1 /* 2 * Copyright (c) 1999, 2018, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/macroAssembler.hpp" 27 #include "ci/ciUtilities.inline.hpp" 28 #include "classfile/systemDictionary.hpp" 29 #include "classfile/vmSymbols.hpp" 30 #include "compiler/compileBroker.hpp" 31 #include "compiler/compileLog.hpp" 32 #include "gc/shared/barrierSet.hpp" 33 #include "jfr/support/jfrIntrinsics.hpp" 34 #include "memory/resourceArea.hpp" 35 #include "oops/objArrayKlass.hpp" 36 #include "opto/addnode.hpp" 37 #include "opto/arraycopynode.hpp" 38 #include "opto/c2compiler.hpp" 39 #include "opto/callGenerator.hpp" 40 #include "opto/castnode.hpp" 41 #include "opto/cfgnode.hpp" 42 #include "opto/convertnode.hpp" 43 #include "opto/countbitsnode.hpp" 44 #include "opto/intrinsicnode.hpp" 45 #include "opto/idealKit.hpp" 46 #include "opto/mathexactnode.hpp" 47 #include "opto/movenode.hpp" 48 #include "opto/mulnode.hpp" 49 #include "opto/narrowptrnode.hpp" 50 #include "opto/opaquenode.hpp" 51 #include "opto/parse.hpp" 52 #include "opto/runtime.hpp" 53 #include "opto/rootnode.hpp" 54 #include "opto/subnode.hpp" 55 #include "prims/nativeLookup.hpp" 56 #include "prims/unsafe.hpp" 57 #include "runtime/objectMonitor.hpp" 58 #include "runtime/sharedRuntime.hpp" 59 #include "utilities/macros.hpp" 60 61 62 class LibraryIntrinsic : public InlineCallGenerator { 63 // Extend the set of intrinsics known to the runtime: 64 public: 65 private: 66 bool _is_virtual; 67 bool _does_virtual_dispatch; 68 int8_t _predicates_count; // Intrinsic is predicated by several conditions 69 int8_t _last_predicate; // Last generated predicate 70 vmIntrinsics::ID _intrinsic_id; 71 72 public: 73 LibraryIntrinsic(ciMethod* m, bool is_virtual, int predicates_count, bool does_virtual_dispatch, vmIntrinsics::ID id) 74 : InlineCallGenerator(m), 75 _is_virtual(is_virtual), 76 _does_virtual_dispatch(does_virtual_dispatch), 77 _predicates_count((int8_t)predicates_count), 78 _last_predicate((int8_t)-1), 79 _intrinsic_id(id) 80 { 81 } 82 virtual bool is_intrinsic() const { return true; } 83 virtual bool is_virtual() const { return _is_virtual; } 84 virtual bool is_predicated() const { return _predicates_count > 0; } 85 virtual int predicates_count() const { return _predicates_count; } 86 virtual bool does_virtual_dispatch() const { return _does_virtual_dispatch; } 87 virtual JVMState* generate(JVMState* jvms); 88 virtual Node* generate_predicate(JVMState* jvms, int predicate); 89 vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; } 90 }; 91 92 93 // Local helper class for LibraryIntrinsic: 94 class LibraryCallKit : public GraphKit { 95 private: 96 LibraryIntrinsic* _intrinsic; // the library intrinsic being called 97 Node* _result; // the result node, if any 98 int _reexecute_sp; // the stack pointer when bytecode needs to be reexecuted 99 100 const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type); 101 102 public: 103 LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic) 104 : GraphKit(jvms), 105 _intrinsic(intrinsic), 106 _result(NULL) 107 { 108 // Check if this is a root compile. In that case we don't have a caller. 109 if (!jvms->has_method()) { 110 _reexecute_sp = sp(); 111 } else { 112 // Find out how many arguments the interpreter needs when deoptimizing 113 // and save the stack pointer value so it can used by uncommon_trap. 114 // We find the argument count by looking at the declared signature. 115 bool ignored_will_link; 116 ciSignature* declared_signature = NULL; 117 ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature); 118 const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci())); 119 _reexecute_sp = sp() + nargs; // "push" arguments back on stack 120 } 121 } 122 123 virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; } 124 125 ciMethod* caller() const { return jvms()->method(); } 126 int bci() const { return jvms()->bci(); } 127 LibraryIntrinsic* intrinsic() const { return _intrinsic; } 128 vmIntrinsics::ID intrinsic_id() const { return _intrinsic->intrinsic_id(); } 129 ciMethod* callee() const { return _intrinsic->method(); } 130 131 bool try_to_inline(int predicate); 132 Node* try_to_predicate(int predicate); 133 134 void push_result() { 135 // Push the result onto the stack. 136 if (!stopped() && result() != NULL) { 137 BasicType bt = result()->bottom_type()->basic_type(); 138 push_node(bt, result()); 139 } 140 } 141 142 private: 143 void fatal_unexpected_iid(vmIntrinsics::ID iid) { 144 fatal("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)); 145 } 146 147 void set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; } 148 void set_result(RegionNode* region, PhiNode* value); 149 Node* result() { return _result; } 150 151 virtual int reexecute_sp() { return _reexecute_sp; } 152 153 // Helper functions to inline natives 154 Node* generate_guard(Node* test, RegionNode* region, float true_prob); 155 Node* generate_slow_guard(Node* test, RegionNode* region); 156 Node* generate_fair_guard(Node* test, RegionNode* region); 157 Node* generate_negative_guard(Node* index, RegionNode* region, 158 // resulting CastII of index: 159 Node* *pos_index = NULL); 160 Node* generate_limit_guard(Node* offset, Node* subseq_length, 161 Node* array_length, 162 RegionNode* region); 163 void generate_string_range_check(Node* array, Node* offset, 164 Node* length, bool char_count); 165 Node* generate_current_thread(Node* &tls_output); 166 Node* load_mirror_from_klass(Node* klass); 167 Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null, 168 RegionNode* region, int null_path, 169 int offset); 170 Node* load_klass_from_mirror(Node* mirror, bool never_see_null, 171 RegionNode* region, int null_path) { 172 int offset = java_lang_Class::klass_offset_in_bytes(); 173 return load_klass_from_mirror_common(mirror, never_see_null, 174 region, null_path, 175 offset); 176 } 177 Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null, 178 RegionNode* region, int null_path) { 179 int offset = java_lang_Class::array_klass_offset_in_bytes(); 180 return load_klass_from_mirror_common(mirror, never_see_null, 181 region, null_path, 182 offset); 183 } 184 Node* generate_access_flags_guard(Node* kls, 185 int modifier_mask, int modifier_bits, 186 RegionNode* region); 187 Node* generate_interface_guard(Node* kls, RegionNode* region); 188 Node* generate_array_guard(Node* kls, RegionNode* region) { 189 return generate_array_guard_common(kls, region, false, false); 190 } 191 Node* generate_non_array_guard(Node* kls, RegionNode* region) { 192 return generate_array_guard_common(kls, region, false, true); 193 } 194 Node* generate_objArray_guard(Node* kls, RegionNode* region) { 195 return generate_array_guard_common(kls, region, true, false); 196 } 197 Node* generate_non_objArray_guard(Node* kls, RegionNode* region) { 198 return generate_array_guard_common(kls, region, true, true); 199 } 200 Node* generate_array_guard_common(Node* kls, RegionNode* region, 201 bool obj_array, bool not_array); 202 Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region); 203 CallJavaNode* generate_method_call(vmIntrinsics::ID method_id, 204 bool is_virtual = false, bool is_static = false); 205 CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) { 206 return generate_method_call(method_id, false, true); 207 } 208 CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) { 209 return generate_method_call(method_id, true, false); 210 } 211 Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static, ciInstanceKlass * fromKls); 212 Node * field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static, ciInstanceKlass * fromKls); 213 214 Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae); 215 bool inline_string_compareTo(StrIntrinsicNode::ArgEnc ae); 216 bool inline_string_indexOf(StrIntrinsicNode::ArgEnc ae); 217 bool inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae); 218 Node* make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count, 219 RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae); 220 bool inline_string_indexOfChar(); 221 bool inline_string_equals(StrIntrinsicNode::ArgEnc ae); 222 bool inline_string_toBytesU(); 223 bool inline_string_getCharsU(); 224 bool inline_string_copy(bool compress); 225 bool inline_string_char_access(bool is_store); 226 Node* round_double_node(Node* n); 227 bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName); 228 bool inline_math_native(vmIntrinsics::ID id); 229 bool inline_math(vmIntrinsics::ID id); 230 template <typename OverflowOp> 231 bool inline_math_overflow(Node* arg1, Node* arg2); 232 void inline_math_mathExact(Node* math, Node* test); 233 bool inline_math_addExactI(bool is_increment); 234 bool inline_math_addExactL(bool is_increment); 235 bool inline_math_multiplyExactI(); 236 bool inline_math_multiplyExactL(); 237 bool inline_math_multiplyHigh(); 238 bool inline_math_negateExactI(); 239 bool inline_math_negateExactL(); 240 bool inline_math_subtractExactI(bool is_decrement); 241 bool inline_math_subtractExactL(bool is_decrement); 242 bool inline_min_max(vmIntrinsics::ID id); 243 bool inline_notify(vmIntrinsics::ID id); 244 Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y); 245 // This returns Type::AnyPtr, RawPtr, or OopPtr. 246 int classify_unsafe_addr(Node* &base, Node* &offset, BasicType type); 247 Node* make_unsafe_address(Node*& base, Node* offset, BasicType type = T_ILLEGAL, bool can_cast = false); 248 249 typedef enum { Relaxed, Opaque, Volatile, Acquire, Release } AccessKind; 250 DecoratorSet mo_decorator_for_access_kind(AccessKind kind); 251 bool inline_unsafe_access(bool is_store, BasicType type, AccessKind kind, bool is_unaligned); 252 static bool klass_needs_init_guard(Node* kls); 253 bool inline_unsafe_allocate(); 254 bool inline_unsafe_newArray(bool uninitialized); 255 bool inline_unsafe_copyMemory(); 256 bool inline_native_currentThread(); 257 258 bool inline_native_time_funcs(address method, const char* funcName); 259 #ifdef JFR_HAVE_INTRINSICS 260 bool inline_native_classID(); 261 bool inline_native_getEventWriter(); 262 #endif 263 bool inline_native_isInterrupted(); 264 bool inline_native_Class_query(vmIntrinsics::ID id); 265 bool inline_native_subtype_check(); 266 bool inline_native_getLength(); 267 bool inline_array_copyOf(bool is_copyOfRange); 268 bool inline_array_equals(StrIntrinsicNode::ArgEnc ae); 269 bool inline_preconditions_checkIndex(); 270 void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array); 271 bool inline_native_clone(bool is_virtual); 272 bool inline_native_Reflection_getCallerClass(); 273 // Helper function for inlining native object hash method 274 bool inline_native_hashcode(bool is_virtual, bool is_static); 275 bool inline_native_getClass(); 276 277 // Helper functions for inlining arraycopy 278 bool inline_arraycopy(); 279 AllocateArrayNode* tightly_coupled_allocation(Node* ptr, 280 RegionNode* slow_region); 281 JVMState* arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp); 282 void arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms, int saved_reexecute_sp, 283 uint new_idx); 284 285 typedef enum { LS_get_add, LS_get_set, LS_cmp_swap, LS_cmp_swap_weak, LS_cmp_exchange } LoadStoreKind; 286 bool inline_unsafe_load_store(BasicType type, LoadStoreKind kind, AccessKind access_kind); 287 bool inline_unsafe_fence(vmIntrinsics::ID id); 288 bool inline_onspinwait(); 289 bool inline_fp_conversions(vmIntrinsics::ID id); 290 bool inline_number_methods(vmIntrinsics::ID id); 291 bool inline_reference_get(); 292 bool inline_Class_cast(); 293 bool inline_aescrypt_Block(vmIntrinsics::ID id); 294 bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id); 295 bool inline_counterMode_AESCrypt(vmIntrinsics::ID id); 296 Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting); 297 Node* inline_counterMode_AESCrypt_predicate(); 298 Node* get_key_start_from_aescrypt_object(Node* aescrypt_object); 299 Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object); 300 bool inline_ghash_processBlocks(); 301 bool inline_sha_implCompress(vmIntrinsics::ID id); 302 bool inline_digestBase_implCompressMB(int predicate); 303 bool inline_sha_implCompressMB(Node* digestBaseObj, ciInstanceKlass* instklass_SHA, 304 bool long_state, address stubAddr, const char *stubName, 305 Node* src_start, Node* ofs, Node* limit); 306 Node* get_state_from_sha_object(Node *sha_object); 307 Node* get_state_from_sha5_object(Node *sha_object); 308 Node* inline_digestBase_implCompressMB_predicate(int predicate); 309 bool inline_encodeISOArray(); 310 bool inline_updateCRC32(); 311 bool inline_updateBytesCRC32(); 312 bool inline_updateByteBufferCRC32(); 313 Node* get_table_from_crc32c_class(ciInstanceKlass *crc32c_class); 314 bool inline_updateBytesCRC32C(); 315 bool inline_updateDirectByteBufferCRC32C(); 316 bool inline_updateBytesAdler32(); 317 bool inline_updateByteBufferAdler32(); 318 bool inline_multiplyToLen(); 319 bool inline_hasNegatives(); 320 bool inline_squareToLen(); 321 bool inline_mulAdd(); 322 bool inline_montgomeryMultiply(); 323 bool inline_montgomerySquare(); 324 bool inline_vectorizedMismatch(); 325 bool inline_fma(vmIntrinsics::ID id); 326 327 bool inline_profileBoolean(); 328 bool inline_isCompileConstant(); 329 void clear_upper_avx() { 330 #ifdef X86 331 if (UseAVX >= 2) { 332 C->set_clear_upper_avx(true); 333 } 334 #endif 335 } 336 }; 337 338 //---------------------------make_vm_intrinsic---------------------------- 339 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) { 340 vmIntrinsics::ID id = m->intrinsic_id(); 341 assert(id != vmIntrinsics::_none, "must be a VM intrinsic"); 342 343 if (!m->is_loaded()) { 344 // Do not attempt to inline unloaded methods. 345 return NULL; 346 } 347 348 C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization); 349 bool is_available = false; 350 351 { 352 // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag 353 // the compiler must transition to '_thread_in_vm' state because both 354 // methods access VM-internal data. 355 VM_ENTRY_MARK; 356 methodHandle mh(THREAD, m->get_Method()); 357 is_available = compiler != NULL && compiler->is_intrinsic_supported(mh, is_virtual) && 358 !C->directive()->is_intrinsic_disabled(mh) && 359 !vmIntrinsics::is_disabled_by_flags(mh); 360 361 } 362 363 if (is_available) { 364 assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility"); 365 assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?"); 366 return new LibraryIntrinsic(m, is_virtual, 367 vmIntrinsics::predicates_needed(id), 368 vmIntrinsics::does_virtual_dispatch(id), 369 (vmIntrinsics::ID) id); 370 } else { 371 return NULL; 372 } 373 } 374 375 //----------------------register_library_intrinsics----------------------- 376 // Initialize this file's data structures, for each Compile instance. 377 void Compile::register_library_intrinsics() { 378 // Nothing to do here. 379 } 380 381 JVMState* LibraryIntrinsic::generate(JVMState* jvms) { 382 LibraryCallKit kit(jvms, this); 383 Compile* C = kit.C; 384 int nodes = C->unique(); 385 #ifndef PRODUCT 386 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 387 char buf[1000]; 388 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf)); 389 tty->print_cr("Intrinsic %s", str); 390 } 391 #endif 392 ciMethod* callee = kit.callee(); 393 const int bci = kit.bci(); 394 395 // Try to inline the intrinsic. 396 if ((CheckIntrinsics ? callee->intrinsic_candidate() : true) && 397 kit.try_to_inline(_last_predicate)) { 398 const char *inline_msg = is_virtual() ? "(intrinsic, virtual)" 399 : "(intrinsic)"; 400 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, inline_msg); 401 if (C->print_intrinsics() || C->print_inlining()) { 402 C->print_inlining(callee, jvms->depth() - 1, bci, inline_msg); 403 } 404 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked); 405 if (C->log()) { 406 C->log()->elem("intrinsic id='%s'%s nodes='%d'", 407 vmIntrinsics::name_at(intrinsic_id()), 408 (is_virtual() ? " virtual='1'" : ""), 409 C->unique() - nodes); 410 } 411 // Push the result from the inlined method onto the stack. 412 kit.push_result(); 413 C->print_inlining_update(this); 414 return kit.transfer_exceptions_into_jvms(); 415 } 416 417 // The intrinsic bailed out 418 if (jvms->has_method()) { 419 // Not a root compile. 420 const char* msg; 421 if (callee->intrinsic_candidate()) { 422 msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)"; 423 } else { 424 msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated" 425 : "failed to inline (intrinsic), method not annotated"; 426 } 427 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, msg); 428 if (C->print_intrinsics() || C->print_inlining()) { 429 C->print_inlining(callee, jvms->depth() - 1, bci, msg); 430 } 431 } else { 432 // Root compile 433 ResourceMark rm; 434 stringStream msg_stream; 435 msg_stream.print("Did not generate intrinsic %s%s at bci:%d in", 436 vmIntrinsics::name_at(intrinsic_id()), 437 is_virtual() ? " (virtual)" : "", bci); 438 const char *msg = msg_stream.as_string(); 439 log_debug(jit, inlining)("%s", msg); 440 if (C->print_intrinsics() || C->print_inlining()) { 441 tty->print("%s", msg); 442 } 443 } 444 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed); 445 C->print_inlining_update(this); 446 return NULL; 447 } 448 449 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) { 450 LibraryCallKit kit(jvms, this); 451 Compile* C = kit.C; 452 int nodes = C->unique(); 453 _last_predicate = predicate; 454 #ifndef PRODUCT 455 assert(is_predicated() && predicate < predicates_count(), "sanity"); 456 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 457 char buf[1000]; 458 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf)); 459 tty->print_cr("Predicate for intrinsic %s", str); 460 } 461 #endif 462 ciMethod* callee = kit.callee(); 463 const int bci = kit.bci(); 464 465 Node* slow_ctl = kit.try_to_predicate(predicate); 466 if (!kit.failing()) { 467 const char *inline_msg = is_virtual() ? "(intrinsic, virtual, predicate)" 468 : "(intrinsic, predicate)"; 469 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, inline_msg); 470 if (C->print_intrinsics() || C->print_inlining()) { 471 C->print_inlining(callee, jvms->depth() - 1, bci, inline_msg); 472 } 473 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked); 474 if (C->log()) { 475 C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'", 476 vmIntrinsics::name_at(intrinsic_id()), 477 (is_virtual() ? " virtual='1'" : ""), 478 C->unique() - nodes); 479 } 480 return slow_ctl; // Could be NULL if the check folds. 481 } 482 483 // The intrinsic bailed out 484 if (jvms->has_method()) { 485 // Not a root compile. 486 const char* msg = "failed to generate predicate for intrinsic"; 487 CompileTask::print_inlining_ul(kit.callee(), jvms->depth() - 1, bci, msg); 488 if (C->print_intrinsics() || C->print_inlining()) { 489 C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg); 490 } 491 } else { 492 // Root compile 493 ResourceMark rm; 494 stringStream msg_stream; 495 msg_stream.print("Did not generate intrinsic %s%s at bci:%d in", 496 vmIntrinsics::name_at(intrinsic_id()), 497 is_virtual() ? " (virtual)" : "", bci); 498 const char *msg = msg_stream.as_string(); 499 log_debug(jit, inlining)("%s", msg); 500 if (C->print_intrinsics() || C->print_inlining()) { 501 C->print_inlining_stream()->print("%s", msg); 502 } 503 } 504 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed); 505 return NULL; 506 } 507 508 bool LibraryCallKit::try_to_inline(int predicate) { 509 // Handle symbolic names for otherwise undistinguished boolean switches: 510 const bool is_store = true; 511 const bool is_compress = true; 512 const bool is_static = true; 513 const bool is_volatile = true; 514 515 if (!jvms()->has_method()) { 516 // Root JVMState has a null method. 517 assert(map()->memory()->Opcode() == Op_Parm, ""); 518 // Insert the memory aliasing node 519 set_all_memory(reset_memory()); 520 } 521 assert(merged_memory(), ""); 522 523 524 switch (intrinsic_id()) { 525 case vmIntrinsics::_hashCode: return inline_native_hashcode(intrinsic()->is_virtual(), !is_static); 526 case vmIntrinsics::_identityHashCode: return inline_native_hashcode(/*!virtual*/ false, is_static); 527 case vmIntrinsics::_getClass: return inline_native_getClass(); 528 529 case vmIntrinsics::_dsin: 530 case vmIntrinsics::_dcos: 531 case vmIntrinsics::_dtan: 532 case vmIntrinsics::_dabs: 533 case vmIntrinsics::_datan2: 534 case vmIntrinsics::_dsqrt: 535 case vmIntrinsics::_dexp: 536 case vmIntrinsics::_dlog: 537 case vmIntrinsics::_dlog10: 538 case vmIntrinsics::_dpow: return inline_math_native(intrinsic_id()); 539 540 case vmIntrinsics::_min: 541 case vmIntrinsics::_max: return inline_min_max(intrinsic_id()); 542 543 case vmIntrinsics::_notify: 544 case vmIntrinsics::_notifyAll: 545 if (ObjectMonitor::Knob_InlineNotify) { 546 return inline_notify(intrinsic_id()); 547 } 548 return false; 549 550 case vmIntrinsics::_addExactI: return inline_math_addExactI(false /* add */); 551 case vmIntrinsics::_addExactL: return inline_math_addExactL(false /* add */); 552 case vmIntrinsics::_decrementExactI: return inline_math_subtractExactI(true /* decrement */); 553 case vmIntrinsics::_decrementExactL: return inline_math_subtractExactL(true /* decrement */); 554 case vmIntrinsics::_incrementExactI: return inline_math_addExactI(true /* increment */); 555 case vmIntrinsics::_incrementExactL: return inline_math_addExactL(true /* increment */); 556 case vmIntrinsics::_multiplyExactI: return inline_math_multiplyExactI(); 557 case vmIntrinsics::_multiplyExactL: return inline_math_multiplyExactL(); 558 case vmIntrinsics::_multiplyHigh: return inline_math_multiplyHigh(); 559 case vmIntrinsics::_negateExactI: return inline_math_negateExactI(); 560 case vmIntrinsics::_negateExactL: return inline_math_negateExactL(); 561 case vmIntrinsics::_subtractExactI: return inline_math_subtractExactI(false /* subtract */); 562 case vmIntrinsics::_subtractExactL: return inline_math_subtractExactL(false /* subtract */); 563 564 case vmIntrinsics::_arraycopy: return inline_arraycopy(); 565 566 case vmIntrinsics::_compareToL: return inline_string_compareTo(StrIntrinsicNode::LL); 567 case vmIntrinsics::_compareToU: return inline_string_compareTo(StrIntrinsicNode::UU); 568 case vmIntrinsics::_compareToLU: return inline_string_compareTo(StrIntrinsicNode::LU); 569 case vmIntrinsics::_compareToUL: return inline_string_compareTo(StrIntrinsicNode::UL); 570 571 case vmIntrinsics::_indexOfL: return inline_string_indexOf(StrIntrinsicNode::LL); 572 case vmIntrinsics::_indexOfU: return inline_string_indexOf(StrIntrinsicNode::UU); 573 case vmIntrinsics::_indexOfUL: return inline_string_indexOf(StrIntrinsicNode::UL); 574 case vmIntrinsics::_indexOfIL: return inline_string_indexOfI(StrIntrinsicNode::LL); 575 case vmIntrinsics::_indexOfIU: return inline_string_indexOfI(StrIntrinsicNode::UU); 576 case vmIntrinsics::_indexOfIUL: return inline_string_indexOfI(StrIntrinsicNode::UL); 577 case vmIntrinsics::_indexOfU_char: return inline_string_indexOfChar(); 578 579 case vmIntrinsics::_equalsL: return inline_string_equals(StrIntrinsicNode::LL); 580 case vmIntrinsics::_equalsU: return inline_string_equals(StrIntrinsicNode::UU); 581 582 case vmIntrinsics::_toBytesStringU: return inline_string_toBytesU(); 583 case vmIntrinsics::_getCharsStringU: return inline_string_getCharsU(); 584 case vmIntrinsics::_getCharStringU: return inline_string_char_access(!is_store); 585 case vmIntrinsics::_putCharStringU: return inline_string_char_access( is_store); 586 587 case vmIntrinsics::_compressStringC: 588 case vmIntrinsics::_compressStringB: return inline_string_copy( is_compress); 589 case vmIntrinsics::_inflateStringC: 590 case vmIntrinsics::_inflateStringB: return inline_string_copy(!is_compress); 591 592 case vmIntrinsics::_getObject: return inline_unsafe_access(!is_store, T_OBJECT, Relaxed, false); 593 case vmIntrinsics::_getBoolean: return inline_unsafe_access(!is_store, T_BOOLEAN, Relaxed, false); 594 case vmIntrinsics::_getByte: return inline_unsafe_access(!is_store, T_BYTE, Relaxed, false); 595 case vmIntrinsics::_getShort: return inline_unsafe_access(!is_store, T_SHORT, Relaxed, false); 596 case vmIntrinsics::_getChar: return inline_unsafe_access(!is_store, T_CHAR, Relaxed, false); 597 case vmIntrinsics::_getInt: return inline_unsafe_access(!is_store, T_INT, Relaxed, false); 598 case vmIntrinsics::_getLong: return inline_unsafe_access(!is_store, T_LONG, Relaxed, false); 599 case vmIntrinsics::_getFloat: return inline_unsafe_access(!is_store, T_FLOAT, Relaxed, false); 600 case vmIntrinsics::_getDouble: return inline_unsafe_access(!is_store, T_DOUBLE, Relaxed, false); 601 602 case vmIntrinsics::_putObject: return inline_unsafe_access( is_store, T_OBJECT, Relaxed, false); 603 case vmIntrinsics::_putBoolean: return inline_unsafe_access( is_store, T_BOOLEAN, Relaxed, false); 604 case vmIntrinsics::_putByte: return inline_unsafe_access( is_store, T_BYTE, Relaxed, false); 605 case vmIntrinsics::_putShort: return inline_unsafe_access( is_store, T_SHORT, Relaxed, false); 606 case vmIntrinsics::_putChar: return inline_unsafe_access( is_store, T_CHAR, Relaxed, false); 607 case vmIntrinsics::_putInt: return inline_unsafe_access( is_store, T_INT, Relaxed, false); 608 case vmIntrinsics::_putLong: return inline_unsafe_access( is_store, T_LONG, Relaxed, false); 609 case vmIntrinsics::_putFloat: return inline_unsafe_access( is_store, T_FLOAT, Relaxed, false); 610 case vmIntrinsics::_putDouble: return inline_unsafe_access( is_store, T_DOUBLE, Relaxed, false); 611 612 case vmIntrinsics::_getObjectVolatile: return inline_unsafe_access(!is_store, T_OBJECT, Volatile, false); 613 case vmIntrinsics::_getBooleanVolatile: return inline_unsafe_access(!is_store, T_BOOLEAN, Volatile, false); 614 case vmIntrinsics::_getByteVolatile: return inline_unsafe_access(!is_store, T_BYTE, Volatile, false); 615 case vmIntrinsics::_getShortVolatile: return inline_unsafe_access(!is_store, T_SHORT, Volatile, false); 616 case vmIntrinsics::_getCharVolatile: return inline_unsafe_access(!is_store, T_CHAR, Volatile, false); 617 case vmIntrinsics::_getIntVolatile: return inline_unsafe_access(!is_store, T_INT, Volatile, false); 618 case vmIntrinsics::_getLongVolatile: return inline_unsafe_access(!is_store, T_LONG, Volatile, false); 619 case vmIntrinsics::_getFloatVolatile: return inline_unsafe_access(!is_store, T_FLOAT, Volatile, false); 620 case vmIntrinsics::_getDoubleVolatile: return inline_unsafe_access(!is_store, T_DOUBLE, Volatile, false); 621 622 case vmIntrinsics::_putObjectVolatile: return inline_unsafe_access( is_store, T_OBJECT, Volatile, false); 623 case vmIntrinsics::_putBooleanVolatile: return inline_unsafe_access( is_store, T_BOOLEAN, Volatile, false); 624 case vmIntrinsics::_putByteVolatile: return inline_unsafe_access( is_store, T_BYTE, Volatile, false); 625 case vmIntrinsics::_putShortVolatile: return inline_unsafe_access( is_store, T_SHORT, Volatile, false); 626 case vmIntrinsics::_putCharVolatile: return inline_unsafe_access( is_store, T_CHAR, Volatile, false); 627 case vmIntrinsics::_putIntVolatile: return inline_unsafe_access( is_store, T_INT, Volatile, false); 628 case vmIntrinsics::_putLongVolatile: return inline_unsafe_access( is_store, T_LONG, Volatile, false); 629 case vmIntrinsics::_putFloatVolatile: return inline_unsafe_access( is_store, T_FLOAT, Volatile, false); 630 case vmIntrinsics::_putDoubleVolatile: return inline_unsafe_access( is_store, T_DOUBLE, Volatile, false); 631 632 case vmIntrinsics::_getShortUnaligned: return inline_unsafe_access(!is_store, T_SHORT, Relaxed, true); 633 case vmIntrinsics::_getCharUnaligned: return inline_unsafe_access(!is_store, T_CHAR, Relaxed, true); 634 case vmIntrinsics::_getIntUnaligned: return inline_unsafe_access(!is_store, T_INT, Relaxed, true); 635 case vmIntrinsics::_getLongUnaligned: return inline_unsafe_access(!is_store, T_LONG, Relaxed, true); 636 637 case vmIntrinsics::_putShortUnaligned: return inline_unsafe_access( is_store, T_SHORT, Relaxed, true); 638 case vmIntrinsics::_putCharUnaligned: return inline_unsafe_access( is_store, T_CHAR, Relaxed, true); 639 case vmIntrinsics::_putIntUnaligned: return inline_unsafe_access( is_store, T_INT, Relaxed, true); 640 case vmIntrinsics::_putLongUnaligned: return inline_unsafe_access( is_store, T_LONG, Relaxed, true); 641 642 case vmIntrinsics::_getObjectAcquire: return inline_unsafe_access(!is_store, T_OBJECT, Acquire, false); 643 case vmIntrinsics::_getBooleanAcquire: return inline_unsafe_access(!is_store, T_BOOLEAN, Acquire, false); 644 case vmIntrinsics::_getByteAcquire: return inline_unsafe_access(!is_store, T_BYTE, Acquire, false); 645 case vmIntrinsics::_getShortAcquire: return inline_unsafe_access(!is_store, T_SHORT, Acquire, false); 646 case vmIntrinsics::_getCharAcquire: return inline_unsafe_access(!is_store, T_CHAR, Acquire, false); 647 case vmIntrinsics::_getIntAcquire: return inline_unsafe_access(!is_store, T_INT, Acquire, false); 648 case vmIntrinsics::_getLongAcquire: return inline_unsafe_access(!is_store, T_LONG, Acquire, false); 649 case vmIntrinsics::_getFloatAcquire: return inline_unsafe_access(!is_store, T_FLOAT, Acquire, false); 650 case vmIntrinsics::_getDoubleAcquire: return inline_unsafe_access(!is_store, T_DOUBLE, Acquire, false); 651 652 case vmIntrinsics::_putObjectRelease: return inline_unsafe_access( is_store, T_OBJECT, Release, false); 653 case vmIntrinsics::_putBooleanRelease: return inline_unsafe_access( is_store, T_BOOLEAN, Release, false); 654 case vmIntrinsics::_putByteRelease: return inline_unsafe_access( is_store, T_BYTE, Release, false); 655 case vmIntrinsics::_putShortRelease: return inline_unsafe_access( is_store, T_SHORT, Release, false); 656 case vmIntrinsics::_putCharRelease: return inline_unsafe_access( is_store, T_CHAR, Release, false); 657 case vmIntrinsics::_putIntRelease: return inline_unsafe_access( is_store, T_INT, Release, false); 658 case vmIntrinsics::_putLongRelease: return inline_unsafe_access( is_store, T_LONG, Release, false); 659 case vmIntrinsics::_putFloatRelease: return inline_unsafe_access( is_store, T_FLOAT, Release, false); 660 case vmIntrinsics::_putDoubleRelease: return inline_unsafe_access( is_store, T_DOUBLE, Release, false); 661 662 case vmIntrinsics::_getObjectOpaque: return inline_unsafe_access(!is_store, T_OBJECT, Opaque, false); 663 case vmIntrinsics::_getBooleanOpaque: return inline_unsafe_access(!is_store, T_BOOLEAN, Opaque, false); 664 case vmIntrinsics::_getByteOpaque: return inline_unsafe_access(!is_store, T_BYTE, Opaque, false); 665 case vmIntrinsics::_getShortOpaque: return inline_unsafe_access(!is_store, T_SHORT, Opaque, false); 666 case vmIntrinsics::_getCharOpaque: return inline_unsafe_access(!is_store, T_CHAR, Opaque, false); 667 case vmIntrinsics::_getIntOpaque: return inline_unsafe_access(!is_store, T_INT, Opaque, false); 668 case vmIntrinsics::_getLongOpaque: return inline_unsafe_access(!is_store, T_LONG, Opaque, false); 669 case vmIntrinsics::_getFloatOpaque: return inline_unsafe_access(!is_store, T_FLOAT, Opaque, false); 670 case vmIntrinsics::_getDoubleOpaque: return inline_unsafe_access(!is_store, T_DOUBLE, Opaque, false); 671 672 case vmIntrinsics::_putObjectOpaque: return inline_unsafe_access( is_store, T_OBJECT, Opaque, false); 673 case vmIntrinsics::_putBooleanOpaque: return inline_unsafe_access( is_store, T_BOOLEAN, Opaque, false); 674 case vmIntrinsics::_putByteOpaque: return inline_unsafe_access( is_store, T_BYTE, Opaque, false); 675 case vmIntrinsics::_putShortOpaque: return inline_unsafe_access( is_store, T_SHORT, Opaque, false); 676 case vmIntrinsics::_putCharOpaque: return inline_unsafe_access( is_store, T_CHAR, Opaque, false); 677 case vmIntrinsics::_putIntOpaque: return inline_unsafe_access( is_store, T_INT, Opaque, false); 678 case vmIntrinsics::_putLongOpaque: return inline_unsafe_access( is_store, T_LONG, Opaque, false); 679 case vmIntrinsics::_putFloatOpaque: return inline_unsafe_access( is_store, T_FLOAT, Opaque, false); 680 case vmIntrinsics::_putDoubleOpaque: return inline_unsafe_access( is_store, T_DOUBLE, Opaque, false); 681 682 case vmIntrinsics::_compareAndSetObject: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap, Volatile); 683 case vmIntrinsics::_compareAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap, Volatile); 684 case vmIntrinsics::_compareAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap, Volatile); 685 case vmIntrinsics::_compareAndSetInt: return inline_unsafe_load_store(T_INT, LS_cmp_swap, Volatile); 686 case vmIntrinsics::_compareAndSetLong: return inline_unsafe_load_store(T_LONG, LS_cmp_swap, Volatile); 687 688 case vmIntrinsics::_weakCompareAndSetObjectPlain: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed); 689 case vmIntrinsics::_weakCompareAndSetObjectAcquire: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire); 690 case vmIntrinsics::_weakCompareAndSetObjectRelease: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release); 691 case