {
 635     if (FLAG_IS_DEFAULT(ConcGCThreads)) {
 636       // just for now
 637       FLAG_SET_DEFAULT(ConcGCThreads, (ParallelGCThreads + 3)/4);
 638     }
 639     if (ConcGCThreads > 1) {
 640       _conc_workers = new YieldingFlexibleWorkGang("Parallel CMS Threads",
 641                                  ConcGCThreads, true);
 642       if (_conc_workers == NULL) {
 643         warning("GC/CMS: _conc_workers allocation failure: "
 644               "forcing -CMSConcurrentMTEnabled");
 645         CMSConcurrentMTEnabled = false;
 646       } else {
 647         _conc_workers->initialize_workers();
 648       }
 649     } else {
 650       CMSConcurrentMTEnabled = false;
 651     }
 652   }
 653   if (!CMSConcurrentMTEnabled) {
 654     ConcGCThreads = 0;
 655   } else {
 656     // Turn off CMSCleanOnEnter optimization temporarily for
 657     // the MT case where it's not fixed yet; see 6178663.
 658     CMSCleanOnEnter = false;
 659   }
 660   assert((_conc_workers != NULL) == (ConcGCThreads > 1),
 661          "Inconsistency");
 662 
 663   // Parallel task queues; these are shared for the
 664   // concurrent and stop-world phases of CMS, but
 665   // are not shared with parallel scavenge (ParNew).
 666   {
 667     uint i;
 668     uint num_queues = (uint) MAX2(ParallelGCThreads, ConcGCThreads);
 669 
 670     if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled
 671          || ParallelRefProcEnabled)
 672         && num_queues > 0) {
 673       _task_queues = new OopTaskQueueSet(num_queues);
 674       if (_task_queues == NULL) {
 675         warning("task_queues allocation failure.");
 676         return;
 677       }
 678       _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues, mtGC);
 679       if (_hash_seed == NULL) {
 680         warning("_hash_seed array allocation failure");
 681         return;
 682       }
 683 
 684       typedef Padded<OopTaskQueue> PaddedOopTaskQueue;
 685       for (i = 0; i < num_queues; i++) {
 686         PaddedOopTaskQueue *q = new PaddedOopTaskQueue();
 687         if (q == NULL) {
 688           warning("work_queue allocation failure.");
 689           return;
 690         }
 691         _task_queues->register_queue(i, q);
 692       }
 693       for (i = 0; i < num_queues; i++) {
 694         _task_queues->queue(i)->initialize();
 695         _hash_seed[i] = 17;  // copied from ParNew
 696       }
 697     }
 698   }
 699 
 700   _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio);
 701 
 702   // Clip CMSBootstrapOccupancy between 0 and 100.
 703   _bootstrap_occupancy = ((double)CMSBootstrapOccupancy)/(double)100;
 704 
 705   _full_gcs_since_conc_gc = 0;
 706 
 707   // Now tell CMS generations the identity of their collector
 708   ConcurrentMarkSweepGeneration::set_collector(this);
 709 
 710   // Create & start a CMS thread for this CMS collector
 711   _cmsThread = ConcurrentMarkSweepThread::start(this);
 712   assert(cmsThread() != NULL, "CMS Thread should have been created");
 713   assert(cmsThread()->collector() == this,
 714          "CMS Thread should refer to this gen");
 715   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 716 
 717   // Support for parallelizing young gen rescan
 718   GenCollectedHeap* gch = GenCollectedHeap::heap();
 719   _young_gen = gch->prev_gen(_cmsGen);
 720   if (gch->supports_inline_contig_alloc()) {
 721     _top_addr = gch->top_addr();
 722     _end_addr = gch->end_addr();
 723     assert(_young_gen != NULL, "no _young_gen");
 724     _eden_chunk_index = 0;
 725     _eden_chunk_capacity = (_young_gen->max_capacity()+CMSSamplingGrain)/CMSSamplingGrain;
 726     _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity, mtGC);
 727     if (_eden_chunk_array == NULL) {
 728       _eden_chunk_capacity = 0;
 729       warning("GC/CMS: _eden_chunk_array allocation failure");
 730     }
 731   }
 732   assert(_eden_chunk_array != NULL || _eden_chunk_capacity == 0, "Error");
 733 
 734   // Support for parallelizing survivor space rescan
 735   if (CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) {
 736     const size_t max_plab_samples =
 737       ((DefNewGeneration*)_young_gen)->max_survivor_size()/MinTLABSize;
 738 
 739     _survivor_plab_array  = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads, mtGC);
 740     _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, 2*max_plab_samples, mtGC);
 741     _cursor               = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads, mtGC);
 742     if (_survivor_plab_array == NULL || _survivor_chunk_array == NULL
 743         || _cursor == NULL) {
 744       warning("Failed to allocate survivor plab/chunk array");
 745       if (_survivor_plab_array  != NULL) {
 746         FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array, mtGC);
 747         _survivor_plab_array = NULL;
 748       }
 749       if (_survivor_chunk_array != NULL) {
 750         FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array, mtGC);
 751         _survivor_chunk_array = NULL;
 752       }
 753       if (_cursor != NULL) {
 754         FREE_C_HEAP_ARRAY(size_t, _cursor, mtGC);
 755         _cursor = NULL;
 756       }
 757     } else {
 758       _survivor_chunk_capacity = 2*max_plab_samples;
 759       for (uint i = 0; i < ParallelGCThreads; i++) {
 760         HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 761         if (vec == NULL) {
 762           warning("Failed to allocate survivor plab array");
 763           for (int j = i; j > 0; j--) {
 764             FREE_C_HEAP_ARRAY(HeapWord*, _survivor_plab_array[j-1].array(), mtGC);
 765           }
 766           FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array, mtGC);
 767           FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array, mtGC);
 768           _survivor_plab_array = NULL;
 769           _survivor_chunk_array = NULL;
 770           _survivor_chunk_capacity = 0;
 771           break;
 772         } else {
 773           ChunkArray* cur =
 774             ::new (&_survivor_plab_array[i]) ChunkArray(vec,
 775                                                         max_plab_samples);
 776           assert(cur->end() == 0, "Should be 0");
 777           assert(cur->array() == vec, "Should be vec");
 778           assert(cur->capacity() == max_plab_samples, "Error");
 779         }
 780       }
 781     }
 782   }
 783   assert(   (   _survivor_plab_array  != NULL
 784              && _survivor_chunk_array != NULL)
 785          || (   _survivor_chunk_capacity == 0
 786              && _survivor_chunk_index == 0),
 787          "Error");
 788 
 789   // Choose what strong roots should be scanned depending on verification options
 790   if (!CMSClassUnloadingEnabled) {
 791     // If class unloading is disabled we want to include all classes into the root set.
 792     add_root_scanning_option(SharedHeap::SO_AllClasses);
 793   } else {
 794     add_root_scanning_option(SharedHeap::SO_SystemClasses);
 795   }
 796 
 797   NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;)
 798   _gc_counters = new CollectorCounters("CMS", 1);
 799   _completed_initialization = true;
 800   _inter_sweep_timer.start();  // start of time
 801 }
 802 
 803 const char* ConcurrentMarkSweepGeneration::name() const {
 804   return "concurrent mark-sweep generation";
 805 }
 806 void ConcurrentMarkSweepGeneration::update_counters() {
 807   if (UsePerfData) {
 808     _space_counters->update_all();
 809     _gen_counters->update_all();
 810   }
 811 }
 812 
 813 // this is an optimized version of update_counters(). it takes the
 814 // used value as a parameter rather than computing it.
 815 //
 816 void ConcurrentMarkSweepGeneration::update_counters(size_t used) {
 817   if (UsePerfData) {
 818     _space_counters->update_used(used);
 819     _space_counters->update_capacity();
 820     _gen_counters->update_all();
 821   }
 822 }
 823 
 824 void ConcurrentMarkSweepGeneration::print() const {
 825   Generation::print();
 826   cmsSpace()->print();
 827 }
 828 
 829 #ifndef PRODUCT
 830 void ConcurrentMarkSweepGeneration::print_statistics() {
 831   cmsSpace()->printFLCensus(0);
 832 }
 833 #endif
 834 
 835 void ConcurrentMarkSweepGeneration::printOccupancy(const char *s) {
 836   GenCollectedHeap* gch = GenCollectedHeap::heap();
 837   if (PrintGCDetails) {
 838     if (Verbose) {
 839       gclog_or_tty->print("[%d %s-%s: "SIZE_FORMAT"("SIZE_FORMAT")]",
 840         level(), short_name(), s, used(), capacity());
 841     } else {
 842       gclog_or_tty->print("[%d %s-%s: "SIZE_FORMAT"K("SIZE_FORMAT"K)]",
 843         level(), short_name(), s, used() / K, capacity() / K);
 844     }
 845   }
 846   if (Verbose) {
 847     gclog_or_tty->print(" "SIZE_FORMAT"("SIZE_FORMAT")",
 848               gch->used(), gch->capacity());
 849   } else {
 850     gclog_or_tty->print(" "SIZE_FORMAT"K("SIZE_FORMAT"K)",
 851               gch->used() / K, gch->capacity() / K);
 852   }
 853 }
 854 
 855 size_t
 856 ConcurrentMarkSweepGeneration::contiguous_available() const {
 857   // dld proposes an improvement in precision here. If the committed
 858   // part of the space ends in a free block we should add that to
 859   // uncommitted size in the calculation below. Will make this
 860   // change later, staying with the approximation below for the
 861   // time being. -- ysr.
 862   return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc());
 863 }
 864 
 865 size_t
 866 ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const {
 867   return _cmsSpace->max_alloc_in_words() * HeapWordSize;
 868 }
 869 
 870 size_t ConcurrentMarkSweepGeneration::max_available() const {
 871   return free() + _virtual_space.uncommitted_size();
 872 }
 873 
 874 bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const {
 875   size_t available = max_available();
 876   size_t av_promo  = (size_t)gc_stats()->avg_promoted()->padded_average();
 877   bool   res = (available >= av_promo) || (available >= max_promotion_in_bytes);
 878   if (Verbose && PrintGCDetails) {
 879     gclog_or_tty->print_cr(
 880       "CMS: promo attempt is%s safe: available("SIZE_FORMAT") %s av_promo("SIZE_FORMAT"),"
 881       "max_promo("SIZE_FORMAT")",
 882       res? "":" not", available, res? ">=":"<",
 883       av_promo, max_promotion_in_bytes);
 884   }
 885   return res;
 886 }
 887 
 888 // At a promotion failure dump information on block layout in heap
 889 // (cms old generation).
 890 void ConcurrentMarkSweepGeneration::promotion_failure_occurred() {
 891   if (CMSDumpAtPromotionFailure) {
 892     cmsSpace()->dump_at_safepoint_with_locks(collector(), gclog_or_tty);
 893   }
 894 }
 895 
 896 CompactibleSpace*
 897 ConcurrentMarkSweepGeneration::first_compaction_space() const {
 898   return _cmsSpace;
 899 }
 900 
 901 void ConcurrentMarkSweepGeneration::reset_after_compaction() {
 902   // Clear the promotion information.  These pointers can be adjusted
 903   // along with all the other pointers into the heap but
 904   // compaction is expected to be a rare event with
 905   // a heap using cms so don't do it without seeing the need.
 906   if (CollectedHeap::use_parallel_gc_threads()) {
 907     for (uint i = 0; i < ParallelGCThreads; i++) {
 908       _par_gc_thread_states[i]->promo.reset();
 909     }
 910   }
 911 }
 912 
 913 void ConcurrentMarkSweepGeneration::space_iterate(SpaceClosure* blk, bool usedOnly) {
 914   blk->do_space(_cmsSpace);
 915 }
 916 
 917 void ConcurrentMarkSweepGeneration::compute_new_size() {
 918   assert_locked_or_safepoint(Heap_lock);
 919 
 920   // If incremental collection failed, we just want to expand
 921   // to the limit.
 922   if (incremental_collection_failed()) {
 923     clear_incremental_collection_failed();
 924     grow_to_reserved();
 925     return;
 926   }
 927 
 928   // The heap has been compacted but not reset yet.
 929   // Any metric such as free() or used() will be incorrect.
 930 
 931   CardGeneration::compute_new_size();
 932 
 933   // Reset again after a possible resizing
 934   if (did_compact()) {
 935     cmsSpace()->reset_after_compaction();
 936   }
 937 }
 938 
 939 void ConcurrentMarkSweepGeneration::compute_new_size_free_list() {
 940   assert_locked_or_safepoint(Heap_lock);
 941 
 942   // If incremental collection failed, we just want to expand
 943   // to the limit.
 944   if (incremental_collection_failed()) {
 945     clear_incremental_collection_failed();
 946     grow_to_reserved();
 947     return;
 948   }
 949 
 950   double free_percentage = ((double) free()) / capacity();
 951   double desired_free_percentage = (double) MinHeapFreeRatio / 100;
 952   double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
 953 
 954   // compute expansion delta needed for reaching desired free percentage
 955   if (free_percentage < desired_free_percentage) {
 956     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 957     assert(desired_capacity >= capacity(), "invalid expansion size");
 958     size_t expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes);
 959     if (PrintGCDetails && Verbose) {
 960       size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 961       gclog_or_tty->print_cr("\nFrom compute_new_size: ");
 962       gclog_or_tty->print_cr("  Free fraction %f", free_percentage);
 963       gclog_or_tty->print_cr("  Desired free fraction %f",
 964         desired_free_percentage);
 965       gclog_or_tty->print_cr("  Maximum free fraction %f",
 966         maximum_free_percentage);
 967       gclog_or_tty->print_cr("  Capactiy "SIZE_FORMAT, capacity()/1000);
 968       gclog_or_tty->print_cr("  Desired capacity "SIZE_FORMAT,
 969         desired_capacity/1000);
 970       int prev_level = level() - 1;
 971       if (prev_level >= 0) {
 972         size_t prev_size = 0;
 973         GenCollectedHeap* gch = GenCollectedHeap::heap();
 974         Generation* prev_gen = gch->_gens[prev_level];
 975         prev_size = prev_gen->capacity();
 976           gclog_or_tty->print_cr("  Younger gen size "SIZE_FORMAT,
 977                                  prev_size/1000);
 978       }
 979       gclog_or_tty->print_cr("  unsafe_max_alloc_nogc "SIZE_FORMAT,
 980         unsafe_max_alloc_nogc()/1000);
 981       gclog_or_tty->print_cr("  contiguous available "SIZE_FORMAT,
 982         contiguous_available()/1000);
 983       gclog_or_tty->print_cr("  Expand by "SIZE_FORMAT" (bytes)",
 984         expand_bytes);
 985     }
 986     // safe if expansion fails
 987     expand(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio);
 988     if (PrintGCDetails && Verbose) {
 989       gclog_or_tty->print_cr("  Expanded free fraction %f",
 990         ((double) free()) / capacity());
 991     }
 992   } else {
 993     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 994     assert(desired_capacity <= capacity(), "invalid expansion size");
 995     size_t shrink_bytes = capacity() - desired_capacity;
 996     // Don't shrink unless the delta is greater than the minimum shrink we want
 997     if (shrink_bytes >= MinHeapDeltaBytes) {
 998       shrink_free_list_by(shrink_bytes);
 999     }
1000   }
1001 }
1002 
1003 Mutex* ConcurrentMarkSweepGeneration::freelistLock() const {
1004   return cmsSpace()->freelistLock();
1005 }
1006 
1007 HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size,
1008                                                   bool   tlab) {
1009   CMSSynchronousYieldRequest yr;
1010   MutexLockerEx x(freelistLock(),
1011                   Mutex::_no_safepoint_check_flag);
1012   return have_lock_and_allocate(size, tlab);
1013 }
1014 
1015 HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size,
1016                                                   bool   tlab /* ignored */) {
1017   assert_lock_strong(freelistLock());
1018   size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size);
1019   HeapWord* res = cmsSpace()->allocate(adjustedSize);
1020   // Allocate the object live (grey) if the background collector has
1021   // started marking. This is necessary because the marker may
1022   // have passed this address and consequently this object will
1023   // not otherwise be greyed and would be incorrectly swept up.
1024   // Note that if this object contains references, the writing
1025   // of those references will dirty the card containing this object
1026   // allowing the object to be blackened (and its references scanned)
1027   // either during a preclean phase or at the final checkpoint.
1028   if (res != NULL) {
1029     // We may block here with an uninitialized object with
1030     // its mark-bit or P-bits not yet set. Such objects need
1031     // to be safely navigable by block_start().
1032     assert(oop(res)->klass_or_null() == NULL, "Object should be uninitialized here.");
1033     assert(!((FreeChunk*)res)->is_free(), "Error, block will look free but show wrong size");
1034     collector()->direct_allocated(res, adjustedSize);
1035     _direct_allocated_words += adjustedSize;
1036     // allocation counters
1037     NOT_PRODUCT(
1038       _numObjectsAllocated++;
1039       _numWordsAllocated += (int)adjustedSize;
1040     )
1041   }
1042   return res;
1043 }
1044 
1045 // In the case of direct allocation by mutators in a generation that
1046 // is being concurrently collected, the object must be allocated
1047 // live (grey) if the background collector has started marking.
1048 // This is necessary because the marker may
1049 // have passed this address and consequently this object will
1050 // not otherwise be greyed and would be incorrectly swept up.
1051 // Note that if this object contains references, the writing
1052 // of those references will dirty the card containing this object
1053 // allowing the object to be blackened (and its references scanned)
1054 // either during a preclean phase or at the final checkpoint.
1055 void CMSCollector::direct_allocated(HeapWord* start, size_t size) {
1056   assert(_markBitMap.covers(start, size), "Out of bounds");
1057   if (_collectorState >= Marking) {
1058     MutexLockerEx y(_markBitMap.lock(),
1059                     Mutex::_no_safepoint_check_flag);
1060     // [see comments preceding SweepClosure::do_blk() below for details]
1061     //
1062     // Can the P-bits be deleted now?  JJJ
1063     //
1064     // 1. need to mark the object as live so it isn't collected
1065     // 2. need to mark the 2nd bit to indicate the object may be uninitialized
1066     // 3. need to mark the end of the object so marking, precleaning or sweeping
1067     //    can skip over uninitialized or unparsable objects. An allocated
1068     //    object is considered uninitialized for our purposes as long as
1069     //    its klass word is NULL.  All old gen objects are parsable
1070     //    as soon as they are initialized.)
1071     _markBitMap.mark(start);          // object is live
1072     _markBitMap.mark(start + 1);      // object is potentially uninitialized?
1073     _markBitMap.mark(start + size - 1);
1074                                       // mark end of object
1075   }
1076   // check that oop looks uninitialized
1077   assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL");
1078 }
1079 
1080 void CMSCollector::promoted(bool par, HeapWord* start,
1081                             bool is_obj_array, size_t obj_size) {
1082   assert(_markBitMap.covers(start), "Out of bounds");
1083   // See comment in direct_allocated() about when objects should
1084   // be allocated live.
1085   if (_collectorState >= Marking) {
1086     // we already hold the marking bit map lock, taken in
1087     // the prologue
1088     if (par) {
1089       _markBitMap.par_mark(start);
1090     } else {
1091       _markBitMap.mark(start);
1092     }
1093     // We don't need to mark the object as uninitialized (as
1094     // in direct_allocated above) because this is being done with the
1095     // world stopped and the object will be initialized by the
1096     // time the marking, precleaning or sweeping get to look at it.
1097     // But see the code for copying objects into the CMS generation,
1098     // where we need to ensure that concurrent readers of the
1099     // block offset table are able to safely navigate a block that
1100     // is in flux from being free to being allocated (and in
1101     // transition while being copied into) and subsequently
1102     // becoming a bona-fide object when the copy/promotion is complete.
1103     assert(SafepointSynchronize::is_at_safepoint(),
1104            "expect promotion only at safepoints");
1105 
1106     if (_collectorState < Sweeping) {
1107       // Mark the appropriate cards in the modUnionTable, so that
1108       // this object gets scanned before the sweep. If this is
1109       // not done, CMS generation references in the object might
1110       // not get marked.
1111       // For the case of arrays, which are otherwise precisely
1112       // marked, we need to dirty the entire array, not just its head.
1113       if (is_obj_array) {
1114         // The [par_]mark_range() method expects mr.end() below to
1115         // be aligned to the granularity of a bit's representation
1116         // in the heap. In the case of the MUT below, that's a
1117         // card size.
1118         MemRegion mr(start,
1119                      (HeapWord*)round_to((intptr_t)(start + obj_size),
1120                         CardTableModRefBS::card_size /* bytes */));
1121         if (par) {
1122           _modUnionTable.par_mark_range(mr);
1123         } else {
1124           _modUnionTable.mark_range(mr);
1125         }
1126       } else {  // not an obj array; we can just mark the head
1127         if (par) {
1128           _modUnionTable.par_mark(start);
1129         } else {
1130           _modUnionTable.mark(start);
1131         }
1132       }
1133     }
1134   }
1135 }
1136 
1137 static inline size_t percent_of_space(Space* space, HeapWord* addr)
1138 {
1139   size_t delta = pointer_delta(addr, space->bottom());
1140   return (size_t)(delta * 100.0 / (space->capacity() / HeapWordSize));
1141 }
1142 
1143 void CMSCollector::icms_update_allocation_limits()
1144 {
1145   Generation* gen0 = GenCollectedHeap::heap()->get_gen(0);
1146   EdenSpace* eden = gen0->as_DefNewGeneration()->eden();
1147 
1148   const unsigned int duty_cycle = stats().icms_update_duty_cycle();
1149   if (CMSTraceIncrementalPacing) {
1150     stats().print();
1151   }
1152 
1153   assert(duty_cycle <= 100, "invalid duty cycle");
1154   if (duty_cycle != 0) {
1155     // The duty_cycle is a percentage between 0 and 100; convert to words and
1156     // then compute the offset from the endpoints of the space.
1157     size_t free_words = eden->free() / HeapWordSize;
1158     double free_words_dbl = (double)free_words;
1159     size_t duty_cycle_words = (size_t)(free_words_dbl * duty_cycle / 100.0);
1160     size_t offset_words = (free_words - duty_cycle_words) / 2;
1161 
1162     _icms_start_limit = eden->top() + offset_words;
1163     _icms_stop_limit = eden->end() - offset_words;
1164 
1165     // The limits may be adjusted (shifted to the right) by
1166     // CMSIncrementalOffset, to allow the application more mutator time after a
1167     // young gen gc (when all mutators were stopped) and before CMS starts and
1168     // takes away one or more cpus.
1169     if (CMSIncrementalOffset != 0) {
1170       double adjustment_dbl = free_words_dbl * CMSIncrementalOffset / 100.0;
1171       size_t adjustment = (size_t)adjustment_dbl;
1172       HeapWord* tmp_stop = _icms_stop_limit + adjustment;
1173       if (tmp_stop > _icms_stop_limit && tmp_stop < eden->end()) {
1174         _icms_start_limit += adjustment;
1175         _icms_stop_limit = tmp_stop;
1176       }
1177     }
1178   }
1179   if (duty_cycle == 0 || (_icms_start_limit == _icms_stop_limit)) {
1180     _icms_start_limit = _icms_stop_limit = eden->end();
1181   }
1182 
1183   // Install the new start limit.
1184   eden->set_soft_end(_icms_start_limit);
1185 
1186   if (CMSTraceIncrementalMode) {
1187     gclog_or_tty->print(" icms alloc limits:  "
1188                            PTR_FORMAT "," PTR_FORMAT
1189                            " (" SIZE_FORMAT "%%," SIZE_FORMAT "%%) ",
1190                            _icms_start_limit, _icms_stop_limit,
1191                            percent_of_space(eden, _icms_start_limit),
1192                            percent_of_space(eden, _icms_stop_limit));
1193     if (Verbose) {
1194       gclog_or_tty->print("eden:  ");
1195       eden->print_on(gclog_or_tty);
1196     }
1197   }
1198 }
1199 
1200 // Any changes here should try to maintain the invariant
1201 // that if this method is called with _icms_start_limit
1202 // and _icms_stop_limit both NULL, then it should return NULL
1203 // and not notify the icms thread.
1204 HeapWord*
1205 CMSCollector::allocation_limit_reached(Space* space, HeapWord* top,
1206                                        size_t word_size)
1207 {
1208   // A start_limit equal to end() means the duty cycle is 0, so treat that as a
1209   // nop.
1210   if (CMSIncrementalMode && _icms_start_limit != space->end()) {
1211     if (top <= _icms_start_limit) {
1212       if (CMSTraceIncrementalMode) {
1213         space->print_on(gclog_or_tty);
1214         gclog_or_tty->stamp();
1215         gclog_or_tty->print_cr(" start limit top=" PTR_FORMAT
1216                                ", new limit=" PTR_FORMAT
1217                                " (" SIZE_FORMAT "%%)",
1218                                top, _icms_stop_limit,
1219                                percent_of_space(space, _icms_stop_limit));
1220       }
1221       ConcurrentMarkSweepThread::start_icms();
1222       assert(top < _icms_stop_limit, "Tautology");
1223       if (word_size < pointer_delta(_icms_stop_limit, top)) {
1224         return _icms_stop_limit;
1225       }
1226 
1227       // The allocation will cross both the _start and _stop limits, so do the
1228       // stop notification also and return end().
1229       if (CMSTraceIncrementalMode) {
1230         space->print_on(gclog_or_tty);
1231         gclog_or_tty->stamp();
1232         gclog_or_tty->print_cr(" +stop limit top=" PTR_FORMAT
1233                                ", new limit=" PTR_FORMAT
1234                                " (" SIZE_FORMAT "%%)",
1235                                top, space->end(),
1236                                percent_of_space(space, space->end()));
1237       }
1238       ConcurrentMarkSweepThread::stop_icms();
1239       return space->end();
1240     }
1241 
1242     if (top <= _icms_stop_limit) {
1243       if (CMSTraceIncrementalMode) {
1244         space->print_on(gclog_or_tty);
1245         gclog_or_tty->stamp();
1246         gclog_or_tty->print_cr(" stop limit top=" PTR_FORMAT
1247                                ", new limit=" PTR_FORMAT
1248                                " (" SIZE_FORMAT "%%)",
1249                                top, space->end(),
1250                                percent_of_space(space, space->end()));
1251       }
1252       ConcurrentMarkSweepThread::stop_icms();
1253       return space->end();
1254     }
1255 
1256     if (CMSTraceIncrementalMode) {
1257       space->print_on(gclog_or_tty);
1258       gclog_or_tty->stamp();
1259       gclog_or_tty->print_cr(" end limit top=" PTR_FORMAT
1260                              ", new limit=" PTR_FORMAT,
1261                              top, NULL);
1262     }
1263   }
1264 
1265   return NULL;
1266 }
1267 
1268 oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) {
1269   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
1270   // allocate, copy and if necessary update promoinfo --
1271   // delegate to underlying space.
1272   assert_lock_strong(freelistLock());
1273 
1274 #ifndef PRODUCT
1275   if (Universe::heap()->promotion_should_fail()) {
1276     return NULL;
1277   }
1278 #endif  // #ifndef PRODUCT
1279 
1280   oop res = _cmsSpace->promote(obj, obj_size);
1281   if (res == NULL) {
1282     // expand and retry
1283     size_t s = _cmsSpace->expansionSpaceRequired(obj_size);  // HeapWords
1284     expand(s*HeapWordSize, MinHeapDeltaBytes,
1285       CMSExpansionCause::_satisfy_promotion);
1286     // Since there's currently no next generation, we don't try to promote
1287     // into a more senior generation.
1288     assert(next_gen() == NULL, "assumption, based upon which no attempt "
1289                                "is made to pass on a possibly failing "
1290                                "promotion to next generation");
1291     res = _cmsSpace->promote(obj, obj_size);
1292   }
1293   if (res != NULL) {
1294     // See comment in allocate() about when objects should
1295     // be allocated live.
1296     assert(obj->is_oop(), "Will dereference klass pointer below");
1297     collector()->promoted(false,           // Not parallel
1298                           (HeapWord*)res, obj->is_objArray(), obj_size);
1299     // promotion counters
1300     NOT_PRODUCT(
1301       _numObjectsPromoted++;
1302       _numWordsPromoted +=
1303         (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size()));
1304     )
1305   }
1306   return res;
1307 }
1308 
1309 
1310 HeapWord*
1311 ConcurrentMarkSweepGeneration::allocation_limit_reached(Space* space,
1312                                              HeapWord* top,
1313                                              size_t word_sz)
1314 {
1315   return collector()->allocation_limit_reached(space, top, word_sz);
1316 }
1317 
1318 // IMPORTANT: Notes on object size recognition in CMS.
1319 // ---------------------------------------------------
1320 // A block of storage in the CMS generation is always in
1321 // one of three states. A free block (FREE), an allocated
1322 // object (OBJECT) whose size() method reports the correct size,
1323 // and an intermediate state (TRANSIENT) in which its size cannot
1324 // be accurately determined.
1325 // STATE IDENTIFICATION:   (32 bit and 64 bit w/o COOPS)
1326 // -----------------------------------------------------
1327 // FREE:      klass_word & 1 == 1; mark_word holds block size
1328 //
1329 // OBJECT:    klass_word installed; klass_word != 0 && klass_word & 1 == 0;
1330 //            obj->size() computes correct size
1331 //
1332 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1333 //
1334 // STATE IDENTIFICATION: (64 bit+COOPS)
1335 // ------------------------------------
1336 // FREE:      mark_word & CMS_FREE_BIT == 1; mark_word & ~CMS_FREE_BIT gives block_size
1337 //
1338 // OBJECT:    klass_word installed; klass_word != 0;
1339 //            obj->size() computes correct size
1340 //
1341 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1342 //
1343 //
1344 // STATE TRANSITION DIAGRAM
1345 //
1346 //        mut / parnew                     mut  /  parnew
1347 // FREE --------------------> TRANSIENT ---------------------> OBJECT --|
1348 //  ^                                                                   |
1349 //  |------------------------ DEAD <------------------------------------|
1350 //         sweep                            mut
1351 //
1352 // While a block is in TRANSIENT state its size cannot be determined
1353 // so readers will either need to come back later or stall until
1354 // the size can be determined. Note that for the case of direct
1355 // allocation, P-bits, when available, may be used to determine the
1356 // size of an object that may not yet have been initialized.
1357 
1358 // Things to support parallel young-gen collection.
1359 oop
1360 ConcurrentMarkSweepGeneration::par_promote(int thread_num,
1361                                            oop old, markOop m,
1362                                            size_t word_sz) {
1363 #ifndef PRODUCT
1364   if (Universe::heap()->promotion_should_fail()) {
1365     return NULL;
1366   }
1367 #endif  // #ifndef PRODUCT
1368 
1369   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1370   PromotionInfo* promoInfo = &ps->promo;
1371   // if we are tracking promotions, then first ensure space for
1372   // promotion (including spooling space for saving header if necessary).
1373   // then allocate and copy, then track promoted info if needed.
1374   // When tracking (see PromotionInfo::track()), the mark word may
1375   // be displaced and in this case restoration of the mark word
1376   // occurs in the (oop_since_save_marks_)iterate phase.
1377   if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) {
1378     // Out of space for allocating spooling buffers;
1379     // try expanding and allocating spooling buffers.
1380     if (!expand_and_ensure_spooling_space(promoInfo)) {
1381       return NULL;
1382     }
1383   }
1384   assert(promoInfo->has_spooling_space(), "Control point invariant");
1385   const size_t alloc_sz = CompactibleFreeListSpace::adjustObjectSize(word_sz);
1386   HeapWord* obj_ptr = ps->lab.alloc(alloc_sz);
1387   if (obj_ptr == NULL) {
1388      obj_ptr = expand_and_par_lab_allocate(ps, alloc_sz);
1389      if (obj_ptr == NULL) {
1390        return NULL;
1391      }
1392   }
1393   oop obj = oop(obj_ptr);
1394   OrderAccess::storestore();
1395   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1396   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1397   // IMPORTANT: See note on object initialization for CMS above.
1398   // Otherwise, copy the object.  Here we must be careful to insert the
1399   // klass pointer last, since this marks the block as an allocated object.
1400   // Except with compressed oops it's the mark word.
1401   HeapWord* old_ptr = (HeapWord*)old;
1402   // Restore the mark word copied above.
1403   obj->set_mark(m);
1404   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1405   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1406   OrderAccess::storestore();
1407 
1408   if (UseCompressedKlassPointers) {
1409     // Copy gap missed by (aligned) header size calculation below
1410     obj->set_klass_gap(old->klass_gap());
1411   }
1412   if (word_sz > (size_t)oopDesc::header_size()) {
1413     Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(),
1414                                  obj_ptr + oopDesc::header_size(),
1415                                  word_sz - oopDesc::header_size());
1416   }
1417 
1418   // Now we can track the promoted object, if necessary.  We take care
1419   // to delay the transition from uninitialized to full object
1420   // (i.e., insertion of klass pointer) until after, so that it
1421   // atomically becomes a promoted object.
1422   if (promoInfo->tracking()) {
1423     promoInfo->track((PromotedObject*)obj, old->klass());
1424   }
1425   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1426   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1427   assert(old->is_oop(), "Will use and dereference old klass ptr below");
1428 
1429   // Finally, install the klass pointer (this should be volatile).
1430   OrderAccess::storestore();
1431   obj->set_klass(old->klass());
1432   // We should now be able to calculate the right size for this object
1433   assert(obj->is_oop() && obj->size() == (int)word_sz, "Error, incorrect size computed for promoted object");
1434 
1435   collector()->promoted(true,          // parallel
1436                         obj_ptr, old->is_objArray(), word_sz);
1437 
1438   NOT_PRODUCT(
1439     Atomic::inc_ptr(&_numObjectsPromoted);
1440     Atomic::add_ptr(alloc_sz, &_numWordsPromoted);
1441   )
1442 
1443   return obj;
1444 }
1445 
1446 void
1447 ConcurrentMarkSweepGeneration::
1448 par_promote_alloc_undo(int thread_num,
1449                        HeapWord* obj, size_t word_sz) {
1450   // CMS does not support promotion undo.
1451   ShouldNotReachHere();
1452 }
1453 
1454 void
1455 ConcurrentMarkSweepGeneration::
1456 par_promote_alloc_done(int thread_num) {
1457   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1458   ps->lab.retire(thread_num);
1459 }
1460 
1461 void
1462 ConcurrentMarkSweepGeneration::
1463 par_oop_since_save_marks_iterate_done(int thread_num) {
1464   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1465   ParScanWithoutBarrierClosure* dummy_cl = NULL;
1466   ps->promo.promoted_oops_iterate_nv(dummy_cl);
1467 }
1468 
1469 bool ConcurrentMarkSweepGeneration::should_collect(bool   full,
1470                                                    size_t size,
1471                                                    bool   tlab)
1472 {
1473   // We allow a STW collection only if a full
1474   // collection was requested.
1475   return full || should_allocate(size, tlab); // FIX ME !!!
1476   // This and promotion failure handling are connected at the
1477   // hip and should be fixed by untying them.
1478 }
1479 
1480 bool CMSCollector::shouldConcurrentCollect() {
1481   if (_full_gc_requested) {
1482     if (Verbose && PrintGCDetails) {
1483       gclog_or_tty->print_cr("CMSCollector: collect because of explicit "
1484                              " gc request (or gc_locker)");
1485     }
1486     return true;
1487   }
1488 
1489   // For debugging purposes, change the type of collection.
1490   // If the rotation is not on the concurrent collection
1491   // type, don't start a concurrent collection.
1492   NOT_PRODUCT(
1493     if (RotateCMSCollectionTypes &&
1494         (_cmsGen->debug_collection_type() !=
1495           ConcurrentMarkSweepGeneration::Concurrent_collection_type)) {
1496       assert(_cmsGen->debug_collection_type() !=
1497         ConcurrentMarkSweepGeneration::Unknown_collection_type,
1498         "Bad cms collection type");
1499       return false;
1500     }
1501   )
1502 
1503   FreelistLocker x(this);
1504   // ------------------------------------------------------------------
1505   // Print out lots of information which affects the initiation of
1506   // a collection.
1507   if (PrintCMSInitiationStatistics && stats().valid()) {
1508     gclog_or_tty->print("CMSCollector shouldConcurrentCollect: ");
1509     gclog_or_tty->stamp();
1510     gclog_or_tty->print_cr("");
1511     stats().print_on(gclog_or_tty);
1512     gclog_or_tty->print_cr("time_until_cms_gen_full %3.7f",
1513       stats().time_until_cms_gen_full());
1514     gclog_or_tty->print_cr("free="SIZE_FORMAT, _cmsGen->free());
1515     gclog_or_tty->print_cr("contiguous_available="SIZE_FORMAT,
1516                            _cmsGen->contiguous_available());
1517     gclog_or_tty->print_cr("promotion_rate=%g", stats().promotion_rate());
1518     gclog_or_tty->print_cr("cms_allocation_rate=%g", stats().cms_allocation_rate());
1519     gclog_or_tty->print_cr("occupancy=%3.7f", _cmsGen->occupancy());
1520     gclog_or_tty->print_cr("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy());
1521     gclog_or_tty->print_cr("metadata initialized %d",
1522       MetaspaceGC::should_concurrent_collect());
1523   }
1524   // ------------------------------------------------------------------
1525 
1526   // If the estimated time to complete a cms collection (cms_duration())
1527   // is less than the estimated time remaining until the cms generation
1528   // is full, start a collection.
1529   if (!UseCMSInitiatingOccupancyOnly) {
1530     if (stats().valid()) {
1531       if (stats().time_until_cms_start() == 0.0) {
1532         return true;
1533       }
1534     } else {
1535       // We want to conservatively collect somewhat early in order
1536       // to try and "bootstrap" our CMS/promotion statistics;
1537       // this branch will not fire after the first successful CMS
1538       // collection because the stats should then be valid.
1539       if (_cmsGen->occupancy() >= _bootstrap_occupancy) {
1540         if (Verbose && PrintGCDetails) {
1541           gclog_or_tty->print_cr(
1542             " CMSCollector: collect for bootstrapping statistics:"
1543             " occupancy = %f, boot occupancy = %f", _cmsGen->occupancy(),
1544             _bootstrap_occupancy);
1545         }
1546         return true;
1547       }
1548     }
1549   }
1550 
1551   // Otherwise, we start a collection cycle if
1552   // old gen want a collection cycle started. Each may use
1553   // an appropriate criterion for making this decision.
1554   // XXX We need to make sure that the gen expansion
1555   // criterion dovetails well with this. XXX NEED TO FIX THIS
1556   if (_cmsGen->should_concurrent_collect()) {
1557     if (Verbose && PrintGCDetails) {
1558       gclog_or_tty->print_cr("CMS old gen initiated");
1559     }
1560     return true;
1561   }
1562 
1563   // We start a collection if we believe an incremental collection may fail;
1564   // this is not likely to be productive in practice because it's probably too
1565   // late anyway.
1566   GenCollectedHeap* gch = GenCollectedHeap::heap();
1567   assert(gch->collector_policy()->is_two_generation_policy(),
1568          "You may want to check the correctness of the following");
1569   if (gch->incremental_collection_will_fail(true /* consult_young */)) {
1570     if (Verbose && PrintGCDetails) {
1571       gclog_or_tty->print("CMSCollector: collect because incremental collection will fail ");
1572     }
1573     return true;
1574   }
1575 
1576   if (MetaspaceGC::should_concurrent_collect()) {
1577       if (Verbose && PrintGCDetails) {
1578       gclog_or_tty->print("CMSCollector: collect for metadata allocation ");
1579       }
1580       return true;
1581     }
1582 
1583   return false;
1584 }
1585 
1586 void CMSCollector::set_did_compact(bool v) { _cmsGen->set_did_compact(v); }
1587 
1588 // Clear _expansion_cause fields of constituent generations
1589 void CMSCollector::clear_expansion_cause() {
1590   _cmsGen->clear_expansion_cause();
1591 }
1592 
1593 // We should be conservative in starting a collection cycle.  To
1594 // start too eagerly runs the risk of collecting too often in the
1595 // extreme.  To collect too rarely falls back on full collections,
1596 // which works, even if not optimum in terms of concurrent work.
1597 // As a work around for too eagerly collecting, use the flag
1598 // UseCMSInitiatingOccupancyOnly.  This also has the advantage of
1599 // giving the user an easily understandable way of controlling the
1600 // collections.
1601 // We want to start a new collection cycle if any of the following
1602 // conditions hold:
1603 // . our current occupancy exceeds the configured initiating occupancy
1604 //   for this generation, or
1605 // . we recently needed to expand this space and have not, since that
1606 //   expansion, done a collection of this generation, or
1607 // . the underlying space believes that it may be a good idea to initiate
1608 //   a concurrent collection (this may be based on criteria such as the
1609 //   following: the space uses linear allocation and linear allocation is
1610 //   going to fail, or there is believed to be excessive fragmentation in
1611 //   the generation, etc... or ...
1612 // [.(currently done by CMSCollector::shouldConcurrentCollect() only for
1613 //   the case of the old generation; see CR 6543076):
1614 //   we may be approaching a point at which allocation requests may fail because
1615 //   we will be out of sufficient free space given allocation rate estimates.]
1616 bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const {
1617 
1618   assert_lock_strong(freelistLock());
1619   if (occupancy() > initiating_occupancy()) {
1620     if (PrintGCDetails && Verbose) {
1621       gclog_or_tty->print(" %s: collect because of occupancy %f / %f  ",
1622         short_name(), occupancy(), initiating_occupancy());
1623     }
1624     return true;
1625   }
1626   if (UseCMSInitiatingOccupancyOnly) {
1627     return false;
1628   }
1629   if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) {
1630     if (PrintGCDetails && Verbose) {
1631       gclog_or_tty->print(" %s: collect because expanded for allocation ",
1632         short_name());
1633     }
1634     return true;
1635   }
1636   if (_cmsSpace->should_concurrent_collect()) {
1637     if (PrintGCDetails && Verbose) {
1638       gclog_or_tty->print(" %s: collect because cmsSpace says so ",
1639         short_name());
1640     }
1641     return true;
1642   }
1643   return false;
1644 }
1645 
1646 void ConcurrentMarkSweepGeneration::collect(bool   full,
1647                                             bool   clear_all_soft_refs,
1648                                             size_t size,
1649                                             bool   tlab)
1650 {
1651   collector()->collect(full, clear_all_soft_refs, size, tlab);
1652 }
1653 
1654 void CMSCollector::collect(bool   full,
1655                            bool   clear_all_soft_refs,
1656                            size_t size,
1657                            bool   tlab)
1658 {
1659   if (!UseCMSCollectionPassing && _collectorState > Idling) {
1660     // For debugging purposes skip the collection if the state
1661     // is not currently idle
1662     if (TraceCMSState) {
1663       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " skipped full:%d CMS state %d",
1664         Thread::current(), full, _collectorState);
1665     }
1666     return;
1667   }
1668 
1669   // The following "if" branch is present for defensive reasons.
1670   // In the current uses of this interface, it can be replaced with:
1671   // assert(!GC_locker.is_active(), "Can't be called otherwise");
1672   // But I am not placing that assert here to allow future
1673   // generality in invoking this interface.
1674   if (GC_locker::is_active()) {
1675     // A consistency test for GC_locker
1676     assert(GC_locker::needs_gc(), "Should have been set already");
1677     // Skip this foreground collection, instead
1678     // expanding the heap if necessary.
1679     // Need the free list locks for the call to free() in compute_new_size()
1680     compute_new_size();
1681     return;
1682   }
1683   acquire_control_and_collect(full, clear_all_soft_refs);
1684   _full_gcs_since_conc_gc++;
1685 }
1686 
1687 void CMSCollector::request_full_gc(unsigned int full_gc_count, GCCause::Cause cause) {
1688   GenCollectedHeap* gch = GenCollectedHeap::heap();
1689   unsigned int gc_count = gch->total_full_collections();
1690   if (gc_count == full_gc_count) {
1691     MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag);
1692     _full_gc_requested = true;
1693     _full_gc_cause = cause;
1694     CGC_lock->notify();   // nudge CMS thread
1695   } else {
1696     assert(gc_count > full_gc_count, "Error: causal loop");
1697   }
1698 }
1699 
1700 bool CMSCollector::is_external_interruption() {
1701   GCCause::Cause cause = GenCollectedHeap::heap()->gc_cause();
1702   return GCCause::is_user_requested_gc(cause) ||
1703          GCCause::is_serviceability_requested_gc(cause);
1704 }
1705 
1706 void CMSCollector::report_concurrent_mode_interruption() {
1707   if (is_external_interruption()) {
1708     if (PrintGCDetails) {
1709       gclog_or_tty->print(" (concurrent mode interrupted)");
1710     }
1711   } else {
1712     if (PrintGCDetails) {
1713       gclog_or_tty->print(" (concurrent mode failure)");
1714     }
1715     _gc_tracer_cm->report_concurrent_mode_failure();
1716   }
1717 }
1718 
1719 
1720 // The foreground and background collectors need to coordinate in order
1721 // to make sure that they do not mutually interfere with CMS collections.
1722 // When a background collection is active,
1723 // the foreground collector may need to take over (preempt) and
1724 // synchronously complete an ongoing collection. Depending on the
1725 // frequency of the background collections and the heap usage
1726 // of the application, this preemption can be seldom or frequent.
1727 // There are only certain
1728 // points in the background collection that the "collection-baton"
1729 // can be passed to the foreground collector.
1730 //
1731 // The foreground collector will wait for the baton before
1732 // starting any part of the collection.  The foreground collector
1733 // will only wait at one location.
