1 /* 2 * Copyright (c) 2000, 2017, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "c1/c1_InstructionPrinter.hpp" 27 #include "c1/c1_LIR.hpp" 28 #include "c1/c1_LIRAssembler.hpp" 29 #include "c1/c1_ValueStack.hpp" 30 #include "ci/ciInstance.hpp" 31 #include "runtime/sharedRuntime.hpp" 32 33 Register LIR_OprDesc::as_register() const { 34 return FrameMap::cpu_rnr2reg(cpu_regnr()); 35 } 36 37 Register LIR_OprDesc::as_register_lo() const { 38 return FrameMap::cpu_rnr2reg(cpu_regnrLo()); 39 } 40 41 Register LIR_OprDesc::as_register_hi() const { 42 return FrameMap::cpu_rnr2reg(cpu_regnrHi()); 43 } 44 45 LIR_Opr LIR_OprFact::illegalOpr = LIR_OprFact::illegal(); 46 47 LIR_Opr LIR_OprFact::value_type(ValueType* type) { 48 ValueTag tag = type->tag(); 49 switch (tag) { 50 case metaDataTag : { 51 ClassConstant* c = type->as_ClassConstant(); 52 if (c != NULL && !c->value()->is_loaded()) { 53 return LIR_OprFact::metadataConst(NULL); 54 } else if (c != NULL) { 55 return LIR_OprFact::metadataConst(c->value()->constant_encoding()); 56 } else { 57 MethodConstant* m = type->as_MethodConstant(); 58 assert (m != NULL, "not a class or a method?"); 59 return LIR_OprFact::metadataConst(m->value()->constant_encoding()); 60 } 61 } 62 case objectTag : { 63 return LIR_OprFact::oopConst(type->as_ObjectType()->encoding()); 64 } 65 case addressTag: return LIR_OprFact::addressConst(type->as_AddressConstant()->value()); 66 case intTag : return LIR_OprFact::intConst(type->as_IntConstant()->value()); 67 case floatTag : return LIR_OprFact::floatConst(type->as_FloatConstant()->value()); 68 case longTag : return LIR_OprFact::longConst(type->as_LongConstant()->value()); 69 case doubleTag : return LIR_OprFact::doubleConst(type->as_DoubleConstant()->value()); 70 default: ShouldNotReachHere(); return LIR_OprFact::intConst(-1); 71 } 72 } 73 74 75 LIR_Opr LIR_OprFact::dummy_value_type(ValueType* type) { 76 switch (type->tag()) { 77 case objectTag: return LIR_OprFact::oopConst(NULL); 78 case addressTag:return LIR_OprFact::addressConst(0); 79 case intTag: return LIR_OprFact::intConst(0); 80 case floatTag: return LIR_OprFact::floatConst(0.0); 81 case longTag: return LIR_OprFact::longConst(0); 82 case doubleTag: return LIR_OprFact::doubleConst(0.0); 83 default: ShouldNotReachHere(); return LIR_OprFact::intConst(-1); 84 } 85 return illegalOpr; 86 } 87 88 89 90 //--------------------------------------------------- 91 92 93 LIR_Address::Scale LIR_Address::scale(BasicType type) { 94 int elem_size = type2aelembytes(type); 95 switch (elem_size) { 96 case 1: return LIR_Address::times_1; 97 case 2: return LIR_Address::times_2; 98 case 4: return LIR_Address::times_4; 99 case 8: return LIR_Address::times_8; 100 } 101 ShouldNotReachHere(); 102 return LIR_Address::times_1; 103 } 104 105 //--------------------------------------------------- 106 107 char LIR_OprDesc::type_char(BasicType t) { 108 switch (t) { 109 case T_ARRAY: 110 t = T_OBJECT; 111 case T_BOOLEAN: 112 case T_CHAR: 113 case T_FLOAT: 114 case T_DOUBLE: 115 case T_BYTE: 116 case T_SHORT: 117 case T_INT: 118 case T_LONG: 119 case T_OBJECT: 120 case T_ADDRESS: 121 case T_VOID: 122 return ::type2char(t); 123 case T_METADATA: 124 return 'M'; 125 case T_ILLEGAL: 126 return '?'; 127 128 default: 129 ShouldNotReachHere(); 130 return '?'; 131 } 132 } 133 134 #ifndef PRODUCT 135 void LIR_OprDesc::validate_type() const { 136 137 #ifdef ASSERT 138 if (!is_pointer() && !is_illegal()) { 139 OprKind kindfield = kind_field(); // Factored out because of compiler bug, see 8002160 140 switch (as_BasicType(type_field())) { 141 case T_LONG: 142 assert((kindfield == cpu_register || kindfield == stack_value) && 143 size_field() == double_size, "must match"); 144 break; 145 case T_FLOAT: 146 // FP return values can be also in CPU registers on ARM and PPC32 (softfp ABI) 147 assert((kindfield == fpu_register || kindfield == stack_value 148 ARM_ONLY(|| kindfield == cpu_register) 149 PPC32_ONLY(|| kindfield == cpu_register) ) && 150 size_field() == single_size, "must match"); 151 break; 152 case T_DOUBLE: 153 // FP return values can be also in CPU registers on ARM and PPC32 (softfp ABI) 154 assert((kindfield == fpu_register || kindfield == stack_value 155 ARM_ONLY(|| kindfield == cpu_register) 156 PPC32_ONLY(|| kindfield == cpu_register) ) && 157 size_field() == double_size, "must match"); 158 break; 159 case T_BOOLEAN: 160 case T_CHAR: 161 case T_BYTE: 162 case T_SHORT: 163 case T_INT: 164 case T_ADDRESS: 165 case T_OBJECT: 166 case T_METADATA: 167 case T_ARRAY: 168 assert((kindfield == cpu_register || kindfield == stack_value) && 169 size_field() == single_size, "must match"); 170 break; 171 172 case T_ILLEGAL: 173 // XXX TKR also means unknown right now 174 // assert(is_illegal(), "must match"); 175 break; 176 177 default: 178 ShouldNotReachHere(); 179 } 180 } 181 #endif 182 183 } 184 #endif // PRODUCT 185 186 187 bool LIR_OprDesc::is_oop() const { 188 if (is_pointer()) { 189 return pointer()->is_oop_pointer(); 190 } else { 191 OprType t= type_field(); 192 assert(t != unknown_type, "not set"); 193 return t == object_type; 194 } 195 } 196 197 198 199 void LIR_Op2::verify() const { 200 #ifdef ASSERT 201 switch (code()) { 202 case lir_cmove: 203 case lir_xchg: 204 break; 205 206 default: 207 assert(!result_opr()->is_register() || !result_opr()->is_oop_register(), 208 "can't produce oops from arith"); 209 } 210 211 if (TwoOperandLIRForm) { 212 213 #ifdef ASSERT 214 bool threeOperandForm = false; 215 #ifdef S390 216 // There are 3 operand shifts on S390 (see LIR_Assembler::shift_op()). 217 threeOperandForm = 218 code() == lir_shl || 219 ((code() == lir_shr || code() == lir_ushr) && (result_opr()->is_double_cpu() || in_opr1()->type() == T_OBJECT)); 220 #endif 221 #endif 222 223 switch (code()) { 224 case lir_add: 225 case lir_sub: 226 case lir_mul: 227 case lir_mul_strictfp: 228 case lir_div: 229 case lir_div_strictfp: 230 case lir_rem: 231 case lir_logic_and: 232 case lir_logic_or: 233 case lir_logic_xor: 234 case lir_shl: 235 case lir_shr: 236 assert(in_opr1() == result_opr() || threeOperandForm, "opr1 and result must match"); 237 assert(in_opr1()->is_valid() && in_opr2()->is_valid(), "must be valid"); 238 break; 239 240 // special handling for lir_ushr because of write barriers 241 case lir_ushr: 242 assert(in_opr1() == result_opr() || in_opr2()->is_constant() || threeOperandForm, "opr1 and result must match or shift count is constant"); 243 assert(in_opr1()->is_valid() && in_opr2()->is_valid(), "must be valid"); 244 break; 245 246 default: 247 break; 248 } 249 } 250 #endif 251 } 252 253 254 LIR_OpBranch::LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block) 255 : LIR_Op(lir_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*)NULL) 256 , _cond(cond) 257 , _type(type) 258 , _label(block->label()) 259 , _block(block) 260 , _ublock(NULL) 261 , _stub(NULL) { 262 } 263 264 LIR_OpBranch::LIR_OpBranch(LIR_Condition cond, BasicType type, CodeStub* stub) : 265 LIR_Op(lir_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*)NULL) 266 , _cond(cond) 267 , _type(type) 268 , _label(stub->entry()) 269 , _block(NULL) 270 , _ublock(NULL) 271 , _stub(stub) { 272 } 273 274 LIR_OpBranch::LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block, BlockBegin* ublock) 275 : LIR_Op(lir_cond_float_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*)NULL) 276 , _cond(cond) 277 , _type(type) 278 , _label(block->label()) 279 , _block(block) 280 , _ublock(ublock) 281 , _stub(NULL) 282 { 283 } 284 285 void LIR_OpBranch::change_block(BlockBegin* b) { 286 assert(_block != NULL, "must have old block"); 287 assert(_block->label() == label(), "must be equal"); 288 289 _block = b; 290 _label = b->label(); 291 } 292 293 void LIR_OpBranch::change_ublock(BlockBegin* b) { 294 assert(_ublock != NULL, "must have old block"); 295 _ublock = b; 296 } 297 298 void LIR_OpBranch::negate_cond() { 299 switch (_cond) { 300 case lir_cond_equal: _cond = lir_cond_notEqual; break; 301 case lir_cond_notEqual: _cond = lir_cond_equal; break; 302 case lir_cond_less: _cond = lir_cond_greaterEqual; break; 303 case lir_cond_lessEqual: _cond = lir_cond_greater; break; 304 case lir_cond_greaterEqual: _cond = lir_cond_less; break; 305 case lir_cond_greater: _cond = lir_cond_lessEqual; break; 306 default: ShouldNotReachHere(); 307 } 308 } 309 310 311 LIR_OpTypeCheck::LIR_OpTypeCheck(LIR_Code code, LIR_Opr result, LIR_Opr object, ciKlass* klass, 312 LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, 313 bool fast_check, CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, 314 CodeStub* stub) 315 316 : LIR_Op(code, result, NULL) 317 , _object(object) 318 , _array(LIR_OprFact::illegalOpr) 319 , _klass(klass) 320 , _tmp1(tmp1) 321 , _tmp2(tmp2) 322 , _tmp3(tmp3) 323 , _fast_check(fast_check) 324 , _stub(stub) 325 , _info_for_patch(info_for_patch) 326 , _info_for_exception(info_for_exception) 327 , _profiled_method(NULL) 328 , _profiled_bci(-1) 329 , _should_profile(false) 330 { 331 if (code == lir_checkcast) { 332 assert(info_for_exception != NULL, "checkcast throws exceptions"); 333 } else if (code == lir_instanceof) { 334 assert(info_for_exception == NULL, "instanceof throws no exceptions"); 335 } else { 336 ShouldNotReachHere(); 337 } 338 } 339 340 341 342 LIR_OpTypeCheck::LIR_OpTypeCheck(LIR_Code code, LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception) 343 : LIR_Op(code, LIR_OprFact::illegalOpr, NULL) 344 , _object(object) 345 , _array(array) 346 , _klass(NULL) 347 , _tmp1(tmp1) 348 , _tmp2(tmp2) 349 , _tmp3(tmp3) 350 , _fast_check(false) 351 , _stub(NULL) 352 , _info_for_patch(NULL) 353 , _info_for_exception(info_for_exception) 354 , _profiled_method(NULL) 355 , _profiled_bci(-1) 356 , _should_profile(false) 357 { 358 if (code == lir_store_check) { 359 _stub = new ArrayStoreExceptionStub(object, info_for_exception); 360 assert(info_for_exception != NULL, "store_check throws exceptions"); 361 } else { 362 ShouldNotReachHere(); 363 } 364 } 365 366 367 LIR_OpArrayCopy::LIR_OpArrayCopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, 368 LIR_Opr tmp, ciArrayKlass* expected_type, int flags, CodeEmitInfo* info) 369 : LIR_Op(lir_arraycopy, LIR_OprFact::illegalOpr, info) 370 , _tmp(tmp) 371 , _src(src) 372 , _src_pos(src_pos) 373 , _dst(dst) 374 , _dst_pos(dst_pos) 375 , _flags(flags) 376 , _expected_type(expected_type) 377 , _length(length) { 378 _stub = new ArrayCopyStub(this); 379 } 380 381 LIR_OpUpdateCRC32::LIR_OpUpdateCRC32(LIR_Opr crc, LIR_Opr val, LIR_Opr res) 382 : LIR_Op(lir_updatecrc32, res, NULL) 383 , _crc(crc) 384 , _val(val) { 385 } 386 387 //-------------------verify-------------------------- 388 389 void LIR_Op1::verify() const { 390 switch(code()) { 391 case lir_move: 392 assert(in_opr()->is_valid() && result_opr()->is_valid(), "must be"); 393 break; 394 case lir_null_check: 395 assert(in_opr()->is_register(), "must be"); 396 break; 397 case lir_return: 398 assert(in_opr()->is_register() || in_opr()->is_illegal(), "must be"); 399 break; 400 default: 401 break; 402 } 403 } 404 405 void LIR_OpRTCall::verify() const { 406 assert(strcmp(Runtime1::name_for_address(addr()), "<unknown function>") != 0, "unknown function"); 407 } 408 409 //-------------------visits-------------------------- 410 411 // complete rework of LIR instruction visitor. 412 // The virtual call for each instruction type is replaced by a big 413 // switch that adds the operands for each instruction 414 415 void LIR_OpVisitState::visit(LIR_Op* op) { 416 // copy information from the LIR_Op 417 reset(); 418 set_op(op); 419 420 switch (op->code()) { 421 422 // LIR_Op0 423 case lir_word_align: // result and info always invalid 424 case lir_backwardbranch_target: // result and info always invalid 425 case lir_build_frame: // result and info always invalid 426 case lir_fpop_raw: // result and info always invalid 427 case lir_24bit_FPU: // result and info always invalid 428 case lir_reset_FPU: // result and info always invalid 429 case lir_breakpoint: // result and info always invalid 430 case lir_membar: // result and info always invalid 431 case lir_membar_acquire: // result and info always invalid 432 case lir_membar_release: // result and info always invalid 433 case lir_membar_loadload: // result and info always invalid 434 case lir_membar_storestore: // result and info always invalid 435 case lir_membar_loadstore: // result and info always invalid 436 case lir_membar_storeload: // result and info always invalid 437 case lir_on_spin_wait: 438 { 439 assert(op->as_Op0() != NULL, "must be"); 440 assert(op->_info == NULL, "info not used by this instruction"); 441 assert(op->_result->is_illegal(), "not used"); 442 break; 443 } 444 445 case lir_nop: // may have info, result always invalid 446 case lir_std_entry: // may have result, info always invalid 447 case lir_osr_entry: // may have result, info always invalid 448 case lir_get_thread: // may have result, info always invalid 449 case lir_random: // 450 { 451 assert(op->as_Op0() != NULL, "must be"); 452 if (op->_info != NULL) do_info(op->_info); 453 if (op->_result->is_valid()) do_output(op->_result); 454 break; 455 } 456 457 458 // LIR_OpLabel 459 case lir_label: // result and info always invalid 460 { 461 assert(op->as_OpLabel() != NULL, "must be"); 462 assert(op->_info == NULL, "info not used by this instruction"); 463 assert(op->_result->is_illegal(), "not used"); 464 break; 465 } 466 467 468 // LIR_Op1 469 case lir_fxch: // input always valid, result and info always invalid 470 case lir_fld: // input always valid, result and info always invalid 471 case lir_ffree: // input always valid, result and info always invalid 472 case lir_push: // input always valid, result and info always invalid 473 case lir_pop: // input always valid, result and info always invalid 474 case lir_return: // input always valid, result and info always invalid 475 case lir_leal: // input and result always valid, info always invalid 476 case lir_neg: // input and result always valid, info always invalid 477 case lir_monaddr: // input and result always valid, info always invalid 478 case lir_null_check: // input and info always valid, result always invalid 479 case lir_move: // input and result always valid, may have info 480 case lir_pack64: // input and result always valid 481 case lir_unpack64: // input and result always valid 482 { 483 assert(op->as_Op1() != NULL, "must be"); 484 LIR_Op1* op1 = (LIR_Op1*)op; 485 486 if (op1->_info) do_info(op1->_info); 487 if (op1->_opr->is_valid()) do_input(op1->_opr); 488 if (op1->_result->is_valid()) do_output(op1->_result); 489 490 break; 491 } 492 493 case lir_safepoint: 494 { 495 assert(op->as_Op1() != NULL, "must be"); 496 LIR_Op1* op1 = (LIR_Op1*)op; 497 498 assert(op1->_info != NULL, ""); do_info(op1->_info); 499 if (op1->_opr->is_valid()) do_temp(op1->_opr); // safepoints on SPARC need temporary register 500 assert(op1->_result->is_illegal(), "safepoint does not produce value"); 501 502 break; 503 } 504 505 // LIR_OpConvert; 506 case lir_convert: // input and result always valid, info always invalid 507 { 508 assert(op->as_OpConvert() != NULL, "must be"); 509 LIR_OpConvert* opConvert = (LIR_OpConvert*)op; 510 511 assert(opConvert->_info == NULL, "must be"); 512 if (opConvert->_opr->is_valid()) do_input(opConvert->_opr); 513 if (opConvert->_result->is_valid()) do_output(opConvert->_result); 514 #ifdef PPC32 515 if (opConvert->_tmp1->is_valid()) do_temp(opConvert->_tmp1); 516 if (opConvert->_tmp2->is_valid()) do_temp(opConvert->_tmp2); 517 #endif 518 do_stub(opConvert->_stub); 519 520 break; 521 } 522 523 // LIR_OpBranch; 524 case lir_branch: // may have info, input and result register always invalid 525 case lir_cond_float_branch: // may have info, input and result register always invalid 526 { 527 assert(op->as_OpBranch() != NULL, "must be"); 528 LIR_OpBranch* opBranch = (LIR_OpBranch*)op; 529 530 if (opBranch->_info != NULL) do_info(opBranch->_info); 531 assert(opBranch->_result->is_illegal(), "not used"); 532 if (opBranch->_stub != NULL) opBranch->stub()->visit(this); 533 534 break; 535 } 536 537 538 // LIR_OpAllocObj 539 case lir_alloc_object: 540 { 541 assert(op->as_OpAllocObj() != NULL, "must be"); 542 LIR_OpAllocObj* opAllocObj = (LIR_OpAllocObj*)op; 543 544 if (opAllocObj->_info) do_info(opAllocObj->_info); 545 if (opAllocObj->_opr->is_valid()) { do_input(opAllocObj->_opr); 546 do_temp(opAllocObj->_opr); 547 } 548 if (opAllocObj->_tmp1->is_valid()) do_temp(opAllocObj->_tmp1); 549 if (opAllocObj->_tmp2->is_valid()) do_temp(opAllocObj->_tmp2); 550 if (opAllocObj->_tmp3->is_valid()) do_temp(opAllocObj->_tmp3); 551 if (opAllocObj->_tmp4->is_valid()) do_temp(opAllocObj->_tmp4); 552 if (opAllocObj->_result->is_valid()) do_output(opAllocObj->_result); 553 do_stub(opAllocObj->_stub); 554 break; 555 } 556 557 558 // LIR_OpRoundFP; 559 case lir_roundfp: { 560 assert(op->as_OpRoundFP() != NULL, "must be"); 561 LIR_OpRoundFP* opRoundFP = (LIR_OpRoundFP*)op; 562 563 assert(op->_info == NULL, "info not used by this instruction"); 564 assert(opRoundFP->_tmp->is_illegal(), "not used"); 565 do_input(opRoundFP->_opr); 566 do_output(opRoundFP->_result); 567 568 break; 569 } 570 571 572 // LIR_Op2 573 case lir_cmp: 574 case lir_cmp_l2i: 575 case lir_ucmp_fd2i: 576 case lir_cmp_fd2i: 577 case lir_add: 578 case lir_sub: 579 case lir_mul: 580 case lir_div: 581 case lir_rem: 582 case lir_sqrt: 583 case lir_abs: 584 case lir_logic_and: 585 case lir_logic_or: 586 case lir_logic_xor: 587 case lir_shl: 588 case lir_shr: 589 case lir_ushr: 590 case lir_xadd: 591 case lir_xchg: 592 case lir_assert: 593 { 594 assert(op->as_Op2() != NULL, "must be"); 595 LIR_Op2* op2 = (LIR_Op2*)op; 596 assert(op2->_tmp2->is_illegal() && op2->_tmp3->is_illegal() && 597 op2->_tmp4->is_illegal() && op2->_tmp5->is_illegal(), "not used"); 598 599 if (op2->_info) do_info(op2->_info); 600 if (op2->_opr1->is_valid()) do_input(op2->_opr1); 601 if (op2->_opr2->is_valid()) do_input(op2->_opr2); 602 if (op2->_tmp1->is_valid()) do_temp(op2->_tmp1); 603 if (op2->_result->is_valid()) do_output(op2->_result); 604 if (op->code() == lir_xchg || op->code() == lir_xadd) { 605 // on ARM and PPC, return value is loaded first so could 606 // destroy inputs. On other platforms that implement those 607 // (x86, sparc), the extra constrainsts are harmless. 608 if (op2->_opr1->is_valid()) do_temp(op2->_opr1); 609 if (op2->_opr2->is_valid()) do_temp(op2->_opr2); 610 } 611 612 break; 613 } 614 615 // special handling for cmove: right input operand must not be equal 616 // to the result operand, otherwise the backend fails 617 case lir_cmove: 618 { 619 assert(op->as_Op2() != NULL, "must be"); 620 LIR_Op2* op2 = (LIR_Op2*)op; 621 622 assert(op2->_info == NULL && op2->_tmp1->is_illegal() && op2->_tmp2->is_illegal() && 623 op2->_tmp3->is_illegal() && op2->_tmp4->is_illegal() && op2->_tmp5->is_illegal(), "not used"); 624 assert(op2->_opr1->is_valid() && op2->_opr2->is_valid() && op2->_result->is_valid(), "used"); 625 626 do_input(op2->_opr1); 627 do_input(op2->_opr2); 628 do_temp(op2->_opr2); 629 do_output(op2->_result); 630 631 break; 632 } 633 634 // vspecial handling for strict operations: register input operands 635 // as temp to guarantee that they do not overlap with other 636 // registers 637 case lir_mul_strictfp: 638 case lir_div_strictfp: 639 { 640 assert(op->as_Op2() != NULL, "must be"); 641 LIR_Op2* op2 = (LIR_Op2*)op; 642 643 assert(op2->_info == NULL, "not used"); 644 assert(op2->_opr1->is_valid(), "used"); 645 assert(op2->_opr2->is_valid(), "used"); 646 assert(op2->_result->is_valid(), "used"); 647 assert(op2->_tmp2->is_illegal() && op2->_tmp3->is_illegal() && 648 op2->_tmp4->is_illegal() && op2->_tmp5->is_illegal(), "not used"); 649 650 do_input(op2->_opr1); do_temp(op2->_opr1); 651 do_input(op2->_opr2); do_temp(op2->_opr2); 652 if (op2->_tmp1->is_valid()) do_temp(op2->_tmp1); 653 do_output(op2->_result); 654 655 break; 656 } 657 658 case lir_throw: { 659 assert(op->as_Op2() != NULL, "must be"); 660 LIR_Op2* op2 = (LIR_Op2*)op; 661 662 if (op2->_info) do_info(op2->_info); 663 if (op2->_opr1->is_valid()) do_temp(op2->_opr1); 664 if (op2->_opr2->is_valid()) do_input(op2->_opr2); // exception object is input parameter 665 assert(op2->_result->is_illegal(), "no result"); 666 assert(op2->_tmp2->is_illegal() && op2->_tmp3->is_illegal() && 667 op2->_tmp4->is_illegal() && op2->_tmp5->is_illegal(), "not used"); 668 669 break; 670 } 671 672 case lir_unwind: { 673 assert(op->as_Op1() != NULL, "must be"); 674 LIR_Op1* op1 = (LIR_Op1*)op; 675 676 assert(op1->_info == NULL, "no info"); 677 assert(op1->_opr->is_valid(), "exception oop"); do_input(op1->_opr); 678 assert(op1->_result->is_illegal(), "no result"); 679 680 break; 681 } 682 683 // LIR_Op3 684 case lir_idiv: 685 case lir_irem: { 686 assert(op->as_Op3() != NULL, "must be"); 687 LIR_Op3* op3= (LIR_Op3*)op; 688 689 if (op3->_info) do_info(op3->_info); 690 if (op3->_opr1->is_valid()) do_input(op3->_opr1); 691 692 // second operand is input and temp, so ensure that second operand 693 // and third operand get not the same register 694 if (op3->_opr2->is_valid()) do_input(op3->_opr2); 695 if (op3->_opr2->is_valid()) do_temp(op3->_opr2); 696 if (op3->_opr3->is_valid()) do_temp(op3->_opr3); 697 698 if (op3->_result->is_valid()) do_output(op3->_result); 699 700 break; 701 } 702 703 case lir_fmad: 704 case lir_fmaf: { 705 assert(op->as_Op3() != NULL, "must be"); 706 LIR_Op3* op3= (LIR_Op3*)op; 707 assert(op3->_info == NULL, "no info"); 708 do_input(op3->_opr1); 709 do_input(op3->_opr2); 710 do_input(op3->_opr3); 711 do_output(op3->_result); 712 break; 713 } 714 715 // LIR_OpJavaCall 716 case lir_static_call: 717 case lir_optvirtual_call: 718 case lir_icvirtual_call: 719 case lir_virtual_call: 720 case lir_dynamic_call: { 721 LIR_OpJavaCall* opJavaCall = op->as_OpJavaCall(); 722 assert(opJavaCall != NULL, "must be"); 723 724 if (opJavaCall->_receiver->is_valid()) do_input(opJavaCall->_receiver); 725 726 // only visit register parameters 727 int n = opJavaCall->_arguments->length(); 728 for (int i = opJavaCall->_receiver->is_valid() ? 1 : 0; i < n; i++) { 729 if (!opJavaCall->_arguments->at(i)->is_pointer()) { 730 do_input(*opJavaCall->_arguments->adr_at(i)); 731 } 732 } 733 734 if (opJavaCall->_info) do_info(opJavaCall->_info); 735 if (FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr && 736 opJavaCall->is_method_handle_invoke()) { 737 opJavaCall->_method_handle_invoke_SP_save_opr = FrameMap::method_handle_invoke_SP_save_opr(); 738 do_temp(opJavaCall->_method_handle_invoke_SP_save_opr); 739 } 740 do_call(); 741 if (opJavaCall->_result->is_valid()) do_output(opJavaCall->_result); 742 743 break; 744 } 745 746 747 // LIR_OpRTCall 748 case lir_rtcall: { 749 assert(op->as_OpRTCall() != NULL, "must be"); 750 LIR_OpRTCall* opRTCall = (LIR_OpRTCall*)op; 751 752 // only visit register parameters 753 int n = opRTCall->_arguments->length(); 754 for (int i = 0; i < n; i++) { 755 if (!opRTCall->_arguments->at(i)->is_pointer()) { 756 do_input(*opRTCall->_arguments->adr_at(i)); 757 } 758 } 759 if (opRTCall->_info) do_info(opRTCall->_info); 760 if (opRTCall->_tmp->is_valid()) do_temp(opRTCall->_tmp); 761 do_call(); 762 if (opRTCall->_result->is_valid()) do_output(opRTCall->_result); 763 764 break; 765 } 766 767 768 // LIR_OpArrayCopy 769 case lir_arraycopy: { 770 assert(op->as_OpArrayCopy() != NULL, "must be"); 771 LIR_OpArrayCopy* opArrayCopy = (LIR_OpArrayCopy*)op; 772 773 assert(opArrayCopy->_result->is_illegal(), "unused"); 774 assert(opArrayCopy->_src->is_valid(), "used"); do_input(opArrayCopy->_src); do_temp(opArrayCopy->_src); 775 assert(opArrayCopy->_src_pos->is_valid(), "used"); do_input(opArrayCopy->_src_pos); do_temp(opArrayCopy->_src_pos); 776 assert(opArrayCopy->_dst->is_valid(), "used"); do_input(opArrayCopy->_dst); do_temp(opArrayCopy->_dst); 777 assert(opArrayCopy->_dst_pos->is_valid(), "used"); do_input(opArrayCopy->_dst_pos); do_temp(opArrayCopy->_dst_pos); 778 assert(opArrayCopy->_length->is_valid(), "used"); do_input(opArrayCopy->_length); do_temp(opArrayCopy->_length); 779 assert(opArrayCopy->_tmp->is_valid(), "used"); do_temp(opArrayCopy->_tmp); 780 if (opArrayCopy->_info) do_info(opArrayCopy->_info); 781 782 // the implementation of arraycopy always has a call into the runtime 783 do_call(); 784 785 break; 786 } 787 788 789 // LIR_OpUpdateCRC32 790 case lir_updatecrc32: { 791 assert(op->as_OpUpdateCRC32() != NULL, "must be"); 792 LIR_OpUpdateCRC32* opUp = (LIR_OpUpdateCRC32*)op; 