vmIntrinsics::_weakCompareAndSetObject: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Volatile); 692 case vmIntrinsics::_weakCompareAndSetBytePlain: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Relaxed); 693 case vmIntrinsics::_weakCompareAndSetByteAcquire: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Acquire); 694 case vmIntrinsics::_weakCompareAndSetByteRelease: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Release); 695 case vmIntrinsics::_weakCompareAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Volatile); 696 case vmIntrinsics::_weakCompareAndSetShortPlain: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Relaxed); 697 case vmIntrinsics::_weakCompareAndSetShortAcquire: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Acquire); 698 case vmIntrinsics::_weakCompareAndSetShortRelease: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Release); 699 case vmIntrinsics::_weakCompareAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Volatile); 700 case vmIntrinsics::_weakCompareAndSetIntPlain: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Relaxed); 701 case vmIntrinsics::_weakCompareAndSetIntAcquire: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Acquire); 702 case vmIntrinsics::_weakCompareAndSetIntRelease: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Release); 703 case vmIntrinsics::_weakCompareAndSetInt: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Volatile); 704 case vmIntrinsics::_weakCompareAndSetLongPlain: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Relaxed); 705 case vmIntrinsics::_weakCompareAndSetLongAcquire: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Acquire); 706 case vmIntrinsics::_weakCompareAndSetLongRelease: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Release); 707 case vmIntrinsics::_weakCompareAndSetLong: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Volatile); 708 709 case vmIntrinsics::_compareAndExchangeObject: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Volatile); 710 case vmIntrinsics::_compareAndExchangeObjectAcquire: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Acquire); 711 case vmIntrinsics::_compareAndExchangeObjectRelease: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Release); 712 case vmIntrinsics::_compareAndExchangeByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Volatile); 713 case vmIntrinsics::_compareAndExchangeByteAcquire: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Acquire); 714 case vmIntrinsics::_compareAndExchangeByteRelease: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Release); 715 case vmIntrinsics::_compareAndExchangeShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Volatile); 716 case vmIntrinsics::_compareAndExchangeShortAcquire: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Acquire); 717 case vmIntrinsics::_compareAndExchangeShortRelease: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Release); 718 case vmIntrinsics::_compareAndExchangeInt: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Volatile); 719 case vmIntrinsics::_compareAndExchangeIntAcquire: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Acquire); 720 case vmIntrinsics::_compareAndExchangeIntRelease: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Release); 721 case vmIntrinsics::_compareAndExchangeLong: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Volatile); 722 case vmIntrinsics::_compareAndExchangeLongAcquire: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Acquire); 723 case vmIntrinsics::_compareAndExchangeLongRelease: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Release); 724 725 case vmIntrinsics::_getAndAddByte: return inline_unsafe_load_store(T_BYTE, LS_get_add, Volatile); 726 case vmIntrinsics::_getAndAddShort: return inline_unsafe_load_store(T_SHORT, LS_get_add, Volatile); 727 case vmIntrinsics::_getAndAddInt: return inline_unsafe_load_store(T_INT, LS_get_add, Volatile); 728 case vmIntrinsics::_getAndAddLong: return inline_unsafe_load_store(T_LONG, LS_get_add, Volatile); 729 730 case vmIntrinsics::_getAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_get_set, Volatile); 731 case vmIntrinsics::_getAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_get_set, Volatile); 732 case vmIntrinsics::_getAndSetInt: return inline_unsafe_load_store(T_INT, LS_get_set, Volatile); 733 case vmIntrinsics::_getAndSetLong: return inline_unsafe_load_store(T_LONG, LS_get_set, Volatile); 734 case vmIntrinsics::_getAndSetObject: return inline_unsafe_load_store(T_OBJECT, LS_get_set, Volatile); 735 736 case vmIntrinsics::_loadFence: 737 case vmIntrinsics::_storeFence: 738 case vmIntrinsics::_fullFence: return inline_unsafe_fence(intrinsic_id()); 739 740 case vmIntrinsics::_onSpinWait: return inline_onspinwait(); 741 742 case vmIntrinsics::_currentThread: return inline_native_currentThread(); 743 case vmIntrinsics::_isInterrupted: return inline_native_isInterrupted(); 744 745 #ifdef JFR_HAVE_INTRINSICS 746 case vmIntrinsics::_counterTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, JFR_TIME_FUNCTION), "counterTime"); 747 case vmIntrinsics::_getClassId: return inline_native_classID(); 748 case vmIntrinsics::_getEventWriter: return inline_native_getEventWriter(); 749 #endif 750 case vmIntrinsics::_currentTimeMillis: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis"); 751 case vmIntrinsics::_nanoTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime"); 752 case vmIntrinsics::_allocateInstance: return inline_unsafe_allocate(); 753 case vmIntrinsics::_copyMemory: return inline_unsafe_copyMemory(); 754 case vmIntrinsics::_getLength: return inline_native_getLength(); 755 case vmIntrinsics::_copyOf: return inline_array_copyOf(false); 756 case vmIntrinsics::_copyOfRange: return inline_array_copyOf(true); 757 case vmIntrinsics::_equalsB: return inline_array_equals(StrIntrinsicNode::LL); 758 case vmIntrinsics::_equalsC: return inline_array_equals(StrIntrinsicNode::UU); 759 case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex(); 760 case vmIntrinsics::_clone: return inline_native_clone(intrinsic()->is_virtual()); 761 762 case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true); 763 case vmIntrinsics::_newArray: return inline_unsafe_newArray(false); 764 765 case vmIntrinsics::_isAssignableFrom: return inline_native_subtype_check(); 766 767 case vmIntrinsics::_isInstance: 768 case vmIntrinsics::_getModifiers: 769 case vmIntrinsics::_isInterface: 770 case vmIntrinsics::_isArray: 771 case vmIntrinsics::_isPrimitive: 772 case vmIntrinsics::_getSuperclass: 773 case vmIntrinsics::_getClassAccessFlags: return inline_native_Class_query(intrinsic_id()); 774 775 case vmIntrinsics::_floatToRawIntBits: 776 case vmIntrinsics::_floatToIntBits: 777 case vmIntrinsics::_intBitsToFloat: 778 case vmIntrinsics::_doubleToRawLongBits: 779 case vmIntrinsics::_doubleToLongBits: 780 case vmIntrinsics::_longBitsToDouble: return inline_fp_conversions(intrinsic_id()); 781 782 case vmIntrinsics::_numberOfLeadingZeros_i: 783 case vmIntrinsics::_numberOfLeadingZeros_l: 784 case vmIntrinsics::_numberOfTrailingZeros_i: 785 case vmIntrinsics::_numberOfTrailingZeros_l: 786 case vmIntrinsics::_bitCount_i: 787 case vmIntrinsics::_bitCount_l: 788 case vmIntrinsics::_reverseBytes_i: 789 case vmIntrinsics::_reverseBytes_l: 790 case vmIntrinsics::_reverseBytes_s: 791 case vmIntrinsics::_reverseBytes_c: return inline_number_methods(intrinsic_id()); 792 793 case vmIntrinsics::_getCallerClass: return inline_native_Reflection_getCallerClass(); 794 795 case vmIntrinsics::_Reference_get: return inline_reference_get(); 796 797 case vmIntrinsics::_Class_cast: return inline_Class_cast(); 798 799 case vmIntrinsics::_aescrypt_encryptBlock: 800 case vmIntrinsics::_aescrypt_decryptBlock: return inline_aescrypt_Block(intrinsic_id()); 801 802 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 803 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 804 return inline_cipherBlockChaining_AESCrypt(intrinsic_id()); 805 806 case vmIntrinsics::_counterMode_AESCrypt: 807 return inline_counterMode_AESCrypt(intrinsic_id()); 808 809 case vmIntrinsics::_sha_implCompress: 810 case vmIntrinsics::_sha2_implCompress: 811 case vmIntrinsics::_sha5_implCompress: 812 return inline_sha_implCompress(intrinsic_id()); 813 814 case vmIntrinsics::_digestBase_implCompressMB: 815 return inline_digestBase_implCompressMB(predicate); 816 817 case vmIntrinsics::_multiplyToLen: 818 return inline_multiplyToLen(); 819 820 case vmIntrinsics::_squareToLen: 821 return inline_squareToLen(); 822 823 case vmIntrinsics::_mulAdd: 824 return inline_mulAdd(); 825 826 case vmIntrinsics::_montgomeryMultiply: 827 return inline_montgomeryMultiply(); 828 case vmIntrinsics::_montgomerySquare: 829 return inline_montgomerySquare(); 830 831 case vmIntrinsics::_vectorizedMismatch: 832 return inline_vectorizedMismatch(); 833 834 case vmIntrinsics::_ghash_processBlocks: 835 return inline_ghash_processBlocks(); 836 837 case vmIntrinsics::_encodeISOArray: 838 case vmIntrinsics::_encodeByteISOArray: 839 return inline_encodeISOArray(); 840 841 case vmIntrinsics::_updateCRC32: 842 return inline_updateCRC32(); 843 case vmIntrinsics::_updateBytesCRC32: 844 return inline_updateBytesCRC32(); 845 case vmIntrinsics::_updateByteBufferCRC32: 846 return inline_updateByteBufferCRC32(); 847 848 case vmIntrinsics::_updateBytesCRC32C: 849 return inline_updateBytesCRC32C(); 850 case vmIntrinsics::_updateDirectByteBufferCRC32C: 851 return inline_updateDirectByteBufferCRC32C(); 852 853 case vmIntrinsics::_updateBytesAdler32: 854 return inline_updateBytesAdler32(); 855 case vmIntrinsics::_updateByteBufferAdler32: 856 return inline_updateByteBufferAdler32(); 857 858 case vmIntrinsics::_profileBoolean: 859 return inline_profileBoolean(); 860 case vmIntrinsics::_isCompileConstant: 861 return inline_isCompileConstant(); 862 863 case vmIntrinsics::_hasNegatives: 864 return inline_hasNegatives(); 865 866 case vmIntrinsics::_fmaD: 867 case vmIntrinsics::_fmaF: 868 return inline_fma(intrinsic_id()); 869 870 default: 871 // If you get here, it may be that someone has added a new intrinsic 872 // to the list in vmSymbols.hpp without implementing it here. 873 #ifndef PRODUCT 874 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) { 875 tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)", 876 vmIntrinsics::name_at(intrinsic_id()), intrinsic_id()); 877 } 878 #endif 879 return false; 880 } 881 } 882 883 Node* LibraryCallKit::try_to_predicate(int predicate) { 884 if (!jvms()->has_method()) { 885 // Root JVMState has a null method. 886 assert(map()->memory()->Opcode() == Op_Parm, ""); 887 // Insert the memory aliasing node 888 set_all_memory(reset_memory()); 889 } 890 assert(merged_memory(), ""); 891 892 switch (intrinsic_id()) { 893 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 894 return inline_cipherBlockChaining_AESCrypt_predicate(false); 895 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 896 return inline_cipherBlockChaining_AESCrypt_predicate(true); 897 case vmIntrinsics::_counterMode_AESCrypt: 898 return inline_counterMode_AESCrypt_predicate(); 899 case vmIntrinsics::_digestBase_implCompressMB: 900 return inline_digestBase_implCompressMB_predicate(predicate); 901 902 default: 903 // If you get here, it may be that someone has added a new intrinsic 904 // to the list in vmSymbols.hpp without implementing it here. 905 #ifndef PRODUCT 906 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) { 907 tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)", 908 vmIntrinsics::name_at(intrinsic_id()), intrinsic_id()); 909 } 910 #endif 911 Node* slow_ctl = control(); 912 set_control(top()); // No fast path instrinsic 913 return slow_ctl; 914 } 915 } 916 917 //------------------------------set_result------------------------------- 918 // Helper function for finishing intrinsics. 919 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) { 920 record_for_igvn(region); 921 set_control(_gvn.transform(region)); 922 set_result( _gvn.transform(value)); 923 assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity"); 924 } 925 926 //------------------------------generate_guard--------------------------- 927 // Helper function for generating guarded fast-slow graph structures. 928 // The given 'test', if true, guards a slow path. If the test fails 929 // then a fast path can be taken. (We generally hope it fails.) 930 // In all cases, GraphKit::control() is updated to the fast path. 931 // The returned value represents the control for the slow path. 932 // The return value is never 'top'; it is either a valid control 933 // or NULL if it is obvious that the slow path can never be taken. 934 // Also, if region and the slow control are not NULL, the slow edge 935 // is appended to the region. 936 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) { 937 if (stopped()) { 938 // Already short circuited. 939 return NULL; 940 } 941 942 // Build an if node and its projections. 943 // If test is true we take the slow path, which we assume is uncommon. 944 if (_gvn.type(test) == TypeInt::ZERO) { 945 // The slow branch is never taken. No need to build this guard. 946 return NULL; 947 } 948 949 IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN); 950 951 Node* if_slow = _gvn.transform(new IfTrueNode(iff)); 952 if (if_slow == top()) { 953 // The slow branch is never taken. No need to build this guard. 954 return NULL; 955 } 956 957 if (region != NULL) 958 region->add_req(if_slow); 959 960 Node* if_fast = _gvn.transform(new IfFalseNode(iff)); 961 set_control(if_fast); 962 963 return if_slow; 964 } 965 966 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) { 967 return generate_guard(test, region, PROB_UNLIKELY_MAG(3)); 968 } 969 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) { 970 return generate_guard(test, region, PROB_FAIR); 971 } 972 973 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region, 974 Node* *pos_index) { 975 if (stopped()) 976 return NULL; // already stopped 977 if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint] 978 return NULL; // index is already adequately typed 979 Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0))); 980 Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt)); 981 Node* is_neg = generate_guard(bol_lt, region, PROB_MIN); 982 if (is_neg != NULL && pos_index != NULL) { 983 // Emulate effect of Parse::adjust_map_after_if. 984 Node* ccast = new CastIINode(index, TypeInt::POS); 985 ccast->set_req(0, control()); 986 (*pos_index) = _gvn.transform(ccast); 987 } 988 return is_neg; 989 } 990 991 // Make sure that 'position' is a valid limit index, in [0..length]. 992 // There are two equivalent plans for checking this: 993 // A. (offset + copyLength) unsigned<= arrayLength 994 // B. offset <= (arrayLength - copyLength) 995 // We require that all of the values above, except for the sum and 996 // difference, are already known to be non-negative. 997 // Plan A is robust in the face of overflow, if offset and copyLength 998 // are both hugely positive. 999 // 1000 // Plan B is less direct and intuitive, but it does not overflow at 1001 // all, since the difference of two non-negatives is always 1002 // representable. Whenever Java methods must perform the equivalent 1003 // check they generally use Plan B instead of Plan A. 1004 // For the moment we use Plan A. 1005 inline Node* LibraryCallKit::generate_limit_guard(Node* offset, 1006 Node* subseq_length, 1007 Node* array_length, 1008 RegionNode* region) { 1009 if (stopped()) 1010 return NULL; // already stopped 1011 bool zero_offset = _gvn.type(offset) == TypeInt::ZERO; 1012 if (zero_offset && subseq_length->eqv_uncast(array_length)) 1013 return NULL; // common case of whole-array copy 1014 Node* last = subseq_length; 1015 if (!zero_offset) // last += offset 1016 last = _gvn.transform(new AddINode(last, offset)); 1017 Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last)); 1018 Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt)); 1019 Node* is_over = generate_guard(bol_lt, region, PROB_MIN); 1020 return is_over; 1021 } 1022 1023 // Emit range checks for the given String.value byte array 1024 void LibraryCallKit::generate_string_range_check(Node* array, Node* offset, Node* count, bool char_count) { 1025 if (stopped()) { 1026 return; // already stopped 1027 } 1028 RegionNode* bailout = new RegionNode(1); 1029 record_for_igvn(bailout); 1030 if (char_count) { 1031 // Convert char count to byte count 1032 count = _gvn.transform(new LShiftINode(count, intcon(1))); 1033 } 1034 1035 // Offset and count must not be negative 1036 generate_negative_guard(offset, bailout); 1037 generate_negative_guard(count, bailout); 1038 // Offset + count must not exceed length of array 1039 generate_limit_guard(offset, count, load_array_length(array), bailout); 1040 1041 if (bailout->req() > 1) { 1042 PreserveJVMState pjvms(this); 1043 set_control(_gvn.transform(bailout)); 1044 uncommon_trap(Deoptimization::Reason_intrinsic, 1045 Deoptimization::Action_maybe_recompile); 1046 } 1047 } 1048 1049 //--------------------------generate_current_thread-------------------- 1050 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) { 1051 ciKlass* thread_klass = env()->Thread_klass(); 1052 const Type* thread_type = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull); 1053 Node* thread = _gvn.transform(new ThreadLocalNode()); 1054 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset())); 1055 Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT, MemNode::unordered); 1056 tls_output = thread; 1057 return threadObj; 1058 } 1059 1060 1061 //------------------------------make_string_method_node------------------------ 1062 // Helper method for String intrinsic functions. This version is called with 1063 // str1 and str2 pointing to byte[] nodes containing Latin1 or UTF16 encoded 1064 // characters (depending on 'is_byte'). cnt1 and cnt2 are pointing to Int nodes 1065 // containing the lengths of str1 and str2. 1066 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae) { 1067 Node* result = NULL; 1068 switch (opcode) { 1069 case Op_StrIndexOf: 1070 result = new StrIndexOfNode(control(), memory(TypeAryPtr::BYTES), 1071 str1_start, cnt1, str2_start, cnt2, ae); 1072 break; 1073 case Op_StrComp: 1074 result = new StrCompNode(control(), memory(TypeAryPtr::BYTES), 1075 str1_start, cnt1, str2_start, cnt2, ae); 1076 break; 1077 case Op_StrEquals: 1078 // We already know that cnt1 == cnt2 here (checked in 'inline_string_equals'). 1079 // Use the constant length if there is one because optimized match rule may exist. 1080 result = new StrEqualsNode(control(), memory(TypeAryPtr::BYTES), 1081 str1_start, str2_start, cnt2->is_Con() ? cnt2 : cnt1, ae); 1082 break; 1083 default: 1084 ShouldNotReachHere(); 1085 return NULL; 1086 } 1087 1088 // All these intrinsics have checks. 1089 C->set_has_split_ifs(true); // Has chance for split-if optimization 1090 clear_upper_avx(); 1091 1092 return _gvn.transform(result); 1093 } 1094 1095 //------------------------------inline_string_compareTo------------------------ 1096 bool LibraryCallKit::inline_string_compareTo(StrIntrinsicNode::ArgEnc ae) { 1097 Node* arg1 = argument(0); 1098 Node* arg2 = argument(1); 1099 1100 // Get start addr and length of first argument 1101 Node* arg1_start = array_element_address(arg1, intcon(0), T_BYTE); 1102 Node* arg1_cnt = load_array_length(arg1); 1103 1104 // Get start addr and length of second argument 1105 Node* arg2_start = array_element_address(arg2, intcon(0), T_BYTE); 1106 Node* arg2_cnt = load_array_length(arg2); 1107 1108 Node* result = make_string_method_node(Op_StrComp, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae); 1109 set_result(result); 1110 return true; 1111 } 1112 1113 //------------------------------inline_string_equals------------------------ 1114 bool LibraryCallKit::inline_string_equals(StrIntrinsicNode::ArgEnc ae) { 1115 Node* arg1 = argument(0); 1116 Node* arg2 = argument(1); 1117 1118 // paths (plus control) merge 1119 RegionNode* region = new RegionNode(3); 1120 Node* phi = new PhiNode(region, TypeInt::BOOL); 1121 1122 if (!stopped()) { 1123 // Get start addr and length of first argument 1124 Node* arg1_start = array_element_address(arg1, intcon(0), T_BYTE); 1125 Node* arg1_cnt = load_array_length(arg1); 1126 1127 // Get start addr and length of second argument 1128 Node* arg2_start = array_element_address(arg2, intcon(0), T_BYTE); 1129 Node* arg2_cnt = load_array_length(arg2); 1130 1131 // Check for arg1_cnt != arg2_cnt 1132 Node* cmp = _gvn.transform(new CmpINode(arg1_cnt, arg2_cnt)); 1133 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne)); 1134 Node* if_ne = generate_slow_guard(bol, NULL); 1135 if (if_ne != NULL) { 1136 phi->init_req(2, intcon(0)); 1137 region->init_req(2, if_ne); 1138 } 1139 1140 // Check for count == 0 is done by assembler code for StrEquals. 1141 1142 if (!stopped()) { 1143 Node* equals = make_string_method_node(Op_StrEquals, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae); 1144 phi->init_req(1, equals); 1145 region->init_req(1, control()); 1146 } 1147 } 1148 1149 // post merge 1150 set_control(_gvn.transform(region)); 1151 record_for_igvn(region); 1152 1153 set_result(_gvn.transform(phi)); 1154 return true; 1155 } 1156 1157 //------------------------------inline_array_equals---------------------------- 1158 bool LibraryCallKit::inline_array_equals(StrIntrinsicNode::ArgEnc ae) { 1159 assert(ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::LL, "unsupported array types"); 1160 Node* arg1 = argument(0); 1161 Node* arg2 = argument(1); 1162 1163 const TypeAryPtr* mtype = (ae == StrIntrinsicNode::UU) ? TypeAryPtr::CHARS : TypeAryPtr::BYTES; 1164 set_result(_gvn.transform(new AryEqNode(control(), memory(mtype), arg1, arg2, ae))); 1165 clear_upper_avx(); 1166 1167 return true; 1168 } 1169 1170 //------------------------------inline_hasNegatives------------------------------ 1171 bool LibraryCallKit::inline_hasNegatives() { 1172 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1173 return false; 1174 } 1175 1176 assert(callee()->signature()->size() == 3, "hasNegatives has 3 parameters"); 1177 // no receiver since it is static method 1178 Node* ba = argument(0); 1179 Node* offset = argument(1); 1180 Node* len = argument(2); 1181 1182 // Range checks 1183 generate_string_range_check(ba, offset, len, false); 1184 if (stopped()) { 1185 return true; 1186 } 1187 Node* ba_start = array_element_address(ba, offset, T_BYTE); 1188 Node* result = new HasNegativesNode(control(), memory(TypeAryPtr::BYTES), ba_start, len); 1189 set_result(_gvn.transform(result)); 1190 return true; 1191 } 1192 1193 bool LibraryCallKit::inline_preconditions_checkIndex() { 1194 Node* index = argument(0); 1195 Node* length = argument(1); 1196 if (too_many_traps(Deoptimization::Reason_intrinsic) || too_many_traps(Deoptimization::Reason_range_check)) { 1197 return false; 1198 } 1199 1200 Node* len_pos_cmp = _gvn.transform(new CmpINode(length, intcon(0))); 1201 Node* len_pos_bol = _gvn.transform(new BoolNode(len_pos_cmp, BoolTest::ge)); 1202 1203 { 1204 BuildCutout unless(this, len_pos_bol, PROB_MAX); 1205 uncommon_trap(Deoptimization::Reason_intrinsic, 1206 Deoptimization::Action_make_not_entrant); 1207 } 1208 1209 if (stopped()) { 1210 return false; 1211 } 1212 1213 Node* rc_cmp = _gvn.transform(new CmpUNode(index, length)); 1214 BoolTest::mask btest = BoolTest::lt; 1215 Node* rc_bool = _gvn.transform(new BoolNode(rc_cmp, btest)); 1216 RangeCheckNode* rc = new RangeCheckNode(control(), rc_bool, PROB_MAX, COUNT_UNKNOWN); 1217 _gvn.set_type(rc, rc->Value(&_gvn)); 1218 if (!rc_bool->is_Con()) { 1219 record_for_igvn(rc); 1220 } 1221 set_control(_gvn.transform(new IfTrueNode(rc))); 1222 { 1223 PreserveJVMState pjvms(this); 1224 set_control(_gvn.transform(new IfFalseNode(rc))); 1225 uncommon_trap(Deoptimization::Reason_range_check, 1226 Deoptimization::Action_make_not_entrant); 1227 } 1228 1229 if (stopped()) { 1230 return false; 1231 } 1232 1233 Node* result = new CastIINode(index, TypeInt::make(0, _gvn.type(length)->is_int()->_hi, Type::WidenMax)); 1234 result->set_req(0, control()); 1235 result = _gvn.transform(result); 1236 set_result(result); 1237 replace_in_map(index, result); 1238 clear_upper_avx(); 1239 return true; 1240 } 1241 1242 //------------------------------inline_string_indexOf------------------------ 1243 bool LibraryCallKit::inline_string_indexOf(StrIntrinsicNode::ArgEnc ae) { 1244 if (!Matcher::match_rule_supported(Op_StrIndexOf)) { 1245 return false; 1246 } 1247 Node* src = argument(0); 1248 Node* tgt = argument(1); 1249 1250 // Make the merge point 1251 RegionNode* result_rgn = new RegionNode(4); 1252 Node* result_phi = new PhiNode(result_rgn, TypeInt::INT); 1253 1254 // Get start addr and length of source string 1255 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 1256 Node* src_count = load_array_length(src); 1257 1258 // Get start addr and length of substring 1259 Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE); 1260 Node* tgt_count = load_array_length(tgt); 1261 1262 if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) { 1263 // Divide src size by 2 if String is UTF16 encoded 1264 src_count = _gvn.transform(new RShiftINode(src_count, intcon(1))); 1265 } 1266 if (ae == StrIntrinsicNode::UU) { 1267 // Divide substring size by 2 if String is UTF16 encoded 1268 tgt_count = _gvn.transform(new RShiftINode(tgt_count, intcon(1))); 1269 } 1270 1271 Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, result_rgn, result_phi, ae); 1272 if (result != NULL) { 1273 result_phi->init_req(3, result); 1274 result_rgn->init_req(3, control()); 1275 } 1276 set_control(_gvn.transform(result_rgn)); 1277 record_for_igvn(result_rgn); 1278 set_result(_gvn.transform(result_phi)); 1279 1280 return true; 1281 } 1282 1283 //-----------------------------inline_string_indexOf----------------------- 1284 bool LibraryCallKit::inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae) { 1285 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1286 return false; 1287 } 1288 if (!Matcher::match_rule_supported(Op_StrIndexOf)) { 1289 return false; 1290 } 1291 assert(callee()->signature()->size() == 5, "String.indexOf() has 5 arguments"); 1292 Node* src = argument(0); // byte[] 1293 Node* src_count = argument(1); // char count 1294 Node* tgt = argument(2); // byte[] 1295 Node* tgt_count = argument(3); // char count 1296 Node* from_index = argument(4); // char index 1297 1298 // Multiply byte array index by 2 if String is UTF16 encoded 1299 Node* src_offset = (ae == StrIntrinsicNode::LL) ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1))); 1300 src_count = _gvn.transform(new SubINode(src_count, from_index)); 1301 Node* src_start = array_element_address(src, src_offset, T_BYTE); 1302 Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE); 1303 1304 // Range checks 1305 generate_string_range_check(src, src_offset, src_count, ae != StrIntrinsicNode::LL); 1306 generate_string_range_check(tgt, intcon(0), tgt_count, ae == StrIntrinsicNode::UU); 1307 if (stopped()) { 1308 return true; 1309 } 1310 1311 RegionNode* region = new RegionNode(5); 1312 Node* phi = new PhiNode(region, TypeInt::INT); 1313 1314 Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, region, phi, ae); 1315 if (result != NULL) { 1316 // The result is index relative to from_index if substring was found, -1 otherwise. 1317 // Generate code which will fold into cmove. 1318 Node* cmp = _gvn.transform(new CmpINode(result, intcon(0))); 1319 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt)); 1320 1321 Node* if_lt = generate_slow_guard(bol, NULL); 1322 if (if_lt != NULL) { 1323 // result == -1 1324 phi->init_req(3, result); 1325 region->init_req(3, if_lt); 1326 } 1327 if (!stopped()) { 1328 result = _gvn.transform(new AddINode(result, from_index)); 1329 phi->init_req(4, result); 1330 region->init_req(4, control()); 1331 } 1332 } 1333 1334 set_control(_gvn.transform(region)); 1335 record_for_igvn(region); 1336 set_result(_gvn.transform(phi)); 1337 clear_upper_avx(); 1338 1339 return true; 1340 } 1341 1342 // Create StrIndexOfNode with fast path checks 1343 Node* LibraryCallKit::make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count, 1344 RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae) { 1345 // Check for substr count > string count 1346 Node* cmp = _gvn.transform(new CmpINode(tgt_count, src_count)); 1347 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt)); 1348 Node* if_gt = generate_slow_guard(bol, NULL); 1349 if (if_gt != NULL) { 1350 phi->init_req(1, intcon(-1)); 1351 region->init_req(1, if_gt); 1352 } 1353 if (!stopped()) { 1354 // Check for substr count == 0 1355 cmp = _gvn.transform(new CmpINode(tgt_count, intcon(0))); 1356 bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 1357 Node* if_zero = generate_slow_guard(bol, NULL); 1358 if (if_zero != NULL) { 1359 phi->init_req(2, intcon(0)); 1360 region->init_req(2, if_zero); 1361 } 1362 } 1363 if (!stopped()) { 1364 return make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae); 1365 } 1366 return NULL; 1367 } 1368 1369 //-----------------------------inline_string_indexOfChar----------------------- 1370 bool LibraryCallKit::inline_string_indexOfChar() { 1371 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1372 return false; 1373 } 1374 if (!Matcher::match_rule_supported(Op_StrIndexOfChar)) { 1375 return false; 1376 } 1377 assert(callee()->signature()->size() == 4, "String.indexOfChar() has 4 arguments"); 1378 Node* src = argument(0); // byte[] 1379 Node* tgt = argument(1); // tgt is int ch 1380 Node* from_index = argument(2); 1381 Node* max = argument(3); 1382 1383 Node* src_offset = _gvn.transform(new LShiftINode(from_index, intcon(1))); 1384 Node* src_start = array_element_address(src, src_offset, T_BYTE); 1385 Node* src_count = _gvn.transform(new SubINode(max, from_index)); 1386 1387 // Range checks 1388 generate_string_range_check(src, src_offset, src_count, true); 1389 if (stopped()) { 1390 return true; 1391 } 1392 1393 RegionNode* region = new RegionNode(3); 1394 Node* phi = new PhiNode(region, TypeInt::INT); 1395 1396 Node* result = new StrIndexOfCharNode(control(), memory(TypeAryPtr::BYTES), src_start, src_count, tgt, StrIntrinsicNode::none); 1397 C->set_has_split_ifs(true); // Has chance for split-if optimization 1398 _gvn.transform(result); 1399 1400 Node* cmp = _gvn.transform(new CmpINode(result, intcon(0))); 1401 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt)); 1402 1403 Node* if_lt = generate_slow_guard(bol, NULL); 1404 if (if_lt != NULL) { 1405 // result == -1 1406 phi->init_req(2, result); 1407 region->init_req(2, if_lt); 1408 } 1409 if (!stopped()) { 1410 result = _gvn.transform(new AddINode(result, from_index)); 1411 phi->init_req(1, result); 1412 region->init_req(1, control()); 1413 } 1414 set_control(_gvn.transform(region)); 1415 record_for_igvn(region); 1416 set_result(_gvn.transform(phi)); 1417 1418 return true; 1419 } 1420 //---------------------------inline_string_copy--------------------- 1421 // compressIt == true --> generate a compressed copy operation (compress char[]/byte[] to byte[]) 1422 // int StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) 1423 // int StringUTF16.compress(byte[] src, int srcOff, byte[] dst, int dstOff, int len) 1424 // compressIt == false --> generate an inflated copy operation (inflate byte[] to char[]/byte[]) 1425 // void StringLatin1.inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) 1426 // void StringLatin1.inflate(byte[] src, int srcOff, byte[] dst, int dstOff, int len) 1427 bool LibraryCallKit::inline_string_copy(bool compress) { 1428 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1429 return false; 1430 } 1431 int nargs = 5; // 2 oops, 3 ints 1432 assert(callee()->signature()->size() == nargs, "string copy has 5 arguments"); 1433 1434 Node* src = argument(0); 1435 Node* src_offset = argument(1); 1436 Node* dst = argument(2); 1437 Node* dst_offset = argument(3); 1438 Node* length = argument(4); 1439 1440 // Check for allocation before we add nodes that would confuse 1441 // tightly_coupled_allocation() 1442 AllocateArrayNode* alloc = tightly_coupled_allocation(dst, NULL); 1443 1444 // Figure out the size and type of the elements we will be copying. 