1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2012, 2019, SAP SE. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "gc/shared/barrierSet.hpp"
  29 #include "gc/shared/barrierSetAssembler.hpp"
  30 #include "interpreter/interpreter.hpp"
  31 #include "nativeInst_ppc.hpp"
  32 #include "oops/instanceOop.hpp"
  33 #include "oops/method.hpp"
  34 #include "oops/objArrayKlass.hpp"
  35 #include "oops/oop.inline.hpp"
  36 #include "prims/methodHandles.hpp"
  37 #include "runtime/frame.inline.hpp"
  38 #include "runtime/handles.inline.hpp"
  39 #include "runtime/sharedRuntime.hpp"
  40 #include "runtime/stubCodeGenerator.hpp"
  41 #include "runtime/stubRoutines.hpp"
  42 #include "runtime/thread.inline.hpp"
  43 #include "utilities/align.hpp"
  44 
  45 // Declaration and definition of StubGenerator (no .hpp file).
  46 // For a more detailed description of the stub routine structure
  47 // see the comment in stubRoutines.hpp.
  48 
  49 #define __ _masm->
  50 
  51 #ifdef PRODUCT
  52 #define BLOCK_COMMENT(str) // nothing
  53 #else
  54 #define BLOCK_COMMENT(str) __ block_comment(str)
  55 #endif
  56 
  57 #if defined(ABI_ELFv2)
  58 #define STUB_ENTRY(name) StubRoutines::name()
  59 #else
  60 #define STUB_ENTRY(name) ((FunctionDescriptor*)StubRoutines::name())->entry()
  61 #endif
  62 
  63 class StubGenerator: public StubCodeGenerator {
  64  private:
  65 
  66   // Call stubs are used to call Java from C
  67   //
  68   // Arguments:
  69   //
  70   //   R3  - call wrapper address     : address
  71   //   R4  - result                   : intptr_t*
  72   //   R5  - result type              : BasicType
  73   //   R6  - method                   : Method
  74   //   R7  - frame mgr entry point    : address
  75   //   R8  - parameter block          : intptr_t*
  76   //   R9  - parameter count in words : int
  77   //   R10 - thread                   : Thread*
  78   //
  79   address generate_call_stub(address& return_address) {
  80     // Setup a new c frame, copy java arguments, call frame manager or
  81     // native_entry, and process result.
  82 
  83     StubCodeMark mark(this, "StubRoutines", "call_stub");
  84 
  85     address start = __ function_entry();
  86 
  87     // some sanity checks
  88     assert((sizeof(frame::abi_minframe) % 16) == 0,           "unaligned");
  89     assert((sizeof(frame::abi_reg_args) % 16) == 0,           "unaligned");
  90     assert((sizeof(frame::spill_nonvolatiles) % 16) == 0,     "unaligned");
  91     assert((sizeof(frame::parent_ijava_frame_abi) % 16) == 0, "unaligned");
  92     assert((sizeof(frame::entry_frame_locals) % 16) == 0,     "unaligned");
  93 
  94     Register r_arg_call_wrapper_addr        = R3;
  95     Register r_arg_result_addr              = R4;
  96     Register r_arg_result_type              = R5;
  97     Register r_arg_method                   = R6;
  98     Register r_arg_entry                    = R7;
  99     Register r_arg_thread                   = R10;
 100 
 101     Register r_temp                         = R24;
 102     Register r_top_of_arguments_addr        = R25;
 103     Register r_entryframe_fp                = R26;
 104 
 105     {
 106       // Stack on entry to call_stub:
 107       //
 108       //      F1      [C_FRAME]
 109       //              ...
 110 
 111       Register r_arg_argument_addr          = R8;
 112       Register r_arg_argument_count         = R9;
 113       Register r_frame_alignment_in_bytes   = R27;
 114       Register r_argument_addr              = R28;
 115       Register r_argumentcopy_addr          = R29;
 116       Register r_argument_size_in_bytes     = R30;
 117       Register r_frame_size                 = R23;
 118 
 119       Label arguments_copied;
 120 
 121       // Save LR/CR to caller's C_FRAME.
 122       __ save_LR_CR(R0);
 123 
 124       // Zero extend arg_argument_count.
 125       __ clrldi(r_arg_argument_count, r_arg_argument_count, 32);
 126 
 127       // Save non-volatiles GPRs to ENTRY_FRAME (not yet pushed, but it's safe).
 128       __ save_nonvolatile_gprs(R1_SP, _spill_nonvolatiles_neg(r14));
 129 
 130       // Keep copy of our frame pointer (caller's SP).
 131       __ mr(r_entryframe_fp, R1_SP);
 132 
 133       BLOCK_COMMENT("Push ENTRY_FRAME including arguments");
 134       // Push ENTRY_FRAME including arguments:
 135       //
 136       //      F0      [TOP_IJAVA_FRAME_ABI]
 137       //              alignment (optional)
 138       //              [outgoing Java arguments]
 139       //              [ENTRY_FRAME_LOCALS]
 140       //      F1      [C_FRAME]
 141       //              ...
 142 
 143       // calculate frame size
 144 
 145       // unaligned size of arguments
 146       __ sldi(r_argument_size_in_bytes,
 147                   r_arg_argument_count, Interpreter::logStackElementSize);
 148       // arguments alignment (max 1 slot)
 149       // FIXME: use round_to() here
 150       __ andi_(r_frame_alignment_in_bytes, r_arg_argument_count, 1);
 151       __ sldi(r_frame_alignment_in_bytes,
 152               r_frame_alignment_in_bytes, Interpreter::logStackElementSize);
 153 
 154       // size = unaligned size of arguments + top abi's size
 155       __ addi(r_frame_size, r_argument_size_in_bytes,
 156               frame::top_ijava_frame_abi_size);
 157       // size += arguments alignment
 158       __ add(r_frame_size,
 159              r_frame_size, r_frame_alignment_in_bytes);
 160       // size += size of call_stub locals
 161       __ addi(r_frame_size,
 162               r_frame_size, frame::entry_frame_locals_size);
 163 
 164       // push ENTRY_FRAME
 165       __ push_frame(r_frame_size, r_temp);
 166 
 167       // initialize call_stub locals (step 1)
 168       __ std(r_arg_call_wrapper_addr,
 169              _entry_frame_locals_neg(call_wrapper_address), r_entryframe_fp);
 170       __ std(r_arg_result_addr,
 171              _entry_frame_locals_neg(result_address), r_entryframe_fp);
 172       __ std(r_arg_result_type,
 173              _entry_frame_locals_neg(result_type), r_entryframe_fp);
 174       // we will save arguments_tos_address later
 175 
 176 
 177       BLOCK_COMMENT("Copy Java arguments");
 178       // copy Java arguments
 179 
 180       // Calculate top_of_arguments_addr which will be R17_tos (not prepushed) later.
 181       // FIXME: why not simply use SP+frame::top_ijava_frame_size?
 182       __ addi(r_top_of_arguments_addr,
 183               R1_SP, frame::top_ijava_frame_abi_size);
 184       __ add(r_top_of_arguments_addr,
 185              r_top_of_arguments_addr, r_frame_alignment_in_bytes);
 186 
 187       // any arguments to copy?
 188       __ cmpdi(CCR0, r_arg_argument_count, 0);
 189       __ beq(CCR0, arguments_copied);
 190 
 191       // prepare loop and copy arguments in reverse order
 192       {
 193         // init CTR with arg_argument_count
 194         __ mtctr(r_arg_argument_count);
 195 
 196         // let r_argumentcopy_addr point to last outgoing Java arguments P
 197         __ mr(r_argumentcopy_addr, r_top_of_arguments_addr);
 198 
 199         // let r_argument_addr point to last incoming java argument
 200         __ add(r_argument_addr,
 201                    r_arg_argument_addr, r_argument_size_in_bytes);
 202         __ addi(r_argument_addr, r_argument_addr, -BytesPerWord);
 203 
 204         // now loop while CTR > 0 and copy arguments
 205         {
 206           Label next_argument;
 207           __ bind(next_argument);
 208 
 209           __ ld(r_temp, 0, r_argument_addr);
 210           // argument_addr--;
 211           __ addi(r_argument_addr, r_argument_addr, -BytesPerWord);
 212           __ std(r_temp, 0, r_argumentcopy_addr);
 213           // argumentcopy_addr++;
 214           __ addi(r_argumentcopy_addr, r_argumentcopy_addr, BytesPerWord);
 215 
 216           __ bdnz(next_argument);
 217         }
 218       }
 219 
 220       // Arguments copied, continue.
 221       __ bind(arguments_copied);
 222     }
 223 
 224     {
 225       BLOCK_COMMENT("Call frame manager or native entry.");
 226       // Call frame manager or native entry.
 227       Register r_new_arg_entry = R14;
 228       assert_different_registers(r_new_arg_entry, r_top_of_arguments_addr,
 229                                  r_arg_method, r_arg_thread);
 230 
 231       __ mr(r_new_arg_entry, r_arg_entry);
 232 
 233       // Register state on entry to frame manager / native entry:
 234       //
 235       //   tos         -  intptr_t*    sender tos (prepushed) Lesp = (SP) + copied_arguments_offset - 8
 236       //   R19_method  -  Method
 237       //   R16_thread  -  JavaThread*
 238 
 239       // Tos must point to last argument - element_size.
 240       const Register tos = R15_esp;
 241 
 242       __ addi(tos, r_top_of_arguments_addr, -Interpreter::stackElementSize);
 243 
 244       // initialize call_stub locals (step 2)
 245       // now save tos as arguments_tos_address
 246       __ std(tos, _entry_frame_locals_neg(arguments_tos_address), r_entryframe_fp);
 247 
 248       // load argument registers for call
 249       __ mr(R19_method, r_arg_method);
 250       __ mr(R16_thread, r_arg_thread);
 251       assert(tos != r_arg_method, "trashed r_arg_method");
 252       assert(tos != r_arg_thread && R19_method != r_arg_thread, "trashed r_arg_thread");
 253 
 254       // Set R15_prev_state to 0 for simplifying checks in callee.
 255       __ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R11_scratch1);
 256       // Stack on entry to frame manager / native entry:
 257       //
 258       //      F0      [TOP_IJAVA_FRAME_ABI]
 259       //              alignment (optional)
 260       //              [outgoing Java arguments]
 261       //              [ENTRY_FRAME_LOCALS]
 262       //      F1      [C_FRAME]
 263       //              ...
 264       //
 265 
 266       // global toc register
 267       __ load_const_optimized(R29_TOC, MacroAssembler::global_toc(), R11_scratch1);
 268       // Remember the senderSP so we interpreter can pop c2i arguments off of the stack
 269       // when called via a c2i.
 270 
 271       // Pass initial_caller_sp to framemanager.
 272       __ mr(R21_sender_SP, R1_SP);
 273 
 274       // Do a light-weight C-call here, r_new_arg_entry holds the address
 275       // of the interpreter entry point (frame manager or native entry)
 276       // and save runtime-value of LR in return_address.
 277       assert(r_new_arg_entry != tos && r_new_arg_entry != R19_method && r_new_arg_entry != R16_thread,
 278              "trashed r_new_arg_entry");
 279       return_address = __ call_stub(r_new_arg_entry);
 280     }
 281 
 282     {
 283       BLOCK_COMMENT("Returned from frame manager or native entry.");
 284       // Returned from frame manager or native entry.
 285       // Now pop frame, process result, and return to caller.
 286 
 287       // Stack on exit from frame manager / native entry:
 288       //
 289       //      F0      [ABI]
 290       //              ...
 291       //              [ENTRY_FRAME_LOCALS]
 292       //      F1      [C_FRAME]
 293       //              ...
 294       //
 295       // Just pop the topmost frame ...
 296       //
 297 
 298       Label ret_is_object;
 299       Label ret_is_long;
 300       Label ret_is_float;
 301       Label ret_is_double;
 302 
 303       Register r_entryframe_fp = R30;
 304       Register r_lr            = R7_ARG5;
 305       Register r_cr            = R8_ARG6;
 306 
 307       // Reload some volatile registers which we've spilled before the call
 308       // to frame manager / native entry.
 309       // Access all locals via frame pointer, because we know nothing about
 310       // the topmost frame's size.
 311       __ ld(r_entryframe_fp, _abi(callers_sp), R1_SP);
 312       assert_different_registers(r_entryframe_fp, R3_RET, r_arg_result_addr, r_arg_result_type, r_cr, r_lr);
 313       __ ld(r_arg_result_addr,
 314             _entry_frame_locals_neg(result_address), r_entryframe_fp);
 315       __ ld(r_arg_result_type,
 316             _entry_frame_locals_neg(result_type), r_entryframe_fp);
 317       __ ld(r_cr, _abi(cr), r_entryframe_fp);
 318       __ ld(r_lr, _abi(lr), r_entryframe_fp);
 319 
 320       // pop frame and restore non-volatiles, LR and CR
 321       __ mr(R1_SP, r_entryframe_fp);
 322       __ mtcr(r_cr);
 323       __ mtlr(r_lr);
 324 
 325       // Store result depending on type. Everything that is not
 326       // T_OBJECT, T_LONG, T_FLOAT, or T_DOUBLE is treated as T_INT.
 327       __ cmpwi(CCR0, r_arg_result_type, T_OBJECT);
 328       __ cmpwi(CCR1, r_arg_result_type, T_LONG);
 329       __ cmpwi(CCR5, r_arg_result_type, T_FLOAT);
 330       __ cmpwi(CCR6, r_arg_result_type, T_DOUBLE);
 331 
 332       // restore non-volatile registers
 333       __ restore_nonvolatile_gprs(R1_SP, _spill_nonvolatiles_neg(r14));
 334 
 335 
 336       // Stack on exit from call_stub:
 337       //
 338       //      0       [C_FRAME]
 339       //              ...
 340       //
 341       //  no call_stub frames left.
 342 
 343       // All non-volatiles have been restored at this point!!
 344       assert(R3_RET == R3, "R3_RET should be R3");
 345 
 346       __ beq(CCR0, ret_is_object);
 347       __ beq(CCR1, ret_is_long);
 348       __ beq(CCR5, ret_is_float);
 349       __ beq(CCR6, ret_is_double);
 350 
 351       // default:
 352       __ stw(R3_RET, 0, r_arg_result_addr);
 353       __ blr(); // return to caller
 354 
 355       // case T_OBJECT:
 356       __ bind(ret_is_object);
 357       __ std(R3_RET, 0, r_arg_result_addr);
 358       __ blr(); // return to caller
 359 
 360       // case T_LONG:
 361       __ bind(ret_is_long);
 362       __ std(R3_RET, 0, r_arg_result_addr);
 363       __ blr(); // return to caller
 364 
 365       // case T_FLOAT:
 366       __ bind(ret_is_float);
 367       __ stfs(F1_RET, 0, r_arg_result_addr);
 368       __ blr(); // return to caller
 369 
 370       // case T_DOUBLE:
 371       __ bind(ret_is_double);
 372       __ stfd(F1_RET, 0, r_arg_result_addr);
 373       __ blr(); // return to caller
 374     }
 375 
 376     return start;
 377   }
 378 
 379   // Return point for a Java call if there's an exception thrown in
 380   // Java code.  The exception is caught and transformed into a
 381   // pending exception stored in JavaThread that can be tested from
 382   // within the VM.
 383   //
 384   address generate_catch_exception() {
 385     StubCodeMark mark(this, "StubRoutines", "catch_exception");
 386 
 387     address start = __ pc();
 388 
 389     // Registers alive
 390     //
 391     //  R16_thread
 392     //  R3_ARG1 - address of pending exception
 393     //  R4_ARG2 - return address in call stub
 394 
 395     const Register exception_file = R21_tmp1;
 396     const Register exception_line = R22_tmp2;
 397 
 398     __ load_const(exception_file, (void*)__FILE__);
 399     __ load_const(exception_line, (void*)__LINE__);
 400 
 401     __ std(R3_ARG1, in_bytes(JavaThread::pending_exception_offset()), R16_thread);
 402     // store into `char *'
 403     __ std(exception_file, in_bytes(JavaThread::exception_file_offset()), R16_thread);
 404     // store into `int'
 405     __ stw(exception_line, in_bytes(JavaThread::exception_line_offset()), R16_thread);
 406 
 407     // complete return to VM
 408     assert(StubRoutines::_call_stub_return_address != NULL, "must have been generated before");
 409 
 410     __ mtlr(R4_ARG2);
 411     // continue in call stub
 412     __ blr();
 413 
 414     return start;
 415   }
 416 
 417   // Continuation point for runtime calls returning with a pending
 418   // exception.  The pending exception check happened in the runtime
 419   // or native call stub.  The pending exception in Thread is
 420   // converted into a Java-level exception.
 421   //
 422   // Read:
 423   //
 424   //   LR:     The pc the runtime library callee wants to return to.
 425   //           Since the exception occurred in the callee, the return pc
 426   //           from the point of view of Java is the exception pc.
 427   //   thread: Needed for method handles.
 428   //
 429   // Invalidate:
 430   //
 431   //   volatile registers (except below).
 432   //
 433   // Update:
 434   //
 435   //   R4_ARG2: exception
 436   //
 437   // (LR is unchanged and is live out).
 438   //
 439   address generate_forward_exception() {
 440     StubCodeMark mark(this, "StubRoutines", "forward_exception");
 441     address start = __ pc();
 442 
 443 #if !defined(PRODUCT)
 444     if (VerifyOops) {
 445       // Get pending exception oop.
 446       __ ld(R3_ARG1,
 447                 in_bytes(Thread::pending_exception_offset()),
 448                 R16_thread);
 449       // Make sure that this code is only executed if there is a pending exception.
 450       {
 451         Label L;
 452         __ cmpdi(CCR0, R3_ARG1, 0);
 453         __ bne(CCR0, L);
 454         __ stop("StubRoutines::forward exception: no pending exception (1)");
 455         __ bind(L);
 456       }
 457       __ verify_oop(R3_ARG1, "StubRoutines::forward exception: not an oop");
 458     }
 459 #endif
 460 
 461     // Save LR/CR and copy exception pc (LR) into R4_ARG2.