1734 //
1735 // The background collector will yield the baton before starting a new
1736 // phase of the collection (e.g., before initial marking, marking from roots,
1737 // precleaning, final re-mark, sweep etc.)  This is normally done at the head
1738 // of the loop which switches the phases. The background collector does some
1739 // of the phases (initial mark, final re-mark) with the world stopped.
1740 // Because of locking involved in stopping the world,
1741 // the foreground collector should not block waiting for the background
1742 // collector when it is doing a stop-the-world phase.  The background
1743 // collector will yield the baton at an additional point just before
1744 // it enters a stop-the-world phase.  Once the world is stopped, the
1745 // background collector checks the phase of the collection.  If the
1746 // phase has not changed, it proceeds with the collection.  If the
1747 // phase has changed, it skips that phase of the collection.  See
1748 // the comments on the use of the Heap_lock in collect_in_background().
1749 //
1750 // Variable used in baton passing.
1751 //   _foregroundGCIsActive - Set to true by the foreground collector when
1752 //      it wants the baton.  The foreground clears it when it has finished
1753 //      the collection.
1754 //   _foregroundGCShouldWait - Set to true by the background collector
1755 //        when it is running.  The foreground collector waits while
1756 //      _foregroundGCShouldWait is true.
1757 //  CGC_lock - monitor used to protect access to the above variables
1758 //      and to notify the foreground and background collectors.
1759 //  _collectorState - current state of the CMS collection.
1760 //
1761 // The foreground collector
1762 //   acquires the CGC_lock
1763 //   sets _foregroundGCIsActive
1764 //   waits on the CGC_lock for _foregroundGCShouldWait to be false
1765 //     various locks acquired in preparation for the collection
1766 //     are released so as not to block the background collector
1767 //     that is in the midst of a collection
1768 //   proceeds with the collection
1769 //   clears _foregroundGCIsActive
1770 //   returns
1771 //
1772 // The background collector in a loop iterating on the phases of the
1773 //      collection
1774 //   acquires the CGC_lock
1775 //   sets _foregroundGCShouldWait
1776 //   if _foregroundGCIsActive is set
1777 //     clears _foregroundGCShouldWait, notifies _CGC_lock
1778 //     waits on _CGC_lock for _foregroundGCIsActive to become false
1779 //     and exits the loop.
1780 //   otherwise
1781 //     proceed with that phase of the collection
1782 //     if the phase is a stop-the-world phase,
1783 //       yield the baton once more just before enqueueing
1784 //       the stop-world CMS operation (executed by the VM thread).
1785 //   returns after all phases of the collection are done
1786 //
1787 
1788 void CMSCollector::acquire_control_and_collect(bool full,
1789         bool clear_all_soft_refs) {
1790   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1791   assert(!Thread::current()->is_ConcurrentGC_thread(),
1792          "shouldn't try to acquire control from self!");
1793 
1794   // Start the protocol for acquiring control of the
1795   // collection from the background collector (aka CMS thread).
1796   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1797          "VM thread should have CMS token");
1798   // Remember the possibly interrupted state of an ongoing
1799   // concurrent collection
1800   CollectorState first_state = _collectorState;
1801 
1802   // Signal to a possibly ongoing concurrent collection that
1803   // we want to do a foreground collection.
1804   _foregroundGCIsActive = true;
1805 
1806   // Disable incremental mode during a foreground collection.
1807   ICMSDisabler icms_disabler;
1808 
1809   // release locks and wait for a notify from the background collector
1810   // releasing the locks in only necessary for phases which
1811   // do yields to improve the granularity of the collection.
1812   assert_lock_strong(bitMapLock());
1813   // We need to lock the Free list lock for the space that we are
1814   // currently collecting.
1815   assert(haveFreelistLocks(), "Must be holding free list locks");
1816   bitMapLock()->unlock();
1817   releaseFreelistLocks();
1818   {
1819     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1820     if (_foregroundGCShouldWait) {
1821       // We are going to be waiting for action for the CMS thread;
1822       // it had better not be gone (for instance at shutdown)!
1823       assert(ConcurrentMarkSweepThread::cmst() != NULL,
1824              "CMS thread must be running");
1825       // Wait here until the background collector gives us the go-ahead
1826       ConcurrentMarkSweepThread::clear_CMS_flag(
1827         ConcurrentMarkSweepThread::CMS_vm_has_token);  // release token
1828       // Get a possibly blocked CMS thread going:
1829       //   Note that we set _foregroundGCIsActive true above,
1830       //   without protection of the CGC_lock.
1831       CGC_lock->notify();
1832       assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(),
1833              "Possible deadlock");
1834       while (_foregroundGCShouldWait) {
1835         // wait for notification
1836         CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1837         // Possibility of delay/starvation here, since CMS token does
1838         // not know to give priority to VM thread? Actually, i think
1839         // there wouldn't be any delay/starvation, but the proof of
1840         // that "fact" (?) appears non-trivial. XXX 20011219YSR
1841       }
1842       ConcurrentMarkSweepThread::set_CMS_flag(
1843         ConcurrentMarkSweepThread::CMS_vm_has_token);
1844     }
1845   }
1846   // The CMS_token is already held.  Get back the other locks.
1847   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1848          "VM thread should have CMS token");
1849   getFreelistLocks();
1850   bitMapLock()->lock_without_safepoint_check();
1851   if (TraceCMSState) {
1852     gclog_or_tty->print_cr("CMS foreground collector has asked for control "
1853       INTPTR_FORMAT " with first state %d", Thread::current(), first_state);
1854     gclog_or_tty->print_cr("    gets control with state %d", _collectorState);
1855   }
1856 
1857   // Check if we need to do a compaction, or if not, whether
1858   // we need to start the mark-sweep from scratch.
1859   bool should_compact    = false;
1860   bool should_start_over = false;
1861   decide_foreground_collection_type(clear_all_soft_refs,
1862     &should_compact, &should_start_over);
1863 
1864 NOT_PRODUCT(
1865   if (RotateCMSCollectionTypes) {
1866     if (_cmsGen->debug_collection_type() ==
1867         ConcurrentMarkSweepGeneration::MSC_foreground_collection_type) {
1868       should_compact = true;
1869     } else if (_cmsGen->debug_collection_type() ==
1870                ConcurrentMarkSweepGeneration::MS_foreground_collection_type) {
1871       should_compact = false;
1872     }
1873   }
1874 )
1875 
1876   if (first_state > Idling) {
1877     report_concurrent_mode_interruption();
1878   }
1879 
1880   set_did_compact(should_compact);
1881   if (should_compact) {
1882     // If the collection is being acquired from the background
1883     // collector, there may be references on the discovered
1884     // references lists that have NULL referents (being those
1885     // that were concurrently cleared by a mutator) or
1886     // that are no longer active (having been enqueued concurrently
1887     // by the mutator).
1888     // Scrub the list of those references because Mark-Sweep-Compact
1889     // code assumes referents are not NULL and that all discovered
1890     // Reference objects are active.
1891     ref_processor()->clean_up_discovered_references();
1892 
1893     if (first_state > Idling) {
1894       save_heap_summary();
1895     }
1896 
1897     do_compaction_work(clear_all_soft_refs);
1898 
1899     // Has the GC time limit been exceeded?
1900     DefNewGeneration* young_gen = _young_gen->as_DefNewGeneration();
1901     size_t max_eden_size = young_gen->max_capacity() -
1902                            young_gen->to()->capacity() -
1903                            young_gen->from()->capacity();
1904     GenCollectedHeap* gch = GenCollectedHeap::heap();
1905     GCCause::Cause gc_cause = gch->gc_cause();
1906     size_policy()->check_gc_overhead_limit(_young_gen->used(),
1907                                            young_gen->eden()->used(),
1908                                            _cmsGen->max_capacity(),
1909                                            max_eden_size,
1910                                            full,
1911                                            gc_cause,
1912                                            gch->collector_policy());
1913   } else {
1914     do_mark_sweep_work(clear_all_soft_refs, first_state,
1915       should_start_over);
1916   }
1917   // Reset the expansion cause, now that we just completed
1918   // a collection cycle.
1919   clear_expansion_cause();
1920   _foregroundGCIsActive = false;
1921   return;
1922 }
1923 
1924 // Resize the tenured generation
1925 // after obtaining the free list locks for the
1926 // two generations.
1927 void CMSCollector::compute_new_size() {
1928   assert_locked_or_safepoint(Heap_lock);
1929   FreelistLocker z(this);
1930   MetaspaceGC::compute_new_size();
1931   _cmsGen->compute_new_size_free_list();
1932 }
1933 
1934 // A work method used by foreground collection to determine
1935 // what type of collection (compacting or not, continuing or fresh)
1936 // it should do.
1937 // NOTE: the intent is to make UseCMSCompactAtFullCollection
1938 // and CMSCompactWhenClearAllSoftRefs the default in the future
1939 // and do away with the flags after a suitable period.
1940 void CMSCollector::decide_foreground_collection_type(
1941   bool clear_all_soft_refs, bool* should_compact,
1942   bool* should_start_over) {
1943   // Normally, we'll compact only if the UseCMSCompactAtFullCollection
1944   // flag is set, and we have either requested a System.gc() or
1945   // the number of full gc's since the last concurrent cycle
1946   // has exceeded the threshold set by CMSFullGCsBeforeCompaction,
1947   // or if an incremental collection has failed
1948   GenCollectedHeap* gch = GenCollectedHeap::heap();
1949   assert(gch->collector_policy()->is_two_generation_policy(),
1950          "You may want to check the correctness of the following");
1951   // Inform cms gen if this was due to partial collection failing.
1952   // The CMS gen may use this fact to determine its expansion policy.
1953   if (gch->incremental_collection_will_fail(false /* don't consult_young */)) {
1954     assert(!_cmsGen->incremental_collection_failed(),
1955            "Should have been noticed, reacted to and cleared");
1956     _cmsGen->set_incremental_collection_failed();
1957   }
1958   *should_compact =
1959     UseCMSCompactAtFullCollection &&
1960     ((_full_gcs_since_conc_gc >= CMSFullGCsBeforeCompaction) ||
1961      GCCause::is_user_requested_gc(gch->gc_cause()) ||
1962      gch->incremental_collection_will_fail(true /* consult_young */));
1963   *should_start_over = false;
1964   if (clear_all_soft_refs && !*should_compact) {
1965     // We are about to do a last ditch collection attempt
1966     // so it would normally make sense to do a compaction
1967     // to reclaim as much space as possible.
1968     if (CMSCompactWhenClearAllSoftRefs) {
1969       // Default: The rationale is that in this case either
1970       // we are past the final marking phase, in which case
1971       // we'd have to start over, or so little has been done
1972       // that there's little point in saving that work. Compaction
1973       // appears to be the sensible choice in either case.
1974       *should_compact = true;
1975     } else {
1976       // We have been asked to clear all soft refs, but not to
1977       // compact. Make sure that we aren't past the final checkpoint
1978       // phase, for that is where we process soft refs. If we are already
1979       // past that phase, we'll need to redo the refs discovery phase and
1980       // if necessary clear soft refs that weren't previously
1981       // cleared. We do so by remembering the phase in which
1982       // we came in, and if we are past the refs processing
1983       // phase, we'll choose to just redo the mark-sweep
1984       // collection from scratch.
1985       if (_collectorState > FinalMarking) {
1986         // We are past the refs processing phase;
1987         // start over and do a fresh synchronous CMS cycle
1988         _collectorState = Resetting; // skip to reset to start new cycle
1989         reset(false /* == !asynch */);
1990         *should_start_over = true;
1991       } // else we can continue a possibly ongoing current cycle
1992     }
1993   }
1994 }
1995 
1996 // A work method used by the foreground collector to do
1997 // a mark-sweep-compact.
1998 void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
1999   GenCollectedHeap* gch = GenCollectedHeap::heap();
2000 
2001   STWGCTimer* gc_timer = GenMarkSweep::gc_timer();
2002   gc_timer->register_gc_start(os::elapsed_counter());
2003 
2004   SerialOldTracer* gc_tracer = GenMarkSweep::gc_tracer();
2005   gc_tracer->report_gc_start(gch->gc_cause(), gc_timer->gc_start());
2006 
2007   GCTraceTime t("CMS:MSC ", PrintGCDetails && Verbose, true, NULL);
2008   if (PrintGC && Verbose && !(GCCause::is_user_requested_gc(gch->gc_cause()))) {
2009     gclog_or_tty->print_cr("Compact ConcurrentMarkSweepGeneration after %d "
2010       "collections passed to foreground collector", _full_gcs_since_conc_gc);
2011   }
2012 
2013   // Sample collection interval time and reset for collection pause.
2014   if (UseAdaptiveSizePolicy) {
2015     size_policy()->msc_collection_begin();
2016   }
2017 
2018   // Temporarily widen the span of the weak reference processing to
2019   // the entire heap.
2020   MemRegion new_span(GenCollectedHeap::heap()->reserved_region());
2021   ReferenceProcessorSpanMutator rp_mut_span(ref_processor(), new_span);
2022   // Temporarily, clear the "is_alive_non_header" field of the
2023   // reference processor.
2024   ReferenceProcessorIsAliveMutator rp_mut_closure(ref_processor(), NULL);
2025   // Temporarily make reference _processing_ single threaded (non-MT).
2026   ReferenceProcessorMTProcMutator rp_mut_mt_processing(ref_processor(), false);
2027   // Temporarily make refs discovery atomic
2028   ReferenceProcessorAtomicMutator rp_mut_atomic(ref_processor(), true);
2029   // Temporarily make reference _discovery_ single threaded (non-MT)
2030   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
2031 
2032   ref_processor()->set_enqueuing_is_done(false);
2033   ref_processor()->enable_discovery(false /*verify_disabled*/, false /*check_no_refs*/);
2034   ref_processor()->setup_policy(clear_all_soft_refs);
2035   // If an asynchronous collection finishes, the _modUnionTable is
2036   // all clear.  If we are assuming the collection from an asynchronous
2037   // collection, clear the _modUnionTable.
2038   assert(_collectorState != Idling || _modUnionTable.isAllClear(),
2039     "_modUnionTable should be clear if the baton was not passed");
2040   _modUnionTable.clear_all();
2041   assert(_collectorState != Idling || _ct->klass_rem_set()->mod_union_is_clear(),
2042     "mod union for klasses should be clear if the baton was passed");
2043   _ct->klass_rem_set()->clear_mod_union();
2044 
2045   // We must adjust the allocation statistics being maintained
2046   // in the free list space. We do so by reading and clearing
2047   // the sweep timer and updating the block flux rate estimates below.
2048   assert(!_intra_sweep_timer.is_active(), "_intra_sweep_timer should be inactive");
2049   if (_inter_sweep_timer.is_active()) {
2050     _inter_sweep_timer.stop();
2051     // Note that we do not use this sample to update the _inter_sweep_estimate.
2052     _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
2053                                             _inter_sweep_estimate.padded_average(),
2054                                             _intra_sweep_estimate.padded_average());
2055   }
2056 
2057   GenMarkSweep::invoke_at_safepoint(_cmsGen->level(),
2058     ref_processor(), clear_all_soft_refs);
2059   #ifdef ASSERT
2060     CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
2061     size_t free_size = cms_space->free();
2062     assert(free_size ==
2063            pointer_delta(cms_space->end(), cms_space->compaction_top())
2064            * HeapWordSize,
2065       "All the free space should be compacted into one chunk at top");
2066     assert(cms_space->dictionary()->total_chunk_size(
2067                                       debug_only(cms_space->freelistLock())) == 0 ||
2068            cms_space->totalSizeInIndexedFreeLists() == 0,
2069       "All the free space should be in a single chunk");
2070     size_t num = cms_space->totalCount();
2071     assert((free_size == 0 && num == 0) ||
2072            (free_size > 0  && (num == 1 || num == 2)),
2073          "There should be at most 2 free chunks after compaction");
2074   #endif // ASSERT
2075   _collectorState = Resetting;
2076   assert(_restart_addr == NULL,
2077          "Should have been NULL'd before baton was passed");
2078   reset(false /* == !asynch */);
2079   _cmsGen->reset_after_compaction();
2080   _concurrent_cycles_since_last_unload = 0;
2081 
2082   // Clear any data recorded in the PLAB chunk arrays.
2083   if (_survivor_plab_array != NULL) {
2084     reset_survivor_plab_arrays();
2085   }
2086 
2087   // Adjust the per-size allocation stats for the next epoch.
2088   _cmsGen->cmsSpace()->endSweepFLCensus(sweep_count() /* fake */);
2089   // Restart the "inter sweep timer" for the next epoch.
2090   _inter_sweep_timer.reset();
2091   _inter_sweep_timer.start();
2092 
2093   // Sample collection pause time and reset for collection interval.
2094   if (UseAdaptiveSizePolicy) {
2095     size_policy()->msc_collection_end(gch->gc_cause());
2096   }
2097 
2098   gc_timer->register_gc_end(os::elapsed_counter());
2099 
2100   gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
2101 
2102   // For a mark-sweep-compact, compute_new_size() will be called
2103   // in the heap's do_collection() method.
2104 }
2105 
2106 // A work method used by the foreground collector to do
2107 // a mark-sweep, after taking over from a possibly on-going
2108 // concurrent mark-sweep collection.
2109 void CMSCollector::do_mark_sweep_work(bool clear_all_soft_refs,
2110   CollectorState first_state, bool should_start_over) {
2111   if (PrintGC && Verbose) {
2112     gclog_or_tty->print_cr("Pass concurrent collection to foreground "
2113       "collector with count %d",
2114       _full_gcs_since_conc_gc);
2115   }
2116   switch (_collectorState) {
2117     case Idling:
2118       if (first_state == Idling || should_start_over) {
2119         // The background GC was not active, or should
2120         // restarted from scratch;  start the cycle.
2121         _collectorState = InitialMarking;
2122       }
2123       // If first_state was not Idling, then a background GC
2124       // was in progress and has now finished.  No need to do it
2125       // again.  Leave the state as Idling.
2126       break;
2127     case Precleaning:
2128       // In the foreground case don't do the precleaning since
2129       // it is not done concurrently and there is extra work
2130       // required.
2131       _collectorState = FinalMarking;
2132   }
2133   collect_in_foreground(clear_all_soft_refs, GenCollectedHeap::heap()->gc_cause());
2134 
2135   // For a mark-sweep, compute_new_size() will be called
2136   // in the heap's do_collection() method.
2137 }
2138 
2139 
2140 void CMSCollector::getFreelistLocks() const {
2141   // Get locks for all free lists in all generations that this
2142   // collector is responsible for
2143   _cmsGen->freelistLock()->lock_without_safepoint_check();
2144 }
2145 
2146 void CMSCollector::releaseFreelistLocks() const {
2147   // Release locks for all free lists in all generations that this
2148   // collector is responsible for
2149   _cmsGen->freelistLock()->unlock();
2150 }
2151 
2152 bool CMSCollector::haveFreelistLocks() const {
2153   // Check locks for all free lists in all generations that this
2154   // collector is responsible for
2155   assert_lock_strong(_cmsGen->freelistLock());
2156   PRODUCT_ONLY(ShouldNotReachHere());
2157   return true;
2158 }
2159 
2160 // A utility class that is used by the CMS collector to
2161 // temporarily "release" the foreground collector from its
2162 // usual obligation to wait for the background collector to
2163 // complete an ongoing phase before proceeding.
2164 class ReleaseForegroundGC: public StackObj {
2165  private:
2166   CMSCollector* _c;
2167  public:
2168   ReleaseForegroundGC(CMSCollector* c) : _c(c) {
2169     assert(_c->_foregroundGCShouldWait, "Else should not need to call");
2170     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2171     // allow a potentially blocked foreground collector to proceed
2172     _c->_foregroundGCShouldWait = false;
2173     if (_c->_foregroundGCIsActive) {
2174       CGC_lock->notify();
2175     }
2176     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2177            "Possible deadlock");
2178   }
2179 
2180   ~ReleaseForegroundGC() {
2181     assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?");
2182     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2183     _c->_foregroundGCShouldWait = true;
2184   }
2185 };
2186 
2187 // There are separate collect_in_background and collect_in_foreground because of
2188 // the different locking requirements of the background collector and the
2189 // foreground collector.  There was originally an attempt to share
2190 // one "collect" method between the background collector and the foreground
2191 // collector but the if-then-else required made it cleaner to have
2192 // separate methods.
2193 void CMSCollector::collect_in_background(bool clear_all_soft_refs, GCCause::Cause cause) {
2194   assert(Thread::current()->is_ConcurrentGC_thread(),
2195     "A CMS asynchronous collection is only allowed on a CMS thread.");
2196 
2197   GenCollectedHeap* gch = GenCollectedHeap::heap();
2198   {
2199     bool safepoint_check = Mutex::_no_safepoint_check_flag;
2200     MutexLockerEx hl(Heap_lock, safepoint_check);
2201     FreelistLocker fll(this);
2202     MutexLockerEx x(CGC_lock, safepoint_check);
2203     if (_foregroundGCIsActive || !UseAsyncConcMarkSweepGC) {
2204       // The foreground collector is active or we're
2205       // not using asynchronous collections.  Skip this
2206       // background collection.
2207       assert(!_foregroundGCShouldWait, "Should be clear");
2208       return;
2209     } else {
2210       assert(_collectorState == Idling, "Should be idling before start.");
2211       _collectorState = InitialMarking;
2212       register_gc_start(cause);
2213       // Reset the expansion cause, now that we are about to begin
2214       // a new cycle.
2215       clear_expansion_cause();
2216 
2217       // Clear the MetaspaceGC flag since a concurrent collection
2218       // is starting but also clear it after the collection.
2219       MetaspaceGC::set_should_concurrent_collect(false);
2220     }
2221     // Decide if we want to enable class unloading as part of the
2222     // ensuing concurrent GC cycle.
2223     update_should_unload_classes();
2224     _full_gc_requested = false;           // acks all outstanding full gc requests
2225     _full_gc_cause = GCCause::_no_gc;
2226     // Signal that we are about to start a collection
2227     gch->increment_total_full_collections();  // ... starting a collection cycle
2228     _collection_count_start = gch->total_full_collections();
2229   }
2230 
2231   // Used for PrintGC
2232   size_t prev_used;
2233   if (PrintGC && Verbose) {
2234     prev_used = _cmsGen->used(); // XXXPERM
2235   }
2236 
2237   // The change of the collection state is normally done at this level;
2238   // the exceptions are phases that are executed while the world is
2239   // stopped.  For those phases the change of state is done while the
2240   // world is stopped.  For baton passing purposes this allows the
2241   // background collector to finish the phase and change state atomically.
2242   // The foreground collector cannot wait on a phase that is done
2243   // while the world is stopped because the foreground collector already
2244   // has the world stopped and would deadlock.
2245   while (_collectorState != Idling) {
2246     if (TraceCMSState) {
2247       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
2248         Thread::current(), _collectorState);
2249     }
2250     // The foreground collector
2251     //   holds the Heap_lock throughout its collection.
2252     //   holds the CMS token (but not the lock)
2253     //     except while it is waiting for the background collector to yield.
2254     //
2255     // The foreground collector should be blocked (not for long)
2256     //   if the background collector is about to start a phase
2257     //   executed with world stopped.  If the background
2258     //   collector has already started such a phase, the
2259     //   foreground collector is blocked waiting for the
2260     //   Heap_lock.  The stop-world phases (InitialMarking and FinalMarking)
2261     //   are executed in the VM thread.
2262     //
2263     // The locking order is
2264     //   PendingListLock (PLL)  -- if applicable (FinalMarking)
2265     //   Heap_lock  (both this & PLL locked in VM_CMS_Operation::prologue())
2266     //   CMS token  (claimed in
2267     //                stop_world_and_do() -->
2268     //                  safepoint_synchronize() -->
2269     //                    CMSThread::synchronize())
2270 
2271     {
2272       // Check if the FG collector wants us to yield.
2273       CMSTokenSync x(true); // is cms thread
2274       if (waitForForegroundGC()) {
2275         // We yielded to a foreground GC, nothing more to be
2276         // done this round.
2277         assert(_foregroundGCShouldWait == false, "We set it to false in "
2278                "waitForForegroundGC()");
2279         if (TraceCMSState) {
2280           gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
2281             " exiting collection CMS state %d",
2282             Thread::current(), _collectorState);
2283         }
2284         return;
2285       } else {
2286         // The background collector can run but check to see if the
2287         // foreground collector has done a collection while the
2288         // background collector was waiting to get the CGC_lock
2289         // above.  If yes, break so that _foregroundGCShouldWait
2290         // is cleared before returning.
2291         if (_collectorState == Idling) {
2292           break;
2293         }
2294       }
2295     }
2296 
2297     assert(_foregroundGCShouldWait, "Foreground collector, if active, "
2298       "should be waiting");
2299 
2300     switch (_collectorState) {
2301       case InitialMarking:
2302         {
2303           ReleaseForegroundGC x(this);
2304           stats().record_cms_begin();
2305           VM_CMS_Initial_Mark initial_mark_op(this);
2306           VMThread::execute(&initial_mark_op);
2307         }
2308         // The collector state may be any legal state at this point
2309         // since the background collector may have yielded to the
2310         // foreground collector.
2311         break;
2312       case Marking:
2313         // initial marking in checkpointRootsInitialWork has been completed
2314         if (markFromRoots(true)) { // we were successful
2315           assert(_collectorState == Precleaning, "Collector state should "
2316             "have changed");
2317         } else {
2318           assert(_foregroundGCIsActive, "Internal state inconsistency");
2319         }
2320         break;
2321       case Precleaning:
2322         if (UseAdaptiveSizePolicy) {
2323           size_policy()->concurrent_precleaning_begin();
2324         }
2325         // marking from roots in markFromRoots has been completed
2326         preclean();
2327         if (UseAdaptiveSizePolicy) {
2328           size_policy()->concurrent_precleaning_end();
2329         }
2330         assert(_collectorState == AbortablePreclean ||
2331                _collectorState == FinalMarking,
2332                "Collector state should have changed");
2333         break;
2334       case AbortablePreclean:
2335         if (UseAdaptiveSizePolicy) {
2336         size_policy()->concurrent_phases_resume();
2337         }
2338         abortable_preclean();
2339         if (UseAdaptiveSizePolicy) {
2340           size_policy()->concurrent_precleaning_end();
2341         }
2342         assert(_collectorState == FinalMarking, "Collector state should "
2343           "have changed");
2344         break;
2345       case FinalMarking:
2346         {
2347           ReleaseForegroundGC x(this);
2348 
2349           VM_CMS_Final_Remark final_remark_op(this);
2350           VMThread::execute(&final_remark_op);
2351         }
2352         assert(_foregroundGCShouldWait, "block post-condition");
2353         break;
2354       case Sweeping:
2355         if (UseAdaptiveSizePolicy) {
2356           size_policy()->concurrent_sweeping_begin();
2357         }
2358         // final marking in checkpointRootsFinal has been completed
2359         sweep(true);
2360         assert(_collectorState == Resizing, "Collector state change "
2361           "to Resizing must be done under the free_list_lock");
2362         _full_gcs_since_conc_gc = 0;
2363 
2364         // Stop the timers for adaptive size policy for the concurrent phases
2365         if (UseAdaptiveSizePolicy) {
2366           size_policy()->concurrent_sweeping_end();
2367           size_policy()->concurrent_phases_end(gch->gc_cause(),
2368                                              gch->prev_gen(_cmsGen)->capacity(),
2369                                              _cmsGen->free());
2370         }
2371 
2372       case Resizing: {
2373         // Sweeping has been completed...
2374         // At this point the background collection has completed.
2375         // Don't move the call to compute_new_size() down
2376         // into code that might be executed if the background
2377         // collection was preempted.
2378         {
2379           ReleaseForegroundGC x(this);   // unblock FG collection
2380           MutexLockerEx       y(Heap_lock, Mutex::_no_safepoint_check_flag);
2381           CMSTokenSync        z(true);   // not strictly needed.
2382           if (_collectorState == Resizing) {
2383             compute_new_size();
2384             save_heap_summary();
2385             _collectorState = Resetting;
2386           } else {
2387             assert(_collectorState == Idling, "The state should only change"
2388                    " because the foreground collector has finished the collection");
2389           }
2390         }
2391         break;
2392       }
2393       case Resetting:
2394         // CMS heap resizing has been completed
2395         reset(true);
2396         assert(_collectorState == Idling, "Collector state should "
2397           "have changed");
2398 
2399         MetaspaceGC::set_should_concurrent_collect(false);
2400 
2401         stats().record_cms_end();
2402         // Don't move the concurrent_phases_end() and compute_new_size()
2403         // calls to here because a preempted background collection
2404         // has it's state set to "Resetting".
2405         break;
2406       case Idling:
2407       default:
2408         ShouldNotReachHere();
2409         break;
2410     }
2411     if (TraceCMSState) {
2412       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
2413         Thread::current(), _collectorState);
2414     }
2415     assert(_foregroundGCShouldWait, "block post-condition");
2416   }
2417 
2418   // Should this be in gc_epilogue?
2419   collector_policy()->counters()->update_counters();
2420 
2421   {
2422     // Clear _foregroundGCShouldWait and, in the event that the
2423     // foreground collector is waiting, notify it, before
2424     // returning.
2425     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2426     _foregroundGCShouldWait = false;
2427     if (_foregroundGCIsActive) {
2428       CGC_lock->notify();
2429     }
2430     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2431            "Possible deadlock");
2432   }
2433   if (TraceCMSState) {
2434     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
2435       " exiting collection CMS state %d",
2436       Thread::current(), _collectorState);
2437   }
2438   if (PrintGC && Verbose) {
2439     _cmsGen->print_heap_change(prev_used);
2440   }
2441 }
2442 
2443 void CMSCollector::register_foreground_gc_start(GCCause::Cause cause) {
2444   if (!_cms_start_registered) {
2445     register_gc_start(cause);
2446   }
2447 }
2448 
2449 void CMSCollector::register_gc_start(GCCause::Cause cause) {
2450   _cms_start_registered = true;
2451   _gc_timer_cm->register_gc_start(os::elapsed_counter());
2452   _gc_tracer_cm->report_gc_start(cause, _gc_timer_cm->gc_start());
2453 }
2454 
2455 void CMSCollector::register_gc_end() {
2456   if (_cms_start_registered) {
2457     report_heap_summary(GCWhen::AfterGC);
2458 
2459     _gc_timer_cm->register_gc_end(os::elapsed_counter());
2460     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2461     _cms_start_registered = false;
2462   }
2463 }
2464 
2465 void CMSCollector::save_heap_summary() {
2466   GenCollectedHeap* gch = GenCollectedHeap::heap();
2467   _last_heap_summary = gch->create_heap_summary();
2468   _last_metaspace_summary = gch->create_metaspace_summary();
2469 }
2470 
2471 void CMSCollector::report_heap_summary(GCWhen::Type when) {
2472   _gc_tracer_cm->report_gc_heap_summary(when, _last_heap_summary, _last_metaspace_summary);
2473 }
2474 
2475 void CMSCollector::collect_in_foreground(bool clear_all_soft_refs, GCCause::Cause cause) {
2476   assert(_foregroundGCIsActive && !_foregroundGCShouldWait,
2477          "Foreground collector should be waiting, not executing");
2478   assert(Thread::current()->is_VM_thread(), "A foreground collection"
2479     "may only be done by the VM Thread with the world stopped");
2480   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
2481          "VM thread should have CMS token");
2482 
2483   NOT_PRODUCT(GCTraceTime t("CMS:MS (foreground) ", PrintGCDetails && Verbose,
2484     true, NULL);)
2485   if (UseAdaptiveSizePolicy) {
2486     size_policy()->ms_collection_begin();
2487   }
2488   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact);
2489 
2490   HandleMark hm;  // Discard invalid handles created during verification
2491 
2492   if (VerifyBeforeGC &&
2493       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2494     Universe::verify();
2495   }
2496 
2497   // Snapshot the soft reference policy to be used in this collection cycle.
2498   ref_processor()->setup_policy(clear_all_soft_refs);
2499 
2500   bool init_mark_was_synchronous = false; // until proven otherwise
2501   while (_collectorState != Idling) {
2502     if (TraceCMSState) {
2503       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
2504         Thread::current(), _collectorState);
2505     }
2506     switch (_collectorState) {
2507       case InitialMarking:
2508         register_foreground_gc_start(cause);
2509         init_mark_was_synchronous = true;  // fact to be exploited in re-mark
2510         checkpointRootsInitial(false);
2511         assert(_collectorState == Marking, "Collector state should have changed"
2512           " within checkpointRootsInitial()");
2513         break;
2514       case Marking:
2515         // initial marking in checkpointRootsInitialWork has been completed
2516         if (VerifyDuringGC &&
2517             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2518           Universe::verify("Verify before initial mark: ");
2519         }
2520         {
2521           bool res = markFromRoots(false);
2522           assert(res && _collectorState == FinalMarking, "Collector state should "
2523             "have changed");
2524           break;
2525         }
2526       case FinalMarking:
2527         if (VerifyDuringGC &&
2528             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2529           Universe::verify("Verify before re-mark: ");
2530         }
2531         checkpointRootsFinal(false, clear_all_soft_refs,
2532                              init_mark_was_synchronous);
2533         assert(_collectorState == Sweeping, "Collector state should not "
2534           "have changed within checkpointRootsFinal()");
2535         break;
2536       case Sweeping:
2537         // final marking in checkpointRootsFinal has been completed
2538         if (VerifyDuringGC &&
2539             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2540           Universe::verify("Verify before sweep: ");
2541         }
2542         sweep(false);
2543         assert(_collectorState == Resizing, "Incorrect state");
2544         break;
2545       case Resizing: {
2546         // Sweeping has been completed; the actual resize in this case
2547         // is done separately; nothing to be done in this state.
2548         _collectorState = Resetting;
2549         break;
2550       }
2551       case Resetting:
2552         // The heap has been resized.
2553         if (VerifyDuringGC &&
2554             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2555           Universe::verify("Verify before reset: ");
2556         }
2557         save_heap_summary();
2558         reset(false);
2559         assert(_collectorState == Idling, "Collector state should "
2560           "have changed");
2561         break;
2562       case Precleaning:
2563       case AbortablePreclean:
2564         // Elide the preclean phase
2565         _collectorState = FinalMarking;
2566         break;
2567       default:
2568         ShouldNotReachHere();
2569     }
2570     if (TraceCMSState) {
2571       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
2572         Thread::current(), _collectorState);
2573     }
2574   }
2575 
2576   if (UseAdaptiveSizePolicy) {
2577     GenCollectedHeap* gch = GenCollectedHeap::heap();
2578     size_policy()->ms_collection_end(gch->gc_cause());
2579   }
2580 
2581   if (VerifyAfterGC &&
2582       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2583     Universe::verify();
2584   }
2585   if (TraceCMSState) {
2586     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
2587       " exiting collection CMS state %d",
2588       Thread::current(), _collectorState);
2589   }
2590 }
2591 
2592 bool CMSCollector::waitForForegroundGC() {
2593   bool res = false;
2594   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2595          "CMS thread should have CMS token");
2596   // Block the foreground collector until the
2597   // background collectors decides whether to
2598   // yield.
2599   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2600   _foregroundGCShouldWait = true;
2601   if (_foregroundGCIsActive) {
2602     // The background collector yields to the
2603     // foreground collector and returns a value
2604     // indicating that it has yielded.  The foreground
2605     // collector can proceed.
2606     res = true;
2607     _foregroundGCShouldWait = false;
2608     ConcurrentMarkSweepThread::clear_CMS_flag(
2609       ConcurrentMarkSweepThread::CMS_cms_has_token);
2610     ConcurrentMarkSweepThread::set_CMS_flag(
2611       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2612     // Get a possibly blocked foreground thread going
2613     CGC_lock->notify();
2614     if (TraceCMSState) {
2615       gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d",
2616         Thread::current(), _collectorState);
2617     }
2618     while (_foregroundGCIsActive) {
2619       CGC_lock->wait(Mutex::_no_safepoint_check_flag);
2620     }
2621     ConcurrentMarkSweepThread::set_CMS_flag(
2622       ConcurrentMarkSweepThread::CMS_cms_has_token);
2623     ConcurrentMarkSweepThread::clear_CMS_flag(
2624       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2625   }
2626   if (TraceCMSState) {
2627     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d",
2628       Thread::current(), _collectorState);
2629   }
2630   return res;
2631 }
2632 
2633 // Because of the need to lock the free lists and other structures in
2634 // the collector, common to all the generations that the collector is
2635 // collecting, we need the gc_prologues of individual CMS generations
2636 // delegate to their collector. It may have been simpler had the
2637 // current infrastructure allowed one to call a prologue on a
2638 // collector. In the absence of that we have the generation's
2639 // prologue delegate to the collector, which delegates back
2640 // some "local" work to a worker method in the individual generations
2641 // that it's responsible for collecting, while itself doing any
2642 // work common to all generations it's responsible for. A similar
2643 // comment applies to the  gc_epilogue()'s.
2644 // The role of the varaible _between_prologue_and_epilogue is to
2645 // enforce the invocation protocol.
2646 void CMSCollector::gc_prologue(bool full) {
2647   // Call gc_prologue_work() for the CMSGen
2648   // we are responsible for.
2649 
2650   // The following locking discipline assumes that we are only called
2651   // when the world is stopped.
2652   assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption");
2653 
2654   // The CMSCollector prologue must call the gc_prologues for the
2655   // "generations" that it's responsible
2656   // for.
2657 
2658   assert(   Thread::current()->is_VM_thread()
2659          || (   CMSScavengeBeforeRemark
2660              && Thread::current()->is_ConcurrentGC_thread()),
2661          "Incorrect thread type for prologue execution");
2662 
2663   if (_between_prologue_and_epilogue) {
2664     // We have already been invoked; this is a gc_prologue delegation
2665     // from yet another CMS generation that we are responsible for, just
2666     // ignore it since all relevant work has already been done.
2667     return;
2668   }
2669 
2670   // set a bit saying prologue has been called; cleared in epilogue
2671   _between_prologue_and_epilogue = true;
2672   // Claim locks for common data structures, then call gc_prologue_work()
2673   // for each CMSGen.
2674 
2675   getFreelistLocks();   // gets free list locks on constituent spaces
2676   bitMapLock()->lock_without_safepoint_check();
2677 
2678   // Should call gc_prologue_work() for all cms gens we are responsible for
2679   bool duringMarking =    _collectorState >= Marking
2680                          && _collectorState < Sweeping;
2681 
2682   // The young collections clear the modified oops state, which tells if
2683   // there are any modified oops in the class. The remark phase also needs
2684   // that information. Tell the young collection to save the union of all
2685   // modified klasses.
2686   if (duringMarking) {
2687     _ct->klass_rem_set()->set_accumulate_modified_oops(true);
2688   }
2689 
2690   bool registerClosure = duringMarking;
2691 
2692   ModUnionClosure* muc = CollectedHeap::use_parallel_gc_threads() ?
2693                                                &_modUnionClosurePar
2694                                                : &_modUnionClosure;
2695   _cmsGen->gc_prologue_work(full, registerClosure, muc);
2696 
2697   if (!full) {
2698     stats().record_gc0_begin();
2699   }
2700 }
2701 
2702 void ConcurrentMarkSweepGeneration::gc_prologue(bool full) {
2703 
2704   _capacity_at_prologue = capacity();
2705   _used_at_prologue = used();
2706 
2707   // Delegate to CMScollector which knows how to coordinate between
2708   // this and any other CMS generations that it is responsible for
2709   // collecting.
2710   collector()->gc_prologue(full);
2711 }
2712 
2713 // This is a "private" interface for use by this generation's CMSCollector.
2714 // Not to be called directly by any other entity (for instance,
2715 // GenCollectedHeap, which calls the "public" gc_prologue method above).
2716 void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full,
2717   bool registerClosure, ModUnionClosure* modUnionClosure) {
2718   assert(!incremental_collection_failed(), "Shouldn't be set yet");
2719   assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL,
2720     "Should be NULL");
2721   if (registerClosure) {
2722     cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure);
2723   }
2724   cmsSpace()->gc_prologue();
2725   // Clear stat counters
2726   NOT_PRODUCT(
2727     assert(_numObjectsPromoted == 0, "check");
2728     assert(_numWordsPromoted   == 0, "check");
2729     if (Verbose && PrintGC) {
2730       gclog_or_tty->print("Allocated "SIZE_FORMAT" objects, "
2731                           SIZE_FORMAT" bytes concurrently",
2732       _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord));
2733     }
2734     _numObjectsAllocated = 0;
2735     _numWordsAllocated   = 0;
2736   )
2737 }
2738 
2739 void CMSCollector::gc_epilogue(bool full) {
2740   // The following locking discipline assumes that we are only called
2741   // when the world is stopped.
2742   assert(SafepointSynchronize::is_at_safepoint(),
2743          "world is stopped assumption");
2744 
2745   // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks
2746   // if linear allocation blocks need to be appropriately marked to allow the
2747   // the blocks to be parsable. We also check here whether we need to nudge the
2748   // CMS collector thread to start a new cycle (if it's not already active).
2749   assert(   Thread::current()->is_VM_thread()
2750          || (   CMSScavengeBeforeRemark
2751              && Thread::current()->is_ConcurrentGC_thread()),
2752          "Incorrect thread type for epilogue execution");
2753 
2754   if (!_between_prologue_and_epilogue) {
2755     // We have already been invoked; this is a gc_epilogue delegation
2756     // from yet another CMS generation that we are responsible for, just
2757     // ignore it since all relevant work has already been done.
2758     return;
2759   }
2760   assert(haveFreelistLocks(), "must have freelist locks");
2761   assert_lock_strong(bitMapLock());
2762 
2763   _ct->klass_rem_set()->set_accumulate_modified_oops(false);
2764 
2765   _cmsGen->gc_epilogue_work(full);
2766 
2767   if (_collectorState == AbortablePreclean || _collectorState == Precleaning) {
2768     // in case sampling was not already enabled, enable it
2769     _start_sampling = true;
2770   }
2771   // reset _eden_chunk_array so sampling starts afresh
2772   _eden_chunk_index = 0;
2773 
2774   size_t cms_used   = _cmsGen->cmsSpace()->used();
2775 
2776   // update performance counters - this uses a special version of
2777   // update_counters() that allows the utilization to be passed as a
2778   // parameter, avoiding multiple calls to used().
2779   //
2780   _cmsGen->update_counters(cms_used);
2781 
2782   if (CMSIncrementalMode) {
2783     icms_update_allocation_limits();
2784   }
2785 
2786   bitMapLock()->unlock();
2787   releaseFreelistLocks();
2788 
2789   if (!CleanChunkPoolAsync) {
2790     Chunk::clean_chunk_pool();
2791   }
2792 
2793   set_did_compact(false);
2794   _between_prologue_and_epilogue = false;  // ready for next cycle
2795 }
2796 
2797 void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) {
2798   collector()->gc_epilogue(full);
2799 
2800   // Also reset promotion tracking in par gc thread states.
2801   if (CollectedHeap::use_parallel_gc_threads()) {
2802     for (uint i = 0; i < ParallelGCThreads; i++) {
2803       _par_gc_thread_states[i]->promo.stopTrackingPromotions(i);
2804     }
2805   }
2806 }
2807 
2808 void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) {
2809   assert(!incremental_collection_failed(), "Should have been cleared");
2810   cmsSpace()->setPreconsumptionDirtyCardClosure(NULL);
2811   cmsSpace()->gc_epilogue();
2812     // Print stat counters
2813   NOT_PRODUCT(
2814     assert(_numObjectsAllocated == 0, "check");
2815     assert(_numWordsAllocated == 0, "check");
2816     if (Verbose && PrintGC) {
2817       gclog_or_tty->print("Promoted "SIZE_FORMAT" objects, "
2818                           SIZE_FORMAT" bytes",
2819                  _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord));
2820     }
2821     _numObjectsPromoted = 0;
2822     _numWordsPromoted   = 0;
2823   )
2824 
2825   if (PrintGC && Verbose) {
2826     // Call down the chain in contiguous_available needs the freelistLock
2827     // so print this out before releasing the freeListLock.
2828     gclog_or_tty->print(" Contiguous available "SIZE_FORMAT" bytes ",
2829                         contiguous_available());
2830   }
2831 }
2832 
2833 #ifndef PRODUCT
2834 bool CMSCollector::have_cms_token() {
2835   Thread* thr = Thread::current();
2836   if (thr->is_VM_thread()) {
2837     return ConcurrentMarkSweepThread::vm_thread_has_cms_token();
2838   } else if (thr->is_ConcurrentGC_thread()) {
2839     return ConcurrentMarkSweepThread::cms_thread_has_cms_token();
2840   } else if (thr->is_GC_task_thread()) {
2841     return ConcurrentMarkSweepThread::vm_thread_has_cms_token() &&
2842            ParGCRareEvent_lock->owned_by_self();
2843   }
2844   return false;
2845 }
2846 #endif
2847 
2848 // Check reachability of the given heap address in CMS generation,
2849 // treating all other generations as roots.
2850 bool CMSCollector::is_cms_reachable(HeapWord* addr) {
2851   // We could "guarantee" below, rather than assert, but i'll
2852   // leave these as "asserts" so that an adventurous debugger
2853   // could try this in the product build provided some subset of
2854   // the conditions were met, provided they were intersted in the
2855   // results and knew that the computation below wouldn't interfere
2856   // with other concurrent computations mutating the structures
2857   // being read or written.