793 794 assert(opUp->_crc->is_valid(), "used"); do_input(opUp->_crc); do_temp(opUp->_crc); 795 assert(opUp->_val->is_valid(), "used"); do_input(opUp->_val); do_temp(opUp->_val); 796 assert(opUp->_result->is_valid(), "used"); do_output(opUp->_result); 797 assert(opUp->_info == NULL, "no info for LIR_OpUpdateCRC32"); 798 799 break; 800 } 801 802 803 // LIR_OpLock 804 case lir_lock: 805 case lir_unlock: { 806 assert(op->as_OpLock() != NULL, "must be"); 807 LIR_OpLock* opLock = (LIR_OpLock*)op; 808 809 if (opLock->_info) do_info(opLock->_info); 810 811 // TODO: check if these operands really have to be temp 812 // (or if input is sufficient). This may have influence on the oop map! 813 assert(opLock->_lock->is_valid(), "used"); do_temp(opLock->_lock); 814 assert(opLock->_hdr->is_valid(), "used"); do_temp(opLock->_hdr); 815 assert(opLock->_obj->is_valid(), "used"); do_temp(opLock->_obj); 816 817 if (opLock->_scratch->is_valid()) do_temp(opLock->_scratch); 818 assert(opLock->_result->is_illegal(), "unused"); 819 820 do_stub(opLock->_stub); 821 822 break; 823 } 824 825 826 // LIR_OpDelay 827 case lir_delay_slot: { 828 assert(op->as_OpDelay() != NULL, "must be"); 829 LIR_OpDelay* opDelay = (LIR_OpDelay*)op; 830 831 visit(opDelay->delay_op()); 832 break; 833 } 834 835 // LIR_OpTypeCheck 836 case lir_instanceof: 837 case lir_checkcast: 838 case lir_store_check: { 839 assert(op->as_OpTypeCheck() != NULL, "must be"); 840 LIR_OpTypeCheck* opTypeCheck = (LIR_OpTypeCheck*)op; 841 842 if (opTypeCheck->_info_for_exception) do_info(opTypeCheck->_info_for_exception); 843 if (opTypeCheck->_info_for_patch) do_info(opTypeCheck->_info_for_patch); 844 if (opTypeCheck->_object->is_valid()) do_input(opTypeCheck->_object); 845 if (op->code() == lir_store_check && opTypeCheck->_object->is_valid()) { 846 do_temp(opTypeCheck->_object); 847 } 848 if (opTypeCheck->_array->is_valid()) do_input(opTypeCheck->_array); 849 if (opTypeCheck->_tmp1->is_valid()) do_temp(opTypeCheck->_tmp1); 850 if (opTypeCheck->_tmp2->is_valid()) do_temp(opTypeCheck->_tmp2); 851 if (opTypeCheck->_tmp3->is_valid()) do_temp(opTypeCheck->_tmp3); 852 if (opTypeCheck->_result->is_valid()) do_output(opTypeCheck->_result); 853 do_stub(opTypeCheck->_stub); 854 break; 855 } 856 857 // LIR_OpCompareAndSwap 858 case lir_cas_long: 859 case lir_cas_obj: 860 case lir_cas_int: { 861 assert(op->as_OpCompareAndSwap() != NULL, "must be"); 862 LIR_OpCompareAndSwap* opCompareAndSwap = (LIR_OpCompareAndSwap*)op; 863 864 assert(opCompareAndSwap->_addr->is_valid(), "used"); 865 assert(opCompareAndSwap->_cmp_value->is_valid(), "used"); 866 assert(opCompareAndSwap->_new_value->is_valid(), "used"); 867 if (opCompareAndSwap->_info) do_info(opCompareAndSwap->_info); 868 do_input(opCompareAndSwap->_addr); 869 do_temp(opCompareAndSwap->_addr); 870 do_input(opCompareAndSwap->_cmp_value); 871 do_temp(opCompareAndSwap->_cmp_value); 872 do_input(opCompareAndSwap->_new_value); 873 do_temp(opCompareAndSwap->_new_value); 874 if (opCompareAndSwap->_tmp1->is_valid()) do_temp(opCompareAndSwap->_tmp1); 875 if (opCompareAndSwap->_tmp2->is_valid()) do_temp(opCompareAndSwap->_tmp2); 876 if (opCompareAndSwap->_result->is_valid()) do_output(opCompareAndSwap->_result); 877 878 break; 879 } 880 881 882 // LIR_OpAllocArray; 883 case lir_alloc_array: { 884 assert(op->as_OpAllocArray() != NULL, "must be"); 885 LIR_OpAllocArray* opAllocArray = (LIR_OpAllocArray*)op; 886 887 if (opAllocArray->_info) do_info(opAllocArray->_info); 888 if (opAllocArray->_klass->is_valid()) do_input(opAllocArray->_klass); do_temp(opAllocArray->_klass); 889 if (opAllocArray->_len->is_valid()) do_input(opAllocArray->_len); do_temp(opAllocArray->_len); 890 if (opAllocArray->_tmp1->is_valid()) do_temp(opAllocArray->_tmp1); 891 if (opAllocArray->_tmp2->is_valid()) do_temp(opAllocArray->_tmp2); 892 if (opAllocArray->_tmp3->is_valid()) do_temp(opAllocArray->_tmp3); 893 if (opAllocArray->_tmp4->is_valid()) do_temp(opAllocArray->_tmp4); 894 if (opAllocArray->_result->is_valid()) do_output(opAllocArray->_result); 895 do_stub(opAllocArray->_stub); 896 break; 897 } 898 899 // LIR_OpProfileCall: 900 case lir_profile_call: { 901 assert(op->as_OpProfileCall() != NULL, "must be"); 902 LIR_OpProfileCall* opProfileCall = (LIR_OpProfileCall*)op; 903 904 if (opProfileCall->_recv->is_valid()) do_temp(opProfileCall->_recv); 905 assert(opProfileCall->_mdo->is_valid(), "used"); do_temp(opProfileCall->_mdo); 906 assert(opProfileCall->_tmp1->is_valid(), "used"); do_temp(opProfileCall->_tmp1); 907 break; 908 } 909 910 // LIR_OpProfileType: 911 case lir_profile_type: { 912 assert(op->as_OpProfileType() != NULL, "must be"); 913 LIR_OpProfileType* opProfileType = (LIR_OpProfileType*)op; 914 915 do_input(opProfileType->_mdp); do_temp(opProfileType->_mdp); 916 do_input(opProfileType->_obj); 917 do_temp(opProfileType->_tmp); 918 break; 919 } 920 default: 921 op->visit(this); 922 } 923 } 924 925 void LIR_Op::visit(LIR_OpVisitState* state) { 926 ShouldNotReachHere(); 927 } 928 929 void LIR_OpVisitState::do_stub(CodeStub* stub) { 930 if (stub != NULL) { 931 stub->visit(this); 932 } 933 } 934 935 XHandlers* LIR_OpVisitState::all_xhandler() { 936 XHandlers* result = NULL; 937 938 int i; 939 for (i = 0; i < info_count(); i++) { 940 if (info_at(i)->exception_handlers() != NULL) { 941 result = info_at(i)->exception_handlers(); 942 break; 943 } 944 } 945 946 #ifdef ASSERT 947 for (i = 0; i < info_count(); i++) { 948 assert(info_at(i)->exception_handlers() == NULL || 949 info_at(i)->exception_handlers() == result, 950 "only one xhandler list allowed per LIR-operation"); 951 } 952 #endif 953 954 if (result != NULL) { 955 return result; 956 } else { 957 return new XHandlers(); 958 } 959 960 return result; 961 } 962 963 964 #ifdef ASSERT 965 bool LIR_OpVisitState::no_operands(LIR_Op* op) { 966 visit(op); 967 968 return opr_count(inputMode) == 0 && 969 opr_count(outputMode) == 0 && 970 opr_count(tempMode) == 0 && 971 info_count() == 0 && 972 !has_call() && 973 !has_slow_case(); 974 } 975 #endif 976 977 //--------------------------------------------------- 978 979 980 void LIR_OpJavaCall::emit_code(LIR_Assembler* masm) { 981 masm->emit_call(this); 982 } 983 984 void LIR_OpRTCall::emit_code(LIR_Assembler* masm) { 985 masm->emit_rtcall(this); 986 } 987 988 void LIR_OpLabel::emit_code(LIR_Assembler* masm) { 989 masm->emit_opLabel(this); 990 } 991 992 void LIR_OpArrayCopy::emit_code(LIR_Assembler* masm) { 993 masm->emit_arraycopy(this); 994 masm->append_code_stub(stub()); 995 } 996 997 void LIR_OpUpdateCRC32::emit_code(LIR_Assembler* masm) { 998 masm->emit_updatecrc32(this); 999 } 1000 1001 void LIR_Op0::emit_code(LIR_Assembler* masm) { 1002 masm->emit_op0(this); 1003 } 1004 1005 void LIR_Op1::emit_code(LIR_Assembler* masm) { 1006 masm->emit_op1(this); 1007 } 1008 1009 void LIR_OpAllocObj::emit_code(LIR_Assembler* masm) { 1010 masm->emit_alloc_obj(this); 1011 masm->append_code_stub(stub()); 1012 } 1013 1014 void LIR_OpBranch::emit_code(LIR_Assembler* masm) { 1015 masm->emit_opBranch(this); 1016 if (stub()) { 1017 masm->append_code_stub(stub()); 1018 } 1019 } 1020 1021 void LIR_OpConvert::emit_code(LIR_Assembler* masm) { 1022 masm->emit_opConvert(this); 1023 if (stub() != NULL) { 1024 masm->append_code_stub(stub()); 1025 } 1026 } 1027 1028 void LIR_Op2::emit_code(LIR_Assembler* masm) { 1029 masm->emit_op2(this); 1030 } 1031 1032 void LIR_OpAllocArray::emit_code(LIR_Assembler* masm) { 1033 masm->emit_alloc_array(this); 1034 masm->append_code_stub(stub()); 1035 } 1036 1037 void LIR_OpTypeCheck::emit_code(LIR_Assembler* masm) { 1038 masm->emit_opTypeCheck(this); 1039 if (stub()) { 1040 masm->append_code_stub(stub()); 1041 } 1042 } 1043 1044 void LIR_OpCompareAndSwap::emit_code(LIR_Assembler* masm) { 1045 masm->emit_compare_and_swap(this); 1046 } 1047 1048 void LIR_Op3::emit_code(LIR_Assembler* masm) { 1049 masm->emit_op3(this); 1050 } 1051 1052 void LIR_OpLock::emit_code(LIR_Assembler* masm) { 1053 masm->emit_lock(this); 1054 if (stub()) { 1055 masm->append_code_stub(stub()); 1056 } 1057 } 1058 1059 #ifdef ASSERT 1060 void LIR_OpAssert::emit_code(LIR_Assembler* masm) { 1061 masm->emit_assert(this); 1062 } 