1445 const Type* src_type = src->Value(&_gvn); 1446 const Type* dst_type = dst->Value(&_gvn); 1447 BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 1448 BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 1449 assert((compress && dst_elem == T_BYTE && (src_elem == T_BYTE || src_elem == T_CHAR)) || 1450 (!compress && src_elem == T_BYTE && (dst_elem == T_BYTE || dst_elem == T_CHAR)), 1451 "Unsupported array types for inline_string_copy"); 1452 1453 // Convert char[] offsets to byte[] offsets 1454 bool convert_src = (compress && src_elem == T_BYTE); 1455 bool convert_dst = (!compress && dst_elem == T_BYTE); 1456 if (convert_src) { 1457 src_offset = _gvn.transform(new LShiftINode(src_offset, intcon(1))); 1458 } else if (convert_dst) { 1459 dst_offset = _gvn.transform(new LShiftINode(dst_offset, intcon(1))); 1460 } 1461 1462 // Range checks 1463 generate_string_range_check(src, src_offset, length, convert_src); 1464 generate_string_range_check(dst, dst_offset, length, convert_dst); 1465 if (stopped()) { 1466 return true; 1467 } 1468 1469 Node* src_start = array_element_address(src, src_offset, src_elem); 1470 Node* dst_start = array_element_address(dst, dst_offset, dst_elem); 1471 // 'src_start' points to src array + scaled offset 1472 // 'dst_start' points to dst array + scaled offset 1473 Node* count = NULL; 1474 if (compress) { 1475 count = compress_string(src_start, TypeAryPtr::get_array_body_type(src_elem), dst_start, length); 1476 } else { 1477 inflate_string(src_start, dst_start, TypeAryPtr::get_array_body_type(dst_elem), length); 1478 } 1479 1480 if (alloc != NULL) { 1481 if (alloc->maybe_set_complete(&_gvn)) { 1482 // "You break it, you buy it." 1483 InitializeNode* init = alloc->initialization(); 1484 assert(init->is_complete(), "we just did this"); 1485 init->set_complete_with_arraycopy(); 1486 assert(dst->is_CheckCastPP(), "sanity"); 1487 assert(dst->in(0)->in(0) == init, "dest pinned"); 1488 } 1489 // Do not let stores that initialize this object be reordered with 1490 // a subsequent store that would make this object accessible by 1491 // other threads. 1492 // Record what AllocateNode this StoreStore protects so that 1493 // escape analysis can go from the MemBarStoreStoreNode to the 1494 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1495 // based on the escape status of the AllocateNode. 1496 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1497 } 1498 if (compress) { 1499 set_result(_gvn.transform(count)); 1500 } 1501 clear_upper_avx(); 1502 1503 return true; 1504 } 1505 1506 #ifdef _LP64 1507 #define XTOP ,top() /*additional argument*/ 1508 #else //_LP64 1509 #define XTOP /*no additional argument*/ 1510 #endif //_LP64 1511 1512 //------------------------inline_string_toBytesU-------------------------- 1513 // public static byte[] StringUTF16.toBytes(char[] value, int off, int len) 1514 bool LibraryCallKit::inline_string_toBytesU() { 1515 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1516 return false; 1517 } 1518 // Get the arguments. 1519 Node* value = argument(0); 1520 Node* offset = argument(1); 1521 Node* length = argument(2); 1522 1523 Node* newcopy = NULL; 1524 1525 // Set the original stack and the reexecute bit for the interpreter to reexecute 1526 // the bytecode that invokes StringUTF16.toBytes() if deoptimization happens. 1527 { PreserveReexecuteState preexecs(this); 1528 jvms()->set_should_reexecute(true); 1529 1530 // Check if a null path was taken unconditionally. 1531 value = null_check(value); 1532 1533 RegionNode* bailout = new RegionNode(1); 1534 record_for_igvn(bailout); 1535 1536 // Range checks 1537 generate_negative_guard(offset, bailout); 1538 generate_negative_guard(length, bailout); 1539 generate_limit_guard(offset, length, load_array_length(value), bailout); 1540 // Make sure that resulting byte[] length does not overflow Integer.MAX_VALUE 1541 generate_limit_guard(length, intcon(0), intcon(max_jint/2), bailout); 1542 1543 if (bailout->req() > 1) { 1544 PreserveJVMState pjvms(this); 1545 set_control(_gvn.transform(bailout)); 1546 uncommon_trap(Deoptimization::Reason_intrinsic, 1547 Deoptimization::Action_maybe_recompile); 1548 } 1549 if (stopped()) { 1550 return true; 1551 } 1552 1553 Node* size = _gvn.transform(new LShiftINode(length, intcon(1))); 1554 Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_BYTE))); 1555 newcopy = new_array(klass_node, size, 0); // no arguments to push 1556 AllocateArrayNode* alloc = tightly_coupled_allocation(newcopy, NULL); 1557 1558 // Calculate starting addresses. 1559 Node* src_start = array_element_address(value, offset, T_CHAR); 1560 Node* dst_start = basic_plus_adr(newcopy, arrayOopDesc::base_offset_in_bytes(T_BYTE)); 1561 1562 // Check if src array address is aligned to HeapWordSize (dst is always aligned) 1563 const TypeInt* toffset = gvn().type(offset)->is_int(); 1564 bool aligned = toffset->is_con() && ((toffset->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0); 1565 1566 // Figure out which arraycopy runtime method to call (disjoint, uninitialized). 1567 const char* copyfunc_name = "arraycopy"; 1568 address copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true); 1569 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 1570 OptoRuntime::fast_arraycopy_Type(), 1571 copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM, 1572 src_start, dst_start, ConvI2X(length) XTOP); 1573 // Do not let reads from the cloned object float above the arraycopy. 1574 if (alloc != NULL) { 1575 if (alloc->maybe_set_complete(&_gvn)) { 1576 // "You break it, you buy it." 1577 InitializeNode* init = alloc->initialization(); 1578 assert(init->is_complete(), "we just did this"); 1579 init->set_complete_with_arraycopy(); 1580 assert(newcopy->is_CheckCastPP(), "sanity"); 1581 assert(newcopy->in(0)->in(0) == init, "dest pinned"); 1582 } 1583 // Do not let stores that initialize this object be reordered with 1584 // a subsequent store that would make this object accessible by 1585 // other threads. 1586 // Record what AllocateNode this StoreStore protects so that 1587 // escape analysis can go from the MemBarStoreStoreNode to the 1588 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1589 // based on the escape status of the AllocateNode. 1590 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1591 } else { 1592 insert_mem_bar(Op_MemBarCPUOrder); 1593 } 1594 } // original reexecute is set back here 1595 1596 C->set_has_split_ifs(true); // Has chance for split-if optimization 1597 if (!stopped()) { 1598 set_result(newcopy); 1599 } 1600 clear_upper_avx(); 1601 1602 return true; 1603 } 1604 1605 //------------------------inline_string_getCharsU-------------------------- 1606 // public void StringUTF16.getChars(byte[] src, int srcBegin, int srcEnd, char dst[], int dstBegin) 1607 bool LibraryCallKit::inline_string_getCharsU() { 1608 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1609 return false; 1610 } 1611 1612 // Get the arguments. 1613 Node* src = argument(0); 1614 Node* src_begin = argument(1); 1615 Node* src_end = argument(2); // exclusive offset (i < src_end) 1616 Node* dst = argument(3); 1617 Node* dst_begin = argument(4); 1618 1619 // Check for allocation before we add nodes that would confuse 1620 // tightly_coupled_allocation() 1621 AllocateArrayNode* alloc = tightly_coupled_allocation(dst, NULL); 1622 1623 // Check if a null path was taken unconditionally. 1624 src = null_check(src); 1625 dst = null_check(dst); 1626 if (stopped()) { 1627 return true; 1628 } 1629 1630 // Get length and convert char[] offset to byte[] offset 1631 Node* length = _gvn.transform(new SubINode(src_end, src_begin)); 1632 src_begin = _gvn.transform(new LShiftINode(src_begin, intcon(1))); 1633 1634 // Range checks 1635 generate_string_range_check(src, src_begin, length, true); 1636 generate_string_range_check(dst, dst_begin, length, false); 1637 if (stopped()) { 1638 return true; 1639 } 1640 1641 if (!stopped()) { 1642 // Calculate starting addresses. 1643 Node* src_start = array_element_address(src, src_begin, T_BYTE); 1644 Node* dst_start = array_element_address(dst, dst_begin, T_CHAR); 1645 1646 // Check if array addresses are aligned to HeapWordSize 1647 const TypeInt* tsrc = gvn().type(src_begin)->is_int(); 1648 const TypeInt* tdst = gvn().type(dst_begin)->is_int(); 1649 bool aligned = tsrc->is_con() && ((tsrc->get_con() * type2aelembytes(T_BYTE)) % HeapWordSize == 0) && 1650 tdst->is_con() && ((tdst->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0); 1651 1652 // Figure out which arraycopy runtime method to call (disjoint, uninitialized). 1653 const char* copyfunc_name = "arraycopy"; 1654 address copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true); 1655 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 1656 OptoRuntime::fast_arraycopy_Type(), 1657 copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM, 1658 src_start, dst_start, ConvI2X(length) XTOP); 1659 // Do not let reads from the cloned object float above the arraycopy. 1660 if (alloc != NULL) { 1661 if (alloc->maybe_set_complete(&_gvn)) { 1662 // "You break it, you buy it." 1663 InitializeNode* init = alloc->initialization(); 1664 assert(init->is_complete(), "we just did this"); 1665 init->set_complete_with_arraycopy(); 1666 assert(dst->is_CheckCastPP(), "sanity"); 1667 assert(dst->in(0)->in(0) == init, "dest pinned"); 1668 } 1669 // Do not let stores that initialize this object be reordered with 1670 // a subsequent store that would make this object accessible by 1671 // other threads. 1672 // Record what AllocateNode this StoreStore protects so that 1673 // escape analysis can go from the MemBarStoreStoreNode to the 1674 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1675 // based on the escape status of the AllocateNode. 1676 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1677 } else { 1678 insert_mem_bar(Op_MemBarCPUOrder); 1679 } 1680 } 1681 1682 C->set_has_split_ifs(true); // Has chance for split-if optimization 1683 return true; 1684 } 1685 1686 //----------------------inline_string_char_access---------------------------- 1687 // Store/Load char to/from byte[] array. 1688 // static void StringUTF16.putChar(byte[] val, int index, int c) 1689 // static char StringUTF16.getChar(byte[] val, int index) 1690 bool LibraryCallKit::inline_string_char_access(bool is_store) { 1691 Node* value = argument(0); 1692 Node* index = argument(1); 1693 Node* ch = is_store ? argument(2) : NULL; 1694 1695 // This intrinsic accesses byte[] array as char[] array. Computing the offsets 1696 // correctly requires matched array shapes. 1697 assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE), 1698 "sanity: byte[] and char[] bases agree"); 1699 assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2, 1700 "sanity: byte[] and char[] scales agree"); 1701 1702 // Bail when getChar over constants is requested: constant folding would 1703 // reject folding mismatched char access over byte[]. A normal inlining for getChar 1704 // Java method would constant fold nicely instead. 1705 if (!is_store && value->is_Con() && index->is_Con()) { 1706 return false; 1707 } 1708 1709 Node* adr = array_element_address(value, index, T_CHAR); 1710 if (adr->is_top()) { 1711 return false; 1712 } 1713 if (is_store) { 1714 (void) store_to_memory(control(), adr, ch, T_CHAR, TypeAryPtr::BYTES, MemNode::unordered, 1715 false, false, true /* mismatched */); 1716 } else { 1717 ch = make_load(control(), adr, TypeInt::CHAR, T_CHAR, TypeAryPtr::BYTES, MemNode::unordered, 1718 LoadNode::DependsOnlyOnTest, false, false, true /* mismatched */); 1719 set_result(ch); 1720 } 1721 return true; 1722 } 1723 1724 //--------------------------round_double_node-------------------------------- 1725 // Round a double node if necessary. 1726 Node* LibraryCallKit::round_double_node(Node* n) { 1727 if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1) 1728 n = _gvn.transform(new RoundDoubleNode(0, n)); 1729 return n; 1730 } 1731 1732 //------------------------------inline_math----------------------------------- 1733 // public static double Math.abs(double) 1734 // public static double Math.sqrt(double) 1735 // public static double Math.log(double) 1736 // public static double Math.log10(double) 1737 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) { 1738 Node* arg = round_double_node(argument(0)); 1739 Node* n = NULL; 1740 switch (id) { 1741 case vmIntrinsics::_dabs: n = new AbsDNode( arg); break; 1742 case vmIntrinsics::_dsqrt: n = new SqrtDNode(C, control(), arg); break; 1743 default: fatal_unexpected_iid(id); break; 1744 } 1745 set_result(_gvn.transform(n)); 1746 return true; 1747 } 1748 1749 //------------------------------runtime_math----------------------------- 1750 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) { 1751 assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(), 1752 "must be (DD)D or (D)D type"); 1753 1754 // Inputs 1755 Node* a = round_double_node(argument(0)); 1756 Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL; 1757 1758 const TypePtr* no_memory_effects = NULL; 1759 Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName, 1760 no_memory_effects, 1761 a, top(), b, b ? top() : NULL); 1762 Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0)); 1763 #ifdef ASSERT 1764 Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1)); 1765 assert(value_top == top(), "second value must be top"); 1766 #endif 1767 1768 set_result(value); 1769 return true; 1770 } 1771 1772 //------------------------------inline_math_native----------------------------- 1773 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) { 1774 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f) 1775 switch (id) { 1776 // These intrinsics are not properly supported on all hardware 1777 case vmIntrinsics::_dsin: 1778 return StubRoutines::dsin() != NULL ? 1779 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dsin(), "dsin") : 1780 runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin), "SIN"); 1781 case vmIntrinsics::_dcos: 1782 return StubRoutines::dcos() != NULL ? 1783 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dcos(), "dcos") : 1784 runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos), "COS"); 1785 case vmIntrinsics::_dtan: 1786 return StubRoutines::dtan() != NULL ? 1787 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtan(), "dtan") : 1788 runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan), "TAN"); 1789 case vmIntrinsics::_dlog: 1790 return StubRoutines::dlog() != NULL ? 1791 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog(), "dlog") : 1792 runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog), "LOG"); 1793 case vmIntrinsics::_dlog10: 1794 return StubRoutines::dlog10() != NULL ? 1795 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog10(), "dlog10") : 1796 runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10"); 1797 1798 // These intrinsics are supported on all hardware 1799 case vmIntrinsics::_dsqrt: return Matcher::match_rule_supported(Op_SqrtD) ? inline_math(id) : false; 1800 case vmIntrinsics::_dabs: return Matcher::has_match_rule(Op_AbsD) ? inline_math(id) : false; 1801 1802 case vmIntrinsics::_dexp: 1803 return StubRoutines::dexp() != NULL ? 1804 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dexp(), "dexp") : 1805 runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dexp), "EXP"); 1806 case vmIntrinsics::_dpow: { 1807 Node* exp = round_double_node(argument(2)); 1808 const TypeD* d = _gvn.type(exp)->isa_double_constant(); 1809 if (d != NULL && d->getd() == 2.0) { 1810 // Special case: pow(x, 2.0) => x * x 1811 Node* base = round_double_node(argument(0)); 1812 set_result(_gvn.transform(new MulDNode(base, base))); 1813 return true; 1814 } 1815 return StubRoutines::dexp() != NULL ? 1816 runtime_math(OptoRuntime::Math_DD_D_Type(), StubRoutines::dpow(), "dpow") : 1817 runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow), "POW"); 1818 } 1819 #undef FN_PTR 1820 1821 // These intrinsics are not yet correctly implemented 1822 case vmIntrinsics::_datan2: 1823 return false; 1824 1825 default: 1826 fatal_unexpected_iid(id); 1827 return false; 1828 } 1829 } 1830 1831 static bool is_simple_name(Node* n) { 1832 return (n->req() == 1 // constant 1833 || (n->is_Type() && n->as_Type()->type()->singleton()) 1834 || n->is_Proj() // parameter or return value 1835 || n->is_Phi() // local of some sort 1836 ); 1837 } 1838 1839 //----------------------------inline_notify-----------------------------------* 1840 bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) { 1841 const TypeFunc* ftype = OptoRuntime::monitor_notify_Type(); 1842 address func; 1843 if (id == vmIntrinsics::_notify) { 1844 func = OptoRuntime::monitor_notify_Java(); 1845 } else { 1846 func = OptoRuntime::monitor_notifyAll_Java(); 1847 } 1848 Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, NULL, TypeRawPtr::BOTTOM, argument(0)); 1849 make_slow_call_ex(call, env()->Throwable_klass(), false); 1850 return true; 1851 } 1852 1853 1854 //----------------------------inline_min_max----------------------------------- 1855 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) { 1856 set_result(generate_min_max(id, argument(0), argument(1))); 1857 return true; 1858 } 1859 1860 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) { 1861 Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) ); 1862 IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN); 1863 Node* fast_path = _gvn.transform( new IfFalseNode(check)); 1864 Node* slow_path = _gvn.transform( new IfTrueNode(check) ); 1865 1866 { 1867 PreserveJVMState pjvms(this); 1868 PreserveReexecuteState preexecs(this); 1869 jvms()->set_should_reexecute(true); 1870 1871 set_control(slow_path); 1872 set_i_o(i_o()); 1873 1874 uncommon_trap(Deoptimization::Reason_intrinsic, 1875 Deoptimization::Action_none); 1876 } 1877 1878 set_control(fast_path); 1879 set_result(math); 1880 } 1881 1882 template <typename OverflowOp> 1883 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) { 1884 typedef typename OverflowOp::MathOp MathOp; 1885 1886 MathOp* mathOp = new MathOp(arg1, arg2); 1887 Node* operation = _gvn.transform( mathOp ); 1888 Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) ); 1889 inline_math_mathExact(operation, ofcheck); 1890 return true; 1891 } 1892 1893 bool LibraryCallKit::inline_math_addExactI(bool is_increment) { 1894 return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1)); 1895 } 1896 1897 bool LibraryCallKit::inline_math_addExactL(bool is_increment) { 1898 return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2)); 1899 } 1900 1901 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) { 1902 return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1)); 1903 } 1904 1905 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) { 1906 return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2)); 1907 } 1908 1909 bool LibraryCallKit::inline_math_negateExactI() { 1910 return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0)); 1911 } 1912 1913 bool LibraryCallKit::inline_math_negateExactL() { 1914 return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0)); 1915 } 1916 1917 bool LibraryCallKit::inline_math_multiplyExactI() { 1918 return inline_math_overflow<OverflowMulINode>(argument(0), argument(1)); 1919 } 1920 1921 bool LibraryCallKit::inline_math_multiplyExactL() { 1922 return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2)); 1923 } 1924 1925 bool LibraryCallKit::inline_math_multiplyHigh() { 1926 set_result(_gvn.transform(new MulHiLNode(argument(0), argument(2)))); 1927 return true; 1928 } 1929 1930 Node* 1931 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) { 1932 // These are the candidate return value: 1933 Node* xvalue = x0; 1934 Node* yvalue = y0; 1935 1936 if (xvalue == yvalue) { 1937 return xvalue; 1938 } 1939 1940 bool want_max = (id == vmIntrinsics::_max); 1941 1942 const TypeInt* txvalue = _gvn.type(xvalue)->isa_int(); 1943 const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int(); 1944 if (txvalue == NULL || tyvalue == NULL) return top(); 1945 // This is not really necessary, but it is consistent with a 1946 // hypothetical MaxINode::Value method: 1947 int widen = MAX2(txvalue->_widen, tyvalue->_widen); 1948 1949 // %%% This folding logic should (ideally) be in a different place. 1950 // Some should be inside IfNode, and there to be a more reliable 1951 // transformation of ?: style patterns into cmoves. We also want 1952 // more powerful optimizations around cmove and min/max. 1953 1954 // Try to find a dominating comparison of these guys. 1955 // It can simplify the index computation for Arrays.copyOf 1956 // and similar uses of System.arraycopy. 1957 // First, compute the normalized version of CmpI(x, y). 1958 int cmp_op = Op_CmpI; 1959 Node* xkey = xvalue; 1960 Node* ykey = yvalue; 1961 Node* ideal_cmpxy = _gvn.transform(new CmpINode(xkey, ykey)); 1962 if (ideal_cmpxy->is_Cmp()) { 1963 // E.g., if we have CmpI(length - offset, count), 1964 // it might idealize to CmpI(length, count + offset) 1965 cmp_op = ideal_cmpxy->Opcode(); 1966 xkey = ideal_cmpxy->in(1); 1967 ykey = ideal_cmpxy->in(2); 1968 } 1969 1970 // Start by locating any relevant comparisons. 1971 Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey; 1972 Node* cmpxy = NULL; 1973 Node* cmpyx = NULL; 1974 for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) { 1975 Node* cmp = start_from->fast_out(k); 1976 if (cmp->outcnt() > 0 && // must have prior uses 1977 cmp->in(0) == NULL && // must be context-independent 1978 cmp->Opcode() == cmp_op) { // right kind of compare 1979 if (cmp->in(1) == xkey && cmp->in(2) == ykey) cmpxy = cmp; 1980 if (cmp->in(1) == ykey && cmp->in(2) == xkey) cmpyx = cmp; 1981 } 1982 } 1983 1984 const int NCMPS = 2; 1985 Node* cmps[NCMPS] = { cmpxy, cmpyx }; 1986 int cmpn; 1987 for (cmpn = 0; cmpn < NCMPS; cmpn++) { 1988 if (cmps[cmpn] != NULL) break; // find a result 1989 } 1990 if (cmpn < NCMPS) { 1991 // Look for a dominating test that tells us the min and max. 1992 int depth = 0; // Limit search depth for speed 1993 Node* dom = control(); 1994 for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) { 1995 if (++depth >= 100) break; 1996 Node* ifproj = dom; 1997 if (!ifproj->is_Proj()) continue; 1998 Node* iff = ifproj->in(0); 1999 if (!iff->is_If()) continue; 2000 Node* bol = iff->in(1); 2001 if (!bol->is_Bool()) continue; 2002 Node* cmp = bol->in(1); 2003 if (cmp == NULL) continue; 2004 for (cmpn = 0; cmpn < NCMPS; cmpn++) 2005 if (cmps[cmpn] == cmp) break; 2006 if (cmpn == NCMPS) continue; 2007 BoolTest::mask btest = bol->as_Bool()->_test._test; 2008 if (ifproj->is_IfFalse()) btest = BoolTest(btest).negate(); 2009 if (cmp->in(1) == ykey) btest = BoolTest(btest).commute(); 2010 // At this point, we know that 'x btest y' is true. 2011 switch (btest) { 2012 case BoolTest::eq: 2013 // They are proven equal, so we can collapse the min/max. 2014 // Either value is the answer. Choose the simpler. 2015 if (is_simple_name(yvalue) && !is_simple_name(xvalue)) 2016 return yvalue; 2017 return xvalue; 2018 case BoolTest::lt: // x < y 2019 case BoolTest::le: // x <= y 2020 return (want_max ? yvalue : xvalue); 2021 case BoolTest::gt: // x > y 2022 case BoolTest::ge: // x >= y 2023 return (want_max ? xvalue : yvalue); 2024 default: 2025 break; 2026 } 2027 } 2028 } 2029 2030 // We failed to find a dominating test. 2031 // Let's pick a test that might GVN with prior tests. 2032 Node* best_bol = NULL; 2033 BoolTest::mask best_btest = BoolTest::illegal; 2034 for (cmpn = 0; cmpn < NCMPS; cmpn++) { 2035 Node* cmp = cmps[cmpn]; 2036 if (cmp == NULL) continue; 2037 for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) { 2038 Node* bol = cmp->fast_out(j); 2039 if (!bol->is_Bool()) continue; 2040 BoolTest::mask btest = bol->as_Bool()->_test._test; 2041 if (btest == BoolTest::eq || btest == BoolTest::ne) continue; 2042 if (cmp->in(1) == ykey) btest = BoolTest(btest).commute(); 2043 if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) { 2044 best_bol = bol->as_Bool(); 2045 best_btest = btest; 2046 } 2047 } 2048 } 2049 2050 Node* answer_if_true = NULL; 2051 Node* answer_if_false = NULL; 2052 switch (best_btest) { 2053 default: 2054 if (cmpxy == NULL) 2055 cmpxy = ideal_cmpxy; 2056 best_bol = _gvn.transform(new BoolNode(cmpxy, BoolTest::lt)); 2057 // and fall through: 2058 case BoolTest::lt: // x < y 2059 case BoolTest::le: // x <= y 2060 answer_if_true = (want_max ? yvalue : xvalue); 2061 answer_if_false = (want_max ? xvalue : yvalue); 2062 break; 2063 case BoolTest::gt: // x > y 2064 case BoolTest::ge: // x >= y 2065 answer_if_true = (want_max ? xvalue : yvalue); 2066 answer_if_false = (want_max ? yvalue : xvalue); 2067 break; 2068 } 2069 2070 jint hi, lo; 2071 if (want_max) { 2072 // We can sharpen the minimum. 2073 hi = MAX2(txvalue->_hi, tyvalue->_hi); 2074 lo = MAX2(txvalue->_lo, tyvalue->_lo); 2075 } else { 2076 // We can sharpen the maximum. 2077 hi = MIN2(txvalue->_hi, tyvalue->_hi); 2078 lo = MIN2(txvalue->_lo, tyvalue->_lo); 2079 } 2080 2081 // Use a flow-free graph structure, to avoid creating excess control edges 2082 // which could hinder other optimizations. 2083 // Since Math.min/max is often used with arraycopy, we want 2084 // tightly_coupled_allocation to be able to see beyond min/max expressions. 2085 Node* cmov = CMoveNode::make(NULL, best_bol, 2086 answer_if_false, answer_if_true, 2087 TypeInt::make(lo, hi, widen)); 2088 2089 return _gvn.transform(cmov); 2090 2091 /* 2092 // This is not as desirable as it may seem, since Min and Max 2093 // nodes do not have a full set of optimizations. 2094 // And they would interfere, anyway, with 'if' optimizations 2095 // and with CMoveI canonical forms. 2096 switch (id) { 2097 case vmIntrinsics::_min: 2098 result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break; 2099 case vmIntrinsics::_max: 2100 result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break; 2101 default: 2102 ShouldNotReachHere(); 2103 } 2104 */ 2105 } 2106 2107 inline int 2108 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset, BasicType type) { 2109 const TypePtr* base_type = TypePtr::NULL_PTR; 2110 if (base != NULL) base_type = _gvn.type(base)->isa_ptr(); 2111 if (base_type == NULL) { 2112 // Unknown type. 2113 return Type::AnyPtr; 2114 } else if (base_type == TypePtr::NULL_PTR) { 2115 // Since this is a NULL+long form, we have to switch to a rawptr. 2116 base = _gvn.transform(new CastX2PNode(offset)); 2117 offset = MakeConX(0); 2118 return Type::RawPtr; 2119 } else if (base_type->base() == Type::RawPtr) { 2120 return Type::RawPtr; 2121 } else if (base_type->isa_oopptr()) { 2122 // Base is never null => always a heap address. 2123 if (!TypePtr::NULL_PTR->higher_equal(base_type)) { 2124 return Type::OopPtr; 2125 } 2126 // Offset is small => always a heap address. 2127 const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t(); 2128 if (offset_type != NULL && 2129 base_type->offset() == 0 && // (should always be?) 2130 offset_type->_lo >= 0 && 2131 !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) { 2132 return Type::OopPtr; 2133 } else if (type == T_OBJECT) { 2134 // off heap access to an oop doesn't make any sense. Has to be on 2135 // heap. 2136 return Type::OopPtr; 2137 } 2138 // Otherwise, it might either be oop+off or NULL+addr. 2139 return Type::AnyPtr; 2140 } else { 2141 // No information: 2142 return Type::AnyPtr; 2143 } 2144 } 2145 2146 inline Node* LibraryCallKit::make_unsafe_address(Node*& base, Node* offset, BasicType type, bool can_cast) { 2147 Node* uncasted_base = base; 2148 int kind = classify_unsafe_addr(uncasted_base, offset, type); 2149 if (kind == Type::RawPtr) { 2150 return basic_plus_adr(top(), uncasted_base, offset); 2151 } else if (kind == Type::AnyPtr) { 2152 assert(base == uncasted_base, "unexpected base change"); 2153 if (can_cast) { 2154 if (!_gvn.type(base)->speculative_maybe_null() && 2155 !too_many_traps(Deoptimization::Reason_speculate_null_check)) { 2156 // According to profiling, this access is always on 2157 // heap. Casting the base to not null and thus avoiding membars 2158 // around the access should allow better optimizations 2159 Node* null_ctl = top(); 2160 base = null_check_oop(base, &null_ctl, true, true, true); 2161 assert(null_ctl->is_top(), "no null control here"); 2162 return basic_plus_adr(base, offset); 2163 } else if (_gvn.type(base)->speculative_always_null() && 2164 !too_many_traps(Deoptimization::Reason_speculate_null_assert)) { 2165 // According to profiling, this access is always off 2166 // heap. 2167 base = null_assert(base); 2168 Node* raw_base = _gvn.transform(new CastX2PNode(offset)); 2169 offset = MakeConX(0); 2170 return basic_plus_adr(top(), raw_base, offset); 2171 } 2172 } 2173 // We don't know if it's an on heap or off heap access. Fall back 2174 // to raw memory access. 2175 Node* raw = _gvn.transform(new CheckCastPPNode(control(), base, TypeRawPtr::BOTTOM)); 2176 return basic_plus_adr(top(), raw, offset); 2177 } else { 2178 assert(base == uncasted_base, "unexpected base change"); 2179 // We know it's an on heap access so base can't be null 2180 if (TypePtr::NULL_PTR->higher_equal(_gvn.type(base))) { 2181 base = must_be_not_null(base, true); 2182 } 2183 return basic_plus_adr(base, offset); 2184 } 2185 } 2186 2187 //--------------------------inline_number_methods----------------------------- 2188 // inline int Integer.numberOfLeadingZeros(int) 2189 // inline int Long.numberOfLeadingZeros(long) 2190 // 2191 // inline int Integer.numberOfTrailingZeros(int) 2192 // inline int Long.numberOfTrailingZeros(long) 2193 // 2194 // inline int Integer.bitCount(int) 2195 // inline int Long.bitCount(long) 2196 // 2197 // inline char Character.reverseBytes(char) 2198 // inline short Short.reverseBytes(short) 2199 // inline int Integer.reverseBytes(int) 2200 // inline long Long.reverseBytes(long) 2201 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) { 2202 Node* arg = argument(0); 2203 Node* n = NULL; 2204 switch (id) { 2205 case vmIntrinsics::_numberOfLeadingZeros_i: n = new CountLeadingZerosINode( arg); break; 2206 case vmIntrinsics::_numberOfLeadingZeros_l: n = new CountLeadingZerosLNode( arg); break; 2207 case vmIntrinsics::_numberOfTrailingZeros_i: n = new CountTrailingZerosINode(arg); break; 2208 case vmIntrinsics::_numberOfTrailingZeros_l: n = new CountTrailingZerosLNode(arg); break; 2209 case vmIntrinsics::_bitCount_i: n = new PopCountINode( arg); break; 2210 case vmIntrinsics::_bitCount_l: n = new PopCountLNode( arg); break; 2211 case vmIntrinsics::_reverseBytes_c: n = new ReverseBytesUSNode(0, arg); break; 2212 case vmIntrinsics::_reverseBytes_s: n = new ReverseBytesSNode( 0, arg); break; 2213 case vmIntrinsics::_reverseBytes_i: n = new ReverseBytesINode( 0, arg); break; 2214 case vmIntrinsics::_reverseBytes_l: n = new ReverseBytesLNode( 0, arg); break; 2215 default: fatal_unexpected_iid(id); break; 2216 } 2217 set_result(_gvn.transform(n)); 2218 return true; 2219 } 2220 2221 //----------------------------inline_unsafe_access---------------------------- 2222 2223 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) { 2224 // Attempt to infer a sharper value type from the offset and base type. 2225 ciKlass* sharpened_klass = NULL; 2226 2227 // See if it is an instance field, with an object type. 2228 if (alias_type->field() != NULL) { 2229 if (alias_type->field()->type()->is_klass()) { 2230 sharpened_klass = alias_type->field()->type()->as_klass(); 2231 } 2232 } 2233 2234 // See if it is a narrow oop array. 2235 if (adr_type->isa_aryptr()) { 2236 if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) { 2237 const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr(); 2238 if (elem_type != NULL) { 2239 sharpened_klass = elem_type->klass(); 2240 } 2241 } 2242 } 2243 2244 // The sharpened class might be unloaded if there is no class loader 2245 // contraint in place. 2246 if (sharpened_klass != NULL && sharpened_klass->is_loaded()) { 2247 const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass); 2248 2249 #ifndef PRODUCT 2250 if (C->print_intrinsics() || C->print_inlining()) { 2251 tty->print(" from base type: "); adr_type->dump(); tty->cr(); 2252 tty->print(" sharpened value: "); tjp->dump(); tty->cr(); 2253 } 2254 #endif 2255 // Sharpen the value type. 2256 return tjp; 2257 } 2258 return NULL; 2259 } 2260 2261 DecoratorSet LibraryCallKit::mo_decorator_for_access_kind(AccessKind kind) { 2262 switch (kind) { 2263 case Relaxed: 2264 return MO_UNORDERED; 2265 case Opaque: 2266 return MO_RELAXED; 2267 case Acquire: 2268 return MO_ACQUIRE; 2269 case Release: 2270 return MO_RELEASE; 2271 case Volatile: 2272 return MO_SEQ_CST; 2273 default: 2274 ShouldNotReachHere(); 2275 return 0; 2276 } 2277 } 2278 2279 bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned) { 2280 if (callee()->is_static()) return false; // caller must have the capability! 2281 DecoratorSet decorators = C2_UNSAFE_ACCESS; 2282 guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads"); 2283 guarantee( is_store || kind != Release, "Release accesses can be produced only for stores"); 2284 assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type"); 2285 2286 if (type == T_OBJECT || type == T_ARRAY) { 2287 decorators |= ON_UNKNOWN_OOP_REF; 2288 } 2289 2290 if (unaligned) { 2291 decorators |= C2_UNALIGNED; 2292 } 2293 2294 #ifndef PRODUCT 2295 { 2296 ResourceMark rm; 2297 // Check the signatures. 