2858   assert(SafepointSynchronize::is_at_safepoint(),
2859          "Else mutations in object graph will make answer suspect");
2860   assert(have_cms_token(), "Should hold cms token");
2861   assert(haveFreelistLocks(), "must hold free list locks");
2862   assert_lock_strong(bitMapLock());
2863 
2864   // Clear the marking bit map array before starting, but, just
2865   // for kicks, first report if the given address is already marked
2866   gclog_or_tty->print_cr("Start: Address 0x%x is%s marked", addr,
2867                 _markBitMap.isMarked(addr) ? "" : " not");
2868 
2869   if (verify_after_remark()) {
2870     MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2871     bool result = verification_mark_bm()->isMarked(addr);
2872     gclog_or_tty->print_cr("TransitiveMark: Address 0x%x %s marked", addr,
2873                            result ? "IS" : "is NOT");
2874     return result;
2875   } else {
2876     gclog_or_tty->print_cr("Could not compute result");
2877     return false;
2878   }
2879 }
2880 
2881 
2882 void
2883 CMSCollector::print_on_error(outputStream* st) {
2884   CMSCollector* collector = ConcurrentMarkSweepGeneration::_collector;
2885   if (collector != NULL) {
2886     CMSBitMap* bitmap = &collector->_markBitMap;
2887     st->print_cr("Marking Bits: (CMSBitMap*) " PTR_FORMAT, bitmap);
2888     bitmap->print_on_error(st, " Bits: ");
2889 
2890     st->cr();
2891 
2892     CMSBitMap* mut_bitmap = &collector->_modUnionTable;
2893     st->print_cr("Mod Union Table: (CMSBitMap*) " PTR_FORMAT, mut_bitmap);
2894     mut_bitmap->print_on_error(st, " Bits: ");
2895   }
2896 }
2897 
2898 ////////////////////////////////////////////////////////
2899 // CMS Verification Support
2900 ////////////////////////////////////////////////////////
2901 // Following the remark phase, the following invariant
2902 // should hold -- each object in the CMS heap which is
2903 // marked in markBitMap() should be marked in the verification_mark_bm().
2904 
2905 class VerifyMarkedClosure: public BitMapClosure {
2906   CMSBitMap* _marks;
2907   bool       _failed;
2908 
2909  public:
2910   VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {}
2911 
2912   bool do_bit(size_t offset) {
2913     HeapWord* addr = _marks->offsetToHeapWord(offset);
2914     if (!_marks->isMarked(addr)) {
2915       oop(addr)->print_on(gclog_or_tty);
2916       gclog_or_tty->print_cr(" ("INTPTR_FORMAT" should have been marked)", addr);
2917       _failed = true;
2918     }
2919     return true;
2920   }
2921 
2922   bool failed() { return _failed; }
2923 };
2924 
2925 bool CMSCollector::verify_after_remark(bool silent) {
2926   if (!silent) gclog_or_tty->print(" [Verifying CMS Marking... ");
2927   MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2928   static bool init = false;
2929 
2930   assert(SafepointSynchronize::is_at_safepoint(),
2931          "Else mutations in object graph will make answer suspect");
2932   assert(have_cms_token(),
2933          "Else there may be mutual interference in use of "
2934          " verification data structures");
2935   assert(_collectorState > Marking && _collectorState <= Sweeping,
2936          "Else marking info checked here may be obsolete");
2937   assert(haveFreelistLocks(), "must hold free list locks");
2938   assert_lock_strong(bitMapLock());
2939 
2940 
2941   // Allocate marking bit map if not already allocated
2942   if (!init) { // first time
2943     if (!verification_mark_bm()->allocate(_span)) {
2944       return false;
2945     }
2946     init = true;
2947   }
2948 
2949   assert(verification_mark_stack()->isEmpty(), "Should be empty");
2950 
2951   // Turn off refs discovery -- so we will be tracing through refs.
2952   // This is as intended, because by this time
2953   // GC must already have cleared any refs that need to be cleared,
2954   // and traced those that need to be marked; moreover,
2955   // the marking done here is not going to intefere in any
2956   // way with the marking information used by GC.
2957   NoRefDiscovery no_discovery(ref_processor());
2958 
2959   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
2960 
2961   // Clear any marks from a previous round
2962   verification_mark_bm()->clear_all();
2963   assert(verification_mark_stack()->isEmpty(), "markStack should be empty");
2964   verify_work_stacks_empty();
2965 
2966   GenCollectedHeap* gch = GenCollectedHeap::heap();
2967   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2968   // Update the saved marks which may affect the root scans.
2969   gch->save_marks();
2970 
2971   if (CMSRemarkVerifyVariant == 1) {
2972     // In this first variant of verification, we complete
2973     // all marking, then check if the new marks-verctor is
2974     // a subset of the CMS marks-vector.
2975     verify_after_remark_work_1();
2976   } else if (CMSRemarkVerifyVariant == 2) {
2977     // In this second variant of verification, we flag an error
2978     // (i.e. an object reachable in the new marks-vector not reachable
2979     // in the CMS marks-vector) immediately, also indicating the
2980     // identify of an object (A) that references the unmarked object (B) --
2981     // presumably, a mutation to A failed to be picked up by preclean/remark?
2982     verify_after_remark_work_2();
2983   } else {
2984     warning("Unrecognized value %d for CMSRemarkVerifyVariant",
2985             CMSRemarkVerifyVariant);
2986   }
2987   if (!silent) gclog_or_tty->print(" done] ");
2988   return true;
2989 }
2990 
2991 void CMSCollector::verify_after_remark_work_1() {
2992   ResourceMark rm;
2993   HandleMark  hm;
2994   GenCollectedHeap* gch = GenCollectedHeap::heap();
2995 
2996   // Get a clear set of claim bits for the strong roots processing to work with.
2997   ClassLoaderDataGraph::clear_claimed_marks();
2998 
2999   // Mark from roots one level into CMS
3000   MarkRefsIntoClosure notOlder(_span, verification_mark_bm());
3001   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
3002 
3003   gch->gen_process_strong_roots(_cmsGen->level(),
3004                                 true,   // younger gens are roots
3005                                 true,   // activate StrongRootsScope
3006                                 false,  // not scavenging
3007                                 SharedHeap::ScanningOption(roots_scanning_options()),
3008                                 &notOlder,
3009                                 true,   // walk code active on stacks
3010                                 NULL,
3011                                 NULL); // SSS: Provide correct closure
3012 
3013   // Now mark from the roots
3014   MarkFromRootsClosure markFromRootsClosure(this, _span,
3015     verification_mark_bm(), verification_mark_stack(),
3016     false /* don't yield */, true /* verifying */);
3017   assert(_restart_addr == NULL, "Expected pre-condition");
3018   verification_mark_bm()->iterate(&markFromRootsClosure);
3019   while (_restart_addr != NULL) {
3020     // Deal with stack overflow: by restarting at the indicated
3021     // address.
3022     HeapWord* ra = _restart_addr;
3023     markFromRootsClosure.reset(ra);
3024     _restart_addr = NULL;
3025     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
3026   }
3027   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
3028   verify_work_stacks_empty();
3029 
3030   // Marking completed -- now verify that each bit marked in
3031   // verification_mark_bm() is also marked in markBitMap(); flag all
3032   // errors by printing corresponding objects.
3033   VerifyMarkedClosure vcl(markBitMap());
3034   verification_mark_bm()->iterate(&vcl);
3035   if (vcl.failed()) {
3036     gclog_or_tty->print("Verification failed");
3037     Universe::heap()->print_on(gclog_or_tty);
3038     fatal("CMS: failed marking verification after remark");
3039   }
3040 }
3041 
3042 class VerifyKlassOopsKlassClosure : public KlassClosure {
3043   class VerifyKlassOopsClosure : public OopClosure {
3044     CMSBitMap* _bitmap;
3045    public:
3046     VerifyKlassOopsClosure(CMSBitMap* bitmap) : _bitmap(bitmap) { }
3047     void do_oop(oop* p)       { guarantee(*p == NULL || _bitmap->isMarked((HeapWord*) *p), "Should be marked"); }
3048     void do_oop(narrowOop* p) { ShouldNotReachHere(); }
3049   } _oop_closure;
3050  public:
3051   VerifyKlassOopsKlassClosure(CMSBitMap* bitmap) : _oop_closure(bitmap) {}
3052   void do_klass(Klass* k) {
3053     k->oops_do(&_oop_closure);
3054   }
3055 };
3056 
3057 void CMSCollector::verify_after_remark_work_2() {
3058   ResourceMark rm;
3059   HandleMark  hm;
3060   GenCollectedHeap* gch = GenCollectedHeap::heap();
3061 
3062   // Get a clear set of claim bits for the strong roots processing to work with.
3063   ClassLoaderDataGraph::clear_claimed_marks();
3064 
3065   // Mark from roots one level into CMS
3066   MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(),
3067                                      markBitMap());
3068   CMKlassClosure klass_closure(&notOlder);
3069 
3070   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
3071   gch->gen_process_strong_roots(_cmsGen->level(),
3072                                 true,   // younger gens are roots
3073                                 true,   // activate StrongRootsScope
3074                                 false,  // not scavenging
3075                                 SharedHeap::ScanningOption(roots_scanning_options()),
3076                                 &notOlder,
3077                                 true,   // walk code active on stacks
3078                                 NULL,
3079                                 &klass_closure);
3080 
3081   // Now mark from the roots
3082   MarkFromRootsVerifyClosure markFromRootsClosure(this, _span,
3083     verification_mark_bm(), markBitMap(), verification_mark_stack());
3084   assert(_restart_addr == NULL, "Expected pre-condition");
3085   verification_mark_bm()->iterate(&markFromRootsClosure);
3086   while (_restart_addr != NULL) {
3087     // Deal with stack overflow: by restarting at the indicated
3088     // address.
3089     HeapWord* ra = _restart_addr;
3090     markFromRootsClosure.reset(ra);
3091     _restart_addr = NULL;
3092     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
3093   }
3094   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
3095   verify_work_stacks_empty();
3096 
3097   VerifyKlassOopsKlassClosure verify_klass_oops(verification_mark_bm());
3098   ClassLoaderDataGraph::classes_do(&verify_klass_oops);
3099 
3100   // Marking completed -- now verify that each bit marked in
3101   // verification_mark_bm() is also marked in markBitMap(); flag all
3102   // errors by printing corresponding objects.
3103   VerifyMarkedClosure vcl(markBitMap());
3104   verification_mark_bm()->iterate(&vcl);
3105   assert(!vcl.failed(), "Else verification above should not have succeeded");
3106 }
3107 
3108 void ConcurrentMarkSweepGeneration::save_marks() {
3109   // delegate to CMS space
3110   cmsSpace()->save_marks();
3111   for (uint i = 0; i < ParallelGCThreads; i++) {
3112     _par_gc_thread_states[i]->promo.startTrackingPromotions();
3113   }
3114 }
3115 
3116 bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() {
3117   return cmsSpace()->no_allocs_since_save_marks();
3118 }
3119 
3120 #define CMS_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)    \
3121                                                                 \
3122 void ConcurrentMarkSweepGeneration::                            \
3123 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
3124   cl->set_generation(this);                                     \
3125   cmsSpace()->oop_since_save_marks_iterate##nv_suffix(cl);      \
3126   cl->reset_generation();                                       \
3127   save_marks();                                                 \
3128 }
3129 
3130 ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DEFN)
3131 
3132 void
3133 ConcurrentMarkSweepGeneration::object_iterate_since_last_GC(ObjectClosure* blk)
3134 {
3135   // Not currently implemented; need to do the following. -- ysr.
3136   // dld -- I think that is used for some sort of allocation profiler.  So it
3137   // really means the objects allocated by the mutator since the last
3138   // GC.  We could potentially implement this cheaply by recording only
3139   // the direct allocations in a side data structure.
3140   //
3141   // I think we probably ought not to be required to support these
3142   // iterations at any arbitrary point; I think there ought to be some
3143   // call to enable/disable allocation profiling in a generation/space,
3144   // and the iterator ought to return the objects allocated in the
3145   // gen/space since the enable call, or the last iterator call (which
3146   // will probably be at a GC.)  That way, for gens like CM&S that would
3147   // require some extra data structure to support this, we only pay the
3148   // cost when it's in use...
3149   cmsSpace()->object_iterate_since_last_GC(blk);
3150 }
3151 
3152 void
3153 ConcurrentMarkSweepGeneration::younger_refs_iterate(OopsInGenClosure* cl) {
3154   cl->set_generation(this);
3155   younger_refs_in_space_iterate(_cmsSpace, cl);
3156   cl->reset_generation();
3157 }
3158 
3159 void
3160 ConcurrentMarkSweepGeneration::oop_iterate(MemRegion mr, ExtendedOopClosure* cl) {
3161   if (freelistLock()->owned_by_self()) {
3162     Generation::oop_iterate(mr, cl);
3163   } else {
3164     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3165     Generation::oop_iterate(mr, cl);
3166   }
3167 }
3168 
3169 void
3170 ConcurrentMarkSweepGeneration::oop_iterate(ExtendedOopClosure* cl) {
3171   if (freelistLock()->owned_by_self()) {
3172     Generation::oop_iterate(cl);
3173   } else {
3174     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3175     Generation::oop_iterate(cl);
3176   }
3177 }
3178 
3179 void
3180 ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) {
3181   if (freelistLock()->owned_by_self()) {
3182     Generation::object_iterate(cl);
3183   } else {
3184     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3185     Generation::object_iterate(cl);
3186   }
3187 }
3188 
3189 void
3190 ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) {
3191   if (freelistLock()->owned_by_self()) {
3192     Generation::safe_object_iterate(cl);
3193   } else {
3194     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3195     Generation::safe_object_iterate(cl);
3196   }
3197 }
3198 
3199 void
3200 ConcurrentMarkSweepGeneration::post_compact() {
3201 }
3202 
3203 void
3204 ConcurrentMarkSweepGeneration::prepare_for_verify() {
3205   // Fix the linear allocation blocks to look like free blocks.
3206 
3207   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
3208   // are not called when the heap is verified during universe initialization and
3209   // at vm shutdown.
3210   if (freelistLock()->owned_by_self()) {
3211     cmsSpace()->prepare_for_verify();
3212   } else {
3213     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
3214     cmsSpace()->prepare_for_verify();
3215   }
3216 }
3217 
3218 void
3219 ConcurrentMarkSweepGeneration::verify() {
3220   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
3221   // are not called when the heap is verified during universe initialization and
3222   // at vm shutdown.
3223   if (freelistLock()->owned_by_self()) {
3224     cmsSpace()->verify();
3225   } else {
3226     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
3227     cmsSpace()->verify();
3228   }
3229 }
3230 
3231 void CMSCollector::verify() {
3232   _cmsGen->verify();
3233 }
3234 
3235 #ifndef PRODUCT
3236 bool CMSCollector::overflow_list_is_empty() const {
3237   assert(_num_par_pushes >= 0, "Inconsistency");
3238   if (_overflow_list == NULL) {
3239     assert(_num_par_pushes == 0, "Inconsistency");
3240   }
3241   return _overflow_list == NULL;
3242 }
3243 
3244 // The methods verify_work_stacks_empty() and verify_overflow_empty()
3245 // merely consolidate assertion checks that appear to occur together frequently.
3246 void CMSCollector::verify_work_stacks_empty() const {
3247   assert(_markStack.isEmpty(), "Marking stack should be empty");
3248   assert(overflow_list_is_empty(), "Overflow list should be empty");
3249 }
3250 
3251 void CMSCollector::verify_overflow_empty() const {
3252   assert(overflow_list_is_empty(), "Overflow list should be empty");
3253   assert(no_preserved_marks(), "No preserved marks");
3254 }
3255 #endif // PRODUCT
3256 
3257 // Decide if we want to enable class unloading as part of the
3258 // ensuing concurrent GC cycle. We will collect and
3259 // unload classes if it's the case that:
3260 // (1) an explicit gc request has been made and the flag
3261 //     ExplicitGCInvokesConcurrentAndUnloadsClasses is set, OR
3262 // (2) (a) class unloading is enabled at the command line, and
3263 //     (b) old gen is getting really full
3264 // NOTE: Provided there is no change in the state of the heap between
3265 // calls to this method, it should have idempotent results. Moreover,
3266 // its results should be monotonically increasing (i.e. going from 0 to 1,
3267 // but not 1 to 0) between successive calls between which the heap was
3268 // not collected. For the implementation below, it must thus rely on
3269 // the property that concurrent_cycles_since_last_unload()
3270 // will not decrease unless a collection cycle happened and that
3271 // _cmsGen->is_too_full() are
3272 // themselves also monotonic in that sense. See check_monotonicity()
3273 // below.
3274 void CMSCollector::update_should_unload_classes() {
3275   _should_unload_classes = false;
3276   // Condition 1 above
3277   if (_full_gc_requested && ExplicitGCInvokesConcurrentAndUnloadsClasses) {
3278     _should_unload_classes = true;
3279   } else if (CMSClassUnloadingEnabled) { // Condition 2.a above
3280     // Disjuncts 2.b.(i,ii,iii) above
3281     _should_unload_classes = (concurrent_cycles_since_last_unload() >=
3282                               CMSClassUnloadingMaxInterval)
3283                            || _cmsGen->is_too_full();
3284   }
3285 }
3286 
3287 bool ConcurrentMarkSweepGeneration::is_too_full() const {
3288   bool res = should_concurrent_collect();
3289   res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0);
3290   return res;
3291 }
3292 
3293 void CMSCollector::setup_cms_unloading_and_verification_state() {
3294   const  bool should_verify =   VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
3295                              || VerifyBeforeExit;
3296   const  int  rso           =   SharedHeap::SO_Strings | SharedHeap::SO_CodeCache;
3297 
3298   if (should_unload_classes()) {   // Should unload classes this cycle
3299     remove_root_scanning_option(rso);  // Shrink the root set appropriately
3300     set_verifying(should_verify);    // Set verification state for this cycle
3301     return;                            // Nothing else needs to be done at this time
3302   }
3303 
3304   // Not unloading classes this cycle
3305   assert(!should_unload_classes(), "Inconsitency!");
3306   if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) {
3307     // Include symbols, strings and code cache elements to prevent their resurrection.
3308     add_root_scanning_option(rso);
3309     set_verifying(true);
3310   } else if (verifying() && !should_verify) {
3311     // We were verifying, but some verification flags got disabled.
3312     set_verifying(false);
3313     // Exclude symbols, strings and code cache elements from root scanning to
3314     // reduce IM and RM pauses.
3315     remove_root_scanning_option(rso);
3316   }
3317 }
3318 
3319 
3320 #ifndef PRODUCT
3321 HeapWord* CMSCollector::block_start(const void* p) const {
3322   const HeapWord* addr = (HeapWord*)p;
3323   if (_span.contains(p)) {
3324     if (_cmsGen->cmsSpace()->is_in_reserved(addr)) {
3325       return _cmsGen->cmsSpace()->block_start(p);
3326     }
3327   }
3328   return NULL;
3329 }
3330 #endif
3331 
3332 HeapWord*
3333 ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size,
3334                                                    bool   tlab,
3335                                                    bool   parallel) {
3336   CMSSynchronousYieldRequest yr;
3337   assert(!tlab, "Can't deal with TLAB allocation");
3338   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3339   expand(word_size*HeapWordSize, MinHeapDeltaBytes,
3340     CMSExpansionCause::_satisfy_allocation);
3341   if (GCExpandToAllocateDelayMillis > 0) {
3342     os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
3343   }
3344   return have_lock_and_allocate(word_size, tlab);
3345 }
3346 
3347 // YSR: All of this generation expansion/shrinking stuff is an exact copy of
3348 // OneContigSpaceCardGeneration, which makes me wonder if we should move this
3349 // to CardGeneration and share it...
3350 bool ConcurrentMarkSweepGeneration::expand(size_t bytes, size_t expand_bytes) {
3351   return CardGeneration::expand(bytes, expand_bytes);
3352 }
3353 
3354 void ConcurrentMarkSweepGeneration::expand(size_t bytes, size_t expand_bytes,
3355   CMSExpansionCause::Cause cause)
3356 {
3357 
3358   bool success = expand(bytes, expand_bytes);
3359 
3360   // remember why we expanded; this information is used
3361   // by shouldConcurrentCollect() when making decisions on whether to start
3362   // a new CMS cycle.
3363   if (success) {
3364     set_expansion_cause(cause);
3365     if (PrintGCDetails && Verbose) {
3366       gclog_or_tty->print_cr("Expanded CMS gen for %s",
3367         CMSExpansionCause::to_string(cause));
3368     }
3369   }
3370 }
3371 
3372 HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) {
3373   HeapWord* res = NULL;
3374   MutexLocker x(ParGCRareEvent_lock);
3375   while (true) {
3376     // Expansion by some other thread might make alloc OK now:
3377     res = ps->lab.alloc(word_sz);
3378     if (res != NULL) return res;
3379     // If there's not enough expansion space available, give up.
3380     if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) {
3381       return NULL;
3382     }
3383     // Otherwise, we try expansion.
3384     expand(word_sz*HeapWordSize, MinHeapDeltaBytes,
3385       CMSExpansionCause::_allocate_par_lab);
3386     // Now go around the loop and try alloc again;
3387     // A competing par_promote might beat us to the expansion space,
3388     // so we may go around the loop again if promotion fails agaion.
3389     if (GCExpandToAllocateDelayMillis > 0) {
3390       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
3391     }
3392   }
3393 }
3394 
3395 
3396 bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space(
3397   PromotionInfo* promo) {
3398   MutexLocker x(ParGCRareEvent_lock);
3399   size_t refill_size_bytes = promo->refillSize() * HeapWordSize;
3400   while (true) {
3401     // Expansion by some other thread might make alloc OK now:
3402     if (promo->ensure_spooling_space()) {
3403       assert(promo->has_spooling_space(),
3404              "Post-condition of successful ensure_spooling_space()");
3405       return true;
3406     }
3407     // If there's not enough expansion space available, give up.
3408     if (_virtual_space.uncommitted_size() < refill_size_bytes) {
3409       return false;
3410     }
3411     // Otherwise, we try expansion.
3412     expand(refill_size_bytes, MinHeapDeltaBytes,
3413       CMSExpansionCause::_allocate_par_spooling_space);
3414     // Now go around the loop and try alloc again;
3415     // A competing allocation might beat us to the expansion space,
3416     // so we may go around the loop again if allocation fails again.
3417     if (GCExpandToAllocateDelayMillis > 0) {
3418       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
3419     }
3420   }
3421 }
3422 
3423 
3424 void ConcurrentMarkSweepGeneration::shrink_by(size_t bytes) {
3425   assert_locked_or_safepoint(ExpandHeap_lock);
3426   // Shrink committed space
3427   _virtual_space.shrink_by(bytes);
3428   // Shrink space; this also shrinks the space's BOT
3429   _cmsSpace->set_end((HeapWord*) _virtual_space.high());
3430   size_t new_word_size = heap_word_size(_cmsSpace->capacity());
3431   // Shrink the shared block offset array
3432   _bts->resize(new_word_size);
3433   MemRegion mr(_cmsSpace->bottom(), new_word_size);
3434   // Shrink the card table
3435   Universe::heap()->barrier_set()->resize_covered_region(mr);
3436 
3437   if (Verbose && PrintGC) {
3438     size_t new_mem_size = _virtual_space.committed_size();
3439     size_t old_mem_size = new_mem_size + bytes;
3440     gclog_or_tty->print_cr("Shrinking %s from " SIZE_FORMAT "K to " SIZE_FORMAT "K",
3441                   name(), old_mem_size/K, new_mem_size/K);
3442   }
3443 }
3444 
3445 void ConcurrentMarkSweepGeneration::shrink(size_t bytes) {
3446   assert_locked_or_safepoint(Heap_lock);
3447   size_t size = ReservedSpace::page_align_size_down(bytes);
3448   if (size > 0) {
3449     shrink_by(size);
3450   }
3451 }
3452 
3453 bool ConcurrentMarkSweepGeneration::grow_by(size_t bytes) {
3454   assert_locked_or_safepoint(Heap_lock);
3455   bool result = _virtual_space.expand_by(bytes);
3456   if (result) {
3457     size_t new_word_size =
3458       heap_word_size(_virtual_space.committed_size());
3459     MemRegion mr(_cmsSpace->bottom(), new_word_size);
3460     _bts->resize(new_word_size);  // resize the block offset shared array
3461     Universe::heap()->barrier_set()->resize_covered_region(mr);
3462     // Hmmmm... why doesn't CFLS::set_end verify locking?
3463     // This is quite ugly; FIX ME XXX
3464     _cmsSpace->assert_locked(freelistLock());
3465     _cmsSpace->set_end((HeapWord*)_virtual_space.high());
3466 
3467     // update the space and generation capacity counters
3468     if (UsePerfData) {
3469       _space_counters->update_capacity();
3470       _gen_counters->update_all();
3471     }
3472 
3473     if (Verbose && PrintGC) {
3474       size_t new_mem_size = _virtual_space.committed_size();
3475       size_t old_mem_size = new_mem_size - bytes;
3476       gclog_or_tty->print_cr("Expanding %s from " SIZE_FORMAT "K by " SIZE_FORMAT "K to " SIZE_FORMAT "K",
3477                     name(), old_mem_size/K, bytes/K, new_mem_size/K);
3478     }
3479   }
3480   return result;
3481 }
3482 
3483 bool ConcurrentMarkSweepGeneration::grow_to_reserved() {
3484   assert_locked_or_safepoint(Heap_lock);
3485   bool success = true;
3486   const size_t remaining_bytes = _virtual_space.uncommitted_size();
3487   if (remaining_bytes > 0) {
3488     success = grow_by(remaining_bytes);
3489     DEBUG_ONLY(if (!success) warning("grow to reserved failed");)
3490   }
3491   return success;
3492 }
3493 
3494 void ConcurrentMarkSweepGeneration::shrink_free_list_by(size_t bytes) {
3495   assert_locked_or_safepoint(Heap_lock);
3496   assert_lock_strong(freelistLock());
3497   if (PrintGCDetails && Verbose) {
3498     warning("Shrinking of CMS not yet implemented");
3499   }
3500   return;
3501 }
3502 
3503 
3504 // Simple ctor/dtor wrapper for accounting & timer chores around concurrent
3505 // phases.
3506 class CMSPhaseAccounting: public StackObj {
3507  public:
3508   CMSPhaseAccounting(CMSCollector *collector,
3509                      const char *phase,
3510                      bool print_cr = true);
3511   ~CMSPhaseAccounting();
3512 
3513  private:
3514   CMSCollector *_collector;
3515   const char *_phase;
3516   elapsedTimer _wallclock;
3517   bool _print_cr;
3518 
3519  public:
3520   // Not MT-safe; so do not pass around these StackObj's
3521   // where they may be accessed by other threads.
3522   jlong wallclock_millis() {
3523     assert(_wallclock.is_active(), "Wall clock should not stop");
3524     _wallclock.stop();  // to record time
3525     jlong ret = _wallclock.milliseconds();
3526     _wallclock.start(); // restart
3527     return ret;
3528   }
3529 };
3530 
3531 CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector,
3532                                        const char *phase,
3533                                        bool print_cr) :
3534   _collector(collector), _phase(phase), _print_cr(print_cr) {
3535 
3536   if (PrintCMSStatistics != 0) {
3537     _collector->resetYields();
3538   }
3539   if (PrintGCDetails) {
3540     gclog_or_tty->date_stamp(PrintGCDateStamps);
3541     gclog_or_tty->stamp(PrintGCTimeStamps);
3542     gclog_or_tty->print_cr("[%s-concurrent-%s-start]",
3543       _collector->cmsGen()->short_name(), _phase);
3544   }
3545   _collector->resetTimer();
3546   _wallclock.start();
3547   _collector->startTimer();
3548 }
3549 
3550 CMSPhaseAccounting::~CMSPhaseAccounting() {
3551   assert(_wallclock.is_active(), "Wall clock should not have stopped");
3552   _collector->stopTimer();
3553   _wallclock.stop();
3554   if (PrintGCDetails) {
3555     gclog_or_tty->date_stamp(PrintGCDateStamps);
3556     gclog_or_tty->stamp(PrintGCTimeStamps);
3557     gclog_or_tty->print("[%s-concurrent-%s: %3.3f/%3.3f secs]",
3558                  _collector->cmsGen()->short_name(),
3559                  _phase, _collector->timerValue(), _wallclock.seconds());
3560     if (_print_cr) {
3561       gclog_or_tty->print_cr("");
3562     }
3563     if (PrintCMSStatistics != 0) {
3564       gclog_or_tty->print_cr(" (CMS-concurrent-%s yielded %d times)", _phase,
3565                     _collector->yields());
3566     }
3567   }
3568 }
3569 
3570 // CMS work
3571 
3572 // Checkpoint the roots into this generation from outside
3573 // this generation. [Note this initial checkpoint need only
3574 // be approximate -- we'll do a catch up phase subsequently.]
3575 void CMSCollector::checkpointRootsInitial(bool asynch) {
3576   assert(_collectorState == InitialMarking, "Wrong collector state");
3577   check_correct_thread_executing();
3578   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
3579 
3580   save_heap_summary();
3581   report_heap_summary(GCWhen::BeforeGC);
3582 
3583   ReferenceProcessor* rp = ref_processor();
3584   SpecializationStats::clear();
3585   assert(_restart_addr == NULL, "Control point invariant");
3586   if (asynch) {
3587     // acquire locks for subsequent manipulations
3588     MutexLockerEx x(bitMapLock(),
3589                     Mutex::_no_safepoint_check_flag);
3590     checkpointRootsInitialWork(asynch);
3591     // enable ("weak") refs discovery
3592     rp->enable_discovery(true /*verify_disabled*/, true /*check_no_refs*/);
3593     _collectorState = Marking;
3594   } else {
3595     // (Weak) Refs discovery: this is controlled from genCollectedHeap::do_collection
3596     // which recognizes if we are a CMS generation, and doesn't try to turn on
3597     // discovery; verify that they aren't meddling.
3598     assert(!rp->discovery_is_atomic(),
3599            "incorrect setting of discovery predicate");
3600     assert(!rp->discovery_enabled(), "genCollectedHeap shouldn't control "
3601            "ref discovery for this generation kind");
3602     // already have locks
3603     checkpointRootsInitialWork(asynch);
3604     // now enable ("weak") refs discovery
3605     rp->enable_discovery(true /*verify_disabled*/, false /*verify_no_refs*/);
3606     _collectorState = Marking;
3607   }
3608   SpecializationStats::print();
3609 }
3610 
3611 void CMSCollector::checkpointRootsInitialWork(bool asynch) {
3612   assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
3613   assert(_collectorState == InitialMarking, "just checking");
3614 
3615   // If there has not been a GC[n-1] since last GC[n] cycle completed,
3616   // precede our marking with a collection of all
3617   // younger generations to keep floating garbage to a minimum.
3618   // XXX: we won't do this for now -- it's an optimization to be done later.
3619 
3620   // already have locks
3621   assert_lock_strong(bitMapLock());
3622   assert(_markBitMap.isAllClear(), "was reset at end of previous cycle");
3623 
3624   // Setup the verification and class unloading state for this
3625   // CMS collection cycle.
3626   setup_cms_unloading_and_verification_state();
3627 
3628   NOT_PRODUCT(GCTraceTime t("\ncheckpointRootsInitialWork",
3629     PrintGCDetails && Verbose, true, _gc_timer_cm);)
3630   if (UseAdaptiveSizePolicy) {
3631     size_policy()->checkpoint_roots_initial_begin();
3632   }
3633 
3634   // Reset all the PLAB chunk arrays if necessary.
3635   if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) {
3636     reset_survivor_plab_arrays();
3637   }
3638 
3639   ResourceMark rm;
3640   HandleMark  hm;
3641 
3642   FalseClosure falseClosure;
3643   // In the case of a synchronous collection, we will elide the
3644   // remark step, so it's important to catch all the nmethod oops
3645   // in this step.
3646   // The final 'true' flag to gen_process_strong_roots will ensure this.
3647   // If 'async' is true, we can relax the nmethod tracing.
3648   MarkRefsIntoClosure notOlder(_span, &_markBitMap);
3649   GenCollectedHeap* gch = GenCollectedHeap::heap();
3650 
3651   verify_work_stacks_empty();
3652   verify_overflow_empty();
3653 
3654   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
3655   // Update the saved marks which may affect the root scans.
3656   gch->save_marks();
3657 
3658   // weak reference processing has not started yet.
3659   ref_processor()->set_enqueuing_is_done(false);
3660 
3661   // Need to remember all newly created CLDs,
3662   // so that we can guarantee that the remark finds them.
3663   ClassLoaderDataGraph::remember_new_clds(true);
3664 
3665   // Whenever a CLD is found, it will be claimed before proceeding to mark
3666   // the klasses. The claimed marks need to be cleared before marking starts.
3667   ClassLoaderDataGraph::clear_claimed_marks();
3668 
3669   CMKlassClosure klass_closure(&notOlder);
3670   {
3671     COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
3672     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
3673     gch->gen_process_strong_roots(_cmsGen->level(),
3674                                   true,   // younger gens are roots
3675                                   true,   // activate StrongRootsScope
3676                                   false,  // not scavenging
3677                                   SharedHeap::ScanningOption(roots_scanning_options()),
3678                                   &notOlder,
3679                                   true,   // walk all of code cache if (so & SO_CodeCache)
3680                                   NULL,
3681                                   &klass_closure);
3682   }
3683 
3684   // Clear mod-union table; it will be dirtied in the prologue of
3685   // CMS generation per each younger generation collection.
3686 
3687   assert(_modUnionTable.isAllClear(),
3688        "Was cleared in most recent final checkpoint phase"
3689        " or no bits are set in the gc_prologue before the start of the next "
3690        "subsequent marking phase.");
3691 
3692   assert(_ct->klass_rem_set()->mod_union_is_clear(), "Must be");
3693 
3694   // Save the end of the used_region of the constituent generations
3695   // to be used to limit the extent of sweep in each generation.
3696   save_sweep_limits();
3697   if (UseAdaptiveSizePolicy) {
3698     size_policy()->checkpoint_roots_initial_end(gch->gc_cause());
3699   }
3700   verify_overflow_empty();
3701 }
3702 
3703 bool CMSCollector::markFromRoots(bool asynch) {
3704   // we might be tempted to assert that:
3705   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
3706   //        "inconsistent argument?");
3707   // However that wouldn't be right, because it's possible that
3708   // a safepoint is indeed in progress as a younger generation
3709   // stop-the-world GC happens even as we mark in this generation.
3710   assert(_collectorState == Marking, "inconsistent state?");
3711   check_correct_thread_executing();
3712   verify_overflow_empty();
3713 
3714   bool res;
3715   if (asynch) {
3716 
3717     // Start the timers for adaptive size policy for the concurrent phases
3718     // Do it here so that the foreground MS can use the concurrent
3719     // timer since a foreground MS might has the sweep done concurrently
3720     // or STW.
3721     if (UseAdaptiveSizePolicy) {
3722       size_policy()->concurrent_marking_begin();
3723     }
3724 
3725     // Weak ref discovery note: We may be discovering weak
3726     // refs in this generation concurrent (but interleaved) with
3727     // weak ref discovery by a younger generation collector.
3728 
3729     CMSTokenSyncWithLocks ts(true, bitMapLock());
3730     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3731     CMSPhaseAccounting pa(this, "mark", !PrintGCDetails);
3732     res = markFromRootsWork(asynch);
3733     if (res) {
3734       _collectorState = Precleaning;
3735     } else { // We failed and a foreground collection wants to take over
3736       assert(_foregroundGCIsActive, "internal state inconsistency");
3737       assert(_restart_addr == NULL,  "foreground will restart from scratch");
3738       if (PrintGCDetails) {
3739         gclog_or_tty->print_cr("bailing out to foreground collection");
3740       }
3741     }
3742     if (UseAdaptiveSizePolicy) {
3743       size_policy()->concurrent_marking_end();
3744     }
3745   } else {
3746     assert(SafepointSynchronize::is_at_safepoint(),
3747            "inconsistent with asynch == false");
3748     if (UseAdaptiveSizePolicy) {
3749       size_policy()->ms_collection_marking_begin();
3750     }
3751     // already have locks
3752     res = markFromRootsWork(asynch);
3753     _collectorState = FinalMarking;
3754     if (UseAdaptiveSizePolicy) {
3755       GenCollectedHeap* gch = GenCollectedHeap::heap();
3756       size_policy()->ms_collection_marking_end(gch->gc_cause());
3757     }
3758   }
3759   verify_overflow_empty();
3760   return res;
3761 }
3762 
3763 bool CMSCollector::markFromRootsWork(bool asynch) {
3764   // iterate over marked bits in bit map, doing a full scan and mark
3765   // from these roots using the following algorithm:
3766   // . if oop is to the right of the current scan pointer,
3767   //   mark corresponding bit (we'll process it later)
3768   // . else (oop is to left of current scan pointer)
3769   //   push oop on marking stack
3770   // . drain the marking stack
3771 
3772   // Note that when we do a marking step we need to hold the
3773   // bit map lock -- recall that direct allocation (by mutators)
3774   // and promotion (by younger generation collectors) is also
3775   // marking the bit map. [the so-called allocate live policy.]
3776   // Because the implementation of bit map marking is not
3777   // robust wrt simultaneous marking of bits in the same word,
3778   // we need to make sure that there is no such interference
3779   // between concurrent such updates.
3780 
3781   // already have locks
3782   assert_lock_strong(bitMapLock());
3783 
3784   verify_work_stacks_empty();
3785   verify_overflow_empty();
3786   bool result = false;
3787   if (CMSConcurrentMTEnabled && ConcGCThreads > 0) {
3788     result = do_marking_mt(asynch);
3789   } else {
3790     result = do_marking_st(asynch);
3791   }
3792   return result;
3793 }
3794 
3795 // Forward decl
3796 class CMSConcMarkingTask;
3797 
3798 class CMSConcMarkingTerminator: public ParallelTaskTerminator {
3799   CMSCollector*       _collector;
3800   CMSConcMarkingTask* _task;
3801  public:
3802   virtual void yield();
3803 
3804   // "n_threads" is the number of threads to be terminated.
3805   // "queue_set" is a set of work queues of other threads.
3806   // "collector" is the CMS collector associated with this task terminator.
3807   // "yield" indicates whether we need the gang as a whole to yield.
3808   CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) :
3809     ParallelTaskTerminator(n_threads, queue_set),
3810     _collector(collector) { }
3811 
3812   void set_task(CMSConcMarkingTask* task) {
3813     _task = task;
3814   }
3815 };
3816 
3817 class CMSConcMarkingTerminatorTerminator: public TerminatorTerminator {
3818   CMSConcMarkingTask* _task;
3819  public:
3820   bool should_exit_termination();
3821   void set_task(CMSConcMarkingTask* task) {
3822     _task = task;
3823   }
3824 };
3825 
3826 // MT Concurrent Marking Task
3827 class CMSConcMarkingTask: public YieldingFlexibleGangTask {
3828   CMSCollector* _collector;
3829   int           _n_workers;                  // requested/desired # workers
3830   bool          _asynch;
3831   bool          _result;
3832   CompactibleFreeListSpace*  _cms_space;
3833   char          _pad_front[64];   // padding to ...
3834   HeapWord*     _global_finger;   // ... avoid sharing cache line
3835   char          _pad_back[64];
3836   HeapWord*     _restart_addr;
3837 
3838   //  Exposed here for yielding support
3839   Mutex* const _bit_map_lock;
3840 
3841   // The per thread work queues, available here for stealing
3842   OopTaskQueueSet*  _task_queues;
3843 
3844   // Termination (and yielding) support
3845   CMSConcMarkingTerminator _term;
3846   CMSConcMarkingTerminatorTerminator _term_term;
3847 
3848  public:
3849   CMSConcMarkingTask(CMSCollector* collector,
3850                  CompactibleFreeListSpace* cms_space,
3851                  bool asynch,
3852                  YieldingFlexibleWorkGang* workers,
3853                  OopTaskQueueSet* task_queues):
3854     YieldingFlexibleGangTask("Concurrent marking done multi-threaded"),
3855     _collector(collector),
3856     _cms_space(cms_space),
3857     _asynch(asynch), _n_workers(0), _result(true),
3858     _task_queues(task_queues),
3859     _term(_n_workers, task_queues, _collector),
3860     _bit_map_lock(collector->bitMapLock())
3861   {
3862     _requested_size = _n_workers;
3863     _term.set_task(this);
3864     _term_term.set_task(this);
3865     _restart_addr = _global_finger = _cms_space->bottom();
3866   }
3867 
3868 
3869   OopTaskQueueSet* task_queues()  { return _task_queues; }
3870 
3871   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
3872 
3873   HeapWord** global_finger_addr() { return &_global_finger; }
3874 
3875   CMSConcMarkingTerminator* terminator() { return &_term; }
3876 
3877   virtual void set_for_termination(int active_workers) {
3878     terminator()->reset_for_reuse(active_workers);
3879   }
3880 
3881   void work(uint worker_id);
3882   bool should_yield() {
3883     return    ConcurrentMarkSweepThread::should_yield()
3884            && !_collector->foregroundGCIsActive()
3885            && _asynch;
3886   }
3887 
3888   virtual void coordinator_yield();  // stuff done by coordinator
3889   bool result() { return _result; }
3890 
3891   void reset(HeapWord* ra) {
3892     assert(_global_finger >= _cms_space->end(),  "Postcondition of ::work(i)");
3893     _restart_addr = _global_finger = ra;
3894     _term.reset_for_reuse();
3895   }
3896 
3897   static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3898                                            OopTaskQueue* work_q);
3899 
3900  private:
3901   void do_scan_and_mark(int i, CompactibleFreeListSpace* sp);
3902   void do_work_steal(int i);
3903   void bump_global_finger(HeapWord* f);
3904 };
3905 
3906 bool CMSConcMarkingTerminatorTerminator::should_exit_termination() {
3907   assert(_task != NULL, "Error");
3908   return _task->yielding();
3909   // Note that we do not need the disjunct || _task->should_yield() above
3910   // because we want terminating threads to yield only if the task
3911   // is already in the midst of yielding, which happens only after at least one
3912   // thread has yielded.
3913 }
3914 
3915 void CMSConcMarkingTerminator::yield() {
3916   if (_task->should_yield()) {
3917     _task->yield();
3918   } else {
3919     ParallelTaskTerminator::yield();
3920   }
3921 }
3922 
3923 ////////////////////////////////////////////////////////////////
3924 // Concurrent Marking Algorithm Sketch
3925 ////////////////////////////////////////////////////////////////
3926 // Until all tasks exhausted (both spaces):
3927 // -- claim next available chunk
3928 // -- bump global finger via CAS
3929 // -- find first object that starts in this chunk
3930 //    and start scanning bitmap from that position
3931 // -- scan marked objects for oops
3932 // -- CAS-mark target, and if successful:
3933 //    . if target oop is above global finger (volatile read)
3934 //      nothing to do
3935 //    . if target oop is in chunk and above local finger
3936 //        then nothing to do
3937 //    . else push on work-queue
3938 // -- Deal with possible overflow issues:
3939 //    . local work-queue overflow causes stuff to be pushed on
3940 //      global (common) overflow queue
3941 //    . always first empty local work queue
3942 //    . then get a batch of oops from global work queue if any
3943 //    . then do work stealing
3944 // -- When all tasks claimed (both spaces)
3945 //    and local work queue empty,
3946 //    then in a loop do:
3947 //    . check global overflow stack; steal a batch of oops and trace
3948 //    . try to steal from other threads oif GOS is empty
3949 //    . if neither is available, offer termination
3950 // -- Terminate and return result
3951 //
3952 void CMSConcMarkingTask::work(uint worker_id) {
3953   elapsedTimer _timer;
3954   ResourceMark rm;
3955   HandleMark hm;
3956 
3957   DEBUG_ONLY(_collector->verify_overflow_empty();)
3958 
3959   // Before we begin work, our work queue should be empty
3960   assert(work_queue(worker_id)->size() == 0, "Expected to be empty");
3961   // Scan the bitmap covering _cms_space, tracing through grey objects.
3962   _timer.start();
3963   do_scan_and_mark(worker_id, _cms_space);
3964   _timer.stop();
3965   if (PrintCMSStatistics != 0) {
3966     gclog_or_tty->print_cr("Finished cms space scanning in %dth thread: %3.3f sec",
3967       worker_id, _timer.seconds());
3968       // XXX: need xxx/xxx type of notation, two timers
3969   }
3970 
3971   // ... do work stealing
3972   _timer.reset();
3973   _timer.start();
3974   do_work_steal(worker_id);
3975   _timer.stop();
3976   if (PrintCMSStatistics != 0) {
3977     gclog_or_tty->print_cr("Finished work stealing in %dth thread: %3.3f sec",
3978       worker_id, _timer.seconds());
3979       // XXX: need xxx/xxx type of notation, two timers
3980   }
3981   assert(_collector->_markStack.isEmpty(), "Should have been emptied");
3982   assert(work_queue(worker_id)->size() == 0, "Should have been emptied");
3983   // Note that under the current task protocol, the
3984   // following assertion is true even of the spaces
3985   // expanded since the completion of the concurrent
3986   // marking. XXX This will likely change under a strict
3987   // ABORT semantics.
3988   // After perm removal the comparison was changed to
3989   // greater than or equal to from strictly greater than.
3990   // Before perm removal the highest address sweep would
3991   // have been at the end of perm gen but now is at the
3992   // end of the tenured gen.