 462     __ save_LR_CR(R4_ARG2);
 463     __ push_frame_reg_args(0, R0);
 464     // Find exception handler.
 465     __ call_VM_leaf(CAST_FROM_FN_PTR(address,
 466                      SharedRuntime::exception_handler_for_return_address),
 467                     R16_thread,
 468                     R4_ARG2);
 469     // Copy handler's address.
 470     __ mtctr(R3_RET);
 471     __ pop_frame();
 472     __ restore_LR_CR(R0);
 473 
 474     // Set up the arguments for the exception handler:
 475     //  - R3_ARG1: exception oop
 476     //  - R4_ARG2: exception pc.
 477 
 478     // Load pending exception oop.
 479     __ ld(R3_ARG1,
 480               in_bytes(Thread::pending_exception_offset()),
 481               R16_thread);
 482 
 483     // The exception pc is the return address in the caller.
 484     // Must load it into R4_ARG2.
 485     __ mflr(R4_ARG2);
 486 
 487 #ifdef ASSERT
 488     // Make sure exception is set.
 489     {
 490       Label L;
 491       __ cmpdi(CCR0, R3_ARG1, 0);
 492       __ bne(CCR0, L);
 493       __ stop("StubRoutines::forward exception: no pending exception (2)");
 494       __ bind(L);
 495     }
 496 #endif
 497 
 498     // Clear the pending exception.
 499     __ li(R0, 0);
 500     __ std(R0,
 501                in_bytes(Thread::pending_exception_offset()),
 502                R16_thread);
 503     // Jump to exception handler.
 504     __ bctr();
 505 
 506     return start;
 507   }
 508 
 509 #undef __
 510 #define __ masm->
 511   // Continuation point for throwing of implicit exceptions that are
 512   // not handled in the current activation. Fabricates an exception
 513   // oop and initiates normal exception dispatching in this
 514   // frame. Only callee-saved registers are preserved (through the
 515   // normal register window / RegisterMap handling).  If the compiler
 516   // needs all registers to be preserved between the fault point and
 517   // the exception handler then it must assume responsibility for that
 518   // in AbstractCompiler::continuation_for_implicit_null_exception or
 519   // continuation_for_implicit_division_by_zero_exception. All other
 520   // implicit exceptions (e.g., NullPointerException or
 521   // AbstractMethodError on entry) are either at call sites or
 522   // otherwise assume that stack unwinding will be initiated, so
 523   // caller saved registers were assumed volatile in the compiler.
 524   //
 525   // Note that we generate only this stub into a RuntimeStub, because
 526   // it needs to be properly traversed and ignored during GC, so we
 527   // change the meaning of the "__" macro within this method.
 528   //
 529   // Note: the routine set_pc_not_at_call_for_caller in
 530   // SharedRuntime.cpp requires that this code be generated into a
 531   // RuntimeStub.
 532   address generate_throw_exception(const char* name, address runtime_entry, bool restore_saved_exception_pc,
 533                                    Register arg1 = noreg, Register arg2 = noreg) {
 534     CodeBuffer code(name, 1024 DEBUG_ONLY(+ 512), 0);
 535     MacroAssembler* masm = new MacroAssembler(&code);
 536 
 537     OopMapSet* oop_maps  = new OopMapSet();
 538     int frame_size_in_bytes = frame::abi_reg_args_size;
 539     OopMap* map = new OopMap(frame_size_in_bytes / sizeof(jint), 0);
 540 
 541     address start = __ pc();
 542 
 543     __ save_LR_CR(R11_scratch1);
 544 
 545     // Push a frame.
 546     __ push_frame_reg_args(0, R11_scratch1);
 547 
 548     address frame_complete_pc = __ pc();
 549 
 550     if (restore_saved_exception_pc) {
 551       __ unimplemented("StubGenerator::throw_exception with restore_saved_exception_pc", 74);
 552     }
 553 
 554     // Note that we always have a runtime stub frame on the top of
 555     // stack by this point. Remember the offset of the instruction
 556     // whose address will be moved to R11_scratch1.
 557     address gc_map_pc = __ get_PC_trash_LR(R11_scratch1);
 558 
 559     __ set_last_Java_frame(/*sp*/R1_SP, /*pc*/R11_scratch1);
 560 
 561     __ mr(R3_ARG1, R16_thread);
 562     if (arg1 != noreg) {
 563       __ mr(R4_ARG2, arg1);
 564     }
 565     if (arg2 != noreg) {
 566       __ mr(R5_ARG3, arg2);
 567     }
 568 #if defined(ABI_ELFv2)
 569     __ call_c(runtime_entry, relocInfo::none);
 570 #else
 571     __ call_c(CAST_FROM_FN_PTR(FunctionDescriptor*, runtime_entry), relocInfo::none);
 572 #endif
 573 
 574     // Set an oopmap for the call site.
 575     oop_maps->add_gc_map((int)(gc_map_pc - start), map);
 576 
 577     __ reset_last_Java_frame();
 578 
 579 #ifdef ASSERT
 580     // Make sure that this code is only executed if there is a pending
 581     // exception.
 582     {
 583       Label L;
 584       __ ld(R0,
 585                 in_bytes(Thread::pending_exception_offset()),
 586                 R16_thread);
 587       __ cmpdi(CCR0, R0, 0);
 588       __ bne(CCR0, L);
 589       __ stop("StubRoutines::throw_exception: no pending exception");
 590       __ bind(L);
 591     }
 592 #endif
 593 
 594     // Pop frame.
 595     __ pop_frame();
 596 
 597     __ restore_LR_CR(R11_scratch1);
 598 
 599     __ load_const(R11_scratch1, StubRoutines::forward_exception_entry());
 600     __ mtctr(R11_scratch1);
 601     __ bctr();
 602 
 603     // Create runtime stub with OopMap.
 604     RuntimeStub* stub =
 605       RuntimeStub::new_runtime_stub(name, &code,
 606                                     /*frame_complete=*/ (int)(frame_complete_pc - start),
 607                                     frame_size_in_bytes/wordSize,
 608                                     oop_maps,
 609                                     false);
 610     return stub->entry_point();
 611   }
 612 #undef __
 613 #define __ _masm->
 614 
 615 
 616   // Support for void zero_words_aligned8(HeapWord* to, size_t count)
 617   //
 618   // Arguments:
 619   //   to:
 620   //   count:
 621   //
 622   // Destroys:
 623   //
 624   address generate_zero_words_aligned8() {
 625     StubCodeMark mark(this, "StubRoutines", "zero_words_aligned8");
 626 
 627     // Implemented as in ClearArray.
 628     address start = __ function_entry();
 629 
 630     Register base_ptr_reg   = R3_ARG1; // tohw (needs to be 8b aligned)
 631     Register cnt_dwords_reg = R4_ARG2; // count (in dwords)
 632     Register tmp1_reg       = R5_ARG3;
 633     Register tmp2_reg       = R6_ARG4;
 634     Register zero_reg       = R7_ARG5;
 635 
 636     // Procedure for large arrays (uses data cache block zero instruction).
 637     Label dwloop, fast, fastloop, restloop, lastdword, done;
 638     int cl_size = VM_Version::L1_data_cache_line_size();
 639     int cl_dwords = cl_size >> 3;
 640     int cl_dwordaddr_bits = exact_log2(cl_dwords);
 641     int min_dcbz = 2; // Needs to be positive, apply dcbz only to at least min_dcbz cache lines.
 642 
 643     // Clear up to 128byte boundary if long enough, dword_cnt=(16-(base>>3))%16.
 644     __ dcbtst(base_ptr_reg);                    // Indicate write access to first cache line ...
 645     __ andi(tmp2_reg, cnt_dwords_reg, 1);       // to check if number of dwords is even.
 646     __ srdi_(tmp1_reg, cnt_dwords_reg, 1);      // number of double dwords
 647     __ load_const_optimized(zero_reg, 0L);      // Use as zero register.
 648 
 649     __ cmpdi(CCR1, tmp2_reg, 0);                // cnt_dwords even?
 650     __ beq(CCR0, lastdword);                    // size <= 1
 651     __ mtctr(tmp1_reg);                         // Speculatively preload counter for rest loop (>0).
 652     __ cmpdi(CCR0, cnt_dwords_reg, (min_dcbz+1)*cl_dwords-1); // Big enough to ensure >=min_dcbz cache lines are included?
 653     __ neg(tmp1_reg, base_ptr_reg);             // bit 0..58: bogus, bit 57..60: (16-(base>>3))%16, bit 61..63: 000
 654 
 655     __ blt(CCR0, restloop);                     // Too small. (<31=(2*cl_dwords)-1 is sufficient, but bigger performs better.)
 656     __ rldicl_(tmp1_reg, tmp1_reg, 64-3, 64-cl_dwordaddr_bits); // Extract number of dwords to 128byte boundary=(16-(base>>3))%16.
 657 
 658     __ beq(CCR0, fast);                         // already 128byte aligned
 659     __ mtctr(tmp1_reg);                         // Set ctr to hit 128byte boundary (0<ctr<cnt).
 660     __ subf(cnt_dwords_reg, tmp1_reg, cnt_dwords_reg); // rest (>0 since size>=256-8)
 661 
 662     // Clear in first cache line dword-by-dword if not already 128byte aligned.
 663     __ bind(dwloop);
 664       __ std(zero_reg, 0, base_ptr_reg);        // Clear 8byte aligned block.
 665       __ addi(base_ptr_reg, base_ptr_reg, 8);
 666     __ bdnz(dwloop);
 667 
 668     // clear 128byte blocks
 669     __ bind(fast);
 670     __ srdi(tmp1_reg, cnt_dwords_reg, cl_dwordaddr_bits); // loop count for 128byte loop (>0 since size>=256-8)
 671     __ andi(tmp2_reg, cnt_dwords_reg, 1);       // to check if rest even
 672 
 673     __ mtctr(tmp1_reg);                         // load counter
 674     __ cmpdi(CCR1, tmp2_reg, 0);                // rest even?
 675     __ rldicl_(tmp1_reg, cnt_dwords_reg, 63, 65-cl_dwordaddr_bits); // rest in double dwords
 676 
 677     __ bind(fastloop);
 678       __ dcbz(base_ptr_reg);                    // Clear 128byte aligned block.
 679       __ addi(base_ptr_reg, base_ptr_reg, cl_size);
 680     __ bdnz(fastloop);
 681 
 682     //__ dcbtst(base_ptr_reg);                  // Indicate write access to last cache line.
 683     __ beq(CCR0, lastdword);                    // rest<=1
 684     __ mtctr(tmp1_reg);                         // load counter
 685 
 686     // Clear rest.
 687     __ bind(restloop);
 688       __ std(zero_reg, 0, base_ptr_reg);        // Clear 8byte aligned block.
 689       __ std(zero_reg, 8, base_ptr_reg);        // Clear 8byte aligned block.
 690       __ addi(base_ptr_reg, base_ptr_reg, 16);
 691     __ bdnz(restloop);
 692 
 693     __ bind(lastdword);
 694     __ beq(CCR1, done);
 695     __ std(zero_reg, 0, base_ptr_reg);
 696     __ bind(done);
 697     __ blr();                                   // return
 698 
 699     return start;
 700   }
 701 
 702 #if !defined(PRODUCT)
 703   // Wrapper which calls oopDesc::is_oop_or_null()
 704   // Only called by MacroAssembler::verify_oop
 705   static void verify_oop_helper(const char* message, oop o) {
 706     if (!oopDesc::is_oop_or_null(o)) {
 707       fatal("%s", message);
 708     }
 709     ++ StubRoutines::_verify_oop_count;
 710   }
 711 #endif
 712 
 713   // Return address of code to be called from code generated by
 714   // MacroAssembler::verify_oop.
 715   //
 716   // Don't generate, rather use C++ code.
 717   address generate_verify_oop() {
 718     // this is actually a `FunctionDescriptor*'.
 719     address start = 0;
 720 
 721 #if !defined(PRODUCT)
 722     start = CAST_FROM_FN_PTR(address, verify_oop_helper);
 723 #endif
 724 
 725     return start;
 726   }
 727 
 728 
 729   // -XX:+OptimizeFill : convert fill/copy loops into intrinsic
 730   //
 731   // The code is implemented(ported from sparc) as we believe it benefits JVM98, however
 732   // tracing(-XX:+TraceOptimizeFill) shows the intrinsic replacement doesn't happen at all!
 733   //
 734   // Source code in function is_range_check_if() shows that OptimizeFill relaxed the condition
 735   // for turning on loop predication optimization, and hence the behavior of "array range check"
 736   // and "loop invariant check" could be influenced, which potentially boosted JVM98.
 737   //
 738   // Generate stub for disjoint short fill. If "aligned" is true, the
 739   // "to" address is assumed to be heapword aligned.
 740   //
 741   // Arguments for generated stub:
 742   //   to:    R3_ARG1
 743   //   value: R4_ARG2
 744   //   count: R5_ARG3 treated as signed
 745   //
 746   address generate_fill(BasicType t, bool aligned, const char* name) {
 747     StubCodeMark mark(this, "StubRoutines", name);
 748     address start = __ function_entry();
 749 
 750     const Register to    = R3_ARG1;   // source array address
 751     const Register value = R4_ARG2;   // fill value
 752     const Register count = R5_ARG3;   // elements count
 753     const Register temp  = R6_ARG4;   // temp register
 754 
 755     //assert_clean_int(count, O3);    // Make sure 'count' is clean int.
 756 
 757     Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
 758     Label L_fill_2_bytes, L_fill_4_bytes, L_fill_elements, L_fill_32_bytes;
 759 
 760     int shift = -1;
 761     switch (t) {
 762        case T_BYTE:
 763         shift = 2;
 764         // Clone bytes (zero extend not needed because store instructions below ignore high order bytes).
 765         __ rldimi(value, value, 8, 48);     // 8 bit -> 16 bit
 766         __ cmpdi(CCR0, count, 2<<shift);    // Short arrays (< 8 bytes) fill by element.
 767         __ blt(CCR0, L_fill_elements);
 768         __ rldimi(value, value, 16, 32);    // 16 bit -> 32 bit
 769         break;
 770        case T_SHORT:
 771         shift = 1;
 772         // Clone bytes (zero extend not needed because store instructions below ignore high order bytes).
 773         __ rldimi(value, value, 16, 32);    // 16 bit -> 32 bit
 774         __ cmpdi(CCR0, count, 2<<shift);    // Short arrays (< 8 bytes) fill by element.
 775         __ blt(CCR0, L_fill_elements);
 776         break;
 777       case T_INT:
 778         shift = 0;
 779         __ cmpdi(CCR0, count, 2<<shift);    // Short arrays (< 8 bytes) fill by element.
 780         __ blt(CCR0, L_fill_4_bytes);
 781         break;
 782       default: ShouldNotReachHere();
 783     }
 784 
 785     if (!aligned && (t == T_BYTE || t == T_SHORT)) {
 786       // Align source address at 4 bytes address boundary.
 787       if (t == T_BYTE) {
 788         // One byte misalignment happens only for byte arrays.
 789         __ andi_(temp, to, 1);
 790         __ beq(CCR0, L_skip_align1);
 791         __ stb(value, 0, to);
 792         __ addi(to, to, 1);
 793         __ addi(count, count, -1);
 794         __ bind(L_skip_align1);
 795       }
 796       // Two bytes misalignment happens only for byte and short (char) arrays.
 797       __ andi_(temp, to, 2);
 798       __ beq(CCR0, L_skip_align2);
 799       __ sth(value, 0, to);
 800       __ addi(to, to, 2);
 801       __ addi(count, count, -(1 << (shift - 1)));
 802       __ bind(L_skip_align2);
 803     }
 804 
 805     if (!aligned) {
 806       // Align to 8 bytes, we know we are 4 byte aligned to start.
 807       __ andi_(temp, to, 7);
 808       __ beq(CCR0, L_fill_32_bytes);
 809       __ stw(value, 0, to);
 810       __ addi(to, to, 4);
 811       __ addi(count, count, -(1 << shift));
 812       __ bind(L_fill_32_bytes);
 813     }
 814 
 815     __ li(temp, 8<<shift);                  // Prepare for 32 byte loop.
 816     // Clone bytes int->long as above.
 817     __ rldimi(value, value, 32, 0);         // 32 bit -> 64 bit
 818 
 819     Label L_check_fill_8_bytes;
 820     // Fill 32-byte chunks.
 821     __ subf_(count, temp, count);
 822     __ blt(CCR0, L_check_fill_8_bytes);
 823 
 824     Label L_fill_32_bytes_loop;
 825     __ align(32);
 826     __ bind(L_fill_32_bytes_loop);
 827 
 828     __ std(value, 0, to);
 829     __ std(value, 8, to);
 830     __ subf_(count, temp, count);           // Update count.
 831     __ std(value, 16, to);
 832     __ std(value, 24, to);
 833 
 834     __ addi(to, to, 32);
 835     __ bge(CCR0, L_fill_32_bytes_loop);
 836 
 837     __ bind(L_check_fill_8_bytes);
 838     __ add_(count, temp, count);
 839     __ beq(CCR0, L_exit);
 840     __ addic_(count, count, -(2 << shift));
 841     __ blt(CCR0, L_fill_4_bytes);
 842 
 843     //
 844     // Length is too short, just fill 8 bytes at a time.
 845     //
 846     Label L_fill_8_bytes_loop;
 847     __ bind(L_fill_8_bytes_loop);
 848     __ std(value, 0, to);
 849     __ addic_(count, count, -(2 << shift));
 850     __ addi(to, to, 8);
 851     __ bge(CCR0, L_fill_8_bytes_loop);
 852 
 853     // Fill trailing 4 bytes.