2298 ciSignature* sig = callee()->signature(); 2299 #ifdef ASSERT 2300 if (!is_store) { 2301 // Object getObject(Object base, int/long offset), etc. 2302 BasicType rtype = sig->return_type()->basic_type(); 2303 assert(rtype == type, "getter must return the expected value"); 2304 assert(sig->count() == 2, "oop getter has 2 arguments"); 2305 assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object"); 2306 assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct"); 2307 } else { 2308 // void putObject(Object base, int/long offset, Object x), etc. 2309 assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value"); 2310 assert(sig->count() == 3, "oop putter has 3 arguments"); 2311 assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object"); 2312 assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct"); 2313 BasicType vtype = sig->type_at(sig->count()-1)->basic_type(); 2314 assert(vtype == type, "putter must accept the expected value"); 2315 } 2316 #endif // ASSERT 2317 } 2318 #endif //PRODUCT 2319 2320 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 2321 2322 Node* receiver = argument(0); // type: oop 2323 2324 // Build address expression. 2325 Node* adr; 2326 Node* heap_base_oop = top(); 2327 Node* offset = top(); 2328 Node* val; 2329 2330 // The base is either a Java object or a value produced by Unsafe.staticFieldBase 2331 Node* base = argument(1); // type: oop 2332 // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset 2333 offset = argument(2); // type: long 2334 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset 2335 // to be plain byte offsets, which are also the same as those accepted 2336 // by oopDesc::field_addr. 2337 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 2338 "fieldOffset must be byte-scaled"); 2339 // 32-bit machines ignore the high half! 2340 offset = ConvL2X(offset); 2341 adr = make_unsafe_address(base, offset, type, kind == Relaxed); 2342 2343 if (_gvn.type(base)->isa_ptr() != TypePtr::NULL_PTR) { 2344 heap_base_oop = base; 2345 } else if (type == T_OBJECT) { 2346 return false; // off-heap oop accesses are not supported 2347 } 2348 2349 // Can base be NULL? Otherwise, always on-heap access. 2350 bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop)); 2351 2352 if (!can_access_non_heap) { 2353 decorators |= IN_HEAP; 2354 } 2355 2356 val = is_store ? argument(4) : NULL; 2357 2358 const TypePtr *adr_type = _gvn.type(adr)->isa_ptr(); 2359 2360 // Try to categorize the address. 2361 Compile::AliasType* alias_type = C->alias_type(adr_type); 2362 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here"); 2363 2364 if (alias_type->adr_type() == TypeInstPtr::KLASS || 2365 alias_type->adr_type() == TypeAryPtr::RANGE) { 2366 return false; // not supported 2367 } 2368 2369 bool mismatched = false; 2370 BasicType bt = alias_type->basic_type(); 2371 if (bt != T_ILLEGAL) { 2372 assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access"); 2373 if (bt == T_BYTE && adr_type->isa_aryptr()) { 2374 // Alias type doesn't differentiate between byte[] and boolean[]). 2375 // Use address type to get the element type. 2376 bt = adr_type->is_aryptr()->elem()->array_element_basic_type(); 2377 } 2378 if (bt == T_ARRAY || bt == T_NARROWOOP) { 2379 // accessing an array field with getObject is not a mismatch 2380 bt = T_OBJECT; 2381 } 2382 if ((bt == T_OBJECT) != (type == T_OBJECT)) { 2383 // Don't intrinsify mismatched object accesses 2384 return false; 2385 } 2386 mismatched = (bt != type); 2387 } else if (alias_type->adr_type()->isa_oopptr()) { 2388 mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched 2389 } 2390 2391 assert(!mismatched || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched"); 2392 2393 if (mismatched) { 2394 decorators |= C2_MISMATCHED; 2395 } 2396 2397 // First guess at the value type. 2398 const Type *value_type = Type::get_const_basic_type(type); 2399 2400 // Figure out the memory ordering. 2401 decorators |= mo_decorator_for_access_kind(kind); 2402 2403 if (!is_store && type == T_OBJECT) { 2404 const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type); 2405 if (tjp != NULL) { 2406 value_type = tjp; 2407 } 2408 } 2409 2410 receiver = null_check(receiver); 2411 if (stopped()) { 2412 return true; 2413 } 2414 // Heap pointers get a null-check from the interpreter, 2415 // as a courtesy. However, this is not guaranteed by Unsafe, 2416 // and it is not possible to fully distinguish unintended nulls 2417 // from intended ones in this API. 2418 2419 if (!is_store) { 2420 Node* p = NULL; 2421 // Try to constant fold a load from a constant field 2422 ciField* field = alias_type->field(); 2423 if (heap_base_oop != top() && field != NULL && field->is_constant() && !mismatched) { 2424 // final or stable field 2425 p = make_constant_from_field(field, heap_base_oop); 2426 } 2427 2428 if (p == NULL) { // Could not constant fold the load 2429 p = access_load_at(heap_base_oop, adr, adr_type, value_type, type, decorators); 2430 // Normalize the value returned by getBoolean in the following cases 2431 if (type == T_BOOLEAN && 2432 (mismatched || 2433 heap_base_oop == top() || // - heap_base_oop is NULL or 2434 (can_access_non_heap && field == NULL)) // - heap_base_oop is potentially NULL 2435 // and the unsafe access is made to large offset 2436 // (i.e., larger than the maximum offset necessary for any 2437 // field access) 2438 ) { 2439 IdealKit ideal = IdealKit(this); 2440 #define __ ideal. 2441 IdealVariable normalized_result(ideal); 2442 __ declarations_done(); 2443 __ set(normalized_result, p); 2444 __ if_then(p, BoolTest::ne, ideal.ConI(0)); 2445 __ set(normalized_result, ideal.ConI(1)); 2446 ideal.end_if(); 2447 final_sync(ideal); 2448 p = __ value(normalized_result); 2449 #undef __ 2450 } 2451 } 2452 if (type == T_ADDRESS) { 2453 p = gvn().transform(new CastP2XNode(NULL, p)); 2454 p = ConvX2UL(p); 2455 } 2456 // The load node has the control of the preceding MemBarCPUOrder. All 2457 // following nodes will have the control of the MemBarCPUOrder inserted at 2458 // the end of this method. So, pushing the load onto the stack at a later 2459 // point is fine. 2460 set_result(p); 2461 } else { 2462 if (bt == T_ADDRESS) { 2463 // Repackage the long as a pointer. 2464 val = ConvL2X(val); 2465 val = gvn().transform(new CastX2PNode(val)); 2466 } 2467 access_store_at(control(), heap_base_oop, adr, adr_type, val, value_type, type, decorators); 2468 } 2469 2470 return true; 2471 } 2472 2473 //----------------------------inline_unsafe_load_store---------------------------- 2474 // This method serves a couple of different customers (depending on LoadStoreKind): 2475 // 2476 // LS_cmp_swap: 2477 // 2478 // boolean compareAndSetObject(Object o, long offset, Object expected, Object x); 2479 // boolean compareAndSetInt( Object o, long offset, int expected, int x); 2480 // boolean compareAndSetLong( Object o, long offset, long expected, long x); 2481 // 2482 // LS_cmp_swap_weak: 2483 // 2484 // boolean weakCompareAndSetObject( Object o, long offset, Object expected, Object x); 2485 // boolean weakCompareAndSetObjectPlain( Object o, long offset, Object expected, Object x); 2486 // boolean weakCompareAndSetObjectAcquire(Object o, long offset, Object expected, Object x); 2487 // boolean weakCompareAndSetObjectRelease(Object o, long offset, Object expected, Object x); 2488 // 2489 // boolean weakCompareAndSetInt( Object o, long offset, int expected, int x); 2490 // boolean weakCompareAndSetIntPlain( Object o, long offset, int expected, int x); 2491 // boolean weakCompareAndSetIntAcquire( Object o, long offset, int expected, int x); 2492 // boolean weakCompareAndSetIntRelease( Object o, long offset, int expected, int x); 2493 // 2494 // boolean weakCompareAndSetLong( Object o, long offset, long expected, long x); 2495 // boolean weakCompareAndSetLongPlain( Object o, long offset, long expected, long x); 2496 // boolean weakCompareAndSetLongAcquire( Object o, long offset, long expected, long x); 2497 // boolean weakCompareAndSetLongRelease( Object o, long offset, long expected, long x); 2498 // 2499 // LS_cmp_exchange: 2500 // 2501 // Object compareAndExchangeObjectVolatile(Object o, long offset, Object expected, Object x); 2502 // Object compareAndExchangeObjectAcquire( Object o, long offset, Object expected, Object x); 2503 // Object compareAndExchangeObjectRelease( Object o, long offset, Object expected, Object x); 2504 // 2505 // Object compareAndExchangeIntVolatile( Object o, long offset, Object expected, Object x); 2506 // Object compareAndExchangeIntAcquire( Object o, long offset, Object expected, Object x); 2507 // Object compareAndExchangeIntRelease( Object o, long offset, Object expected, Object x); 2508 // 2509 // Object compareAndExchangeLongVolatile( Object o, long offset, Object expected, Object x); 2510 // Object compareAndExchangeLongAcquire( Object o, long offset, Object expected, Object x); 2511 // Object compareAndExchangeLongRelease( Object o, long offset, Object expected, Object x); 2512 // 2513 // LS_get_add: 2514 // 2515 // int getAndAddInt( Object o, long offset, int delta) 2516 // long getAndAddLong(Object o, long offset, long delta) 2517 // 2518 // LS_get_set: 2519 // 2520 // int getAndSet(Object o, long offset, int newValue) 2521 // long getAndSet(Object o, long offset, long newValue) 2522 // Object getAndSet(Object o, long offset, Object newValue) 2523 // 2524 bool LibraryCallKit::inline_unsafe_load_store(const BasicType type, const LoadStoreKind kind, const AccessKind access_kind) { 2525 // This basic scheme here is the same as inline_unsafe_access, but 2526 // differs in enough details that combining them would make the code 2527 // overly confusing. (This is a true fact! I originally combined 2528 // them, but even I was confused by it!) As much code/comments as 2529 // possible are retained from inline_unsafe_access though to make 2530 // the correspondences clearer. - dl 2531 2532 if (callee()->is_static()) return false; // caller must have the capability! 2533 2534 DecoratorSet decorators = C2_UNSAFE_ACCESS; 2535 decorators |= mo_decorator_for_access_kind(access_kind); 2536 2537 #ifndef PRODUCT 2538 BasicType rtype; 2539 { 2540 ResourceMark rm; 2541 // Check the signatures. 2542 ciSignature* sig = callee()->signature(); 2543 rtype = sig->return_type()->basic_type(); 2544 switch(kind) { 2545 case LS_get_add: 2546 case LS_get_set: { 2547 // Check the signatures. 2548 #ifdef ASSERT 2549 assert(rtype == type, "get and set must return the expected type"); 2550 assert(sig->count() == 3, "get and set has 3 arguments"); 2551 assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object"); 2552 assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long"); 2553 assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta"); 2554 assert(access_kind == Volatile, "mo is not passed to intrinsic nodes in current implementation"); 2555 #endif // ASSERT 2556 break; 2557 } 2558 case LS_cmp_swap: 2559 case LS_cmp_swap_weak: { 2560 // Check the signatures. 2561 #ifdef ASSERT 2562 assert(rtype == T_BOOLEAN, "CAS must return boolean"); 2563 assert(sig->count() == 4, "CAS has 4 arguments"); 2564 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object"); 2565 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long"); 2566 #endif // ASSERT 2567 break; 2568 } 2569 case LS_cmp_exchange: { 2570 // Check the signatures. 2571 #ifdef ASSERT 2572 assert(rtype == type, "CAS must return the expected type"); 2573 assert(sig->count() == 4, "CAS has 4 arguments"); 2574 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object"); 2575 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long"); 2576 #endif // ASSERT 2577 break; 2578 } 2579 default: 2580 ShouldNotReachHere(); 2581 } 2582 } 2583 #endif //PRODUCT 2584 2585 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 2586 2587 // Get arguments: 2588 Node* receiver = NULL; 2589 Node* base = NULL; 2590 Node* offset = NULL; 2591 Node* oldval = NULL; 2592 Node* newval = NULL; 2593 switch(kind) { 2594 case LS_cmp_swap: 2595 case LS_cmp_swap_weak: 2596 case LS_cmp_exchange: { 2597 const bool two_slot_type = type2size[type] == 2; 2598 receiver = argument(0); // type: oop 2599 base = argument(1); // type: oop 2600 offset = argument(2); // type: long 2601 oldval = argument(4); // type: oop, int, or long 2602 newval = argument(two_slot_type ? 6 : 5); // type: oop, int, or long 2603 break; 2604 } 2605 case LS_get_add: 2606 case LS_get_set: { 2607 receiver = argument(0); // type: oop 2608 base = argument(1); // type: oop 2609 offset = argument(2); // type: long 2610 oldval = NULL; 2611 newval = argument(4); // type: oop, int, or long 2612 break; 2613 } 2614 default: 2615 ShouldNotReachHere(); 2616 } 2617 2618 // Build field offset expression. 2619 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset 2620 // to be plain byte offsets, which are also the same as those accepted 2621 // by oopDesc::field_addr. 2622 assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled"); 2623 // 32-bit machines ignore the high half of long offsets 2624 offset = ConvL2X(offset); 2625 Node* adr = make_unsafe_address(base, offset, type, false); 2626 const TypePtr *adr_type = _gvn.type(adr)->isa_ptr(); 2627 2628 Compile::AliasType* alias_type = C->alias_type(adr_type); 2629 BasicType bt = alias_type->basic_type(); 2630 if (bt != T_ILLEGAL && 2631 ((bt == T_OBJECT || bt == T_ARRAY) != (type == T_OBJECT))) { 2632 // Don't intrinsify mismatched object accesses. 2633 return false; 2634 } 2635 2636 // For CAS, unlike inline_unsafe_access, there seems no point in 2637 // trying to refine types. Just use the coarse types here. 2638 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here"); 2639 const Type *value_type = Type::get_const_basic_type(type); 2640 2641 switch (kind) { 2642 case LS_get_set: 2643 case LS_cmp_exchange: { 2644 if (type == T_OBJECT) { 2645 const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type); 2646 if (tjp != NULL) { 2647 value_type = tjp; 2648 } 2649 } 2650 break; 2651 } 2652 case LS_cmp_swap: 2653 case LS_cmp_swap_weak: 2654 case LS_get_add: 2655 break; 2656 default: 2657 ShouldNotReachHere(); 2658 } 2659 2660 // Null check receiver. 2661 receiver = null_check(receiver); 2662 if (stopped()) { 2663 return true; 2664 } 2665 2666 int alias_idx = C->get_alias_index(adr_type); 2667 2668 if (type == T_OBJECT || type == T_ARRAY) { 2669 decorators |= IN_HEAP | ON_UNKNOWN_OOP_REF; 2670 2671 // Transformation of a value which could be NULL pointer (CastPP #NULL) 2672 // could be delayed during Parse (for example, in adjust_map_after_if()). 2673 // Execute transformation here to avoid barrier generation in such case. 2674 if (_gvn.type(newval) == TypePtr::NULL_PTR) 2675 newval = _gvn.makecon(TypePtr::NULL_PTR); 2676 2677 if (oldval != NULL && _gvn.type(oldval) == TypePtr::NULL_PTR) { 2678 // Refine the value to a null constant, when it is known to be null 2679 oldval = _gvn.makecon(TypePtr::NULL_PTR); 2680 } 2681 } 2682 2683 Node* result = NULL; 2684 switch (kind) { 2685 case LS_cmp_exchange: { 2686 result = access_atomic_cmpxchg_val_at(control(), base, adr, adr_type, alias_idx, 2687 oldval, newval, value_type, type, decorators); 2688 break; 2689 } 2690 case LS_cmp_swap_weak: 2691 decorators |= C2_WEAK_CMPXCHG; 2692 case LS_cmp_swap: { 2693 result = access_atomic_cmpxchg_bool_at(control(), base, adr, adr_type, alias_idx, 2694 oldval, newval, value_type, type, decorators); 2695 break; 2696 } 2697 case LS_get_set: { 2698 result = access_atomic_xchg_at(control(), base, adr, adr_type, alias_idx, 2699 newval, value_type, type, decorators); 2700 break; 2701 } 2702 case LS_get_add: { 2703 result = access_atomic_add_at(control(), base, adr, adr_type, alias_idx, 2704 newval, value_type, type, decorators); 2705 break; 2706 } 2707 default: 2708 ShouldNotReachHere(); 2709 } 2710 2711 assert(type2size[result->bottom_type()->basic_type()] == type2size[rtype], "result type should match"); 2712 set_result(result); 2713 return true; 2714 } 2715 2716 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) { 2717 // Regardless of form, don't allow previous ld/st to move down, 2718 // then issue acquire, release, or volatile mem_bar. 2719 insert_mem_bar(Op_MemBarCPUOrder); 2720 switch(id) { 2721 case vmIntrinsics::_loadFence: 2722 insert_mem_bar(Op_LoadFence); 2723 return true; 2724 case vmIntrinsics::_storeFence: 2725 insert_mem_bar(Op_StoreFence); 2726 return true; 2727 case vmIntrinsics::_fullFence: 2728 insert_mem_bar(Op_MemBarVolatile); 2729 return true; 2730 default: 2731 fatal_unexpected_iid(id); 2732 return false; 2733 } 2734 } 2735 2736 bool LibraryCallKit::inline_onspinwait() { 2737 insert_mem_bar(Op_OnSpinWait); 2738 return true; 2739 } 2740 2741 bool LibraryCallKit::klass_needs_init_guard(Node* kls) { 2742 if (!kls->is_Con()) { 2743 return true; 2744 } 2745 const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr(); 2746 if (klsptr == NULL) { 2747 return true; 2748 } 2749 ciInstanceKlass* ik = klsptr->klass()->as_instance_klass(); 2750 // don't need a guard for a klass that is already initialized 2751 return !ik->is_initialized(); 2752 } 2753 2754 //----------------------------inline_unsafe_allocate--------------------------- 2755 // public native Object Unsafe.allocateInstance(Class<?> cls); 2756 bool LibraryCallKit::inline_unsafe_allocate() { 2757 if (callee()->is_static()) return false; // caller must have the capability! 2758 2759 null_check_receiver(); // null-check, then ignore 2760 Node* cls = null_check(argument(1)); 2761 if (stopped()) return true; 2762 2763 Node* kls = load_klass_from_mirror(cls, false, NULL, 0); 2764 kls = null_check(kls); 2765 if (stopped()) return true; // argument was like int.class 2766 2767 Node* test = NULL; 2768 if (LibraryCallKit::klass_needs_init_guard(kls)) { 2769 // Note: The argument might still be an illegal value like 2770 // Serializable.class or Object[].class. The runtime will handle it. 2771 // But we must make an explicit check for initialization. 2772 Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset())); 2773 // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler 2774 // can generate code to load it as unsigned byte. 2775 Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered); 2776 Node* bits = intcon(InstanceKlass::fully_initialized); 2777 test = _gvn.transform(new SubINode(inst, bits)); 2778 // The 'test' is non-zero if we need to take a slow path. 2779 } 2780 2781 Node* obj = new_instance(kls, test); 2782 set_result(obj); 2783 return true; 2784 } 2785 2786 //------------------------inline_native_time_funcs-------------- 2787 // inline code for System.currentTimeMillis() and System.nanoTime() 2788 // these have the same type and signature 2789 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) { 2790 const TypeFunc* tf = OptoRuntime::void_long_Type(); 2791 const TypePtr* no_memory_effects = NULL; 2792 Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects); 2793 Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0)); 2794 #ifdef ASSERT 2795 Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1)); 2796 assert(value_top == top(), "second value must be top"); 2797 #endif 2798 set_result(value); 2799 return true; 2800 } 2801 2802 #ifdef JFR_HAVE_INTRINSICS 2803 2804 /* 2805 * oop -> myklass 2806 * myklass->trace_id |= USED 2807 * return myklass->trace_id & ~0x3 2808 */ 2809 bool LibraryCallKit::inline_native_classID() { 2810 Node* cls = null_check(argument(0), T_OBJECT); 2811 Node* kls = load_klass_from_mirror(cls, false, NULL, 0); 2812 kls = null_check(kls, T_OBJECT); 2813 2814 ByteSize offset = KLASS_TRACE_ID_OFFSET; 2815 Node* insp = basic_plus_adr(kls, in_bytes(offset)); 2816 Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG, MemNode::unordered); 2817 2818 Node* clsused = longcon(0x01l); // set the class bit 2819 Node* orl = _gvn.transform(new OrLNode(tvalue, clsused)); 2820 const TypePtr *adr_type = _gvn.type(insp)->isa_ptr(); 2821 store_to_memory(control(), insp, orl, T_LONG, adr_type, MemNode::unordered); 2822 2823 #ifdef TRACE_ID_META_BITS 2824 Node* mbits = longcon(~TRACE_ID_META_BITS); 2825 tvalue = _gvn.transform(new AndLNode(tvalue, mbits)); 2826 #endif 2827 #ifdef TRACE_ID_SHIFT 2828 Node* cbits = intcon(TRACE_ID_SHIFT); 2829 tvalue = _gvn.transform(new URShiftLNode(tvalue, cbits)); 2830 #endif 2831 2832 set_result(tvalue); 2833 return true; 2834 2835 } 2836 2837 bool LibraryCallKit::inline_native_getEventWriter() { 2838 Node* tls_ptr = _gvn.transform(new ThreadLocalNode()); 2839 2840 Node* jobj_ptr = basic_plus_adr(top(), tls_ptr, 2841 in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR) 2842 ); 2843 2844 Node* jobj = make_load(control(), jobj_ptr, TypeRawPtr::BOTTOM, T_ADDRESS, MemNode::unordered); 2845 2846 Node* jobj_cmp_null = _gvn.transform( new CmpPNode(jobj, null()) ); 2847 Node* test_jobj_eq_null = _gvn.transform( new BoolNode(jobj_cmp_null, BoolTest::eq) ); 2848 2849 IfNode* iff_jobj_null = 2850 create_and_map_if(control(), test_jobj_eq_null, PROB_MIN, COUNT_UNKNOWN); 2851 2852 enum { _normal_path = 1, 2853 _null_path = 2, 2854 PATH_LIMIT }; 2855 2856 RegionNode* result_rgn = new RegionNode(PATH_LIMIT); 2857 PhiNode* result_val = new PhiNode(result_rgn, TypePtr::BOTTOM); 2858 2859 Node* jobj_is_null = _gvn.transform(new IfTrueNode(iff_jobj_null)); 2860 result_rgn->init_req(_null_path, jobj_is_null); 2861 result_val->init_req(_null_path, null()); 2862 2863 Node* jobj_is_not_null = _gvn.transform(new IfFalseNode(iff_jobj_null)); 2864 result_rgn->init_req(_normal_path, jobj_is_not_null); 2865 2866 Node* res = make_load(jobj_is_not_null, jobj, TypeInstPtr::NOTNULL, T_OBJECT, MemNode::unordered); 2867 result_val->init_req(_normal_path, res); 2868 2869 set_result(result_rgn, result_val); 2870 2871 return true; 2872 } 2873 2874 #endif // JFR_HAVE_INTRINSICS 2875 2876 //------------------------inline_native_currentThread------------------ 2877 bool LibraryCallKit::inline_native_currentThread() { 2878 Node* junk = NULL; 2879 set_result(generate_current_thread(junk)); 2880 return true; 2881 } 2882 2883 //------------------------inline_native_isInterrupted------------------ 2884 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted); 2885 bool LibraryCallKit::inline_native_isInterrupted() { 2886 // Add a fast path to t.isInterrupted(clear_int): 2887 // (t == Thread.current() && 2888 // (!TLS._osthread._interrupted || WINDOWS_ONLY(false) NOT_WINDOWS(!clear_int))) 2889 // ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int) 2890 // So, in the common case that the interrupt bit is false, 2891 // we avoid making a call into the VM. Even if the interrupt bit 2892 // is true, if the clear_int argument is false, we avoid the VM call. 2893 // However, if the receiver is not currentThread, we must call the VM, 2894 // because there must be some locking done around the operation. 2895 2896 // We only go to the fast case code if we pass two guards. 2897 // Paths which do not pass are accumulated in the slow_region. 2898 2899 enum { 2900 no_int_result_path = 1, // t == Thread.current() && !TLS._osthread._interrupted 2901 no_clear_result_path = 2, // t == Thread.current() && TLS._osthread._interrupted && !clear_int 2902 slow_result_path = 3, // slow path: t.isInterrupted(clear_int) 2903 PATH_LIMIT 2904 }; 2905 2906 // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag 2907 // out of the function. 2908 insert_mem_bar(Op_MemBarCPUOrder); 2909 2910 RegionNode* result_rgn = new RegionNode(PATH_LIMIT); 2911 PhiNode* result_val = new PhiNode(result_rgn, TypeInt::BOOL); 2912 2913 RegionNode* slow_region = new RegionNode(1); 2914 record_for_igvn(slow_region); 2915 2916 // (a) Receiving thread must be the current thread. 2917 Node* rec_thr = argument(0); 2918 Node* tls_ptr = NULL; 2919 Node* cur_thr = generate_current_thread(tls_ptr); 2920 Node* cmp_thr = _gvn.transform(new CmpPNode(cur_thr, rec_thr)); 2921 Node* bol_thr = _gvn.transform(new BoolNode(cmp_thr, BoolTest::ne)); 2922 2923 generate_slow_guard(bol_thr, slow_region); 2924 2925 // (b) Interrupt bit on TLS must be false. 2926 Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset())); 2927 Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered); 2928 p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset())); 2929 2930 // Set the control input on the field _interrupted read to prevent it floating up. 2931 Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT, MemNode::unordered); 2932 Node* cmp_bit = _gvn.transform(new CmpINode(int_bit, intcon(0))); 2933 Node* bol_bit = _gvn.transform(new BoolNode(cmp_bit, BoolTest::ne)); 2934 2935 IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN); 2936 2937 // First fast path: if (!TLS._interrupted) return false; 2938 Node* false_bit = _gvn.transform(new IfFalseNode(iff_bit)); 2939 result_rgn->init_req(no_int_result_path, false_bit); 2940 result_val->init_req(no_int_result_path, intcon(0)); 2941 2942 // drop through to next case 2943 set_control( _gvn.transform(new IfTrueNode(iff_bit))); 2944 2945 #ifndef _WINDOWS 2946 // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path. 2947 Node* clr_arg = argument(1); 2948 Node* cmp_arg = _gvn.transform(new CmpINode(clr_arg, intcon(0))); 2949 Node* bol_arg = _gvn.transform(new BoolNode(cmp_arg, BoolTest::ne)); 2950 IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN); 2951 2952 // Second fast path: ... else if (!clear_int) return true; 2953 Node* false_arg = _gvn.transform(new IfFalseNode(iff_arg)); 2954 result_rgn->init_req(no_clear_result_path, false_arg); 2955 result_val->init_req(no_clear_result_path, intcon(1)); 2956 2957 // drop through to next case 2958 set_control( _gvn.transform(new IfTrueNode(iff_arg))); 2959 #else 2960 // To return true on Windows you must read the _interrupted field 2961 // and check the event state i.e. take the slow path. 2962 #endif // _WINDOWS 2963 2964 // (d) Otherwise, go to the slow path. 2965 slow_region->add_req(control()); 2966 set_control( _gvn.transform(slow_region)); 2967 2968 if (stopped()) { 2969 // There is no slow path. 2970 result_rgn->init_req(slow_result_path, top()); 2971 result_val->init_req(slow_result_path, top()); 2972 } else { 2973 // non-virtual because it is a private non-static 2974 CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted); 2975 2976 Node* slow_val = set_results_for_java_call(slow_call); 2977 // this->control() comes from set_results_for_java_call 2978 2979 Node* fast_io = slow_call->in(TypeFunc::I_O); 2980 Node* fast_mem = slow_call->in(TypeFunc::Memory); 2981 2982 // These two phis are pre-filled with copies of of the fast IO and Memory 2983 PhiNode* result_mem = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM); 2984 PhiNode* result_io = PhiNode::make(result_rgn, fast_io, Type::ABIO); 2985 2986 result_rgn->init_req(slow_result_path, control()); 2987 result_io ->init_req(slow_result_path, i_o()); 2988 result_mem->init_req(slow_result_path, reset_memory()); 2989 result_val->init_req(slow_result_path, slow_val); 2990 2991 set_all_memory(_gvn.transform(result_mem)); 2992 set_i_o( _gvn.transform(result_io)); 2993 } 2994 2995 C->set_has_split_ifs(true); // Has chance for split-if optimization 2996 set_result(result_rgn, result_val); 2997 return true; 2998 } 2999 3000 //---------------------------load_mirror_from_klass---------------------------- 3001 // Given a klass oop, load its java mirror (a java.lang.Class oop). 3002 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) { 3003 Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset())); 3004 Node* load = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered); 3005 // mirror = ((OopHandle)mirror)->resolve(); 3006 return make_load(NULL, load, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered); 3007 } 3008 3009 //-----------------------load_klass_from_mirror_common------------------------- 3010 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop. 3011 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE), 3012 // and branch to the given path on the region. 3013 // If never_see_null, take an uncommon trap on null, so we can optimistically 3014 // compile for the non-null case. 3015 // If the region is NULL, force never_see_null = true. 3016 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror, 3017 bool never_see_null, 3018 RegionNode* region, 3019 int null_path, 3020 int offset) { 3021 if (region == NULL) never_see_null = true; 3022 Node* p = basic_plus_adr(mirror, offset); 3023 const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL; 3024 Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type)); 3025 Node* null_ctl = top(); 3026 kls = null_check_oop(kls, &null_ctl, never_see_null); 3027 if (region != NULL) { 3028 // Set region->in(null_path) if the mirror is a primitive (e.g, int.class). 3029 region->init_req(null_path, null_ctl); 3030 } else { 3031 assert(null_ctl == top(), "no loose ends"); 3032 } 3033 return kls; 3034 } 3035 3036 //--------------------(inline_native_Class_query helpers)--------------------- 3037 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE_FAST, JVM_ACC_HAS_FINALIZER. 3038 // Fall through if (mods & mask) == bits, take the guard otherwise. 3039 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) { 3040 // Branch around if the given klass has the given modifier bit set. 3041 // Like generate_guard, adds a new path onto the region. 3042 Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset())); 3043 Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered); 3044 Node* mask = intcon(modifier_mask); 3045 Node* bits = intcon(modifier_bits); 3046 Node* mbit = _gvn.transform(new AndINode(mods, mask)); 3047 Node* cmp = _gvn.transform(new CmpINode(mbit, bits)); 3048 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne)); 3049 return generate_fair_guard(bol, region); 3050 } 3051 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) { 3052 return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region); 3053 } 3054 3055 //-------------------------inline_native_Class_query------------------- 3056 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) { 3057 const Type* return_type = TypeInt::BOOL; 3058 Node* prim_return_value = top(); // what happens if it's a primitive class? 3059 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 3060 bool expect_prim = false; // most of these guys expect to work on refs 3061 3062 enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT }; 3063 3064 Node* mirror = argument(0); 3065 Node* obj = top(); 3066 3067 switch (id) { 3068 case vmIntrinsics::_isInstance: 3069 // nothing is an instance of a primitive type 3070 prim_return_value = intcon(0); 3071 obj = argument(1); 3072 break; 3073 case vmIntrinsics::_getModifiers: 3074 prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC); 3075 assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line"); 3076 return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin); 3077 break; 3078 case vmIntrinsics::_isInterface: 3079 prim_return_value = intcon(0); 3080 break; 3081 case vmIntrinsics::_isArray: 3082 prim_return_value = intcon(0); 3083 expect_prim = true; // cf. ObjectStreamClass.getClassSignature 3084 break; 3085 case vmIntrinsics::_isPrimitive: 3086 prim_return_value = intcon(1); 3087 expect_prim = true; // obviously 3088 break; 3089 case vmIntrinsics::_getSuperclass: 3090 prim_return_value = null(); 3091 return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR); 3092 break; 3093 case vmIntrinsics::_getClassAccessFlags: 3094 prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC); 3095 return_type = TypeInt::INT; // not bool! 6297094 3096 break; 3097 default: 3098 fatal_unexpected_iid(id); 3099 break; 3100 } 3101 3102 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr(); 3103 if (mirror_con == NULL) return false; // cannot happen? 3104 3105 #ifndef PRODUCT 3106 if (C->print_intrinsics() || C->print_inlining()) { 3107 ciType* k = mirror_con->java_mirror_type(); 3108 if (k) { 3109 tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id())); 3110 k->print_name(); 3111 tty->cr(); 3112 } 3113 } 3114 #endif 3115 3116 // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive). 3117 RegionNode* region = new RegionNode(PATH_LIMIT); 3118 record_for_igvn(region); 3119 PhiNode* phi = new PhiNode(region, return_type); 3120 3121 // The mirror will never be null of Reflection.getClassAccessFlags, however 3122 // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE 3123 // if it is. See bug 4774291. 3124 3125 // For Reflection.getClassAccessFlags(), the null check occurs in 3126 // the wrong place; see inline_unsafe_access(), above, for a similar 3127 // situation. 3128 mirror = null_check(mirror); 3129 // If mirror or obj is dead, only null-path is taken. 3130 if (stopped()) return true; 3131 3132 if (expect_prim) never_see_null = false; // expect nulls (meaning prims) 3133 3134 // Now load the mirror's klass metaobject, and null-check it. 3135 // Side-effects region with the control path if the klass is null. 3136 Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path); 3137 // If kls is null, we have a primitive mirror. 