3993   assert(_global_finger >=  _cms_space->end(),
3994          "All tasks have been completed");
3995   DEBUG_ONLY(_collector->verify_overflow_empty();)
3996 }
3997 
3998 void CMSConcMarkingTask::bump_global_finger(HeapWord* f) {
3999   HeapWord* read = _global_finger;
4000   HeapWord* cur  = read;
4001   while (f > read) {
4002     cur = read;
4003     read = (HeapWord*) Atomic::cmpxchg_ptr(f, &_global_finger, cur);
4004     if (cur == read) {
4005       // our cas succeeded
4006       assert(_global_finger >= f, "protocol consistency");
4007       break;
4008     }
4009   }
4010 }
4011 
4012 // This is really inefficient, and should be redone by
4013 // using (not yet available) block-read and -write interfaces to the
4014 // stack and the work_queue. XXX FIX ME !!!
4015 bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
4016                                                       OopTaskQueue* work_q) {
4017   // Fast lock-free check
4018   if (ovflw_stk->length() == 0) {
4019     return false;
4020   }
4021   assert(work_q->size() == 0, "Shouldn't steal");
4022   MutexLockerEx ml(ovflw_stk->par_lock(),
4023                    Mutex::_no_safepoint_check_flag);
4024   // Grab up to 1/4 the size of the work queue
4025   size_t num = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
4026                     (size_t)ParGCDesiredObjsFromOverflowList);
4027   num = MIN2(num, ovflw_stk->length());
4028   for (int i = (int) num; i > 0; i--) {
4029     oop cur = ovflw_stk->pop();
4030     assert(cur != NULL, "Counted wrong?");
4031     work_q->push(cur);
4032   }
4033   return num > 0;
4034 }
4035 
4036 void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
4037   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
4038   int n_tasks = pst->n_tasks();
4039   // We allow that there may be no tasks to do here because
4040   // we are restarting after a stack overflow.
4041   assert(pst->valid() || n_tasks == 0, "Uninitialized use?");
4042   uint nth_task = 0;
4043 
4044   HeapWord* aligned_start = sp->bottom();
4045   if (sp->used_region().contains(_restart_addr)) {
4046     // Align down to a card boundary for the start of 0th task
4047     // for this space.
4048     aligned_start =
4049       (HeapWord*)align_size_down((uintptr_t)_restart_addr,
4050                                  CardTableModRefBS::card_size);
4051   }
4052 
4053   size_t chunk_size = sp->marking_task_size();
4054   while (!pst->is_task_claimed(/* reference */ nth_task)) {
4055     // Having claimed the nth task in this space,
4056     // compute the chunk that it corresponds to:
4057     MemRegion span = MemRegion(aligned_start + nth_task*chunk_size,
4058                                aligned_start + (nth_task+1)*chunk_size);
4059     // Try and bump the global finger via a CAS;
4060     // note that we need to do the global finger bump
4061     // _before_ taking the intersection below, because
4062     // the task corresponding to that region will be
4063     // deemed done even if the used_region() expands
4064     // because of allocation -- as it almost certainly will
4065     // during start-up while the threads yield in the
4066     // closure below.
4067     HeapWord* finger = span.end();
4068     bump_global_finger(finger);   // atomically
4069     // There are null tasks here corresponding to chunks
4070     // beyond the "top" address of the space.
4071     span = span.intersection(sp->used_region());
4072     if (!span.is_empty()) {  // Non-null task
4073       HeapWord* prev_obj;
4074       assert(!span.contains(_restart_addr) || nth_task == 0,
4075              "Inconsistency");
4076       if (nth_task == 0) {
4077         // For the 0th task, we'll not need to compute a block_start.
4078         if (span.contains(_restart_addr)) {
4079           // In the case of a restart because of stack overflow,
4080           // we might additionally skip a chunk prefix.
4081           prev_obj = _restart_addr;
4082         } else {
4083           prev_obj = span.start();
4084         }
4085       } else {
4086         // We want to skip the first object because
4087         // the protocol is to scan any object in its entirety
4088         // that _starts_ in this span; a fortiori, any
4089         // object starting in an earlier span is scanned
4090         // as part of an earlier claimed task.
4091         // Below we use the "careful" version of block_start
4092         // so we do not try to navigate uninitialized objects.
4093         prev_obj = sp->block_start_careful(span.start());
4094         // Below we use a variant of block_size that uses the
4095         // Printezis bits to avoid waiting for allocated
4096         // objects to become initialized/parsable.
4097         while (prev_obj < span.start()) {
4098           size_t sz = sp->block_size_no_stall(prev_obj, _collector);
4099           if (sz > 0) {
4100             prev_obj += sz;
4101           } else {
4102             // In this case we may end up doing a bit of redundant
4103             // scanning, but that appears unavoidable, short of
4104             // locking the free list locks; see bug 6324141.
4105             break;
4106           }
4107         }
4108       }
4109       if (prev_obj < span.end()) {
4110         MemRegion my_span = MemRegion(prev_obj, span.end());
4111         // Do the marking work within a non-empty span --
4112         // the last argument to the constructor indicates whether the
4113         // iteration should be incremental with periodic yields.
4114         Par_MarkFromRootsClosure cl(this, _collector, my_span,
4115                                     &_collector->_markBitMap,
4116                                     work_queue(i),
4117                                     &_collector->_markStack,
4118                                     _asynch);
4119         _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end());
4120       } // else nothing to do for this task
4121     }   // else nothing to do for this task
4122   }
4123   // We'd be tempted to assert here that since there are no
4124   // more tasks left to claim in this space, the global_finger
4125   // must exceed space->top() and a fortiori space->end(). However,
4126   // that would not quite be correct because the bumping of
4127   // global_finger occurs strictly after the claiming of a task,
4128   // so by the time we reach here the global finger may not yet
4129   // have been bumped up by the thread that claimed the last
4130   // task.
4131   pst->all_tasks_completed();
4132 }
4133 
4134 class Par_ConcMarkingClosure: public CMSOopClosure {
4135  private:
4136   CMSCollector* _collector;
4137   CMSConcMarkingTask* _task;
4138   MemRegion     _span;
4139   CMSBitMap*    _bit_map;
4140   CMSMarkStack* _overflow_stack;
4141   OopTaskQueue* _work_queue;
4142  protected:
4143   DO_OOP_WORK_DEFN
4144  public:
4145   Par_ConcMarkingClosure(CMSCollector* collector, CMSConcMarkingTask* task, OopTaskQueue* work_queue,
4146                          CMSBitMap* bit_map, CMSMarkStack* overflow_stack):
4147     CMSOopClosure(collector->ref_processor()),
4148     _collector(collector),
4149     _task(task),
4150     _span(collector->_span),
4151     _work_queue(work_queue),
4152     _bit_map(bit_map),
4153     _overflow_stack(overflow_stack)
4154   { }
4155   virtual void do_oop(oop* p);
4156   virtual void do_oop(narrowOop* p);
4157 
4158   void trim_queue(size_t max);
4159   void handle_stack_overflow(HeapWord* lost);
4160   void do_yield_check() {
4161     if (_task->should_yield()) {
4162       _task->yield();
4163     }
4164   }
4165 };
4166 
4167 // Grey object scanning during work stealing phase --
4168 // the salient assumption here is that any references
4169 // that are in these stolen objects being scanned must
4170 // already have been initialized (else they would not have
4171 // been published), so we do not need to check for
4172 // uninitialized objects before pushing here.
4173 void Par_ConcMarkingClosure::do_oop(oop obj) {
4174   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
4175   HeapWord* addr = (HeapWord*)obj;
4176   // Check if oop points into the CMS generation
4177   // and is not marked
4178   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
4179     // a white object ...
4180     // If we manage to "claim" the object, by being the
4181     // first thread to mark it, then we push it on our
4182     // marking stack
4183     if (_bit_map->par_mark(addr)) {     // ... now grey
4184       // push on work queue (grey set)
4185       bool simulate_overflow = false;
4186       NOT_PRODUCT(
4187         if (CMSMarkStackOverflowALot &&
4188             _collector->simulate_overflow()) {
4189           // simulate a stack overflow
4190           simulate_overflow = true;
4191         }
4192       )
4193       if (simulate_overflow ||
4194           !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
4195         // stack overflow
4196         if (PrintCMSStatistics != 0) {
4197           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
4198                                  SIZE_FORMAT, _overflow_stack->capacity());
4199         }
4200         // We cannot assert that the overflow stack is full because
4201         // it may have been emptied since.
4202         assert(simulate_overflow ||
4203                _work_queue->size() == _work_queue->max_elems(),
4204               "Else push should have succeeded");
4205         handle_stack_overflow(addr);
4206       }
4207     } // Else, some other thread got there first
4208     do_yield_check();
4209   }
4210 }
4211 
4212 void Par_ConcMarkingClosure::do_oop(oop* p)       { Par_ConcMarkingClosure::do_oop_work(p); }
4213 void Par_ConcMarkingClosure::do_oop(narrowOop* p) { Par_ConcMarkingClosure::do_oop_work(p); }
4214 
4215 void Par_ConcMarkingClosure::trim_queue(size_t max) {
4216   while (_work_queue->size() > max) {
4217     oop new_oop;
4218     if (_work_queue->pop_local(new_oop)) {
4219       assert(new_oop->is_oop(), "Should be an oop");
4220       assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object");
4221       assert(_span.contains((HeapWord*)new_oop), "Not in span");
4222       new_oop->oop_iterate(this);  // do_oop() above
4223       do_yield_check();
4224     }
4225   }
4226 }
4227 
4228 // Upon stack overflow, we discard (part of) the stack,
4229 // remembering the least address amongst those discarded
4230 // in CMSCollector's _restart_address.
4231 void Par_ConcMarkingClosure::handle_stack_overflow(HeapWord* lost) {
4232   // We need to do this under a mutex to prevent other
4233   // workers from interfering with the work done below.
4234   MutexLockerEx ml(_overflow_stack->par_lock(),
4235                    Mutex::_no_safepoint_check_flag);
4236   // Remember the least grey address discarded
4237   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
4238   _collector->lower_restart_addr(ra);
4239   _overflow_stack->reset();  // discard stack contents
4240   _overflow_stack->expand(); // expand the stack if possible
4241 }
4242 
4243 
4244 void CMSConcMarkingTask::do_work_steal(int i) {
4245   OopTaskQueue* work_q = work_queue(i);
4246   oop obj_to_scan;
4247   CMSBitMap* bm = &(_collector->_markBitMap);
4248   CMSMarkStack* ovflw = &(_collector->_markStack);
4249   int* seed = _collector->hash_seed(i);
4250   Par_ConcMarkingClosure cl(_collector, this, work_q, bm, ovflw);
4251   while (true) {
4252     cl.trim_queue(0);
4253     assert(work_q->size() == 0, "Should have been emptied above");
4254     if (get_work_from_overflow_stack(ovflw, work_q)) {
4255       // Can't assert below because the work obtained from the
4256       // overflow stack may already have been stolen from us.
4257       // assert(work_q->size() > 0, "Work from overflow stack");
4258       continue;
4259     } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
4260       assert(obj_to_scan->is_oop(), "Should be an oop");
4261       assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object");
4262       obj_to_scan->oop_iterate(&cl);
4263     } else if (terminator()->offer_termination(&_term_term)) {
4264       assert(work_q->size() == 0, "Impossible!");
4265       break;
4266     } else if (yielding() || should_yield()) {
4267       yield();
4268     }
4269   }
4270 }
4271 
4272 // This is run by the CMS (coordinator) thread.
4273 void CMSConcMarkingTask::coordinator_yield() {
4274   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
4275          "CMS thread should hold CMS token");
4276   // First give up the locks, then yield, then re-lock
4277   // We should probably use a constructor/destructor idiom to
4278   // do this unlock/lock or modify the MutexUnlocker class to
4279   // serve our purpose. XXX
4280   assert_lock_strong(_bit_map_lock);
4281   _bit_map_lock->unlock();
4282   ConcurrentMarkSweepThread::desynchronize(true);
4283   ConcurrentMarkSweepThread::acknowledge_yield_request();
4284   _collector->stopTimer();
4285   if (PrintCMSStatistics != 0) {
4286     _collector->incrementYields();
4287   }
4288   _collector->icms_wait();
4289 
4290   // It is possible for whichever thread initiated the yield request
4291   // not to get a chance to wake up and take the bitmap lock between
4292   // this thread releasing it and reacquiring it. So, while the
4293   // should_yield() flag is on, let's sleep for a bit to give the
4294   // other thread a chance to wake up. The limit imposed on the number
4295   // of iterations is defensive, to avoid any unforseen circumstances
4296   // putting us into an infinite loop. Since it's always been this
4297   // (coordinator_yield()) method that was observed to cause the
4298   // problem, we are using a parameter (CMSCoordinatorYieldSleepCount)
4299   // which is by default non-zero. For the other seven methods that
4300   // also perform the yield operation, as are using a different
4301   // parameter (CMSYieldSleepCount) which is by default zero. This way we
4302   // can enable the sleeping for those methods too, if necessary.
4303   // See 6442774.
4304   //
4305   // We really need to reconsider the synchronization between the GC
4306   // thread and the yield-requesting threads in the future and we
4307   // should really use wait/notify, which is the recommended
4308   // way of doing this type of interaction. Additionally, we should
4309   // consolidate the eight methods that do the yield operation and they
4310   // are almost identical into one for better maintenability and
4311   // readability. See 6445193.
4312   //
4313   // Tony 2006.06.29
4314   for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount &&
4315                    ConcurrentMarkSweepThread::should_yield() &&
4316                    !CMSCollector::foregroundGCIsActive(); ++i) {
4317     os::sleep(Thread::current(), 1, false);
4318     ConcurrentMarkSweepThread::acknowledge_yield_request();
4319   }
4320 
4321   ConcurrentMarkSweepThread::synchronize(true);
4322   _bit_map_lock->lock_without_safepoint_check();
4323   _collector->startTimer();
4324 }
4325 
4326 bool CMSCollector::do_marking_mt(bool asynch) {
4327   assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition");
4328   int num_workers = AdaptiveSizePolicy::calc_active_conc_workers(
4329                                        conc_workers()->total_workers(),
4330                                        conc_workers()->active_workers(),
4331                                        Threads::number_of_non_daemon_threads());
4332   conc_workers()->set_active_workers(num_workers);
4333 
4334   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
4335 
4336   CMSConcMarkingTask tsk(this,
4337                          cms_space,
4338                          asynch,
4339                          conc_workers(),
4340                          task_queues());
4341 
4342   // Since the actual number of workers we get may be different
4343   // from the number we requested above, do we need to do anything different
4344   // below? In particular, may be we need to subclass the SequantialSubTasksDone
4345   // class?? XXX
4346   cms_space ->initialize_sequential_subtasks_for_marking(num_workers);
4347 
4348   // Refs discovery is already non-atomic.
4349   assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic");
4350   assert(ref_processor()->discovery_is_mt(), "Discovery should be MT");
4351   conc_workers()->start_task(&tsk);
4352   while (tsk.yielded()) {
4353     tsk.coordinator_yield();
4354     conc_workers()->continue_task(&tsk);
4355   }
4356   // If the task was aborted, _restart_addr will be non-NULL
4357   assert(tsk.completed() || _restart_addr != NULL, "Inconsistency");
4358   while (_restart_addr != NULL) {
4359     // XXX For now we do not make use of ABORTED state and have not
4360     // yet implemented the right abort semantics (even in the original
4361     // single-threaded CMS case). That needs some more investigation
4362     // and is deferred for now; see CR# TBF. 07252005YSR. XXX
4363     assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency");
4364     // If _restart_addr is non-NULL, a marking stack overflow
4365     // occurred; we need to do a fresh marking iteration from the
4366     // indicated restart address.
4367     if (_foregroundGCIsActive && asynch) {
4368       // We may be running into repeated stack overflows, having
4369       // reached the limit of the stack size, while making very
4370       // slow forward progress. It may be best to bail out and
4371       // let the foreground collector do its job.
4372       // Clear _restart_addr, so that foreground GC
4373       // works from scratch. This avoids the headache of
4374       // a "rescan" which would otherwise be needed because
4375       // of the dirty mod union table & card table.
4376       _restart_addr = NULL;
4377       return false;
4378     }
4379     // Adjust the task to restart from _restart_addr
4380     tsk.reset(_restart_addr);
4381     cms_space ->initialize_sequential_subtasks_for_marking(num_workers,
4382                   _restart_addr);
4383     _restart_addr = NULL;
4384     // Get the workers going again
4385     conc_workers()->start_task(&tsk);
4386     while (tsk.yielded()) {
4387       tsk.coordinator_yield();
4388       conc_workers()->continue_task(&tsk);
4389     }
4390   }
4391   assert(tsk.completed(), "Inconsistency");
4392   assert(tsk.result() == true, "Inconsistency");
4393   return true;
4394 }
4395 
4396 bool CMSCollector::do_marking_st(bool asynch) {
4397   ResourceMark rm;
4398   HandleMark   hm;
4399 
4400   // Temporarily make refs discovery single threaded (non-MT)
4401   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
4402   MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap,
4403     &_markStack, CMSYield && asynch);
4404   // the last argument to iterate indicates whether the iteration
4405   // should be incremental with periodic yields.
4406   _markBitMap.iterate(&markFromRootsClosure);
4407   // If _restart_addr is non-NULL, a marking stack overflow
4408   // occurred; we need to do a fresh iteration from the
4409   // indicated restart address.
4410   while (_restart_addr != NULL) {
4411     if (_foregroundGCIsActive && asynch) {
4412       // We may be running into repeated stack overflows, having
4413       // reached the limit of the stack size, while making very
4414       // slow forward progress. It may be best to bail out and
4415       // let the foreground collector do its job.
4416       // Clear _restart_addr, so that foreground GC
4417       // works from scratch. This avoids the headache of
4418       // a "rescan" which would otherwise be needed because
4419       // of the dirty mod union table & card table.
4420       _restart_addr = NULL;
4421       return false;  // indicating failure to complete marking
4422     }
4423     // Deal with stack overflow:
4424     // we restart marking from _restart_addr
4425     HeapWord* ra = _restart_addr;
4426     markFromRootsClosure.reset(ra);
4427     _restart_addr = NULL;
4428     _markBitMap.iterate(&markFromRootsClosure, ra, _span.end());
4429   }
4430   return true;
4431 }
4432 
4433 void CMSCollector::preclean() {
4434   check_correct_thread_executing();
4435   assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread");
4436   verify_work_stacks_empty();
4437   verify_overflow_empty();
4438   _abort_preclean = false;
4439   if (CMSPrecleaningEnabled) {
4440     _eden_chunk_index = 0;
4441     size_t used = get_eden_used();
4442     size_t capacity = get_eden_capacity();
4443     // Don't start sampling unless we will get sufficiently
4444     // many samples.
4445     if (used < (capacity/(CMSScheduleRemarkSamplingRatio * 100)
4446                 * CMSScheduleRemarkEdenPenetration)) {
4447       _start_sampling = true;
4448     } else {
4449       _start_sampling = false;
4450     }
4451     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
4452     CMSPhaseAccounting pa(this, "preclean", !PrintGCDetails);
4453     preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1);
4454   }
4455   CMSTokenSync x(true); // is cms thread
4456   if (CMSPrecleaningEnabled) {
4457     sample_eden();
4458     _collectorState = AbortablePreclean;
4459   } else {
4460     _collectorState = FinalMarking;
4461   }
4462   verify_work_stacks_empty();
4463   verify_overflow_empty();
4464 }
4465 
4466 // Try and schedule the remark such that young gen
4467 // occupancy is CMSScheduleRemarkEdenPenetration %.
4468 void CMSCollector::abortable_preclean() {
4469   check_correct_thread_executing();
4470   assert(CMSPrecleaningEnabled,  "Inconsistent control state");
4471   assert(_collectorState == AbortablePreclean, "Inconsistent control state");
4472 
4473   // If Eden's current occupancy is below this threshold,
4474   // immediately schedule the remark; else preclean
4475   // past the next scavenge in an effort to
4476   // schedule the pause as described avove. By choosing
4477   // CMSScheduleRemarkEdenSizeThreshold >= max eden size
4478   // we will never do an actual abortable preclean cycle.
4479   if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) {
4480     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
4481     CMSPhaseAccounting pa(this, "abortable-preclean", !PrintGCDetails);
4482     // We need more smarts in the abortable preclean
4483     // loop below to deal with cases where allocation
4484     // in young gen is very very slow, and our precleaning
4485     // is running a losing race against a horde of
4486     // mutators intent on flooding us with CMS updates
4487     // (dirty cards).
4488     // One, admittedly dumb, strategy is to give up
4489     // after a certain number of abortable precleaning loops
4490     // or after a certain maximum time. We want to make
4491     // this smarter in the next iteration.
4492     // XXX FIX ME!!! YSR
4493     size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0;
4494     while (!(should_abort_preclean() ||
4495              ConcurrentMarkSweepThread::should_terminate())) {
4496       workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2);
4497       cumworkdone += workdone;
4498       loops++;
4499       // Voluntarily terminate abortable preclean phase if we have
4500       // been at it for too long.
4501       if ((CMSMaxAbortablePrecleanLoops != 0) &&
4502           loops >= CMSMaxAbortablePrecleanLoops) {
4503         if (PrintGCDetails) {
4504           gclog_or_tty->print(" CMS: abort preclean due to loops ");
4505         }
4506         break;
4507       }
4508       if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) {
4509         if (PrintGCDetails) {
4510           gclog_or_tty->print(" CMS: abort preclean due to time ");
4511         }
4512         break;
4513       }
4514       // If we are doing little work each iteration, we should
4515       // take a short break.
4516       if (workdone < CMSAbortablePrecleanMinWorkPerIteration) {
4517         // Sleep for some time, waiting for work to accumulate
4518         stopTimer();
4519         cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis);
4520         startTimer();
4521         waited++;
4522       }
4523     }
4524     if (PrintCMSStatistics > 0) {
4525       gclog_or_tty->print(" [%d iterations, %d waits, %d cards)] ",
4526                           loops, waited, cumworkdone);
4527     }
4528   }
4529   CMSTokenSync x(true); // is cms thread
4530   if (_collectorState != Idling) {
4531     assert(_collectorState == AbortablePreclean,
4532            "Spontaneous state transition?");
4533     _collectorState = FinalMarking;
4534   } // Else, a foreground collection completed this CMS cycle.
4535   return;
4536 }
4537 
4538 // Respond to an Eden sampling opportunity
4539 void CMSCollector::sample_eden() {
4540   // Make sure a young gc cannot sneak in between our
4541   // reading and recording of a sample.
4542   assert(Thread::current()->is_ConcurrentGC_thread(),
4543          "Only the cms thread may collect Eden samples");
4544   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
4545          "Should collect samples while holding CMS token");
4546   if (!_start_sampling) {
4547     return;
4548   }
4549   if (_eden_chunk_array) {
4550     if (_eden_chunk_index < _eden_chunk_capacity) {
4551       _eden_chunk_array[_eden_chunk_index] = *_top_addr;   // take sample
4552       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
4553              "Unexpected state of Eden");
4554       // We'd like to check that what we just sampled is an oop-start address;
4555       // however, we cannot do that here since the object may not yet have been
4556       // initialized. So we'll instead do the check when we _use_ this sample
4557       // later.
4558       if (_eden_chunk_index == 0 ||
4559           (pointer_delta(_eden_chunk_array[_eden_chunk_index],
4560                          _eden_chunk_array[_eden_chunk_index-1])
4561            >= CMSSamplingGrain)) {
4562         _eden_chunk_index++;  // commit sample
4563       }
4564     }
4565   }
4566   if ((_collectorState == AbortablePreclean) && !_abort_preclean) {
4567     size_t used = get_eden_used();
4568     size_t capacity = get_eden_capacity();
4569     assert(used <= capacity, "Unexpected state of Eden");
4570     if (used >  (capacity/100 * CMSScheduleRemarkEdenPenetration)) {
4571       _abort_preclean = true;
4572     }
4573   }
4574 }
4575 
4576 
4577 size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
4578   assert(_collectorState == Precleaning ||
4579          _collectorState == AbortablePreclean, "incorrect state");
4580   ResourceMark rm;
4581   HandleMark   hm;
4582 
4583   // Precleaning is currently not MT but the reference processor
4584   // may be set for MT.  Disable it temporarily here.
4585   ReferenceProcessor* rp = ref_processor();
4586   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false);
4587 
4588   // Do one pass of scrubbing the discovered reference lists
4589   // to remove any reference objects with strongly-reachable
4590   // referents.
4591   if (clean_refs) {
4592     CMSPrecleanRefsYieldClosure yield_cl(this);
4593     assert(rp->span().equals(_span), "Spans should be equal");
4594     CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap,
4595                                    &_markStack, true /* preclean */);
4596     CMSDrainMarkingStackClosure complete_trace(this,
4597                                    _span, &_markBitMap, &_markStack,
4598                                    &keep_alive, true /* preclean */);
4599 
4600     // We don't want this step to interfere with a young
4601     // collection because we don't want to take CPU
4602     // or memory bandwidth away from the young GC threads
4603     // (which may be as many as there are CPUs).
4604     // Note that we don't need to protect ourselves from
4605     // interference with mutators because they can't
4606     // manipulate the discovered reference lists nor affect
4607     // the computed reachability of the referents, the
4608     // only properties manipulated by the precleaning
4609     // of these reference lists.
4610     stopTimer();
4611     CMSTokenSyncWithLocks x(true /* is cms thread */,
4612                             bitMapLock());
4613     startTimer();
4614     sample_eden();
4615 
4616     // The following will yield to allow foreground
4617     // collection to proceed promptly. XXX YSR:
4618     // The code in this method may need further
4619     // tweaking for better performance and some restructuring
4620     // for cleaner interfaces.
4621     GCTimer *gc_timer = NULL; // Currently not tracing concurrent phases
4622     rp->preclean_discovered_references(
4623           rp->is_alive_non_header(), &keep_alive, &complete_trace, &yield_cl,
4624           gc_timer);
4625   }
4626 
4627   if (clean_survivor) {  // preclean the active survivor space(s)
4628     assert(_young_gen->kind() == Generation::DefNew ||
4629            _young_gen->kind() == Generation::ParNew ||
4630            _young_gen->kind() == Generation::ASParNew,
4631          "incorrect type for cast");
4632     DefNewGeneration* dng = (DefNewGeneration*)_young_gen;
4633     PushAndMarkClosure pam_cl(this, _span, ref_processor(),
4634                              &_markBitMap, &_modUnionTable,
4635                              &_markStack, true /* precleaning phase */);
4636     stopTimer();
4637     CMSTokenSyncWithLocks ts(true /* is cms thread */,
4638                              bitMapLock());
4639     startTimer();
4640     unsigned int before_count =
4641       GenCollectedHeap::heap()->total_collections();
4642     SurvivorSpacePrecleanClosure
4643       sss_cl(this, _span, &_markBitMap, &_markStack,
4644              &pam_cl, before_count, CMSYield);
4645     dng->from()->object_iterate_careful(&sss_cl);
4646     dng->to()->object_iterate_careful(&sss_cl);
4647   }
4648   MarkRefsIntoAndScanClosure
4649     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
4650              &_markStack, this, CMSYield,
4651              true /* precleaning phase */);
4652   // CAUTION: The following closure has persistent state that may need to
4653   // be reset upon a decrease in the sequence of addresses it
4654   // processes.
4655   ScanMarkedObjectsAgainCarefullyClosure
4656     smoac_cl(this, _span,
4657       &_markBitMap, &_markStack, &mrias_cl, CMSYield);
4658 
4659   // Preclean dirty cards in ModUnionTable and CardTable using
4660   // appropriate convergence criterion;
4661   // repeat CMSPrecleanIter times unless we find that
4662   // we are losing.
4663   assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large");
4664   assert(CMSPrecleanNumerator < CMSPrecleanDenominator,
4665          "Bad convergence multiplier");
4666   assert(CMSPrecleanThreshold >= 100,
4667          "Unreasonably low CMSPrecleanThreshold");
4668 
4669   size_t numIter, cumNumCards, lastNumCards, curNumCards;
4670   for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0;
4671        numIter < CMSPrecleanIter;
4672        numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) {
4673     curNumCards  = preclean_mod_union_table(_cmsGen, &smoac_cl);
4674     if (Verbose && PrintGCDetails) {
4675       gclog_or_tty->print(" (modUnionTable: %d cards)", curNumCards);
4676     }
4677     // Either there are very few dirty cards, so re-mark
4678     // pause will be small anyway, or our pre-cleaning isn't
4679     // that much faster than the rate at which cards are being
4680     // dirtied, so we might as well stop and re-mark since
4681     // precleaning won't improve our re-mark time by much.
4682     if (curNumCards <= CMSPrecleanThreshold ||
4683         (numIter > 0 &&
4684          (curNumCards * CMSPrecleanDenominator >
4685          lastNumCards * CMSPrecleanNumerator))) {
4686       numIter++;
4687       cumNumCards += curNumCards;
4688       break;
4689     }
4690   }
4691 
4692   preclean_klasses(&mrias_cl, _cmsGen->freelistLock());
4693 
4694   curNumCards = preclean_card_table(_cmsGen, &smoac_cl);
4695   cumNumCards += curNumCards;
4696   if (PrintGCDetails && PrintCMSStatistics != 0) {
4697     gclog_or_tty->print_cr(" (cardTable: %d cards, re-scanned %d cards, %d iterations)",
4698                   curNumCards, cumNumCards, numIter);
4699   }
4700   return cumNumCards;   // as a measure of useful work done
4701 }
4702 
4703 // PRECLEANING NOTES:
4704 // Precleaning involves:
4705 // . reading the bits of the modUnionTable and clearing the set bits.
4706 // . For the cards corresponding to the set bits, we scan the
4707 //   objects on those cards. This means we need the free_list_lock
4708 //   so that we can safely iterate over the CMS space when scanning
4709 //   for oops.
4710 // . When we scan the objects, we'll be both reading and setting
4711 //   marks in the marking bit map, so we'll need the marking bit map.
4712 // . For protecting _collector_state transitions, we take the CGC_lock.
4713 //   Note that any races in the reading of of card table entries by the
4714 //   CMS thread on the one hand and the clearing of those entries by the
4715 //   VM thread or the setting of those entries by the mutator threads on the
4716 //   other are quite benign. However, for efficiency it makes sense to keep
4717 //   the VM thread from racing with the CMS thread while the latter is
4718 //   dirty card info to the modUnionTable. We therefore also use the
4719 //   CGC_lock to protect the reading of the card table and the mod union
4720 //   table by the CM thread.
4721 // . We run concurrently with mutator updates, so scanning
4722 //   needs to be done carefully  -- we should not try to scan
4723 //   potentially uninitialized objects.
4724 //
4725 // Locking strategy: While holding the CGC_lock, we scan over and
4726 // reset a maximal dirty range of the mod union / card tables, then lock
4727 // the free_list_lock and bitmap lock to do a full marking, then
4728 // release these locks; and repeat the cycle. This allows for a
4729 // certain amount of fairness in the sharing of these locks between
4730 // the CMS collector on the one hand, and the VM thread and the
4731 // mutators on the other.
4732 
4733 // NOTE: preclean_mod_union_table() and preclean_card_table()
4734 // further below are largely identical; if you need to modify
4735 // one of these methods, please check the other method too.
4736 
4737 size_t CMSCollector::preclean_mod_union_table(
4738   ConcurrentMarkSweepGeneration* gen,
4739   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4740   verify_work_stacks_empty();
4741   verify_overflow_empty();
4742 
4743   // strategy: starting with the first card, accumulate contiguous
4744   // ranges of dirty cards; clear these cards, then scan the region
4745   // covered by these cards.
4746 
4747   // Since all of the MUT is committed ahead, we can just use
4748   // that, in case the generations expand while we are precleaning.
4749   // It might also be fine to just use the committed part of the
4750   // generation, but we might potentially miss cards when the
4751   // generation is rapidly expanding while we are in the midst
4752   // of precleaning.
4753   HeapWord* startAddr = gen->reserved().start();
4754   HeapWord* endAddr   = gen->reserved().end();
4755 
4756   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
4757 
4758   size_t numDirtyCards, cumNumDirtyCards;
4759   HeapWord *nextAddr, *lastAddr;
4760   for (cumNumDirtyCards = numDirtyCards = 0,
4761        nextAddr = lastAddr = startAddr;
4762        nextAddr < endAddr;
4763        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4764 
4765     ResourceMark rm;
4766     HandleMark   hm;
4767 
4768     MemRegion dirtyRegion;
4769     {
4770       stopTimer();
4771       // Potential yield point
4772       CMSTokenSync ts(true);
4773       startTimer();
4774       sample_eden();
4775       // Get dirty region starting at nextOffset (inclusive),
4776       // simultaneously clearing it.
4777       dirtyRegion =
4778         _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr);
4779       assert(dirtyRegion.start() >= nextAddr,
4780              "returned region inconsistent?");
4781     }
4782     // Remember where the next search should begin.
4783     // The returned region (if non-empty) is a right open interval,
4784     // so lastOffset is obtained from the right end of that
4785     // interval.
4786     lastAddr = dirtyRegion.end();
4787     // Should do something more transparent and less hacky XXX
4788     numDirtyCards =
4789       _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size());
4790 
4791     // We'll scan the cards in the dirty region (with periodic
4792     // yields for foreground GC as needed).
4793     if (!dirtyRegion.is_empty()) {
4794       assert(numDirtyCards > 0, "consistency check");
4795       HeapWord* stop_point = NULL;
4796       stopTimer();
4797       // Potential yield point
4798       CMSTokenSyncWithLocks ts(true, gen->freelistLock(),
4799                                bitMapLock());
4800       startTimer();
4801       {
4802         verify_work_stacks_empty();
4803         verify_overflow_empty();
4804         sample_eden();
4805         stop_point =
4806           gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4807       }
4808       if (stop_point != NULL) {
4809         // The careful iteration stopped early either because it found an
4810         // uninitialized object, or because we were in the midst of an
4811         // "abortable preclean", which should now be aborted. Redirty
4812         // the bits corresponding to the partially-scanned or unscanned
4813         // cards. We'll either restart at the next block boundary or
4814         // abort the preclean.
4815         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4816                "Should only be AbortablePreclean.");
4817         _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end()));
4818         if (should_abort_preclean()) {
4819           break; // out of preclean loop
4820         } else {
4821           // Compute the next address at which preclean should pick up;
4822           // might need bitMapLock in order to read P-bits.
4823           lastAddr = next_card_start_after_block(stop_point);
4824         }
4825       }
4826     } else {
4827       assert(lastAddr == endAddr, "consistency check");
4828       assert(numDirtyCards == 0, "consistency check");
4829       break;
4830     }
4831   }
4832   verify_work_stacks_empty();
4833   verify_overflow_empty();
4834   return cumNumDirtyCards;
4835 }
4836 
4837 // NOTE: preclean_mod_union_table() above and preclean_card_table()
4838 // below are largely identical; if you need to modify
4839 // one of these methods, please check the other method too.
4840 
4841 size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* gen,
4842   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4843   // strategy: it's similar to precleamModUnionTable above, in that
4844   // we accumulate contiguous ranges of dirty cards, mark these cards
4845   // precleaned, then scan the region covered by these cards.
4846   HeapWord* endAddr   = (HeapWord*)(gen->_virtual_space.high());
4847   HeapWord* startAddr = (HeapWord*)(gen->_virtual_space.low());
4848 
4849   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
4850 
4851   size_t numDirtyCards, cumNumDirtyCards;
4852   HeapWord *lastAddr, *nextAddr;
4853 
4854   for (cumNumDirtyCards = numDirtyCards = 0,
4855        nextAddr = lastAddr = startAddr;
4856        nextAddr < endAddr;
4857        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4858 
4859     ResourceMark rm;
4860     HandleMark   hm;
4861 
4862     MemRegion dirtyRegion;
4863     {
4864       // See comments in "Precleaning notes" above on why we
4865       // do this locking. XXX Could the locking overheads be
4866       // too high when dirty cards are sparse? [I don't think so.]
4867       stopTimer();
4868       CMSTokenSync x(true); // is cms thread
4869       startTimer();
4870       sample_eden();
4871       // Get and clear dirty region from card table
4872       dirtyRegion = _ct->ct_bs()->dirty_card_range_after_reset(
4873                                     MemRegion(nextAddr, endAddr),
4874                                     true,
4875                                     CardTableModRefBS::precleaned_card_val());
4876 
4877       assert(dirtyRegion.start() >= nextAddr,
4878              "returned region inconsistent?");
4879     }
4880     lastAddr = dirtyRegion.end();
4881     numDirtyCards =
4882       dirtyRegion.word_size()/CardTableModRefBS::card_size_in_words;
4883 
4884     if (!dirtyRegion.is_empty()) {
4885       stopTimer();
4886       CMSTokenSyncWithLocks ts(true, gen->freelistLock(), bitMapLock());
4887       startTimer();
4888       sample_eden();
4889       verify_work_stacks_empty();
4890       verify_overflow_empty();
4891       HeapWord* stop_point =
4892         gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4893       if (stop_point != NULL) {
4894         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4895                "Should only be AbortablePreclean.");
4896         _ct->ct_bs()->invalidate(MemRegion(stop_point, dirtyRegion.end()));
4897         if (should_abort_preclean()) {
4898           break; // out of preclean loop
4899         } else {
4900           // Compute the next address at which preclean should pick up.
4901           lastAddr = next_card_start_after_block(stop_point);
4902         }
4903       }
4904     } else {
4905       break;
4906     }
4907   }
4908   verify_work_stacks_empty();
4909   verify_overflow_empty();
4910   return cumNumDirtyCards;
4911 }
4912 
4913 class PrecleanKlassClosure : public KlassClosure {
4914   CMKlassClosure _cm_klass_closure;
4915  public:
4916   PrecleanKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4917   void do_klass(Klass* k) {
4918     if (k->has_accumulated_modified_oops()) {
4919       k->clear_accumulated_modified_oops();
4920 
4921       _cm_klass_closure.do_klass(k);
4922     }
4923   }
4924 };
4925 
4926 // The freelist lock is needed to prevent asserts, is it really needed?
4927 void CMSCollector::preclean_klasses(MarkRefsIntoAndScanClosure* cl, Mutex* freelistLock) {
4928 
4929   cl->set_freelistLock(freelistLock);
4930 
4931   CMSTokenSyncWithLocks ts(true, freelistLock, bitMapLock());
4932 
4933   // SSS: Add equivalent to ScanMarkedObjectsAgainCarefullyClosure::do_yield_check and should_abort_preclean?
4934   // SSS: We should probably check if precleaning should be aborted, at suitable intervals?
4935   PrecleanKlassClosure preclean_klass_closure(cl);
4936   ClassLoaderDataGraph::classes_do(&preclean_klass_closure);
4937 
4938   verify_work_stacks_empty();
4939   verify_overflow_empty();
4940 }
4941 
4942 void CMSCollector::checkpointRootsFinal(bool asynch,
4943   bool clear_all_soft_refs, bool init_mark_was_synchronous) {
4944   assert(_collectorState == FinalMarking, "incorrect state transition?");
4945   check_correct_thread_executing();
4946   // world is stopped at this checkpoint
4947   assert(SafepointSynchronize::is_at_safepoint(),
4948          "world should be stopped");
4949   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
4950 
4951   verify_work_stacks_empty();
4952   verify_overflow_empty();
4953 
4954   SpecializationStats::clear();
4955   if (PrintGCDetails) {
4956     gclog_or_tty->print("[YG occupancy: "SIZE_FORMAT" K ("SIZE_FORMAT" K)]",
4957                         _young_gen->used() / K,
4958                         _young_gen->capacity() / K);
4959   }
4960   if (asynch) {
4961     if (CMSScavengeBeforeRemark) {
4962       GenCollectedHeap* gch = GenCollectedHeap::heap();
4963       // Temporarily set flag to false, GCH->do_collection will
4964       // expect it to be false and set to true
4965       FlagSetting fl(gch->_is_gc_active, false);
4966       NOT_PRODUCT(GCTraceTime t("Scavenge-Before-Remark",
4967         PrintGCDetails && Verbose, true, _gc_timer_cm);)
4968       int level = _cmsGen->level() - 1;
4969       if (level >= 0) {
4970         gch->do_collection(true,        // full (i.e. force, see below)
4971                            false,       // !clear_all_soft_refs
4972                            0,           // size
4973                            false,       // is_tlab
4974                            level        // max_level
4975                           );
4976       }
4977     }
4978     FreelistLocker x(this);
4979     MutexLockerEx y(bitMapLock(),
4980                     Mutex::_no_safepoint_check_flag);
4981     assert(!init_mark_was_synchronous, "but that's impossible!");
4982     checkpointRootsFinalWork(asynch, clear_all_soft_refs, false);
4983   } else {
4984     // already have all the locks
4985     checkpointRootsFinalWork(asynch, clear_all_soft_refs,
4986                              init_mark_was_synchronous);
4987   }
4988   verify_work_stacks_empty();
4989   verify_overflow_empty();
4990   SpecializationStats::print();
4991 }
4992 
4993 void CMSCollector::checkpointRootsFinalWork(bool asynch,
4994   bool clear_all_soft_refs, bool init_mark_was_synchronous) {
4995 
4996   NOT_PRODUCT(GCTraceTime tr("checkpointRootsFinalWork", PrintGCDetails, false, _gc_timer_cm);)
4997 
4998   assert(haveFreelistLocks(), "must have free list locks");
4999   assert_lock_strong(bitMapLock());
5000 
5001   if (UseAdaptiveSizePolicy) {
5002     size_policy()->checkpoint_roots_final_begin();
5003   }
5004 
5005   ResourceMark rm;
5006   HandleMark   hm;
5007 
5008   GenCollectedHeap* gch = GenCollectedHeap::heap();
5009 
5010   if (should_unload_classes()) {
5011     CodeCache::gc_prologue();
5012   }
5013   assert(haveFreelistLocks(), "must have free list locks");
5014   assert_lock_strong(bitMapLock());
5015 
5016   if (!init_mark_was_synchronous) {
5017     // We might assume that we need not fill TLAB's when
5018     // CMSScavengeBeforeRemark is set, because we may have just done
5019     // a scavenge which would have filled all TLAB's -- and besides
5020     // Eden would be empty. This however may not always be the case --
5021     // for instance although we asked for a scavenge, it may not have
5022     // happened because of a JNI critical section. We probably need
5023     // a policy for deciding whether we can in that case wait until
5024     // the critical section releases and then do the remark following
5025     // the scavenge, and skip it here. In the absence of that policy,
5026     // or of an indication of whether the scavenge did indeed occur,
5027     // we cannot rely on TLAB's having been filled and must do
5028     // so here just in case a scavenge did not happen.
5029     gch->ensure_parsability(false);  // fill TLAB's, but no need to retire them
5030     // Update the saved marks which may affect the root scans.
5031     gch->save_marks();
5032 
5033     {
5034       COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
5035 
5036       // Note on the role of the mod union table:
5037       // Since the marker in "markFromRoots" marks concurrently with
5038       // mutators, it is possible for some reachable objects not to have been
5039       // scanned. For instance, an only reference to an object A was
5040       // placed in object B after the marker scanned B. Unless B is rescanned,
5041       // A would be collected. Such updates to references in marked objects
5042       // are detected via the mod union table which is the set of all cards
5043       // dirtied since the first checkpoint in this GC cycle and prior to
5044       // the most recent young generation GC, minus those cleaned up by the
5045       // concurrent precleaning.
5046       if (CMSParallelRemarkEnabled && CollectedHeap::use_parallel_gc_threads()) {
5047         GCTraceTime t("Rescan (parallel) ", PrintGCDetails, false, _gc_timer_cm);
5048         do_remark_parallel();
5049       } else {
5050         GCTraceTime t("Rescan (non-parallel) ", PrintGCDetails, false,
5051                     _gc_timer_cm);
5052         do_remark_non_parallel();
5053       }
5054     }
5055   } else {
5056     assert(!asynch, "Can't have init_mark_was_synchronous in asynch mode");
5057     // The initial mark was stop-world, so there's no rescanning to
5058     // do; go straight on to the next step below.
5059   }
5060   verify_work_stacks_empty();
5061   verify_overflow_empty();
5062 
5063   {
5064     NOT_PRODUCT(GCTraceTime ts("refProcessingWork", PrintGCDetails, false, _gc_timer_cm);)
5065     refProcessingWork(asynch, clear_all_soft_refs);
5066   }
5067   verify_work_stacks_empty();
5068   verify_overflow_empty();
5069 
5070   if (should_unload_classes()) {
5071     CodeCache::gc_epilogue();
5072   }
5073   JvmtiExport::gc_epilogue();
5074 
5075   // If we encountered any (marking stack / work queue) overflow
5076   // events during the current CMS cycle, take appropriate
5077   // remedial measures, where possible, so as to try and avoid
5078   // recurrence of that condition.