 854     __ bind(L_fill_4_bytes);
 855     __ andi_(temp, count, 1<<shift);
 856     __ beq(CCR0, L_fill_2_bytes);
 857 
 858     __ stw(value, 0, to);
 859     if (t == T_BYTE || t == T_SHORT) {
 860       __ addi(to, to, 4);
 861       // Fill trailing 2 bytes.
 862       __ bind(L_fill_2_bytes);
 863       __ andi_(temp, count, 1<<(shift-1));
 864       __ beq(CCR0, L_fill_byte);
 865       __ sth(value, 0, to);
 866       if (t == T_BYTE) {
 867         __ addi(to, to, 2);
 868         // Fill trailing byte.
 869         __ bind(L_fill_byte);
 870         __ andi_(count, count, 1);
 871         __ beq(CCR0, L_exit);
 872         __ stb(value, 0, to);
 873       } else {
 874         __ bind(L_fill_byte);
 875       }
 876     } else {
 877       __ bind(L_fill_2_bytes);
 878     }
 879     __ bind(L_exit);
 880     __ blr();
 881 
 882     // Handle copies less than 8 bytes. Int is handled elsewhere.
 883     if (t == T_BYTE) {
 884       __ bind(L_fill_elements);
 885       Label L_fill_2, L_fill_4;
 886       __ andi_(temp, count, 1);
 887       __ beq(CCR0, L_fill_2);
 888       __ stb(value, 0, to);
 889       __ addi(to, to, 1);
 890       __ bind(L_fill_2);
 891       __ andi_(temp, count, 2);
 892       __ beq(CCR0, L_fill_4);
 893       __ stb(value, 0, to);
 894       __ stb(value, 0, to);
 895       __ addi(to, to, 2);
 896       __ bind(L_fill_4);
 897       __ andi_(temp, count, 4);
 898       __ beq(CCR0, L_exit);
 899       __ stb(value, 0, to);
 900       __ stb(value, 1, to);
 901       __ stb(value, 2, to);
 902       __ stb(value, 3, to);
 903       __ blr();
 904     }
 905 
 906     if (t == T_SHORT) {
 907       Label L_fill_2;
 908       __ bind(L_fill_elements);
 909       __ andi_(temp, count, 1);
 910       __ beq(CCR0, L_fill_2);
 911       __ sth(value, 0, to);
 912       __ addi(to, to, 2);
 913       __ bind(L_fill_2);
 914       __ andi_(temp, count, 2);
 915       __ beq(CCR0, L_exit);
 916       __ sth(value, 0, to);
 917       __ sth(value, 2, to);
 918       __ blr();
 919     }
 920     return start;
 921   }
 922 
 923   inline void assert_positive_int(Register count) {
 924 #ifdef ASSERT
 925     __ srdi_(R0, count, 31);
 926     __ asm_assert_eq("missing zero extend", 0xAFFE);
 927 #endif
 928   }
 929 
 930   // Generate overlap test for array copy stubs.
 931   //
 932   // Input:
 933   //   R3_ARG1    -  from
 934   //   R4_ARG2    -  to
 935   //   R5_ARG3    -  element count
 936   //
 937   void array_overlap_test(address no_overlap_target, int log2_elem_size) {
 938     Register tmp1 = R6_ARG4;
 939     Register tmp2 = R7_ARG5;
 940 
 941     assert_positive_int(R5_ARG3);
 942 
 943     __ subf(tmp1, R3_ARG1, R4_ARG2); // distance in bytes
 944     __ sldi(tmp2, R5_ARG3, log2_elem_size); // size in bytes
 945     __ cmpld(CCR0, R3_ARG1, R4_ARG2); // Use unsigned comparison!
 946     __ cmpld(CCR1, tmp1, tmp2);
 947     __ crnand(CCR0, Assembler::less, CCR1, Assembler::less);
 948     // Overlaps if Src before dst and distance smaller than size.
 949     // Branch to forward copy routine otherwise (within range of 32kB).
 950     __ bc(Assembler::bcondCRbiIs1, Assembler::bi0(CCR0, Assembler::less), no_overlap_target);
 951 
 952     // need to copy backwards
 953   }
 954 
 955   // This is common errorexit stub for UnsafeCopyMemory.
 956   address generate_unsafecopy_common_error_exit() {
 957     address start_pc = __ pc();
 958     Register tmp1 = R6_ARG4;
 959     // probably copy stub would have changed value reset it.
 960     if (VM_Version::has_mfdscr()) {
 961       __ load_const_optimized(tmp1, VM_Version::_dscr_val);
 962       __ mtdscr(tmp1);
 963     }
 964     __ li(R3_RET, 0); // return 0
 965     __ blr();
 966     return start_pc;
 967   }
 968 
 969   // The guideline in the implementations of generate_disjoint_xxx_copy
 970   // (xxx=byte,short,int,long,oop) is to copy as many elements as possible with
 971   // single instructions, but to avoid alignment interrupts (see subsequent
 972   // comment). Furthermore, we try to minimize misaligned access, even
 973   // though they cause no alignment interrupt.
 974   //
 975   // In Big-Endian mode, the PowerPC architecture requires implementations to
 976   // handle automatically misaligned integer halfword and word accesses,
 977   // word-aligned integer doubleword accesses, and word-aligned floating-point
 978   // accesses. Other accesses may or may not generate an Alignment interrupt
 979   // depending on the implementation.
 980   // Alignment interrupt handling may require on the order of hundreds of cycles,
 981   // so every effort should be made to avoid misaligned memory values.
 982   //
 983   //
 984   // Generate stub for disjoint byte copy.  If "aligned" is true, the
 985   // "from" and "to" addresses are assumed to be heapword aligned.
 986   //
 987   // Arguments for generated stub:
 988   //      from:  R3_ARG1
 989   //      to:    R4_ARG2
 990   //      count: R5_ARG3 treated as signed
 991   //
 992   address generate_disjoint_byte_copy(bool aligned, const char * name) {
 993     StubCodeMark mark(this, "StubRoutines", name);
 994     address start = __ function_entry();
 995     assert_positive_int(R5_ARG3);
 996 
 997     Register tmp1 = R6_ARG4;
 998     Register tmp2 = R7_ARG5;
 999     Register tmp3 = R8_ARG6;
1000     Register tmp4 = R9_ARG7;
1001 
1002     VectorSRegister tmp_vsr1  = VSR1;
1003     VectorSRegister tmp_vsr2  = VSR2;
1004 
1005     Label l_1, l_2, l_3, l_4, l_5, l_6, l_7, l_8, l_9, l_10;
1006     {
1007       // UnsafeCopyMemory page error: continue at UnsafeCopyMemory common_error_exit
1008       UnsafeCopyMemoryMark ucmm(this, !aligned, false);
1009 
1010       // Don't try anything fancy if arrays don't have many elements.
1011       __ li(tmp3, 0);
1012       __ cmpwi(CCR0, R5_ARG3, 17);
1013       __ ble(CCR0, l_6); // copy 4 at a time
1014 
1015       if (!aligned) {
1016         __ xorr(tmp1, R3_ARG1, R4_ARG2);
1017         __ andi_(tmp1, tmp1, 3);
1018         __ bne(CCR0, l_6); // If arrays don't have the same alignment mod 4, do 4 element copy.
1019 
1020         // Copy elements if necessary to align to 4 bytes.
1021         __ neg(tmp1, R3_ARG1); // Compute distance to alignment boundary.
1022         __ andi_(tmp1, tmp1, 3);
1023         __ beq(CCR0, l_2);
1024 
1025         __ subf(R5_ARG3, tmp1, R5_ARG3);
1026         __ bind(l_9);
1027         __ lbz(tmp2, 0, R3_ARG1);
1028         __ addic_(tmp1, tmp1, -1);
1029         __ stb(tmp2, 0, R4_ARG2);
1030         __ addi(R3_ARG1, R3_ARG1, 1);
1031         __ addi(R4_ARG2, R4_ARG2, 1);
1032         __ bne(CCR0, l_9);
1033 
1034         __ bind(l_2);
1035       }
1036 
1037       // copy 8 elements at a time
1038       __ xorr(tmp2, R3_ARG1, R4_ARG2); // skip if src & dest have differing alignment mod 8
1039       __ andi_(tmp1, tmp2, 7);
1040       __ bne(CCR0, l_7); // not same alignment -> to or from is aligned -> copy 8
1041 
1042       // copy a 2-element word if necessary to align to 8 bytes
1043       __ andi_(R0, R3_ARG1, 7);
1044       __ beq(CCR0, l_7);
1045 
1046       __ lwzx(tmp2, R3_ARG1, tmp3);
1047       __ addi(R5_ARG3, R5_ARG3, -4);
1048       __ stwx(tmp2, R4_ARG2, tmp3);
1049       { // FasterArrayCopy
1050         __ addi(R3_ARG1, R3_ARG1, 4);
1051         __ addi(R4_ARG2, R4_ARG2, 4);
1052       }
1053       __ bind(l_7);
1054 
1055       { // FasterArrayCopy
1056         __ cmpwi(CCR0, R5_ARG3, 31);
1057         __ ble(CCR0, l_6); // copy 2 at a time if less than 32 elements remain
1058 
1059         __ srdi(tmp1, R5_ARG3, 5);
1060         __ andi_(R5_ARG3, R5_ARG3, 31);
1061         __ mtctr(tmp1);
1062 
1063        if (!VM_Version::has_vsx()) {
1064 
1065         __ bind(l_8);
1066         // Use unrolled version for mass copying (copy 32 elements a time)
1067         // Load feeding store gets zero latency on Power6, however not on Power5.
1068         // Therefore, the following sequence is made for the good of both.
1069         __ ld(tmp1, 0, R3_ARG1);
1070         __ ld(tmp2, 8, R3_ARG1);
1071         __ ld(tmp3, 16, R3_ARG1);
1072         __ ld(tmp4, 24, R3_ARG1);
1073         __ std(tmp1, 0, R4_ARG2);
1074         __ std(tmp2, 8, R4_ARG2);
1075         __ std(tmp3, 16, R4_ARG2);
1076         __ std(tmp4, 24, R4_ARG2);
1077         __ addi(R3_ARG1, R3_ARG1, 32);
1078         __ addi(R4_ARG2, R4_ARG2, 32);
1079         __ bdnz(l_8);
1080 
1081       } else { // Processor supports VSX, so use it to mass copy.
1082 
1083         // Prefetch the data into the L2 cache.
1084         __ dcbt(R3_ARG1, 0);
1085 
1086         // If supported set DSCR pre-fetch to deepest.
1087         if (VM_Version::has_mfdscr()) {
1088           __ load_const_optimized(tmp2, VM_Version::_dscr_val | 7);
1089           __ mtdscr(tmp2);
1090         }
1091 
1092         __ li(tmp1, 16);
1093 
1094         // Backbranch target aligned to 32-byte. Not 16-byte align as
1095         // loop contains < 8 instructions that fit inside a single
1096         // i-cache sector.
1097         __ align(32);
1098 
1099         __ bind(l_10);
1100         // Use loop with VSX load/store instructions to
1101         // copy 32 elements a time.
1102         __ lxvd2x(tmp_vsr1, R3_ARG1);        // Load src
1103         __ stxvd2x(tmp_vsr1, R4_ARG2);       // Store to dst
1104         __ lxvd2x(tmp_vsr2, tmp1, R3_ARG1);  // Load src + 16
1105         __ stxvd2x(tmp_vsr2, tmp1, R4_ARG2); // Store to dst + 16
1106         __ addi(R3_ARG1, R3_ARG1, 32);       // Update src+=32
1107         __ addi(R4_ARG2, R4_ARG2, 32);       // Update dsc+=32
1108         __ bdnz(l_10);                       // Dec CTR and loop if not zero.
1109 
1110         // Restore DSCR pre-fetch value.
1111         if (VM_Version::has_mfdscr()) {
1112           __ load_const_optimized(tmp2, VM_Version::_dscr_val);
1113           __ mtdscr(tmp2);
1114         }
1115 
1116       } // VSX
1117      } // FasterArrayCopy
1118 
1119       __ bind(l_6);
1120 
1121       // copy 4 elements at a time
1122       __ cmpwi(CCR0, R5_ARG3, 4);
1123       __ blt(CCR0, l_1);
1124       __ srdi(tmp1, R5_ARG3, 2);
1125       __ mtctr(tmp1); // is > 0
1126       __ andi_(R5_ARG3, R5_ARG3, 3);
1127 
1128       { // FasterArrayCopy
1129         __ addi(R3_ARG1, R3_ARG1, -4);
1130         __ addi(R4_ARG2, R4_ARG2, -4);
1131         __ bind(l_3);
1132         __ lwzu(tmp2, 4, R3_ARG1);
1133         __ stwu(tmp2, 4, R4_ARG2);
1134         __ bdnz(l_3);
1135         __ addi(R3_ARG1, R3_ARG1, 4);
1136         __ addi(R4_ARG2, R4_ARG2, 4);
1137       }
1138 
1139       // do single element copy
1140       __ bind(l_1);
1141       __ cmpwi(CCR0, R5_ARG3, 0);
1142       __ beq(CCR0, l_4);
1143 
1144       { // FasterArrayCopy
1145         __ mtctr(R5_ARG3);
1146         __ addi(R3_ARG1, R3_ARG1, -1);
1147         __ addi(R4_ARG2, R4_ARG2, -1);
1148 
1149         __ bind(l_5);
1150         __ lbzu(tmp2, 1, R3_ARG1);
1151         __ stbu(tmp2, 1, R4_ARG2);
1152         __ bdnz(l_5);
1153       }
1154     }
1155 
1156     __ bind(l_4);
1157     __ li(R3_RET, 0); // return 0
1158     __ blr();
1159 
1160     return start;
1161   }
1162 
1163   // Generate stub for conjoint byte copy.  If "aligned" is true, the
1164   // "from" and "to" addresses are assumed to be heapword aligned.
1165   //
1166   // Arguments for generated stub:
1167   //      from:  R3_ARG1
1168   //      to:    R4_ARG2
1169   //      count: R5_ARG3 treated as signed
1170   //
1171   address generate_conjoint_byte_copy(bool aligned, const char * name) {
1172     StubCodeMark mark(this, "StubRoutines", name);
1173     address start = __ function_entry();
1174     assert_positive_int(R5_ARG3);
1175 
1176     Register tmp1 = R6_ARG4;
1177     Register tmp2 = R7_ARG5;
1178     Register tmp3 = R8_ARG6;
1179 
1180     address nooverlap_target = aligned ?
1181       STUB_ENTRY(arrayof_jbyte_disjoint_arraycopy) :
1182       STUB_ENTRY(jbyte_disjoint_arraycopy);
1183 
1184     array_overlap_test(nooverlap_target, 0);
1185     // Do reverse copy. We assume the case of actual overlap is rare enough
1186     // that we don't have to optimize it.
1187     Label l_1, l_2;
1188     {
1189       // UnsafeCopyMemory page error: continue at UnsafeCopyMemory common_error_exit
1190       UnsafeCopyMemoryMark ucmm(this, !aligned, false);
1191       __ b(l_2);
1192       __ bind(l_1);
1193       __ stbx(tmp1, R4_ARG2, R5_ARG3);
1194       __ bind(l_2);
1195       __ addic_(R5_ARG3, R5_ARG3, -1);
1196       __ lbzx(tmp1, R3_ARG1, R5_ARG3);
1197       __ bge(CCR0, l_1);
1198     }
1199     __ li(R3_RET, 0); // return 0
1200     __ blr();
1201 
1202     return start;
1203   }
1204 
1205   // Generate stub for disjoint short copy.  If "aligned" is true, the
1206   // "from" and "to" addresses are assumed to be heapword aligned.
1207   //
1208   // Arguments for generated stub:
1209   //      from:  R3_ARG1
1210   //      to:    R4_ARG2
1211   //  elm.count: R5_ARG3 treated as signed
1212   //
1213   // Strategy for aligned==true:
1214   //
1215   //  If length <= 9:
1216   //     1. copy 2 elements at a time (l_6)
1217   //     2. copy last element if original element count was odd (l_1)
1218   //
1219   //  If length > 9:
1220   //     1. copy 4 elements at a time until less than 4 elements are left (l_7)
1221   //     2. copy 2 elements at a time until less than 2 elements are left (l_6)
1222   //     3. copy last element if one was left in step 2. (l_1)
1223   //
1224   //
1225   // Strategy for aligned==false:
1226   //
1227   //  If length <= 9: same as aligned==true case, but NOTE: load/stores
1228   //                  can be unaligned (see comment below)
1229   //
1230   //  If length > 9:
1231   //     1. continue with step 6. if the alignment of from and to mod 4
1232   //        is different.
1233   //     2. align from and to to 4 bytes by copying 1 element if necessary
1234   //     3. at l_2 from and to are 4 byte aligned; continue with
1235   //        5. if they cannot be aligned to 8 bytes because they have
1236   //        got different alignment mod 8.
1237   //     4. at this point we know that both, from and to, have the same
1238   //        alignment mod 8, now copy one element if necessary to get
1239   //        8 byte alignment of from and to.
1240   //     5. copy 4 elements at a time until less than 4 elements are
1241   //        left; depending on step 3. all load/stores are aligned or
1242   //        either all loads or all stores are unaligned.
1243   //     6. copy 2 elements at a time until less than 2 elements are
1244   //        left (l_6); arriving here from step 1., there is a chance
1245   //        that all accesses are unaligned.
1246   //     7. copy last element if one was left in step 6. (l_1)
1247   //
1248   //  There are unaligned data accesses using integer load/store
1249   //  instructions in this stub. POWER allows such accesses.
1250   //
1251   //  According to the manuals (PowerISA_V2.06_PUBLIC, Book II,
1252   //  Chapter 2: Effect of Operand Placement on Performance) unaligned
1253   //  integer load/stores have good performance. Only unaligned
1254   //  floating point load/stores can have poor performance.