3138 phi->init_req(_prim_path, prim_return_value); 3139 if (stopped()) { set_result(region, phi); return true; } 3140 bool safe_for_replace = (region->in(_prim_path) == top()); 3141 3142 Node* p; // handy temp 3143 Node* null_ctl; 3144 3145 // Now that we have the non-null klass, we can perform the real query. 3146 // For constant classes, the query will constant-fold in LoadNode::Value. 3147 Node* query_value = top(); 3148 switch (id) { 3149 case vmIntrinsics::_isInstance: 3150 // nothing is an instance of a primitive type 3151 query_value = gen_instanceof(obj, kls, safe_for_replace); 3152 break; 3153 3154 case vmIntrinsics::_getModifiers: 3155 p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset())); 3156 query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered); 3157 break; 3158 3159 case vmIntrinsics::_isInterface: 3160 // (To verify this code sequence, check the asserts in JVM_IsInterface.) 3161 if (generate_interface_guard(kls, region) != NULL) 3162 // A guard was added. If the guard is taken, it was an interface. 3163 phi->add_req(intcon(1)); 3164 // If we fall through, it's a plain class. 3165 query_value = intcon(0); 3166 break; 3167 3168 case vmIntrinsics::_isArray: 3169 // (To verify this code sequence, check the asserts in JVM_IsArrayClass.) 3170 if (generate_array_guard(kls, region) != NULL) 3171 // A guard was added. If the guard is taken, it was an array. 3172 phi->add_req(intcon(1)); 3173 // If we fall through, it's a plain class. 3174 query_value = intcon(0); 3175 break; 3176 3177 case vmIntrinsics::_isPrimitive: 3178 query_value = intcon(0); // "normal" path produces false 3179 break; 3180 3181 case vmIntrinsics::_getSuperclass: 3182 // The rules here are somewhat unfortunate, but we can still do better 3183 // with random logic than with a JNI call. 3184 // Interfaces store null or Object as _super, but must report null. 3185 // Arrays store an intermediate super as _super, but must report Object. 3186 // Other types can report the actual _super. 3187 // (To verify this code sequence, check the asserts in JVM_IsInterface.) 3188 if (generate_interface_guard(kls, region) != NULL) 3189 // A guard was added. If the guard is taken, it was an interface. 3190 phi->add_req(null()); 3191 if (generate_array_guard(kls, region) != NULL) 3192 // A guard was added. If the guard is taken, it was an array. 3193 phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror()))); 3194 // If we fall through, it's a plain class. Get its _super. 3195 p = basic_plus_adr(kls, in_bytes(Klass::super_offset())); 3196 kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL)); 3197 null_ctl = top(); 3198 kls = null_check_oop(kls, &null_ctl); 3199 if (null_ctl != top()) { 3200 // If the guard is taken, Object.superClass is null (both klass and mirror). 3201 region->add_req(null_ctl); 3202 phi ->add_req(null()); 3203 } 3204 if (!stopped()) { 3205 query_value = load_mirror_from_klass(kls); 3206 } 3207 break; 3208 3209 case vmIntrinsics::_getClassAccessFlags: 3210 p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset())); 3211 query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered); 3212 break; 3213 3214 default: 3215 fatal_unexpected_iid(id); 3216 break; 3217 } 3218 3219 // Fall-through is the normal case of a query to a real class. 3220 phi->init_req(1, query_value); 3221 region->init_req(1, control()); 3222 3223 C->set_has_split_ifs(true); // Has chance for split-if optimization 3224 set_result(region, phi); 3225 return true; 3226 } 3227 3228 //-------------------------inline_Class_cast------------------- 3229 bool LibraryCallKit::inline_Class_cast() { 3230 Node* mirror = argument(0); // Class 3231 Node* obj = argument(1); 3232 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr(); 3233 if (mirror_con == NULL) { 3234 return false; // dead path (mirror->is_top()). 3235 } 3236 if (obj == NULL || obj->is_top()) { 3237 return false; // dead path 3238 } 3239 const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr(); 3240 3241 // First, see if Class.cast() can be folded statically. 3242 // java_mirror_type() returns non-null for compile-time Class constants. 3243 ciType* tm = mirror_con->java_mirror_type(); 3244 if (tm != NULL && tm->is_klass() && 3245 tp != NULL && tp->klass() != NULL) { 3246 if (!tp->klass()->is_loaded()) { 3247 // Don't use intrinsic when class is not loaded. 3248 return false; 3249 } else { 3250 int static_res = C->static_subtype_check(tm->as_klass(), tp->klass()); 3251 if (static_res == Compile::SSC_always_true) { 3252 // isInstance() is true - fold the code. 3253 set_result(obj); 3254 return true; 3255 } else if (static_res == Compile::SSC_always_false) { 3256 // Don't use intrinsic, have to throw ClassCastException. 3257 // If the reference is null, the non-intrinsic bytecode will 3258 // be optimized appropriately. 3259 return false; 3260 } 3261 } 3262 } 3263 3264 // Bailout intrinsic and do normal inlining if exception path is frequent. 3265 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 3266 return false; 3267 } 3268 3269 // Generate dynamic checks. 3270 // Class.cast() is java implementation of _checkcast bytecode. 3271 // Do checkcast (Parse::do_checkcast()) optimizations here. 3272 3273 mirror = null_check(mirror); 3274 // If mirror is dead, only null-path is taken. 3275 if (stopped()) { 3276 return true; 3277 } 3278 3279 // Not-subtype or the mirror's klass ptr is NULL (in case it is a primitive). 3280 enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT }; 3281 RegionNode* region = new RegionNode(PATH_LIMIT); 3282 record_for_igvn(region); 3283 3284 // Now load the mirror's klass metaobject, and null-check it. 3285 // If kls is null, we have a primitive mirror and 3286 // nothing is an instance of a primitive type. 3287 Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path); 3288 3289 Node* res = top(); 3290 if (!stopped()) { 3291 Node* bad_type_ctrl = top(); 3292 // Do checkcast optimizations. 3293 res = gen_checkcast(obj, kls, &bad_type_ctrl); 3294 region->init_req(_bad_type_path, bad_type_ctrl); 3295 } 3296 if (region->in(_prim_path) != top() || 3297 region->in(_bad_type_path) != top()) { 3298 // Let Interpreter throw ClassCastException. 3299 PreserveJVMState pjvms(this); 3300 set_control(_gvn.transform(region)); 3301 uncommon_trap(Deoptimization::Reason_intrinsic, 3302 Deoptimization::Action_maybe_recompile); 3303 } 3304 if (!stopped()) { 3305 set_result(res); 3306 } 3307 return true; 3308 } 3309 3310 3311 //--------------------------inline_native_subtype_check------------------------ 3312 // This intrinsic takes the JNI calls out of the heart of 3313 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc. 3314 bool LibraryCallKit::inline_native_subtype_check() { 3315 // Pull both arguments off the stack. 3316 Node* args[2]; // two java.lang.Class mirrors: superc, subc 3317 args[0] = argument(0); 3318 args[1] = argument(1); 3319 Node* klasses[2]; // corresponding Klasses: superk, subk 3320 klasses[0] = klasses[1] = top(); 3321 3322 enum { 3323 // A full decision tree on {superc is prim, subc is prim}: 3324 _prim_0_path = 1, // {P,N} => false 3325 // {P,P} & superc!=subc => false 3326 _prim_same_path, // {P,P} & superc==subc => true 3327 _prim_1_path, // {N,P} => false 3328 _ref_subtype_path, // {N,N} & subtype check wins => true 3329 _both_ref_path, // {N,N} & subtype check loses => false 3330 PATH_LIMIT 3331 }; 3332 3333 RegionNode* region = new RegionNode(PATH_LIMIT); 3334 Node* phi = new PhiNode(region, TypeInt::BOOL); 3335 record_for_igvn(region); 3336 3337 const TypePtr* adr_type = TypeRawPtr::BOTTOM; // memory type of loads 3338 const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL; 3339 int class_klass_offset = java_lang_Class::klass_offset_in_bytes(); 3340 3341 // First null-check both mirrors and load each mirror's klass metaobject. 3342 int which_arg; 3343 for (which_arg = 0; which_arg <= 1; which_arg++) { 3344 Node* arg = args[which_arg]; 3345 arg = null_check(arg); 3346 if (stopped()) break; 3347 args[which_arg] = arg; 3348 3349 Node* p = basic_plus_adr(arg, class_klass_offset); 3350 Node* kls = LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, adr_type, kls_type); 3351 klasses[which_arg] = _gvn.transform(kls); 3352 } 3353 3354 // Having loaded both klasses, test each for null. 3355 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 3356 for (which_arg = 0; which_arg <= 1; which_arg++) { 3357 Node* kls = klasses[which_arg]; 3358 Node* null_ctl = top(); 3359 kls = null_check_oop(kls, &null_ctl, never_see_null); 3360 int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path); 3361 region->init_req(prim_path, null_ctl); 3362 if (stopped()) break; 3363 klasses[which_arg] = kls; 3364 } 3365 3366 if (!stopped()) { 3367 // now we have two reference types, in klasses[0..1] 3368 Node* subk = klasses[1]; // the argument to isAssignableFrom 3369 Node* superk = klasses[0]; // the receiver 3370 region->set_req(_both_ref_path, gen_subtype_check(subk, superk)); 3371 // now we have a successful reference subtype check 3372 region->set_req(_ref_subtype_path, control()); 3373 } 3374 3375 // If both operands are primitive (both klasses null), then 3376 // we must return true when they are identical primitives. 3377 // It is convenient to test this after the first null klass check. 3378 set_control(region->in(_prim_0_path)); // go back to first null check 3379 if (!stopped()) { 3380 // Since superc is primitive, make a guard for the superc==subc case. 3381 Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1])); 3382 Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq)); 3383 generate_guard(bol_eq, region, PROB_FAIR); 3384 if (region->req() == PATH_LIMIT+1) { 3385 // A guard was added. If the added guard is taken, superc==subc. 3386 region->swap_edges(PATH_LIMIT, _prim_same_path); 3387 region->del_req(PATH_LIMIT); 3388 } 3389 region->set_req(_prim_0_path, control()); // Not equal after all. 3390 } 3391 3392 // these are the only paths that produce 'true': 3393 phi->set_req(_prim_same_path, intcon(1)); 3394 phi->set_req(_ref_subtype_path, intcon(1)); 3395 3396 // pull together the cases: 3397 assert(region->req() == PATH_LIMIT, "sane region"); 3398 for (uint i = 1; i < region->req(); i++) { 3399 Node* ctl = region->in(i); 3400 if (ctl == NULL || ctl == top()) { 3401 region->set_req(i, top()); 3402 phi ->set_req(i, top()); 3403 } else if (phi->in(i) == NULL) { 3404 phi->set_req(i, intcon(0)); // all other paths produce 'false' 3405 } 3406 } 3407 3408 set_control(_gvn.transform(region)); 3409 set_result(_gvn.transform(phi)); 3410 return true; 3411 } 3412 3413 //---------------------generate_array_guard_common------------------------ 3414 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region, 3415 bool obj_array, bool not_array) { 3416 3417 if (stopped()) { 3418 return NULL; 3419 } 3420 3421 // If obj_array/non_array==false/false: 3422 // Branch around if the given klass is in fact an array (either obj or prim). 3423 // If obj_array/non_array==false/true: 3424 // Branch around if the given klass is not an array klass of any kind. 3425 // If obj_array/non_array==true/true: 3426 // Branch around if the kls is not an oop array (kls is int[], String, etc.) 3427 // If obj_array/non_array==true/false: 3428 // Branch around if the kls is an oop array (Object[] or subtype) 3429 // 3430 // Like generate_guard, adds a new path onto the region. 3431 jint layout_con = 0; 3432 Node* layout_val = get_layout_helper(kls, layout_con); 3433 if (layout_val == NULL) { 3434 bool query = (obj_array 3435 ? Klass::layout_helper_is_objArray(layout_con) 3436 : Klass::layout_helper_is_array(layout_con)); 3437 if (query == not_array) { 3438 return NULL; // never a branch 3439 } else { // always a branch 3440 Node* always_branch = control(); 3441 if (region != NULL) 3442 region->add_req(always_branch); 3443 set_control(top()); 3444 return always_branch; 3445 } 3446 } 3447 // Now test the correct condition. 3448 jint nval = (obj_array 3449 ? (jint)(Klass::_lh_array_tag_type_value 3450 << Klass::_lh_array_tag_shift) 3451 : Klass::_lh_neutral_value); 3452 Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval))); 3453 BoolTest::mask btest = BoolTest::lt; // correct for testing is_[obj]array 3454 // invert the test if we are looking for a non-array 3455 if (not_array) btest = BoolTest(btest).negate(); 3456 Node* bol = _gvn.transform(new BoolNode(cmp, btest)); 3457 return generate_fair_guard(bol, region); 3458 } 3459 3460 3461 //-----------------------inline_native_newArray-------------------------- 3462 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length); 3463 // private native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size); 3464 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) { 3465 Node* mirror; 3466 Node* count_val; 3467 if (uninitialized) { 3468 mirror = argument(1); 3469 count_val = argument(2); 3470 } else { 3471 mirror = argument(0); 3472 count_val = argument(1); 3473 } 3474 3475 mirror = null_check(mirror); 3476 // If mirror or obj is dead, only null-path is taken. 3477 if (stopped()) return true; 3478 3479 enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT }; 3480 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 3481 PhiNode* result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL); 3482 PhiNode* result_io = new PhiNode(result_reg, Type::ABIO); 3483 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 3484 3485 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 3486 Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null, 3487 result_reg, _slow_path); 3488 Node* normal_ctl = control(); 3489 Node* no_array_ctl = result_reg->in(_slow_path); 3490 3491 // Generate code for the slow case. We make a call to newArray(). 3492 set_control(no_array_ctl); 3493 if (!stopped()) { 3494 // Either the input type is void.class, or else the 3495 // array klass has not yet been cached. Either the 3496 // ensuing call will throw an exception, or else it 3497 // will cache the array klass for next time. 3498 PreserveJVMState pjvms(this); 3499 CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray); 3500 Node* slow_result = set_results_for_java_call(slow_call); 3501 // this->control() comes from set_results_for_java_call 3502 result_reg->set_req(_slow_path, control()); 3503 result_val->set_req(_slow_path, slow_result); 3504 result_io ->set_req(_slow_path, i_o()); 3505 result_mem->set_req(_slow_path, reset_memory()); 3506 } 3507 3508 set_control(normal_ctl); 3509 if (!stopped()) { 3510 // Normal case: The array type has been cached in the java.lang.Class. 3511 // The following call works fine even if the array type is polymorphic. 3512 // It could be a dynamic mix of int[], boolean[], Object[], etc. 3513 Node* obj = new_array(klass_node, count_val, 0); // no arguments to push 3514 result_reg->init_req(_normal_path, control()); 3515 result_val->init_req(_normal_path, obj); 3516 result_io ->init_req(_normal_path, i_o()); 3517 result_mem->init_req(_normal_path, reset_memory()); 3518 3519 if (uninitialized) { 3520 // Mark the allocation so that zeroing is skipped 3521 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj, &_gvn); 3522 alloc->maybe_set_complete(&_gvn); 3523 } 3524 } 3525 3526 // Return the combined state. 3527 set_i_o( _gvn.transform(result_io) ); 3528 set_all_memory( _gvn.transform(result_mem)); 3529 3530 C->set_has_split_ifs(true); // Has chance for split-if optimization 3531 set_result(result_reg, result_val); 3532 return true; 3533 } 3534 3535 //----------------------inline_native_getLength-------------------------- 3536 // public static native int java.lang.reflect.Array.getLength(Object array); 3537 bool LibraryCallKit::inline_native_getLength() { 3538 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false; 3539 3540 Node* array = null_check(argument(0)); 3541 // If array is dead, only null-path is taken. 3542 if (stopped()) return true; 3543 3544 // Deoptimize if it is a non-array. 3545 Node* non_array = generate_non_array_guard(load_object_klass(array), NULL); 3546 3547 if (non_array != NULL) { 3548 PreserveJVMState pjvms(this); 3549 set_control(non_array); 3550 uncommon_trap(Deoptimization::Reason_intrinsic, 3551 Deoptimization::Action_maybe_recompile); 3552 } 3553 3554 // If control is dead, only non-array-path is taken. 3555 if (stopped()) return true; 3556 3557 // The works fine even if the array type is polymorphic. 3558 // It could be a dynamic mix of int[], boolean[], Object[], etc. 3559 Node* result = load_array_length(array); 3560 3561 C->set_has_split_ifs(true); // Has chance for split-if optimization 3562 set_result(result); 3563 return true; 3564 } 3565 3566 //------------------------inline_array_copyOf---------------------------- 3567 // public static <T,U> T[] java.util.Arrays.copyOf( U[] original, int newLength, Class<? extends T[]> newType); 3568 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from, int to, Class<? extends T[]> newType); 3569 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) { 3570 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false; 3571 3572 // Get the arguments. 3573 Node* original = argument(0); 3574 Node* start = is_copyOfRange? argument(1): intcon(0); 3575 Node* end = is_copyOfRange? argument(2): argument(1); 3576 Node* array_type_mirror = is_copyOfRange? argument(3): argument(2); 3577 3578 Node* newcopy = NULL; 3579 3580 // Set the original stack and the reexecute bit for the interpreter to reexecute 3581 // the bytecode that invokes Arrays.copyOf if deoptimization happens. 3582 { PreserveReexecuteState preexecs(this); 3583 jvms()->set_should_reexecute(true); 3584 3585 array_type_mirror = null_check(array_type_mirror); 3586 original = null_check(original); 3587 3588 // Check if a null path was taken unconditionally. 3589 if (stopped()) return true; 3590 3591 Node* orig_length = load_array_length(original); 3592 3593 Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0); 3594 klass_node = null_check(klass_node); 3595 3596 RegionNode* bailout = new RegionNode(1); 3597 record_for_igvn(bailout); 3598 3599 // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc. 3600 // Bail out if that is so. 3601 Node* not_objArray = generate_non_objArray_guard(klass_node, bailout); 3602 if (not_objArray != NULL) { 3603 // Improve the klass node's type from the new optimistic assumption: 3604 ciKlass* ak = ciArrayKlass::make(env()->Object_klass()); 3605 const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/); 3606 Node* cast = new CastPPNode(klass_node, akls); 3607 cast->init_req(0, control()); 3608 klass_node = _gvn.transform(cast); 3609 } 3610 3611 // Bail out if either start or end is negative. 3612 generate_negative_guard(start, bailout, &start); 3613 generate_negative_guard(end, bailout, &end); 3614 3615 Node* length = end; 3616 if (_gvn.type(start) != TypeInt::ZERO) { 3617 length = _gvn.transform(new SubINode(end, start)); 3618 } 3619 3620 // Bail out if length is negative. 3621 // Without this the new_array would throw 3622 // NegativeArraySizeException but IllegalArgumentException is what 3623 // should be thrown 3624 generate_negative_guard(length, bailout, &length); 3625 3626 if (bailout->req() > 1) { 3627 PreserveJVMState pjvms(this); 3628 set_control(_gvn.transform(bailout)); 3629 uncommon_trap(Deoptimization::Reason_intrinsic, 3630 Deoptimization::Action_maybe_recompile); 3631 } 3632 3633 if (!stopped()) { 3634 // How many elements will we copy from the original? 3635 // The answer is MinI(orig_length - start, length). 3636 Node* orig_tail = _gvn.transform(new SubINode(orig_length, start)); 3637 Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length); 3638 3639 // Generate a direct call to the right arraycopy function(s). 3640 // We know the copy is disjoint but we might not know if the 3641 // oop stores need checking. 3642 // Extreme case: Arrays.copyOf((Integer[])x, 10, String[].class). 3643 // This will fail a store-check if x contains any non-nulls. 3644 3645 // ArrayCopyNode:Ideal may transform the ArrayCopyNode to 3646 // loads/stores but it is legal only if we're sure the 3647 // Arrays.copyOf would succeed. So we need all input arguments 3648 // to the copyOf to be validated, including that the copy to the 3649 // new array won't trigger an ArrayStoreException. That subtype 3650 // check can be optimized if we know something on the type of 3651 // the input array from type speculation. 3652 if (_gvn.type(klass_node)->singleton()) { 3653 ciKlass* subk = _gvn.type(load_object_klass(original))->is_klassptr()->klass(); 3654 ciKlass* superk = _gvn.type(klass_node)->is_klassptr()->klass(); 3655 3656 int test = C->static_subtype_check(superk, subk); 3657 if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) { 3658 const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr(); 3659 if (t_original->speculative_type() != NULL) { 3660 original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true); 3661 } 3662 } 3663 } 3664 3665 bool validated = false; 3666 // Reason_class_check rather than Reason_intrinsic because we 3667 // want to intrinsify even if this traps. 3668 if (!too_many_traps(Deoptimization::Reason_class_check)) { 3669 Node* not_subtype_ctrl = gen_subtype_check(load_object_klass(original), 3670 klass_node); 3671 3672 if (not_subtype_ctrl != top()) { 3673 PreserveJVMState pjvms(this); 3674 set_control(not_subtype_ctrl); 3675 uncommon_trap(Deoptimization::Reason_class_check, 3676 Deoptimization::Action_make_not_entrant); 3677 assert(stopped(), "Should be stopped"); 3678 } 3679 validated = true; 3680 } 3681 3682 if (!stopped()) { 3683 newcopy = new_array(klass_node, length, 0); // no arguments to push 3684 3685 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, false, 3686 load_object_klass(original), klass_node); 3687 if (!is_copyOfRange) { 3688 ac->set_copyof(validated); 3689 } else { 3690 ac->set_copyofrange(validated); 3691 } 3692 Node* n = _gvn.transform(ac); 3693 if (n == ac) { 3694 ac->connect_outputs(this); 3695 } else { 3696 assert(validated, "shouldn't transform if all arguments not validated"); 3697 set_all_memory(n); 3698 } 3699 } 3700 } 3701 } // original reexecute is set back here 3702 3703 C->set_has_split_ifs(true); // Has chance for split-if optimization 3704 if (!stopped()) { 3705 set_result(newcopy); 3706 } 3707 return true; 3708 } 3709 3710 3711 //----------------------generate_virtual_guard--------------------------- 3712 // Helper for hashCode and clone. Peeks inside the vtable to avoid a call. 3713 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass, 3714 RegionNode* slow_region) { 3715 ciMethod* method = callee(); 3716 int vtable_index = method->vtable_index(); 3717 assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index, 3718 "bad index %d", vtable_index); 3719 // Get the Method* out of the appropriate vtable entry. 3720 int entry_offset = in_bytes(Klass::vtable_start_offset()) + 3721 vtable_index*vtableEntry::size_in_bytes() + 3722 vtableEntry::method_offset_in_bytes(); 3723 Node* entry_addr = basic_plus_adr(obj_klass, entry_offset); 3724 Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered); 3725 3726 // Compare the target method with the expected method (e.g., Object.hashCode). 3727 const TypePtr* native_call_addr = TypeMetadataPtr::make(method); 3728 3729 Node* native_call = makecon(native_call_addr); 3730 Node* chk_native = _gvn.transform(new CmpPNode(target_call, native_call)); 3731 Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne)); 3732 3733 return generate_slow_guard(test_native, slow_region); 3734 } 3735 3736 //-----------------------generate_method_call---------------------------- 3737 // Use generate_method_call to make a slow-call to the real 3738 // method if the fast path fails. An alternative would be to 3739 // use a stub like OptoRuntime::slow_arraycopy_Java. 3740 // This only works for expanding the current library call, 3741 // not another intrinsic. (E.g., don't use this for making an 3742 // arraycopy call inside of the copyOf intrinsic.) 3743 CallJavaNode* 3744 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) { 3745 // When compiling the intrinsic method itself, do not use this technique. 3746 guarantee(callee() != C->method(), "cannot make slow-call to self"); 3747 3748 ciMethod* method = callee(); 3749 // ensure the JVMS we have will be correct for this call 3750 guarantee(method_id == method->intrinsic_id(), "must match"); 3751 3752 const TypeFunc* tf = TypeFunc::make(method); 3753 CallJavaNode* slow_call; 3754 if (is_static) { 3755 assert(!is_virtual, ""); 3756 slow_call = new CallStaticJavaNode(C, tf, 3757 SharedRuntime::get_resolve_static_call_stub(), 3758 method, bci()); 3759 } else if (is_virtual) { 3760 null_check_receiver(); 3761 int vtable_index = Method::invalid_vtable_index; 3762 if (UseInlineCaches) { 3763 // Suppress the vtable call 3764 } else { 3765 // hashCode and clone are not a miranda methods, 3766 // so the vtable index is fixed. 3767 // No need to use the linkResolver to get it. 3768 vtable_index = method->vtable_index(); 3769 assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index, 3770 "bad index %d", vtable_index); 3771 } 3772 slow_call = new CallDynamicJavaNode(tf, 3773 SharedRuntime::get_resolve_virtual_call_stub(), 3774 method, vtable_index, bci()); 3775 } else { // neither virtual nor static: opt_virtual 3776 null_check_receiver(); 3777 slow_call = new CallStaticJavaNode(C, tf, 3778 SharedRuntime::get_resolve_opt_virtual_call_stub(), 3779 method, bci()); 3780 slow_call->set_optimized_virtual(true); 3781 } 3782 set_arguments_for_java_call(slow_call); 3783 set_edges_for_java_call(slow_call); 3784 return slow_call; 3785 } 3786 3787 3788 /** 3789 * Build special case code for calls to hashCode on an object. This call may 3790 * be virtual (invokevirtual) or bound (invokespecial). For each case we generate 3791 * slightly different code. 3792 */ 3793 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) { 3794 assert(is_static == callee()->is_static(), "correct intrinsic selection"); 3795 assert(!(is_virtual && is_static), "either virtual, special, or static"); 3796 3797 enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT }; 3798 3799 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 3800 PhiNode* result_val = new PhiNode(result_reg, TypeInt::INT); 3801 PhiNode* result_io = new PhiNode(result_reg, Type::ABIO); 3802 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 3803 Node* obj = NULL; 3804 if (!is_static) { 3805 // Check for hashing null object 3806 obj = null_check_receiver(); 3807 if (stopped()) return true; // unconditionally null 3808 result_reg->init_req(_null_path, top()); 3809 result_val->init_req(_null_path, top()); 3810 } else { 3811 // Do a null check, and return zero if null. 3812 // System.identityHashCode(null) == 0 3813 obj = argument(0); 3814 Node* null_ctl = top(); 3815 obj = null_check_oop(obj, &null_ctl); 3816 result_reg->init_req(_null_path, null_ctl); 3817 result_val->init_req(_null_path, _gvn.intcon(0)); 3818 } 3819 3820 // Unconditionally null? Then return right away. 3821 if (stopped()) { 3822 set_control( result_reg->in(_null_path)); 3823 if (!stopped()) 3824 set_result(result_val->in(_null_path)); 3825 return true; 3826 } 3827 3828 // We only go to the fast case code if we pass a number of guards. The 3829 // paths which do not pass are accumulated in the slow_region. 3830 RegionNode* slow_region = new RegionNode(1); 3831 record_for_igvn(slow_region); 3832 3833 // If this is a virtual call, we generate a funny guard. We pull out 3834 // the vtable entry corresponding to hashCode() from the target object. 3835 // If the target method which we are calling happens to be the native 3836 // Object hashCode() method, we pass the guard. We do not need this 3837 // guard for non-virtual calls -- the caller is known to be the native 3838 // Object hashCode(). 3839 if (is_virtual) { 3840 // After null check, get the object's klass. 3841 Node* obj_klass = load_object_klass(obj); 3842 generate_virtual_guard(obj_klass, slow_region); 3843 } 3844 3845 // Get the header out of the object, use LoadMarkNode when available 3846 Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes()); 3847 // The control of the load must be NULL. Otherwise, the load can move before 3848 // the null check after castPP removal. 3849 Node* no_ctrl = NULL; 3850 Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered); 3851 3852 // Test the header to see if it is unlocked. 3853 Node *lock_mask = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place); 3854 Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask)); 3855 Node *unlocked_val = _gvn.MakeConX(markOopDesc::unlocked_value); 3856 Node *chk_unlocked = _gvn.transform(new CmpXNode( lmasked_header, unlocked_val)); 3857 Node *test_unlocked = _gvn.transform(new BoolNode( chk_unlocked, BoolTest::ne)); 3858 3859 generate_slow_guard(test_unlocked, slow_region); 3860 3861 // Get the hash value and check to see that it has been properly assigned. 3862 // We depend on hash_mask being at most 32 bits and avoid the use of 3863 // hash_mask_in_place because it could be larger than 32 bits in a 64-bit 3864 // vm: see markOop.hpp. 3865 Node *hash_mask = _gvn.intcon(markOopDesc::hash_mask); 3866 Node *hash_shift = _gvn.intcon(markOopDesc::hash_shift); 3867 Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift)); 3868 // This hack lets the hash bits live anywhere in the mark object now, as long 3869 // as the shift drops the relevant bits into the low 32 bits. Note that 3870 // Java spec says that HashCode is an int so there's no point in capturing 3871 // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build). 3872 hshifted_header = ConvX2I(hshifted_header); 3873 Node *hash_val = _gvn.transform(new AndINode(hshifted_header, hash_mask)); 3874 3875 Node *no_hash_val = _gvn.intcon(markOopDesc::no_hash); 3876 Node *chk_assigned = _gvn.transform(new CmpINode( hash_val, no_hash_val)); 3877 Node *test_assigned = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq)); 3878 3879 generate_slow_guard(test_assigned, slow_region); 3880 3881 Node* init_mem = reset_memory(); 3882 // fill in the rest of the null path: 3883 result_io ->init_req(_null_path, i_o()); 3884 result_mem->init_req(_null_path, init_mem); 3885 3886 result_val->init_req(_fast_path, hash_val); 3887 result_reg->init_req(_fast_path, control()); 3888 result_io ->init_req(_fast_path, i_o()); 3889 result_mem->init_req(_fast_path, init_mem); 3890 3891 // Generate code for the slow case. We make a call to hashCode(). 3892 set_control(_gvn.transform(slow_region)); 3893 if (!stopped()) { 3894 // No need for PreserveJVMState, because we're using up the present state. 3895 set_all_memory(init_mem); 3896 vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode; 3897 CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static); 3898 Node* slow_result = set_results_for_java_call(slow_call); 3899 // this->control() comes from set_results_for_java_call 3900 result_reg->init_req(_slow_path, control()); 3901 result_val->init_req(_slow_path, slow_result); 3902 result_io ->set_req(_slow_path, i_o()); 3903 result_mem ->set_req(_slow_path, reset_memory()); 3904 } 3905 3906 // Return the combined state. 3907 set_i_o( _gvn.transform(result_io) ); 3908 set_all_memory( _gvn.transform(result_mem)); 3909 3910 set_result(result_reg, result_val); 3911 return true; 3912 } 3913 3914 //---------------------------inline_native_getClass---------------------------- 3915 // public final native Class<?> java.lang.Object.getClass(); 3916 // 3917 // Build special case code for calls to getClass on an object. 3918 bool LibraryCallKit::inline_native_getClass() { 3919 Node* obj = null_check_receiver(); 3920 if (stopped()) return true; 3921 set_result(load_mirror_from_klass(load_object_klass(obj))); 3922 return true; 3923 } 3924 3925 //-----------------inline_native_Reflection_getCallerClass--------------------- 3926 // public static native Class<?> sun.reflect.Reflection.getCallerClass(); 3927 // 3928 // In the presence of deep enough inlining, getCallerClass() becomes a no-op. 3929 // 3930 // NOTE: This code must perform the same logic as JVM_GetCallerClass 3931 // in that it must skip particular security frames and checks for 3932 // caller sensitive methods. 3933 bool LibraryCallKit::inline_native_Reflection_getCallerClass() { 3934 #ifndef PRODUCT 3935 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 3936 tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass"); 3937 } 3938 #endif 3939 3940 if (!jvms()->has_method()) { 3941 #ifndef PRODUCT 3942 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 3943 tty->print_cr(" Bailing out because intrinsic was inlined at top level"); 3944 } 3945 #endif 3946 return false; 3947 } 3948 3949 // Walk back up the JVM state to find the caller at the required 3950 // depth. 3951 JVMState* caller_jvms = jvms(); 3952 3953 // Cf. JVM_GetCallerClass 3954 // NOTE: Start the loop at depth 1 because the current JVM state does 3955 // not include the Reflection.getCallerClass() frame. 