5079   assert(_markStack.isEmpty(), "No grey objects");
5080   size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw +
5081                      _ser_kac_ovflw        + _ser_kac_preclean_ovflw;
5082   if (ser_ovflw > 0) {
5083     if (PrintCMSStatistics != 0) {
5084       gclog_or_tty->print_cr("Marking stack overflow (benign) "
5085         "(pmc_pc="SIZE_FORMAT", pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT
5086         ", kac_preclean="SIZE_FORMAT")",
5087         _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw,
5088         _ser_kac_ovflw, _ser_kac_preclean_ovflw);
5089     }
5090     _markStack.expand();
5091     _ser_pmc_remark_ovflw = 0;
5092     _ser_pmc_preclean_ovflw = 0;
5093     _ser_kac_preclean_ovflw = 0;
5094     _ser_kac_ovflw = 0;
5095   }
5096   if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) {
5097     if (PrintCMSStatistics != 0) {
5098       gclog_or_tty->print_cr("Work queue overflow (benign) "
5099         "(pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT")",
5100         _par_pmc_remark_ovflw, _par_kac_ovflw);
5101     }
5102     _par_pmc_remark_ovflw = 0;
5103     _par_kac_ovflw = 0;
5104   }
5105   if (PrintCMSStatistics != 0) {
5106      if (_markStack._hit_limit > 0) {
5107        gclog_or_tty->print_cr(" (benign) Hit max stack size limit ("SIZE_FORMAT")",
5108                               _markStack._hit_limit);
5109      }
5110      if (_markStack._failed_double > 0) {
5111        gclog_or_tty->print_cr(" (benign) Failed stack doubling ("SIZE_FORMAT"),"
5112                               " current capacity "SIZE_FORMAT,
5113                               _markStack._failed_double,
5114                               _markStack.capacity());
5115      }
5116   }
5117   _markStack._hit_limit = 0;
5118   _markStack._failed_double = 0;
5119 
5120   if ((VerifyAfterGC || VerifyDuringGC) &&
5121       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
5122     verify_after_remark();
5123   }
5124 
5125   _gc_tracer_cm->report_object_count_after_gc(&_is_alive_closure);
5126 
5127   // Change under the freelistLocks.
5128   _collectorState = Sweeping;
5129   // Call isAllClear() under bitMapLock
5130   assert(_modUnionTable.isAllClear(),
5131       "Should be clear by end of the final marking");
5132   assert(_ct->klass_rem_set()->mod_union_is_clear(),
5133       "Should be clear by end of the final marking");
5134   if (UseAdaptiveSizePolicy) {
5135     size_policy()->checkpoint_roots_final_end(gch->gc_cause());
5136   }
5137 }
5138 
5139 // Parallel remark task
5140 class CMSParRemarkTask: public AbstractGangTask {
5141   CMSCollector* _collector;
5142   int           _n_workers;
5143   CompactibleFreeListSpace* _cms_space;
5144 
5145   // The per-thread work queues, available here for stealing.
5146   OopTaskQueueSet*       _task_queues;
5147   ParallelTaskTerminator _term;
5148 
5149  public:
5150   // A value of 0 passed to n_workers will cause the number of
5151   // workers to be taken from the active workers in the work gang.
5152   CMSParRemarkTask(CMSCollector* collector,
5153                    CompactibleFreeListSpace* cms_space,
5154                    int n_workers, FlexibleWorkGang* workers,
5155                    OopTaskQueueSet* task_queues):
5156     AbstractGangTask("Rescan roots and grey objects in parallel"),
5157     _collector(collector),
5158     _cms_space(cms_space),
5159     _n_workers(n_workers),
5160     _task_queues(task_queues),
5161     _term(n_workers, task_queues) { }
5162 
5163   OopTaskQueueSet* task_queues() { return _task_queues; }
5164 
5165   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
5166 
5167   ParallelTaskTerminator* terminator() { return &_term; }
5168   int n_workers() { return _n_workers; }
5169 
5170   void work(uint worker_id);
5171 
5172  private:
5173   // Work method in support of parallel rescan ... of young gen spaces
5174   void do_young_space_rescan(int i, Par_MarkRefsIntoAndScanClosure* cl,
5175                              ContiguousSpace* space,
5176                              HeapWord** chunk_array, size_t chunk_top);
5177 
5178   // ... of  dirty cards in old space
5179   void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i,
5180                                   Par_MarkRefsIntoAndScanClosure* cl);
5181 
5182   // ... work stealing for the above
5183   void do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl, int* seed);
5184 };
5185 
5186 class RemarkKlassClosure : public KlassClosure {
5187   CMKlassClosure _cm_klass_closure;
5188  public:
5189   RemarkKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
5190   void do_klass(Klass* k) {
5191     // Check if we have modified any oops in the Klass during the concurrent marking.
5192     if (k->has_accumulated_modified_oops()) {
5193       k->clear_accumulated_modified_oops();
5194 
5195       // We could have transfered the current modified marks to the accumulated marks,
5196       // like we do with the Card Table to Mod Union Table. But it's not really necessary.
5197     } else if (k->has_modified_oops()) {
5198       // Don't clear anything, this info is needed by the next young collection.
5199     } else {
5200       // No modified oops in the Klass.
5201       return;
5202     }
5203 
5204     // The klass has modified fields, need to scan the klass.
5205     _cm_klass_closure.do_klass(k);
5206   }
5207 };
5208 
5209 // work_queue(i) is passed to the closure
5210 // Par_MarkRefsIntoAndScanClosure.  The "i" parameter
5211 // also is passed to do_dirty_card_rescan_tasks() and to
5212 // do_work_steal() to select the i-th task_queue.
5213 
5214 void CMSParRemarkTask::work(uint worker_id) {
5215   elapsedTimer _timer;
5216   ResourceMark rm;
5217   HandleMark   hm;
5218 
5219   // ---------- rescan from roots --------------
5220   _timer.start();
5221   GenCollectedHeap* gch = GenCollectedHeap::heap();
5222   Par_MarkRefsIntoAndScanClosure par_mrias_cl(_collector,
5223     _collector->_span, _collector->ref_processor(),
5224     &(_collector->_markBitMap),
5225     work_queue(worker_id));
5226 
5227   // Rescan young gen roots first since these are likely
5228   // coarsely partitioned and may, on that account, constitute
5229   // the critical path; thus, it's best to start off that
5230   // work first.
5231   // ---------- young gen roots --------------
5232   {
5233     DefNewGeneration* dng = _collector->_young_gen->as_DefNewGeneration();
5234     EdenSpace* eden_space = dng->eden();
5235     ContiguousSpace* from_space = dng->from();
5236     ContiguousSpace* to_space   = dng->to();
5237 
5238     HeapWord** eca = _collector->_eden_chunk_array;
5239     size_t     ect = _collector->_eden_chunk_index;
5240     HeapWord** sca = _collector->_survivor_chunk_array;
5241     size_t     sct = _collector->_survivor_chunk_index;
5242 
5243     assert(ect <= _collector->_eden_chunk_capacity, "out of bounds");
5244     assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds");
5245 
5246     do_young_space_rescan(worker_id, &par_mrias_cl, to_space, NULL, 0);
5247     do_young_space_rescan(worker_id, &par_mrias_cl, from_space, sca, sct);
5248     do_young_space_rescan(worker_id, &par_mrias_cl, eden_space, eca, ect);
5249 
5250     _timer.stop();
5251     if (PrintCMSStatistics != 0) {
5252       gclog_or_tty->print_cr(
5253         "Finished young gen rescan work in %dth thread: %3.3f sec",
5254         worker_id, _timer.seconds());
5255     }
5256   }
5257 
5258   // ---------- remaining roots --------------
5259   _timer.reset();
5260   _timer.start();
5261   gch->gen_process_strong_roots(_collector->_cmsGen->level(),
5262                                 false,     // yg was scanned above
5263                                 false,     // this is parallel code
5264                                 false,     // not scavenging
5265                                 SharedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
5266                                 &par_mrias_cl,
5267                                 true,   // walk all of code cache if (so & SO_CodeCache)
5268                                 NULL,
5269                                 NULL);     // The dirty klasses will be handled below
5270   assert(_collector->should_unload_classes()
5271          || (_collector->CMSCollector::roots_scanning_options() & SharedHeap::SO_CodeCache),
5272          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
5273   _timer.stop();
5274   if (PrintCMSStatistics != 0) {
5275     gclog_or_tty->print_cr(
5276       "Finished remaining root rescan work in %dth thread: %3.3f sec",
5277       worker_id, _timer.seconds());
5278   }
5279 
5280   // ---------- unhandled CLD scanning ----------
5281   if (worker_id == 0) { // Single threaded at the moment.
5282     _timer.reset();
5283     _timer.start();
5284 
5285     // Scan all new class loader data objects and new dependencies that were
5286     // introduced during concurrent marking.
5287     ResourceMark rm;
5288     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
5289     for (int i = 0; i < array->length(); i++) {
5290       par_mrias_cl.do_class_loader_data(array->at(i));
5291     }
5292 
5293     // We don't need to keep track of new CLDs anymore.
5294     ClassLoaderDataGraph::remember_new_clds(false);
5295 
5296     _timer.stop();
5297     if (PrintCMSStatistics != 0) {
5298       gclog_or_tty->print_cr(
5299           "Finished unhandled CLD scanning work in %dth thread: %3.3f sec",
5300           worker_id, _timer.seconds());
5301     }
5302   }
5303 
5304   // ---------- dirty klass scanning ----------
5305   if (worker_id == 0) { // Single threaded at the moment.
5306     _timer.reset();
5307     _timer.start();
5308 
5309     // Scan all classes that was dirtied during the concurrent marking phase.
5310     RemarkKlassClosure remark_klass_closure(&par_mrias_cl);
5311     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
5312 
5313     _timer.stop();
5314     if (PrintCMSStatistics != 0) {
5315       gclog_or_tty->print_cr(
5316           "Finished dirty klass scanning work in %dth thread: %3.3f sec",
5317           worker_id, _timer.seconds());
5318     }
5319   }
5320 
5321   // We might have added oops to ClassLoaderData::_handles during the
5322   // concurrent marking phase. These oops point to newly allocated objects
5323   // that are guaranteed to be kept alive. Either by the direct allocation
5324   // code, or when the young collector processes the strong roots. Hence,
5325   // we don't have to revisit the _handles block during the remark phase.
5326 
5327   // ---------- rescan dirty cards ------------
5328   _timer.reset();
5329   _timer.start();
5330 
5331   // Do the rescan tasks for each of the two spaces
5332   // (cms_space) in turn.
5333   // "worker_id" is passed to select the task_queue for "worker_id"
5334   do_dirty_card_rescan_tasks(_cms_space, worker_id, &par_mrias_cl);
5335   _timer.stop();
5336   if (PrintCMSStatistics != 0) {
5337     gclog_or_tty->print_cr(
5338       "Finished dirty card rescan work in %dth thread: %3.3f sec",
5339       worker_id, _timer.seconds());
5340   }
5341 
5342   // ---------- steal work from other threads ...
5343   // ---------- ... and drain overflow list.
5344   _timer.reset();
5345   _timer.start();
5346   do_work_steal(worker_id, &par_mrias_cl, _collector->hash_seed(worker_id));
5347   _timer.stop();
5348   if (PrintCMSStatistics != 0) {
5349     gclog_or_tty->print_cr(
5350       "Finished work stealing in %dth thread: %3.3f sec",
5351       worker_id, _timer.seconds());
5352   }
5353 }
5354 
5355 // Note that parameter "i" is not used.
5356 void
5357 CMSParRemarkTask::do_young_space_rescan(int i,
5358   Par_MarkRefsIntoAndScanClosure* cl, ContiguousSpace* space,
5359   HeapWord** chunk_array, size_t chunk_top) {
5360   // Until all tasks completed:
5361   // . claim an unclaimed task
5362   // . compute region boundaries corresponding to task claimed
5363   //   using chunk_array
5364   // . par_oop_iterate(cl) over that region
5365 
5366   ResourceMark rm;
5367   HandleMark   hm;
5368 
5369   SequentialSubTasksDone* pst = space->par_seq_tasks();
5370   assert(pst->valid(), "Uninitialized use?");
5371 
5372   uint nth_task = 0;
5373   uint n_tasks  = pst->n_tasks();
5374 
5375   HeapWord *start, *end;
5376   while (!pst->is_task_claimed(/* reference */ nth_task)) {
5377     // We claimed task # nth_task; compute its boundaries.
5378     if (chunk_top == 0) {  // no samples were taken
5379       assert(nth_task == 0 && n_tasks == 1, "Can have only 1 EdenSpace task");
5380       start = space->bottom();
5381       end   = space->top();
5382     } else if (nth_task == 0) {
5383       start = space->bottom();
5384       end   = chunk_array[nth_task];
5385     } else if (nth_task < (uint)chunk_top) {
5386       assert(nth_task >= 1, "Control point invariant");
5387       start = chunk_array[nth_task - 1];
5388       end   = chunk_array[nth_task];
5389     } else {
5390       assert(nth_task == (uint)chunk_top, "Control point invariant");
5391       start = chunk_array[chunk_top - 1];
5392       end   = space->top();
5393     }
5394     MemRegion mr(start, end);
5395     // Verify that mr is in space
5396     assert(mr.is_empty() || space->used_region().contains(mr),
5397            "Should be in space");
5398     // Verify that "start" is an object boundary
5399     assert(mr.is_empty() || oop(mr.start())->is_oop(),
5400            "Should be an oop");
5401     space->par_oop_iterate(mr, cl);
5402   }
5403   pst->all_tasks_completed();
5404 }
5405 
5406 void
5407 CMSParRemarkTask::do_dirty_card_rescan_tasks(
5408   CompactibleFreeListSpace* sp, int i,
5409   Par_MarkRefsIntoAndScanClosure* cl) {
5410   // Until all tasks completed:
5411   // . claim an unclaimed task
5412   // . compute region boundaries corresponding to task claimed
5413   // . transfer dirty bits ct->mut for that region
5414   // . apply rescanclosure to dirty mut bits for that region
5415 
5416   ResourceMark rm;
5417   HandleMark   hm;
5418 
5419   OopTaskQueue* work_q = work_queue(i);
5420   ModUnionClosure modUnionClosure(&(_collector->_modUnionTable));
5421   // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
5422   // CAUTION: This closure has state that persists across calls to
5423   // the work method dirty_range_iterate_clear() in that it has
5424   // imbedded in it a (subtype of) UpwardsObjectClosure. The
5425   // use of that state in the imbedded UpwardsObjectClosure instance
5426   // assumes that the cards are always iterated (even if in parallel
5427   // by several threads) in monotonically increasing order per each
5428   // thread. This is true of the implementation below which picks
5429   // card ranges (chunks) in monotonically increasing order globally
5430   // and, a-fortiori, in monotonically increasing order per thread
5431   // (the latter order being a subsequence of the former).
5432   // If the work code below is ever reorganized into a more chaotic
5433   // work-partitioning form than the current "sequential tasks"
5434   // paradigm, the use of that persistent state will have to be
5435   // revisited and modified appropriately. See also related
5436   // bug 4756801 work on which should examine this code to make
5437   // sure that the changes there do not run counter to the
5438   // assumptions made here and necessary for correctness and
5439   // efficiency. Note also that this code might yield inefficient
5440   // behaviour in the case of very large objects that span one or
5441   // more work chunks. Such objects would potentially be scanned
5442   // several times redundantly. Work on 4756801 should try and
5443   // address that performance anomaly if at all possible. XXX
5444   MemRegion  full_span  = _collector->_span;
5445   CMSBitMap* bm    = &(_collector->_markBitMap);     // shared
5446   MarkFromDirtyCardsClosure
5447     greyRescanClosure(_collector, full_span, // entire span of interest
5448                       sp, bm, work_q, cl);
5449 
5450   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
5451   assert(pst->valid(), "Uninitialized use?");
5452   uint nth_task = 0;
5453   const int alignment = CardTableModRefBS::card_size * BitsPerWord;
5454   MemRegion span = sp->used_region();
5455   HeapWord* start_addr = span.start();
5456   HeapWord* end_addr = (HeapWord*)round_to((intptr_t)span.end(),
5457                                            alignment);
5458   const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units
5459   assert((HeapWord*)round_to((intptr_t)start_addr, alignment) ==
5460          start_addr, "Check alignment");
5461   assert((size_t)round_to((intptr_t)chunk_size, alignment) ==
5462          chunk_size, "Check alignment");
5463 
5464   while (!pst->is_task_claimed(/* reference */ nth_task)) {
5465     // Having claimed the nth_task, compute corresponding mem-region,
5466     // which is a-fortiori aligned correctly (i.e. at a MUT bopundary).
5467     // The alignment restriction ensures that we do not need any
5468     // synchronization with other gang-workers while setting or
5469     // clearing bits in thus chunk of the MUT.
5470     MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size,
5471                                     start_addr + (nth_task+1)*chunk_size);
5472     // The last chunk's end might be way beyond end of the
5473     // used region. In that case pull back appropriately.
5474     if (this_span.end() > end_addr) {
5475       this_span.set_end(end_addr);
5476       assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)");
5477     }
5478     // Iterate over the dirty cards covering this chunk, marking them
5479     // precleaned, and setting the corresponding bits in the mod union
5480     // table. Since we have been careful to partition at Card and MUT-word
5481     // boundaries no synchronization is needed between parallel threads.
5482     _collector->_ct->ct_bs()->dirty_card_iterate(this_span,
5483                                                  &modUnionClosure);
5484 
5485     // Having transferred these marks into the modUnionTable,
5486     // rescan the marked objects on the dirty cards in the modUnionTable.
5487     // Even if this is at a synchronous collection, the initial marking
5488     // may have been done during an asynchronous collection so there
5489     // may be dirty bits in the mod-union table.
5490     _collector->_modUnionTable.dirty_range_iterate_clear(
5491                   this_span, &greyRescanClosure);
5492     _collector->_modUnionTable.verifyNoOneBitsInRange(
5493                                  this_span.start(),
5494                                  this_span.end());
5495   }
5496   pst->all_tasks_completed();  // declare that i am done
5497 }
5498 
5499 // . see if we can share work_queues with ParNew? XXX
5500 void
5501 CMSParRemarkTask::do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl,
5502                                 int* seed) {
5503   OopTaskQueue* work_q = work_queue(i);
5504   NOT_PRODUCT(int num_steals = 0;)
5505   oop obj_to_scan;
5506   CMSBitMap* bm = &(_collector->_markBitMap);
5507 
5508   while (true) {
5509     // Completely finish any left over work from (an) earlier round(s)
5510     cl->trim_queue(0);
5511     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
5512                                          (size_t)ParGCDesiredObjsFromOverflowList);
5513     // Now check if there's any work in the overflow list
5514     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
5515     // only affects the number of attempts made to get work from the
5516     // overflow list and does not affect the number of workers.  Just
5517     // pass ParallelGCThreads so this behavior is unchanged.
5518     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
5519                                                 work_q,
5520                                                 ParallelGCThreads)) {
5521       // found something in global overflow list;
5522       // not yet ready to go stealing work from others.
5523       // We'd like to assert(work_q->size() != 0, ...)
5524       // because we just took work from the overflow list,
5525       // but of course we can't since all of that could have
5526       // been already stolen from us.
5527       // "He giveth and He taketh away."
5528       continue;
5529     }
5530     // Verify that we have no work before we resort to stealing
5531     assert(work_q->size() == 0, "Have work, shouldn't steal");
5532     // Try to steal from other queues that have work
5533     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
5534       NOT_PRODUCT(num_steals++;)
5535       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
5536       assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
5537       // Do scanning work
5538       obj_to_scan->oop_iterate(cl);
5539       // Loop around, finish this work, and try to steal some more
5540     } else if (terminator()->offer_termination()) {
5541         break;  // nirvana from the infinite cycle
5542     }
5543   }
5544   NOT_PRODUCT(
5545     if (PrintCMSStatistics != 0) {
5546       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
5547     }
5548   )
5549   assert(work_q->size() == 0 && _collector->overflow_list_is_empty(),
5550          "Else our work is not yet done");
5551 }
5552 
5553 // Return a thread-local PLAB recording array, as appropriate.
5554 void* CMSCollector::get_data_recorder(int thr_num) {
5555   if (_survivor_plab_array != NULL &&
5556       (CMSPLABRecordAlways ||
5557        (_collectorState > Marking && _collectorState < FinalMarking))) {
5558     assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds");
5559     ChunkArray* ca = &_survivor_plab_array[thr_num];
5560     ca->reset();   // clear it so that fresh data is recorded
5561     return (void*) ca;
5562   } else {
5563     return NULL;
5564   }
5565 }
5566 
5567 // Reset all the thread-local PLAB recording arrays
5568 void CMSCollector::reset_survivor_plab_arrays() {
5569   for (uint i = 0; i < ParallelGCThreads; i++) {
5570     _survivor_plab_array[i].reset();
5571   }
5572 }
5573 
5574 // Merge the per-thread plab arrays into the global survivor chunk
5575 // array which will provide the partitioning of the survivor space
5576 // for CMS rescan.
5577 void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv,
5578                                               int no_of_gc_threads) {
5579   assert(_survivor_plab_array  != NULL, "Error");
5580   assert(_survivor_chunk_array != NULL, "Error");
5581   assert(_collectorState == FinalMarking, "Error");
5582   for (int j = 0; j < no_of_gc_threads; j++) {
5583     _cursor[j] = 0;
5584   }
5585   HeapWord* top = surv->top();
5586   size_t i;
5587   for (i = 0; i < _survivor_chunk_capacity; i++) {  // all sca entries
5588     HeapWord* min_val = top;          // Higher than any PLAB address
5589     uint      min_tid = 0;            // position of min_val this round
5590     for (int j = 0; j < no_of_gc_threads; j++) {
5591       ChunkArray* cur_sca = &_survivor_plab_array[j];
5592       if (_cursor[j] == cur_sca->end()) {
5593         continue;
5594       }
5595       assert(_cursor[j] < cur_sca->end(), "ctl pt invariant");
5596       HeapWord* cur_val = cur_sca->nth(_cursor[j]);
5597       assert(surv->used_region().contains(cur_val), "Out of bounds value");
5598       if (cur_val < min_val) {
5599         min_tid = j;
5600         min_val = cur_val;
5601       } else {
5602         assert(cur_val < top, "All recorded addresses should be less");
5603       }
5604     }
5605     // At this point min_val and min_tid are respectively
5606     // the least address in _survivor_plab_array[j]->nth(_cursor[j])
5607     // and the thread (j) that witnesses that address.
5608     // We record this address in the _survivor_chunk_array[i]
5609     // and increment _cursor[min_tid] prior to the next round i.
5610     if (min_val == top) {
5611       break;
5612     }
5613     _survivor_chunk_array[i] = min_val;
5614     _cursor[min_tid]++;
5615   }
5616   // We are all done; record the size of the _survivor_chunk_array
5617   _survivor_chunk_index = i; // exclusive: [0, i)
5618   if (PrintCMSStatistics > 0) {
5619     gclog_or_tty->print(" (Survivor:" SIZE_FORMAT "chunks) ", i);
5620   }
5621   // Verify that we used up all the recorded entries
5622   #ifdef ASSERT
5623     size_t total = 0;
5624     for (int j = 0; j < no_of_gc_threads; j++) {
5625       assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant");
5626       total += _cursor[j];
5627     }
5628     assert(total == _survivor_chunk_index, "Ctl Pt Invariant");
5629     // Check that the merged array is in sorted order
5630     if (total > 0) {
5631       for (size_t i = 0; i < total - 1; i++) {
5632         if (PrintCMSStatistics > 0) {
5633           gclog_or_tty->print(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ",
5634                               i, _survivor_chunk_array[i]);
5635         }
5636         assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1],
5637                "Not sorted");
5638       }
5639     }
5640   #endif // ASSERT
5641 }
5642 
5643 // Set up the space's par_seq_tasks structure for work claiming
5644 // for parallel rescan of young gen.
5645 // See ParRescanTask where this is currently used.
5646 void
5647 CMSCollector::
5648 initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) {
5649   assert(n_threads > 0, "Unexpected n_threads argument");
5650   DefNewGeneration* dng = (DefNewGeneration*)_young_gen;
5651 
5652   // Eden space
5653   {
5654     SequentialSubTasksDone* pst = dng->eden()->par_seq_tasks();
5655     assert(!pst->valid(), "Clobbering existing data?");
5656     // Each valid entry in [0, _eden_chunk_index) represents a task.
5657     size_t n_tasks = _eden_chunk_index + 1;
5658     assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error");
5659     // Sets the condition for completion of the subtask (how many threads
5660     // need to finish in order to be done).
5661     pst->set_n_threads(n_threads);
5662     pst->set_n_tasks((int)n_tasks);
5663   }
5664 
5665   // Merge the survivor plab arrays into _survivor_chunk_array
5666   if (_survivor_plab_array != NULL) {
5667     merge_survivor_plab_arrays(dng->from(), n_threads);
5668   } else {
5669     assert(_survivor_chunk_index == 0, "Error");
5670   }
5671 
5672   // To space
5673   {
5674     SequentialSubTasksDone* pst = dng->to()->par_seq_tasks();
5675     assert(!pst->valid(), "Clobbering existing data?");
5676     // Sets the condition for completion of the subtask (how many threads
5677     // need to finish in order to be done).
5678     pst->set_n_threads(n_threads);
5679     pst->set_n_tasks(1);
5680     assert(pst->valid(), "Error");
5681   }
5682 
5683   // From space
5684   {
5685     SequentialSubTasksDone* pst = dng->from()->par_seq_tasks();
5686     assert(!pst->valid(), "Clobbering existing data?");
5687     size_t n_tasks = _survivor_chunk_index + 1;
5688     assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error");
5689     // Sets the condition for completion of the subtask (how many threads
5690     // need to finish in order to be done).
5691     pst->set_n_threads(n_threads);
5692     pst->set_n_tasks((int)n_tasks);
5693     assert(pst->valid(), "Error");
5694   }
5695 }
5696 
5697 // Parallel version of remark
5698 void CMSCollector::do_remark_parallel() {
5699   GenCollectedHeap* gch = GenCollectedHeap::heap();
5700   FlexibleWorkGang* workers = gch->workers();
5701   assert(workers != NULL, "Need parallel worker threads.");
5702   // Choose to use the number of GC workers most recently set
5703   // into "active_workers".  If active_workers is not set, set it
5704   // to ParallelGCThreads.
5705   int n_workers = workers->active_workers();
5706   if (n_workers == 0) {
5707     assert(n_workers > 0, "Should have been set during scavenge");
5708     n_workers = ParallelGCThreads;
5709     workers->set_active_workers(n_workers);
5710   }
5711   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
5712 
5713   CMSParRemarkTask tsk(this,
5714     cms_space,
5715     n_workers, workers, task_queues());
5716 
5717   // Set up for parallel process_strong_roots work.
5718   gch->set_par_threads(n_workers);
5719   // We won't be iterating over the cards in the card table updating
5720   // the younger_gen cards, so we shouldn't call the following else
5721   // the verification code as well as subsequent younger_refs_iterate
5722   // code would get confused. XXX
5723   // gch->rem_set()->prepare_for_younger_refs_iterate(true); // parallel
5724 
5725   // The young gen rescan work will not be done as part of
5726   // process_strong_roots (which currently doesn't knw how to
5727   // parallelize such a scan), but rather will be broken up into
5728   // a set of parallel tasks (via the sampling that the [abortable]
5729   // preclean phase did of EdenSpace, plus the [two] tasks of
5730   // scanning the [two] survivor spaces. Further fine-grain
5731   // parallelization of the scanning of the survivor spaces
5732   // themselves, and of precleaning of the younger gen itself
5733   // is deferred to the future.
5734   initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
5735 
5736   // The dirty card rescan work is broken up into a "sequence"
5737   // of parallel tasks (per constituent space) that are dynamically
5738   // claimed by the parallel threads.
5739   cms_space->initialize_sequential_subtasks_for_rescan(n_workers);
5740 
5741   // It turns out that even when we're using 1 thread, doing the work in a
5742   // separate thread causes wide variance in run times.  We can't help this
5743   // in the multi-threaded case, but we special-case n=1 here to get
5744   // repeatable measurements of the 1-thread overhead of the parallel code.
5745   if (n_workers > 1) {
5746     // Make refs discovery MT-safe, if it isn't already: it may not
5747     // necessarily be so, since it's possible that we are doing
5748     // ST marking.
5749     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), true);
5750     GenCollectedHeap::StrongRootsScope srs(gch);
5751     workers->run_task(&tsk);
5752   } else {
5753     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
5754     GenCollectedHeap::StrongRootsScope srs(gch);
5755     tsk.work(0);
5756   }
5757 
5758   gch->set_par_threads(0);  // 0 ==> non-parallel.
5759   // restore, single-threaded for now, any preserved marks
5760   // as a result of work_q overflow
5761   restore_preserved_marks_if_any();
5762 }
5763 
5764 // Non-parallel version of remark
5765 void CMSCollector::do_remark_non_parallel() {
5766   ResourceMark rm;
5767   HandleMark   hm;
5768   GenCollectedHeap* gch = GenCollectedHeap::heap();
5769   ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
5770 
5771   MarkRefsIntoAndScanClosure
5772     mrias_cl(_span, ref_processor(), &_markBitMap, NULL /* not precleaning */,
5773              &_markStack, this,
5774              false /* should_yield */, false /* not precleaning */);
5775   MarkFromDirtyCardsClosure
5776     markFromDirtyCardsClosure(this, _span,
5777                               NULL,  // space is set further below
5778                               &_markBitMap, &_markStack, &mrias_cl);
5779   {
5780     GCTraceTime t("grey object rescan", PrintGCDetails, false, _gc_timer_cm);
5781     // Iterate over the dirty cards, setting the corresponding bits in the
5782     // mod union table.
5783     {
5784       ModUnionClosure modUnionClosure(&_modUnionTable);
5785       _ct->ct_bs()->dirty_card_iterate(
5786                       _cmsGen->used_region(),
5787                       &modUnionClosure);
5788     }
5789     // Having transferred these marks into the modUnionTable, we just need
5790     // to rescan the marked objects on the dirty cards in the modUnionTable.
5791     // The initial marking may have been done during an asynchronous
5792     // collection so there may be dirty bits in the mod-union table.
5793     const int alignment =
5794       CardTableModRefBS::card_size * BitsPerWord;
5795     {
5796       // ... First handle dirty cards in CMS gen
5797       markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace());
5798       MemRegion ur = _cmsGen->used_region();
5799       HeapWord* lb = ur.start();
5800       HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
5801       MemRegion cms_span(lb, ub);
5802       _modUnionTable.dirty_range_iterate_clear(cms_span,
5803                                                &markFromDirtyCardsClosure);
5804       verify_work_stacks_empty();
5805       if (PrintCMSStatistics != 0) {
5806         gclog_or_tty->print(" (re-scanned "SIZE_FORMAT" dirty cards in cms gen) ",
5807           markFromDirtyCardsClosure.num_dirty_cards());
5808       }
5809     }
5810   }
5811   if (VerifyDuringGC &&
5812       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
5813     HandleMark hm;  // Discard invalid handles created during verification
5814     Universe::verify();
5815   }
5816   {
5817     GCTraceTime t("root rescan", PrintGCDetails, false, _gc_timer_cm);
5818 
5819     verify_work_stacks_empty();
5820 
5821     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
5822     GenCollectedHeap::StrongRootsScope srs(gch);
5823     gch->gen_process_strong_roots(_cmsGen->level(),
5824                                   true,  // younger gens as roots
5825                                   false, // use the local StrongRootsScope
5826                                   false, // not scavenging
5827                                   SharedHeap::ScanningOption(roots_scanning_options()),
5828                                   &mrias_cl,
5829                                   true,   // walk code active on stacks
5830                                   NULL,
5831                                   NULL);  // The dirty klasses will be handled below
5832 
5833     assert(should_unload_classes()
5834            || (roots_scanning_options() & SharedHeap::SO_CodeCache),
5835            "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
5836   }
5837 
5838   {
5839     GCTraceTime t("visit unhandled CLDs", PrintGCDetails, false, _gc_timer_cm);
5840 
5841     verify_work_stacks_empty();
5842 
5843     // Scan all class loader data objects that might have been introduced
5844     // during concurrent marking.
5845     ResourceMark rm;
5846     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
5847     for (int i = 0; i < array->length(); i++) {
5848       mrias_cl.do_class_loader_data(array->at(i));
5849     }
5850 
5851     // We don't need to keep track of new CLDs anymore.
5852     ClassLoaderDataGraph::remember_new_clds(false);
5853 
5854     verify_work_stacks_empty();
5855   }
5856 
5857   {
5858     GCTraceTime t("dirty klass scan", PrintGCDetails, false, _gc_timer_cm);
5859 
5860     verify_work_stacks_empty();
5861 
5862     RemarkKlassClosure remark_klass_closure(&mrias_cl);
5863     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
5864 
5865     verify_work_stacks_empty();
5866   }
5867 
5868   // We might have added oops to ClassLoaderData::_handles during the
5869   // concurrent marking phase. These oops point to newly allocated objects
5870   // that are guaranteed to be kept alive. Either by the direct allocation
5871   // code, or when the young collector processes the strong roots. Hence,
5872   // we don't have to revisit the _handles block during the remark phase.
5873 
5874   verify_work_stacks_empty();
5875   // Restore evacuated mark words, if any, used for overflow list links
5876   if (!CMSOverflowEarlyRestoration) {
5877     restore_preserved_marks_if_any();
5878   }
5879   verify_overflow_empty();
5880 }
5881 
5882 ////////////////////////////////////////////////////////
5883 // Parallel Reference Processing Task Proxy Class
5884 ////////////////////////////////////////////////////////
5885 class CMSRefProcTaskProxy: public AbstractGangTaskWOopQueues {
5886   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5887   CMSCollector*          _collector;
5888   CMSBitMap*             _mark_bit_map;
5889   const MemRegion        _span;
5890   ProcessTask&           _task;
5891 
5892 public:
5893   CMSRefProcTaskProxy(ProcessTask&     task,
5894                       CMSCollector*    collector,
5895                       const MemRegion& span,
5896                       CMSBitMap*       mark_bit_map,
5897                       AbstractWorkGang* workers,
5898                       OopTaskQueueSet* task_queues):
5899     // XXX Should superclass AGTWOQ also know about AWG since it knows
5900     // about the task_queues used by the AWG? Then it could initialize
5901     // the terminator() object. See 6984287. The set_for_termination()
5902     // below is a temporary band-aid for the regression in 6984287.
5903     AbstractGangTaskWOopQueues("Process referents by policy in parallel",
5904       task_queues),
5905     _task(task),
5906     _collector(collector), _span(span), _mark_bit_map(mark_bit_map)
5907   {
5908     assert(_collector->_span.equals(_span) && !_span.is_empty(),
5909            "Inconsistency in _span");
5910     set_for_termination(workers->active_workers());
5911   }
5912 
5913   OopTaskQueueSet* task_queues() { return queues(); }
5914 
5915   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
5916 
5917   void do_work_steal(int i,
5918                      CMSParDrainMarkingStackClosure* drain,
5919                      CMSParKeepAliveClosure* keep_alive,
5920                      int* seed);
5921 
5922   virtual void work(uint worker_id);
5923 };
5924 
5925 void CMSRefProcTaskProxy::work(uint worker_id) {
5926   assert(_collector->_span.equals(_span), "Inconsistency in _span");
5927   CMSParKeepAliveClosure par_keep_alive(_collector, _span,
5928                                         _mark_bit_map,
5929                                         work_queue(worker_id));
5930   CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
5931                                                  _mark_bit_map,
5932                                                  work_queue(worker_id));
5933   CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map);
5934   _task.work(worker_id, is_alive_closure, par_keep_alive, par_drain_stack);
5935   if (_task.marks_oops_alive()) {
5936     do_work_steal(worker_id, &par_drain_stack, &par_keep_alive,
5937                   _collector->hash_seed(worker_id));
5938   }
5939   assert(work_queue(worker_id)->size() == 0, "work_queue should be empty");
5940   assert(_collector->_overflow_list == NULL, "non-empty _overflow_list");
5941 }
5942 
5943 class CMSRefEnqueueTaskProxy: public AbstractGangTask {
5944   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5945   EnqueueTask& _task;
5946 
5947 public:
5948   CMSRefEnqueueTaskProxy(EnqueueTask& task)
5949     : AbstractGangTask("Enqueue reference objects in parallel"),
5950       _task(task)
5951   { }
5952 
5953   virtual void work(uint worker_id)
5954   {
5955     _task.work(worker_id);
5956   }
5957 };
5958 
5959 CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector,
5960   MemRegion span, CMSBitMap* bit_map, OopTaskQueue* work_queue):
5961    _span(span),
5962    _bit_map(bit_map),
5963    _work_queue(work_queue),
5964    _mark_and_push(collector, span, bit_map, work_queue),
5965    _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
5966                         (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads)))
5967 { }
5968 
5969 // . see if we can share work_queues with ParNew? XXX
5970 void CMSRefProcTaskProxy::do_work_steal(int i,
5971   CMSParDrainMarkingStackClosure* drain,
5972   CMSParKeepAliveClosure* keep_alive,
5973   int* seed) {
5974   OopTaskQueue* work_q = work_queue(i);
5975   NOT_PRODUCT(int num_steals = 0;)
5976   oop obj_to_scan;
5977 
5978   while (true) {
5979     // Completely finish any left over work from (an) earlier round(s)
5980     drain->trim_queue(0);
5981     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
5982                                          (size_t)ParGCDesiredObjsFromOverflowList);
5983     // Now check if there's any work in the overflow list
5984     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
5985     // only affects the number of attempts made to get work from the
5986     // overflow list and does not affect the number of workers.  Just
5987     // pass ParallelGCThreads so this behavior is unchanged.
5988     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
5989                                                 work_q,
5990                                                 ParallelGCThreads)) {
5991       // Found something in global overflow list;
5992       // not yet ready to go stealing work from others.
5993       // We'd like to assert(work_q->size() != 0, ...)
5994       // because we just took work from the overflow list,
5995       // but of course we can't, since all of that might have
5996       // been already stolen from us.
5997       continue;
5998     }
5999     // Verify that we have no work before we resort to stealing
6000     assert(work_q->size() == 0, "Have work, shouldn't steal");
6001     // Try to steal from other queues that have work
6002     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
6003       NOT_PRODUCT(num_steals++;)
6004       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
6005       assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
6006       // Do scanning work
6007       obj_to_scan->oop_iterate(keep_alive);
6008       // Loop around, finish this work, and try to steal some more
6009     } else if (terminator()->offer_termination()) {
6010       break;  // nirvana from the infinite cycle
6011     }
6012   }
6013   NOT_PRODUCT(
6014     if (PrintCMSStatistics != 0) {
6015       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
6016     }
6017   )
6018 }
6019 
6020 void CMSRefProcTaskExecutor::execute(ProcessTask& task)
6021 {
6022   GenCollectedHeap* gch = GenCollectedHeap::heap();
6023   FlexibleWorkGang* workers = gch->workers();
6024   assert(workers != NULL, "Need parallel worker threads.");
6025   CMSRefProcTaskProxy rp_task(task, &_collector,
6026                               _collector.ref_processor()->span(),
6027                               _collector.markBitMap(),
6028                               workers, _collector.task_queues());
6029   workers->run_task(&rp_task);
6030 }
6031 
6032 void CMSRefProcTaskExecutor::execute(EnqueueTask& task)
6033 {
6034 
6035   GenCollectedHeap* gch = GenCollectedHeap::heap();
6036   FlexibleWorkGang* workers = gch->workers();
6037   assert(workers != NULL, "Need parallel worker threads.");
6038   CMSRefEnqueueTaskProxy enq_task(task);
6039   workers->run_task(&enq_task);
6040 }
6041 
6042 void CMSCollector::refProcessingWork(bool asynch, bool clear_all_soft_refs) {
6043 
6044   ResourceMark rm;
6045   HandleMark   hm;
6046 
6047   ReferenceProcessor* rp = ref_processor();
6048   assert(rp->span().equals(_span), "Spans should be equal");
6049   assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete");
6050   // Process weak references.
6051   rp->setup_policy(clear_all_soft_refs);
6052   verify_work_stacks_empty();
6053 
6054   CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap,
6055                                           &_markStack, false /* !preclean */);
6056   CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this,
6057                                 _span, &_markBitMap, &_markStack,
6058                                 &cmsKeepAliveClosure, false /* !preclean */);
6059   {
6060     GCTraceTime t("weak refs processing", PrintGCDetails, false, _gc_timer_cm);
6061 
6062     ReferenceProcessorStats stats;
6063     if (rp->processing_is_mt()) {
6064       // Set the degree of MT here.  If the discovery is done MT, there
6065       // may have been a different number of threads doing the discovery
6066       // and a different number of discovered lists may have Ref objects.
6067       // That is OK as long as the Reference lists are balanced (see
6068       // balance_all_queues() and balance_queues()).
6069       GenCollectedHeap* gch = GenCollectedHeap::heap();
6070       int active_workers = ParallelGCThreads;
6071       FlexibleWorkGang* workers = gch->workers();
6072       if (workers != NULL) {
6073         active_workers = workers->active_workers();
6074         // The expectation is that active_workers will have already
6075         // been set to a reasonable value.  If it has not been set,
6076         // investigate.
6077         assert(active_workers > 0, "Should have been set during scavenge");
6078       }
6079       rp->set_active_mt_degree(active_workers);
6080       CMSRefProcTaskExecutor task_executor(*this);
6081       stats = rp->process_discovered_references(&_is_alive_closure,
6082                                         &cmsKeepAliveClosure,
6083                                         &cmsDrainMarkingStackClosure,
6084                                         &task_executor,
6085                                         _gc_timer_cm);
6086     } else {
6087       stats = rp->process_discovered_references(&_is_alive_closure,
6088                                         &cmsKeepAliveClosure,
6089                                         &cmsDrainMarkingStackClosure,
6090                                         NULL,
6091                                         _gc_timer_cm);
6092     }
6093     _gc_tracer_cm->report_gc_reference_stats(stats);
6094 
6095   }
6096 
6097   // This is the point where the entire marking should have completed.
6098   verify_work_stacks_empty();
6099 
6100   if (should_unload_classes()) {
6101     {
6102       GCTraceTime t("class unloading", PrintGCDetails, false, _gc_timer_cm);
6103 
6104       // Unload classes and purge the SystemDictionary.
6105       bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure);
6106 
6107       // Unload nmethods.
6108       CodeCache::do_unloading(&_is_alive_closure, purged_class);
6109 
6110       // Prune dead klasses from subklass/sibling/implementor lists.
6111       Klass::clean_weak_klass_links(&_is_alive_closure);
6112     }
6113 
6114     {
6115       GCTraceTime t("scrub symbol table", PrintGCDetails, false, _gc_timer_cm);
6116       // Clean up unreferenced symbols in symbol table.
6117       SymbolTable::unlink();
6118     }
6119   }
6120 
6121   // CMS doesn't use the StringTable as hard roots when class unloading is turned off.
6122   // Need to check if we really scanned the StringTable.
6123   if ((roots_scanning_options() & SharedHeap::SO_Strings) == 0) {
6124     GCTraceTime t("scrub string table", PrintGCDetails, false, _gc_timer_cm);
6125     // Delete entries for dead interned strings.
6126     StringTable::unlink(&_is_alive_closure);
6127   }
6128 
6129   // Restore any preserved marks as a result of mark stack or
6130   // work queue overflow
6131   restore_preserved_marks_if_any();  // done single-threaded for now
6132 
6133   rp->set_enqueuing_is_done(true);
6134   if (rp->processing_is_mt()) {
6135     rp->balance_all_queues();
6136     CMSRefProcTaskExecutor task_executor(*this);
6137     rp->enqueue_discovered_references(&task_executor);
6138   } else {
6139     rp->enqueue_discovered_references(NULL);
6140   }
6141   rp->verify_no_references_recorded();
6142   assert(!rp->discovery_enabled(), "should have been disabled");
6143 }
6144 
6145 #ifndef PRODUCT
6146 void CMSCollector::check_correct_thread_executing() {
6147   Thread* t = Thread::current();
6148   // Only the VM thread or the CMS thread should be here.
6149   assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(),
6150          "Unexpected thread type");
6151   // If this is the vm thread, the foreground process
6152   // should not be waiting.  Note that _foregroundGCIsActive is
6153   // true while the foreground collector is waiting.
6154   if (_foregroundGCShouldWait) {
6155     // We cannot be the VM thread
6156     assert(t->is_ConcurrentGC_thread(),
6157            "Should be CMS thread");
6158   } else {
6159     // We can be the CMS thread only if we are in a stop-world
6160     // phase of CMS collection.
6161     if (t->is_ConcurrentGC_thread()) {
6162       assert(_collectorState == InitialMarking ||
6163              _collectorState == FinalMarking,
6164              "Should be a stop-world phase");
6165       // The CMS thread should be holding the CMS_token.
6166       assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6167              "Potential interference with concurrently "
6168              "executing VM thread");
6169     }
6170   }
6171 }
6172 #endif
6173 
6174 void CMSCollector::sweep(bool asynch) {
6175   assert(_collectorState == Sweeping, "just checking");
6176   check_correct_thread_executing();
6177   verify_work_stacks_empty();
6178   verify_overflow_empty();
6179   increment_sweep_count();
6180   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
6181 
6182   _inter_sweep_timer.stop();
6183   _inter_sweep_estimate.sample(_inter_sweep_timer.seconds());
6184   size_policy()->avg_cms_free_at_sweep()->sample(_cmsGen->free());
6185 
6186   assert(!_intra_sweep_timer.is_active(), "Should not be active");
6187   _intra_sweep_timer.reset();
6188   _intra_sweep_timer.start();
6189   if (asynch) {
6190     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
6191     CMSPhaseAccounting pa(this, "sweep", !PrintGCDetails);
6192     // First sweep the old gen
6193     {
6194       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
6195                                bitMapLock());
6196       sweepWork(_cmsGen, asynch);
6197     }
6198 
6199     // Update Universe::_heap_*_at_gc figures.