1255   //
1256   //  TODO:
1257   //
1258   //  1. check if aligning the backbranch target of loops is beneficial
1259   //
1260   address generate_disjoint_short_copy(bool aligned, const char * name) {
1261     StubCodeMark mark(this, "StubRoutines", name);
1262 
1263     Register tmp1 = R6_ARG4;
1264     Register tmp2 = R7_ARG5;
1265     Register tmp3 = R8_ARG6;
1266     Register tmp4 = R9_ARG7;
1267 
1268     VectorSRegister tmp_vsr1  = VSR1;
1269     VectorSRegister tmp_vsr2  = VSR2;
1270 
1271     address start = __ function_entry();
1272     assert_positive_int(R5_ARG3);
1273 
1274     Label l_1, l_2, l_3, l_4, l_5, l_6, l_7, l_8, l_9;
1275     {
1276       // UnsafeCopyMemory page error: continue at UnsafeCopyMemory common_error_exit
1277       UnsafeCopyMemoryMark ucmm(this, !aligned, false);
1278       // don't try anything fancy if arrays don't have many elements
1279       __ li(tmp3, 0);
1280       __ cmpwi(CCR0, R5_ARG3, 9);
1281       __ ble(CCR0, l_6); // copy 2 at a time
1282 
1283       if (!aligned) {
1284         __ xorr(tmp1, R3_ARG1, R4_ARG2);
1285         __ andi_(tmp1, tmp1, 3);
1286         __ bne(CCR0, l_6); // if arrays don't have the same alignment mod 4, do 2 element copy
1287 
1288         // At this point it is guaranteed that both, from and to have the same alignment mod 4.
1289 
1290         // Copy 1 element if necessary to align to 4 bytes.
1291         __ andi_(tmp1, R3_ARG1, 3);
1292         __ beq(CCR0, l_2);
1293 
1294         __ lhz(tmp2, 0, R3_ARG1);
1295         __ addi(R3_ARG1, R3_ARG1, 2);
1296         __ sth(tmp2, 0, R4_ARG2);
1297         __ addi(R4_ARG2, R4_ARG2, 2);
1298         __ addi(R5_ARG3, R5_ARG3, -1);
1299         __ bind(l_2);
1300 
1301         // At this point the positions of both, from and to, are at least 4 byte aligned.
1302 
1303         // Copy 4 elements at a time.
1304         // Align to 8 bytes, but only if both, from and to, have same alignment mod 8.
1305         __ xorr(tmp2, R3_ARG1, R4_ARG2);
1306         __ andi_(tmp1, tmp2, 7);
1307         __ bne(CCR0, l_7); // not same alignment mod 8 -> copy 4, either from or to will be unaligned
1308 
1309         // Copy a 2-element word if necessary to align to 8 bytes.
1310         __ andi_(R0, R3_ARG1, 7);
1311         __ beq(CCR0, l_7);
1312 
1313         __ lwzx(tmp2, R3_ARG1, tmp3);
1314         __ addi(R5_ARG3, R5_ARG3, -2);
1315         __ stwx(tmp2, R4_ARG2, tmp3);
1316         { // FasterArrayCopy
1317           __ addi(R3_ARG1, R3_ARG1, 4);
1318           __ addi(R4_ARG2, R4_ARG2, 4);
1319         }
1320       }
1321 
1322       __ bind(l_7);
1323 
1324       // Copy 4 elements at a time; either the loads or the stores can
1325       // be unaligned if aligned == false.
1326 
1327       { // FasterArrayCopy
1328         __ cmpwi(CCR0, R5_ARG3, 15);
1329         __ ble(CCR0, l_6); // copy 2 at a time if less than 16 elements remain
1330 
1331         __ srdi(tmp1, R5_ARG3, 4);
1332         __ andi_(R5_ARG3, R5_ARG3, 15);
1333         __ mtctr(tmp1);
1334 
1335         if (!VM_Version::has_vsx()) {
1336 
1337           __ bind(l_8);
1338           // Use unrolled version for mass copying (copy 16 elements a time).
1339           // Load feeding store gets zero latency on Power6, however not on Power5.
1340           // Therefore, the following sequence is made for the good of both.
1341           __ ld(tmp1, 0, R3_ARG1);
1342           __ ld(tmp2, 8, R3_ARG1);
1343           __ ld(tmp3, 16, R3_ARG1);
1344           __ ld(tmp4, 24, R3_ARG1);
1345           __ std(tmp1, 0, R4_ARG2);
1346           __ std(tmp2, 8, R4_ARG2);
1347           __ std(tmp3, 16, R4_ARG2);
1348           __ std(tmp4, 24, R4_ARG2);
1349           __ addi(R3_ARG1, R3_ARG1, 32);
1350           __ addi(R4_ARG2, R4_ARG2, 32);
1351           __ bdnz(l_8);
1352 
1353         } else { // Processor supports VSX, so use it to mass copy.
1354 
1355           // Prefetch src data into L2 cache.
1356           __ dcbt(R3_ARG1, 0);
1357 
1358           // If supported set DSCR pre-fetch to deepest.
1359           if (VM_Version::has_mfdscr()) {
1360             __ load_const_optimized(tmp2, VM_Version::_dscr_val | 7);
1361             __ mtdscr(tmp2);
1362           }
1363           __ li(tmp1, 16);
1364 
1365           // Backbranch target aligned to 32-byte. It's not aligned 16-byte
1366           // as loop contains < 8 instructions that fit inside a single
1367           // i-cache sector.
1368           __ align(32);
1369 
1370           __ bind(l_9);
1371           // Use loop with VSX load/store instructions to
1372           // copy 16 elements a time.
1373           __ lxvd2x(tmp_vsr1, R3_ARG1);        // Load from src.
1374           __ stxvd2x(tmp_vsr1, R4_ARG2);       // Store to dst.
1375           __ lxvd2x(tmp_vsr2, R3_ARG1, tmp1);  // Load from src + 16.
1376           __ stxvd2x(tmp_vsr2, R4_ARG2, tmp1); // Store to dst + 16.
1377           __ addi(R3_ARG1, R3_ARG1, 32);       // Update src+=32.
1378           __ addi(R4_ARG2, R4_ARG2, 32);       // Update dsc+=32.
1379           __ bdnz(l_9);                        // Dec CTR and loop if not zero.
1380 
1381           // Restore DSCR pre-fetch value.
1382           if (VM_Version::has_mfdscr()) {
1383             __ load_const_optimized(tmp2, VM_Version::_dscr_val);
1384             __ mtdscr(tmp2);
1385           }
1386 
1387         }
1388       } // FasterArrayCopy
1389       __ bind(l_6);
1390 
1391       // copy 2 elements at a time
1392       { // FasterArrayCopy
1393         __ cmpwi(CCR0, R5_ARG3, 2);
1394         __ blt(CCR0, l_1);
1395         __ srdi(tmp1, R5_ARG3, 1);
1396         __ andi_(R5_ARG3, R5_ARG3, 1);
1397 
1398         __ addi(R3_ARG1, R3_ARG1, -4);
1399         __ addi(R4_ARG2, R4_ARG2, -4);
1400         __ mtctr(tmp1);
1401 
1402         __ bind(l_3);
1403         __ lwzu(tmp2, 4, R3_ARG1);
1404         __ stwu(tmp2, 4, R4_ARG2);
1405         __ bdnz(l_3);
1406 
1407         __ addi(R3_ARG1, R3_ARG1, 4);
1408         __ addi(R4_ARG2, R4_ARG2, 4);
1409       }
1410 
1411       // do single element copy
1412       __ bind(l_1);
1413       __ cmpwi(CCR0, R5_ARG3, 0);
1414       __ beq(CCR0, l_4);
1415 
1416       { // FasterArrayCopy
1417         __ mtctr(R5_ARG3);
1418         __ addi(R3_ARG1, R3_ARG1, -2);
1419         __ addi(R4_ARG2, R4_ARG2, -2);
1420 
1421         __ bind(l_5);
1422         __ lhzu(tmp2, 2, R3_ARG1);
1423         __ sthu(tmp2, 2, R4_ARG2);
1424         __ bdnz(l_5);
1425       }
1426     }
1427 
1428     __ bind(l_4);
1429     __ li(R3_RET, 0); // return 0
1430     __ blr();
1431 
1432     return start;
1433   }
1434 
1435   // Generate stub for conjoint short copy.  If "aligned" is true, the
1436   // "from" and "to" addresses are assumed to be heapword aligned.
1437   //
1438   // Arguments for generated stub:
1439   //      from:  R3_ARG1
1440   //      to:    R4_ARG2
1441   //      count: R5_ARG3 treated as signed
1442   //
1443   address generate_conjoint_short_copy(bool aligned, const char * name) {
1444     StubCodeMark mark(this, "StubRoutines", name);
1445     address start = __ function_entry();
1446     assert_positive_int(R5_ARG3);
1447 
1448     Register tmp1 = R6_ARG4;
1449     Register tmp2 = R7_ARG5;
1450     Register tmp3 = R8_ARG6;
1451 
1452     address nooverlap_target = aligned ?
1453       STUB_ENTRY(arrayof_jshort_disjoint_arraycopy) :
1454       STUB_ENTRY(jshort_disjoint_arraycopy);
1455 
1456     array_overlap_test(nooverlap_target, 1);
1457 
1458     Label l_1, l_2;
1459     {
1460       // UnsafeCopyMemory page error: continue at UnsafeCopyMemory common_error_exit
1461       UnsafeCopyMemoryMark ucmm(this, !aligned, false);
1462       __ sldi(tmp1, R5_ARG3, 1);
1463       __ b(l_2);
1464       __ bind(l_1);
1465       __ sthx(tmp2, R4_ARG2, tmp1);
1466       __ bind(l_2);
1467       __ addic_(tmp1, tmp1, -2);
1468       __ lhzx(tmp2, R3_ARG1, tmp1);
1469       __ bge(CCR0, l_1);
1470     }
1471     __ li(R3_RET, 0); // return 0
1472     __ blr();
1473 
1474     return start;
1475   }
1476 
1477   // Generate core code for disjoint int copy (and oop copy on 32-bit).  If "aligned"
1478   // is true, the "from" and "to" addresses are assumed to be heapword aligned.
1479   //
1480   // Arguments:
1481   //      from:  R3_ARG1
1482   //      to:    R4_ARG2
1483   //      count: R5_ARG3 treated as signed
1484   //
1485   void generate_disjoint_int_copy_core(bool aligned) {
1486     Register tmp1 = R6_ARG4;
1487     Register tmp2 = R7_ARG5;
1488     Register tmp3 = R8_ARG6;
1489     Register tmp4 = R0;
1490 
1491     VectorSRegister tmp_vsr1  = VSR1;
1492     VectorSRegister tmp_vsr2  = VSR2;
1493 
1494     Label l_1, l_2, l_3, l_4, l_5, l_6, l_7;
1495 
1496     // for short arrays, just do single element copy
1497     __ li(tmp3, 0);
1498     __ cmpwi(CCR0, R5_ARG3, 5);
1499     __ ble(CCR0, l_2);
1500 
1501     if (!aligned) {
1502         // check if arrays have same alignment mod 8.
1503         __ xorr(tmp1, R3_ARG1, R4_ARG2);
1504         __ andi_(R0, tmp1, 7);
1505         // Not the same alignment, but ld and std just need to be 4 byte aligned.
1506         __ bne(CCR0, l_4); // to OR from is 8 byte aligned -> copy 2 at a time
1507 
1508         // copy 1 element to align to and from on an 8 byte boundary
1509         __ andi_(R0, R3_ARG1, 7);
1510         __ beq(CCR0, l_4);
1511 
1512         __ lwzx(tmp2, R3_ARG1, tmp3);
1513         __ addi(R5_ARG3, R5_ARG3, -1);
1514         __ stwx(tmp2, R4_ARG2, tmp3);
1515         { // FasterArrayCopy
1516           __ addi(R3_ARG1, R3_ARG1, 4);
1517           __ addi(R4_ARG2, R4_ARG2, 4);
1518         }
1519         __ bind(l_4);
1520       }
1521 
1522     { // FasterArrayCopy
1523       __ cmpwi(CCR0, R5_ARG3, 7);
1524       __ ble(CCR0, l_2); // copy 1 at a time if less than 8 elements remain
1525 
1526       __ srdi(tmp1, R5_ARG3, 3);
1527       __ andi_(R5_ARG3, R5_ARG3, 7);
1528       __ mtctr(tmp1);
1529 
1530      if (!VM_Version::has_vsx()) {
1531 
1532       __ bind(l_6);
1533       // Use unrolled version for mass copying (copy 8 elements a time).
1534       // Load feeding store gets zero latency on power6, however not on power 5.
1535       // Therefore, the following sequence is made for the good of both.
1536       __ ld(tmp1, 0, R3_ARG1);
1537       __ ld(tmp2, 8, R3_ARG1);
1538       __ ld(tmp3, 16, R3_ARG1);
1539       __ ld(tmp4, 24, R3_ARG1);
1540       __ std(tmp1, 0, R4_ARG2);
1541       __ std(tmp2, 8, R4_ARG2);
1542       __ std(tmp3, 16, R4_ARG2);
1543       __ std(tmp4, 24, R4_ARG2);
1544       __ addi(R3_ARG1, R3_ARG1, 32);
1545       __ addi(R4_ARG2, R4_ARG2, 32);
1546       __ bdnz(l_6);
1547 
1548     } else { // Processor supports VSX, so use it to mass copy.
1549 
1550       // Prefetch the data into the L2 cache.
1551       __ dcbt(R3_ARG1, 0);
1552 
1553       // If supported set DSCR pre-fetch to deepest.
1554       if (VM_Version::has_mfdscr()) {
1555         __ load_const_optimized(tmp2, VM_Version::_dscr_val | 7);
1556         __ mtdscr(tmp2);
1557       }
1558 
1559       __ li(tmp1, 16);
1560 
1561       // Backbranch target aligned to 32-byte. Not 16-byte align as
1562       // loop contains < 8 instructions that fit inside a single
1563       // i-cache sector.
1564       __ align(32);
1565 
1566       __ bind(l_7);
1567       // Use loop with VSX load/store instructions to
1568       // copy 8 elements a time.
1569       __ lxvd2x(tmp_vsr1, R3_ARG1);        // Load src
1570       __ stxvd2x(tmp_vsr1, R4_ARG2);       // Store to dst
1571       __ lxvd2x(tmp_vsr2, tmp1, R3_ARG1);  // Load src + 16
1572       __ stxvd2x(tmp_vsr2, tmp1, R4_ARG2); // Store to dst + 16
1573       __ addi(R3_ARG1, R3_ARG1, 32);       // Update src+=32
1574       __ addi(R4_ARG2, R4_ARG2, 32);       // Update dsc+=32
1575       __ bdnz(l_7);                        // Dec CTR and loop if not zero.
1576 
1577       // Restore DSCR pre-fetch value.
1578       if (VM_Version::has_mfdscr()) {
1579         __ load_const_optimized(tmp2, VM_Version::_dscr_val);
1580         __ mtdscr(tmp2);
1581       }
1582 
1583     } // VSX
1584    } // FasterArrayCopy
1585 
1586     // copy 1 element at a time
1587     __ bind(l_2);
1588     __ cmpwi(CCR0, R5_ARG3, 0);
1589     __ beq(CCR0, l_1);
1590 
1591     { // FasterArrayCopy
1592       __ mtctr(R5_ARG3);
1593       __ addi(R3_ARG1, R3_ARG1, -4);
1594       __ addi(R4_ARG2, R4_ARG2, -4);
1595 
1596       __ bind(l_3);
1597       __ lwzu(tmp2, 4, R3_ARG1);
1598       __ stwu(tmp2, 4, R4_ARG2);
1599       __ bdnz(l_3);
1600     }
1601 
1602     __ bind(l_1);
1603     return;
1604   }
1605 
1606   // Generate stub for disjoint int copy.  If "aligned" is true, the
1607   // "from" and "to" addresses are assumed to be heapword aligned.
1608   //
1609   // Arguments for generated stub:
1610   //      from:  R3_ARG1
1611   //      to:    R4_ARG2
1612   //      count: R5_ARG3 treated as signed
1613   //
1614   address generate_disjoint_int_copy(bool aligned, const char * name) {
1615     StubCodeMark mark(this, "StubRoutines", name);
1616     address start = __ function_entry();
1617     assert_positive_int(R5_ARG3);
1618     {
1619       // UnsafeCopyMemory page error: continue at UnsafeCopyMemory common_error_exit
1620       UnsafeCopyMemoryMark ucmm(this, !aligned, false);
1621       generate_disjoint_int_copy_core(aligned);
1622     }
1623     __ li(R3_RET, 0); // return 0
1624     __ blr();
1625     return start;
1626   }
1627 
1628   // Generate core code for conjoint int copy (and oop copy on
1629   // 32-bit).  If "aligned" is true, the "from" and "to" addresses
1630   // are assumed to be heapword aligned.
1631   //
1632   // Arguments:
1633   //      from:  R3_ARG1
1634   //      to:    R4_ARG2
1635   //      count: R5_ARG3 treated as signed
1636   //
1637   void generate_conjoint_int_copy_core(bool aligned) {
1638     // Do reverse copy.  We assume the case of actual overlap is rare enough
1639     // that we don't have to optimize it.
1640 
1641     Label l_1, l_2, l_3, l_4, l_5, l_6, l_7;
1642 
1643     Register tmp1 = R6_ARG4;
1644     Register tmp2 = R7_ARG5;
1645     Register tmp3 = R8_ARG6;
1646     Register tmp4 = R0;
1647 
1648     VectorSRegister tmp_vsr1  = VSR1;
1649     VectorSRegister tmp_vsr2  = VSR2;
1650 
1651     { // FasterArrayCopy
1652       __ cmpwi(CCR0, R5_ARG3, 0);
1653       __ beq(CCR0, l_6);
1654 
1655       __ sldi(R5_ARG3, R5_ARG3, 2);
1656       __ add(R3_ARG1, R3_ARG1, R5_ARG3);
1657       __ add(R4_ARG2, R4_ARG2, R5_ARG3);
1658       __ srdi(R5_ARG3, R5_ARG3, 2);
1659 
1660       if (!aligned) {
1661         // check if arrays have same alignment mod 8.