1063 #endif 1064 1065 void LIR_OpDelay::emit_code(LIR_Assembler* masm) { 1066 masm->emit_delay(this); 1067 } 1068 1069 void LIR_OpProfileCall::emit_code(LIR_Assembler* masm) { 1070 masm->emit_profile_call(this); 1071 } 1072 1073 void LIR_OpProfileType::emit_code(LIR_Assembler* masm) { 1074 masm->emit_profile_type(this); 1075 } 1076 1077 // LIR_List 1078 LIR_List::LIR_List(Compilation* compilation, BlockBegin* block) 1079 : _operations(8) 1080 , _compilation(compilation) 1081 #ifndef PRODUCT 1082 , _block(block) 1083 #endif 1084 #ifdef ASSERT 1085 , _file(NULL) 1086 , _line(0) 1087 #endif 1088 { } 1089 1090 1091 #ifdef ASSERT 1092 void LIR_List::set_file_and_line(const char * file, int line) { 1093 const char * f = strrchr(file, '/'); 1094 if (f == NULL) f = strrchr(file, '\\'); 1095 if (f == NULL) { 1096 f = file; 1097 } else { 1098 f++; 1099 } 1100 _file = f; 1101 _line = line; 1102 } 1103 #endif 1104 1105 1106 void LIR_List::append(LIR_InsertionBuffer* buffer) { 1107 assert(this == buffer->lir_list(), "wrong lir list"); 1108 const int n = _operations.length(); 1109 1110 if (buffer->number_of_ops() > 0) { 1111 // increase size of instructions list 1112 _operations.at_grow(n + buffer->number_of_ops() - 1, NULL); 1113 // insert ops from buffer into instructions list 1114 int op_index = buffer->number_of_ops() - 1; 1115 int ip_index = buffer->number_of_insertion_points() - 1; 1116 int from_index = n - 1; 1117 int to_index = _operations.length() - 1; 1118 for (; ip_index >= 0; ip_index --) { 1119 int index = buffer->index_at(ip_index); 1120 // make room after insertion point 1121 while (index < from_index) { 1122 _operations.at_put(to_index --, _operations.at(from_index --)); 1123 } 1124 // insert ops from buffer 1125 for (int i = buffer->count_at(ip_index); i > 0; i --) { 1126 _operations.at_put(to_index --, buffer->op_at(op_index --)); 1127 } 1128 } 1129 } 1130 1131 buffer->finish(); 1132 } 1133 1134 1135 void LIR_List::oop2reg_patch(jobject o, LIR_Opr reg, CodeEmitInfo* info) { 1136 assert(reg->type() == T_OBJECT, "bad reg"); 1137 append(new LIR_Op1(lir_move, LIR_OprFact::oopConst(o), reg, T_OBJECT, lir_patch_normal, info)); 1138 } 1139 1140 void LIR_List::klass2reg_patch(Metadata* o, LIR_Opr reg, CodeEmitInfo* info) { 1141 assert(reg->type() == T_METADATA, "bad reg"); 1142 append(new LIR_Op1(lir_move, LIR_OprFact::metadataConst(o), reg, T_METADATA, lir_patch_normal, info)); 1143 } 1144 1145 void LIR_List::load(LIR_Address* addr, LIR_Opr src, CodeEmitInfo* info, LIR_PatchCode patch_code) { 1146 append(new LIR_Op1( 1147 lir_move, 1148 LIR_OprFact::address(addr), 1149 src, 1150 addr->type(), 1151 patch_code, 1152 info)); 1153 } 1154 1155 1156 void LIR_List::volatile_load_mem_reg(LIR_Address* address, LIR_Opr dst, CodeEmitInfo* info, LIR_PatchCode patch_code) { 1157 append(new LIR_Op1( 1158 lir_move, 1159 LIR_OprFact::address(address), 1160 dst, 1161 address->type(), 1162 patch_code, 1163 info, lir_move_volatile)); 1164 } 1165 1166 void LIR_List::volatile_load_unsafe_reg(LIR_Opr base, LIR_Opr offset, LIR_Opr dst, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code) { 1167 append(new LIR_Op1( 1168 lir_move, 1169 LIR_OprFact::address(new LIR_Address(base, offset, type)), 1170 dst, 1171 type, 1172 patch_code, 1173 info, lir_move_volatile)); 1174 } 1175 1176 1177 void LIR_List::store_mem_int(jint v, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code) { 1178 append(new LIR_Op1( 1179 lir_move, 1180 LIR_OprFact::intConst(v), 1181 LIR_OprFact::address(new LIR_Address(base, offset_in_bytes, type)), 1182 type, 1183 patch_code, 1184 info)); 1185 } 1186 1187 1188 void LIR_List::store_mem_oop(jobject o, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code) { 1189 append(new LIR_Op1( 1190 lir_move, 1191 LIR_OprFact::oopConst(o), 1192 LIR_OprFact::address(new LIR_Address(base, offset_in_bytes, type)), 1193 type, 1194 patch_code, 1195 info)); 1196 } 1197 1198 1199 void LIR_List::store(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info, LIR_PatchCode patch_code) { 1200 append(new LIR_Op1( 1201 lir_move, 1202 src, 1203 LIR_OprFact::address(addr), 1204 addr->type(), 1205 patch_code, 1206 info)); 1207 } 1208 1209 1210 void LIR_List::volatile_store_mem_reg(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info, LIR_PatchCode patch_code) { 1211 append(new LIR_Op1( 1212 lir_move, 1213 src, 1214 LIR_OprFact::address(addr), 1215 addr->type(), 1216 patch_code, 1217 info, 1218 lir_move_volatile)); 1219 } 1220 1221 void LIR_List::volatile_store_unsafe_reg(LIR_Opr src, LIR_Opr base, LIR_Opr offset, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code) { 1222 append(new LIR_Op1( 1223 lir_move, 1224 src, 1225 LIR_OprFact::address(new LIR_Address(base, offset, type)), 1226 type, 1227 patch_code, 1228 info, lir_move_volatile)); 1229 } 1230 1231 1232 void LIR_List::idiv(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info) { 1233 append(new LIR_Op3( 1234 lir_idiv, 1235 left, 1236 right, 1237 tmp, 1238 res, 1239 info)); 1240 } 1241 1242 1243 void LIR_List::idiv(LIR_Opr left, int right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info) { 1244 append(new LIR_Op3( 1245 lir_idiv, 1246 left, 1247 LIR_OprFact::intConst(right), 1248 tmp, 1249 res, 1250 info)); 1251 } 1252 1253 1254 void LIR_List::irem(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info) { 1255 append(new LIR_Op3( 1256 lir_irem, 1257 left, 1258 right, 1259 tmp, 1260 res, 1261 info)); 1262 } 1263 1264 1265 void LIR_List::irem(LIR_Opr left, int right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info) { 1266 append(new LIR_Op3( 1267 lir_irem, 1268 left, 1269 LIR_OprFact::intConst(right), 1270 tmp, 1271 res, 1272 info)); 1273 } 1274 1275 1276 void LIR_List::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) { 1277 append(new LIR_Op2( 1278 lir_cmp, 1279 condition, 1280 LIR_OprFact::address(new LIR_Address(base, disp, T_INT)), 1281 LIR_OprFact::intConst(c), 1282 info)); 1283 } 1284 1285 1286 void LIR_List::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Address* addr, CodeEmitInfo* info) { 1287 append(new LIR_Op2( 1288 lir_cmp, 1289 condition, 1290 reg, 1291 LIR_OprFact::address(addr), 1292 info)); 1293 } 1294 1295 void LIR_List::allocate_object(LIR_Opr dst, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, 1296 int header_size, int object_size, LIR_Opr klass, bool init_check, CodeStub* stub) { 1297 append(new LIR_OpAllocObj( 1298 klass, 1299 dst, 1300 t1, 1301 t2, 1302 t3, 1303 t4, 1304 header_size, 1305 object_size, 1306 init_check, 1307 stub)); 1308 } 1309 1310 void LIR_List::allocate_array(LIR_Opr dst, LIR_Opr len, LIR_Opr t1,LIR_Opr t2, LIR_Opr t3,LIR_Opr t4, BasicType type, LIR_Opr klass, CodeStub* stub) { 1311 append(new LIR_OpAllocArray( 1312 klass, 1313 len, 1314 dst, 1315 t1, 1316 t2, 1317 t3, 1318 t4, 1319 type, 1320 stub)); 1321 } 1322 1323 void LIR_List::shift_left(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp) { 1324 append(new LIR_Op2( 1325 lir_shl, 1326 value, 1327 count, 1328 dst, 1329 tmp)); 1330 } 1331 1332 void LIR_List::shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp) { 1333 append(new LIR_Op2( 1334 lir_shr, 1335 value, 1336 count, 1337 dst, 1338 tmp)); 1339 } 1340 1341 1342 void LIR_List::unsigned_shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp) { 1343 append(new LIR_Op2( 1344 lir_ushr, 1345 value, 1346 count, 1347 dst, 1348 tmp)); 1349 } 1350 1351 void LIR_List::fcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst, bool is_unordered_less) { 1352 append(new LIR_Op2(is_unordered_less ? lir_ucmp_fd2i : lir_cmp_fd2i, 1353 left, 1354 right, 1355 dst)); 1356 } 1357 1358 void LIR_List::lock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info) { 1359 append(new LIR_OpLock( 1360 lir_lock, 1361 hdr, 1362 obj, 1363 lock, 1364 scratch, 1365 stub, 1366 info)); 1367 } 1368 1369 void LIR_List::unlock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub) { 1370 append(new LIR_OpLock( 1371 lir_unlock, 1372 hdr, 1373 obj, 1374 lock, 1375 scratch, 1376 stub, 1377 NULL)); 1378 } 1379 1380 1381 void check_LIR() { 1382 // cannot do the proper checking as PRODUCT and other modes return different results 