6200     // We need all the free list locks to make the abstract state
6201     // transition from Sweeping to Resetting. See detailed note
6202     // further below.
6203     {
6204       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock());
6205       // Update heap occupancy information which is used as
6206       // input to soft ref clearing policy at the next gc.
6207       Universe::update_heap_info_at_gc();
6208       _collectorState = Resizing;
6209     }
6210   } else {
6211     // already have needed locks
6212     sweepWork(_cmsGen,  asynch);
6213     // Update heap occupancy information which is used as
6214     // input to soft ref clearing policy at the next gc.
6215     Universe::update_heap_info_at_gc();
6216     _collectorState = Resizing;
6217   }
6218   verify_work_stacks_empty();
6219   verify_overflow_empty();
6220 
6221   if (should_unload_classes()) {
6222     ClassLoaderDataGraph::purge();
6223   }
6224 
6225   _intra_sweep_timer.stop();
6226   _intra_sweep_estimate.sample(_intra_sweep_timer.seconds());
6227 
6228   _inter_sweep_timer.reset();
6229   _inter_sweep_timer.start();
6230 
6231   // We need to use a monotonically non-deccreasing time in ms
6232   // or we will see time-warp warnings and os::javaTimeMillis()
6233   // does not guarantee monotonicity.
6234   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
6235   update_time_of_last_gc(now);
6236 
6237   // NOTE on abstract state transitions:
6238   // Mutators allocate-live and/or mark the mod-union table dirty
6239   // based on the state of the collection.  The former is done in
6240   // the interval [Marking, Sweeping] and the latter in the interval
6241   // [Marking, Sweeping).  Thus the transitions into the Marking state
6242   // and out of the Sweeping state must be synchronously visible
6243   // globally to the mutators.
6244   // The transition into the Marking state happens with the world
6245   // stopped so the mutators will globally see it.  Sweeping is
6246   // done asynchronously by the background collector so the transition
6247   // from the Sweeping state to the Resizing state must be done
6248   // under the freelistLock (as is the check for whether to
6249   // allocate-live and whether to dirty the mod-union table).
6250   assert(_collectorState == Resizing, "Change of collector state to"
6251     " Resizing must be done under the freelistLocks (plural)");
6252 
6253   // Now that sweeping has been completed, we clear
6254   // the incremental_collection_failed flag,
6255   // thus inviting a younger gen collection to promote into
6256   // this generation. If such a promotion may still fail,
6257   // the flag will be set again when a young collection is
6258   // attempted.
6259   GenCollectedHeap* gch = GenCollectedHeap::heap();
6260   gch->clear_incremental_collection_failed();  // Worth retrying as fresh space may have been freed up
6261   gch->update_full_collections_completed(_collection_count_start);
6262 }
6263 
6264 // FIX ME!!! Looks like this belongs in CFLSpace, with
6265 // CMSGen merely delegating to it.
6266 void ConcurrentMarkSweepGeneration::setNearLargestChunk() {
6267   double nearLargestPercent = FLSLargestBlockCoalesceProximity;
6268   HeapWord*  minAddr        = _cmsSpace->bottom();
6269   HeapWord*  largestAddr    =
6270     (HeapWord*) _cmsSpace->dictionary()->find_largest_dict();
6271   if (largestAddr == NULL) {
6272     // The dictionary appears to be empty.  In this case
6273     // try to coalesce at the end of the heap.
6274     largestAddr = _cmsSpace->end();
6275   }
6276   size_t largestOffset     = pointer_delta(largestAddr, minAddr);
6277   size_t nearLargestOffset =
6278     (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize;
6279   if (PrintFLSStatistics != 0) {
6280     gclog_or_tty->print_cr(
6281       "CMS: Large Block: " PTR_FORMAT ";"
6282       " Proximity: " PTR_FORMAT " -> " PTR_FORMAT,
6283       largestAddr,
6284       _cmsSpace->nearLargestChunk(), minAddr + nearLargestOffset);
6285   }
6286   _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset);
6287 }
6288 
6289 bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) {
6290   return addr >= _cmsSpace->nearLargestChunk();
6291 }
6292 
6293 FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() {
6294   return _cmsSpace->find_chunk_at_end();
6295 }
6296 
6297 void ConcurrentMarkSweepGeneration::update_gc_stats(int current_level,
6298                                                     bool full) {
6299   // The next lower level has been collected.  Gather any statistics
6300   // that are of interest at this point.
6301   if (!full && (current_level + 1) == level()) {
6302     // Gather statistics on the young generation collection.
6303     collector()->stats().record_gc0_end(used());
6304   }
6305 }
6306 
6307 CMSAdaptiveSizePolicy* ConcurrentMarkSweepGeneration::size_policy() {
6308   GenCollectedHeap* gch = GenCollectedHeap::heap();
6309   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
6310     "Wrong type of heap");
6311   CMSAdaptiveSizePolicy* sp = (CMSAdaptiveSizePolicy*)
6312     gch->gen_policy()->size_policy();
6313   assert(sp->is_gc_cms_adaptive_size_policy(),
6314     "Wrong type of size policy");
6315   return sp;
6316 }
6317 
6318 void ConcurrentMarkSweepGeneration::rotate_debug_collection_type() {
6319   if (PrintGCDetails && Verbose) {
6320     gclog_or_tty->print("Rotate from %d ", _debug_collection_type);
6321   }
6322   _debug_collection_type = (CollectionTypes) (_debug_collection_type + 1);
6323   _debug_collection_type =
6324     (CollectionTypes) (_debug_collection_type % Unknown_collection_type);
6325   if (PrintGCDetails && Verbose) {
6326     gclog_or_tty->print_cr("to %d ", _debug_collection_type);
6327   }
6328 }
6329 
6330 void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* gen,
6331   bool asynch) {
6332   // We iterate over the space(s) underlying this generation,
6333   // checking the mark bit map to see if the bits corresponding
6334   // to specific blocks are marked or not. Blocks that are
6335   // marked are live and are not swept up. All remaining blocks
6336   // are swept up, with coalescing on-the-fly as we sweep up
6337   // contiguous free and/or garbage blocks:
6338   // We need to ensure that the sweeper synchronizes with allocators
6339   // and stop-the-world collectors. In particular, the following
6340   // locks are used:
6341   // . CMS token: if this is held, a stop the world collection cannot occur
6342   // . freelistLock: if this is held no allocation can occur from this
6343   //                 generation by another thread
6344   // . bitMapLock: if this is held, no other thread can access or update
6345   //
6346 
6347   // Note that we need to hold the freelistLock if we use
6348   // block iterate below; else the iterator might go awry if
6349   // a mutator (or promotion) causes block contents to change
6350   // (for instance if the allocator divvies up a block).
6351   // If we hold the free list lock, for all practical purposes
6352   // young generation GC's can't occur (they'll usually need to
6353   // promote), so we might as well prevent all young generation
6354   // GC's while we do a sweeping step. For the same reason, we might
6355   // as well take the bit map lock for the entire duration
6356 
6357   // check that we hold the requisite locks
6358   assert(have_cms_token(), "Should hold cms token");
6359   assert(   (asynch && ConcurrentMarkSweepThread::cms_thread_has_cms_token())
6360          || (!asynch && ConcurrentMarkSweepThread::vm_thread_has_cms_token()),
6361         "Should possess CMS token to sweep");
6362   assert_lock_strong(gen->freelistLock());
6363   assert_lock_strong(bitMapLock());
6364 
6365   assert(!_inter_sweep_timer.is_active(), "Was switched off in an outer context");
6366   assert(_intra_sweep_timer.is_active(),  "Was switched on  in an outer context");
6367   gen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
6368                                       _inter_sweep_estimate.padded_average(),
6369                                       _intra_sweep_estimate.padded_average());
6370   gen->setNearLargestChunk();
6371 
6372   {
6373     SweepClosure sweepClosure(this, gen, &_markBitMap,
6374                             CMSYield && asynch);
6375     gen->cmsSpace()->blk_iterate_careful(&sweepClosure);
6376     // We need to free-up/coalesce garbage/blocks from a
6377     // co-terminal free run. This is done in the SweepClosure
6378     // destructor; so, do not remove this scope, else the
6379     // end-of-sweep-census below will be off by a little bit.
6380   }
6381   gen->cmsSpace()->sweep_completed();
6382   gen->cmsSpace()->endSweepFLCensus(sweep_count());
6383   if (should_unload_classes()) {                // unloaded classes this cycle,
6384     _concurrent_cycles_since_last_unload = 0;   // ... reset count
6385   } else {                                      // did not unload classes,
6386     _concurrent_cycles_since_last_unload++;     // ... increment count
6387   }
6388 }
6389 
6390 // Reset CMS data structures (for now just the marking bit map)
6391 // preparatory for the next cycle.
6392 void CMSCollector::reset(bool asynch) {
6393   GenCollectedHeap* gch = GenCollectedHeap::heap();
6394   CMSAdaptiveSizePolicy* sp = size_policy();
6395   AdaptiveSizePolicyOutput(sp, gch->total_collections());
6396   if (asynch) {
6397     CMSTokenSyncWithLocks ts(true, bitMapLock());
6398 
6399     // If the state is not "Resetting", the foreground  thread
6400     // has done a collection and the resetting.
6401     if (_collectorState != Resetting) {
6402       assert(_collectorState == Idling, "The state should only change"
6403         " because the foreground collector has finished the collection");
6404       return;
6405     }
6406 
6407     // Clear the mark bitmap (no grey objects to start with)
6408     // for the next cycle.
6409     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
6410     CMSPhaseAccounting cmspa(this, "reset", !PrintGCDetails);
6411 
6412     HeapWord* curAddr = _markBitMap.startWord();
6413     while (curAddr < _markBitMap.endWord()) {
6414       size_t remaining  = pointer_delta(_markBitMap.endWord(), curAddr);
6415       MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining));
6416       _markBitMap.clear_large_range(chunk);
6417       if (ConcurrentMarkSweepThread::should_yield() &&
6418           !foregroundGCIsActive() &&
6419           CMSYield) {
6420         assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6421                "CMS thread should hold CMS token");
6422         assert_lock_strong(bitMapLock());
6423         bitMapLock()->unlock();
6424         ConcurrentMarkSweepThread::desynchronize(true);
6425         ConcurrentMarkSweepThread::acknowledge_yield_request();
6426         stopTimer();
6427         if (PrintCMSStatistics != 0) {
6428           incrementYields();
6429         }
6430         icms_wait();
6431 
6432         // See the comment in coordinator_yield()
6433         for (unsigned i = 0; i < CMSYieldSleepCount &&
6434                          ConcurrentMarkSweepThread::should_yield() &&
6435                          !CMSCollector::foregroundGCIsActive(); ++i) {
6436           os::sleep(Thread::current(), 1, false);
6437           ConcurrentMarkSweepThread::acknowledge_yield_request();
6438         }
6439 
6440         ConcurrentMarkSweepThread::synchronize(true);
6441         bitMapLock()->lock_without_safepoint_check();
6442         startTimer();
6443       }
6444       curAddr = chunk.end();
6445     }
6446     // A successful mostly concurrent collection has been done.
6447     // Because only the full (i.e., concurrent mode failure) collections
6448     // are being measured for gc overhead limits, clean the "near" flag
6449     // and count.
6450     sp->reset_gc_overhead_limit_count();
6451     _collectorState = Idling;
6452   } else {
6453     // already have the lock
6454     assert(_collectorState == Resetting, "just checking");
6455     assert_lock_strong(bitMapLock());
6456     _markBitMap.clear_all();
6457     _collectorState = Idling;
6458   }
6459 
6460   // Stop incremental mode after a cycle completes, so that any future cycles
6461   // are triggered by allocation.
6462   stop_icms();
6463 
6464   NOT_PRODUCT(
6465     if (RotateCMSCollectionTypes) {
6466       _cmsGen->rotate_debug_collection_type();
6467     }
6468   )
6469 
6470   register_gc_end();
6471 }
6472 
6473 void CMSCollector::do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause) {
6474   gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
6475   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
6476   GCTraceTime t(GCCauseString("GC", gc_cause), PrintGC, !PrintGCDetails, NULL);
6477   TraceCollectorStats tcs(counters());
6478 
6479   switch (op) {
6480     case CMS_op_checkpointRootsInitial: {
6481       SvcGCMarker sgcm(SvcGCMarker::OTHER);
6482       checkpointRootsInitial(true);       // asynch
6483       if (PrintGC) {
6484         _cmsGen->printOccupancy("initial-mark");
6485       }
6486       break;
6487     }
6488     case CMS_op_checkpointRootsFinal: {
6489       SvcGCMarker sgcm(SvcGCMarker::OTHER);
6490       checkpointRootsFinal(true,    // asynch
6491                            false,   // !clear_all_soft_refs
6492                            false);  // !init_mark_was_synchronous
6493       if (PrintGC) {
6494         _cmsGen->printOccupancy("remark");
6495       }
6496       break;
6497     }
6498     default:
6499       fatal("No such CMS_op");
6500   }
6501 }
6502 
6503 #ifndef PRODUCT
6504 size_t const CMSCollector::skip_header_HeapWords() {
6505   return FreeChunk::header_size();
6506 }
6507 
6508 // Try and collect here conditions that should hold when
6509 // CMS thread is exiting. The idea is that the foreground GC
6510 // thread should not be blocked if it wants to terminate
6511 // the CMS thread and yet continue to run the VM for a while
6512 // after that.
6513 void CMSCollector::verify_ok_to_terminate() const {
6514   assert(Thread::current()->is_ConcurrentGC_thread(),
6515          "should be called by CMS thread");
6516   assert(!_foregroundGCShouldWait, "should be false");
6517   // We could check here that all the various low-level locks
6518   // are not held by the CMS thread, but that is overkill; see
6519   // also CMSThread::verify_ok_to_terminate() where the CGC_lock
6520   // is checked.
6521 }
6522 #endif
6523 
6524 size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const {
6525    assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1),
6526           "missing Printezis mark?");
6527   HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
6528   size_t size = pointer_delta(nextOneAddr + 1, addr);
6529   assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6530          "alignment problem");
6531   assert(size >= 3, "Necessary for Printezis marks to work");
6532   return size;
6533 }
6534 
6535 // A variant of the above (block_size_using_printezis_bits()) except
6536 // that we return 0 if the P-bits are not yet set.
6537 size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const {
6538   if (_markBitMap.isMarked(addr + 1)) {
6539     assert(_markBitMap.isMarked(addr), "P-bit can be set only for marked objects");
6540     HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
6541     size_t size = pointer_delta(nextOneAddr + 1, addr);
6542     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6543            "alignment problem");
6544     assert(size >= 3, "Necessary for Printezis marks to work");
6545     return size;
6546   }
6547   return 0;
6548 }
6549 
6550 HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const {
6551   size_t sz = 0;
6552   oop p = (oop)addr;
6553   if (p->klass_or_null() != NULL) {
6554     sz = CompactibleFreeListSpace::adjustObjectSize(p->size());
6555   } else {
6556     sz = block_size_using_printezis_bits(addr);
6557   }
6558   assert(sz > 0, "size must be nonzero");
6559   HeapWord* next_block = addr + sz;
6560   HeapWord* next_card  = (HeapWord*)round_to((uintptr_t)next_block,
6561                                              CardTableModRefBS::card_size);
6562   assert(round_down((uintptr_t)addr,      CardTableModRefBS::card_size) <
6563          round_down((uintptr_t)next_card, CardTableModRefBS::card_size),
6564          "must be different cards");
6565   return next_card;
6566 }
6567 
6568 
6569 // CMS Bit Map Wrapper /////////////////////////////////////////
6570 
6571 // Construct a CMS bit map infrastructure, but don't create the
6572 // bit vector itself. That is done by a separate call CMSBitMap::allocate()
6573 // further below.
6574 CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name):
6575   _bm(),
6576   _shifter(shifter),
6577   _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true) : NULL)
6578 {
6579   _bmStartWord = 0;
6580   _bmWordSize  = 0;
6581 }
6582 
6583 bool CMSBitMap::allocate(MemRegion mr) {
6584   _bmStartWord = mr.start();
6585   _bmWordSize  = mr.word_size();
6586   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
6587                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
6588   if (!brs.is_reserved()) {
6589     warning("CMS bit map allocation failure");
6590     return false;
6591   }
6592   // For now we'll just commit all of the bit map up fromt.
6593   // Later on we'll try to be more parsimonious with swap.
6594   if (!_virtual_space.initialize(brs, brs.size())) {
6595     warning("CMS bit map backing store failure");
6596     return false;
6597   }
6598   assert(_virtual_space.committed_size() == brs.size(),
6599          "didn't reserve backing store for all of CMS bit map?");
6600   _bm.set_map((BitMap::bm_word_t*)_virtual_space.low());
6601   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
6602          _bmWordSize, "inconsistency in bit map sizing");
6603   _bm.set_size(_bmWordSize >> _shifter);
6604 
6605   // bm.clear(); // can we rely on getting zero'd memory? verify below
6606   assert(isAllClear(),
6607          "Expected zero'd memory from ReservedSpace constructor");
6608   assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()),
6609          "consistency check");
6610   return true;
6611 }
6612 
6613 void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) {
6614   HeapWord *next_addr, *end_addr, *last_addr;
6615   assert_locked();
6616   assert(covers(mr), "out-of-range error");
6617   // XXX assert that start and end are appropriately aligned
6618   for (next_addr = mr.start(), end_addr = mr.end();
6619        next_addr < end_addr; next_addr = last_addr) {
6620     MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr);
6621     last_addr = dirty_region.end();
6622     if (!dirty_region.is_empty()) {
6623       cl->do_MemRegion(dirty_region);
6624     } else {
6625       assert(last_addr == end_addr, "program logic");
6626       return;
6627     }
6628   }
6629 }
6630 
6631 void CMSBitMap::print_on_error(outputStream* st, const char* prefix) const {
6632   _bm.print_on_error(st, prefix);
6633 }
6634 
6635 #ifndef PRODUCT
6636 void CMSBitMap::assert_locked() const {
6637   CMSLockVerifier::assert_locked(lock());
6638 }
6639 
6640 bool CMSBitMap::covers(MemRegion mr) const {
6641   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
6642   assert((size_t)_bm.size() == (_bmWordSize >> _shifter),
6643          "size inconsistency");
6644   return (mr.start() >= _bmStartWord) &&
6645          (mr.end()   <= endWord());
6646 }
6647 
6648 bool CMSBitMap::covers(HeapWord* start, size_t size) const {
6649     return (start >= _bmStartWord && (start + size) <= endWord());
6650 }
6651 
6652 void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) {
6653   // verify that there are no 1 bits in the interval [left, right)
6654   FalseBitMapClosure falseBitMapClosure;
6655   iterate(&falseBitMapClosure, left, right);
6656 }
6657 
6658 void CMSBitMap::region_invariant(MemRegion mr)
6659 {
6660   assert_locked();
6661   // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
6662   assert(!mr.is_empty(), "unexpected empty region");
6663   assert(covers(mr), "mr should be covered by bit map");
6664   // convert address range into offset range
6665   size_t start_ofs = heapWordToOffset(mr.start());
6666   // Make sure that end() is appropriately aligned
6667   assert(mr.end() == (HeapWord*)round_to((intptr_t)mr.end(),
6668                         (1 << (_shifter+LogHeapWordSize))),
6669          "Misaligned mr.end()");
6670   size_t end_ofs   = heapWordToOffset(mr.end());
6671   assert(end_ofs > start_ofs, "Should mark at least one bit");
6672 }
6673 
6674 #endif
6675 
6676 bool CMSMarkStack::allocate(size_t size) {
6677   // allocate a stack of the requisite depth
6678   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
6679                    size * sizeof(oop)));
6680   if (!rs.is_reserved()) {
6681     warning("CMSMarkStack allocation failure");
6682     return false;
6683   }
6684   if (!_virtual_space.initialize(rs, rs.size())) {
6685     warning("CMSMarkStack backing store failure");
6686     return false;
6687   }
6688   assert(_virtual_space.committed_size() == rs.size(),
6689          "didn't reserve backing store for all of CMS stack?");
6690   _base = (oop*)(_virtual_space.low());
6691   _index = 0;
6692   _capacity = size;
6693   NOT_PRODUCT(_max_depth = 0);
6694   return true;
6695 }
6696 
6697 // XXX FIX ME !!! In the MT case we come in here holding a
6698 // leaf lock. For printing we need to take a further lock
6699 // which has lower rank. We need to recallibrate the two
6700 // lock-ranks involved in order to be able to rpint the
6701 // messages below. (Or defer the printing to the caller.
6702 // For now we take the expedient path of just disabling the
6703 // messages for the problematic case.)
6704 void CMSMarkStack::expand() {
6705   assert(_capacity <= MarkStackSizeMax, "stack bigger than permitted");
6706   if (_capacity == MarkStackSizeMax) {
6707     if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
6708       // We print a warning message only once per CMS cycle.
6709       gclog_or_tty->print_cr(" (benign) Hit CMSMarkStack max size limit");
6710     }
6711     return;
6712   }
6713   // Double capacity if possible
6714   size_t new_capacity = MIN2(_capacity*2, MarkStackSizeMax);
6715   // Do not give up existing stack until we have managed to
6716   // get the double capacity that we desired.
6717   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
6718                    new_capacity * sizeof(oop)));
6719   if (rs.is_reserved()) {
6720     // Release the backing store associated with old stack
6721     _virtual_space.release();
6722     // Reinitialize virtual space for new stack
6723     if (!_virtual_space.initialize(rs, rs.size())) {
6724       fatal("Not enough swap for expanded marking stack");
6725     }
6726     _base = (oop*)(_virtual_space.low());
6727     _index = 0;
6728     _capacity = new_capacity;
6729   } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
6730     // Failed to double capacity, continue;
6731     // we print a detail message only once per CMS cycle.
6732     gclog_or_tty->print(" (benign) Failed to expand marking stack from "SIZE_FORMAT"K to "
6733             SIZE_FORMAT"K",
6734             _capacity / K, new_capacity / K);
6735   }
6736 }
6737 
6738 
6739 // Closures
6740 // XXX: there seems to be a lot of code  duplication here;
6741 // should refactor and consolidate common code.
6742 
6743 // This closure is used to mark refs into the CMS generation in
6744 // the CMS bit map. Called at the first checkpoint. This closure
6745 // assumes that we do not need to re-mark dirty cards; if the CMS
6746 // generation on which this is used is not an oldest
6747 // generation then this will lose younger_gen cards!
6748 
6749 MarkRefsIntoClosure::MarkRefsIntoClosure(
6750   MemRegion span, CMSBitMap* bitMap):
6751     _span(span),
6752     _bitMap(bitMap)
6753 {
6754     assert(_ref_processor == NULL, "deliberately left NULL");
6755     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
6756 }
6757 
6758 void MarkRefsIntoClosure::do_oop(oop obj) {
6759   // if p points into _span, then mark corresponding bit in _markBitMap
6760   assert(obj->is_oop(), "expected an oop");
6761   HeapWord* addr = (HeapWord*)obj;
6762   if (_span.contains(addr)) {
6763     // this should be made more efficient
6764     _bitMap->mark(addr);
6765   }
6766 }
6767 
6768 void MarkRefsIntoClosure::do_oop(oop* p)       { MarkRefsIntoClosure::do_oop_work(p); }
6769 void MarkRefsIntoClosure::do_oop(narrowOop* p) { MarkRefsIntoClosure::do_oop_work(p); }
6770 
6771 // A variant of the above, used for CMS marking verification.
6772 MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure(
6773   MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm):
6774     _span(span),
6775     _verification_bm(verification_bm),
6776     _cms_bm(cms_bm)
6777 {
6778     assert(_ref_processor == NULL, "deliberately left NULL");
6779     assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch");
6780 }
6781 
6782 void MarkRefsIntoVerifyClosure::do_oop(oop obj) {
6783   // if p points into _span, then mark corresponding bit in _markBitMap
6784   assert(obj->is_oop(), "expected an oop");
6785   HeapWord* addr = (HeapWord*)obj;
6786   if (_span.contains(addr)) {
6787     _verification_bm->mark(addr);
6788     if (!_cms_bm->isMarked(addr)) {
6789       oop(addr)->print();
6790       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)", addr);
6791       fatal("... aborting");
6792     }
6793   }
6794 }
6795 
6796 void MarkRefsIntoVerifyClosure::do_oop(oop* p)       { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6797 void MarkRefsIntoVerifyClosure::do_oop(narrowOop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6798 
6799 //////////////////////////////////////////////////
6800 // MarkRefsIntoAndScanClosure
6801 //////////////////////////////////////////////////
6802 
6803 MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span,
6804                                                        ReferenceProcessor* rp,
6805                                                        CMSBitMap* bit_map,
6806                                                        CMSBitMap* mod_union_table,
6807                                                        CMSMarkStack*  mark_stack,
6808                                                        CMSCollector* collector,
6809                                                        bool should_yield,
6810                                                        bool concurrent_precleaning):
6811   _collector(collector),
6812   _span(span),
6813   _bit_map(bit_map),
6814   _mark_stack(mark_stack),
6815   _pushAndMarkClosure(collector, span, rp, bit_map, mod_union_table,
6816                       mark_stack, concurrent_precleaning),
6817   _yield(should_yield),
6818   _concurrent_precleaning(concurrent_precleaning),
6819   _freelistLock(NULL)
6820 {
6821   _ref_processor = rp;
6822   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
6823 }
6824 
6825 // This closure is used to mark refs into the CMS generation at the
6826 // second (final) checkpoint, and to scan and transitively follow
6827 // the unmarked oops. It is also used during the concurrent precleaning
6828 // phase while scanning objects on dirty cards in the CMS generation.
6829 // The marks are made in the marking bit map and the marking stack is
6830 // used for keeping the (newly) grey objects during the scan.
6831 // The parallel version (Par_...) appears further below.
6832 void MarkRefsIntoAndScanClosure::do_oop(oop obj) {
6833   if (obj != NULL) {
6834     assert(obj->is_oop(), "expected an oop");
6835     HeapWord* addr = (HeapWord*)obj;
6836     assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6837     assert(_collector->overflow_list_is_empty(),
6838            "overflow list should be empty");
6839     if (_span.contains(addr) &&
6840         !_bit_map->isMarked(addr)) {
6841       // mark bit map (object is now grey)
6842       _bit_map->mark(addr);
6843       // push on marking stack (stack should be empty), and drain the
6844       // stack by applying this closure to the oops in the oops popped
6845       // from the stack (i.e. blacken the grey objects)
6846       bool res = _mark_stack->push(obj);
6847       assert(res, "Should have space to push on empty stack");
6848       do {
6849         oop new_oop = _mark_stack->pop();
6850         assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
6851         assert(_bit_map->isMarked((HeapWord*)new_oop),
6852                "only grey objects on this stack");
6853         // iterate over the oops in this oop, marking and pushing
6854         // the ones in CMS heap (i.e. in _span).
6855         new_oop->oop_iterate(&_pushAndMarkClosure);
6856         // check if it's time to yield
6857         do_yield_check();
6858       } while (!_mark_stack->isEmpty() ||
6859                (!_concurrent_precleaning && take_from_overflow_list()));
6860         // if marking stack is empty, and we are not doing this
6861         // during precleaning, then check the overflow list
6862     }
6863     assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
6864     assert(_collector->overflow_list_is_empty(),
6865            "overflow list was drained above");
6866     // We could restore evacuated mark words, if any, used for
6867     // overflow list links here because the overflow list is
6868     // provably empty here. That would reduce the maximum
6869     // size requirements for preserved_{oop,mark}_stack.
6870     // But we'll just postpone it until we are all done
6871     // so we can just stream through.
6872     if (!_concurrent_precleaning && CMSOverflowEarlyRestoration) {
6873       _collector->restore_preserved_marks_if_any();
6874       assert(_collector->no_preserved_marks(), "No preserved marks");
6875     }
6876     assert(!CMSOverflowEarlyRestoration || _collector->no_preserved_marks(),
6877            "All preserved marks should have been restored above");
6878   }
6879 }
6880 
6881 void MarkRefsIntoAndScanClosure::do_oop(oop* p)       { MarkRefsIntoAndScanClosure::do_oop_work(p); }
6882 void MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); }
6883 
6884 void MarkRefsIntoAndScanClosure::do_yield_work() {
6885   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6886          "CMS thread should hold CMS token");
6887   assert_lock_strong(_freelistLock);
6888   assert_lock_strong(_bit_map->lock());
6889   // relinquish the free_list_lock and bitMaplock()
6890   _bit_map->lock()->unlock();
6891   _freelistLock->unlock();
6892   ConcurrentMarkSweepThread::desynchronize(true);
6893   ConcurrentMarkSweepThread::acknowledge_yield_request();
6894   _collector->stopTimer();
6895   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
6896   if (PrintCMSStatistics != 0) {
6897     _collector->incrementYields();
6898   }
6899   _collector->icms_wait();
6900 
6901   // See the comment in coordinator_yield()
6902   for (unsigned i = 0;
6903        i < CMSYieldSleepCount &&
6904        ConcurrentMarkSweepThread::should_yield() &&
6905        !CMSCollector::foregroundGCIsActive();
6906        ++i) {
6907     os::sleep(Thread::current(), 1, false);
6908     ConcurrentMarkSweepThread::acknowledge_yield_request();
6909   }
6910 
6911   ConcurrentMarkSweepThread::synchronize(true);
6912   _freelistLock->lock_without_safepoint_check();
6913   _bit_map->lock()->lock_without_safepoint_check();
6914   _collector->startTimer();
6915 }
6916 
6917 ///////////////////////////////////////////////////////////
6918 // Par_MarkRefsIntoAndScanClosure: a parallel version of
6919 //                                 MarkRefsIntoAndScanClosure
6920 ///////////////////////////////////////////////////////////
6921 Par_MarkRefsIntoAndScanClosure::Par_MarkRefsIntoAndScanClosure(
6922   CMSCollector* collector, MemRegion span, ReferenceProcessor* rp,
6923   CMSBitMap* bit_map, OopTaskQueue* work_queue):
6924   _span(span),
6925   _bit_map(bit_map),
6926   _work_queue(work_queue),
6927   _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
6928                        (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads))),
6929   _par_pushAndMarkClosure(collector, span, rp, bit_map, work_queue)
6930 {
6931   _ref_processor = rp;
6932   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
6933 }
6934 
6935 // This closure is used to mark refs into the CMS generation at the
6936 // second (final) checkpoint, and to scan and transitively follow
6937 // the unmarked oops. The marks are made in the marking bit map and
6938 // the work_queue is used for keeping the (newly) grey objects during
6939 // the scan phase whence they are also available for stealing by parallel
6940 // threads. Since the marking bit map is shared, updates are
6941 // synchronized (via CAS).
6942 void Par_MarkRefsIntoAndScanClosure::do_oop(oop obj) {
6943   if (obj != NULL) {
6944     // Ignore mark word because this could be an already marked oop
6945     // that may be chained at the end of the overflow list.
6946     assert(obj->is_oop(true), "expected an oop");
6947     HeapWord* addr = (HeapWord*)obj;
6948     if (_span.contains(addr) &&
6949         !_bit_map->isMarked(addr)) {
6950       // mark bit map (object will become grey):
6951       // It is possible for several threads to be
6952       // trying to "claim" this object concurrently;
6953       // the unique thread that succeeds in marking the
6954       // object first will do the subsequent push on
6955       // to the work queue (or overflow list).
6956       if (_bit_map->par_mark(addr)) {
6957         // push on work_queue (which may not be empty), and trim the
6958         // queue to an appropriate length by applying this closure to
6959         // the oops in the oops popped from the stack (i.e. blacken the
6960         // grey objects)
6961         bool res = _work_queue->push(obj);
6962         assert(res, "Low water mark should be less than capacity?");
6963         trim_queue(_low_water_mark);
6964       } // Else, another thread claimed the object
6965     }
6966   }
6967 }
6968 
6969 void Par_MarkRefsIntoAndScanClosure::do_oop(oop* p)       { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
6970 void Par_MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
6971 
6972 // This closure is used to rescan the marked objects on the dirty cards
6973 // in the mod union table and the card table proper.
6974 size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m(
6975   oop p, MemRegion mr) {
6976 
6977   size_t size = 0;
6978   HeapWord* addr = (HeapWord*)p;
6979   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6980   assert(_span.contains(addr), "we are scanning the CMS generation");
6981   // check if it's time to yield
6982   if (do_yield_check()) {
6983     // We yielded for some foreground stop-world work,
6984     // and we have been asked to abort this ongoing preclean cycle.
6985     return 0;
6986   }
6987   if (_bitMap->isMarked(addr)) {
6988     // it's marked; is it potentially uninitialized?
6989     if (p->klass_or_null() != NULL) {
6990         // an initialized object; ignore mark word in verification below
6991         // since we are running concurrent with mutators
6992         assert(p->is_oop(true), "should be an oop");
6993         if (p->is_objArray()) {
6994           // objArrays are precisely marked; restrict scanning
6995           // to dirty cards only.
6996           size = CompactibleFreeListSpace::adjustObjectSize(
6997                    p->oop_iterate(_scanningClosure, mr));
6998         } else {
6999           // A non-array may have been imprecisely marked; we need
7000           // to scan object in its entirety.
7001           size = CompactibleFreeListSpace::adjustObjectSize(
7002                    p->oop_iterate(_scanningClosure));
7003         }
7004         #ifdef ASSERT
7005           size_t direct_size =
7006             CompactibleFreeListSpace::adjustObjectSize(p->size());
7007           assert(size == direct_size, "Inconsistency in size");
7008           assert(size >= 3, "Necessary for Printezis marks to work");
7009           if (!_bitMap->isMarked(addr+1)) {
7010             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size);
7011           } else {
7012             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size-1);
7013             assert(_bitMap->isMarked(addr+size-1),
7014                    "inconsistent Printezis mark");
7015           }
7016         #endif // ASSERT
7017     } else {
7018       // an unitialized object
7019       assert(_bitMap->isMarked(addr+1), "missing Printezis mark?");
7020       HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
7021       size = pointer_delta(nextOneAddr + 1, addr);
7022       assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
7023              "alignment problem");
7024       // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass()
7025       // will dirty the card when the klass pointer is installed in the
7026       // object (signalling the completion of initialization).
7027     }
7028   } else {
7029     // Either a not yet marked object or an uninitialized object
7030     if (p->klass_or_null() == NULL) {
7031       // An uninitialized object, skip to the next card, since
7032       // we may not be able to read its P-bits yet.
7033       assert(size == 0, "Initial value");
7034     } else {
7035       // An object not (yet) reached by marking: we merely need to
7036       // compute its size so as to go look at the next block.
7037       assert(p->is_oop(true), "should be an oop");
7038       size = CompactibleFreeListSpace::adjustObjectSize(p->size());
7039     }
7040   }
7041   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
7042   return size;
7043 }
7044 
7045 void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
7046   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7047          "CMS thread should hold CMS token");
7048   assert_lock_strong(_freelistLock);
7049   assert_lock_strong(_bitMap->lock());
7050   // relinquish the free_list_lock and bitMaplock()
7051   _bitMap->lock()->unlock();
7052   _freelistLock->unlock();
7053   ConcurrentMarkSweepThread::desynchronize(true);
7054   ConcurrentMarkSweepThread::acknowledge_yield_request();
7055   _collector->stopTimer();
7056   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
7057   if (PrintCMSStatistics != 0) {
7058     _collector->incrementYields();
7059   }
7060   _collector->icms_wait();
7061 
7062   // See the comment in coordinator_yield()
7063   for (unsigned i = 0; i < CMSYieldSleepCount &&
7064                    ConcurrentMarkSweepThread::should_yield() &&
7065                    !CMSCollector::foregroundGCIsActive(); ++i) {
7066     os::sleep(Thread::current(), 1, false);
7067     ConcurrentMarkSweepThread::acknowledge_yield_request();
7068   }
7069 
7070   ConcurrentMarkSweepThread::synchronize(true);
7071   _freelistLock->lock_without_safepoint_check();
7072   _bitMap->lock()->lock_without_safepoint_check();
7073   _collector->startTimer();
7074 }
7075 
7076 
7077 //////////////////////////////////////////////////////////////////
7078 // SurvivorSpacePrecleanClosure
7079 //////////////////////////////////////////////////////////////////
7080 // This (single-threaded) closure is used to preclean the oops in
7081 // the survivor spaces.
7082 size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) {
7083 
7084   HeapWord* addr = (HeapWord*)p;
7085   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
7086   assert(!_span.contains(addr), "we are scanning the survivor spaces");
7087   assert(p->klass_or_null() != NULL, "object should be initializd");
7088   // an initialized object; ignore mark word in verification below
7089   // since we are running concurrent with mutators
7090   assert(p->is_oop(true), "should be an oop");
7091   // Note that we do not yield while we iterate over
7092   // the interior oops of p, pushing the relevant ones
7093   // on our marking stack.
7094   size_t size = p->oop_iterate(_scanning_closure);
7095   do_yield_check();
7096   // Observe that below, we do not abandon the preclean
7097   // phase as soon as we should; rather we empty the
7098   // marking stack before returning. This is to satisfy
7099   // some existing assertions. In general, it may be a
7100   // good idea to abort immediately and complete the marking
7101   // from the grey objects at a later time.
7102   while (!_mark_stack->isEmpty()) {
7103     oop new_oop = _mark_stack->pop();
7104     assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
7105     assert(_bit_map->isMarked((HeapWord*)new_oop),
7106            "only grey objects on this stack");
7107     // iterate over the oops in this oop, marking and pushing
7108     // the ones in CMS heap (i.e. in _span).
7109     new_oop->oop_iterate(_scanning_closure);
7110     // check if it's time to yield
7111     do_yield_check();
7112   }
7113   unsigned int after_count =
7114     GenCollectedHeap::heap()->total_collections();
7115   bool abort = (_before_count != after_count) ||
7116                _collector->should_abort_preclean();
7117   return abort ? 0 : size;
7118 }
7119 
7120 void SurvivorSpacePrecleanClosure::do_yield_work() {
7121   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7122          "CMS thread should hold CMS token");
7123   assert_lock_strong(_bit_map->lock());
7124   // Relinquish the bit map lock
7125   _bit_map->lock()->unlock();
7126   ConcurrentMarkSweepThread::desynchronize(true);
7127   ConcurrentMarkSweepThread::acknowledge_yield_request();
7128   _collector->stopTimer();
7129   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
7130   if (PrintCMSStatistics != 0) {
7131     _collector->incrementYields();
7132   }
7133   _collector->icms_wait();
7134 
7135   // See the comment in coordinator_yield()
7136   for (unsigned i = 0; i < CMSYieldSleepCount &&
7137                        ConcurrentMarkSweepThread::should_yield() &&
7138                        !CMSCollector::foregroundGCIsActive(); ++i) {
7139     os::sleep(Thread::current(), 1, false);
7140     ConcurrentMarkSweepThread::acknowledge_yield_request();
7141   }
7142 
7143   ConcurrentMarkSweepThread::synchronize(true);
7144   _bit_map->lock()->lock_without_safepoint_check();
7145   _collector->startTimer();
7146 }
7147 
7148 // This closure is used to rescan the marked objects on the dirty cards
7149 // in the mod union table and the card table proper. In the parallel
7150 // case, although the bitMap is shared, we do a single read so the
7151 // isMarked() query is "safe".
7152 bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) {
7153   // Ignore mark word because we are running concurrent with mutators
7154   assert(p->is_oop_or_null(true), "expected an oop or null");
7155   HeapWord* addr = (HeapWord*)p;
7156   assert(_span.contains(addr), "we are scanning the CMS generation");
7157   bool is_obj_array = false;
7158   #ifdef ASSERT
7159     if (!_parallel) {
7160       assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
7161       assert(_collector->overflow_list_is_empty(),
7162              "overflow list should be empty");
7163 
7164     }
7165   #endif // ASSERT
7166   if (_bit_map->isMarked(addr)) {
7167     // Obj arrays are precisely marked, non-arrays are not;
7168     // so we scan objArrays precisely and non-arrays in their
7169     // entirety.
7170     if (p->is_objArray()) {
7171       is_obj_array = true;
7172       if (_parallel) {
7173         p->oop_iterate(_par_scan_closure, mr);
7174       } else {
7175         p->oop_iterate(_scan_closure, mr);
7176       }
7177     } else {
7178       if (_parallel) {
7179         p->oop_iterate(_par_scan_closure);
7180       } else {
7181         p->oop_iterate(_scan_closure);
7182       }
7183     }
7184   }
7185   #ifdef ASSERT
7186     if (!_parallel) {
7187       assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
7188       assert(_collector->overflow_list_is_empty(),
7189              "overflow list should be empty");
7190 
7191     }
7192   #endif // ASSERT
7193   return is_obj_array;
7194 }
7195 
7196 MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector,
7197                         MemRegion span,
7198                         CMSBitMap* bitMap, CMSMarkStack*  markStack,
7199                         bool should_yield, bool verifying):
7200   _collector(collector),
7201   _span(span),
7202   _bitMap(bitMap),
7203   _mut(&collector->_modUnionTable),
7204   _markStack(markStack),
7205   _yield(should_yield),
7206   _skipBits(0)
7207 {
7208   assert(_markStack->isEmpty(), "stack should be empty");
7209   _finger = _bitMap->startWord();
7210   _threshold = _finger;
7211   assert(_collector->_restart_addr == NULL, "Sanity check");
7212   assert(_span.contains(_finger), "Out of bounds _finger?");
7213   DEBUG_ONLY(_verifying = verifying;)
7214 }
7215 
7216 void MarkFromRootsClosure::reset(HeapWord* addr) {
7217   assert(_markStack->isEmpty(), "would cause duplicates on stack");
7218   assert(_span.contains(addr), "Out of bounds _finger?");
7219   _finger = addr;
7220   _threshold = (HeapWord*)round_to(
7221                  (intptr_t)_finger, CardTableModRefBS::card_size);
7222 }
7223 
7224 // Should revisit to see if this should be restructured for
7225 // greater efficiency.
7226 bool MarkFromRootsClosure::do_bit(size_t offset) {
7227   if (_skipBits > 0) {
7228     _skipBits--;
7229     return true;
7230   }
7231   // convert offset into a HeapWord*
7232   HeapWord* addr = _bitMap->startWord() + offset;
7233   assert(_bitMap->endWord() && addr < _bitMap->endWord(),
7234          "address out of range");
7235   assert(_bitMap->isMarked(addr), "tautology");
7236   if (_bitMap->isMarked(addr+1)) {
7237     // this is an allocated but not yet initialized object
7238     assert(_skipBits == 0, "tautology");
7239     _skipBits = 2;  // skip next two marked bits ("Printezis-marks")
7240     oop p = oop(addr);
7241     if (p->klass_or_null() == NULL) {
7242       DEBUG_ONLY(if (!_verifying) {)
7243         // We re-dirty the cards on which this object lies and increase
7244         // the _threshold so that we'll come back to scan this object
7245         // during the preclean or remark phase. (CMSCleanOnEnter)
7246         if (CMSCleanOnEnter) {
7247           size_t sz = _collector->block_size_using_printezis_bits(addr);
7248           HeapWord* end_card_addr   = (HeapWord*)round_to(
7249                                          (intptr_t)(addr+sz), CardTableModRefBS::card_size);
7250           MemRegion redirty_range = MemRegion(addr, end_card_addr);
7251           assert(!redirty_range.is_empty(), "Arithmetical tautology");
7252           // Bump _threshold to end_card_addr; note that
7253           // _threshold cannot possibly exceed end_card_addr, anyhow.
7254           // This prevents future clearing of the card as the scan proceeds
7255           // to the right.
7256           assert(_threshold <= end_card_addr,
7257                  "Because we are just scanning into this object");
7258           if (_threshold < end_card_addr) {
7259             _threshold = end_card_addr;
7260           }
7261           if (p->klass_or_null() != NULL) {
7262             // Redirty the range of cards...
7263             _mut->mark_range(redirty_range);
7264           } // ...else the setting of klass will dirty the card anyway.
7265         }
7266       DEBUG_ONLY(})
7267       return true;
7268     }
7269   }
7270   scanOopsInOop(addr);
7271   return true;
7272 }
7273 
7274 // We take a break if we've been at this for a while,
7275 // so as to avoid monopolizing the locks involved.
7276 void MarkFromRootsClosure::do_yield_work() {
7277   // First give up the locks, then yield, then re-lock
7278   // We should probably use a constructor/destructor idiom to
7279   // do this unlock/lock or modify the MutexUnlocker class to
7280   // serve our purpose. XXX
7281   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7282          "CMS thread should hold CMS token");
7283   assert_lock_strong(_bitMap->lock());
7284   _bitMap->lock()->unlock();
7285   ConcurrentMarkSweepThread::desynchronize(true);
7286   ConcurrentMarkSweepThread::acknowledge_yield_request();
7287   _collector->stopTimer();
7288   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
7289   if (PrintCMSStatistics != 0) {
7290     _collector->incrementYields();
7291   }
7292   _collector->icms_wait();
7293 
7294   // See the comment in coordinator_yield()
7295   for (unsigned i = 0; i < CMSYieldSleepCount &&
7296                        ConcurrentMarkSweepThread::should_yield() &&
7297                        !CMSCollector::foregroundGCIsActive(); ++i) {
7298     os::sleep(Thread::current(), 1, false);
7299     ConcurrentMarkSweepThread::acknowledge_yield_request();
7300   }
7301 
7302   ConcurrentMarkSweepThread::synchronize(true);
7303   _bitMap->lock()->lock_without_safepoint_check();
7304   _collector->startTimer();
7305 }
7306 
7307 void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) {
7308   assert(_bitMap->isMarked(ptr), "expected bit to be set");
7309   assert(_markStack->isEmpty(),
7310          "should drain stack to limit stack usage");
7311   // convert ptr to an oop preparatory to scanning
7312   oop obj = oop(ptr);
7313   // Ignore mark word in verification below, since we
7314   // may be running concurrent with mutators.