1662         __ xorr(tmp1, R3_ARG1, R4_ARG2);
1663         __ andi_(R0, tmp1, 7);
1664         // Not the same alignment, but ld and std just need to be 4 byte aligned.
1665         __ bne(CCR0, l_7); // to OR from is 8 byte aligned -> copy 2 at a time
1666 
1667         // copy 1 element to align to and from on an 8 byte boundary
1668         __ andi_(R0, R3_ARG1, 7);
1669         __ beq(CCR0, l_7);
1670 
1671         __ addi(R3_ARG1, R3_ARG1, -4);
1672         __ addi(R4_ARG2, R4_ARG2, -4);
1673         __ addi(R5_ARG3, R5_ARG3, -1);
1674         __ lwzx(tmp2, R3_ARG1);
1675         __ stwx(tmp2, R4_ARG2);
1676         __ bind(l_7);
1677       }
1678 
1679       __ cmpwi(CCR0, R5_ARG3, 7);
1680       __ ble(CCR0, l_5); // copy 1 at a time if less than 8 elements remain
1681 
1682       __ srdi(tmp1, R5_ARG3, 3);
1683       __ andi(R5_ARG3, R5_ARG3, 7);
1684       __ mtctr(tmp1);
1685 
1686      if (!VM_Version::has_vsx()) {
1687       __ bind(l_4);
1688       // Use unrolled version for mass copying (copy 4 elements a time).
1689       // Load feeding store gets zero latency on Power6, however not on Power5.
1690       // Therefore, the following sequence is made for the good of both.
1691       __ addi(R3_ARG1, R3_ARG1, -32);
1692       __ addi(R4_ARG2, R4_ARG2, -32);
1693       __ ld(tmp4, 24, R3_ARG1);
1694       __ ld(tmp3, 16, R3_ARG1);
1695       __ ld(tmp2, 8, R3_ARG1);
1696       __ ld(tmp1, 0, R3_ARG1);
1697       __ std(tmp4, 24, R4_ARG2);
1698       __ std(tmp3, 16, R4_ARG2);
1699       __ std(tmp2, 8, R4_ARG2);
1700       __ std(tmp1, 0, R4_ARG2);
1701       __ bdnz(l_4);
1702      } else {  // Processor supports VSX, so use it to mass copy.
1703       // Prefetch the data into the L2 cache.
1704       __ dcbt(R3_ARG1, 0);
1705 
1706       // If supported set DSCR pre-fetch to deepest.
1707       if (VM_Version::has_mfdscr()) {
1708         __ load_const_optimized(tmp2, VM_Version::_dscr_val | 7);
1709         __ mtdscr(tmp2);
1710       }
1711 
1712       __ li(tmp1, 16);
1713 
1714       // Backbranch target aligned to 32-byte. Not 16-byte align as
1715       // loop contains < 8 instructions that fit inside a single
1716       // i-cache sector.
1717       __ align(32);
1718 
1719       __ bind(l_4);
1720       // Use loop with VSX load/store instructions to
1721       // copy 8 elements a time.
1722       __ addi(R3_ARG1, R3_ARG1, -32);      // Update src-=32
1723       __ addi(R4_ARG2, R4_ARG2, -32);      // Update dsc-=32
1724       __ lxvd2x(tmp_vsr2, tmp1, R3_ARG1);  // Load src+16
1725       __ lxvd2x(tmp_vsr1, R3_ARG1);        // Load src
1726       __ stxvd2x(tmp_vsr2, tmp1, R4_ARG2); // Store to dst+16
1727       __ stxvd2x(tmp_vsr1, R4_ARG2);       // Store to dst
1728       __ bdnz(l_4);
1729 
1730       // Restore DSCR pre-fetch value.
1731       if (VM_Version::has_mfdscr()) {
1732         __ load_const_optimized(tmp2, VM_Version::_dscr_val);
1733         __ mtdscr(tmp2);
1734       }
1735      }
1736 
1737       __ cmpwi(CCR0, R5_ARG3, 0);
1738       __ beq(CCR0, l_6);
1739 
1740       __ bind(l_5);
1741       __ mtctr(R5_ARG3);
1742       __ bind(l_3);
1743       __ lwz(R0, -4, R3_ARG1);
1744       __ stw(R0, -4, R4_ARG2);
1745       __ addi(R3_ARG1, R3_ARG1, -4);
1746       __ addi(R4_ARG2, R4_ARG2, -4);
1747       __ bdnz(l_3);
1748 
1749       __ bind(l_6);
1750     }
1751   }
1752 
1753   // Generate stub for conjoint int copy.  If "aligned" is true, the
1754   // "from" and "to" addresses are assumed to be heapword aligned.
1755   //
1756   // Arguments for generated stub:
1757   //      from:  R3_ARG1
1758   //      to:    R4_ARG2
1759   //      count: R5_ARG3 treated as signed
1760   //
1761   address generate_conjoint_int_copy(bool aligned, const char * name) {
1762     StubCodeMark mark(this, "StubRoutines", name);
1763     address start = __ function_entry();
1764     assert_positive_int(R5_ARG3);
1765     address nooverlap_target = aligned ?
1766       STUB_ENTRY(arrayof_jint_disjoint_arraycopy) :
1767       STUB_ENTRY(jint_disjoint_arraycopy);
1768 
1769     array_overlap_test(nooverlap_target, 2);
1770     {
1771       // UnsafeCopyMemory page error: continue at UnsafeCopyMemory common_error_exit
1772       UnsafeCopyMemoryMark ucmm(this, !aligned, false);
1773       generate_conjoint_int_copy_core(aligned);
1774     }
1775 
1776     __ li(R3_RET, 0); // return 0
1777     __ blr();
1778 
1779     return start;
1780   }
1781 
1782   // Generate core code for disjoint long copy (and oop copy on
1783   // 64-bit).  If "aligned" is true, the "from" and "to" addresses
1784   // are assumed to be heapword aligned.
1785   //
1786   // Arguments:
1787   //      from:  R3_ARG1
1788   //      to:    R4_ARG2
1789   //      count: R5_ARG3 treated as signed
1790   //
1791   void generate_disjoint_long_copy_core(bool aligned) {
1792     Register tmp1 = R6_ARG4;
1793     Register tmp2 = R7_ARG5;
1794     Register tmp3 = R8_ARG6;
1795     Register tmp4 = R0;
1796 
1797     Label l_1, l_2, l_3, l_4, l_5;
1798 
1799     VectorSRegister tmp_vsr1  = VSR1;
1800     VectorSRegister tmp_vsr2  = VSR2;
1801 
1802     { // FasterArrayCopy
1803       __ cmpwi(CCR0, R5_ARG3, 3);
1804       __ ble(CCR0, l_3); // copy 1 at a time if less than 4 elements remain
1805 
1806       __ srdi(tmp1, R5_ARG3, 2);
1807       __ andi_(R5_ARG3, R5_ARG3, 3);
1808       __ mtctr(tmp1);
1809 
1810     if (!VM_Version::has_vsx()) {
1811       __ bind(l_4);
1812       // Use unrolled version for mass copying (copy 4 elements a time).
1813       // Load feeding store gets zero latency on Power6, however not on Power5.
1814       // Therefore, the following sequence is made for the good of both.
1815       __ ld(tmp1, 0, R3_ARG1);
1816       __ ld(tmp2, 8, R3_ARG1);
1817       __ ld(tmp3, 16, R3_ARG1);
1818       __ ld(tmp4, 24, R3_ARG1);
1819       __ std(tmp1, 0, R4_ARG2);
1820       __ std(tmp2, 8, R4_ARG2);
1821       __ std(tmp3, 16, R4_ARG2);
1822       __ std(tmp4, 24, R4_ARG2);
1823       __ addi(R3_ARG1, R3_ARG1, 32);
1824       __ addi(R4_ARG2, R4_ARG2, 32);
1825       __ bdnz(l_4);
1826 
1827     } else { // Processor supports VSX, so use it to mass copy.
1828 
1829       // Prefetch the data into the L2 cache.
1830       __ dcbt(R3_ARG1, 0);
1831 
1832       // If supported set DSCR pre-fetch to deepest.
1833       if (VM_Version::has_mfdscr()) {
1834         __ load_const_optimized(tmp2, VM_Version::_dscr_val | 7);
1835         __ mtdscr(tmp2);
1836       }
1837 
1838       __ li(tmp1, 16);
1839 
1840       // Backbranch target aligned to 32-byte. Not 16-byte align as
1841       // loop contains < 8 instructions that fit inside a single
1842       // i-cache sector.
1843       __ align(32);
1844 
1845       __ bind(l_5);
1846       // Use loop with VSX load/store instructions to
1847       // copy 4 elements a time.
1848       __ lxvd2x(tmp_vsr1, R3_ARG1);        // Load src
1849       __ stxvd2x(tmp_vsr1, R4_ARG2);       // Store to dst
1850       __ lxvd2x(tmp_vsr2, tmp1, R3_ARG1);  // Load src + 16
1851       __ stxvd2x(tmp_vsr2, tmp1, R4_ARG2); // Store to dst + 16
1852       __ addi(R3_ARG1, R3_ARG1, 32);       // Update src+=32
1853       __ addi(R4_ARG2, R4_ARG2, 32);       // Update dsc+=32
1854       __ bdnz(l_5);                        // Dec CTR and loop if not zero.
1855 
1856       // Restore DSCR pre-fetch value.
1857       if (VM_Version::has_mfdscr()) {
1858         __ load_const_optimized(tmp2, VM_Version::_dscr_val);
1859         __ mtdscr(tmp2);
1860       }
1861 
1862     } // VSX
1863    } // FasterArrayCopy
1864 
1865     // copy 1 element at a time
1866     __ bind(l_3);
1867     __ cmpwi(CCR0, R5_ARG3, 0);
1868     __ beq(CCR0, l_1);
1869 
1870     { // FasterArrayCopy
1871       __ mtctr(R5_ARG3);
1872       __ addi(R3_ARG1, R3_ARG1, -8);
1873       __ addi(R4_ARG2, R4_ARG2, -8);
1874 
1875       __ bind(l_2);
1876       __ ldu(R0, 8, R3_ARG1);
1877       __ stdu(R0, 8, R4_ARG2);
1878       __ bdnz(l_2);
1879 
1880     }
1881     __ bind(l_1);
1882   }
1883 
1884   // Generate stub for disjoint long copy.  If "aligned" is true, the
1885   // "from" and "to" addresses are assumed to be heapword aligned.
1886   //
1887   // Arguments for generated stub:
1888   //      from:  R3_ARG1
1889   //      to:    R4_ARG2
1890   //      count: R5_ARG3 treated as signed
1891   //
1892   address generate_disjoint_long_copy(bool aligned, const char * name) {
1893     StubCodeMark mark(this, "StubRoutines", name);
1894     address start = __ function_entry();
1895     assert_positive_int(R5_ARG3);
1896     {
1897       // UnsafeCopyMemory page error: continue at UnsafeCopyMemory common_error_exit
1898       UnsafeCopyMemoryMark ucmm(this, !aligned, false);
1899       generate_disjoint_long_copy_core(aligned);
1900     }
1901     __ li(R3_RET, 0); // return 0
1902     __ blr();
1903 
1904   return start;
1905   }
1906 
1907   // Generate core code for conjoint long copy (and oop copy on
1908   // 64-bit).  If "aligned" is true, the "from" and "to" addresses
1909   // are assumed to be heapword aligned.
1910   //
1911   // Arguments:
1912   //      from:  R3_ARG1
1913   //      to:    R4_ARG2
1914   //      count: R5_ARG3 treated as signed
1915   //
1916   void generate_conjoint_long_copy_core(bool aligned) {
1917     Register tmp1 = R6_ARG4;
1918     Register tmp2 = R7_ARG5;
1919     Register tmp3 = R8_ARG6;
1920     Register tmp4 = R0;
1921 
1922     VectorSRegister tmp_vsr1  = VSR1;
1923     VectorSRegister tmp_vsr2  = VSR2;
1924 
1925     Label l_1, l_2, l_3, l_4, l_5;
1926 
1927     __ cmpwi(CCR0, R5_ARG3, 0);
1928     __ beq(CCR0, l_1);
1929 
1930     { // FasterArrayCopy
1931       __ sldi(R5_ARG3, R5_ARG3, 3);
1932       __ add(R3_ARG1, R3_ARG1, R5_ARG3);
1933       __ add(R4_ARG2, R4_ARG2, R5_ARG3);
1934       __ srdi(R5_ARG3, R5_ARG3, 3);
1935 
1936       __ cmpwi(CCR0, R5_ARG3, 3);
1937       __ ble(CCR0, l_5); // copy 1 at a time if less than 4 elements remain
1938 
1939       __ srdi(tmp1, R5_ARG3, 2);
1940       __ andi(R5_ARG3, R5_ARG3, 3);
1941       __ mtctr(tmp1);
1942 
1943      if (!VM_Version::has_vsx()) {
1944       __ bind(l_4);
1945       // Use unrolled version for mass copying (copy 4 elements a time).
1946       // Load feeding store gets zero latency on Power6, however not on Power5.
1947       // Therefore, the following sequence is made for the good of both.
1948       __ addi(R3_ARG1, R3_ARG1, -32);
1949       __ addi(R4_ARG2, R4_ARG2, -32);
1950       __ ld(tmp4, 24, R3_ARG1);
1951       __ ld(tmp3, 16, R3_ARG1);
1952       __ ld(tmp2, 8, R3_ARG1);
1953       __ ld(tmp1, 0, R3_ARG1);
1954       __ std(tmp4, 24, R4_ARG2);
1955       __ std(tmp3, 16, R4_ARG2);
1956       __ std(tmp2, 8, R4_ARG2);
1957       __ std(tmp1, 0, R4_ARG2);
1958       __ bdnz(l_4);
1959      } else { // Processor supports VSX, so use it to mass copy.
1960       // Prefetch the data into the L2 cache.
1961       __ dcbt(R3_ARG1, 0);
1962 
1963       // If supported set DSCR pre-fetch to deepest.
1964       if (VM_Version::has_mfdscr()) {
1965         __ load_const_optimized(tmp2, VM_Version::_dscr_val | 7);
1966         __ mtdscr(tmp2);
1967       }
1968 
1969       __ li(tmp1, 16);
1970 
1971       // Backbranch target aligned to 32-byte. Not 16-byte align as
1972       // loop contains < 8 instructions that fit inside a single
1973       // i-cache sector.
1974       __ align(32);
1975 
1976       __ bind(l_4);
1977       // Use loop with VSX load/store instructions to
1978       // copy 4 elements a time.
1979       __ addi(R3_ARG1, R3_ARG1, -32);      // Update src-=32
1980       __ addi(R4_ARG2, R4_ARG2, -32);      // Update dsc-=32
1981       __ lxvd2x(tmp_vsr2, tmp1, R3_ARG1);  // Load src+16
1982       __ lxvd2x(tmp_vsr1, R3_ARG1);        // Load src
1983       __ stxvd2x(tmp_vsr2, tmp1, R4_ARG2); // Store to dst+16
1984       __ stxvd2x(tmp_vsr1, R4_ARG2);       // Store to dst
1985       __ bdnz(l_4);
1986 
1987       // Restore DSCR pre-fetch value.
1988       if (VM_Version::has_mfdscr()) {
1989         __ load_const_optimized(tmp2, VM_Version::_dscr_val);
1990         __ mtdscr(tmp2);
1991       }
1992      }
1993 
1994       __ cmpwi(CCR0, R5_ARG3, 0);
1995       __ beq(CCR0, l_1);
1996 
1997       __ bind(l_5);
1998       __ mtctr(R5_ARG3);
1999       __ bind(l_3);
2000       __ ld(R0, -8, R3_ARG1);
2001       __ std(R0, -8, R4_ARG2);
2002       __ addi(R3_ARG1, R3_ARG1, -8);
2003       __ addi(R4_ARG2, R4_ARG2, -8);
2004       __ bdnz(l_3);
2005 
2006     }
2007     __ bind(l_1);
2008   }
2009 
2010   // Generate stub for conjoint long copy.  If "aligned" is true, the
2011   // "from" and "to" addresses are assumed to be heapword aligned.
2012   //
2013   // Arguments for generated stub:
2014   //      from:  R3_ARG1
2015   //      to:    R4_ARG2
2016   //      count: R5_ARG3 treated as signed
2017   //
2018   address generate_conjoint_long_copy(bool aligned, const char * name) {
2019     StubCodeMark mark(this, "StubRoutines", name);
2020     address start = __ function_entry();
2021     assert_positive_int(R5_ARG3);
2022     address nooverlap_target = aligned ?
2023       STUB_ENTRY(arrayof_jlong_disjoint_arraycopy) :
2024       STUB_ENTRY(jlong_disjoint_arraycopy);
2025 
2026     array_overlap_test(nooverlap_target, 3);
2027     {
2028       // UnsafeCopyMemory page error: continue at UnsafeCopyMemory common_error_exit
2029       UnsafeCopyMemoryMark ucmm(this, !aligned, false);
2030       generate_conjoint_long_copy_core(aligned);
2031     }
2032     __ li(R3_RET, 0); // return 0
2033     __ blr();
2034 
2035     return start;
2036   }
2037 
2038   // Generate stub for conjoint oop copy.  If "aligned" is true, the
2039   // "from" and "to" addresses are assumed to be heapword aligned.
2040   //
2041   // Arguments for generated stub:
2042   //      from:  R3_ARG1
2043   //      to:    R4_ARG2
2044   //      count: R5_ARG3 treated as signed
2045   //      dest_uninitialized: G1 support
2046   //
2047   address generate_conjoint_oop_copy(bool aligned, const char * name, bool dest_uninitialized) {
2048     StubCodeMark mark(this, "StubRoutines", name);
2049 
2050     address start = __ function_entry();
2051     assert_positive_int(R5_ARG3);
2052     address nooverlap_target = aligned ?