3956 for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) { 3957 ciMethod* m = caller_jvms->method(); 3958 switch (n) { 3959 case 0: 3960 fatal("current JVM state does not include the Reflection.getCallerClass frame"); 3961 break; 3962 case 1: 3963 // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass). 3964 if (!m->caller_sensitive()) { 3965 #ifndef PRODUCT 3966 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 3967 tty->print_cr(" Bailing out: CallerSensitive annotation expected at frame %d", n); 3968 } 3969 #endif 3970 return false; // bail-out; let JVM_GetCallerClass do the work 3971 } 3972 break; 3973 default: 3974 if (!m->is_ignored_by_security_stack_walk()) { 3975 // We have reached the desired frame; return the holder class. 3976 // Acquire method holder as java.lang.Class and push as constant. 3977 ciInstanceKlass* caller_klass = caller_jvms->method()->holder(); 3978 ciInstance* caller_mirror = caller_klass->java_mirror(); 3979 set_result(makecon(TypeInstPtr::make(caller_mirror))); 3980 3981 #ifndef PRODUCT 3982 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 3983 tty->print_cr(" Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth()); 3984 tty->print_cr(" JVM state at this point:"); 3985 for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) { 3986 ciMethod* m = jvms()->of_depth(i)->method(); 3987 tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8()); 3988 } 3989 } 3990 #endif 3991 return true; 3992 } 3993 break; 3994 } 3995 } 3996 3997 #ifndef PRODUCT 3998 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 3999 tty->print_cr(" Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth()); 4000 tty->print_cr(" JVM state at this point:"); 4001 for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) { 4002 ciMethod* m = jvms()->of_depth(i)->method(); 4003 tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8()); 4004 } 4005 } 4006 #endif 4007 4008 return false; // bail-out; let JVM_GetCallerClass do the work 4009 } 4010 4011 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) { 4012 Node* arg = argument(0); 4013 Node* result = NULL; 4014 4015 switch (id) { 4016 case vmIntrinsics::_floatToRawIntBits: result = new MoveF2INode(arg); break; 4017 case vmIntrinsics::_intBitsToFloat: result = new MoveI2FNode(arg); break; 4018 case vmIntrinsics::_doubleToRawLongBits: result = new MoveD2LNode(arg); break; 4019 case vmIntrinsics::_longBitsToDouble: result = new MoveL2DNode(arg); break; 4020 4021 case vmIntrinsics::_doubleToLongBits: { 4022 // two paths (plus control) merge in a wood 4023 RegionNode *r = new RegionNode(3); 4024 Node *phi = new PhiNode(r, TypeLong::LONG); 4025 4026 Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg)); 4027 // Build the boolean node 4028 Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne)); 4029 4030 // Branch either way. 4031 // NaN case is less traveled, which makes all the difference. 4032 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); 4033 Node *opt_isnan = _gvn.transform(ifisnan); 4034 assert( opt_isnan->is_If(), "Expect an IfNode"); 4035 IfNode *opt_ifisnan = (IfNode*)opt_isnan; 4036 Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan)); 4037 4038 set_control(iftrue); 4039 4040 static const jlong nan_bits = CONST64(0x7ff8000000000000); 4041 Node *slow_result = longcon(nan_bits); // return NaN 4042 phi->init_req(1, _gvn.transform( slow_result )); 4043 r->init_req(1, iftrue); 4044 4045 // Else fall through 4046 Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan)); 4047 set_control(iffalse); 4048 4049 phi->init_req(2, _gvn.transform(new MoveD2LNode(arg))); 4050 r->init_req(2, iffalse); 4051 4052 // Post merge 4053 set_control(_gvn.transform(r)); 4054 record_for_igvn(r); 4055 4056 C->set_has_split_ifs(true); // Has chance for split-if optimization 4057 result = phi; 4058 assert(result->bottom_type()->isa_long(), "must be"); 4059 break; 4060 } 4061 4062 case vmIntrinsics::_floatToIntBits: { 4063 // two paths (plus control) merge in a wood 4064 RegionNode *r = new RegionNode(3); 4065 Node *phi = new PhiNode(r, TypeInt::INT); 4066 4067 Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg)); 4068 // Build the boolean node 4069 Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne)); 4070 4071 // Branch either way. 4072 // NaN case is less traveled, which makes all the difference. 4073 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); 4074 Node *opt_isnan = _gvn.transform(ifisnan); 4075 assert( opt_isnan->is_If(), "Expect an IfNode"); 4076 IfNode *opt_ifisnan = (IfNode*)opt_isnan; 4077 Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan)); 4078 4079 set_control(iftrue); 4080 4081 static const jint nan_bits = 0x7fc00000; 4082 Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN 4083 phi->init_req(1, _gvn.transform( slow_result )); 4084 r->init_req(1, iftrue); 4085 4086 // Else fall through 4087 Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan)); 4088 set_control(iffalse); 4089 4090 phi->init_req(2, _gvn.transform(new MoveF2INode(arg))); 4091 r->init_req(2, iffalse); 4092 4093 // Post merge 4094 set_control(_gvn.transform(r)); 4095 record_for_igvn(r); 4096 4097 C->set_has_split_ifs(true); // Has chance for split-if optimization 4098 result = phi; 4099 assert(result->bottom_type()->isa_int(), "must be"); 4100 break; 4101 } 4102 4103 default: 4104 fatal_unexpected_iid(id); 4105 break; 4106 } 4107 set_result(_gvn.transform(result)); 4108 return true; 4109 } 4110 4111 //----------------------inline_unsafe_copyMemory------------------------- 4112 // public native void Unsafe.copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes); 4113 bool LibraryCallKit::inline_unsafe_copyMemory() { 4114 if (callee()->is_static()) return false; // caller must have the capability! 4115 null_check_receiver(); // null-check receiver 4116 if (stopped()) return true; 4117 4118 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 4119 4120 Node* src_ptr = argument(1); // type: oop 4121 Node* src_off = ConvL2X(argument(2)); // type: long 4122 Node* dst_ptr = argument(4); // type: oop 4123 Node* dst_off = ConvL2X(argument(5)); // type: long 4124 Node* size = ConvL2X(argument(7)); // type: long 4125 4126 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 4127 "fieldOffset must be byte-scaled"); 4128 4129 Node* src = make_unsafe_address(src_ptr, src_off); 4130 Node* dst = make_unsafe_address(dst_ptr, dst_off); 4131 4132 // Conservatively insert a memory barrier on all memory slices. 4133 // Do not let writes of the copy source or destination float below the copy. 4134 insert_mem_bar(Op_MemBarCPUOrder); 4135 4136 // Call it. Note that the length argument is not scaled. 4137 make_runtime_call(RC_LEAF|RC_NO_FP, 4138 OptoRuntime::fast_arraycopy_Type(), 4139 StubRoutines::unsafe_arraycopy(), 4140 "unsafe_arraycopy", 4141 TypeRawPtr::BOTTOM, 4142 src, dst, size XTOP); 4143 4144 // Do not let reads of the copy destination float above the copy. 4145 insert_mem_bar(Op_MemBarCPUOrder); 4146 4147 return true; 4148 } 4149 4150 //------------------------clone_coping----------------------------------- 4151 // Helper function for inline_native_clone. 4152 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array) { 4153 assert(obj_size != NULL, ""); 4154 Node* raw_obj = alloc_obj->in(1); 4155 assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), ""); 4156 4157 AllocateNode* alloc = NULL; 4158 if (ReduceBulkZeroing) { 4159 // We will be completely responsible for initializing this object - 4160 // mark Initialize node as complete. 4161 alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn); 4162 // The object was just allocated - there should be no any stores! 4163 guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), ""); 4164 // Mark as complete_with_arraycopy so that on AllocateNode 4165 // expansion, we know this AllocateNode is initialized by an array 4166 // copy and a StoreStore barrier exists after the array copy. 4167 alloc->initialization()->set_complete_with_arraycopy(); 4168 } 4169 4170 // Copy the fastest available way. 4171 // TODO: generate fields copies for small objects instead. 4172 Node* size = _gvn.transform(obj_size); 4173 4174 access_clone(control(), obj, alloc_obj, size, is_array); 4175 4176 // Do not let reads from the cloned object float above the arraycopy. 4177 if (alloc != NULL) { 4178 // Do not let stores that initialize this object be reordered with 4179 // a subsequent store that would make this object accessible by 4180 // other threads. 4181 // Record what AllocateNode this StoreStore protects so that 4182 // escape analysis can go from the MemBarStoreStoreNode to the 4183 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 4184 // based on the escape status of the AllocateNode. 4185 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 4186 } else { 4187 insert_mem_bar(Op_MemBarCPUOrder); 4188 } 4189 } 4190 4191 //------------------------inline_native_clone---------------------------- 4192 // protected native Object java.lang.Object.clone(); 4193 // 4194 // Here are the simple edge cases: 4195 // null receiver => normal trap 4196 // virtual and clone was overridden => slow path to out-of-line clone 4197 // not cloneable or finalizer => slow path to out-of-line Object.clone 4198 // 4199 // The general case has two steps, allocation and copying. 4200 // Allocation has two cases, and uses GraphKit::new_instance or new_array. 4201 // 4202 // Copying also has two cases, oop arrays and everything else. 4203 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy). 4204 // Everything else uses the tight inline loop supplied by CopyArrayNode. 4205 // 4206 // These steps fold up nicely if and when the cloned object's klass 4207 // can be sharply typed as an object array, a type array, or an instance. 4208 // 4209 bool LibraryCallKit::inline_native_clone(bool is_virtual) { 4210 PhiNode* result_val; 4211 4212 // Set the reexecute bit for the interpreter to reexecute 4213 // the bytecode that invokes Object.clone if deoptimization happens. 4214 { PreserveReexecuteState preexecs(this); 4215 jvms()->set_should_reexecute(true); 4216 4217 Node* obj = null_check_receiver(); 4218 if (stopped()) return true; 4219 4220 const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr(); 4221 4222 // If we are going to clone an instance, we need its exact type to 4223 // know the number and types of fields to convert the clone to 4224 // loads/stores. Maybe a speculative type can help us. 4225 if (!obj_type->klass_is_exact() && 4226 obj_type->speculative_type() != NULL && 4227 obj_type->speculative_type()->is_instance_klass()) { 4228 ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass(); 4229 if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem && 4230 !spec_ik->has_injected_fields()) { 4231 ciKlass* k = obj_type->klass(); 4232 if (!k->is_instance_klass() || 4233 k->as_instance_klass()->is_interface() || 4234 k->as_instance_klass()->has_subklass()) { 4235 obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false); 4236 } 4237 } 4238 } 4239 4240 Node* obj_klass = load_object_klass(obj); 4241 const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr(); 4242 const TypeOopPtr* toop = ((tklass != NULL) 4243 ? tklass->as_instance_type() 4244 : TypeInstPtr::NOTNULL); 4245 4246 // Conservatively insert a memory barrier on all memory slices. 4247 // Do not let writes into the original float below the clone. 4248 insert_mem_bar(Op_MemBarCPUOrder); 4249 4250 // paths into result_reg: 4251 enum { 4252 _slow_path = 1, // out-of-line call to clone method (virtual or not) 4253 _objArray_path, // plain array allocation, plus arrayof_oop_arraycopy 4254 _array_path, // plain array allocation, plus arrayof_long_arraycopy 4255 _instance_path, // plain instance allocation, plus arrayof_long_arraycopy 4256 PATH_LIMIT 4257 }; 4258 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 4259 result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL); 4260 PhiNode* result_i_o = new PhiNode(result_reg, Type::ABIO); 4261 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 4262 record_for_igvn(result_reg); 4263 4264 Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL); 4265 if (array_ctl != NULL) { 4266 // It's an array. 4267 PreserveJVMState pjvms(this); 4268 set_control(array_ctl); 4269 Node* obj_length = load_array_length(obj); 4270 Node* obj_size = NULL; 4271 Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size); // no arguments to push 4272 4273 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 4274 if (bs->array_copy_requires_gc_barriers(T_OBJECT)) { 4275 // If it is an oop array, it requires very special treatment, 4276 // because gc barriers are required when accessing the array. 4277 Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL); 4278 if (is_obja != NULL) { 4279 PreserveJVMState pjvms2(this); 4280 set_control(is_obja); 4281 // Generate a direct call to the right arraycopy function(s). 4282 Node* alloc = tightly_coupled_allocation(alloc_obj, NULL); 4283 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, obj, intcon(0), alloc_obj, intcon(0), obj_length, alloc != NULL, false); 4284 ac->set_cloneoop(); 4285 Node* n = _gvn.transform(ac); 4286 assert(n == ac, "cannot disappear"); 4287 ac->connect_outputs(this); 4288 4289 result_reg->init_req(_objArray_path, control()); 4290 result_val->init_req(_objArray_path, alloc_obj); 4291 result_i_o ->set_req(_objArray_path, i_o()); 4292 result_mem ->set_req(_objArray_path, reset_memory()); 4293 } 4294 } 4295 // Otherwise, there are no barriers to worry about. 4296 // (We can dispense with card marks if we know the allocation 4297 // comes out of eden (TLAB)... In fact, ReduceInitialCardMarks 4298 // causes the non-eden paths to take compensating steps to 4299 // simulate a fresh allocation, so that no further 4300 // card marks are required in compiled code to initialize 4301 // the object.) 4302 4303 if (!stopped()) { 4304 copy_to_clone(obj, alloc_obj, obj_size, true); 4305 4306 // Present the results of the copy. 4307 result_reg->init_req(_array_path, control()); 4308 result_val->init_req(_array_path, alloc_obj); 4309 result_i_o ->set_req(_array_path, i_o()); 4310 result_mem ->set_req(_array_path, reset_memory()); 4311 } 4312 } 4313 4314 // We only go to the instance fast case code if we pass a number of guards. 4315 // The paths which do not pass are accumulated in the slow_region. 4316 RegionNode* slow_region = new RegionNode(1); 4317 record_for_igvn(slow_region); 4318 if (!stopped()) { 4319 // It's an instance (we did array above). Make the slow-path tests. 4320 // If this is a virtual call, we generate a funny guard. We grab 4321 // the vtable entry corresponding to clone() from the target object. 4322 // If the target method which we are calling happens to be the 4323 // Object clone() method, we pass the guard. We do not need this 4324 // guard for non-virtual calls; the caller is known to be the native 4325 // Object clone(). 4326 if (is_virtual) { 4327 generate_virtual_guard(obj_klass, slow_region); 4328 } 4329 4330 // The object must be easily cloneable and must not have a finalizer. 4331 // Both of these conditions may be checked in a single test. 4332 // We could optimize the test further, but we don't care. 4333 generate_access_flags_guard(obj_klass, 4334 // Test both conditions: 4335 JVM_ACC_IS_CLONEABLE_FAST | JVM_ACC_HAS_FINALIZER, 4336 // Must be cloneable but not finalizer: 4337 JVM_ACC_IS_CLONEABLE_FAST, 4338 slow_region); 4339 } 4340 4341 if (!stopped()) { 4342 // It's an instance, and it passed the slow-path tests. 4343 PreserveJVMState pjvms(this); 4344 Node* obj_size = NULL; 4345 // Need to deoptimize on exception from allocation since Object.clone intrinsic 4346 // is reexecuted if deoptimization occurs and there could be problems when merging 4347 // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false). 4348 Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size, /*deoptimize_on_exception=*/true); 4349 4350 copy_to_clone(obj, alloc_obj, obj_size, false); 4351 4352 // Present the results of the slow call. 4353 result_reg->init_req(_instance_path, control()); 4354 result_val->init_req(_instance_path, alloc_obj); 4355 result_i_o ->set_req(_instance_path, i_o()); 4356 result_mem ->set_req(_instance_path, reset_memory()); 4357 } 4358 4359 // Generate code for the slow case. We make a call to clone(). 4360 set_control(_gvn.transform(slow_region)); 4361 if (!stopped()) { 4362 PreserveJVMState pjvms(this); 4363 CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual); 4364 Node* slow_result = set_results_for_java_call(slow_call); 4365 // this->control() comes from set_results_for_java_call 4366 result_reg->init_req(_slow_path, control()); 4367 result_val->init_req(_slow_path, slow_result); 4368 result_i_o ->set_req(_slow_path, i_o()); 4369 result_mem ->set_req(_slow_path, reset_memory()); 4370 } 4371 4372 // Return the combined state. 4373 set_control( _gvn.transform(result_reg)); 4374 set_i_o( _gvn.transform(result_i_o)); 4375 set_all_memory( _gvn.transform(result_mem)); 4376 } // original reexecute is set back here 4377 4378 set_result(_gvn.transform(result_val)); 4379 return true; 4380 } 4381 4382 // If we have a tighly coupled allocation, the arraycopy may take care 4383 // of the array initialization. If one of the guards we insert between 4384 // the allocation and the arraycopy causes a deoptimization, an 4385 // unitialized array will escape the compiled method. To prevent that 4386 // we set the JVM state for uncommon traps between the allocation and 4387 // the arraycopy to the state before the allocation so, in case of 4388 // deoptimization, we'll reexecute the allocation and the 4389 // initialization. 4390 JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) { 4391 if (alloc != NULL) { 4392 ciMethod* trap_method = alloc->jvms()->method(); 4393 int trap_bci = alloc->jvms()->bci(); 4394 4395 if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) & 4396 !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) { 4397 // Make sure there's no store between the allocation and the 4398 // arraycopy otherwise visible side effects could be rexecuted 4399 // in case of deoptimization and cause incorrect execution. 4400 bool no_interfering_store = true; 4401 Node* mem = alloc->in(TypeFunc::Memory); 4402 if (mem->is_MergeMem()) { 4403 for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) { 4404 Node* n = mms.memory(); 4405 if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) { 4406 assert(n->is_Store(), "what else?"); 4407 no_interfering_store = false; 4408 break; 4409 } 4410 } 4411 } else { 4412 for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) { 4413 Node* n = mms.memory(); 4414 if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) { 4415 assert(n->is_Store(), "what else?"); 4416 no_interfering_store = false; 4417 break; 4418 } 4419 } 4420 } 4421 4422 if (no_interfering_store) { 4423 JVMState* old_jvms = alloc->jvms()->clone_shallow(C); 4424 uint size = alloc->req(); 4425 SafePointNode* sfpt = new SafePointNode(size, old_jvms); 4426 old_jvms->set_map(sfpt); 4427 for (uint i = 0; i < size; i++) { 4428 sfpt->init_req(i, alloc->in(i)); 4429 } 4430 // re-push array length for deoptimization 4431 sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength)); 4432 old_jvms->set_sp(old_jvms->sp()+1); 4433 old_jvms->set_monoff(old_jvms->monoff()+1); 4434 old_jvms->set_scloff(old_jvms->scloff()+1); 4435 old_jvms->set_endoff(old_jvms->endoff()+1); 4436 old_jvms->set_should_reexecute(true); 4437 4438 sfpt->set_i_o(map()->i_o()); 4439 sfpt->set_memory(map()->memory()); 4440 sfpt->set_control(map()->control()); 4441 4442 JVMState* saved_jvms = jvms(); 4443 saved_reexecute_sp = _reexecute_sp; 4444 4445 set_jvms(sfpt->jvms()); 4446 _reexecute_sp = jvms()->sp(); 4447 4448 return saved_jvms; 4449 } 4450 } 4451 } 4452 return NULL; 4453 } 4454 4455 // In case of a deoptimization, we restart execution at the 4456 // allocation, allocating a new array. We would leave an uninitialized 4457 // array in the heap that GCs wouldn't expect. Move the allocation 4458 // after the traps so we don't allocate the array if we 4459 // deoptimize. This is possible because tightly_coupled_allocation() 4460 // guarantees there's no observer of the allocated array at this point 4461 // and the control flow is simple enough. 4462 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms, 4463 int saved_reexecute_sp, uint new_idx) { 4464 if (saved_jvms != NULL && !stopped()) { 4465 assert(alloc != NULL, "only with a tightly coupled allocation"); 4466 // restore JVM state to the state at the arraycopy 4467 saved_jvms->map()->set_control(map()->control()); 4468 assert(saved_jvms->map()->memory() == map()->memory(), "memory state changed?"); 4469 assert(saved_jvms->map()->i_o() == map()->i_o(), "IO state changed?"); 4470 // If we've improved the types of some nodes (null check) while 4471 // emitting the guards, propagate them to the current state 4472 map()->replaced_nodes().apply(saved_jvms->map(), new_idx); 4473 set_jvms(saved_jvms); 4474 _reexecute_sp = saved_reexecute_sp; 4475 4476 // Remove the allocation from above the guards 4477 CallProjections callprojs; 4478 alloc->extract_projections(&callprojs, true); 4479 InitializeNode* init = alloc->initialization(); 4480 Node* alloc_mem = alloc->in(TypeFunc::Memory); 4481 C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O)); 4482 C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem); 4483 C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0)); 4484 4485 // move the allocation here (after the guards) 4486 _gvn.hash_delete(alloc); 4487 alloc->set_req(TypeFunc::Control, control()); 4488 alloc->set_req(TypeFunc::I_O, i_o()); 4489 Node *mem = reset_memory(); 4490 set_all_memory(mem); 4491 alloc->set_req(TypeFunc::Memory, mem); 4492 set_control(init->proj_out_or_null(TypeFunc::Control)); 4493 set_i_o(callprojs.fallthrough_ioproj); 4494 4495 // Update memory as done in GraphKit::set_output_for_allocation() 4496 const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength)); 4497 const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type(); 4498 if (ary_type->isa_aryptr() && length_type != NULL) { 4499 ary_type = ary_type->is_aryptr()->cast_to_size(length_type); 4500 } 4501 const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot); 4502 int elemidx = C->get_alias_index(telemref); 4503 set_memory(init->proj_out_or_null(TypeFunc::Memory), Compile::AliasIdxRaw); 4504 set_memory(init->proj_out_or_null(TypeFunc::Memory), elemidx); 4505 4506 Node* allocx = _gvn.transform(alloc); 4507 assert(allocx == alloc, "where has the allocation gone?"); 4508 assert(dest->is_CheckCastPP(), "not an allocation result?"); 4509 4510 _gvn.hash_delete(dest); 4511 dest->set_req(0, control()); 4512 Node* destx = _gvn.transform(dest); 4513 assert(destx == dest, "where has the allocation result gone?"); 4514 } 4515 } 4516 4517 4518 //------------------------------inline_arraycopy----------------------- 4519 // public static native void java.lang.System.arraycopy(Object src, int srcPos, 4520 // Object dest, int destPos, 4521 // int length); 4522 bool LibraryCallKit::inline_arraycopy() { 4523 // Get the arguments. 4524 Node* src = argument(0); // type: oop 4525 Node* src_offset = argument(1); // type: int 4526 Node* dest = argument(2); // type: oop 4527 Node* dest_offset = argument(3); // type: int 4528 Node* length = argument(4); // type: int 4529 4530 uint new_idx = C->unique(); 4531 4532 // Check for allocation before we add nodes that would confuse 4533 // tightly_coupled_allocation() 4534 AllocateArrayNode* alloc = tightly_coupled_allocation(dest, NULL); 4535 4536 int saved_reexecute_sp = -1; 4537 JVMState* saved_jvms = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp); 4538 // See arraycopy_restore_alloc_state() comment 4539 // if alloc == NULL we don't have to worry about a tightly coupled allocation so we can emit all needed guards 4540 // if saved_jvms != NULL (then alloc != NULL) then we can handle guards and a tightly coupled allocation 4541 // if saved_jvms == NULL and alloc != NULL, we can't emit any guards 4542 bool can_emit_guards = (alloc == NULL || saved_jvms != NULL); 4543 4544 // The following tests must be performed 4545 // (1) src and dest are arrays. 4546 // (2) src and dest arrays must have elements of the same BasicType 4547 // (3) src and dest must not be null. 4548 // (4) src_offset must not be negative. 4549 // (5) dest_offset must not be negative. 4550 // (6) length must not be negative. 4551 // (7) src_offset + length must not exceed length of src. 4552 // (8) dest_offset + length must not exceed length of dest. 4553 // (9) each element of an oop array must be assignable 4554 4555 // (3) src and dest must not be null. 4556 // always do this here because we need the JVM state for uncommon traps 4557 Node* null_ctl = top(); 4558 src = saved_jvms != NULL ? null_check_oop(src, &null_ctl, true, true) : null_check(src, T_ARRAY); 4559 assert(null_ctl->is_top(), "no null control here"); 4560 dest = null_check(dest, T_ARRAY); 4561 4562 if (!can_emit_guards) { 4563 // if saved_jvms == NULL and alloc != NULL, we don't emit any 4564 // guards but the arraycopy node could still take advantage of a 4565 // tightly allocated allocation. tightly_coupled_allocation() is 4566 // called again to make sure it takes the null check above into 4567 // account: the null check is mandatory and if it caused an 4568 // uncommon trap to be emitted then the allocation can't be 4569 // considered tightly coupled in this context. 4570 alloc = tightly_coupled_allocation(dest, NULL); 4571 } 4572 4573 bool validated = false; 4574 4575 const Type* src_type = _gvn.type(src); 4576 const Type* dest_type = _gvn.type(dest); 4577 const TypeAryPtr* top_src = src_type->isa_aryptr(); 4578 const TypeAryPtr* top_dest = dest_type->isa_aryptr(); 4579 4580 // Do we have the type of src? 4581 bool has_src = (top_src != NULL && top_src->klass() != NULL); 4582 // Do we have the type of dest? 4583 bool has_dest = (top_dest != NULL && top_dest->klass() != NULL); 4584 // Is the type for src from speculation? 4585 bool src_spec = false; 4586 // Is the type for dest from speculation? 4587 bool dest_spec = false; 4588 4589 if ((!has_src || !has_dest) && can_emit_guards) { 4590 // We don't have sufficient type information, let's see if 4591 // speculative types can help. We need to have types for both src 4592 // and dest so that it pays off. 4593 4594 // Do we already have or could we have type information for src 4595 bool could_have_src = has_src; 4596 // Do we already have or could we have type information for dest 4597 bool could_have_dest = has_dest; 4598 4599 ciKlass* src_k = NULL; 4600 if (!has_src) { 4601 src_k = src_type->speculative_type_not_null(); 4602 if (src_k != NULL && src_k->is_array_klass()) { 4603 could_have_src = true; 4604 } 4605 } 4606 4607 ciKlass* dest_k = NULL; 4608 if (!has_dest) { 4609 dest_k = dest_type->speculative_type_not_null(); 4610 if (dest_k != NULL && dest_k->is_array_klass()) { 4611 could_have_dest = true; 4612 } 4613 } 4614 4615 if (could_have_src && could_have_dest) { 4616 // This is going to pay off so emit the required guards 4617 if (!has_src) { 4618 src = maybe_cast_profiled_obj(src, src_k, true); 4619 src_type = _gvn.type(src); 4620 top_src = src_type->isa_aryptr(); 4621 has_src = (top_src != NULL && top_src->klass() != NULL); 4622 src_spec = true; 4623 } 4624 if (!has_dest) { 4625 dest = maybe_cast_profiled_obj(dest, dest_k, true); 4626 dest_type = _gvn.type(dest); 4627 top_dest = dest_type->isa_aryptr(); 4628 has_dest = (top_dest != NULL && top_dest->klass() != NULL); 4629 dest_spec = true; 4630 } 4631 } 4632 } 4633 4634 if (has_src && has_dest && can_emit_guards) { 4635 BasicType src_elem = top_src->klass()->as_array_klass()->element_type()->basic_type(); 4636 BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type(); 4637 if (src_elem == T_ARRAY) src_elem = T_OBJECT; 4638 if (dest_elem == T_ARRAY) dest_elem = T_OBJECT; 4639 4640 if (src_elem == dest_elem && src_elem == T_OBJECT) { 4641 // If both arrays are object arrays then having the exact types 4642 // for both will remove the need for a subtype check at runtime 4643 // before the call and may make it possible to pick a faster copy 4644 // routine (without a subtype check on every element) 4645 // Do we have the exact type of src? 4646 bool could_have_src = src_spec; 4647 // Do we have the exact type of dest? 4648 bool could_have_dest = dest_spec; 4649 ciKlass* src_k = top_src->klass(); 4650 ciKlass* dest_k = top_dest->klass(); 4651 if (!src_spec) { 4652 src_k = src_type->speculative_type_not_null(); 4653 if (src_k != NULL && src_k->is_array_klass()) { 4654 could_have_src = true; 4655 } 4656 } 4657 if (!dest_spec) { 4658 dest_k = dest_type->speculative_type_not_null(); 4659 if (dest_k != NULL && dest_k->is_array_klass()) { 4660 could_have_dest = true; 4661 } 4662 } 4663 if (could_have_src && could_have_dest) { 4664 // If we can have both exact types, emit the missing guards 4665 if (could_have_src && !src_spec) { 4666 src = maybe_cast_profiled_obj(src, src_k, true); 4667 } 4668 if (could_have_dest && !dest_spec) { 4669 dest = maybe_cast_profiled_obj(dest, dest_k, true); 4670 } 4671 } 4672 } 4673 } 4674 4675 ciMethod* trap_method = method(); 4676 int trap_bci = bci(); 4677 if (saved_jvms != NULL) { 4678 trap_method = alloc->jvms()->method(); 4679 trap_bci = alloc->jvms()->bci(); 4680 } 4681 4682 bool negative_length_guard_generated = false; 4683 4684 if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) && 4685 can_emit_guards && 4686 !src->is_top() && !dest->is_top()) { 4687 // validate arguments: enables transformation the ArrayCopyNode 4688 validated = true; 4689 4690 RegionNode* slow_region = new RegionNode(1); 4691 record_for_igvn(slow_region); 4692 4693 // (1) src and dest are arrays. 4694 generate_non_array_guard(load_object_klass(src), slow_region); 4695 generate_non_array_guard(load_object_klass(dest), slow_region); 4696 4697 // (2) src and dest arrays must have elements of the same BasicType 4698 // done at macro expansion or at Ideal transformation time 4699 4700 // (4) src_offset must not be negative. 4701 generate_negative_guard(src_offset, slow_region); 4702 4703 // (5) dest_offset must not be negative. 4704 generate_negative_guard(dest_offset, slow_region); 4705 4706 // (7) src_offset + length must not exceed length of src. 4707 generate_limit_guard(src_offset, length, 4708 load_array_length(src), 4709 slow_region); 4710 4711 // (8) dest_offset + length must not exceed length of dest. 4712 generate_limit_guard(dest_offset, length, 4713 load_array_length(dest), 4714 slow_region); 4715 4716 // (6) length must not be negative. 4717 // This is also checked in generate_arraycopy() during macro expansion, but 4718 // we also have to check it here for the case where the ArrayCopyNode will 4719 // be eliminated by Escape Analysis. 4720 if (EliminateAllocations) { 4721 generate_negative_guard(length, slow_region); 4722 negative_length_guard_generated = true; 4723 } 4724 4725 // (9) each element of an oop array must be assignable 4726 Node* src_klass = load_object_klass(src); 4727 Node* dest_klass = load_object_klass(dest); 4728 Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass); 4729 4730 if (not_subtype_ctrl != top()) { 4731 PreserveJVMState pjvms(this); 4732 set_control(not_subtype_ctrl); 4733 uncommon_trap(Deoptimization::Reason_intrinsic, 4734 Deoptimization::Action_make_not_entrant); 4735 assert(stopped(), "Should be stopped"); 4736 } 4737 { 4738 PreserveJVMState pjvms(this); 4739 set_control(_gvn.transform(slow_region)); 4740 uncommon_trap(Deoptimization::Reason_intrinsic, 4741 Deoptimization::Action_make_not_entrant); 4742 assert(stopped(), "Should be stopped"); 4743 } 4744 4745 const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->is_klassptr(); 4746 const Type *toop = TypeOopPtr::make_from_klass(dest_klass_t->klass()); 4747 src = _gvn.transform(new CheckCastPPNode(control(), src, toop)); 4748 } 4749 4750 arraycopy_move_allocation_here(alloc, dest, saved_jvms, saved_reexecute_sp, new_idx); 4751 4752 if (stopped()) { 4753 return true; 4754 } 4755 4756 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != NULL, negative_length_guard_generated, 4757 // Create LoadRange and LoadKlass nodes for use during macro expansion here 4758 // so the compiler has a chance to eliminate them: during macro expansion, 4759 // we have to set their control (CastPP nodes are eliminated). 4760 load_object_klass(src), load_object_klass(dest), 4761 load_array_length(src), load_array_length(dest)); 4762 4763 ac->set_arraycopy(validated); 4764 4765 Node* n = _gvn.transform(ac); 4766 if (n == ac) { 4767 ac->connect_outputs(this); 4768 } else { 4769 assert(validated, "shouldn't transform if all arguments not validated"); 4770 set_all_memory(n); 4771 } 4772 clear_upper_avx(); 4773 4774 4775 return true; 4776 } 4777 4778 4779 // Helper function which determines if an arraycopy immediately follows 4780 // an allocation, with no intervening tests or other escapes for the object. 