7315   assert(obj->is_oop(true), "should be an oop");
7316   assert(_finger <= ptr, "_finger runneth ahead");
7317   // advance the finger to right end of this object
7318   _finger = ptr + obj->size();
7319   assert(_finger > ptr, "we just incremented it above");
7320   // On large heaps, it may take us some time to get through
7321   // the marking phase (especially if running iCMS). During
7322   // this time it's possible that a lot of mutations have
7323   // accumulated in the card table and the mod union table --
7324   // these mutation records are redundant until we have
7325   // actually traced into the corresponding card.
7326   // Here, we check whether advancing the finger would make
7327   // us cross into a new card, and if so clear corresponding
7328   // cards in the MUT (preclean them in the card-table in the
7329   // future).
7330 
7331   DEBUG_ONLY(if (!_verifying) {)
7332     // The clean-on-enter optimization is disabled by default,
7333     // until we fix 6178663.
7334     if (CMSCleanOnEnter && (_finger > _threshold)) {
7335       // [_threshold, _finger) represents the interval
7336       // of cards to be cleared  in MUT (or precleaned in card table).
7337       // The set of cards to be cleared is all those that overlap
7338       // with the interval [_threshold, _finger); note that
7339       // _threshold is always kept card-aligned but _finger isn't
7340       // always card-aligned.
7341       HeapWord* old_threshold = _threshold;
7342       assert(old_threshold == (HeapWord*)round_to(
7343               (intptr_t)old_threshold, CardTableModRefBS::card_size),
7344              "_threshold should always be card-aligned");
7345       _threshold = (HeapWord*)round_to(
7346                      (intptr_t)_finger, CardTableModRefBS::card_size);
7347       MemRegion mr(old_threshold, _threshold);
7348       assert(!mr.is_empty(), "Control point invariant");
7349       assert(_span.contains(mr), "Should clear within span");
7350       _mut->clear_range(mr);
7351     }
7352   DEBUG_ONLY(})
7353   // Note: the finger doesn't advance while we drain
7354   // the stack below.
7355   PushOrMarkClosure pushOrMarkClosure(_collector,
7356                                       _span, _bitMap, _markStack,
7357                                       _finger, this);
7358   bool res = _markStack->push(obj);
7359   assert(res, "Empty non-zero size stack should have space for single push");
7360   while (!_markStack->isEmpty()) {
7361     oop new_oop = _markStack->pop();
7362     // Skip verifying header mark word below because we are
7363     // running concurrent with mutators.
7364     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
7365     // now scan this oop's oops
7366     new_oop->oop_iterate(&pushOrMarkClosure);
7367     do_yield_check();
7368   }
7369   assert(_markStack->isEmpty(), "tautology, emphasizing post-condition");
7370 }
7371 
7372 Par_MarkFromRootsClosure::Par_MarkFromRootsClosure(CMSConcMarkingTask* task,
7373                        CMSCollector* collector, MemRegion span,
7374                        CMSBitMap* bit_map,
7375                        OopTaskQueue* work_queue,
7376                        CMSMarkStack*  overflow_stack,
7377                        bool should_yield):
7378   _collector(collector),
7379   _whole_span(collector->_span),
7380   _span(span),
7381   _bit_map(bit_map),
7382   _mut(&collector->_modUnionTable),
7383   _work_queue(work_queue),
7384   _overflow_stack(overflow_stack),
7385   _yield(should_yield),
7386   _skip_bits(0),
7387   _task(task)
7388 {
7389   assert(_work_queue->size() == 0, "work_queue should be empty");
7390   _finger = span.start();
7391   _threshold = _finger;     // XXX Defer clear-on-enter optimization for now
7392   assert(_span.contains(_finger), "Out of bounds _finger?");
7393 }
7394 
7395 // Should revisit to see if this should be restructured for
7396 // greater efficiency.
7397 bool Par_MarkFromRootsClosure::do_bit(size_t offset) {
7398   if (_skip_bits > 0) {
7399     _skip_bits--;
7400     return true;
7401   }
7402   // convert offset into a HeapWord*
7403   HeapWord* addr = _bit_map->startWord() + offset;
7404   assert(_bit_map->endWord() && addr < _bit_map->endWord(),
7405          "address out of range");
7406   assert(_bit_map->isMarked(addr), "tautology");
7407   if (_bit_map->isMarked(addr+1)) {
7408     // this is an allocated object that might not yet be initialized
7409     assert(_skip_bits == 0, "tautology");
7410     _skip_bits = 2;  // skip next two marked bits ("Printezis-marks")
7411     oop p = oop(addr);
7412     if (p->klass_or_null() == NULL) {
7413       // in the case of Clean-on-Enter optimization, redirty card
7414       // and avoid clearing card by increasing  the threshold.
7415       return true;
7416     }
7417   }
7418   scan_oops_in_oop(addr);
7419   return true;
7420 }
7421 
7422 void Par_MarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) {
7423   assert(_bit_map->isMarked(ptr), "expected bit to be set");
7424   // Should we assert that our work queue is empty or
7425   // below some drain limit?
7426   assert(_work_queue->size() == 0,
7427          "should drain stack to limit stack usage");
7428   // convert ptr to an oop preparatory to scanning
7429   oop obj = oop(ptr);
7430   // Ignore mark word in verification below, since we
7431   // may be running concurrent with mutators.
7432   assert(obj->is_oop(true), "should be an oop");
7433   assert(_finger <= ptr, "_finger runneth ahead");
7434   // advance the finger to right end of this object
7435   _finger = ptr + obj->size();
7436   assert(_finger > ptr, "we just incremented it above");
7437   // On large heaps, it may take us some time to get through
7438   // the marking phase (especially if running iCMS). During
7439   // this time it's possible that a lot of mutations have
7440   // accumulated in the card table and the mod union table --
7441   // these mutation records are redundant until we have
7442   // actually traced into the corresponding card.
7443   // Here, we check whether advancing the finger would make
7444   // us cross into a new card, and if so clear corresponding
7445   // cards in the MUT (preclean them in the card-table in the
7446   // future).
7447 
7448   // The clean-on-enter optimization is disabled by default,
7449   // until we fix 6178663.
7450   if (CMSCleanOnEnter && (_finger > _threshold)) {
7451     // [_threshold, _finger) represents the interval
7452     // of cards to be cleared  in MUT (or precleaned in card table).
7453     // The set of cards to be cleared is all those that overlap
7454     // with the interval [_threshold, _finger); note that
7455     // _threshold is always kept card-aligned but _finger isn't
7456     // always card-aligned.
7457     HeapWord* old_threshold = _threshold;
7458     assert(old_threshold == (HeapWord*)round_to(
7459             (intptr_t)old_threshold, CardTableModRefBS::card_size),
7460            "_threshold should always be card-aligned");
7461     _threshold = (HeapWord*)round_to(
7462                    (intptr_t)_finger, CardTableModRefBS::card_size);
7463     MemRegion mr(old_threshold, _threshold);
7464     assert(!mr.is_empty(), "Control point invariant");
7465     assert(_span.contains(mr), "Should clear within span"); // _whole_span ??
7466     _mut->clear_range(mr);
7467   }
7468 
7469   // Note: the local finger doesn't advance while we drain
7470   // the stack below, but the global finger sure can and will.
7471   HeapWord** gfa = _task->global_finger_addr();
7472   Par_PushOrMarkClosure pushOrMarkClosure(_collector,
7473                                       _span, _bit_map,
7474                                       _work_queue,
7475                                       _overflow_stack,
7476                                       _finger,
7477                                       gfa, this);
7478   bool res = _work_queue->push(obj);   // overflow could occur here
7479   assert(res, "Will hold once we use workqueues");
7480   while (true) {
7481     oop new_oop;
7482     if (!_work_queue->pop_local(new_oop)) {
7483       // We emptied our work_queue; check if there's stuff that can
7484       // be gotten from the overflow stack.
7485       if (CMSConcMarkingTask::get_work_from_overflow_stack(
7486             _overflow_stack, _work_queue)) {
7487         do_yield_check();
7488         continue;
7489       } else {  // done
7490         break;
7491       }
7492     }
7493     // Skip verifying header mark word below because we are
7494     // running concurrent with mutators.
7495     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
7496     // now scan this oop's oops
7497     new_oop->oop_iterate(&pushOrMarkClosure);
7498     do_yield_check();
7499   }
7500   assert(_work_queue->size() == 0, "tautology, emphasizing post-condition");
7501 }
7502 
7503 // Yield in response to a request from VM Thread or
7504 // from mutators.
7505 void Par_MarkFromRootsClosure::do_yield_work() {
7506   assert(_task != NULL, "sanity");
7507   _task->yield();
7508 }
7509 
7510 // A variant of the above used for verifying CMS marking work.
7511 MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector,
7512                         MemRegion span,
7513                         CMSBitMap* verification_bm, CMSBitMap* cms_bm,
7514                         CMSMarkStack*  mark_stack):
7515   _collector(collector),
7516   _span(span),
7517   _verification_bm(verification_bm),
7518   _cms_bm(cms_bm),
7519   _mark_stack(mark_stack),
7520   _pam_verify_closure(collector, span, verification_bm, cms_bm,
7521                       mark_stack)
7522 {
7523   assert(_mark_stack->isEmpty(), "stack should be empty");
7524   _finger = _verification_bm->startWord();
7525   assert(_collector->_restart_addr == NULL, "Sanity check");
7526   assert(_span.contains(_finger), "Out of bounds _finger?");
7527 }
7528 
7529 void MarkFromRootsVerifyClosure::reset(HeapWord* addr) {
7530   assert(_mark_stack->isEmpty(), "would cause duplicates on stack");
7531   assert(_span.contains(addr), "Out of bounds _finger?");
7532   _finger = addr;
7533 }
7534 
7535 // Should revisit to see if this should be restructured for
7536 // greater efficiency.
7537 bool MarkFromRootsVerifyClosure::do_bit(size_t offset) {
7538   // convert offset into a HeapWord*
7539   HeapWord* addr = _verification_bm->startWord() + offset;
7540   assert(_verification_bm->endWord() && addr < _verification_bm->endWord(),
7541          "address out of range");
7542   assert(_verification_bm->isMarked(addr), "tautology");
7543   assert(_cms_bm->isMarked(addr), "tautology");
7544 
7545   assert(_mark_stack->isEmpty(),
7546          "should drain stack to limit stack usage");
7547   // convert addr to an oop preparatory to scanning
7548   oop obj = oop(addr);
7549   assert(obj->is_oop(), "should be an oop");
7550   assert(_finger <= addr, "_finger runneth ahead");
7551   // advance the finger to right end of this object
7552   _finger = addr + obj->size();
7553   assert(_finger > addr, "we just incremented it above");
7554   // Note: the finger doesn't advance while we drain
7555   // the stack below.
7556   bool res = _mark_stack->push(obj);
7557   assert(res, "Empty non-zero size stack should have space for single push");
7558   while (!_mark_stack->isEmpty()) {
7559     oop new_oop = _mark_stack->pop();
7560     assert(new_oop->is_oop(), "Oops! expected to pop an oop");
7561     // now scan this oop's oops
7562     new_oop->oop_iterate(&_pam_verify_closure);
7563   }
7564   assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition");
7565   return true;
7566 }
7567 
7568 PushAndMarkVerifyClosure::PushAndMarkVerifyClosure(
7569   CMSCollector* collector, MemRegion span,
7570   CMSBitMap* verification_bm, CMSBitMap* cms_bm,
7571   CMSMarkStack*  mark_stack):
7572   CMSOopClosure(collector->ref_processor()),
7573   _collector(collector),
7574   _span(span),
7575   _verification_bm(verification_bm),
7576   _cms_bm(cms_bm),
7577   _mark_stack(mark_stack)
7578 { }
7579 
7580 void PushAndMarkVerifyClosure::do_oop(oop* p)       { PushAndMarkVerifyClosure::do_oop_work(p); }
7581 void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); }
7582 
7583 // Upon stack overflow, we discard (part of) the stack,
7584 // remembering the least address amongst those discarded
7585 // in CMSCollector's _restart_address.
7586 void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) {
7587   // Remember the least grey address discarded
7588   HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost);
7589   _collector->lower_restart_addr(ra);
7590   _mark_stack->reset();  // discard stack contents
7591   _mark_stack->expand(); // expand the stack if possible
7592 }
7593 
7594 void PushAndMarkVerifyClosure::do_oop(oop obj) {
7595   assert(obj->is_oop_or_null(), "expected an oop or NULL");
7596   HeapWord* addr = (HeapWord*)obj;
7597   if (_span.contains(addr) && !_verification_bm->isMarked(addr)) {
7598     // Oop lies in _span and isn't yet grey or black
7599     _verification_bm->mark(addr);            // now grey
7600     if (!_cms_bm->isMarked(addr)) {
7601       oop(addr)->print();
7602       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)",
7603                              addr);
7604       fatal("... aborting");
7605     }
7606 
7607     if (!_mark_stack->push(obj)) { // stack overflow
7608       if (PrintCMSStatistics != 0) {
7609         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7610                                SIZE_FORMAT, _mark_stack->capacity());
7611       }
7612       assert(_mark_stack->isFull(), "Else push should have succeeded");
7613       handle_stack_overflow(addr);
7614     }
7615     // anything including and to the right of _finger
7616     // will be scanned as we iterate over the remainder of the
7617     // bit map
7618   }
7619 }
7620 
7621 PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector,
7622                      MemRegion span,
7623                      CMSBitMap* bitMap, CMSMarkStack*  markStack,
7624                      HeapWord* finger, MarkFromRootsClosure* parent) :
7625   CMSOopClosure(collector->ref_processor()),
7626   _collector(collector),
7627   _span(span),
7628   _bitMap(bitMap),
7629   _markStack(markStack),
7630   _finger(finger),
7631   _parent(parent)
7632 { }
7633 
7634 Par_PushOrMarkClosure::Par_PushOrMarkClosure(CMSCollector* collector,
7635                      MemRegion span,
7636                      CMSBitMap* bit_map,
7637                      OopTaskQueue* work_queue,
7638                      CMSMarkStack*  overflow_stack,
7639                      HeapWord* finger,
7640                      HeapWord** global_finger_addr,
7641                      Par_MarkFromRootsClosure* parent) :
7642   CMSOopClosure(collector->ref_processor()),
7643   _collector(collector),
7644   _whole_span(collector->_span),
7645   _span(span),
7646   _bit_map(bit_map),
7647   _work_queue(work_queue),
7648   _overflow_stack(overflow_stack),
7649   _finger(finger),
7650   _global_finger_addr(global_finger_addr),
7651   _parent(parent)
7652 { }
7653 
7654 // Assumes thread-safe access by callers, who are
7655 // responsible for mutual exclusion.
7656 void CMSCollector::lower_restart_addr(HeapWord* low) {
7657   assert(_span.contains(low), "Out of bounds addr");
7658   if (_restart_addr == NULL) {
7659     _restart_addr = low;
7660   } else {
7661     _restart_addr = MIN2(_restart_addr, low);
7662   }
7663 }
7664 
7665 // Upon stack overflow, we discard (part of) the stack,
7666 // remembering the least address amongst those discarded
7667 // in CMSCollector's _restart_address.
7668 void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
7669   // Remember the least grey address discarded
7670   HeapWord* ra = (HeapWord*)_markStack->least_value(lost);
7671   _collector->lower_restart_addr(ra);
7672   _markStack->reset();  // discard stack contents
7673   _markStack->expand(); // expand the stack if possible
7674 }
7675 
7676 // Upon stack overflow, we discard (part of) the stack,
7677 // remembering the least address amongst those discarded
7678 // in CMSCollector's _restart_address.
7679 void Par_PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
7680   // We need to do this under a mutex to prevent other
7681   // workers from interfering with the work done below.
7682   MutexLockerEx ml(_overflow_stack->par_lock(),
7683                    Mutex::_no_safepoint_check_flag);
7684   // Remember the least grey address discarded
7685   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
7686   _collector->lower_restart_addr(ra);
7687   _overflow_stack->reset();  // discard stack contents
7688   _overflow_stack->expand(); // expand the stack if possible
7689 }
7690 
7691 void CMKlassClosure::do_klass(Klass* k) {
7692   assert(_oop_closure != NULL, "Not initialized?");
7693   k->oops_do(_oop_closure);
7694 }
7695 
7696 void PushOrMarkClosure::do_oop(oop obj) {
7697   // Ignore mark word because we are running concurrent with mutators.
7698   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
7699   HeapWord* addr = (HeapWord*)obj;
7700   if (_span.contains(addr) && !_bitMap->isMarked(addr)) {
7701     // Oop lies in _span and isn't yet grey or black
7702     _bitMap->mark(addr);            // now grey
7703     if (addr < _finger) {
7704       // the bit map iteration has already either passed, or
7705       // sampled, this bit in the bit map; we'll need to
7706       // use the marking stack to scan this oop's oops.
7707       bool simulate_overflow = false;
7708       NOT_PRODUCT(
7709         if (CMSMarkStackOverflowALot &&
7710             _collector->simulate_overflow()) {
7711           // simulate a stack overflow
7712           simulate_overflow = true;
7713         }
7714       )
7715       if (simulate_overflow || !_markStack->push(obj)) { // stack overflow
7716         if (PrintCMSStatistics != 0) {
7717           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7718                                  SIZE_FORMAT, _markStack->capacity());
7719         }
7720         assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded");
7721         handle_stack_overflow(addr);
7722       }
7723     }
7724     // anything including and to the right of _finger
7725     // will be scanned as we iterate over the remainder of the
7726     // bit map
7727     do_yield_check();
7728   }
7729 }
7730 
7731 void PushOrMarkClosure::do_oop(oop* p)       { PushOrMarkClosure::do_oop_work(p); }
7732 void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); }
7733 
7734 void Par_PushOrMarkClosure::do_oop(oop obj) {
7735   // Ignore mark word because we are running concurrent with mutators.
7736   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
7737   HeapWord* addr = (HeapWord*)obj;
7738   if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) {
7739     // Oop lies in _span and isn't yet grey or black
7740     // We read the global_finger (volatile read) strictly after marking oop
7741     bool res = _bit_map->par_mark(addr);    // now grey
7742     volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr;
7743     // Should we push this marked oop on our stack?
7744     // -- if someone else marked it, nothing to do
7745     // -- if target oop is above global finger nothing to do
7746     // -- if target oop is in chunk and above local finger
7747     //      then nothing to do
7748     // -- else push on work queue
7749     if (   !res       // someone else marked it, they will deal with it
7750         || (addr >= *gfa)  // will be scanned in a later task
7751         || (_span.contains(addr) && addr >= _finger)) { // later in this chunk
7752       return;
7753     }
7754     // the bit map iteration has already either passed, or
7755     // sampled, this bit in the bit map; we'll need to
7756     // use the marking stack to scan this oop's oops.
7757     bool simulate_overflow = false;
7758     NOT_PRODUCT(
7759       if (CMSMarkStackOverflowALot &&
7760           _collector->simulate_overflow()) {
7761         // simulate a stack overflow
7762         simulate_overflow = true;
7763       }
7764     )
7765     if (simulate_overflow ||
7766         !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
7767       // stack overflow
7768       if (PrintCMSStatistics != 0) {
7769         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7770                                SIZE_FORMAT, _overflow_stack->capacity());
7771       }
7772       // We cannot assert that the overflow stack is full because
7773       // it may have been emptied since.
7774       assert(simulate_overflow ||
7775              _work_queue->size() == _work_queue->max_elems(),
7776             "Else push should have succeeded");
7777       handle_stack_overflow(addr);
7778     }
7779     do_yield_check();
7780   }
7781 }
7782 
7783 void Par_PushOrMarkClosure::do_oop(oop* p)       { Par_PushOrMarkClosure::do_oop_work(p); }
7784 void Par_PushOrMarkClosure::do_oop(narrowOop* p) { Par_PushOrMarkClosure::do_oop_work(p); }
7785 
7786 PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
7787                                        MemRegion span,
7788                                        ReferenceProcessor* rp,
7789                                        CMSBitMap* bit_map,
7790                                        CMSBitMap* mod_union_table,
7791                                        CMSMarkStack*  mark_stack,
7792                                        bool           concurrent_precleaning):
7793   CMSOopClosure(rp),
7794   _collector(collector),
7795   _span(span),
7796   _bit_map(bit_map),
7797   _mod_union_table(mod_union_table),
7798   _mark_stack(mark_stack),
7799   _concurrent_precleaning(concurrent_precleaning)
7800 {
7801   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7802 }
7803 
7804 // Grey object rescan during pre-cleaning and second checkpoint phases --
7805 // the non-parallel version (the parallel version appears further below.)
7806 void PushAndMarkClosure::do_oop(oop obj) {
7807   // Ignore mark word verification. If during concurrent precleaning,
7808   // the object monitor may be locked. If during the checkpoint
7809   // phases, the object may already have been reached by a  different
7810   // path and may be at the end of the global overflow list (so
7811   // the mark word may be NULL).
7812   assert(obj->is_oop_or_null(true /* ignore mark word */),
7813          "expected an oop or NULL");
7814   HeapWord* addr = (HeapWord*)obj;
7815   // Check if oop points into the CMS generation
7816   // and is not marked
7817   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
7818     // a white object ...
7819     _bit_map->mark(addr);         // ... now grey
7820     // push on the marking stack (grey set)
7821     bool simulate_overflow = false;
7822     NOT_PRODUCT(
7823       if (CMSMarkStackOverflowALot &&
7824           _collector->simulate_overflow()) {
7825         // simulate a stack overflow
7826         simulate_overflow = true;
7827       }
7828     )
7829     if (simulate_overflow || !_mark_stack->push(obj)) {
7830       if (_concurrent_precleaning) {
7831          // During precleaning we can just dirty the appropriate card(s)
7832          // in the mod union table, thus ensuring that the object remains
7833          // in the grey set  and continue. In the case of object arrays
7834          // we need to dirty all of the cards that the object spans,
7835          // since the rescan of object arrays will be limited to the
7836          // dirty cards.
7837          // Note that no one can be intefering with us in this action
7838          // of dirtying the mod union table, so no locking or atomics
7839          // are required.
7840          if (obj->is_objArray()) {
7841            size_t sz = obj->size();
7842            HeapWord* end_card_addr = (HeapWord*)round_to(
7843                                         (intptr_t)(addr+sz), CardTableModRefBS::card_size);
7844            MemRegion redirty_range = MemRegion(addr, end_card_addr);
7845            assert(!redirty_range.is_empty(), "Arithmetical tautology");
7846            _mod_union_table->mark_range(redirty_range);
7847          } else {
7848            _mod_union_table->mark(addr);
7849          }
7850          _collector->_ser_pmc_preclean_ovflw++;
7851       } else {
7852          // During the remark phase, we need to remember this oop
7853          // in the overflow list.
7854          _collector->push_on_overflow_list(obj);
7855          _collector->_ser_pmc_remark_ovflw++;
7856       }
7857     }
7858   }
7859 }
7860 
7861 Par_PushAndMarkClosure::Par_PushAndMarkClosure(CMSCollector* collector,
7862                                                MemRegion span,
7863                                                ReferenceProcessor* rp,
7864                                                CMSBitMap* bit_map,
7865                                                OopTaskQueue* work_queue):
7866   CMSOopClosure(rp),
7867   _collector(collector),
7868   _span(span),
7869   _bit_map(bit_map),
7870   _work_queue(work_queue)
7871 {
7872   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7873 }
7874 
7875 void PushAndMarkClosure::do_oop(oop* p)       { PushAndMarkClosure::do_oop_work(p); }
7876 void PushAndMarkClosure::do_oop(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); }
7877 
7878 // Grey object rescan during second checkpoint phase --
7879 // the parallel version.
7880 void Par_PushAndMarkClosure::do_oop(oop obj) {
7881   // In the assert below, we ignore the mark word because
7882   // this oop may point to an already visited object that is
7883   // on the overflow stack (in which case the mark word has
7884   // been hijacked for chaining into the overflow stack --
7885   // if this is the last object in the overflow stack then
7886   // its mark word will be NULL). Because this object may
7887   // have been subsequently popped off the global overflow
7888   // stack, and the mark word possibly restored to the prototypical
7889   // value, by the time we get to examined this failing assert in
7890   // the debugger, is_oop_or_null(false) may subsequently start
7891   // to hold.
7892   assert(obj->is_oop_or_null(true),
7893          "expected an oop or NULL");
7894   HeapWord* addr = (HeapWord*)obj;
7895   // Check if oop points into the CMS generation
7896   // and is not marked
7897   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
7898     // a white object ...
7899     // If we manage to "claim" the object, by being the
7900     // first thread to mark it, then we push it on our
7901     // marking stack
7902     if (_bit_map->par_mark(addr)) {     // ... now grey
7903       // push on work queue (grey set)
7904       bool simulate_overflow = false;
7905       NOT_PRODUCT(
7906         if (CMSMarkStackOverflowALot &&
7907             _collector->par_simulate_overflow()) {
7908           // simulate a stack overflow
7909           simulate_overflow = true;
7910         }
7911       )
7912       if (simulate_overflow || !_work_queue->push(obj)) {
7913         _collector->par_push_on_overflow_list(obj);
7914         _collector->_par_pmc_remark_ovflw++; //  imprecise OK: no need to CAS
7915       }
7916     } // Else, some other thread got there first
7917   }
7918 }
7919 
7920 void Par_PushAndMarkClosure::do_oop(oop* p)       { Par_PushAndMarkClosure::do_oop_work(p); }
7921 void Par_PushAndMarkClosure::do_oop(narrowOop* p) { Par_PushAndMarkClosure::do_oop_work(p); }
7922 
7923 void CMSPrecleanRefsYieldClosure::do_yield_work() {
7924   Mutex* bml = _collector->bitMapLock();
7925   assert_lock_strong(bml);
7926   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7927          "CMS thread should hold CMS token");
7928 
7929   bml->unlock();
7930   ConcurrentMarkSweepThread::desynchronize(true);
7931 
7932   ConcurrentMarkSweepThread::acknowledge_yield_request();
7933 
7934   _collector->stopTimer();
7935   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
7936   if (PrintCMSStatistics != 0) {
7937     _collector->incrementYields();
7938   }
7939   _collector->icms_wait();
7940 
7941   // See the comment in coordinator_yield()
7942   for (unsigned i = 0; i < CMSYieldSleepCount &&
7943                        ConcurrentMarkSweepThread::should_yield() &&
7944                        !CMSCollector::foregroundGCIsActive(); ++i) {
7945     os::sleep(Thread::current(), 1, false);
7946     ConcurrentMarkSweepThread::acknowledge_yield_request();
7947   }
7948 
7949   ConcurrentMarkSweepThread::synchronize(true);
7950   bml->lock();
7951 
7952   _collector->startTimer();
7953 }
7954 
7955 bool CMSPrecleanRefsYieldClosure::should_return() {
7956   if (ConcurrentMarkSweepThread::should_yield()) {
7957     do_yield_work();
7958   }
7959   return _collector->foregroundGCIsActive();
7960 }
7961 
7962 void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) {
7963   assert(((size_t)mr.start())%CardTableModRefBS::card_size_in_words == 0,
7964          "mr should be aligned to start at a card boundary");
7965   // We'd like to assert:
7966   // assert(mr.word_size()%CardTableModRefBS::card_size_in_words == 0,
7967   //        "mr should be a range of cards");
7968   // However, that would be too strong in one case -- the last
7969   // partition ends at _unallocated_block which, in general, can be
7970   // an arbitrary boundary, not necessarily card aligned.
7971   if (PrintCMSStatistics != 0) {
7972     _num_dirty_cards +=
7973          mr.word_size()/CardTableModRefBS::card_size_in_words;
7974   }
7975   _space->object_iterate_mem(mr, &_scan_cl);
7976 }
7977 
7978 SweepClosure::SweepClosure(CMSCollector* collector,
7979                            ConcurrentMarkSweepGeneration* g,
7980                            CMSBitMap* bitMap, bool should_yield) :
7981   _collector(collector),
7982   _g(g),
7983   _sp(g->cmsSpace()),
7984   _limit(_sp->sweep_limit()),
7985   _freelistLock(_sp->freelistLock()),
7986   _bitMap(bitMap),
7987   _yield(should_yield),
7988   _inFreeRange(false),           // No free range at beginning of sweep
7989   _freeRangeInFreeLists(false),  // No free range at beginning of sweep
7990   _lastFreeRangeCoalesced(false),
7991   _freeFinger(g->used_region().start())
7992 {
7993   NOT_PRODUCT(
7994     _numObjectsFreed = 0;
7995     _numWordsFreed   = 0;
7996     _numObjectsLive = 0;
7997     _numWordsLive = 0;
7998     _numObjectsAlreadyFree = 0;
7999     _numWordsAlreadyFree = 0;
8000     _last_fc = NULL;
8001 
8002     _sp->initializeIndexedFreeListArrayReturnedBytes();
8003     _sp->dictionary()->initialize_dict_returned_bytes();
8004   )
8005   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
8006          "sweep _limit out of bounds");
8007   if (CMSTraceSweeper) {
8008     gclog_or_tty->print_cr("\n====================\nStarting new sweep with limit " PTR_FORMAT,
8009                         _limit);
8010   }
8011 }
8012 
8013 void SweepClosure::print_on(outputStream* st) const {
8014   tty->print_cr("_sp = [" PTR_FORMAT "," PTR_FORMAT ")",
8015                 _sp->bottom(), _sp->end());
8016   tty->print_cr("_limit = " PTR_FORMAT, _limit);
8017   tty->print_cr("_freeFinger = " PTR_FORMAT, _freeFinger);
8018   NOT_PRODUCT(tty->print_cr("_last_fc = " PTR_FORMAT, _last_fc);)
8019   tty->print_cr("_inFreeRange = %d, _freeRangeInFreeLists = %d, _lastFreeRangeCoalesced = %d",
8020                 _inFreeRange, _freeRangeInFreeLists, _lastFreeRangeCoalesced);
8021 }
8022 
8023 #ifndef PRODUCT
8024 // Assertion checking only:  no useful work in product mode --
8025 // however, if any of the flags below become product flags,
8026 // you may need to review this code to see if it needs to be
8027 // enabled in product mode.
8028 SweepClosure::~SweepClosure() {
8029   assert_lock_strong(_freelistLock);
8030   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
8031          "sweep _limit out of bounds");
8032   if (inFreeRange()) {
8033     warning("inFreeRange() should have been reset; dumping state of SweepClosure");
8034     print();
8035     ShouldNotReachHere();
8036   }
8037   if (Verbose && PrintGC) {
8038     gclog_or_tty->print("Collected "SIZE_FORMAT" objects, " SIZE_FORMAT " bytes",
8039                         _numObjectsFreed, _numWordsFreed*sizeof(HeapWord));
8040     gclog_or_tty->print_cr("\nLive "SIZE_FORMAT" objects,  "
8041                            SIZE_FORMAT" bytes  "
8042       "Already free "SIZE_FORMAT" objects, "SIZE_FORMAT" bytes",
8043       _numObjectsLive, _numWordsLive*sizeof(HeapWord),
8044       _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord));
8045     size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree)
8046                         * sizeof(HeapWord);
8047     gclog_or_tty->print_cr("Total sweep: "SIZE_FORMAT" bytes", totalBytes);
8048 
8049     if (PrintCMSStatistics && CMSVerifyReturnedBytes) {
8050       size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
8051       size_t dict_returned_bytes = _sp->dictionary()->sum_dict_returned_bytes();
8052       size_t returned_bytes = indexListReturnedBytes + dict_returned_bytes;
8053       gclog_or_tty->print("Returned "SIZE_FORMAT" bytes", returned_bytes);
8054       gclog_or_tty->print("   Indexed List Returned "SIZE_FORMAT" bytes",
8055         indexListReturnedBytes);
8056       gclog_or_tty->print_cr("        Dictionary Returned "SIZE_FORMAT" bytes",
8057         dict_returned_bytes);
8058     }
8059   }
8060   if (CMSTraceSweeper) {
8061     gclog_or_tty->print_cr("end of sweep with _limit = " PTR_FORMAT "\n================",
8062                            _limit);
8063   }
8064 }
8065 #endif  // PRODUCT
8066 
8067 void SweepClosure::initialize_free_range(HeapWord* freeFinger,
8068     bool freeRangeInFreeLists) {
8069   if (CMSTraceSweeper) {
8070     gclog_or_tty->print("---- Start free range at 0x%x with free block (%d)\n",
8071                freeFinger, freeRangeInFreeLists);
8072   }
8073   assert(!inFreeRange(), "Trampling existing free range");
8074   set_inFreeRange(true);
8075   set_lastFreeRangeCoalesced(false);
8076 
8077   set_freeFinger(freeFinger);
8078   set_freeRangeInFreeLists(freeRangeInFreeLists);
8079   if (CMSTestInFreeList) {
8080     if (freeRangeInFreeLists) {
8081       FreeChunk* fc = (FreeChunk*) freeFinger;
8082       assert(fc->is_free(), "A chunk on the free list should be free.");
8083       assert(fc->size() > 0, "Free range should have a size");
8084       assert(_sp->verify_chunk_in_free_list(fc), "Chunk is not in free lists");
8085     }
8086   }
8087 }
8088 
8089 // Note that the sweeper runs concurrently with mutators. Thus,
8090 // it is possible for direct allocation in this generation to happen
8091 // in the middle of the sweep. Note that the sweeper also coalesces
8092 // contiguous free blocks. Thus, unless the sweeper and the allocator
8093 // synchronize appropriately freshly allocated blocks may get swept up.
8094 // This is accomplished by the sweeper locking the free lists while
8095 // it is sweeping. Thus blocks that are determined to be free are
8096 // indeed free. There is however one additional complication:
8097 // blocks that have been allocated since the final checkpoint and
8098 // mark, will not have been marked and so would be treated as
8099 // unreachable and swept up. To prevent this, the allocator marks
8100 // the bit map when allocating during the sweep phase. This leads,
8101 // however, to a further complication -- objects may have been allocated
8102 // but not yet initialized -- in the sense that the header isn't yet
8103 // installed. The sweeper can not then determine the size of the block
8104 // in order to skip over it. To deal with this case, we use a technique
8105 // (due to Printezis) to encode such uninitialized block sizes in the
8106 // bit map. Since the bit map uses a bit per every HeapWord, but the
8107 // CMS generation has a minimum object size of 3 HeapWords, it follows
8108 // that "normal marks" won't be adjacent in the bit map (there will
8109 // always be at least two 0 bits between successive 1 bits). We make use
8110 // of these "unused" bits to represent uninitialized blocks -- the bit
8111 // corresponding to the start of the uninitialized object and the next
8112 // bit are both set. Finally, a 1 bit marks the end of the object that
8113 // started with the two consecutive 1 bits to indicate its potentially
8114 // uninitialized state.
8115 
8116 size_t SweepClosure::do_blk_careful(HeapWord* addr) {
8117   FreeChunk* fc = (FreeChunk*)addr;
8118   size_t res;
8119 
8120   // Check if we are done sweeping. Below we check "addr >= _limit" rather
8121   // than "addr == _limit" because although _limit was a block boundary when
8122   // we started the sweep, it may no longer be one because heap expansion
8123   // may have caused us to coalesce the block ending at the address _limit
8124   // with a newly expanded chunk (this happens when _limit was set to the
8125   // previous _end of the space), so we may have stepped past _limit:
8126   // see the following Zeno-like trail of CRs 6977970, 7008136, 7042740.
8127   if (addr >= _limit) { // we have swept up to or past the limit: finish up
8128     assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
8129            "sweep _limit out of bounds");
8130     assert(addr < _sp->end(), "addr out of bounds");
8131     // Flush any free range we might be holding as a single
8132     // coalesced chunk to the appropriate free list.
8133     if (inFreeRange()) {
8134       assert(freeFinger() >= _sp->bottom() && freeFinger() < _limit,
8135              err_msg("freeFinger() " PTR_FORMAT" is out-of-bounds", freeFinger()));
8136       flush_cur_free_chunk(freeFinger(),
8137                            pointer_delta(addr, freeFinger()));
8138       if (CMSTraceSweeper) {
8139         gclog_or_tty->print("Sweep: last chunk: ");
8140         gclog_or_tty->print("put_free_blk 0x%x ("SIZE_FORMAT") "
8141                    "[coalesced:"SIZE_FORMAT"]\n",
8142                    freeFinger(), pointer_delta(addr, freeFinger()),
8143                    lastFreeRangeCoalesced());
8144       }
8145     }
8146 
8147     // help the iterator loop finish
8148     return pointer_delta(_sp->end(), addr);
8149   }
8150 
8151   assert(addr < _limit, "sweep invariant");
8152   // check if we should yield
8153   do_yield_check(addr);
8154   if (fc->is_free()) {
8155     // Chunk that is already free
8156     res = fc->size();
8157     do_already_free_chunk(fc);
8158     debug_only(_sp->verifyFreeLists());
8159     // If we flush the chunk at hand in lookahead_and_flush()
8160     // and it's coalesced with a preceding chunk, then the
8161     // process of "mangling" the payload of the coalesced block
8162     // will cause erasure of the size information from the
8163     // (erstwhile) header of all the coalesced blocks but the
8164     // first, so the first disjunct in the assert will not hold
8165     // in that specific case (in which case the second disjunct
8166     // will hold).
8167     assert(res == fc->size() || ((HeapWord*)fc) + res >= _limit,
8168            "Otherwise the size info doesn't change at this step");
8169     NOT_PRODUCT(
8170       _numObjectsAlreadyFree++;
8171       _numWordsAlreadyFree += res;
8172     )
8173     NOT_PRODUCT(_last_fc = fc;)
8174   } else if (!_bitMap->isMarked(addr)) {
8175     // Chunk is fresh garbage
8176     res = do_garbage_chunk(fc);
8177     debug_only(_sp->verifyFreeLists());
8178     NOT_PRODUCT(
8179       _numObjectsFreed++;
8180       _numWordsFreed += res;
8181     )
8182   } else {
8183     // Chunk that is alive.
8184     res = do_live_chunk(fc);
8185     debug_only(_sp->verifyFreeLists());
8186     NOT_PRODUCT(
8187         _numObjectsLive++;
8188         _numWordsLive += res;
8189     )
8190   }
8191   return res;
8192 }
8193 
8194 // For the smart allocation, record following
8195 //  split deaths - a free chunk is removed from its free list because
8196 //      it is being split into two or more chunks.
8197 //  split birth - a free chunk is being added to its free list because
8198 //      a larger free chunk has been split and resulted in this free chunk.
8199 //  coal death - a free chunk is being removed from its free list because
8200 //      it is being coalesced into a large free chunk.
8201 //  coal birth - a free chunk is being added to its free list because
8202 //      it was created when two or more free chunks where coalesced into
8203 //      this free chunk.
8204 //
8205 // These statistics are used to determine the desired number of free
8206 // chunks of a given size.  The desired number is chosen to be relative
8207 // to the end of a CMS sweep.  The desired number at the end of a sweep
8208 // is the
8209 //      count-at-end-of-previous-sweep (an amount that was enough)
8210 //              - count-at-beginning-of-current-sweep  (the excess)
8211 //              + split-births  (gains in this size during interval)
8212 //              - split-deaths  (demands on this size during interval)
8213 // where the interval is from the end of one sweep to the end of the
8214 // next.
8215 //
8216 // When sweeping the sweeper maintains an accumulated chunk which is
8217 // the chunk that is made up of chunks that have been coalesced.  That
8218 // will be termed the left-hand chunk.  A new chunk of garbage that
8219 // is being considered for coalescing will be referred to as the
8220 // right-hand chunk.
8221 //
8222 // When making a decision on whether to coalesce a right-hand chunk with
8223 // the current left-hand chunk, the current count vs. the desired count
8224 // of the left-hand chunk is considered.  Also if the right-hand chunk
8225 // is near the large chunk at the end of the heap (see
8226 // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the
8227 // left-hand chunk is coalesced.
8228 //
8229 // When making a decision about whether to split a chunk, the desired count
8230 // vs. the current count of the candidate to be split is also considered.
8231 // If the candidate is underpopulated (currently fewer chunks than desired)
8232 // a chunk of an overpopulated (currently more chunks than desired) size may
8233 // be chosen.  The "hint" associated with a free list, if non-null, points
8234 // to a free list which may be overpopulated.
8235 //
8236 
8237 void SweepClosure::do_already_free_chunk(FreeChunk* fc) {
8238   const size_t size = fc->size();
8239   // Chunks that cannot be coalesced are not in the
8240   // free lists.
8241   if (CMSTestInFreeList && !fc->cantCoalesce()) {
8242     assert(_sp->verify_chunk_in_free_list(fc),
8243       "free chunk should be in free lists");
8244   }
8245   // a chunk that is already free, should not have been
8246   // marked in the bit map
8247   HeapWord* const addr = (HeapWord*) fc;
8248   assert(!_bitMap->isMarked(addr), "free chunk should be unmarked");
8249   // Verify that the bit map has no bits marked between
8250   // addr and purported end of this block.
8251   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
8252 
8253   // Some chunks cannot be coalesced under any circumstances.
8254   // See the definition of cantCoalesce().
8255   if (!fc->cantCoalesce()) {
8256     // This chunk can potentially be coalesced.
8257     if (_sp->adaptive_freelists()) {
8258       // All the work is done in
8259       do_post_free_or_garbage_chunk(fc, size);
8260     } else {  // Not adaptive free lists
8261       // this is a free chunk that can potentially be coalesced by the sweeper;
8262       if (!inFreeRange()) {
8263         // if the next chunk is a free block that can't be coalesced
8264         // it doesn't make sense to remove this chunk from the free lists
8265         FreeChunk* nextChunk = (FreeChunk*)(addr + size);
8266         assert((HeapWord*)nextChunk <= _sp->end(), "Chunk size out of bounds?");
8267         if ((HeapWord*)nextChunk < _sp->end() &&     // There is another free chunk to the right ...
8268             nextChunk->is_free()               &&     // ... which is free...
8269             nextChunk->cantCoalesce()) {             // ... but can't be coalesced
8270           // nothing to do
8271         } else {
8272           // Potentially the start of a new free range:
8273           // Don't eagerly remove it from the free lists.
8274           // No need to remove it if it will just be put
8275           // back again.  (Also from a pragmatic point of view
8276           // if it is a free block in a region that is beyond
8277           // any allocated blocks, an assertion will fail)
8278           // Remember the start of a free run.
8279           initialize_free_range(addr, true);
8280           // end - can coalesce with next chunk
8281         }
8282       } else {
8283         // the midst of a free range, we are coalescing
8284         print_free_block_coalesced(fc);
8285         if (CMSTraceSweeper) {
8286           gclog_or_tty->print("  -- pick up free block 0x%x (%d)\n", fc, size);
8287         }
8288         // remove it from the free lists
8289         _sp->removeFreeChunkFromFreeLists(fc);
8290         set_lastFreeRangeCoalesced(true);
8291         // If the chunk is being coalesced and the current free range is
8292         // in the free lists, remove the current free range so that it
8293         // will be returned to the free lists in its entirety - all
8294         // the coalesced pieces included.
8295         if (freeRangeInFreeLists()) {
8296           FreeChunk* ffc = (FreeChunk*) freeFinger();
8297           assert(ffc->size() == pointer_delta(addr, freeFinger()),
8298             "Size of free range is inconsistent with chunk size.");
8299           if (CMSTestInFreeList) {
8300             assert(_sp->verify_chunk_in_free_list(ffc),
8301               "free range is not in free lists");
8302           }
8303           _sp->removeFreeChunkFromFreeLists(ffc);
8304           set_freeRangeInFreeLists(false);
8305         }
8306       }
8307     }
8308     // Note that if the chunk is not coalescable (the else arm
8309     // below), we unconditionally flush, without needing to do
8310     // a "lookahead," as we do below.
8311     if (inFreeRange()) lookahead_and_flush(fc, size);
8312   } else {
8313     // Code path common to both original and adaptive free lists.
8314 
8315     // cant coalesce with previous block; this should be treated
8316     // as the end of a free run if any
8317     if (inFreeRange()) {
8318       // we kicked some butt; time to pick up the garbage
8319       assert(freeFinger() < addr, "freeFinger points too high");
8320       flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
8321     }
8322     // else, nothing to do, just continue
8323   }
8324 }
8325 
8326 size_t SweepClosure::do_garbage_chunk(FreeChunk* fc) {
8327   // This is a chunk of garbage.  It is not in any free list.
8328   // Add it to a free list or let it possibly be coalesced into
8329   // a larger chunk.
8330   HeapWord* const addr = (HeapWord*) fc;
8331   const size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
8332 
8333   if (_sp->adaptive_freelists()) {
8334     // Verify that the bit map has no bits marked between
8335     // addr and purported end of just dead object.