2053       STUB_ENTRY(arrayof_oop_disjoint_arraycopy) :
2054       STUB_ENTRY(oop_disjoint_arraycopy);
2055 
2056     DecoratorSet decorators = IN_HEAP | IS_ARRAY;
2057     if (dest_uninitialized) {
2058       decorators |= IS_DEST_UNINITIALIZED;
2059     }
2060     if (aligned) {
2061       decorators |= ARRAYCOPY_ALIGNED;
2062     }
2063 
2064     BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
2065     bs->arraycopy_prologue(_masm, decorators, T_OBJECT, R3_ARG1, R4_ARG2, R5_ARG3, noreg, noreg);
2066 
2067     if (UseCompressedOops) {
2068       array_overlap_test(nooverlap_target, 2);
2069       generate_conjoint_int_copy_core(aligned);
2070     } else {
2071       array_overlap_test(nooverlap_target, 3);
2072       generate_conjoint_long_copy_core(aligned);
2073     }
2074 
2075     bs->arraycopy_epilogue(_masm, decorators, T_OBJECT, R4_ARG2, R5_ARG3, noreg);
2076     __ li(R3_RET, 0); // return 0
2077     __ blr();
2078     return start;
2079   }
2080 
2081   // Generate stub for disjoint oop copy.  If "aligned" is true, the
2082   // "from" and "to" addresses are assumed to be heapword aligned.
2083   //
2084   // Arguments for generated stub:
2085   //      from:  R3_ARG1
2086   //      to:    R4_ARG2
2087   //      count: R5_ARG3 treated as signed
2088   //      dest_uninitialized: G1 support
2089   //
2090   address generate_disjoint_oop_copy(bool aligned, const char * name, bool dest_uninitialized) {
2091     StubCodeMark mark(this, "StubRoutines", name);
2092     address start = __ function_entry();
2093     assert_positive_int(R5_ARG3);
2094 
2095     DecoratorSet decorators = IN_HEAP | IS_ARRAY | ARRAYCOPY_DISJOINT;
2096     if (dest_uninitialized) {
2097       decorators |= IS_DEST_UNINITIALIZED;
2098     }
2099     if (aligned) {
2100       decorators |= ARRAYCOPY_ALIGNED;
2101     }
2102 
2103     BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
2104     bs->arraycopy_prologue(_masm, decorators, T_OBJECT, R3_ARG1, R4_ARG2, R5_ARG3, noreg, noreg);
2105 
2106     if (UseCompressedOops) {
2107       generate_disjoint_int_copy_core(aligned);
2108     } else {
2109       generate_disjoint_long_copy_core(aligned);
2110     }
2111 
2112     bs->arraycopy_epilogue(_masm, decorators, T_OBJECT, R4_ARG2, R5_ARG3, noreg);
2113     __ li(R3_RET, 0); // return 0
2114     __ blr();
2115 
2116     return start;
2117   }
2118 
2119 
2120   // Helper for generating a dynamic type check.
2121   // Smashes only the given temp registers.
2122   void generate_type_check(Register sub_klass,
2123                            Register super_check_offset,
2124                            Register super_klass,
2125                            Register temp,
2126                            Label& L_success) {
2127     assert_different_registers(sub_klass, super_check_offset, super_klass);
2128 
2129     BLOCK_COMMENT("type_check:");
2130 
2131     Label L_miss;
2132 
2133     __ check_klass_subtype_fast_path(sub_klass, super_klass, temp, R0, &L_success, &L_miss, NULL,
2134                                      super_check_offset);
2135     __ check_klass_subtype_slow_path(sub_klass, super_klass, temp, R0, &L_success, NULL);
2136 
2137     // Fall through on failure!
2138     __ bind(L_miss);
2139   }
2140 
2141 
2142   //  Generate stub for checked oop copy.
2143   //
2144   // Arguments for generated stub:
2145   //      from:  R3
2146   //      to:    R4
2147   //      count: R5 treated as signed
2148   //      ckoff: R6 (super_check_offset)
2149   //      ckval: R7 (super_klass)
2150   //      ret:   R3 zero for success; (-1^K) where K is partial transfer count
2151   //
2152   address generate_checkcast_copy(const char *name, bool dest_uninitialized) {
2153 
2154     const Register R3_from   = R3_ARG1;      // source array address
2155     const Register R4_to     = R4_ARG2;      // destination array address
2156     const Register R5_count  = R5_ARG3;      // elements count
2157     const Register R6_ckoff  = R6_ARG4;      // super_check_offset
2158     const Register R7_ckval  = R7_ARG5;      // super_klass
2159 
2160     const Register R8_offset = R8_ARG6;      // loop var, with stride wordSize
2161     const Register R9_remain = R9_ARG7;      // loop var, with stride -1
2162     const Register R10_oop   = R10_ARG8;     // actual oop copied
2163     const Register R11_klass = R11_scratch1; // oop._klass
2164     const Register R12_tmp   = R12_scratch2;
2165 
2166     const Register R2_minus1 = R2;
2167 
2168     //__ align(CodeEntryAlignment);
2169     StubCodeMark mark(this, "StubRoutines", name);
2170     address start = __ function_entry();
2171 
2172     // Assert that int is 64 bit sign extended and arrays are not conjoint.
2173 #ifdef ASSERT
2174     {
2175     assert_positive_int(R5_ARG3);
2176     const Register tmp1 = R11_scratch1, tmp2 = R12_scratch2;
2177     Label no_overlap;
2178     __ subf(tmp1, R3_ARG1, R4_ARG2); // distance in bytes
2179     __ sldi(tmp2, R5_ARG3, LogBytesPerHeapOop); // size in bytes
2180     __ cmpld(CCR0, R3_ARG1, R4_ARG2); // Use unsigned comparison!
2181     __ cmpld(CCR1, tmp1, tmp2);
2182     __ crnand(CCR0, Assembler::less, CCR1, Assembler::less);
2183     // Overlaps if Src before dst and distance smaller than size.
2184     // Branch to forward copy routine otherwise.
2185     __ blt(CCR0, no_overlap);
2186     __ stop("overlap in checkcast_copy", 0x9543);
2187     __ bind(no_overlap);
2188     }
2189 #endif
2190 
2191     DecoratorSet decorators = IN_HEAP | IS_ARRAY | ARRAYCOPY_CHECKCAST;
2192     if (dest_uninitialized) {
2193       decorators |= IS_DEST_UNINITIALIZED;
2194     }
2195 
2196     BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
2197     bs->arraycopy_prologue(_masm, decorators, T_OBJECT, R3_from, R4_to, R5_count, /* preserve: */ R6_ckoff, R7_ckval);
2198 
2199     //inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr, R12_tmp, R3_RET);
2200 
2201     Label load_element, store_element, store_null, success, do_epilogue;
2202     __ or_(R9_remain, R5_count, R5_count); // Initialize loop index, and test it.
2203     __ li(R8_offset, 0);                   // Offset from start of arrays.
2204     __ li(R2_minus1, -1);
2205     __ bne(CCR0, load_element);
2206 
2207     // Empty array: Nothing to do.
2208     __ li(R3_RET, 0);           // Return 0 on (trivial) success.
2209     __ blr();
2210 
2211     // ======== begin loop ========
2212     // (Entry is load_element.)
2213     __ align(OptoLoopAlignment);
2214     __ bind(store_element);
2215     if (UseCompressedOops) {
2216       __ encode_heap_oop_not_null(R10_oop);
2217       __ bind(store_null);
2218       __ stw(R10_oop, R8_offset, R4_to);
2219     } else {
2220       __ bind(store_null);
2221       __ std(R10_oop, R8_offset, R4_to);
2222     }
2223 
2224     __ addi(R8_offset, R8_offset, heapOopSize);   // Step to next offset.
2225     __ add_(R9_remain, R2_minus1, R9_remain);     // Decrement the count.
2226     __ beq(CCR0, success);
2227 
2228     // ======== loop entry is here ========
2229     __ bind(load_element);
2230     __ load_heap_oop(R10_oop, R8_offset, R3_from, R12_tmp, noreg, false, AS_RAW, &store_null);
2231 
2232     __ load_klass(R11_klass, R10_oop); // Query the object klass.
2233 
2234     generate_type_check(R11_klass, R6_ckoff, R7_ckval, R12_tmp,
2235                         // Branch to this on success:
2236                         store_element);
2237     // ======== end loop ========
2238 
2239     // It was a real error; we must depend on the caller to finish the job.
2240     // Register R9_remain has number of *remaining* oops, R5_count number of *total* oops.
2241     // Emit GC store barriers for the oops we have copied (R5_count minus R9_remain),
2242     // and report their number to the caller.
2243     __ subf_(R5_count, R9_remain, R5_count);
2244     __ nand(R3_RET, R5_count, R5_count);   // report (-1^K) to caller
2245     __ bne(CCR0, do_epilogue);
2246     __ blr();
2247 
2248     __ bind(success);
2249     __ li(R3_RET, 0);
2250 
2251     __ bind(do_epilogue);
2252     bs->arraycopy_epilogue(_masm, decorators, T_OBJECT, R4_to, R5_count, /* preserve */ R3_RET);
2253 
2254     __ blr();
2255     return start;
2256   }
2257 
2258 
2259   //  Generate 'unsafe' array copy stub.
2260   //  Though just as safe as the other stubs, it takes an unscaled
2261   //  size_t argument instead of an element count.
2262   //
2263   // Arguments for generated stub:
2264   //      from:  R3
2265   //      to:    R4
2266   //      count: R5 byte count, treated as ssize_t, can be zero
2267   //
2268   // Examines the alignment of the operands and dispatches
2269   // to a long, int, short, or byte copy loop.
2270   //
2271   address generate_unsafe_copy(const char* name,
2272                                address byte_copy_entry,
2273                                address short_copy_entry,
2274                                address int_copy_entry,
2275                                address long_copy_entry) {
2276 
2277     const Register R3_from   = R3_ARG1;      // source array address
2278     const Register R4_to     = R4_ARG2;      // destination array address
2279     const Register R5_count  = R5_ARG3;      // elements count (as long on PPC64)
2280 
2281     const Register R6_bits   = R6_ARG4;      // test copy of low bits
2282     const Register R7_tmp    = R7_ARG5;
2283 
2284     //__ align(CodeEntryAlignment);
2285     StubCodeMark mark(this, "StubRoutines", name);
2286     address start = __ function_entry();
2287 
2288     // Bump this on entry, not on exit:
2289     //inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr, R6_bits, R7_tmp);
2290 
2291     Label short_copy, int_copy, long_copy;
2292 
2293     __ orr(R6_bits, R3_from, R4_to);
2294     __ orr(R6_bits, R6_bits, R5_count);
2295     __ andi_(R0, R6_bits, (BytesPerLong-1));
2296     __ beq(CCR0, long_copy);
2297 
2298     __ andi_(R0, R6_bits, (BytesPerInt-1));
2299     __ beq(CCR0, int_copy);
2300 
2301     __ andi_(R0, R6_bits, (BytesPerShort-1));
2302     __ beq(CCR0, short_copy);
2303 
2304     // byte_copy:
2305     __ b(byte_copy_entry);
2306 
2307     __ bind(short_copy);
2308     __ srwi(R5_count, R5_count, LogBytesPerShort);
2309     __ b(short_copy_entry);
2310 
2311     __ bind(int_copy);
2312     __ srwi(R5_count, R5_count, LogBytesPerInt);
2313     __ b(int_copy_entry);
2314 
2315     __ bind(long_copy);
2316     __ srwi(R5_count, R5_count, LogBytesPerLong);
2317     __ b(long_copy_entry);
2318 
2319     return start;
2320   }
2321 
2322 
2323   // Perform range checks on the proposed arraycopy.
2324   // Kills the two temps, but nothing else.
2325   // Also, clean the sign bits of src_pos and dst_pos.
2326   void arraycopy_range_checks(Register src,     // source array oop
2327                               Register src_pos, // source position
2328                               Register dst,     // destination array oop
2329                               Register dst_pos, // destination position
2330                               Register length,  // length of copy
2331                               Register temp1, Register temp2,
2332                               Label& L_failed) {
2333     BLOCK_COMMENT("arraycopy_range_checks:");
2334 
2335     const Register array_length = temp1;  // scratch
2336     const Register end_pos      = temp2;  // scratch
2337 
2338     //  if (src_pos + length > arrayOop(src)->length() ) FAIL;
2339     __ lwa(array_length, arrayOopDesc::length_offset_in_bytes(), src);
2340     __ add(end_pos, src_pos, length);  // src_pos + length
2341     __ cmpd(CCR0, end_pos, array_length);
2342     __ bgt(CCR0, L_failed);
2343 
2344     //  if (dst_pos + length > arrayOop(dst)->length() ) FAIL;
2345     __ lwa(array_length, arrayOopDesc::length_offset_in_bytes(), dst);
2346     __ add(end_pos, dst_pos, length);  // src_pos + length
2347     __ cmpd(CCR0, end_pos, array_length);
2348     __ bgt(CCR0, L_failed);
2349 
2350     BLOCK_COMMENT("arraycopy_range_checks done");
2351   }
2352 
2353 
2354   //
2355   //  Generate generic array copy stubs
2356   //
2357   //  Input:
2358   //    R3    -  src oop
2359   //    R4    -  src_pos
2360   //    R5    -  dst oop
2361   //    R6    -  dst_pos
2362   //    R7    -  element count
2363   //
2364   //  Output:
2365   //    R3 ==  0  -  success
2366   //    R3 == -1  -  need to call System.arraycopy
2367   //
2368   address generate_generic_copy(const char *name,
2369                                 address entry_jbyte_arraycopy,
2370                                 address entry_jshort_arraycopy,
2371                                 address entry_jint_arraycopy,
2372                                 address entry_oop_arraycopy,
2373                                 address entry_disjoint_oop_arraycopy,
2374                                 address entry_jlong_arraycopy,
2375                                 address entry_checkcast_arraycopy) {
2376     Label L_failed, L_objArray;
2377 
2378     // Input registers
2379     const Register src       = R3_ARG1;  // source array oop
2380     const Register src_pos   = R4_ARG2;  // source position
2381     const Register dst       = R5_ARG3;  // destination array oop
2382     const Register dst_pos   = R6_ARG4;  // destination position
2383     const Register length    = R7_ARG5;  // elements count
2384 
2385     // registers used as temp
2386     const Register src_klass = R8_ARG6;  // source array klass
2387     const Register dst_klass = R9_ARG7;  // destination array klass
2388     const Register lh        = R10_ARG8; // layout handler
2389     const Register temp      = R2;
2390 
2391     //__ align(CodeEntryAlignment);
2392     StubCodeMark mark(this, "StubRoutines", name);
2393     address start = __ function_entry();
2394 
2395     // Bump this on entry, not on exit:
2396     //inc_counter_np(SharedRuntime::_generic_array_copy_ctr, lh, temp);
2397 
2398     // In principle, the int arguments could be dirty.
2399 
2400     //-----------------------------------------------------------------------
2401     // Assembler stubs will be used for this call to arraycopy
2402     // if the following conditions are met:
2403     //
2404     // (1) src and dst must not be null.
2405     // (2) src_pos must not be negative.
2406     // (3) dst_pos must not be negative.
2407     // (4) length  must not be negative.
2408     // (5) src klass and dst klass should be the same and not NULL.
2409     // (6) src and dst should be arrays.
2410     // (7) src_pos + length must not exceed length of src.
2411     // (8) dst_pos + length must not exceed length of dst.
2412     BLOCK_COMMENT("arraycopy initial argument checks");
2413 
2414     __ cmpdi(CCR1, src, 0);      // if (src == NULL) return -1;
2415     __ extsw_(src_pos, src_pos); // if (src_pos < 0) return -1;
2416     __ cmpdi(CCR5, dst, 0);      // if (dst == NULL) return -1;
2417     __ cror(CCR1, Assembler::equal, CCR0, Assembler::less);
2418     __ extsw_(dst_pos, dst_pos); // if (src_pos < 0) return -1;
2419     __ cror(CCR5, Assembler::equal, CCR0, Assembler::less);
2420     __ extsw_(length, length);   // if (length < 0) return -1;
2421     __ cror(CCR1, Assembler::equal, CCR5, Assembler::equal);
2422     __ cror(CCR1, Assembler::equal, CCR0, Assembler::less);
2423     __ beq(CCR1, L_failed);
2424 
2425     BLOCK_COMMENT("arraycopy argument klass checks");
2426     __ load_klass(src_klass, src);
2427     __ load_klass(dst_klass, dst);
2428 
2429     // Load layout helper
2430     //
2431     //  |array_tag|     | header_size | element_type |     |log2_element_size|
2432     // 32        30    24            16              8     2                 0
2433     //
2434     //   array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
2435     //
2436 
2437     int lh_offset = in_bytes(Klass::layout_helper_offset());
2438 
2439     // Load 32-bits signed value. Use br() instruction with it to check icc.
2440     __ lwz(lh, lh_offset, src_klass);
2441 
2442     // Handle objArrays completely differently...
2443     jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
2444     __ load_const_optimized(temp, objArray_lh, R0);
2445     __ cmpw(CCR0, lh, temp);
2446     __ beq(CCR0, L_objArray);
2447 
2448     __ cmpd(CCR5, src_klass, dst_klass);          // if (src->klass() != dst->klass()) return -1;
2449     __ cmpwi(CCR6, lh, Klass::_lh_neutral_value); // if (!src->is_Array()) return -1;
2450 
2451     __ crnand(CCR5, Assembler::equal, CCR6, Assembler::less);
2452     __ beq(CCR5, L_failed);
2453 
2454     // At this point, it is known to be a typeArray (array_tag 0x3).