4781 AllocateArrayNode* 4782 LibraryCallKit::tightly_coupled_allocation(Node* ptr, 4783 RegionNode* slow_region) { 4784 if (stopped()) return NULL; // no fast path 4785 if (C->AliasLevel() == 0) return NULL; // no MergeMems around 4786 4787 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn); 4788 if (alloc == NULL) return NULL; 4789 4790 Node* rawmem = memory(Compile::AliasIdxRaw); 4791 // Is the allocation's memory state untouched? 4792 if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) { 4793 // Bail out if there have been raw-memory effects since the allocation. 4794 // (Example: There might have been a call or safepoint.) 4795 return NULL; 4796 } 4797 rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw); 4798 if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) { 4799 return NULL; 4800 } 4801 4802 // There must be no unexpected observers of this allocation. 4803 for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) { 4804 Node* obs = ptr->fast_out(i); 4805 if (obs != this->map()) { 4806 return NULL; 4807 } 4808 } 4809 4810 // This arraycopy must unconditionally follow the allocation of the ptr. 4811 Node* alloc_ctl = ptr->in(0); 4812 assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo"); 4813 4814 Node* ctl = control(); 4815 while (ctl != alloc_ctl) { 4816 // There may be guards which feed into the slow_region. 4817 // Any other control flow means that we might not get a chance 4818 // to finish initializing the allocated object. 4819 if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) { 4820 IfNode* iff = ctl->in(0)->as_If(); 4821 Node* not_ctl = iff->proj_out_or_null(1 - ctl->as_Proj()->_con); 4822 assert(not_ctl != NULL && not_ctl != ctl, "found alternate"); 4823 if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) { 4824 ctl = iff->in(0); // This test feeds the known slow_region. 4825 continue; 4826 } 4827 // One more try: Various low-level checks bottom out in 4828 // uncommon traps. If the debug-info of the trap omits 4829 // any reference to the allocation, as we've already 4830 // observed, then there can be no objection to the trap. 4831 bool found_trap = false; 4832 for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) { 4833 Node* obs = not_ctl->fast_out(j); 4834 if (obs->in(0) == not_ctl && obs->is_Call() && 4835 (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) { 4836 found_trap = true; break; 4837 } 4838 } 4839 if (found_trap) { 4840 ctl = iff->in(0); // This test feeds a harmless uncommon trap. 4841 continue; 4842 } 4843 } 4844 return NULL; 4845 } 4846 4847 // If we get this far, we have an allocation which immediately 4848 // precedes the arraycopy, and we can take over zeroing the new object. 4849 // The arraycopy will finish the initialization, and provide 4850 // a new control state to which we will anchor the destination pointer. 4851 4852 return alloc; 4853 } 4854 4855 //-------------inline_encodeISOArray----------------------------------- 4856 // encode char[] to byte[] in ISO_8859_1 4857 bool LibraryCallKit::inline_encodeISOArray() { 4858 assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters"); 4859 // no receiver since it is static method 4860 Node *src = argument(0); 4861 Node *src_offset = argument(1); 4862 Node *dst = argument(2); 4863 Node *dst_offset = argument(3); 4864 Node *length = argument(4); 4865 4866 const Type* src_type = src->Value(&_gvn); 4867 const Type* dst_type = dst->Value(&_gvn); 4868 const TypeAryPtr* top_src = src_type->isa_aryptr(); 4869 const TypeAryPtr* top_dest = dst_type->isa_aryptr(); 4870 if (top_src == NULL || top_src->klass() == NULL || 4871 top_dest == NULL || top_dest->klass() == NULL) { 4872 // failed array check 4873 return false; 4874 } 4875 4876 // Figure out the size and type of the elements we will be copying. 4877 BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 4878 BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 4879 if (!((src_elem == T_CHAR) || (src_elem== T_BYTE)) || dst_elem != T_BYTE) { 4880 return false; 4881 } 4882 4883 Node* src_start = array_element_address(src, src_offset, T_CHAR); 4884 Node* dst_start = array_element_address(dst, dst_offset, dst_elem); 4885 // 'src_start' points to src array + scaled offset 4886 // 'dst_start' points to dst array + scaled offset 4887 4888 const TypeAryPtr* mtype = TypeAryPtr::BYTES; 4889 Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length); 4890 enc = _gvn.transform(enc); 4891 Node* res_mem = _gvn.transform(new SCMemProjNode(enc)); 4892 set_memory(res_mem, mtype); 4893 set_result(enc); 4894 clear_upper_avx(); 4895 4896 return true; 4897 } 4898 4899 //-------------inline_multiplyToLen----------------------------------- 4900 bool LibraryCallKit::inline_multiplyToLen() { 4901 assert(UseMultiplyToLenIntrinsic, "not implemented on this platform"); 4902 4903 address stubAddr = StubRoutines::multiplyToLen(); 4904 if (stubAddr == NULL) { 4905 return false; // Intrinsic's stub is not implemented on this platform 4906 } 4907 const char* stubName = "multiplyToLen"; 4908 4909 assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters"); 4910 4911 // no receiver because it is a static method 4912 Node* x = argument(0); 4913 Node* xlen = argument(1); 4914 Node* y = argument(2); 4915 Node* ylen = argument(3); 4916 Node* z = argument(4); 4917 4918 const Type* x_type = x->Value(&_gvn); 4919 const Type* y_type = y->Value(&_gvn); 4920 const TypeAryPtr* top_x = x_type->isa_aryptr(); 4921 const TypeAryPtr* top_y = y_type->isa_aryptr(); 4922 if (top_x == NULL || top_x->klass() == NULL || 4923 top_y == NULL || top_y->klass() == NULL) { 4924 // failed array check 4925 return false; 4926 } 4927 4928 BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 4929 BasicType y_elem = y_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 4930 if (x_elem != T_INT || y_elem != T_INT) { 4931 return false; 4932 } 4933 4934 // Set the original stack and the reexecute bit for the interpreter to reexecute 4935 // the bytecode that invokes BigInteger.multiplyToLen() if deoptimization happens 4936 // on the return from z array allocation in runtime. 4937 { PreserveReexecuteState preexecs(this); 4938 jvms()->set_should_reexecute(true); 4939 4940 Node* x_start = array_element_address(x, intcon(0), x_elem); 4941 Node* y_start = array_element_address(y, intcon(0), y_elem); 4942 // 'x_start' points to x array + scaled xlen 4943 // 'y_start' points to y array + scaled ylen 4944 4945 // Allocate the result array 4946 Node* zlen = _gvn.transform(new AddINode(xlen, ylen)); 4947 ciKlass* klass = ciTypeArrayKlass::make(T_INT); 4948 Node* klass_node = makecon(TypeKlassPtr::make(klass)); 4949 4950 IdealKit ideal(this); 4951 4952 #define __ ideal. 4953 Node* one = __ ConI(1); 4954 Node* zero = __ ConI(0); 4955 IdealVariable need_alloc(ideal), z_alloc(ideal); __ declarations_done(); 4956 __ set(need_alloc, zero); 4957 __ set(z_alloc, z); 4958 __ if_then(z, BoolTest::eq, null()); { 4959 __ increment (need_alloc, one); 4960 } __ else_(); { 4961 // Update graphKit memory and control from IdealKit. 4962 sync_kit(ideal); 4963 Node* zlen_arg = load_array_length(z); 4964 // Update IdealKit memory and control from graphKit. 4965 __ sync_kit(this); 4966 __ if_then(zlen_arg, BoolTest::lt, zlen); { 4967 __ increment (need_alloc, one); 4968 } __ end_if(); 4969 } __ end_if(); 4970 4971 __ if_then(__ value(need_alloc), BoolTest::ne, zero); { 4972 // Update graphKit memory and control from IdealKit. 4973 sync_kit(ideal); 4974 Node * narr = new_array(klass_node, zlen, 1); 4975 // Update IdealKit memory and control from graphKit. 4976 __ sync_kit(this); 4977 __ set(z_alloc, narr); 4978 } __ end_if(); 4979 4980 sync_kit(ideal); 4981 z = __ value(z_alloc); 4982 // Can't use TypeAryPtr::INTS which uses Bottom offset. 4983 _gvn.set_type(z, TypeOopPtr::make_from_klass(klass)); 4984 // Final sync IdealKit and GraphKit. 4985 final_sync(ideal); 4986 #undef __ 4987 4988 Node* z_start = array_element_address(z, intcon(0), T_INT); 4989 4990 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 4991 OptoRuntime::multiplyToLen_Type(), 4992 stubAddr, stubName, TypePtr::BOTTOM, 4993 x_start, xlen, y_start, ylen, z_start, zlen); 4994 } // original reexecute is set back here 4995 4996 C->set_has_split_ifs(true); // Has chance for split-if optimization 4997 set_result(z); 4998 return true; 4999 } 5000 5001 //-------------inline_squareToLen------------------------------------ 5002 bool LibraryCallKit::inline_squareToLen() { 5003 assert(UseSquareToLenIntrinsic, "not implemented on this platform"); 5004 5005 address stubAddr = StubRoutines::squareToLen(); 5006 if (stubAddr == NULL) { 5007 return false; // Intrinsic's stub is not implemented on this platform 5008 } 5009 const char* stubName = "squareToLen"; 5010 5011 assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters"); 5012 5013 Node* x = argument(0); 5014 Node* len = argument(1); 5015 Node* z = argument(2); 5016 Node* zlen = argument(3); 5017 5018 const Type* x_type = x->Value(&_gvn); 5019 const Type* z_type = z->Value(&_gvn); 5020 const TypeAryPtr* top_x = x_type->isa_aryptr(); 5021 const TypeAryPtr* top_z = z_type->isa_aryptr(); 5022 if (top_x == NULL || top_x->klass() == NULL || 5023 top_z == NULL || top_z->klass() == NULL) { 5024 // failed array check 5025 return false; 5026 } 5027 5028 BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5029 BasicType z_elem = z_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5030 if (x_elem != T_INT || z_elem != T_INT) { 5031 return false; 5032 } 5033 5034 5035 Node* x_start = array_element_address(x, intcon(0), x_elem); 5036 Node* z_start = array_element_address(z, intcon(0), z_elem); 5037 5038 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 5039 OptoRuntime::squareToLen_Type(), 5040 stubAddr, stubName, TypePtr::BOTTOM, 5041 x_start, len, z_start, zlen); 5042 5043 set_result(z); 5044 return true; 5045 } 5046 5047 //-------------inline_mulAdd------------------------------------------ 5048 bool LibraryCallKit::inline_mulAdd() { 5049 assert(UseMulAddIntrinsic, "not implemented on this platform"); 5050 5051 address stubAddr = StubRoutines::mulAdd(); 5052 if (stubAddr == NULL) { 5053 return false; // Intrinsic's stub is not implemented on this platform 5054 } 5055 const char* stubName = "mulAdd"; 5056 5057 assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters"); 5058 5059 Node* out = argument(0); 5060 Node* in = argument(1); 5061 Node* offset = argument(2); 5062 Node* len = argument(3); 5063 Node* k = argument(4); 5064 5065 const Type* out_type = out->Value(&_gvn); 5066 const Type* in_type = in->Value(&_gvn); 5067 const TypeAryPtr* top_out = out_type->isa_aryptr(); 5068 const TypeAryPtr* top_in = in_type->isa_aryptr(); 5069 if (top_out == NULL || top_out->klass() == NULL || 5070 top_in == NULL || top_in->klass() == NULL) { 5071 // failed array check 5072 return false; 5073 } 5074 5075 BasicType out_elem = out_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5076 BasicType in_elem = in_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5077 if (out_elem != T_INT || in_elem != T_INT) { 5078 return false; 5079 } 5080 5081 Node* outlen = load_array_length(out); 5082 Node* new_offset = _gvn.transform(new SubINode(outlen, offset)); 5083 Node* out_start = array_element_address(out, intcon(0), out_elem); 5084 Node* in_start = array_element_address(in, intcon(0), in_elem); 5085 5086 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 5087 OptoRuntime::mulAdd_Type(), 5088 stubAddr, stubName, TypePtr::BOTTOM, 5089 out_start,in_start, new_offset, len, k); 5090 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 5091 set_result(result); 5092 return true; 5093 } 5094 5095 //-------------inline_montgomeryMultiply----------------------------------- 5096 bool LibraryCallKit::inline_montgomeryMultiply() { 5097 address stubAddr = StubRoutines::montgomeryMultiply(); 5098 if (stubAddr == NULL) { 5099 return false; // Intrinsic's stub is not implemented on this platform 5100 } 5101 5102 assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform"); 5103 const char* stubName = "montgomery_multiply"; 5104 5105 assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters"); 5106 5107 Node* a = argument(0); 5108 Node* b = argument(1); 5109 Node* n = argument(2); 5110 Node* len = argument(3); 5111 Node* inv = argument(4); 5112 Node* m = argument(6); 5113 5114 const Type* a_type = a->Value(&_gvn); 5115 const TypeAryPtr* top_a = a_type->isa_aryptr(); 5116 const Type* b_type = b->Value(&_gvn); 5117 const TypeAryPtr* top_b = b_type->isa_aryptr(); 5118 const Type* n_type = a->Value(&_gvn); 5119 const TypeAryPtr* top_n = n_type->isa_aryptr(); 5120 const Type* m_type = a->Value(&_gvn); 5121 const TypeAryPtr* top_m = m_type->isa_aryptr(); 5122 if (top_a == NULL || top_a->klass() == NULL || 5123 top_b == NULL || top_b->klass() == NULL || 5124 top_n == NULL || top_n->klass() == NULL || 5125 top_m == NULL || top_m->klass() == NULL) { 5126 // failed array check 5127 return false; 5128 } 5129 5130 BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5131 BasicType b_elem = b_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5132 BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5133 BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5134 if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) { 5135 return false; 5136 } 5137 5138 // Make the call 5139 { 5140 Node* a_start = array_element_address(a, intcon(0), a_elem); 5141 Node* b_start = array_element_address(b, intcon(0), b_elem); 5142 Node* n_start = array_element_address(n, intcon(0), n_elem); 5143 Node* m_start = array_element_address(m, intcon(0), m_elem); 5144 5145 Node* call = make_runtime_call(RC_LEAF, 5146 OptoRuntime::montgomeryMultiply_Type(), 5147 stubAddr, stubName, TypePtr::BOTTOM, 5148 a_start, b_start, n_start, len, inv, top(), 5149 m_start); 5150 set_result(m); 5151 } 5152 5153 return true; 5154 } 5155 5156 bool LibraryCallKit::inline_montgomerySquare() { 5157 address stubAddr = StubRoutines::montgomerySquare(); 5158 if (stubAddr == NULL) { 5159 return false; // Intrinsic's stub is not implemented on this platform 5160 } 5161 5162 assert(UseMontgomerySquareIntrinsic, "not implemented on this platform"); 5163 const char* stubName = "montgomery_square"; 5164 5165 assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters"); 5166 5167 Node* a = argument(0); 5168 Node* n = argument(1); 5169 Node* len = argument(2); 5170 Node* inv = argument(3); 5171 Node* m = argument(5); 5172 5173 const Type* a_type = a->Value(&_gvn); 5174 const TypeAryPtr* top_a = a_type->isa_aryptr(); 5175 const Type* n_type = a->Value(&_gvn); 5176 const TypeAryPtr* top_n = n_type->isa_aryptr(); 5177 const Type* m_type = a->Value(&_gvn); 5178 const TypeAryPtr* top_m = m_type->isa_aryptr(); 5179 if (top_a == NULL || top_a->klass() == NULL || 5180 top_n == NULL || top_n->klass() == NULL || 5181 top_m == NULL || top_m->klass() == NULL) { 5182 // failed array check 5183 return false; 5184 } 5185 5186 BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5187 BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5188 BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5189 if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) { 5190 return false; 5191 } 5192 5193 // Make the call 5194 { 5195 Node* a_start = array_element_address(a, intcon(0), a_elem); 5196 Node* n_start = array_element_address(n, intcon(0), n_elem); 5197 Node* m_start = array_element_address(m, intcon(0), m_elem); 5198 5199 Node* call = make_runtime_call(RC_LEAF, 5200 OptoRuntime::montgomerySquare_Type(), 5201 stubAddr, stubName, TypePtr::BOTTOM, 5202 a_start, n_start, len, inv, top(), 5203 m_start); 5204 set_result(m); 5205 } 5206 5207 return true; 5208 } 5209 5210 //-------------inline_vectorizedMismatch------------------------------ 5211 bool LibraryCallKit::inline_vectorizedMismatch() { 5212 assert(UseVectorizedMismatchIntrinsic, "not implementated on this platform"); 5213 5214 address stubAddr = StubRoutines::vectorizedMismatch(); 5215 if (stubAddr == NULL) { 5216 return false; // Intrinsic's stub is not implemented on this platform 5217 } 5218 const char* stubName = "vectorizedMismatch"; 5219 int size_l = callee()->signature()->size(); 5220 assert(callee()->signature()->size() == 8, "vectorizedMismatch has 6 parameters"); 5221 5222 Node* obja = argument(0); 5223 Node* aoffset = argument(1); 5224 Node* objb = argument(3); 5225 Node* boffset = argument(4); 5226 Node* length = argument(6); 5227 Node* scale = argument(7); 5228 5229 const Type* a_type = obja->Value(&_gvn); 5230 const Type* b_type = objb->Value(&_gvn); 5231 const TypeAryPtr* top_a = a_type->isa_aryptr(); 5232 const TypeAryPtr* top_b = b_type->isa_aryptr(); 5233 if (top_a == NULL || top_a->klass() == NULL || 5234 top_b == NULL || top_b->klass() == NULL) { 5235 // failed array check 5236 return false; 5237 } 5238 5239 Node* call; 5240 jvms()->set_should_reexecute(true); 5241 5242 Node* obja_adr = make_unsafe_address(obja, aoffset); 5243 Node* objb_adr = make_unsafe_address(objb, boffset); 5244 5245 call = make_runtime_call(RC_LEAF, 5246 OptoRuntime::vectorizedMismatch_Type(), 5247 stubAddr, stubName, TypePtr::BOTTOM, 5248 obja_adr, objb_adr, length, scale); 5249 5250 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 5251 set_result(result); 5252 return true; 5253 } 5254 5255 /** 5256 * Calculate CRC32 for byte. 5257 * int java.util.zip.CRC32.update(int crc, int b) 5258 */ 5259 bool LibraryCallKit::inline_updateCRC32() { 5260 assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support"); 5261 assert(callee()->signature()->size() == 2, "update has 2 parameters"); 5262 // no receiver since it is static method 5263 Node* crc = argument(0); // type: int 5264 Node* b = argument(1); // type: int 5265 5266 /* 5267 * int c = ~ crc; 5268 * b = timesXtoThe32[(b ^ c) & 0xFF]; 5269 * b = b ^ (c >>> 8); 5270 * crc = ~b; 5271 */ 5272 5273 Node* M1 = intcon(-1); 5274 crc = _gvn.transform(new XorINode(crc, M1)); 5275 Node* result = _gvn.transform(new XorINode(crc, b)); 5276 result = _gvn.transform(new AndINode(result, intcon(0xFF))); 5277 5278 Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr())); 5279 Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2))); 5280 Node* adr = basic_plus_adr(top(), base, ConvI2X(offset)); 5281 result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered); 5282 5283 crc = _gvn.transform(new URShiftINode(crc, intcon(8))); 5284 result = _gvn.transform(new XorINode(crc, result)); 5285 result = _gvn.transform(new XorINode(result, M1)); 5286 set_result(result); 5287 return true; 5288 } 5289 5290 /** 5291 * Calculate CRC32 for byte[] array. 5292 * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len) 5293 */ 5294 bool LibraryCallKit::inline_updateBytesCRC32() { 5295 assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support"); 5296 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 5297 // no receiver since it is static method 5298 Node* crc = argument(0); // type: int 5299 Node* src = argument(1); // type: oop 5300 Node* offset = argument(2); // type: int 5301 Node* length = argument(3); // type: int 5302 5303 const Type* src_type = src->Value(&_gvn); 5304 const TypeAryPtr* top_src = src_type->isa_aryptr(); 5305 if (top_src == NULL || top_src->klass() == NULL) { 5306 // failed array check 5307 return false; 5308 } 5309 5310 // Figure out the size and type of the elements we will be copying. 5311 BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5312 if (src_elem != T_BYTE) { 5313 return false; 5314 } 5315 5316 // 'src_start' points to src array + scaled offset 5317 Node* src_start = array_element_address(src, offset, src_elem); 5318 5319 // We assume that range check is done by caller. 5320 // TODO: generate range check (offset+length < src.length) in debug VM. 5321 5322 // Call the stub. 5323 address stubAddr = StubRoutines::updateBytesCRC32(); 5324 const char *stubName = "updateBytesCRC32"; 5325 5326 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(), 5327 stubAddr, stubName, TypePtr::BOTTOM, 5328 crc, src_start, length); 5329 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 5330 set_result(result); 5331 return true; 5332 } 5333 5334 /** 5335 * Calculate CRC32 for ByteBuffer. 5336 * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len) 5337 */ 5338 bool LibraryCallKit::inline_updateByteBufferCRC32() { 5339 assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support"); 5340 assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long"); 5341 // no receiver since it is static method 5342 Node* crc = argument(0); // type: int 5343 Node* src = argument(1); // type: long 5344 Node* offset = argument(3); // type: int 5345 Node* length = argument(4); // type: int 5346 5347 src = ConvL2X(src); // adjust Java long to machine word 5348 Node* base = _gvn.transform(new CastX2PNode(src)); 5349 offset = ConvI2X(offset); 5350 5351 // 'src_start' points to src array + scaled offset 5352 Node* src_start = basic_plus_adr(top(), base, offset); 5353 5354 // Call the stub. 5355 address stubAddr = StubRoutines::updateBytesCRC32(); 5356 const char *stubName = "updateBytesCRC32"; 5357 5358 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(), 5359 stubAddr, stubName, TypePtr::BOTTOM, 5360 crc, src_start, length); 5361 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 5362 set_result(result); 5363 return true; 5364 } 5365 5366 //------------------------------get_table_from_crc32c_class----------------------- 5367 Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) { 5368 Node* table = load_field_from_object(NULL, "byteTable", "[I", /*is_exact*/ false, /*is_static*/ true, crc32c_class); 5369 assert (table != NULL, "wrong version of java.util.zip.CRC32C"); 5370 5371 return table; 5372 } 5373 5374 //------------------------------inline_updateBytesCRC32C----------------------- 5375 // 5376 // Calculate CRC32C for byte[] array. 5377 // int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end) 5378 // 5379 bool LibraryCallKit::inline_updateBytesCRC32C() { 5380 assert(UseCRC32CIntrinsics, "need CRC32C instruction support"); 5381 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 5382 assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded"); 5383 // no receiver since it is a static method 5384 Node* crc = argument(0); // type: int 5385 Node* src = argument(1); // type: oop 5386 Node* offset = argument(2); // type: int 5387 Node* end = argument(3); // type: int 5388 5389 Node* length = _gvn.transform(new SubINode(end, offset)); 5390 5391 const Type* src_type = src->Value(&_gvn); 5392 const TypeAryPtr* top_src = src_type->isa_aryptr(); 5393 if (top_src == NULL || top_src->klass() == NULL) { 5394 // failed array check 5395 return false; 5396 } 5397 5398 // Figure out the size and type of the elements we will be copying. 5399 BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5400 if (src_elem != T_BYTE) { 5401 return false; 5402 } 5403 5404 // 'src_start' points to src array + scaled offset 5405 Node* src_start = array_element_address(src, offset, src_elem); 5406 5407 // static final int[] byteTable in class CRC32C 5408 Node* table = get_table_from_crc32c_class(callee()->holder()); 5409 Node* table_start = array_element_address(table, intcon(0), T_INT); 5410 5411 // We assume that range check is done by caller. 5412 // TODO: generate range check (offset+length < src.length) in debug VM. 5413 5414 // Call the stub. 5415 address stubAddr = StubRoutines::updateBytesCRC32C(); 5416 const char *stubName = "updateBytesCRC32C"; 5417 5418 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(), 5419 stubAddr, stubName, TypePtr::BOTTOM, 5420 crc, src_start, length, table_start); 5421 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 5422 set_result(result); 5423 return true; 5424 } 5425 5426 //------------------------------inline_updateDirectByteBufferCRC32C----------------------- 5427 // 5428 // Calculate CRC32C for DirectByteBuffer. 5429 // int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end) 5430 // 5431 bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() { 5432 assert(UseCRC32CIntrinsics, "need CRC32C instruction support"); 5433 assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long"); 5434 assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded"); 5435 // no receiver since it is a static method 5436 Node* crc = argument(0); // type: int 5437 Node* src = argument(1); // type: long 5438 Node* offset = argument(3); // type: int 5439 Node* end = argument(4); // type: int 5440 5441 Node* length = _gvn.transform(new SubINode(end, offset)); 5442 5443 src = ConvL2X(src); // adjust Java long to machine word 5444 Node* base = _gvn.transform(new CastX2PNode(src)); 5445 offset = ConvI2X(offset); 5446 5447 // 'src_start' points to src array + scaled offset 5448 Node* src_start = basic_plus_adr(top(), base, offset); 5449 5450 // static final int[] byteTable in class CRC32C 5451 Node* table = get_table_from_crc32c_class(callee()->holder()); 5452 Node* table_start = array_element_address(table, intcon(0), T_INT); 5453 5454 // Call the stub. 5455 address stubAddr = StubRoutines::updateBytesCRC32C(); 5456 const char *stubName = "updateBytesCRC32C"; 5457 5458 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(), 5459 stubAddr, stubName, TypePtr::BOTTOM, 5460 crc, src_start, length, table_start); 5461 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 5462 set_result(result); 5463 return true; 5464 } 5465 5466 //------------------------------inline_updateBytesAdler32---------------------- 5467 // 5468 // Calculate Adler32 checksum for byte[] array. 5469 // int java.util.zip.Adler32.updateBytes(int crc, byte[] buf, int off, int len) 5470 // 5471 bool LibraryCallKit::inline_updateBytesAdler32() { 5472 assert(UseAdler32Intrinsics, "Adler32 Instrinsic support need"); // check if we actually need to check this flag or check a different one 5473 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 5474 assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded"); 5475 // no receiver since it is static method 5476 Node* crc = argument(0); // type: int 5477 Node* src = argument(1); // type: oop 5478 Node* offset = argument(2); // type: int 5479 Node* length = argument(3); // type: int 5480 5481 const Type* src_type = src->Value(&_gvn); 5482 const TypeAryPtr* top_src = src_type->isa_aryptr(); 5483 if (top_src == NULL || top_src->klass() == NULL) { 5484 // failed array check 5485 return false; 5486 } 5487 5488 // Figure out the size and type of the elements we will be copying. 5489 BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5490 if (src_elem != T_BYTE) { 5491 return false; 5492 } 5493 5494 // 'src_start' points to src array + scaled offset 5495 Node* src_start = array_element_address(src, offset, src_elem); 5496 5497 // We assume that range check is done by caller. 5498 // TODO: generate range check (offset+length < src.length) in debug VM. 5499 5500 // Call the stub. 5501 address stubAddr = StubRoutines::updateBytesAdler32(); 5502 const char *stubName = "updateBytesAdler32"; 5503 5504 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(), 5505 stubAddr, stubName, TypePtr::BOTTOM, 5506 crc, src_start, length); 5507 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 5508 set_result(result); 5509 return true; 5510 } 5511 5512 //------------------------------inline_updateByteBufferAdler32--------------- 5513 // 5514 // Calculate Adler32 checksum for DirectByteBuffer. 5515 // int java.util.zip.Adler32.updateByteBuffer(int crc, long buf, int off, int len) 5516 // 5517 bool LibraryCallKit::inline_updateByteBufferAdler32() { 5518 assert(UseAdler32Intrinsics, "Adler32 Instrinsic support need"); // check if we actually need to check this flag or check a different one 5519 assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long"); 5520 assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded"); 5521 // no receiver since it is static method 5522 Node* crc = argument(0); // type: int 5523 Node* src = argument(1); // type: long 5524 Node* offset = argument(3); // type: int 5525 Node* length = argument(4); // type: int 5526 5527 src = ConvL2X(src); // adjust Java long to machine word 5528 Node* base = _gvn.transform(new CastX2PNode(src)); 5529 offset = ConvI2X(offset); 5530 5531 // 'src_start' points to src array + scaled offset 5532 Node* src_start = basic_plus_adr(top(), base, offset); 5533 5534 // Call the stub. 5535 address stubAddr = StubRoutines::updateBytesAdler32(); 5536 const char *stubName = "updateBytesAdler32"; 5537 5538 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(), 5539 stubAddr, stubName, TypePtr::BOTTOM, 5540 crc, src_start, length); 5541 5542 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 5543 set_result(result); 5544 return true; 5545 } 5546 5547 //----------------------------inline_reference_get---------------------------- 5548 // public T java.lang.ref.Reference.get(); 5549 bool LibraryCallKit::inline_reference_get() { 5550 const int referent_offset = java_lang_ref_Reference::referent_offset; 5551 guarantee(referent_offset > 0, "should have already been set"); 5552 5553 // Get the argument: 5554 Node* reference_obj = null_check_receiver(); 5555 if (stopped()) return true; 5556 5557 const TypeInstPtr* tinst = _gvn.type(reference_obj)->isa_instptr(); 5558 assert(tinst != NULL, "obj is null"); 5559 assert(tinst->klass()->is_loaded(), "obj is not loaded"); 5560 ciInstanceKlass* referenceKlass = tinst->klass()->as_instance_klass(); 5561 ciField* field = referenceKlass->get_field_by_name(ciSymbol::make("referent"), 5562 ciSymbol::make("Ljava/lang/Object;"), 5563 false); 5564 assert (field != NULL, "undefined field"); 5565 5566 Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset); 5567 const TypePtr* adr_type = C->alias_type(field)->adr_type(); 5568 5569 ciInstanceKlass* klass = env()->Object_klass(); 5570 const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass); 5571 5572 DecoratorSet decorators = IN_HEAP | ON_WEAK_OOP_REF; 5573 Node* result = access_load_at(reference_obj, adr, adr_type, object_type, T_OBJECT, decorators); 5574 // Add memory barrier to prevent commoning reads from this field 5575 // across safepoint since GC can change its value. 5576 insert_mem_bar(Op_MemBarCPUOrder); 5577 5578 set_result(result); 5579 return true; 5580 } 5581 5582 5583 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, 5584 bool is_exact=true, bool is_static=false, 5585 ciInstanceKlass * fromKls=NULL) { 5586 if (fromKls == NULL) { 5587 const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr(); 5588 assert(tinst != NULL, "obj is null"); 5589 assert(tinst->klass()->is_loaded(), "obj is not loaded"); 5590 assert(!is_exact || tinst->klass_is_exact(), "klass not exact"); 5591 fromKls = tinst->klass()->as_instance_klass(); 5592 } else { 5593 assert(is_static, "only for static field access"); 5594 } 5595 ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName), 5596 ciSymbol::make(fieldTypeString), 5597 is_static); 5598 5599 assert (field != NULL, "undefined field"); 5600 if (field == NULL) return (Node *) NULL; 5601 5602 if (is_static) { 5603 const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror()); 5604 fromObj = makecon(tip); 5605 } 5606 5607 // Next code copied from Parse::do_get_xxx(): 5608 5609 // Compute address and memory type. 5610 int offset = field->offset_in_bytes(); 5611 bool is_vol = field->is_volatile(); 5612 ciType* field_klass = field->type(); 5613 assert(field_klass->is_loaded(), "should be loaded"); 5614 const TypePtr* adr_type = C->alias_type(field)->adr_type(); 5615 Node *adr = basic_plus_adr(fromObj, fromObj, offset); 5616 BasicType bt = field->layout_type(); 5617 5618 // Build the resultant type of the load 5619 const Type *type; 5620 if (bt == T_OBJECT) { 5621 type = TypeOopPtr::make_from_klass(field_klass->as_klass()); 5622 } else { 5623 type = Type::get_const_basic_type(bt); 5624 } 5625 5626 DecoratorSet decorators = IN_HEAP; 5627 5628 if (is_vol) { 5629 decorators |= MO_SEQ_CST; 5630 } 5631 5632 return access_load_at(fromObj, adr, adr_type, type, bt, decorators); 5633 } 5634 5635 Node * LibraryCallKit::field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, 5636 bool is_exact = true, bool is_static = false, 5637 ciInstanceKlass * fromKls = NULL) { 5638 if (fromKls == NULL) { 5639 const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr(); 5640 assert(tinst != NULL, "obj is null"); 5641 assert(tinst->klass()->is_loaded(), "obj is not loaded"); 5642 assert(!is_exact || tinst->klass_is_exact(), "klass not exact"); 5643 fromKls = tinst->klass()->as_instance_klass(); 5644 } 5645 else { 5646 assert(is_static, "only for static field access"); 5647 } 5648 ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName), 5649 ciSymbol::make(fieldTypeString), 5650 is_static); 5651 5652 assert(field != NULL, "undefined field"); 5653 assert(!field->is_volatile(), "not defined for volatile fields"); 5654 5655 if (is_static) { 5656 const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror()); 5657 fromObj = makecon(tip); 5658 } 5659 5660 // Next code copied from Parse::do_get_xxx(): 5661 5662 // Compute address and memory type. 5663 int offset = field->offset_in_bytes(); 5664 Node *adr = basic_plus_adr(fromObj, fromObj, offset); 5665 5666 return adr; 5667 } 5668 5669 //------------------------------inline_aescrypt_Block----------------------- 5670 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) { 5671 address stubAddr = NULL; 5672 const char *stubName; 5673 assert(UseAES, "need AES instruction support"); 5674 5675 switch(id) { 5676 case vmIntrinsics::_aescrypt_encryptBlock: 5677 stubAddr = StubRoutines::aescrypt_encryptBlock(); 5678 stubName = "aescrypt_encryptBlock"; 5679 break; 5680 case vmIntrinsics::_aescrypt_decryptBlock: 5681 stubAddr = StubRoutines::aescrypt_decryptBlock(); 5682 stubName = "aescrypt_decryptBlock"; 5683 break; 5684 default: 5685 break; 5686 } 5687 if (stubAddr == NULL) return false; 5688 5689 Node* aescrypt_object = argument(0); 5690 Node* src = argument(1); 5691 Node* src_offset = argument(2); 5692 Node* dest = argument(3); 5693 Node* dest_offset = argument(4); 5694 5695 // (1) src and dest are arrays. 