8336     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
8337 
8338     do_post_free_or_garbage_chunk(fc, size);
8339   } else {
8340     if (!inFreeRange()) {
8341       // start of a new free range
8342       assert(size > 0, "A free range should have a size");
8343       initialize_free_range(addr, false);
8344     } else {
8345       // this will be swept up when we hit the end of the
8346       // free range
8347       if (CMSTraceSweeper) {
8348         gclog_or_tty->print("  -- pick up garbage 0x%x (%d) \n", fc, size);
8349       }
8350       // If the chunk is being coalesced and the current free range is
8351       // in the free lists, remove the current free range so that it
8352       // will be returned to the free lists in its entirety - all
8353       // the coalesced pieces included.
8354       if (freeRangeInFreeLists()) {
8355         FreeChunk* ffc = (FreeChunk*)freeFinger();
8356         assert(ffc->size() == pointer_delta(addr, freeFinger()),
8357           "Size of free range is inconsistent with chunk size.");
8358         if (CMSTestInFreeList) {
8359           assert(_sp->verify_chunk_in_free_list(ffc),
8360             "free range is not in free lists");
8361         }
8362         _sp->removeFreeChunkFromFreeLists(ffc);
8363         set_freeRangeInFreeLists(false);
8364       }
8365       set_lastFreeRangeCoalesced(true);
8366     }
8367     // this will be swept up when we hit the end of the free range
8368 
8369     // Verify that the bit map has no bits marked between
8370     // addr and purported end of just dead object.
8371     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
8372   }
8373   assert(_limit >= addr + size,
8374          "A freshly garbage chunk can't possibly straddle over _limit");
8375   if (inFreeRange()) lookahead_and_flush(fc, size);
8376   return size;
8377 }
8378 
8379 size_t SweepClosure::do_live_chunk(FreeChunk* fc) {
8380   HeapWord* addr = (HeapWord*) fc;
8381   // The sweeper has just found a live object. Return any accumulated
8382   // left hand chunk to the free lists.
8383   if (inFreeRange()) {
8384     assert(freeFinger() < addr, "freeFinger points too high");
8385     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
8386   }
8387 
8388   // This object is live: we'd normally expect this to be
8389   // an oop, and like to assert the following:
8390   // assert(oop(addr)->is_oop(), "live block should be an oop");
8391   // However, as we commented above, this may be an object whose
8392   // header hasn't yet been initialized.
8393   size_t size;
8394   assert(_bitMap->isMarked(addr), "Tautology for this control point");
8395   if (_bitMap->isMarked(addr + 1)) {
8396     // Determine the size from the bit map, rather than trying to
8397     // compute it from the object header.
8398     HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
8399     size = pointer_delta(nextOneAddr + 1, addr);
8400     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
8401            "alignment problem");
8402 
8403 #ifdef ASSERT
8404       if (oop(addr)->klass_or_null() != NULL) {
8405         // Ignore mark word because we are running concurrent with mutators
8406         assert(oop(addr)->is_oop(true), "live block should be an oop");
8407         assert(size ==
8408                CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()),
8409                "P-mark and computed size do not agree");
8410       }
8411 #endif
8412 
8413   } else {
8414     // This should be an initialized object that's alive.
8415     assert(oop(addr)->klass_or_null() != NULL,
8416            "Should be an initialized object");
8417     // Ignore mark word because we are running concurrent with mutators
8418     assert(oop(addr)->is_oop(true), "live block should be an oop");
8419     // Verify that the bit map has no bits marked between
8420     // addr and purported end of this block.
8421     size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
8422     assert(size >= 3, "Necessary for Printezis marks to work");
8423     assert(!_bitMap->isMarked(addr+1), "Tautology for this control point");
8424     DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);)
8425   }
8426   return size;
8427 }
8428 
8429 void SweepClosure::do_post_free_or_garbage_chunk(FreeChunk* fc,
8430                                                  size_t chunkSize) {
8431   // do_post_free_or_garbage_chunk() should only be called in the case
8432   // of the adaptive free list allocator.
8433   const bool fcInFreeLists = fc->is_free();
8434   assert(_sp->adaptive_freelists(), "Should only be used in this case.");
8435   assert((HeapWord*)fc <= _limit, "sweep invariant");
8436   if (CMSTestInFreeList && fcInFreeLists) {
8437     assert(_sp->verify_chunk_in_free_list(fc), "free chunk is not in free lists");
8438   }
8439 
8440   if (CMSTraceSweeper) {
8441     gclog_or_tty->print_cr("  -- pick up another chunk at 0x%x (%d)", fc, chunkSize);
8442   }
8443 
8444   HeapWord* const fc_addr = (HeapWord*) fc;
8445 
8446   bool coalesce;
8447   const size_t left  = pointer_delta(fc_addr, freeFinger());
8448   const size_t right = chunkSize;
8449   switch (FLSCoalescePolicy) {
8450     // numeric value forms a coalition aggressiveness metric
8451     case 0:  { // never coalesce
8452       coalesce = false;
8453       break;
8454     }
8455     case 1: { // coalesce if left & right chunks on overpopulated lists
8456       coalesce = _sp->coalOverPopulated(left) &&
8457                  _sp->coalOverPopulated(right);
8458       break;
8459     }
8460     case 2: { // coalesce if left chunk on overpopulated list (default)
8461       coalesce = _sp->coalOverPopulated(left);
8462       break;
8463     }
8464     case 3: { // coalesce if left OR right chunk on overpopulated list
8465       coalesce = _sp->coalOverPopulated(left) ||
8466                  _sp->coalOverPopulated(right);
8467       break;
8468     }
8469     case 4: { // always coalesce
8470       coalesce = true;
8471       break;
8472     }
8473     default:
8474      ShouldNotReachHere();
8475   }
8476 
8477   // Should the current free range be coalesced?
8478   // If the chunk is in a free range and either we decided to coalesce above
8479   // or the chunk is near the large block at the end of the heap
8480   // (isNearLargestChunk() returns true), then coalesce this chunk.
8481   const bool doCoalesce = inFreeRange()
8482                           && (coalesce || _g->isNearLargestChunk(fc_addr));
8483   if (doCoalesce) {
8484     // Coalesce the current free range on the left with the new
8485     // chunk on the right.  If either is on a free list,
8486     // it must be removed from the list and stashed in the closure.
8487     if (freeRangeInFreeLists()) {
8488       FreeChunk* const ffc = (FreeChunk*)freeFinger();
8489       assert(ffc->size() == pointer_delta(fc_addr, freeFinger()),
8490         "Size of free range is inconsistent with chunk size.");
8491       if (CMSTestInFreeList) {
8492         assert(_sp->verify_chunk_in_free_list(ffc),
8493           "Chunk is not in free lists");
8494       }
8495       _sp->coalDeath(ffc->size());
8496       _sp->removeFreeChunkFromFreeLists(ffc);
8497       set_freeRangeInFreeLists(false);
8498     }
8499     if (fcInFreeLists) {
8500       _sp->coalDeath(chunkSize);
8501       assert(fc->size() == chunkSize,
8502         "The chunk has the wrong size or is not in the free lists");
8503       _sp->removeFreeChunkFromFreeLists(fc);
8504     }
8505     set_lastFreeRangeCoalesced(true);
8506     print_free_block_coalesced(fc);
8507   } else {  // not in a free range and/or should not coalesce
8508     // Return the current free range and start a new one.
8509     if (inFreeRange()) {
8510       // In a free range but cannot coalesce with the right hand chunk.
8511       // Put the current free range into the free lists.
8512       flush_cur_free_chunk(freeFinger(),
8513                            pointer_delta(fc_addr, freeFinger()));
8514     }
8515     // Set up for new free range.  Pass along whether the right hand
8516     // chunk is in the free lists.
8517     initialize_free_range((HeapWord*)fc, fcInFreeLists);
8518   }
8519 }
8520 
8521 // Lookahead flush:
8522 // If we are tracking a free range, and this is the last chunk that
8523 // we'll look at because its end crosses past _limit, we'll preemptively
8524 // flush it along with any free range we may be holding on to. Note that
8525 // this can be the case only for an already free or freshly garbage
8526 // chunk. If this block is an object, it can never straddle
8527 // over _limit. The "straddling" occurs when _limit is set at
8528 // the previous end of the space when this cycle started, and
8529 // a subsequent heap expansion caused the previously co-terminal
8530 // free block to be coalesced with the newly expanded portion,
8531 // thus rendering _limit a non-block-boundary making it dangerous
8532 // for the sweeper to step over and examine.
8533 void SweepClosure::lookahead_and_flush(FreeChunk* fc, size_t chunk_size) {
8534   assert(inFreeRange(), "Should only be called if currently in a free range.");
8535   HeapWord* const eob = ((HeapWord*)fc) + chunk_size;
8536   assert(_sp->used_region().contains(eob - 1),
8537          err_msg("eob = " PTR_FORMAT " out of bounds wrt _sp = [" PTR_FORMAT "," PTR_FORMAT ")"
8538                  " when examining fc = " PTR_FORMAT "(" SIZE_FORMAT ")",
8539                  _limit, _sp->bottom(), _sp->end(), fc, chunk_size));
8540   if (eob >= _limit) {
8541     assert(eob == _limit || fc->is_free(), "Only a free chunk should allow us to cross over the limit");
8542     if (CMSTraceSweeper) {
8543       gclog_or_tty->print_cr("_limit " PTR_FORMAT " reached or crossed by block "
8544                              "[" PTR_FORMAT "," PTR_FORMAT ") in space "
8545                              "[" PTR_FORMAT "," PTR_FORMAT ")",
8546                              _limit, fc, eob, _sp->bottom(), _sp->end());
8547     }
8548     // Return the storage we are tracking back into the free lists.
8549     if (CMSTraceSweeper) {
8550       gclog_or_tty->print_cr("Flushing ... ");
8551     }
8552     assert(freeFinger() < eob, "Error");
8553     flush_cur_free_chunk( freeFinger(), pointer_delta(eob, freeFinger()));
8554   }
8555 }
8556 
8557 void SweepClosure::flush_cur_free_chunk(HeapWord* chunk, size_t size) {
8558   assert(inFreeRange(), "Should only be called if currently in a free range.");
8559   assert(size > 0,
8560     "A zero sized chunk cannot be added to the free lists.");
8561   if (!freeRangeInFreeLists()) {
8562     if (CMSTestInFreeList) {
8563       FreeChunk* fc = (FreeChunk*) chunk;
8564       fc->set_size(size);
8565       assert(!_sp->verify_chunk_in_free_list(fc),
8566         "chunk should not be in free lists yet");
8567     }
8568     if (CMSTraceSweeper) {
8569       gclog_or_tty->print_cr(" -- add free block 0x%x (%d) to free lists",
8570                     chunk, size);
8571     }
8572     // A new free range is going to be starting.  The current
8573     // free range has not been added to the free lists yet or
8574     // was removed so add it back.
8575     // If the current free range was coalesced, then the death
8576     // of the free range was recorded.  Record a birth now.
8577     if (lastFreeRangeCoalesced()) {
8578       _sp->coalBirth(size);
8579     }
8580     _sp->addChunkAndRepairOffsetTable(chunk, size,
8581             lastFreeRangeCoalesced());
8582   } else if (CMSTraceSweeper) {
8583     gclog_or_tty->print_cr("Already in free list: nothing to flush");
8584   }
8585   set_inFreeRange(false);
8586   set_freeRangeInFreeLists(false);
8587 }
8588 
8589 // We take a break if we've been at this for a while,
8590 // so as to avoid monopolizing the locks involved.
8591 void SweepClosure::do_yield_work(HeapWord* addr) {
8592   // Return current free chunk being used for coalescing (if any)
8593   // to the appropriate freelist.  After yielding, the next
8594   // free block encountered will start a coalescing range of
8595   // free blocks.  If the next free block is adjacent to the
8596   // chunk just flushed, they will need to wait for the next
8597   // sweep to be coalesced.
8598   if (inFreeRange()) {
8599     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
8600   }
8601 
8602   // First give up the locks, then yield, then re-lock.
8603   // We should probably use a constructor/destructor idiom to
8604   // do this unlock/lock or modify the MutexUnlocker class to
8605   // serve our purpose. XXX
8606   assert_lock_strong(_bitMap->lock());
8607   assert_lock_strong(_freelistLock);
8608   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
8609          "CMS thread should hold CMS token");
8610   _bitMap->lock()->unlock();
8611   _freelistLock->unlock();
8612   ConcurrentMarkSweepThread::desynchronize(true);
8613   ConcurrentMarkSweepThread::acknowledge_yield_request();
8614   _collector->stopTimer();
8615   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
8616   if (PrintCMSStatistics != 0) {
8617     _collector->incrementYields();
8618   }
8619   _collector->icms_wait();
8620 
8621   // See the comment in coordinator_yield()
8622   for (unsigned i = 0; i < CMSYieldSleepCount &&
8623                        ConcurrentMarkSweepThread::should_yield() &&
8624                        !CMSCollector::foregroundGCIsActive(); ++i) {
8625     os::sleep(Thread::current(), 1, false);
8626     ConcurrentMarkSweepThread::acknowledge_yield_request();
8627   }
8628 
8629   ConcurrentMarkSweepThread::synchronize(true);
8630   _freelistLock->lock();
8631   _bitMap->lock()->lock_without_safepoint_check();
8632   _collector->startTimer();
8633 }
8634 
8635 #ifndef PRODUCT
8636 // This is actually very useful in a product build if it can
8637 // be called from the debugger.  Compile it into the product
8638 // as needed.
8639 bool debug_verify_chunk_in_free_list(FreeChunk* fc) {
8640   return debug_cms_space->verify_chunk_in_free_list(fc);
8641 }
8642 #endif
8643 
8644 void SweepClosure::print_free_block_coalesced(FreeChunk* fc) const {
8645   if (CMSTraceSweeper) {
8646     gclog_or_tty->print_cr("Sweep:coal_free_blk " PTR_FORMAT " (" SIZE_FORMAT ")",
8647                            fc, fc->size());
8648   }
8649 }
8650 
8651 // CMSIsAliveClosure
8652 bool CMSIsAliveClosure::do_object_b(oop obj) {
8653   HeapWord* addr = (HeapWord*)obj;
8654   return addr != NULL &&
8655          (!_span.contains(addr) || _bit_map->isMarked(addr));
8656 }
8657 
8658 
8659 CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector,
8660                       MemRegion span,
8661                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
8662                       bool cpc):
8663   _collector(collector),
8664   _span(span),
8665   _bit_map(bit_map),
8666   _mark_stack(mark_stack),
8667   _concurrent_precleaning(cpc) {
8668   assert(!_span.is_empty(), "Empty span could spell trouble");
8669 }
8670 
8671 
8672 // CMSKeepAliveClosure: the serial version
8673 void CMSKeepAliveClosure::do_oop(oop obj) {
8674   HeapWord* addr = (HeapWord*)obj;
8675   if (_span.contains(addr) &&
8676       !_bit_map->isMarked(addr)) {
8677     _bit_map->mark(addr);
8678     bool simulate_overflow = false;
8679     NOT_PRODUCT(
8680       if (CMSMarkStackOverflowALot &&
8681           _collector->simulate_overflow()) {
8682         // simulate a stack overflow
8683         simulate_overflow = true;
8684       }
8685     )
8686     if (simulate_overflow || !_mark_stack->push(obj)) {
8687       if (_concurrent_precleaning) {
8688         // We dirty the overflown object and let the remark
8689         // phase deal with it.
8690         assert(_collector->overflow_list_is_empty(), "Error");
8691         // In the case of object arrays, we need to dirty all of
8692         // the cards that the object spans. No locking or atomics
8693         // are needed since no one else can be mutating the mod union
8694         // table.
8695         if (obj->is_objArray()) {
8696           size_t sz = obj->size();
8697           HeapWord* end_card_addr =
8698             (HeapWord*)round_to((intptr_t)(addr+sz), CardTableModRefBS::card_size);
8699           MemRegion redirty_range = MemRegion(addr, end_card_addr);
8700           assert(!redirty_range.is_empty(), "Arithmetical tautology");
8701           _collector->_modUnionTable.mark_range(redirty_range);
8702         } else {
8703           _collector->_modUnionTable.mark(addr);
8704         }
8705         _collector->_ser_kac_preclean_ovflw++;
8706       } else {
8707         _collector->push_on_overflow_list(obj);
8708         _collector->_ser_kac_ovflw++;
8709       }
8710     }
8711   }
8712 }
8713 
8714 void CMSKeepAliveClosure::do_oop(oop* p)       { CMSKeepAliveClosure::do_oop_work(p); }
8715 void CMSKeepAliveClosure::do_oop(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); }
8716 
8717 // CMSParKeepAliveClosure: a parallel version of the above.
8718 // The work queues are private to each closure (thread),
8719 // but (may be) available for stealing by other threads.
8720 void CMSParKeepAliveClosure::do_oop(oop obj) {
8721   HeapWord* addr = (HeapWord*)obj;
8722   if (_span.contains(addr) &&
8723       !_bit_map->isMarked(addr)) {
8724     // In general, during recursive tracing, several threads
8725     // may be concurrently getting here; the first one to
8726     // "tag" it, claims it.
8727     if (_bit_map->par_mark(addr)) {
8728       bool res = _work_queue->push(obj);
8729       assert(res, "Low water mark should be much less than capacity");
8730       // Do a recursive trim in the hope that this will keep
8731       // stack usage lower, but leave some oops for potential stealers
8732       trim_queue(_low_water_mark);
8733     } // Else, another thread got there first
8734   }
8735 }
8736 
8737 void CMSParKeepAliveClosure::do_oop(oop* p)       { CMSParKeepAliveClosure::do_oop_work(p); }
8738 void CMSParKeepAliveClosure::do_oop(narrowOop* p) { CMSParKeepAliveClosure::do_oop_work(p); }
8739 
8740 void CMSParKeepAliveClosure::trim_queue(uint max) {
8741   while (_work_queue->size() > max) {
8742     oop new_oop;
8743     if (_work_queue->pop_local(new_oop)) {
8744       assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
8745       assert(_bit_map->isMarked((HeapWord*)new_oop),
8746              "no white objects on this stack!");
8747       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
8748       // iterate over the oops in this oop, marking and pushing
8749       // the ones in CMS heap (i.e. in _span).
8750       new_oop->oop_iterate(&_mark_and_push);
8751     }
8752   }
8753 }
8754 
8755 CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure(
8756                                 CMSCollector* collector,
8757                                 MemRegion span, CMSBitMap* bit_map,
8758                                 OopTaskQueue* work_queue):
8759   _collector(collector),
8760   _span(span),
8761   _bit_map(bit_map),
8762   _work_queue(work_queue) { }
8763 
8764 void CMSInnerParMarkAndPushClosure::do_oop(oop obj) {
8765   HeapWord* addr = (HeapWord*)obj;
8766   if (_span.contains(addr) &&
8767       !_bit_map->isMarked(addr)) {
8768     if (_bit_map->par_mark(addr)) {
8769       bool simulate_overflow = false;
8770       NOT_PRODUCT(
8771         if (CMSMarkStackOverflowALot &&
8772             _collector->par_simulate_overflow()) {
8773           // simulate a stack overflow
8774           simulate_overflow = true;
8775         }
8776       )
8777       if (simulate_overflow || !_work_queue->push(obj)) {
8778         _collector->par_push_on_overflow_list(obj);
8779         _collector->_par_kac_ovflw++;
8780       }
8781     } // Else another thread got there already
8782   }
8783 }
8784 
8785 void CMSInnerParMarkAndPushClosure::do_oop(oop* p)       { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8786 void CMSInnerParMarkAndPushClosure::do_oop(narrowOop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8787 
8788 //////////////////////////////////////////////////////////////////
8789 //  CMSExpansionCause                /////////////////////////////
8790 //////////////////////////////////////////////////////////////////
8791 const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) {
8792   switch (cause) {
8793     case _no_expansion:
8794       return "No expansion";
8795     case _satisfy_free_ratio:
8796       return "Free ratio";
8797     case _satisfy_promotion:
8798       return "Satisfy promotion";
8799     case _satisfy_allocation:
8800       return "allocation";
8801     case _allocate_par_lab:
8802       return "Par LAB";
8803     case _allocate_par_spooling_space:
8804       return "Par Spooling Space";
8805     case _adaptive_size_policy:
8806       return "Ergonomics";
8807     default:
8808       return "unknown";
8809   }
8810 }
8811 
8812 void CMSDrainMarkingStackClosure::do_void() {
8813   // the max number to take from overflow list at a time
8814   const size_t num = _mark_stack->capacity()/4;
8815   assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(),
8816          "Overflow list should be NULL during concurrent phases");
8817   while (!_mark_stack->isEmpty() ||
8818          // if stack is empty, check the overflow list
8819          _collector->take_from_overflow_list(num, _mark_stack)) {
8820     oop obj = _mark_stack->pop();
8821     HeapWord* addr = (HeapWord*)obj;
8822     assert(_span.contains(addr), "Should be within span");
8823     assert(_bit_map->isMarked(addr), "Should be marked");
8824     assert(obj->is_oop(), "Should be an oop");
8825     obj->oop_iterate(_keep_alive);
8826   }
8827 }
8828 
8829 void CMSParDrainMarkingStackClosure::do_void() {
8830   // drain queue
8831   trim_queue(0);
8832 }
8833 
8834 // Trim our work_queue so its length is below max at return
8835 void CMSParDrainMarkingStackClosure::trim_queue(uint max) {
8836   while (_work_queue->size() > max) {
8837     oop new_oop;
8838     if (_work_queue->pop_local(new_oop)) {
8839       assert(new_oop->is_oop(), "Expected an oop");
8840       assert(_bit_map->isMarked((HeapWord*)new_oop),
8841              "no white objects on this stack!");
8842       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
8843       // iterate over the oops in this oop, marking and pushing
8844       // the ones in CMS heap (i.e. in _span).
8845       new_oop->oop_iterate(&_mark_and_push);
8846     }
8847   }
8848 }
8849 
8850 ////////////////////////////////////////////////////////////////////
8851 // Support for Marking Stack Overflow list handling and related code
8852 ////////////////////////////////////////////////////////////////////
8853 // Much of the following code is similar in shape and spirit to the
8854 // code used in ParNewGC. We should try and share that code
8855 // as much as possible in the future.
8856 
8857 #ifndef PRODUCT
8858 // Debugging support for CMSStackOverflowALot
8859 
8860 // It's OK to call this multi-threaded;  the worst thing
8861 // that can happen is that we'll get a bunch of closely
8862 // spaced simulated oveflows, but that's OK, in fact
8863 // probably good as it would exercise the overflow code
8864 // under contention.
8865 bool CMSCollector::simulate_overflow() {
8866   if (_overflow_counter-- <= 0) { // just being defensive
8867     _overflow_counter = CMSMarkStackOverflowInterval;
8868     return true;
8869   } else {
8870     return false;
8871   }
8872 }
8873 
8874 bool CMSCollector::par_simulate_overflow() {
8875   return simulate_overflow();
8876 }
8877 #endif
8878 
8879 // Single-threaded
8880 bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
8881   assert(stack->isEmpty(), "Expected precondition");
8882   assert(stack->capacity() > num, "Shouldn't bite more than can chew");
8883   size_t i = num;
8884   oop  cur = _overflow_list;
8885   const markOop proto = markOopDesc::prototype();
8886   NOT_PRODUCT(ssize_t n = 0;)
8887   for (oop next; i > 0 && cur != NULL; cur = next, i--) {
8888     next = oop(cur->mark());
8889     cur->set_mark(proto);   // until proven otherwise
8890     assert(cur->is_oop(), "Should be an oop");
8891     bool res = stack->push(cur);
8892     assert(res, "Bit off more than can chew?");
8893     NOT_PRODUCT(n++;)
8894   }
8895   _overflow_list = cur;
8896 #ifndef PRODUCT
8897   assert(_num_par_pushes >= n, "Too many pops?");
8898   _num_par_pushes -=n;
8899 #endif
8900   return !stack->isEmpty();
8901 }
8902 
8903 #define BUSY  (oop(0x1aff1aff))
8904 // (MT-safe) Get a prefix of at most "num" from the list.
8905 // The overflow list is chained through the mark word of
8906 // each object in the list. We fetch the entire list,
8907 // break off a prefix of the right size and return the
8908 // remainder. If other threads try to take objects from
8909 // the overflow list at that time, they will wait for
8910 // some time to see if data becomes available. If (and
8911 // only if) another thread places one or more object(s)
8912 // on the global list before we have returned the suffix
8913 // to the global list, we will walk down our local list
8914 // to find its end and append the global list to
8915 // our suffix before returning it. This suffix walk can
8916 // prove to be expensive (quadratic in the amount of traffic)
8917 // when there are many objects in the overflow list and
8918 // there is much producer-consumer contention on the list.
8919 // *NOTE*: The overflow list manipulation code here and
8920 // in ParNewGeneration:: are very similar in shape,
8921 // except that in the ParNew case we use the old (from/eden)
8922 // copy of the object to thread the list via its klass word.
8923 // Because of the common code, if you make any changes in
8924 // the code below, please check the ParNew version to see if
8925 // similar changes might be needed.
8926 // CR 6797058 has been filed to consolidate the common code.
8927 bool CMSCollector::par_take_from_overflow_list(size_t num,
8928                                                OopTaskQueue* work_q,
8929                                                int no_of_gc_threads) {
8930   assert(work_q->size() == 0, "First empty local work queue");
8931   assert(num < work_q->max_elems(), "Can't bite more than we can chew");
8932   if (_overflow_list == NULL) {
8933     return false;
8934   }
8935   // Grab the entire list; we'll put back a suffix
8936   oop prefix = (oop)Atomic::xchg_ptr(BUSY, &_overflow_list);
8937   Thread* tid = Thread::current();
8938   // Before "no_of_gc_threads" was introduced CMSOverflowSpinCount was
8939   // set to ParallelGCThreads.
8940   size_t CMSOverflowSpinCount = (size_t) no_of_gc_threads; // was ParallelGCThreads;
8941   size_t sleep_time_millis = MAX2((size_t)1, num/100);
8942   // If the list is busy, we spin for a short while,
8943   // sleeping between attempts to get the list.
8944   for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) {
8945     os::sleep(tid, sleep_time_millis, false);
8946     if (_overflow_list == NULL) {
8947       // Nothing left to take
8948       return false;
8949     } else if (_overflow_list != BUSY) {
8950       // Try and grab the prefix
8951       prefix = (oop)Atomic::xchg_ptr(BUSY, &_overflow_list);
8952     }
8953   }
8954   // If the list was found to be empty, or we spun long
8955   // enough, we give up and return empty-handed. If we leave
8956   // the list in the BUSY state below, it must be the case that
8957   // some other thread holds the overflow list and will set it
8958   // to a non-BUSY state in the future.
8959   if (prefix == NULL || prefix == BUSY) {
8960      // Nothing to take or waited long enough
8961      if (prefix == NULL) {
8962        // Write back the NULL in case we overwrote it with BUSY above
8963        // and it is still the same value.
8964        (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
8965      }
8966      return false;
8967   }
8968   assert(prefix != NULL && prefix != BUSY, "Error");
8969   size_t i = num;
8970   oop cur = prefix;
8971   // Walk down the first "num" objects, unless we reach the end.
8972   for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--);
8973   if (cur->mark() == NULL) {
8974     // We have "num" or fewer elements in the list, so there
8975     // is nothing to return to the global list.
8976     // Write back the NULL in lieu of the BUSY we wrote
8977     // above, if it is still the same value.
8978     if (_overflow_list == BUSY) {
8979       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
8980     }
8981   } else {
8982     // Chop off the suffix and rerturn it to the global list.
8983     assert(cur->mark() != BUSY, "Error");
8984     oop suffix_head = cur->mark(); // suffix will be put back on global list
8985     cur->set_mark(NULL);           // break off suffix
8986     // It's possible that the list is still in the empty(busy) state
8987     // we left it in a short while ago; in that case we may be
8988     // able to place back the suffix without incurring the cost
8989     // of a walk down the list.
8990     oop observed_overflow_list = _overflow_list;
8991     oop cur_overflow_list = observed_overflow_list;
8992     bool attached = false;
8993     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
8994       observed_overflow_list =
8995         (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
8996       if (cur_overflow_list == observed_overflow_list) {
8997         attached = true;
8998         break;
8999       } else cur_overflow_list = observed_overflow_list;
9000     }
9001     if (!attached) {
9002       // Too bad, someone else sneaked in (at least) an element; we'll need
9003       // to do a splice. Find tail of suffix so we can prepend suffix to global
9004       // list.
9005       for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark()));
9006       oop suffix_tail = cur;
9007       assert(suffix_tail != NULL && suffix_tail->mark() == NULL,
9008              "Tautology");
9009       observed_overflow_list = _overflow_list;
9010       do {
9011         cur_overflow_list = observed_overflow_list;
9012         if (cur_overflow_list != BUSY) {
9013           // Do the splice ...
9014           suffix_tail->set_mark(markOop(cur_overflow_list));
9015         } else { // cur_overflow_list == BUSY
9016           suffix_tail->set_mark(NULL);
9017         }
9018         // ... and try to place spliced list back on overflow_list ...
9019         observed_overflow_list =
9020           (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
9021       } while (cur_overflow_list != observed_overflow_list);
9022       // ... until we have succeeded in doing so.
9023     }
9024   }
9025 
9026   // Push the prefix elements on work_q
9027   assert(prefix != NULL, "control point invariant");
9028   const markOop proto = markOopDesc::prototype();
9029   oop next;
9030   NOT_PRODUCT(ssize_t n = 0;)
9031   for (cur = prefix; cur != NULL; cur = next) {
9032     next = oop(cur->mark());
9033     cur->set_mark(proto);   // until proven otherwise
9034     assert(cur->is_oop(), "Should be an oop");
9035     bool res = work_q->push(cur);
9036     assert(res, "Bit off more than we can chew?");
9037     NOT_PRODUCT(n++;)
9038   }
9039 #ifndef PRODUCT
9040   assert(_num_par_pushes >= n, "Too many pops?");
9041   Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
9042 #endif
9043   return true;
9044 }
9045 
9046 // Single-threaded
9047 void CMSCollector::push_on_overflow_list(oop p) {
9048   NOT_PRODUCT(_num_par_pushes++;)
9049   assert(p->is_oop(), "Not an oop");
9050   preserve_mark_if_necessary(p);
9051   p->set_mark((markOop)_overflow_list);
9052   _overflow_list = p;
9053 }
9054 
9055 // Multi-threaded; use CAS to prepend to overflow list
9056 void CMSCollector::par_push_on_overflow_list(oop p) {
9057   NOT_PRODUCT(Atomic::inc_ptr(&_num_par_pushes);)
9058   assert(p->is_oop(), "Not an oop");
9059   par_preserve_mark_if_necessary(p);
9060   oop observed_overflow_list = _overflow_list;
9061   oop cur_overflow_list;
9062   do {
9063     cur_overflow_list = observed_overflow_list;
9064     if (cur_overflow_list != BUSY) {
9065       p->set_mark(markOop(cur_overflow_list));
9066     } else {
9067       p->set_mark(NULL);
9068     }
9069     observed_overflow_list =
9070       (oop) Atomic::cmpxchg_ptr(p, &_overflow_list, cur_overflow_list);
9071   } while (cur_overflow_list != observed_overflow_list);
9072 }
9073 #undef BUSY
9074 
9075 // Single threaded
9076 // General Note on GrowableArray: pushes may silently fail
9077 // because we are (temporarily) out of C-heap for expanding
9078 // the stack. The problem is quite ubiquitous and affects
9079 // a lot of code in the JVM. The prudent thing for GrowableArray
9080 // to do (for now) is to exit with an error. However, that may
9081 // be too draconian in some cases because the caller may be
9082 // able to recover without much harm. For such cases, we
9083 // should probably introduce a "soft_push" method which returns
9084 // an indication of success or failure with the assumption that
9085 // the caller may be able to recover from a failure; code in
9086 // the VM can then be changed, incrementally, to deal with such
9087 // failures where possible, thus, incrementally hardening the VM
9088 // in such low resource situations.
9089 void CMSCollector::preserve_mark_work(oop p, markOop m) {
9090   _preserved_oop_stack.push(p);
9091   _preserved_mark_stack.push(m);
9092   assert(m == p->mark(), "Mark word changed");
9093   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
9094          "bijection");
9095 }
9096 
9097 // Single threaded
9098 void CMSCollector::preserve_mark_if_necessary(oop p) {
9099   markOop m = p->mark();
9100   if (m->must_be_preserved(p)) {
9101     preserve_mark_work(p, m);
9102   }
9103 }
9104 
9105 void CMSCollector::par_preserve_mark_if_necessary(oop p) {
9106   markOop m = p->mark();
9107   if (m->must_be_preserved(p)) {
9108     MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
9109     // Even though we read the mark word without holding
9110     // the lock, we are assured that it will not change
9111     // because we "own" this oop, so no other thread can
9112     // be trying to push it on the overflow list; see
9113     // the assertion in preserve_mark_work() that checks
9114     // that m == p->mark().
9115     preserve_mark_work(p, m);
9116   }
9117 }
9118 
9119 // We should be able to do this multi-threaded,
9120 // a chunk of stack being a task (this is
9121 // correct because each oop only ever appears
9122 // once in the overflow list. However, it's
9123 // not very easy to completely overlap this with
9124 // other operations, so will generally not be done
9125 // until all work's been completed. Because we
9126 // expect the preserved oop stack (set) to be small,
9127 // it's probably fine to do this single-threaded.
9128 // We can explore cleverer concurrent/overlapped/parallel
9129 // processing of preserved marks if we feel the
9130 // need for this in the future. Stack overflow should
9131 // be so rare in practice and, when it happens, its
9132 // effect on performance so great that this will
9133 // likely just be in the noise anyway.
9134 void CMSCollector::restore_preserved_marks_if_any() {
9135   assert(SafepointSynchronize::is_at_safepoint(),
9136          "world should be stopped");
9137   assert(Thread::current()->is_ConcurrentGC_thread() ||
9138          Thread::current()->is_VM_thread(),
9139          "should be single-threaded");
9140   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
9141          "bijection");
9142 
9143   while (!_preserved_oop_stack.is_empty()) {
9144     oop p = _preserved_oop_stack.pop();
9145     assert(p->is_oop(), "Should be an oop");
9146     assert(_span.contains(p), "oop should be in _span");
9147     assert(p->mark() == markOopDesc::prototype(),
9148            "Set when taken from overflow list");
9149     markOop m = _preserved_mark_stack.pop();
9150     p->set_mark(m);
9151   }
9152   assert(_preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(),
9153          "stacks were cleared above");
9154 }
9155 
9156 #ifndef PRODUCT
9157 bool CMSCollector::no_preserved_marks() const {
9158   return _preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty();
9159 }
9160 #endif
9161 
9162 CMSAdaptiveSizePolicy* ASConcurrentMarkSweepGeneration::cms_size_policy() const
9163 {
9164   GenCollectedHeap* gch = (GenCollectedHeap*) GenCollectedHeap::heap();
9165   CMSAdaptiveSizePolicy* size_policy =
9166     (CMSAdaptiveSizePolicy*) gch->gen_policy()->size_policy();
9167   assert(size_policy->is_gc_cms_adaptive_size_policy(),
9168     "Wrong type for size policy");
9169   return size_policy;
9170 }
9171 
9172 void ASConcurrentMarkSweepGeneration::resize(size_t cur_promo_size,
9173                                            size_t desired_promo_size) {
9174   if (cur_promo_size < desired_promo_size) {
9175     size_t expand_bytes = desired_promo_size - cur_promo_size;
9176     if (PrintAdaptiveSizePolicy && Verbose) {
9177       gclog_or_tty->print_cr(" ASConcurrentMarkSweepGeneration::resize "
9178         "Expanding tenured generation by " SIZE_FORMAT " (bytes)",
9179         expand_bytes);
9180     }
9181     expand(expand_bytes,
9182            MinHeapDeltaBytes,
9183            CMSExpansionCause::_adaptive_size_policy);
9184   } else if (desired_promo_size < cur_promo_size) {
9185     size_t shrink_bytes = cur_promo_size - desired_promo_size;
9186     if (PrintAdaptiveSizePolicy && Verbose) {
9187       gclog_or_tty->print_cr(" ASConcurrentMarkSweepGeneration::resize "
9188         "Shrinking tenured generation by " SIZE_FORMAT " (bytes)",
9189         shrink_bytes);
9190     }
9191     shrink(shrink_bytes);
9192   }
9193 }
9194 
9195 CMSGCAdaptivePolicyCounters* ASConcurrentMarkSweepGeneration::gc_adaptive_policy_counters() {
9196   GenCollectedHeap* gch = GenCollectedHeap::heap();
9197   CMSGCAdaptivePolicyCounters* counters =
9198     (CMSGCAdaptivePolicyCounters*) gch->collector_policy()->counters();
9199   assert(counters->kind() == GCPolicyCounters::CMSGCAdaptivePolicyCountersKind,
9200     "Wrong kind of counters");
9201   return counters;
9202 }
9203 
9204 
9205 void ASConcurrentMarkSweepGeneration::update_counters() {
9206   if (UsePerfData) {
9207     _space_counters->update_all();
9208     _gen_counters->update_all();
9209     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
9210     GenCollectedHeap* gch = GenCollectedHeap::heap();
9211     CMSGCStats* gc_stats_l = (CMSGCStats*) gc_stats();
9212     assert(gc_stats_l->kind() == GCStats::CMSGCStatsKind,
9213       "Wrong gc statistics type");
9214     counters->update_counters(gc_stats_l);
9215   }
9216 }
9217 
9218 void ASConcurrentMarkSweepGeneration::update_counters(size_t used) {
9219   if (UsePerfData) {
9220     _space_counters->update_used(used);
9221     _space_counters->update_capacity();
9222     _gen_counters->update_all();
9223 
9224     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
9225     GenCollectedHeap* gch = GenCollectedHeap::heap();
9226     CMSGCStats* gc_stats_l = (CMSGCStats*) gc_stats();
9227     assert(gc_stats_l->kind() == GCStats::CMSGCStatsKind,
9228       "Wrong gc statistics type");
9229     counters->update_counters(gc_stats_l);
9230   }
9231 }
9232 
9233 void ASConcurrentMarkSweepGeneration::shrink_by(size_t desired_bytes) {
9234   assert_locked_or_safepoint(Heap_lock);
9235   assert_lock_strong(freelistLock());
9236   HeapWord* old_end = _cmsSpace->end();
9237   HeapWord* unallocated_start = _cmsSpace->unallocated_block();
9238   assert(old_end >= unallocated_start, "Miscalculation of unallocated_start");
9239   FreeChunk* chunk_at_end = find_chunk_at_end();
9240   if (chunk_at_end == NULL) {
9241     // No room to shrink
9242     if (PrintGCDetails && Verbose) {
9243       gclog_or_tty->print_cr("No room to shrink: old_end  "
9244         PTR_FORMAT "  unallocated_start  " PTR_FORMAT
9245         " chunk_at_end  " PTR_FORMAT,
9246         old_end, unallocated_start, chunk_at_end);
9247     }
9248     return;
9249   } else {
9250 
9251     // Find the chunk at the end of the space and determine
9252     // how much it can be shrunk.
9253     size_t shrinkable_size_in_bytes = chunk_at_end->size();
9254     size_t aligned_shrinkable_size_in_bytes =
9255       align_size_down(shrinkable_size_in_bytes, os::vm_page_size());
9256     assert(unallocated_start <= (HeapWord*) chunk_at_end->end(),
9257       "Inconsistent chunk at end of space");
9258     size_t bytes = MIN2(desired_bytes, aligned_shrinkable_size_in_bytes);
9259     size_t word_size_before = heap_word_size(_virtual_space.committed_size());
9260 
9261     // Shrink the underlying space
9262     _virtual_space.shrink_by(bytes);
9263     if (PrintGCDetails && Verbose) {
9264       gclog_or_tty->print_cr("ConcurrentMarkSweepGeneration::shrink_by:"
9265         " desired_bytes " SIZE_FORMAT
9266         " shrinkable_size_in_bytes " SIZE_FORMAT
9267         " aligned_shrinkable_size_in_bytes " SIZE_FORMAT
9268         "  bytes  " SIZE_FORMAT,
9269         desired_bytes, shrinkable_size_in_bytes,
9270         aligned_shrinkable_size_in_bytes, bytes);
9271       gclog_or_tty->print_cr("          old_end  " SIZE_FORMAT
9272         "  unallocated_start  " SIZE_FORMAT,
9273         old_end, unallocated_start);
9274     }
9275 
9276     // If the space did shrink (shrinking is not guaranteed),
9277     // shrink the chunk at the end by the appropriate amount.
9278     if (((HeapWord*)_virtual_space.high()) < old_end) {
9279       size_t new_word_size =
9280         heap_word_size(_virtual_space.committed_size());
9281 
9282       // Have to remove the chunk from the dictionary because it is changing
9283       // size and might be someplace elsewhere in the dictionary.
9284 
9285       // Get the chunk at end, shrink it, and put it
9286       // back.
9287       _cmsSpace->removeChunkFromDictionary(chunk_at_end);
9288       size_t word_size_change = word_size_before - new_word_size;
9289       size_t chunk_at_end_old_size = chunk_at_end->size();
9290       assert(chunk_at_end_old_size >= word_size_change,
9291         "Shrink is too large");
9292       chunk_at_end->set_size(chunk_at_end_old_size -
9293                           word_size_change);
9294       _cmsSpace->freed((HeapWord*) chunk_at_end->end(),
9295         word_size_change);
9296 
9297       _cmsSpace->returnChunkToDictionary(chunk_at_end);
9298 
9299       MemRegion mr(_cmsSpace->bottom(), new_word_size);
9300       _bts->resize(new_word_size);  // resize the block offset shared array
9301       Universe::heap()->barrier_set()->resize_covered_region(mr);
9302       _cmsSpace->assert_locked();
9303       _cmsSpace->set_end((HeapWord*)_virtual_space.high());
9304 
9305       NOT_PRODUCT(_cmsSpace->dictionary()->verify());
9306 
9307       // update the space and generation capacity counters
9308       if (UsePerfData) {
9309         _space_counters->update_capacity();
9310         _gen_counters->update_all();
9311       }
9312 
9313       if (Verbose && PrintGCDetails) {
9314         size_t new_mem_size = _virtual_space.committed_size();
9315         size_t old_mem_size = new_mem_size + bytes;
9316         gclog_or_tty->print_cr("Shrinking %s from " SIZE_FORMAT "K by " SIZE_FORMAT "K to " SIZE_FORMAT "K",
9317                       name(), old_mem_size/K, bytes/K, new_mem_size/K);
9318       }
9319     }
9320 
9321     assert(_cmsSpace->unallocated_block() <= _cmsSpace->end(),
9322       "Inconsistency at end of space");
9323     assert(chunk_at_end->end() == (uintptr_t*) _cmsSpace->end(),
9324       "Shrinking is inconsistent");
9325     return;
9326   }
9327 }
9328 
9329 // Transfer some number of overflown objects to usual marking
9330 // stack. Return true if some objects were transferred.
9331 bool MarkRefsIntoAndScanClosure::take_from_overflow_list() {
9332   size_t num = MIN2((size_t)(_mark_stack->capacity() - _mark_stack->length())/4,
9333                     (size_t)ParGCDesiredObjsFromOverflowList);
9334 
9335   bool res = _collector->take_from_overflow_list(num, _mark_stack);
9336   assert(_collector->overflow_list_is_empty() || res,
9337          "If list is not empty, we should have taken something");
9338   assert(!res || !_mark_stack->isEmpty(),
9339          "If we took something, it should now be on our stack");
9340   return res;
9341 }
9342 
9343 size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) {
9344   size_t res = _sp->block_size_no_stall(addr, _collector);
9345   if (_sp->block_is_obj(addr)) {
9346     if (_live_bit_map->isMarked(addr)) {
9347       // It can't have been dead in a previous cycle
9348       guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!");
9349     } else {
9350       _dead_bit_map->mark(addr);      // mark the dead object
9351     }
9352   }
9353   // Could be 0, if the block size could not be computed without stalling.
9354   return res;
9355 }
9356 
9357 TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause): TraceMemoryManagerStats() {
9358 
9359   switch (phase) {
9360     case CMSCollector::InitialMarking:
9361       initialize(true  /* fullGC */ ,
9362                  cause /* cause of the GC */,
9363                  true  /* recordGCBeginTime */,
9364                  true  /* recordPreGCUsage */,
9365                  false /* recordPeakUsage */,
9366                  false /* recordPostGCusage */,
9367                  true  /* recordAccumulatedGCTime */,
9368                  false /* recordGCEndTime */,
9369                  false /* countCollection */  );
9370       break;
9371 
9372     case CMSCollector::FinalMarking:
9373       initialize(true  /* fullGC */ ,
9374                  cause /* cause of the GC */,
9375                  false /* recordGCBeginTime */,
9376                  false /* recordPreGCUsage */,
9377                  false /* recordPeakUsage */,
9378                  false /* recordPostGCusage */,
9379                  true  /* recordAccumulatedGCTime */,
9380                  false /* recordGCEndTime */,
9381                  false /* countCollection */  );
9382       break;
9383 
9384     case CMSCollector::Sweeping:
9385       initialize(true  /* fullGC */ ,
9386                  cause /* cause of the GC */,
9387                  false /* recordGCBeginTime */,
9388                  false /* recordPreGCUsage */,
9389                  true  /* recordPeakUsage */,
9390                  true  /* recordPostGCusage */,
9391                  false /* recordAccumulatedGCTime */,
9392                  true  /* recordGCEndTime */,
9393                  true  /* countCollection */  );
9394       break;
9395 
9396     default:
9397       ShouldNotReachHere();
9398   }
9399 }
9400