1383 // guarantee(sizeof(LIR_OprDesc) == wordSize, "may not have a v-table"); 1384 } 1385 1386 1387 1388 void LIR_List::checkcast (LIR_Opr result, LIR_Opr object, ciKlass* klass, 1389 LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, 1390 CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub, 1391 ciMethod* profiled_method, int profiled_bci) { 1392 LIR_OpTypeCheck* c = new LIR_OpTypeCheck(lir_checkcast, result, object, klass, 1393 tmp1, tmp2, tmp3, fast_check, info_for_exception, info_for_patch, stub); 1394 if (profiled_method != NULL) { 1395 c->set_profiled_method(profiled_method); 1396 c->set_profiled_bci(profiled_bci); 1397 c->set_should_profile(true); 1398 } 1399 append(c); 1400 } 1401 1402 void LIR_List::instanceof(LIR_Opr result, LIR_Opr object, ciKlass* klass, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, CodeEmitInfo* info_for_patch, ciMethod* profiled_method, int profiled_bci) { 1403 LIR_OpTypeCheck* c = new LIR_OpTypeCheck(lir_instanceof, result, object, klass, tmp1, tmp2, tmp3, fast_check, NULL, info_for_patch, NULL); 1404 if (profiled_method != NULL) { 1405 c->set_profiled_method(profiled_method); 1406 c->set_profiled_bci(profiled_bci); 1407 c->set_should_profile(true); 1408 } 1409 append(c); 1410 } 1411 1412 1413 void LIR_List::store_check(LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, 1414 CodeEmitInfo* info_for_exception, ciMethod* profiled_method, int profiled_bci) { 1415 LIR_OpTypeCheck* c = new LIR_OpTypeCheck(lir_store_check, object, array, tmp1, tmp2, tmp3, info_for_exception); 1416 if (profiled_method != NULL) { 1417 c->set_profiled_method(profiled_method); 1418 c->set_profiled_bci(profiled_bci); 1419 c->set_should_profile(true); 1420 } 1421 append(c); 1422 } 1423 1424 void LIR_List::null_check(LIR_Opr opr, CodeEmitInfo* info, bool deoptimize_on_null) { 1425 if (deoptimize_on_null) { 1426 // Emit an explicit null check and deoptimize if opr is null 1427 CodeStub* deopt = new DeoptimizeStub(info, Deoptimization::Reason_null_check, Deoptimization::Action_none); 1428 cmp(lir_cond_equal, opr, LIR_OprFact::oopConst(NULL)); 1429 branch(lir_cond_equal, T_OBJECT, deopt); 1430 } else { 1431 // Emit an implicit null check 1432 append(new LIR_Op1(lir_null_check, opr, info)); 1433 } 1434 } 1435 1436 void LIR_List::cas_long(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value, 1437 LIR_Opr t1, LIR_Opr t2, LIR_Opr result) { 1438 append(new LIR_OpCompareAndSwap(lir_cas_long, addr, cmp_value, new_value, t1, t2, result)); 1439 } 1440 1441 void LIR_List::cas_obj(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value, 1442 LIR_Opr t1, LIR_Opr t2, LIR_Opr result) { 1443 append(new LIR_OpCompareAndSwap(lir_cas_obj, addr, cmp_value, new_value, t1, t2, result)); 1444 } 1445 1446 void LIR_List::cas_int(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value, 1447 LIR_Opr t1, LIR_Opr t2, LIR_Opr result) { 1448 append(new LIR_OpCompareAndSwap(lir_cas_int, addr, cmp_value, new_value, t1, t2, result)); 1449 } 1450 1451 1452 #ifdef PRODUCT 1453 1454 void print_LIR(BlockList* blocks) { 1455 } 1456 1457 #else 1458 // LIR_OprDesc 1459 void LIR_OprDesc::print() const { 1460 print(tty); 1461 } 1462 1463 void LIR_OprDesc::print(outputStream* out) const { 1464 if (is_illegal()) { 1465 return; 1466 } 1467 1468 out->print("["); 1469 if (is_pointer()) { 1470 pointer()->print_value_on(out); 1471 } else if (is_single_stack()) { 1472 out->print("stack:%d", single_stack_ix()); 1473 } else if (is_double_stack()) { 1474 out->print("dbl_stack:%d",double_stack_ix()); 1475 } else if (is_virtual()) { 1476 out->print("R%d", vreg_number()); 1477 } else if (is_single_cpu()) { 1478 out->print("%s", as_register()->name()); 1479 } else if (is_double_cpu()) { 1480 out->print("%s", as_register_hi()->name()); 1481 out->print("%s", as_register_lo()->name()); 1482 #if defined(X86) 1483 } else if (is_single_xmm()) { 1484 out->print("%s", as_xmm_float_reg()->name()); 1485 } else if (is_double_xmm()) { 1486 out->print("%s", as_xmm_double_reg()->name()); 1487 } else if (is_single_fpu()) { 1488 out->print("fpu%d", fpu_regnr()); 1489 } else if (is_double_fpu()) { 1490 out->print("fpu%d", fpu_regnrLo()); 1491 #elif defined(AARCH64) 1492 } else if (is_single_fpu()) { 1493 out->print("fpu%d", fpu_regnr()); 1494 } else if (is_double_fpu()) { 1495 out->print("fpu%d", fpu_regnrLo()); 1496 #elif defined(ARM) 1497 } else if (is_single_fpu()) { 1498 out->print("s%d", fpu_regnr()); 1499 } else if (is_double_fpu()) { 1500 out->print("d%d", fpu_regnrLo() >> 1); 1501 #else 1502 } else if (is_single_fpu()) { 1503 out->print("%s", as_float_reg()->name()); 1504 } else if (is_double_fpu()) { 1505 out->print("%s", as_double_reg()->name()); 1506 #endif 1507 1508 } else if (is_illegal()) { 1509 out->print("-"); 1510 } else { 1511 out->print("Unknown Operand"); 1512 } 1513 if (!is_illegal()) { 1514 out->print("|%c", type_char()); 1515 } 1516 if (is_register() && is_last_use()) { 1517 out->print("(last_use)"); 1518 } 1519 out->print("]"); 1520 } 1521 1522 1523 // LIR_Address 1524 void LIR_Const::print_value_on(outputStream* out) const { 1525 switch (type()) { 1526 case T_ADDRESS:out->print("address:%d",as_jint()); break; 1527 case T_INT: out->print("int:%d", as_jint()); break; 1528 case T_LONG: out->print("lng:" JLONG_FORMAT, as_jlong()); break; 1529 case T_FLOAT: out->print("flt:%f", as_jfloat()); break; 1530 case T_DOUBLE: out->print("dbl:%f", as_jdouble()); break; 1531 case T_OBJECT: out->print("obj:" INTPTR_FORMAT, p2i(as_jobject())); break; 1532 case T_METADATA: out->print("metadata:" INTPTR_FORMAT, p2i(as_metadata()));break; 1533 default: out->print("%3d:0x" UINT64_FORMAT_X, type(), (uint64_t)as_jlong()); break; 1534 } 1535 } 1536 1537 // LIR_Address 1538 void LIR_Address::print_value_on(outputStream* out) const { 1539 out->print("Base:"); _base->print(out); 1540 if (!_index->is_illegal()) { 1541 out->print(" Index:"); _index->print(out); 1542 switch (scale()) { 1543 case times_1: break; 1544 case times_2: out->print(" * 2"); break; 1545 case times_4: out->print(" * 4"); break; 1546 case times_8: out->print(" * 8"); break; 1547 } 1548 } 1549 out->print(" Disp: " INTX_FORMAT, _disp); 1550 } 1551 1552 // debug output of block header without InstructionPrinter 1553 // (because phi functions are not necessary for LIR) 1554 static void print_block(BlockBegin* x) { 1555 // print block id 1556 BlockEnd* end = x->end(); 1557 tty->print("B%d ", x->block_id()); 1558 1559 // print flags 1560 if (x->is_set(BlockBegin::std_entry_flag)) tty->print("std "); 1561 if (x->is_set(BlockBegin::osr_entry_flag)) tty->print("osr "); 1562 if (x->is_set(BlockBegin::exception_entry_flag)) tty->print("ex "); 1563 if (x->is_set(BlockBegin::subroutine_entry_flag)) tty->print("jsr "); 1564 if (x->is_set(BlockBegin::backward_branch_target_flag)) tty->print("bb "); 1565 if (x->is_set(BlockBegin::linear_scan_loop_header_flag)) tty->print("lh "); 1566 if (x->is_set(BlockBegin::linear_scan_loop_end_flag)) tty->print("le "); 1567 1568 // print block bci range 1569 tty->print("[%d, %d] ", x->bci(), (end == NULL ? -1 : end->printable_bci())); 1570 1571 // print predecessors and successors 1572 if (x->number_of_preds() > 0) { 1573 tty->print("preds: "); 1574 for (int i = 0; i < x->number_of_preds(); i ++) { 1575 tty->print("B%d ", x->pred_at(i)->block_id()); 1576 } 1577 } 1578 1579 if (x->number_of_sux() > 0) { 1580 tty->print("sux: "); 1581 for (int i = 0; i < x->number_of_sux(); i ++) { 1582 tty->print("B%d ", x->sux_at(i)->block_id()); 1583 } 1584 } 1585 1586 // print exception handlers 1587 if (x->number_of_exception_handlers() > 0) { 1588 tty->print("xhandler: "); 1589 for (int i = 0; i < x->number_of_exception_handlers(); i++) { 1590 tty->print("B%d ", x->exception_handler_at(i)->block_id()); 1591 } 1592 } 1593 1594 tty->cr(); 1595 } 1596 1597 void print_LIR(BlockList* blocks) { 1598 tty->print_cr("LIR:"); 1599 int i; 1600 for (i = 0; i < blocks->length(); i++) { 1601 BlockBegin* bb = blocks->at(i); 1602 print_block(bb); 1603 tty->print("__id_Instruction___________________________________________"); tty->cr(); 1604 bb->lir()->print_instructions(); 1605 } 1606 } 1607 1608 void