5696 const Type* src_type = src->Value(&_gvn); 5697 const Type* dest_type = dest->Value(&_gvn); 5698 const TypeAryPtr* top_src = src_type->isa_aryptr(); 5699 const TypeAryPtr* top_dest = dest_type->isa_aryptr(); 5700 assert (top_src != NULL && top_src->klass() != NULL && top_dest != NULL && top_dest->klass() != NULL, "args are strange"); 5701 5702 // for the quick and dirty code we will skip all the checks. 5703 // we are just trying to get the call to be generated. 5704 Node* src_start = src; 5705 Node* dest_start = dest; 5706 if (src_offset != NULL || dest_offset != NULL) { 5707 assert(src_offset != NULL && dest_offset != NULL, ""); 5708 src_start = array_element_address(src, src_offset, T_BYTE); 5709 dest_start = array_element_address(dest, dest_offset, T_BYTE); 5710 } 5711 5712 // now need to get the start of its expanded key array 5713 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 5714 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 5715 if (k_start == NULL) return false; 5716 5717 if (Matcher::pass_original_key_for_aes()) { 5718 // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to 5719 // compatibility issues between Java key expansion and SPARC crypto instructions 5720 Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object); 5721 if (original_k_start == NULL) return false; 5722 5723 // Call the stub. 5724 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(), 5725 stubAddr, stubName, TypePtr::BOTTOM, 5726 src_start, dest_start, k_start, original_k_start); 5727 } else { 5728 // Call the stub. 5729 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(), 5730 stubAddr, stubName, TypePtr::BOTTOM, 5731 src_start, dest_start, k_start); 5732 } 5733 5734 return true; 5735 } 5736 5737 //------------------------------inline_cipherBlockChaining_AESCrypt----------------------- 5738 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) { 5739 address stubAddr = NULL; 5740 const char *stubName = NULL; 5741 5742 assert(UseAES, "need AES instruction support"); 5743 5744 switch(id) { 5745 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 5746 stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt(); 5747 stubName = "cipherBlockChaining_encryptAESCrypt"; 5748 break; 5749 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 5750 stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt(); 5751 stubName = "cipherBlockChaining_decryptAESCrypt"; 5752 break; 5753 default: 5754 break; 5755 } 5756 if (stubAddr == NULL) return false; 5757 5758 Node* cipherBlockChaining_object = argument(0); 5759 Node* src = argument(1); 5760 Node* src_offset = argument(2); 5761 Node* len = argument(3); 5762 Node* dest = argument(4); 5763 Node* dest_offset = argument(5); 5764 5765 // (1) src and dest are arrays. 5766 const Type* src_type = src->Value(&_gvn); 5767 const Type* dest_type = dest->Value(&_gvn); 5768 const TypeAryPtr* top_src = src_type->isa_aryptr(); 5769 const TypeAryPtr* top_dest = dest_type->isa_aryptr(); 5770 assert (top_src != NULL && top_src->klass() != NULL 5771 && top_dest != NULL && top_dest->klass() != NULL, "args are strange"); 5772 5773 // checks are the responsibility of the caller 5774 Node* src_start = src; 5775 Node* dest_start = dest; 5776 if (src_offset != NULL || dest_offset != NULL) { 5777 assert(src_offset != NULL && dest_offset != NULL, ""); 5778 src_start = array_element_address(src, src_offset, T_BYTE); 5779 dest_start = array_element_address(dest, dest_offset, T_BYTE); 5780 } 5781 5782 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 5783 // (because of the predicated logic executed earlier). 5784 // so we cast it here safely. 5785 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 5786 5787 Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false); 5788 if (embeddedCipherObj == NULL) return false; 5789 5790 // cast it to what we know it will be at runtime 5791 const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr(); 5792 assert(tinst != NULL, "CBC obj is null"); 5793 assert(tinst->klass()->is_loaded(), "CBC obj is not loaded"); 5794 ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 5795 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 5796 5797 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 5798 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 5799 const TypeOopPtr* xtype = aklass->as_instance_type(); 5800 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 5801 aescrypt_object = _gvn.transform(aescrypt_object); 5802 5803 // we need to get the start of the aescrypt_object's expanded key array 5804 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 5805 if (k_start == NULL) return false; 5806 5807 // similarly, get the start address of the r vector 5808 Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false); 5809 if (objRvec == NULL) return false; 5810 Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE); 5811 5812 Node* cbcCrypt; 5813 if (Matcher::pass_original_key_for_aes()) { 5814 // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to 5815 // compatibility issues between Java key expansion and SPARC crypto instructions 5816 Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object); 5817 if (original_k_start == NULL) return false; 5818 5819 // Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start 5820 cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 5821 OptoRuntime::cipherBlockChaining_aescrypt_Type(), 5822 stubAddr, stubName, TypePtr::BOTTOM, 5823 src_start, dest_start, k_start, r_start, len, original_k_start); 5824 } else { 5825 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 5826 cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 5827 OptoRuntime::cipherBlockChaining_aescrypt_Type(), 5828 stubAddr, stubName, TypePtr::BOTTOM, 5829 src_start, dest_start, k_start, r_start, len); 5830 } 5831 5832 // return cipher length (int) 5833 Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms)); 5834 set_result(retvalue); 5835 return true; 5836 } 5837 5838 //------------------------------inline_counterMode_AESCrypt----------------------- 5839 bool LibraryCallKit::inline_counterMode_AESCrypt(vmIntrinsics::ID id) { 5840 assert(UseAES, "need AES instruction support"); 5841 if (!UseAESCTRIntrinsics) return false; 5842 5843 address stubAddr = NULL; 5844 const char *stubName = NULL; 5845 if (id == vmIntrinsics::_counterMode_AESCrypt) { 5846 stubAddr = StubRoutines::counterMode_AESCrypt(); 5847 stubName = "counterMode_AESCrypt"; 5848 } 5849 if (stubAddr == NULL) return false; 5850 5851 Node* counterMode_object = argument(0); 5852 Node* src = argument(1); 5853 Node* src_offset = argument(2); 5854 Node* len = argument(3); 5855 Node* dest = argument(4); 5856 Node* dest_offset = argument(5); 5857 5858 // (1) src and dest are arrays. 5859 const Type* src_type = src->Value(&_gvn); 5860 const Type* dest_type = dest->Value(&_gvn); 5861 const TypeAryPtr* top_src = src_type->isa_aryptr(); 5862 const TypeAryPtr* top_dest = dest_type->isa_aryptr(); 5863 assert(top_src != NULL && top_src->klass() != NULL && 5864 top_dest != NULL && top_dest->klass() != NULL, "args are strange"); 5865 5866 // checks are the responsibility of the caller 5867 Node* src_start = src; 5868 Node* dest_start = dest; 5869 if (src_offset != NULL || dest_offset != NULL) { 5870 assert(src_offset != NULL && dest_offset != NULL, ""); 5871 src_start = array_element_address(src, src_offset, T_BYTE); 5872 dest_start = array_element_address(dest, dest_offset, T_BYTE); 5873 } 5874 5875 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 5876 // (because of the predicated logic executed earlier). 5877 // so we cast it here safely. 5878 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 5879 Node* embeddedCipherObj = load_field_from_object(counterMode_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false); 5880 if (embeddedCipherObj == NULL) return false; 5881 // cast it to what we know it will be at runtime 5882 const TypeInstPtr* tinst = _gvn.type(counterMode_object)->isa_instptr(); 5883 assert(tinst != NULL, "CTR obj is null"); 5884 assert(tinst->klass()->is_loaded(), "CTR obj is not loaded"); 5885 ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 5886 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 5887 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 5888 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 5889 const TypeOopPtr* xtype = aklass->as_instance_type(); 5890 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 5891 aescrypt_object = _gvn.transform(aescrypt_object); 5892 // we need to get the start of the aescrypt_object's expanded key array 5893 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 5894 if (k_start == NULL) return false; 5895 // similarly, get the start address of the r vector 5896 Node* obj_counter = load_field_from_object(counterMode_object, "counter", "[B", /*is_exact*/ false); 5897 if (obj_counter == NULL) return false; 5898 Node* cnt_start = array_element_address(obj_counter, intcon(0), T_BYTE); 5899 5900 Node* saved_encCounter = load_field_from_object(counterMode_object, "encryptedCounter", "[B", /*is_exact*/ false); 5901 if (saved_encCounter == NULL) return false; 5902 Node* saved_encCounter_start = array_element_address(saved_encCounter, intcon(0), T_BYTE); 5903 Node* used = field_address_from_object(counterMode_object, "used", "I", /*is_exact*/ false); 5904 5905 Node* ctrCrypt; 5906 if (Matcher::pass_original_key_for_aes()) { 5907 // no SPARC version for AES/CTR intrinsics now. 5908 return false; 5909 } 5910 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 5911 ctrCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 5912 OptoRuntime::counterMode_aescrypt_Type(), 5913 stubAddr, stubName, TypePtr::BOTTOM, 5914 src_start, dest_start, k_start, cnt_start, len, saved_encCounter_start, used); 5915 5916 // return cipher length (int) 5917 Node* retvalue = _gvn.transform(new ProjNode(ctrCrypt, TypeFunc::Parms)); 5918 set_result(retvalue); 5919 return true; 5920 } 5921 5922 //------------------------------get_key_start_from_aescrypt_object----------------------- 5923 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) { 5924 #if defined(PPC64) || defined(S390) 5925 // MixColumns for decryption can be reduced by preprocessing MixColumns with round keys. 5926 // Intel's extention is based on this optimization and AESCrypt generates round keys by preprocessing MixColumns. 5927 // However, ppc64 vncipher processes MixColumns and requires the same round keys with encryption. 5928 // The ppc64 stubs of encryption and decryption use the same round keys (sessionK[0]). 5929 Node* objSessionK = load_field_from_object(aescrypt_object, "sessionK", "[[I", /*is_exact*/ false); 5930 assert (objSessionK != NULL, "wrong version of com.sun.crypto.provider.AESCrypt"); 5931 if (objSessionK == NULL) { 5932 return (Node *) NULL; 5933 } 5934 Node* objAESCryptKey = load_array_element(control(), objSessionK, intcon(0), TypeAryPtr::OOPS); 5935 #else 5936 Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false); 5937 #endif // PPC64 5938 assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt"); 5939 if (objAESCryptKey == NULL) return (Node *) NULL; 5940 5941 // now have the array, need to get the start address of the K array 5942 Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT); 5943 return k_start; 5944 } 5945 5946 //------------------------------get_original_key_start_from_aescrypt_object----------------------- 5947 Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) { 5948 Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false); 5949 assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt"); 5950 if (objAESCryptKey == NULL) return (Node *) NULL; 5951 5952 // now have the array, need to get the start address of the lastKey array 5953 Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE); 5954 return original_k_start; 5955 } 5956 5957 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate---------------------------- 5958 // Return node representing slow path of predicate check. 5959 // the pseudo code we want to emulate with this predicate is: 5960 // for encryption: 5961 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 5962 // for decryption: 5963 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 5964 // note cipher==plain is more conservative than the original java code but that's OK 5965 // 5966 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) { 5967 // The receiver was checked for NULL already. 5968 Node* objCBC = argument(0); 5969 5970 // Load embeddedCipher field of CipherBlockChaining object. 5971 Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false); 5972 5973 // get AESCrypt klass for instanceOf check 5974 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 5975 // will have same classloader as CipherBlockChaining object 5976 const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr(); 5977 assert(tinst != NULL, "CBCobj is null"); 5978 assert(tinst->klass()->is_loaded(), "CBCobj is not loaded"); 5979 5980 // we want to do an instanceof comparison against the AESCrypt class 5981 ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 5982 if (!klass_AESCrypt->is_loaded()) { 5983 // if AESCrypt is not even loaded, we never take the intrinsic fast path 5984 Node* ctrl = control(); 5985 set_control(top()); // no regular fast path 5986 return ctrl; 5987 } 5988 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 5989 5990 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 5991 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 5992 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 5993 5994 Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN); 5995 5996 // for encryption, we are done 5997 if (!decrypting) 5998 return instof_false; // even if it is NULL 5999 6000 // for decryption, we need to add a further check to avoid 6001 // taking the intrinsic path when cipher and plain are the same 6002 // see the original java code for why. 6003 RegionNode* region = new RegionNode(3); 6004 region->init_req(1, instof_false); 6005 Node* src = argument(1); 6006 Node* dest = argument(4); 6007 Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest)); 6008 Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq)); 6009 Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN); 6010 region->init_req(2, src_dest_conjoint); 6011 6012 record_for_igvn(region); 6013 return _gvn.transform(region); 6014 } 6015 6016 //----------------------------inline_counterMode_AESCrypt_predicate---------------------------- 6017 // Return node representing slow path of predicate check. 6018 // the pseudo code we want to emulate with this predicate is: 6019 // for encryption: 6020 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 6021 // for decryption: 6022 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 6023 // note cipher==plain is more conservative than the original java code but that's OK 6024 // 6025 6026 Node* LibraryCallKit::inline_counterMode_AESCrypt_predicate() { 6027 // The receiver was checked for NULL already. 6028 Node* objCTR = argument(0); 6029 6030 // Load embeddedCipher field of CipherBlockChaining object. 6031 Node* embeddedCipherObj = load_field_from_object(objCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false); 6032 6033 // get AESCrypt klass for instanceOf check 6034 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 6035 // will have same classloader as CipherBlockChaining object 6036 const TypeInstPtr* tinst = _gvn.type(objCTR)->isa_instptr(); 6037 assert(tinst != NULL, "CTRobj is null"); 6038 assert(tinst->klass()->is_loaded(), "CTRobj is not loaded"); 6039 6040 // we want to do an instanceof comparison against the AESCrypt class 6041 ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 6042 if (!klass_AESCrypt->is_loaded()) { 6043 // if AESCrypt is not even loaded, we never take the intrinsic fast path 6044 Node* ctrl = control(); 6045 set_control(top()); // no regular fast path 6046 return ctrl; 6047 } 6048 6049 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 6050 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 6051 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 6052 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 6053 Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN); 6054 6055 return instof_false; // even if it is NULL 6056 } 6057 6058 //------------------------------inline_ghash_processBlocks 6059 bool LibraryCallKit::inline_ghash_processBlocks() { 6060 address stubAddr; 6061 const char *stubName; 6062 assert(UseGHASHIntrinsics, "need GHASH intrinsics support"); 6063 6064 stubAddr = StubRoutines::ghash_processBlocks(); 6065 stubName = "ghash_processBlocks"; 6066 6067 Node* data = argument(0); 6068 Node* offset = argument(1); 6069 Node* len = argument(2); 6070 Node* state = argument(3); 6071 Node* subkeyH = argument(4); 6072 6073 Node* state_start = array_element_address(state, intcon(0), T_LONG); 6074 assert(state_start, "state is NULL"); 6075 Node* subkeyH_start = array_element_address(subkeyH, intcon(0), T_LONG); 6076 assert(subkeyH_start, "subkeyH is NULL"); 6077 Node* data_start = array_element_address(data, offset, T_BYTE); 6078 assert(data_start, "data is NULL"); 6079 6080 Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP, 6081 OptoRuntime::ghash_processBlocks_Type(), 6082 stubAddr, stubName, TypePtr::BOTTOM, 6083 state_start, subkeyH_start, data_start, len); 6084 return true; 6085 } 6086 6087 //------------------------------inline_sha_implCompress----------------------- 6088 // 6089 // Calculate SHA (i.e., SHA-1) for single-block byte[] array. 6090 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs) 6091 // 6092 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array. 6093 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs) 6094 // 6095 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array. 6096 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs) 6097 // 6098 bool LibraryCallKit::inline_sha_implCompress(vmIntrinsics::ID id) { 6099 assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters"); 6100 6101 Node* sha_obj = argument(0); 6102 Node* src = argument(1); // type oop 6103 Node* ofs = argument(2); // type int 6104 6105 const Type* src_type = src->Value(&_gvn); 6106 const TypeAryPtr* top_src = src_type->isa_aryptr(); 6107 if (top_src == NULL || top_src->klass() == NULL) { 6108 // failed array check 6109 return false; 6110 } 6111 // Figure out the size and type of the elements we will be copying. 6112 BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 6113 if (src_elem != T_BYTE) { 6114 return false; 6115 } 6116 // 'src_start' points to src array + offset 6117 Node* src_start = array_element_address(src, ofs, src_elem); 6118 Node* state = NULL; 6119 address stubAddr; 6120 const char *stubName; 6121 6122 switch(id) { 6123 case vmIntrinsics::_sha_implCompress: 6124 assert(UseSHA1Intrinsics, "need SHA1 instruction support"); 6125 state = get_state_from_sha_object(sha_obj); 6126 stubAddr = StubRoutines::sha1_implCompress(); 6127 stubName = "sha1_implCompress"; 6128 break; 6129 case vmIntrinsics::_sha2_implCompress: 6130 assert(UseSHA256Intrinsics, "need SHA256 instruction support"); 6131 state = get_state_from_sha_object(sha_obj); 6132 stubAddr = StubRoutines::sha256_implCompress(); 6133 stubName = "sha256_implCompress"; 6134 break; 6135 case vmIntrinsics::_sha5_implCompress: 6136 assert(UseSHA512Intrinsics, "need SHA512 instruction support"); 6137 state = get_state_from_sha5_object(sha_obj); 6138 stubAddr = StubRoutines::sha512_implCompress(); 6139 stubName = "sha512_implCompress"; 6140 break; 6141 default: 6142 fatal_unexpected_iid(id); 6143 return false; 6144 } 6145 if (state == NULL) return false; 6146 6147 // Call the stub. 6148 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::sha_implCompress_Type(), 6149 stubAddr, stubName, TypePtr::BOTTOM, 6150 src_start, state); 6151 6152 return true; 6153 } 6154 6155 //------------------------------inline_digestBase_implCompressMB----------------------- 6156 // 6157 // Calculate SHA/SHA2/SHA5 for multi-block byte[] array. 6158 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit) 6159 // 6160 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) { 6161 assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics, 6162 "need SHA1/SHA256/SHA512 instruction support"); 6163 assert((uint)predicate < 3, "sanity"); 6164 assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters"); 6165 6166 Node* digestBase_obj = argument(0); // The receiver was checked for NULL already. 6167 Node* src = argument(1); // byte[] array 6168 Node* ofs = argument(2); // type int 6169 Node* limit = argument(3); // type int 6170 6171 const Type* src_type = src->Value(&_gvn); 6172 const TypeAryPtr* top_src = src_type->isa_aryptr(); 6173 if (top_src == NULL || top_src->klass() == NULL) { 6174 // failed array check 6175 return false; 6176 } 6177 // Figure out the size and type of the elements we will be copying. 6178 BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 6179 if (src_elem != T_BYTE) { 6180 return false; 6181 } 6182 // 'src_start' points to src array + offset 6183 Node* src_start = array_element_address(src, ofs, src_elem); 6184 6185 const char* klass_SHA_name = NULL; 6186 const char* stub_name = NULL; 6187 address stub_addr = NULL; 6188 bool long_state = false; 6189 6190 switch (predicate) { 6191 case 0: 6192 if (UseSHA1Intrinsics) { 6193 klass_SHA_name = "sun/security/provider/SHA"; 6194 stub_name = "sha1_implCompressMB"; 6195 stub_addr = StubRoutines::sha1_implCompressMB(); 6196 } 6197 break; 6198 case 1: 6199 if (UseSHA256Intrinsics) { 6200 klass_SHA_name = "sun/security/provider/SHA2"; 6201 stub_name = "sha256_implCompressMB"; 6202 stub_addr = StubRoutines::sha256_implCompressMB(); 6203 } 6204 break; 6205 case 2: 6206 if (UseSHA512Intrinsics) { 6207 klass_SHA_name = "sun/security/provider/SHA5"; 6208 stub_name = "sha512_implCompressMB"; 6209 stub_addr = StubRoutines::sha512_implCompressMB(); 6210 long_state = true; 6211 } 6212 break; 6213 default: 6214 fatal("unknown SHA intrinsic predicate: %d", predicate); 6215 } 6216 if (klass_SHA_name != NULL) { 6217 // get DigestBase klass to lookup for SHA klass 6218 const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr(); 6219 assert(tinst != NULL, "digestBase_obj is not instance???"); 6220 assert(tinst->klass()->is_loaded(), "DigestBase is not loaded"); 6221 6222 ciKlass* klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name)); 6223 assert(klass_SHA->is_loaded(), "predicate checks that this class is loaded"); 6224 ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass(); 6225 return inline_sha_implCompressMB(digestBase_obj, instklass_SHA, long_state, stub_addr, stub_name, src_start, ofs, limit); 6226 } 6227 return false; 6228 } 6229 //------------------------------inline_sha_implCompressMB----------------------- 6230 bool LibraryCallKit::inline_sha_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_SHA, 6231 bool long_state, address stubAddr, const char *stubName, 6232 Node* src_start, Node* ofs, Node* limit) { 6233 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_SHA); 6234 const TypeOopPtr* xtype = aklass->as_instance_type(); 6235 Node* sha_obj = new CheckCastPPNode(control(), digestBase_obj, xtype); 6236 sha_obj = _gvn.transform(sha_obj); 6237 6238 Node* state; 6239 if (long_state) { 6240 state = get_state_from_sha5_object(sha_obj); 6241 } else { 6242 state = get_state_from_sha_object(sha_obj); 6243 } 6244 if (state == NULL) return false; 6245 6246 // Call the stub. 6247 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 6248 OptoRuntime::digestBase_implCompressMB_Type(), 6249 stubAddr, stubName, TypePtr::BOTTOM, 6250 src_start, state, ofs, limit); 6251 // return ofs (int) 6252 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6253 set_result(result); 6254 6255 return true; 6256 } 6257 6258 //------------------------------get_state_from_sha_object----------------------- 6259 Node * LibraryCallKit::get_state_from_sha_object(Node *sha_object) { 6260 Node* sha_state = load_field_from_object(sha_object, "state", "[I", /*is_exact*/ false); 6261 assert (sha_state != NULL, "wrong version of sun.security.provider.SHA/SHA2"); 6262 if (sha_state == NULL) return (Node *) NULL; 6263 6264 // now have the array, need to get the start address of the state array 6265 Node* state = array_element_address(sha_state, intcon(0), T_INT); 6266 return state; 6267 } 6268 6269 //------------------------------get_state_from_sha5_object----------------------- 6270 Node * LibraryCallKit::get_state_from_sha5_object(Node *sha_object) { 6271 Node* sha_state = load_field_from_object(sha_object, "state", "[J", /*is_exact*/ false); 6272 assert (sha_state != NULL, "wrong version of sun.security.provider.SHA5"); 6273 if (sha_state == NULL) return (Node *) NULL; 6274 6275 // now have the array, need to get the start address of the state array 6276 Node* state = array_element_address(sha_state, intcon(0), T_LONG); 6277 return state; 6278 } 6279 6280 //----------------------------inline_digestBase_implCompressMB_predicate---------------------------- 6281 // Return node representing slow path of predicate check. 6282 // the pseudo code we want to emulate with this predicate is: 6283 // if (digestBaseObj instanceof SHA/SHA2/SHA5) do_intrinsic, else do_javapath 6284 // 6285 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) { 6286 assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics, 6287 "need SHA1/SHA256/SHA512 instruction support"); 6288 assert((uint)predicate < 3, "sanity"); 6289 6290 // The receiver was checked for NULL already. 6291 Node* digestBaseObj = argument(0); 6292 6293 // get DigestBase klass for instanceOf check 6294 const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr(); 6295 assert(tinst != NULL, "digestBaseObj is null"); 6296 assert(tinst->klass()->is_loaded(), "DigestBase is not loaded"); 6297 6298 const char* klass_SHA_name = NULL; 6299 switch (predicate) { 6300 case 0: 6301 if (UseSHA1Intrinsics) { 6302 // we want to do an instanceof comparison against the SHA class 6303 klass_SHA_name = "sun/security/provider/SHA"; 6304 } 6305 break; 6306 case 1: 6307 if (UseSHA256Intrinsics) { 6308 // we want to do an instanceof comparison against the SHA2 class 6309 klass_SHA_name = "sun/security/provider/SHA2"; 6310 } 6311 break; 6312 case 2: 6313 if (UseSHA512Intrinsics) { 6314 // we want to do an instanceof comparison against the SHA5 class 6315 klass_SHA_name = "sun/security/provider/SHA5"; 6316 } 6317 break; 6318 default: 6319 fatal("unknown SHA intrinsic predicate: %d", predicate); 6320 } 6321 6322 ciKlass* klass_SHA = NULL; 6323 if (klass_SHA_name != NULL) { 6324 klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name)); 6325 } 6326 if ((klass_SHA == NULL) || !klass_SHA->is_loaded()) { 6327 // if none of SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path 6328 Node* ctrl = control(); 6329 set_control(top()); // no intrinsic path 6330 return ctrl; 6331 } 6332 ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass(); 6333 6334 Node* instofSHA = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass_SHA))); 6335 Node* cmp_instof = _gvn.transform(new CmpINode(instofSHA, intcon(1))); 6336 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 6337 Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN); 6338 6339 return instof_false; // even if it is NULL 6340 } 6341 6342 //-------------inline_fma----------------------------------- 6343 bool LibraryCallKit::inline_fma(vmIntrinsics::ID id) { 6344 Node *a = NULL; 6345 Node *b = NULL; 6346 Node *c = NULL; 6347 Node* result = NULL; 6348 switch (id) { 6349 case vmIntrinsics::_fmaD: 6350 assert(callee()->signature()->size() == 6, "fma has 3 parameters of size 2 each."); 6351 // no receiver since it is static method 6352 a = round_double_node(argument(0)); 6353 b = round_double_node(argument(2)); 6354 c = round_double_node(argument(4)); 6355 result = _gvn.transform(new FmaDNode(control(), a, b, c)); 6356 break; 6357 case vmIntrinsics::_fmaF: 6358 assert(callee()->signature()->size() == 3, "fma has 3 parameters of size 1 each."); 6359 a = argument(0); 6360 b = argument(1); 6361 c = argument(2); 6362 result = _gvn.transform(new FmaFNode(control(), a, b, c)); 6363 break; 6364 default: 6365 fatal_unexpected_iid(id); break; 6366 } 6367 set_result(result); 6368 return true; 6369 } 6370 6371 bool LibraryCallKit::inline_profileBoolean() { 6372 Node* counts = argument(1); 6373 const TypeAryPtr* ary = NULL; 6374 ciArray* aobj = NULL; 6375 if (counts->is_Con() 6376 && (ary = counts->bottom_type()->isa_aryptr()) != NULL 6377 && (aobj = ary->const_oop()->as_array()) != NULL 6378 && (aobj->length() == 2)) { 6379 // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively. 6380 jint false_cnt = aobj->element_value(0).as_int(); 6381 jint true_cnt = aobj->element_value(1).as_int(); 6382 6383 if (C->log() != NULL) { 6384 C->log()->elem("observe source='profileBoolean' false='%d' true='%d'", 6385 false_cnt, true_cnt); 6386 } 6387 6388 if (false_cnt + true_cnt == 0) { 6389 // According to profile, never executed. 6390 uncommon_trap_exact(Deoptimization::Reason_intrinsic, 6391 Deoptimization::Action_reinterpret); 6392 return true; 6393 } 6394 6395 // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt) 6396 // is a number of each value occurrences. 6397 Node* result = argument(0); 6398 if (false_cnt == 0 || true_cnt == 0) { 6399 // According to profile, one value has been never seen. 6400 int expected_val = (false_cnt == 0) ? 1 : 0; 6401 6402 Node* cmp = _gvn.transform(new CmpINode(result, intcon(expected_val))); 6403 Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 6404 6405 IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN); 6406 Node* fast_path = _gvn.transform(new IfTrueNode(check)); 6407 Node* slow_path = _gvn.transform(new IfFalseNode(check)); 6408 6409 { // Slow path: uncommon trap for never seen value and then reexecute 6410 // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows 6411 // the value has been seen at least once. 6412 PreserveJVMState pjvms(this); 6413 PreserveReexecuteState preexecs(this); 6414 jvms()->set_should_reexecute(true); 6415 6416 set_control(slow_path); 6417 set_i_o(i_o()); 6418 6419 uncommon_trap_exact(Deoptimization::Reason_intrinsic, 6420 Deoptimization::Action_reinterpret); 6421 } 6422 // The guard for never seen value enables sharpening of the result and 6423 // returning a constant. It allows to eliminate branches on the same value 6424 // later on. 6425 set_control(fast_path); 6426 result = intcon(expected_val); 6427 } 6428 // Stop profiling. 6429 // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode. 6430 // By replacing method body with profile data (represented as ProfileBooleanNode 6431 // on IR level) we effectively disable profiling. 6432 // It enables full speed execution once optimized code is generated. 6433 Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt)); 6434 C->record_for_igvn(profile); 6435 set_result(profile); 6436 return true; 6437 } else { 6438 // Continue profiling. 6439 // Profile data isn't available at the moment. So, execute method's bytecode version. 6440 // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod 6441 // is compiled and counters aren't available since corresponding MethodHandle 6442 // isn't a compile-time constant. 6443 return false; 6444 } 6445 } 6446 6447 bool LibraryCallKit::inline_isCompileConstant() { 6448 Node* n = argument(0); 6449 set_result(n->is_Con() ? intcon(1) : intcon(0)); 6450 return true; 6451 }