2455 #ifdef ASSERT
2456     { Label L;
2457       jint lh_prim_tag_in_place = (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift);
2458       __ load_const_optimized(temp, lh_prim_tag_in_place, R0);
2459       __ cmpw(CCR0, lh, temp);
2460       __ bge(CCR0, L);
2461       __ stop("must be a primitive array");
2462       __ bind(L);
2463     }
2464 #endif
2465 
2466     arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
2467                            temp, dst_klass, L_failed);
2468 
2469     // TypeArrayKlass
2470     //
2471     // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
2472     // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
2473     //
2474 
2475     const Register offset = dst_klass;    // array offset
2476     const Register elsize = src_klass;    // log2 element size
2477 
2478     __ rldicl(offset, lh, 64 - Klass::_lh_header_size_shift, 64 - exact_log2(Klass::_lh_header_size_mask + 1));
2479     __ andi(elsize, lh, Klass::_lh_log2_element_size_mask);
2480     __ add(src, offset, src);       // src array offset
2481     __ add(dst, offset, dst);       // dst array offset
2482 
2483     // Next registers should be set before the jump to corresponding stub.
2484     const Register from     = R3_ARG1;  // source array address
2485     const Register to       = R4_ARG2;  // destination array address
2486     const Register count    = R5_ARG3;  // elements count
2487 
2488     // 'from', 'to', 'count' registers should be set in this order
2489     // since they are the same as 'src', 'src_pos', 'dst'.
2490 
2491     BLOCK_COMMENT("scale indexes to element size");
2492     __ sld(src_pos, src_pos, elsize);
2493     __ sld(dst_pos, dst_pos, elsize);
2494     __ add(from, src_pos, src);  // src_addr
2495     __ add(to, dst_pos, dst);    // dst_addr
2496     __ mr(count, length);        // length
2497 
2498     BLOCK_COMMENT("choose copy loop based on element size");
2499     // Using conditional branches with range 32kB.
2500     const int bo = Assembler::bcondCRbiIs1, bi = Assembler::bi0(CCR0, Assembler::equal);
2501     __ cmpwi(CCR0, elsize, 0);
2502     __ bc(bo, bi, entry_jbyte_arraycopy);
2503     __ cmpwi(CCR0, elsize, LogBytesPerShort);
2504     __ bc(bo, bi, entry_jshort_arraycopy);
2505     __ cmpwi(CCR0, elsize, LogBytesPerInt);
2506     __ bc(bo, bi, entry_jint_arraycopy);
2507 #ifdef ASSERT
2508     { Label L;
2509       __ cmpwi(CCR0, elsize, LogBytesPerLong);
2510       __ beq(CCR0, L);
2511       __ stop("must be long copy, but elsize is wrong");
2512       __ bind(L);
2513     }
2514 #endif
2515     __ b(entry_jlong_arraycopy);
2516 
2517     // ObjArrayKlass
2518   __ bind(L_objArray);
2519     // live at this point:  src_klass, dst_klass, src[_pos], dst[_pos], length
2520 
2521     Label L_disjoint_plain_copy, L_checkcast_copy;
2522     //  test array classes for subtyping
2523     __ cmpd(CCR0, src_klass, dst_klass);         // usual case is exact equality
2524     __ bne(CCR0, L_checkcast_copy);
2525 
2526     // Identically typed arrays can be copied without element-wise checks.
2527     arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
2528                            temp, lh, L_failed);
2529 
2530     __ addi(src, src, arrayOopDesc::base_offset_in_bytes(T_OBJECT)); //src offset
2531     __ addi(dst, dst, arrayOopDesc::base_offset_in_bytes(T_OBJECT)); //dst offset
2532     __ sldi(src_pos, src_pos, LogBytesPerHeapOop);
2533     __ sldi(dst_pos, dst_pos, LogBytesPerHeapOop);
2534     __ add(from, src_pos, src);  // src_addr
2535     __ add(to, dst_pos, dst);    // dst_addr
2536     __ mr(count, length);        // length
2537     __ b(entry_oop_arraycopy);
2538 
2539   __ bind(L_checkcast_copy);
2540     // live at this point:  src_klass, dst_klass
2541     {
2542       // Before looking at dst.length, make sure dst is also an objArray.
2543       __ lwz(temp, lh_offset, dst_klass);
2544       __ cmpw(CCR0, lh, temp);
2545       __ bne(CCR0, L_failed);
2546 
2547       // It is safe to examine both src.length and dst.length.
2548       arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
2549                              temp, lh, L_failed);
2550 
2551       // Marshal the base address arguments now, freeing registers.
2552       __ addi(src, src, arrayOopDesc::base_offset_in_bytes(T_OBJECT)); //src offset
2553       __ addi(dst, dst, arrayOopDesc::base_offset_in_bytes(T_OBJECT)); //dst offset
2554       __ sldi(src_pos, src_pos, LogBytesPerHeapOop);
2555       __ sldi(dst_pos, dst_pos, LogBytesPerHeapOop);
2556       __ add(from, src_pos, src);  // src_addr
2557       __ add(to, dst_pos, dst);    // dst_addr
2558       __ mr(count, length);        // length
2559 
2560       Register sco_temp = R6_ARG4;             // This register is free now.
2561       assert_different_registers(from, to, count, sco_temp,
2562                                  dst_klass, src_klass);
2563 
2564       // Generate the type check.
2565       int sco_offset = in_bytes(Klass::super_check_offset_offset());
2566       __ lwz(sco_temp, sco_offset, dst_klass);
2567       generate_type_check(src_klass, sco_temp, dst_klass,
2568                           temp, L_disjoint_plain_copy);
2569 
2570       // Fetch destination element klass from the ObjArrayKlass header.
2571       int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
2572 
2573       // The checkcast_copy loop needs two extra arguments:
2574       __ ld(R7_ARG5, ek_offset, dst_klass);   // dest elem klass
2575       __ lwz(R6_ARG4, sco_offset, R7_ARG5);   // sco of elem klass
2576       __ b(entry_checkcast_arraycopy);
2577     }
2578 
2579     __ bind(L_disjoint_plain_copy);
2580     __ b(entry_disjoint_oop_arraycopy);
2581 
2582   __ bind(L_failed);
2583     __ li(R3_RET, -1); // return -1
2584     __ blr();
2585     return start;
2586   }
2587 
2588   // Arguments for generated stub:
2589   //   R3_ARG1   - source byte array address
2590   //   R4_ARG2   - destination byte array address
2591   //   R5_ARG3   - round key array
2592   address generate_aescrypt_encryptBlock() {
2593     assert(UseAES, "need AES instructions and misaligned SSE support");
2594     StubCodeMark mark(this, "StubRoutines", "aescrypt_encryptBlock");
2595 
2596     address start = __ function_entry();
2597 
2598     Label L_doLast;
2599 
2600     Register from           = R3_ARG1;  // source array address
2601     Register to             = R4_ARG2;  // destination array address
2602     Register key            = R5_ARG3;  // round key array
2603 
2604     Register keylen         = R8;
2605     Register temp           = R9;
2606     Register keypos         = R10;
2607     Register fifteen        = R12;
2608 
2609     VectorRegister vRet     = VR0;
2610 
2611     VectorRegister vKey1    = VR1;
2612     VectorRegister vKey2    = VR2;
2613     VectorRegister vKey3    = VR3;
2614     VectorRegister vKey4    = VR4;
2615 
2616     VectorRegister fromPerm = VR5;
2617     VectorRegister keyPerm  = VR6;
2618     VectorRegister toPerm   = VR7;
2619     VectorRegister fSplt    = VR8;
2620 
2621     VectorRegister vTmp1    = VR9;
2622     VectorRegister vTmp2    = VR10;
2623     VectorRegister vTmp3    = VR11;
2624     VectorRegister vTmp4    = VR12;
2625 
2626     __ li              (fifteen, 15);
2627 
2628     // load unaligned from[0-15] to vsRet
2629     __ lvx             (vRet, from);
2630     __ lvx             (vTmp1, fifteen, from);
2631     __ lvsl            (fromPerm, from);
2632 #ifdef VM_LITTLE_ENDIAN
2633     __ vspltisb        (fSplt, 0x0f);
2634     __ vxor            (fromPerm, fromPerm, fSplt);
2635 #endif
2636     __ vperm           (vRet, vRet, vTmp1, fromPerm);
2637 
2638     // load keylen (44 or 52 or 60)
2639     __ lwz             (keylen, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT), key);
2640 
2641     // to load keys
2642     __ load_perm       (keyPerm, key);
2643 #ifdef VM_LITTLE_ENDIAN
2644     __ vspltisb        (vTmp2, -16);
2645     __ vrld            (keyPerm, keyPerm, vTmp2);
2646     __ vrld            (keyPerm, keyPerm, vTmp2);
2647     __ vsldoi          (keyPerm, keyPerm, keyPerm, 8);
2648 #endif
2649 
2650     // load the 1st round key to vTmp1
2651     __ lvx             (vTmp1, key);
2652     __ li              (keypos, 16);
2653     __ lvx             (vKey1, keypos, key);
2654     __ vec_perm        (vTmp1, vKey1, keyPerm);
2655 
2656     // 1st round
2657     __ vxor            (vRet, vRet, vTmp1);
2658 
2659     // load the 2nd round key to vKey1
2660     __ li              (keypos, 32);
2661     __ lvx             (vKey2, keypos, key);
2662     __ vec_perm        (vKey1, vKey2, keyPerm);
2663 
2664     // load the 3rd round key to vKey2
2665     __ li              (keypos, 48);
2666     __ lvx             (vKey3, keypos, key);
2667     __ vec_perm        (vKey2, vKey3, keyPerm);
2668 
2669     // load the 4th round key to vKey3
2670     __ li              (keypos, 64);
2671     __ lvx             (vKey4, keypos, key);
2672     __ vec_perm        (vKey3, vKey4, keyPerm);
2673 
2674     // load the 5th round key to vKey4
2675     __ li              (keypos, 80);
2676     __ lvx             (vTmp1, keypos, key);
2677     __ vec_perm        (vKey4, vTmp1, keyPerm);
2678 
2679     // 2nd - 5th rounds
2680     __ vcipher         (vRet, vRet, vKey1);
2681     __ vcipher         (vRet, vRet, vKey2);
2682     __ vcipher         (vRet, vRet, vKey3);
2683     __ vcipher         (vRet, vRet, vKey4);
2684 
2685     // load the 6th round key to vKey1
2686     __ li              (keypos, 96);
2687     __ lvx             (vKey2, keypos, key);
2688     __ vec_perm        (vKey1, vTmp1, vKey2, keyPerm);
2689 
2690     // load the 7th round key to vKey2
2691     __ li              (keypos, 112);
2692     __ lvx             (vKey3, keypos, key);
2693     __ vec_perm        (vKey2, vKey3, keyPerm);
2694 
2695     // load the 8th round key to vKey3
2696     __ li              (keypos, 128);
2697     __ lvx             (vKey4, keypos, key);
2698     __ vec_perm        (vKey3, vKey4, keyPerm);
2699 
2700     // load the 9th round key to vKey4
2701     __ li              (keypos, 144);
2702     __ lvx             (vTmp1, keypos, key);
2703     __ vec_perm        (vKey4, vTmp1, keyPerm);
2704 
2705     // 6th - 9th rounds
2706     __ vcipher         (vRet, vRet, vKey1);
2707     __ vcipher         (vRet, vRet, vKey2);
2708     __ vcipher         (vRet, vRet, vKey3);
2709     __ vcipher         (vRet, vRet, vKey4);
2710 
2711     // load the 10th round key to vKey1
2712     __ li              (keypos, 160);
2713     __ lvx             (vKey2, keypos, key);
2714     __ vec_perm        (vKey1, vTmp1, vKey2, keyPerm);
2715 
2716     // load the 11th round key to vKey2
2717     __ li              (keypos, 176);
2718     __ lvx             (vTmp1, keypos, key);
2719     __ vec_perm        (vKey2, vTmp1, keyPerm);
2720 
2721     // if all round keys are loaded, skip next 4 rounds
2722     __ cmpwi           (CCR0, keylen, 44);
2723     __ beq             (CCR0, L_doLast);
2724 
2725     // 10th - 11th rounds
2726     __ vcipher         (vRet, vRet, vKey1);
2727     __ vcipher         (vRet, vRet, vKey2);
2728 
2729     // load the 12th round key to vKey1
2730     __ li              (keypos, 192);
2731     __ lvx             (vKey2, keypos, key);
2732     __ vec_perm        (vKey1, vTmp1, vKey2, keyPerm);
2733 
2734     // load the 13th round key to vKey2
2735     __ li              (keypos, 208);
2736     __ lvx             (vTmp1, keypos, key);
2737     __ vec_perm        (vKey2, vTmp1, keyPerm);
2738 
2739     // if all round keys are loaded, skip next 2 rounds
2740     __ cmpwi           (CCR0, keylen, 52);
2741     __ beq             (CCR0, L_doLast);
2742 
2743     // 12th - 13th rounds
2744     __ vcipher         (vRet, vRet, vKey1);
2745     __ vcipher         (vRet, vRet, vKey2);
2746 
2747     // load the 14th round key to vKey1
2748     __ li              (keypos, 224);
2749     __ lvx             (vKey2, keypos, key);
2750     __ vec_perm        (vKey1, vTmp1, vKey2, keyPerm);
2751 
2752     // load the 15th round key to vKey2
2753     __ li              (keypos, 240);
2754     __ lvx             (vTmp1, keypos, key);
2755     __ vec_perm        (vKey2, vTmp1, keyPerm);
2756 
2757     __ bind(L_doLast);
2758 
2759     // last two rounds
2760     __ vcipher         (vRet, vRet, vKey1);
2761     __ vcipherlast     (vRet, vRet, vKey2);
2762 
2763     // store result (unaligned)
2764 #ifdef VM_LITTLE_ENDIAN
2765     __ lvsl            (toPerm, to);
2766 #else
2767     __ lvsr            (toPerm, to);
2768 #endif
2769     __ vspltisb        (vTmp3, -1);
2770     __ vspltisb        (vTmp4, 0);
2771     __ lvx             (vTmp1, to);
2772     __ lvx             (vTmp2, fifteen, to);
2773 #ifdef VM_LITTLE_ENDIAN
2774     __ vperm           (vTmp3, vTmp3, vTmp4, toPerm); // generate select mask
2775     __ vxor            (toPerm, toPerm, fSplt);       // swap bytes
2776 #else
2777     __ vperm           (vTmp3, vTmp4, vTmp3, toPerm); // generate select mask
2778 #endif
2779     __ vperm           (vTmp4, vRet, vRet, toPerm);   // rotate data
2780     __ vsel            (vTmp2, vTmp4, vTmp2, vTmp3);
2781     __ vsel            (vTmp1, vTmp1, vTmp4, vTmp3);
2782     __ stvx            (vTmp2, fifteen, to);          // store this one first (may alias)
2783     __ stvx            (vTmp1, to);
2784 
2785     __ blr();
2786      return start;
2787   }
2788 
2789   // Arguments for generated stub:
2790   //   R3_ARG1   - source byte array address
2791   //   R4_ARG2   - destination byte array address
2792   //   R5_ARG3   - K (key) in little endian int array
2793   address generate_aescrypt_decryptBlock() {
2794     assert(UseAES, "need AES instructions and misaligned SSE support");
2795     StubCodeMark mark(this, "StubRoutines", "aescrypt_decryptBlock");
2796 
2797     address start = __ function_entry();
2798 
2799     Label L_doLast;
2800     Label L_do44;
2801     Label L_do52;
2802 
2803     Register from           = R3_ARG1;  // source array address
2804     Register to             = R4_ARG2;  // destination array address
2805     Register key            = R5_ARG3;  // round key array
2806 
2807     Register keylen         = R8;
2808     Register temp           = R9;
2809     Register keypos         = R10;
2810     Register fifteen        = R12;
2811 
2812     VectorRegister vRet     = VR0;
2813 
2814     VectorRegister vKey1    = VR1;
2815     VectorRegister vKey2    = VR2;
2816     VectorRegister vKey3    = VR3;
2817     VectorRegister vKey4    = VR4;
2818     VectorRegister vKey5    = VR5;
2819 
2820     VectorRegister fromPerm = VR6;
2821     VectorRegister keyPerm  = VR7;
2822     VectorRegister toPerm   = VR8;
2823     VectorRegister fSplt    = VR9;
2824 
2825     VectorRegister vTmp1    = VR10;
2826     VectorRegister vTmp2    = VR11;
2827     VectorRegister vTmp3    = VR12;
2828     VectorRegister vTmp4    = VR13;
2829 
2830     __ li              (fifteen, 15);
2831 
2832     // load unaligned from[0-15] to vsRet
2833     __ lvx             (vRet, from);
2834     __ lvx             (vTmp1, fifteen, from);
2835     __ lvsl            (fromPerm, from);
2836 #ifdef VM_LITTLE_ENDIAN
2837     __ vspltisb        (fSplt, 0x0f);
2838     __ vxor            (fromPerm, fromPerm, fSplt);
2839 #endif
2840     __ vperm           (vRet, vRet, vTmp1, fromPerm); // align [and byte swap in LE]
2841 
2842     // load keylen (44 or 52 or 60)
2843     __ lwz             (keylen, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT), key);
2844 
2845     // to load keys
2846     __ load_perm       (keyPerm, key);
2847 #ifdef VM_LITTLE_ENDIAN
2848     __ vxor            (vTmp2, vTmp2, vTmp2);
2849     __ vspltisb        (vTmp2, -16);
2850     __ vrld            (keyPerm, keyPerm, vTmp2);
2851     __ vrld            (keyPerm, keyPerm, vTmp2);
2852     __ vsldoi          (keyPerm, keyPerm, keyPerm, 8);
2853 #endif
2854 
2855     __ cmpwi           (CCR0, keylen, 44);
2856     __ beq             (CCR0, L_do44);
2857 
2858     __ cmpwi           (CCR0, keylen, 52);