LIR_List::print_instructions() { 1609 for (int i = 0; i < _operations.length(); i++) { 1610 _operations.at(i)->print(); tty->cr(); 1611 } 1612 tty->cr(); 1613 } 1614 1615 // LIR_Ops printing routines 1616 // LIR_Op 1617 void LIR_Op::print_on(outputStream* out) const { 1618 if (id() != -1 || PrintCFGToFile) { 1619 out->print("%4d ", id()); 1620 } else { 1621 out->print(" "); 1622 } 1623 out->print("%s ", name()); 1624 print_instr(out); 1625 if (info() != NULL) out->print(" [bci:%d]", info()->stack()->bci()); 1626 #ifdef ASSERT 1627 if (Verbose && _file != NULL) { 1628 out->print(" (%s:%d)", _file, _line); 1629 } 1630 #endif 1631 } 1632 1633 const char * LIR_Op::name() const { 1634 const char* s = NULL; 1635 switch(code()) { 1636 // LIR_Op0 1637 case lir_membar: s = "membar"; break; 1638 case lir_membar_acquire: s = "membar_acquire"; break; 1639 case lir_membar_release: s = "membar_release"; break; 1640 case lir_membar_loadload: s = "membar_loadload"; break; 1641 case lir_membar_storestore: s = "membar_storestore"; break; 1642 case lir_membar_loadstore: s = "membar_loadstore"; break; 1643 case lir_membar_storeload: s = "membar_storeload"; break; 1644 case lir_word_align: s = "word_align"; break; 1645 case lir_label: s = "label"; break; 1646 case lir_nop: s = "nop"; break; 1647 case lir_on_spin_wait: s = "on_spin_wait"; break; 1648 case lir_backwardbranch_target: s = "backbranch"; break; 1649 case lir_std_entry: s = "std_entry"; break; 1650 case lir_osr_entry: s = "osr_entry"; break; 1651 case lir_build_frame: s = "build_frm"; break; 1652 case lir_fpop_raw: s = "fpop_raw"; break; 1653 case lir_24bit_FPU: s = "24bit_FPU"; break; 1654 case lir_reset_FPU: s = "reset_FPU"; break; 1655 case lir_breakpoint: s = "breakpoint"; break; 1656 case lir_get_thread: s = "get_thread"; break; 1657 // LIR_Op1 1658 case lir_fxch: s = "fxch"; break; 1659 case lir_fld: s = "fld"; break; 1660 case lir_ffree: s = "ffree"; break; 1661 case lir_push: s = "push"; break; 1662 case lir_pop: s = "pop"; break; 1663 case lir_null_check: s = "null_check"; break; 1664 case lir_return: s = "return"; break; 1665 case lir_safepoint: s = "safepoint"; break; 1666 case lir_neg: s = "neg"; break; 1667 case lir_leal: s = "leal"; break; 1668 case lir_branch: s = "branch"; break; 1669 case lir_cond_float_branch: s = "flt_cond_br"; break; 1670 case lir_move: s = "move"; break; 1671 case lir_roundfp: s = "roundfp"; break; 1672 case lir_rtcall: s = "rtcall"; break; 1673 case lir_throw: s = "throw"; break; 1674 case lir_unwind: s = "unwind"; break; 1675 case lir_convert: s = "convert"; break; 1676 case lir_alloc_object: s = "alloc_obj"; break; 1677 case lir_monaddr: s = "mon_addr"; break; 1678 case lir_pack64: s = "pack64"; break; 1679 case lir_unpack64: s = "unpack64"; break; 1680 case lir_random: s = "random"; break; 1681 // LIR_Op2 1682 case lir_cmp: s = "cmp"; break; 1683 case lir_cmp_l2i: s = "cmp_l2i"; break; 1684 case lir_ucmp_fd2i: s = "ucomp_fd2i"; break; 1685 case lir_cmp_fd2i: s = "comp_fd2i"; break; 1686 case lir_cmove: s = "cmove"; break; 1687 case lir_add: s = "add"; break; 1688 case lir_sub: s = "sub"; break; 1689 case lir_mul: s = "mul"; break; 1690 case lir_mul_strictfp: s = "mul_strictfp"; break; 1691 case lir_div: s = "div"; break; 1692 case lir_div_strictfp: s = "div_strictfp"; break; 1693 case lir_rem: s = "rem"; break; 1694 case lir_abs: s = "abs"; break; 1695 case lir_sqrt: s = "sqrt"; break; 1696 case lir_logic_and: s = "logic_and"; break; 1697 case lir_logic_or: s = "logic_or"; break; 1698 case lir_logic_xor: s = "logic_xor"; break; 1699 case lir_shl: s = "shift_left"; break; 1700 case lir_shr: s = "shift_right"; break; 1701 case lir_ushr: s = "ushift_right"; break; 1702 case lir_alloc_array: s = "alloc_array"; break; 1703 case lir_xadd: s = "xadd"; break; 1704 case lir_xchg: s = "xchg"; break; 1705 // LIR_Op3 1706 case lir_idiv: s = "idiv"; break; 1707 case lir_irem: s = "irem"; break; 1708 case lir_fmad: s = "fmad"; break; 1709 case lir_fmaf: s = "fmaf"; break; 1710 // LIR_OpJavaCall 1711 case lir_static_call: s = "static"; break; 1712 case lir_optvirtual_call: s = "optvirtual"; break; 1713 case lir_icvirtual_call: s = "icvirtual"; break; 1714 case lir_virtual_call: s = "virtual"; break; 1715 case lir_dynamic_call: s = "dynamic"; break; 1716 // LIR_OpArrayCopy 1717 case lir_arraycopy: s = "arraycopy"; break; 1718 // LIR_OpUpdateCRC32 1719 case lir_updatecrc32: s = "updatecrc32"; break; 1720 // LIR_OpLock 1721 case lir_lock: s = "lock"; break; 1722 case lir_unlock: s = "unlock"; break; 1723 // LIR_OpDelay 1724 case lir_delay_slot: s = "delay"; break; 1725 // LIR_OpTypeCheck 1726 case lir_instanceof: s = "instanceof"; break; 1727 case lir_checkcast: s = "checkcast"; break; 1728 case lir_store_check: s = "store_check"; break; 1729 // LIR_OpCompareAndSwap 1730 case lir_cas_long: s = "cas_long"; break; 1731 case lir_cas_obj: s = "cas_obj"; break; 1732 case lir_cas_int: s = "cas_int"; break; 1733 // LIR_OpProfileCall 1734 case lir_profile_call: s = "profile_call"; break; 1735 // LIR_OpProfileType 1736 case lir_profile_type: s = "profile_type"; break; 1737 // LIR_OpAssert 1738 #ifdef ASSERT 1739 case lir_assert: s = "assert"; break; 1740 #endif 1741 case lir_none: ShouldNotReachHere();break; 1742 default: s = "illegal_op"; break; 1743 } 1744 return s; 1745 } 1746 1747 // LIR_OpJavaCall 1748 void LIR_OpJavaCall::print_instr(outputStream* out) const { 1749 out->print("call: "); 1750 out->print("[addr: " INTPTR_FORMAT "]", p2i(address())); 1751 if (receiver()->is_valid()) { 1752 out->print(" [recv: "); receiver()->print(out); out->print("]"); 1753 } 1754 if (result_opr()->is_valid()) { 1755 out->print(" [result: "); result_opr()->print(out); out->print("]"); 1756 } 1757 } 1758 1759 // LIR_OpLabel 1760 void LIR_OpLabel::print_instr(outputStream* out) const { 1761 out->print("[label:" INTPTR_FORMAT "]", p2i(_label)); 1762 } 1763 1764 // LIR_OpArrayCopy 1765 void LIR_OpArrayCopy::print_instr(outputStream* out) const { 1766 src()->print(out); out->print(" "); 1767 src_pos()->print(out); out->print(" "); 1768 dst()->print(out); out->print(" "); 1769 dst_pos()->print(out); out->print(" "); 1770 length()->print(out); out->print(" "); 1771 tmp()->print(out); out->print(" "); 1772 } 1773 1774 // LIR_OpUpdateCRC32 1775 void LIR_OpUpdateCRC32::print_instr(outputStream* out) const { 1776 crc()->print(out); out->print(" "); 1777 val()->print(out); out->print(" "); 1778 result_opr()->print(out); out->print(" "); 1779 } 1780 1781 // LIR_OpCompareAndSwap 1782 void LIR_OpCompareAndSwap::print_instr(outputStream* out) const { 1783 addr()->print(out); out->print(" "); 1784 cmp_value()->print(out); out->print(" "); 1785 new_value()->print(out); out->print(" "); 1786 tmp1()->print(out); out->print(" "); 1787 tmp2()->print(out); out->print(" "); 1788 1789 } 1790 1791 // LIR_Op0 1792 void LIR_Op0::print_instr(outputStream* out) const { 1793 result_opr()->print(out); 1794 } 1795 1796 // LIR_Op1 1797 const char * LIR_Op1::name() const { 1798 if (code() == lir_move) { 1799 switch (move_kind()) { 1800 case lir_move_normal: 1801 return "move"; 1802 case lir_move_unaligned: 1803 return "unaligned move"; 1804 case lir_move_volatile: 1805 return "volatile_move"; 1806 case lir_move_wide: 1807 return "wide_move"; 1808 default: 1809 ShouldNotReachHere(); 1810 return "illegal_op"; 1811 } 1812 } else { 1813 return LIR_Op::name(); 1814 } 1815 } 1816 1817 1818 void LIR_Op1::print_instr(outputStream* out) const { 1819 _opr->print(out); out->print(" "); 1820 result_opr()->print(out); out->print(" "); 1821 print_patch_code(out, patch_code()); 1822 } 1823 1824 1825 // LIR_Op1 1826 void LIR_OpRTCall::print_instr(outputStream* out) const { 1827 intx a = (intx)addr(); 1828 out->print("%s", Runtime1::name_for_address(addr())); 1829 out->print(" "); 1830 tmp()->print(out); 1831 } 1832 1833 void LIR_Op1::print_patch_code(outputStream* out, LIR_PatchCode code) { 1834 switch(code) { 1835 case lir_patch_none: break; 1836 case lir_patch_low: out->print("[patch_low]"); break; 1837 case lir_patch_high: out->print("[patch_high]"); break; 1838 case lir_patch_normal: out->print("[patch_normal]"); break; 1839 default: ShouldNotReachHere(); 1840 } 1841 } 1842 1843 // LIR_OpBranch 1844 void LIR_OpBranch::print_instr(outputStream* out) const { 1845 print_condition(out, cond()); out->print(" "); 1846 if (block() != NULL) { 1847 out->print("[B%d] ", block()->block_id()); 1848 } else if (stub() != NULL) { 1849 out->print("["); 1850 stub()->print_name(out); 1851 out->print(": " INTPTR_FORMAT "]", p2i(stub())); 1852 if (stub()->info() != NULL) out->print(" [bci:%d]", stub()->info()->stack()->bci()); 1853 } else { 1854 out->print("[label:" INTPTR_FORMAT "] ", p2i(label())); 1855 } 1856 if (ublock() != NULL) { 1857 out->print("unordered: [B%d] ", ublock()->block_id()); 1858 } 1859 } 1860 1861 void LIR_Op::print_condition(outputStream* out, LIR_Condition cond) { 1862 switch(cond) { 1863 case lir_cond_equal: out->print("[EQ]"); break; 1864 case lir_cond_notEqual: out->print("[NE]"); break; 1865 case lir_cond_less: out->print("[LT]"); break; 1866 case lir_cond_lessEqual: out->print("[LE]"); break; 1867 case lir_cond_greaterEqual: out->print("[GE]"); break; 1868 case lir_cond_greater: out->print("[GT]"); break; 1869 case lir_cond_belowEqual: out->print("[BE]"); break; 1870 case lir_cond_aboveEqual: out->print("[AE]"); break; 1871 case lir_cond_always: out->print("[AL]"); break; 1872 default: out->print("[%d]",cond); break; 1873 } 1874 } 1875 1876 // LIR_OpConvert 1877 void LIR_OpConvert::print_instr(outputStream* out) const { 1878 print_bytecode(out, bytecode()); 1879 in_opr()->print(out); out->print(" "); 1880 result_opr()->print(out); out->print(" "); 1881 #ifdef PPC32 1882 if(tmp1()->is_valid()) { 1883 tmp1()->print(out); out->print(" "); 1884 tmp2()->print(out); out->print(" "); 1885 } 1886 #endif 1887 } 1888 1889 void LIR_OpConvert::print_bytecode(outputStream* out, Bytecodes::Code code) { 1890 switch(code) { 1891 case Bytecodes::_d2f: out->print("[d2f] "); break; 1892 case Bytecodes::_d2i: out->print("[d2i] "); break; 1893 case Bytecodes::_d2l: out->print("[d2l] "); break; 1894 case Bytecodes::_f2d: out->print("[f2d] "); break; 1895 case Bytecodes::_f2i: out->print("[f2i] "); break; 1896 case Bytecodes::_f2l: out->print("[f2l] "); break; 1897 case Bytecodes::_i2b: out->print("[i2b] "); break; 1898 case Bytecodes::_i2c: out->print("[i2c] "); break; 1899 case Bytecodes::_i2d: out->print("[i2d] "); break; 1900 case Bytecodes::_i2f: out->print("[i2f] "); break; 1901 case Bytecodes::_i2l: out->print("[i2l] "); break; 1902 case Bytecodes::_i2s: out->print("[i2s] "); break; 1903 case Bytecodes::_l2i: out->print("[l2i] "); break; 1904 case Bytecodes::_l2f: out->print("[l2f] "); break; 1905 case Bytecodes::_l2d: out->print("[l2d] "); break; 1906 default: 1907 out->print("[?%d]",code); 1908 break; 1909 } 1910 } 1911 1912 void LIR_OpAllocObj::print_instr(outputStream* out) const { 1913 klass()->print(out); out->print(" "); 1914 obj()->print(out); out->print(" "); 1915 tmp1()->print(out); out->print(" "); 1916 tmp2()->print(out); out->print(" "); 1917 tmp3()->print(out); out->print(" "); 1918 tmp4()->print(out); out->print(" "); 1919 out->print("[hdr:%d]", header_size()); out->print(" "); 1920 out->print("[obj:%d]", object_size()); out->print(" "); 1921 out->print("[lbl:" INTPTR_FORMAT "]", p2i(stub()->entry())); 1922 } 1923 1924 void LIR_OpRoundFP::print_instr(outputStream* out) const { 1925 _opr->print(out); out->print(" "); 1926 tmp()->print(out); out->print(" "); 1927 result_opr()->print(out); out->print(" "); 1928 } 1929 1930 // LIR_Op2 1931 void LIR_Op2::print_instr(outputStream* out) const { 1932 if (code() == lir_cmove || code() == lir_cmp) { 1933 print_condition(out, condition()); out->print(" "); 1934 } 1935 in_opr1()->print(out); out->print(" "); 1936 in_opr2()->print(out); out->print(" "); 1937 if (tmp1_opr()->is_valid()) { tmp1_opr()->print(out); out->print(" "); } 1938 if (tmp2_opr()->is_valid()) { tmp2_opr()->print(out); out->print(" "); } 1939 if (tmp3_opr()->is_valid()) { tmp3_opr()->print(out); out->print(" "); } 1940 if (tmp4_opr()->is_valid()) { tmp4_opr()->print(out); out->print(" "); } 1941 if (tmp5_opr()->is_valid()) { tmp5_opr()->print(out); out->print(" "); } 1942 result_opr()->print(out); 1943 } 1944 1945 void LIR_OpAllocArray::print_instr(outputStream* out) const { 1946 klass()->print(out); out->print(" "); 1947 len()->print(out); out->print(" "); 1948 obj()->print(out); out->print(" "); 1949 tmp1()->print(out); out->print(" "); 1950 tmp2()->print(out); out->print(" "); 1951 tmp3()->print(out); out->print(" "); 1952 tmp4()->print(out); out->print(" "); 1953 out->print("[type:0x%x]", type()); out->print(" "); 1954 out->print("[label:" INTPTR_FORMAT "]", p2i(stub()->entry())); 1955 } 1956 1957 1958 void LIR_OpTypeCheck::print_instr(outputStream* out) const { 1959 object()->print(out); out->print(" "); 1960 if (code() == lir_store_check) { 1961 array()->print(out); out->print(" "); 1962 } 1963 if (code() != lir_store_check) { 1964 klass()->print_name_on(out); out->print(" "); 1965 if (fast_check()) out->print("fast_check "); 1966 } 1967 tmp1()->print(out); out->print(" "); 1968 tmp2()->print(out); out->print(" "); 1969 tmp3()->print(out); out->print(" "); 1970 result_opr()->print(out); out->print(" "); 1971 if (info_for_exception() != NULL) out->print(" [bci:%d]", info_for_exception()->stack()->bci()); 1972 } 1973 1974 1975 // LIR_Op3 1976 void LIR_Op3::print_instr(outputStream* out) const { 1977 in_opr1()->print(out); out->print(" "); 1978 in_opr2()->print(out); out->print(" "); 1979 in_opr3()->print(out); out->print(" "); 1980 result_opr()->print(out); 1981 } 1982 1983 1984 void LIR_OpLock::print_instr(outputStream* out) const { 1985 hdr_opr()->print(out); out->print(" "); 1986 obj_opr()->print(out); out->print(" "); 1987 lock_opr()->print(out); out->print(" "); 1988 if (_scratch->is_valid()) { 1989 _scratch->print(out); out->print(" "); 1990 } 1991 out->print("[lbl:" INTPTR_FORMAT "]", p2i(stub()->entry())); 1992 } 1993 1994 #ifdef ASSERT 1995 void LIR_OpAssert::print_instr(outputStream* out) const { 1996 print_condition(out, condition()); out->print(" "); 1997 in_opr1()->print(out); out->print(" "); 1998 in_opr2()->print(out); out->print(", \""); 1999 out->print("%s", msg()); out->print("\""); 2000 } 2001 #endif 2002 2003 2004 void LIR_OpDelay::print_instr(outputStream* out) const { 2005 _op->print_on(out); 2006 } 2007 2008 2009 // LIR_OpProfileCall 2010 void LIR_OpProfileCall::print_instr(outputStream* out) const { 2011 profiled_method()->name()->print_symbol_on(out); 2012 out->print("."); 2013 profiled_method()->holder()->name()->print_symbol_on(out); 2014 out->print(" @ %d ", profiled_bci()); 2015 mdo()->print(out); out->print(" "); 2016 recv()->print(out); out->print(" "); 2017 tmp1()->print(out); out->print(" "); 2018 } 2019 2020 // LIR_OpProfileType 2021 void LIR_OpProfileType::print_instr(outputStream* out) const { 2022 out->print("exact = "); 2023 if (exact_klass() == NULL) { 2024 out->print("unknown"); 2025 } else { 2026 exact_klass()->print_name_on(out); 2027 } 2028 out->print(" current = "); ciTypeEntries::print_ciklass(out, current_klass()); 2029 out->print(" "); 2030 mdp()->print(out); out->print(" "); 2031 obj()->print(out); out->print(" "); 2032 tmp()->print(out); out->print(" "); 2033 } 2034 2035 #endif // PRODUCT 2036 2037 // Implementation of LIR_InsertionBuffer 2038 2039 void LIR_InsertionBuffer::append(int index, LIR_Op* op) { 2040 assert(_index_and_count.length() % 2 == 0, "must have a count for each index"); 2041 2042 int i = number_of_insertion_points() - 1; 2043 if (i < 0 || index_at(i) < index) { 2044 append_new(index, 1); 2045 } else { 2046 assert(index_at(i) == index, "can append LIR_Ops in ascending order only"); 2047 assert(count_at(i) > 0, "check"); 2048 set_count_at(i, count_at(i) + 1); 2049 } 2050 _ops.push(op); 2051 2052 DEBUG_ONLY(verify()); 2053 } 2054 2055 #ifdef ASSERT 2056 void LIR_InsertionBuffer::verify() { 2057 int sum = 0; 2058 int prev_idx = -1; 2059 2060 for (int i = 0; i < number_of_insertion_points(); i++) { 2061 assert(prev_idx < index_at(i), "index must be ordered ascending"); 2062 sum += count_at(i); 2063 } 2064 assert(sum == number_of_ops(), "wrong total sum"); 2065 } 2066 #endif