2859     __ beq             (CCR0, L_do52);
2860 
2861     // load the 15th round key to vKey1
2862     __ li              (keypos, 240);
2863     __ lvx             (vKey1, keypos, key);
2864     __ li              (keypos, 224);
2865     __ lvx             (vKey2, keypos, key);
2866     __ vec_perm        (vKey1, vKey2, vKey1, keyPerm);
2867 
2868     // load the 14th round key to vKey2
2869     __ li              (keypos, 208);
2870     __ lvx             (vKey3, keypos, key);
2871     __ vec_perm        (vKey2, vKey3, vKey2, keyPerm);
2872 
2873     // load the 13th round key to vKey3
2874     __ li              (keypos, 192);
2875     __ lvx             (vKey4, keypos, key);
2876     __ vec_perm        (vKey3, vKey4, vKey3, keyPerm);
2877 
2878     // load the 12th round key to vKey4
2879     __ li              (keypos, 176);
2880     __ lvx             (vKey5, keypos, key);
2881     __ vec_perm        (vKey4, vKey5, vKey4, keyPerm);
2882 
2883     // load the 11th round key to vKey5
2884     __ li              (keypos, 160);
2885     __ lvx             (vTmp1, keypos, key);
2886     __ vec_perm        (vKey5, vTmp1, vKey5, keyPerm);
2887 
2888     // 1st - 5th rounds
2889     __ vxor            (vRet, vRet, vKey1);
2890     __ vncipher        (vRet, vRet, vKey2);
2891     __ vncipher        (vRet, vRet, vKey3);
2892     __ vncipher        (vRet, vRet, vKey4);
2893     __ vncipher        (vRet, vRet, vKey5);
2894 
2895     __ b               (L_doLast);
2896 
2897     __ bind            (L_do52);
2898 
2899     // load the 13th round key to vKey1
2900     __ li              (keypos, 208);
2901     __ lvx             (vKey1, keypos, key);
2902     __ li              (keypos, 192);
2903     __ lvx             (vKey2, keypos, key);
2904     __ vec_perm        (vKey1, vKey2, vKey1, keyPerm);
2905 
2906     // load the 12th round key to vKey2
2907     __ li              (keypos, 176);
2908     __ lvx             (vKey3, keypos, key);
2909     __ vec_perm        (vKey2, vKey3, vKey2, keyPerm);
2910 
2911     // load the 11th round key to vKey3
2912     __ li              (keypos, 160);
2913     __ lvx             (vTmp1, keypos, key);
2914     __ vec_perm        (vKey3, vTmp1, vKey3, keyPerm);
2915 
2916     // 1st - 3rd rounds
2917     __ vxor            (vRet, vRet, vKey1);
2918     __ vncipher        (vRet, vRet, vKey2);
2919     __ vncipher        (vRet, vRet, vKey3);
2920 
2921     __ b               (L_doLast);
2922 
2923     __ bind            (L_do44);
2924 
2925     // load the 11th round key to vKey1
2926     __ li              (keypos, 176);
2927     __ lvx             (vKey1, keypos, key);
2928     __ li              (keypos, 160);
2929     __ lvx             (vTmp1, keypos, key);
2930     __ vec_perm        (vKey1, vTmp1, vKey1, keyPerm);
2931 
2932     // 1st round
2933     __ vxor            (vRet, vRet, vKey1);
2934 
2935     __ bind            (L_doLast);
2936 
2937     // load the 10th round key to vKey1
2938     __ li              (keypos, 144);
2939     __ lvx             (vKey2, keypos, key);
2940     __ vec_perm        (vKey1, vKey2, vTmp1, keyPerm);
2941 
2942     // load the 9th round key to vKey2
2943     __ li              (keypos, 128);
2944     __ lvx             (vKey3, keypos, key);
2945     __ vec_perm        (vKey2, vKey3, vKey2, keyPerm);
2946 
2947     // load the 8th round key to vKey3
2948     __ li              (keypos, 112);
2949     __ lvx             (vKey4, keypos, key);
2950     __ vec_perm        (vKey3, vKey4, vKey3, keyPerm);
2951 
2952     // load the 7th round key to vKey4
2953     __ li              (keypos, 96);
2954     __ lvx             (vKey5, keypos, key);
2955     __ vec_perm        (vKey4, vKey5, vKey4, keyPerm);
2956 
2957     // load the 6th round key to vKey5
2958     __ li              (keypos, 80);
2959     __ lvx             (vTmp1, keypos, key);
2960     __ vec_perm        (vKey5, vTmp1, vKey5, keyPerm);
2961 
2962     // last 10th - 6th rounds
2963     __ vncipher        (vRet, vRet, vKey1);
2964     __ vncipher        (vRet, vRet, vKey2);
2965     __ vncipher        (vRet, vRet, vKey3);
2966     __ vncipher        (vRet, vRet, vKey4);
2967     __ vncipher        (vRet, vRet, vKey5);
2968 
2969     // load the 5th round key to vKey1
2970     __ li              (keypos, 64);
2971     __ lvx             (vKey2, keypos, key);
2972     __ vec_perm        (vKey1, vKey2, vTmp1, keyPerm);
2973 
2974     // load the 4th round key to vKey2
2975     __ li              (keypos, 48);
2976     __ lvx             (vKey3, keypos, key);
2977     __ vec_perm        (vKey2, vKey3, vKey2, keyPerm);
2978 
2979     // load the 3rd round key to vKey3
2980     __ li              (keypos, 32);
2981     __ lvx             (vKey4, keypos, key);
2982     __ vec_perm        (vKey3, vKey4, vKey3, keyPerm);
2983 
2984     // load the 2nd round key to vKey4
2985     __ li              (keypos, 16);
2986     __ lvx             (vKey5, keypos, key);
2987     __ vec_perm        (vKey4, vKey5, vKey4, keyPerm);
2988 
2989     // load the 1st round key to vKey5
2990     __ lvx             (vTmp1, key);
2991     __ vec_perm        (vKey5, vTmp1, vKey5, keyPerm);
2992 
2993     // last 5th - 1th rounds
2994     __ vncipher        (vRet, vRet, vKey1);
2995     __ vncipher        (vRet, vRet, vKey2);
2996     __ vncipher        (vRet, vRet, vKey3);
2997     __ vncipher        (vRet, vRet, vKey4);
2998     __ vncipherlast    (vRet, vRet, vKey5);
2999 
3000     // store result (unaligned)
3001 #ifdef VM_LITTLE_ENDIAN
3002     __ lvsl            (toPerm, to);
3003 #else
3004     __ lvsr            (toPerm, to);
3005 #endif
3006     __ vspltisb        (vTmp3, -1);
3007     __ vspltisb        (vTmp4, 0);
3008     __ lvx             (vTmp1, to);
3009     __ lvx             (vTmp2, fifteen, to);
3010 #ifdef VM_LITTLE_ENDIAN
3011     __ vperm           (vTmp3, vTmp3, vTmp4, toPerm); // generate select mask
3012     __ vxor            (toPerm, toPerm, fSplt);       // swap bytes
3013 #else
3014     __ vperm           (vTmp3, vTmp4, vTmp3, toPerm); // generate select mask
3015 #endif
3016     __ vperm           (vTmp4, vRet, vRet, toPerm);   // rotate data
3017     __ vsel            (vTmp2, vTmp4, vTmp2, vTmp3);
3018     __ vsel            (vTmp1, vTmp1, vTmp4, vTmp3);
3019     __ stvx            (vTmp2, fifteen, to);          // store this one first (may alias)
3020     __ stvx            (vTmp1, to);
3021 
3022     __ blr();
3023      return start;
3024   }
3025 
3026   address generate_sha256_implCompress(bool multi_block, const char *name) {
3027     assert(UseSHA, "need SHA instructions");
3028     StubCodeMark mark(this, "StubRoutines", name);
3029     address start = __ function_entry();
3030 
3031     __ sha256 (multi_block);
3032 
3033     __ blr();
3034     return start;
3035   }
3036 
3037   address generate_sha512_implCompress(bool multi_block, const char *name) {
3038     assert(UseSHA, "need SHA instructions");
3039     StubCodeMark mark(this, "StubRoutines", name);
3040     address start = __ function_entry();
3041 
3042     __ sha512 (multi_block);
3043 
3044     __ blr();
3045     return start;
3046   }
3047 
3048   void generate_arraycopy_stubs() {
3049     // Note: the disjoint stubs must be generated first, some of
3050     // the conjoint stubs use them.
3051 
3052     address ucm_common_error_exit       =  generate_unsafecopy_common_error_exit();
3053     UnsafeCopyMemory::set_common_exit_stub_pc(ucm_common_error_exit);
3054 
3055     // non-aligned disjoint versions
3056     StubRoutines::_jbyte_disjoint_arraycopy       = generate_disjoint_byte_copy(false, "jbyte_disjoint_arraycopy");
3057     StubRoutines::_jshort_disjoint_arraycopy      = generate_disjoint_short_copy(false, "jshort_disjoint_arraycopy");
3058     StubRoutines::_jint_disjoint_arraycopy        = generate_disjoint_int_copy(false, "jint_disjoint_arraycopy");
3059     StubRoutines::_jlong_disjoint_arraycopy       = generate_disjoint_long_copy(false, "jlong_disjoint_arraycopy");
3060     StubRoutines::_oop_disjoint_arraycopy         = generate_disjoint_oop_copy(false, "oop_disjoint_arraycopy", false);
3061     StubRoutines::_oop_disjoint_arraycopy_uninit  = generate_disjoint_oop_copy(false, "oop_disjoint_arraycopy_uninit", true);
3062 
3063     // aligned disjoint versions
3064     StubRoutines::_arrayof_jbyte_disjoint_arraycopy      = generate_disjoint_byte_copy(true, "arrayof_jbyte_disjoint_arraycopy");
3065     StubRoutines::_arrayof_jshort_disjoint_arraycopy     = generate_disjoint_short_copy(true, "arrayof_jshort_disjoint_arraycopy");
3066     StubRoutines::_arrayof_jint_disjoint_arraycopy       = generate_disjoint_int_copy(true, "arrayof_jint_disjoint_arraycopy");
3067     StubRoutines::_arrayof_jlong_disjoint_arraycopy      = generate_disjoint_long_copy(true, "arrayof_jlong_disjoint_arraycopy");
3068     StubRoutines::_arrayof_oop_disjoint_arraycopy        = generate_disjoint_oop_copy(true, "arrayof_oop_disjoint_arraycopy", false);
3069     StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit = generate_disjoint_oop_copy(true, "oop_disjoint_arraycopy_uninit", true);
3070 
3071     // non-aligned conjoint versions
3072     StubRoutines::_jbyte_arraycopy      = generate_conjoint_byte_copy(false, "jbyte_arraycopy");
3073     StubRoutines::_jshort_arraycopy     = generate_conjoint_short_copy(false, "jshort_arraycopy");
3074     StubRoutines::_jint_arraycopy       = generate_conjoint_int_copy(false, "jint_arraycopy");
3075     StubRoutines::_jlong_arraycopy      = generate_conjoint_long_copy(false, "jlong_arraycopy");
3076     StubRoutines::_oop_arraycopy        = generate_conjoint_oop_copy(false, "oop_arraycopy", false);
3077     StubRoutines::_oop_arraycopy_uninit = generate_conjoint_oop_copy(false, "oop_arraycopy_uninit", true);
3078 
3079     // aligned conjoint versions
3080     StubRoutines::_arrayof_jbyte_arraycopy      = generate_conjoint_byte_copy(true, "arrayof_jbyte_arraycopy");
3081     StubRoutines::_arrayof_jshort_arraycopy     = generate_conjoint_short_copy(true, "arrayof_jshort_arraycopy");
3082     StubRoutines::_arrayof_jint_arraycopy       = generate_conjoint_int_copy(true, "arrayof_jint_arraycopy");
3083     StubRoutines::_arrayof_jlong_arraycopy      = generate_conjoint_long_copy(true, "arrayof_jlong_arraycopy");
3084     StubRoutines::_arrayof_oop_arraycopy        = generate_conjoint_oop_copy(true, "arrayof_oop_arraycopy", false);
3085     StubRoutines::_arrayof_oop_arraycopy_uninit = generate_conjoint_oop_copy(true, "arrayof_oop_arraycopy", true);
3086 
3087     // special/generic versions
3088     StubRoutines::_checkcast_arraycopy        = generate_checkcast_copy("checkcast_arraycopy", false);
3089     StubRoutines::_checkcast_arraycopy_uninit = generate_checkcast_copy("checkcast_arraycopy_uninit", true);
3090 
3091     StubRoutines::_unsafe_arraycopy  = generate_unsafe_copy("unsafe_arraycopy",
3092                                                             STUB_ENTRY(jbyte_arraycopy),
3093                                                             STUB_ENTRY(jshort_arraycopy),
3094                                                             STUB_ENTRY(jint_arraycopy),
3095                                                             STUB_ENTRY(jlong_arraycopy));
3096     StubRoutines::_generic_arraycopy = generate_generic_copy("generic_arraycopy",
3097                                                              STUB_ENTRY(jbyte_arraycopy),
3098                                                              STUB_ENTRY(jshort_arraycopy),
3099                                                              STUB_ENTRY(jint_arraycopy),
3100                                                              STUB_ENTRY(oop_arraycopy),
3101                                                              STUB_ENTRY(oop_disjoint_arraycopy),
3102                                                              STUB_ENTRY(jlong_arraycopy),
3103                                                              STUB_ENTRY(checkcast_arraycopy));
3104 
3105     // fill routines
3106     if (OptimizeFill) {
3107       StubRoutines::_jbyte_fill          = generate_fill(T_BYTE,  false, "jbyte_fill");
3108       StubRoutines::_jshort_fill         = generate_fill(T_SHORT, false, "jshort_fill");
3109       StubRoutines::_jint_fill           = generate_fill(T_INT,   false, "jint_fill");
3110       StubRoutines::_arrayof_jbyte_fill  = generate_fill(T_BYTE,  true, "arrayof_jbyte_fill");
3111       StubRoutines::_arrayof_jshort_fill = generate_fill(T_SHORT, true, "arrayof_jshort_fill");
3112       StubRoutines::_arrayof_jint_fill   = generate_fill(T_INT,   true, "arrayof_jint_fill");
3113     }
3114   }
3115 
3116   // Safefetch stubs.
3117   void generate_safefetch(const char* name, int size, address* entry, address* fault_pc, address* continuation_pc) {
3118     // safefetch signatures:
3119     //   int      SafeFetch32(int*      adr, int      errValue);
3120     //   intptr_t SafeFetchN (intptr_t* adr, intptr_t errValue);
3121     //
3122     // arguments:
3123     //   R3_ARG1 = adr
3124     //   R4_ARG2 = errValue
3125     //
3126     // result:
3127     //   R3_RET  = *adr or errValue
3128 
3129     StubCodeMark mark(this, "StubRoutines", name);
3130 
3131     // Entry point, pc or function descriptor.
3132     *entry = __ function_entry();
3133 
3134     // Load *adr into R4_ARG2, may fault.
3135     *fault_pc = __ pc();
3136     switch (size) {
3137       case 4:
3138         // int32_t, signed extended
3139         __ lwa(R4_ARG2, 0, R3_ARG1);
3140         break;
3141       case 8:
3142         // int64_t
3143         __ ld(R4_ARG2, 0, R3_ARG1);
3144         break;
3145       default:
3146         ShouldNotReachHere();
3147     }
3148 
3149     // return errValue or *adr
3150     *continuation_pc = __ pc();
3151     __ mr(R3_RET, R4_ARG2);
3152     __ blr();
3153   }
3154 
3155   // Stub for BigInteger::multiplyToLen()
3156   //
3157   //  Arguments:
3158   //
3159   //  Input:
3160   //    R3 - x address
3161   //    R4 - x length
3162   //    R5 - y address
3163   //    R6 - y length
3164   //    R7 - z address
3165   //    R8 - z length
3166   //
3167   address generate_multiplyToLen() {
3168 
3169     StubCodeMark mark(this, "StubRoutines", "multiplyToLen");
3170 
3171     address start = __ function_entry();
3172 
3173     const Register x     = R3;
3174     const Register xlen  = R4;
3175     const Register y     = R5;
3176     const Register ylen  = R6;
3177     const Register z     = R7;
3178     const Register zlen  = R8;
3179 
3180     const Register tmp1  = R2; // TOC not used.
3181     const Register tmp2  = R9;
3182     const Register tmp3  = R10;
3183     const Register tmp4  = R11;
3184     const Register tmp5  = R12;
3185 
3186     // non-volatile regs
3187     const Register tmp6  = R31;
3188     const Register tmp7  = R30;
3189     const Register tmp8  = R29;
3190     const Register tmp9  = R28;
3191     const Register tmp10 = R27;
3192     const Register tmp11 = R26;
3193     const Register tmp12 = R25;
3194     const Register tmp13 = R24;
3195 
3196     BLOCK_COMMENT("Entry:");
3197 
3198     // C2 does not respect int to long conversion for stub calls.
3199     __ clrldi(xlen, xlen, 32);
3200     __ clrldi(ylen, ylen, 32);
3201     __ clrldi(zlen, zlen, 32);
3202 
3203     // Save non-volatile regs (frameless).
3204     int current_offs = 8;
3205     __ std(R24, -current_offs, R1_SP); current_offs += 8;
3206     __ std(R25, -current_offs, R1_SP); current_offs += 8;
3207     __ std(R26, -current_offs, R1_SP); current_offs += 8;
3208     __ std(R27, -current_offs, R1_SP); current_offs += 8;
3209     __ std(R28, -current_offs, R1_SP); current_offs += 8;
3210     __ std(R29, -current_offs, R1_SP); current_offs += 8;
3211     __ std(R30, -current_offs, R1_SP); current_offs += 8;
3212     __ std(R31, -current_offs, R1_SP);
3213 
3214     __ multiply_to_len(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5,
3215                        tmp6, tmp7, tmp8, tmp9, tmp10, tmp11, tmp12, tmp13);
3216 
3217     // Restore non-volatile regs.
3218     current_offs = 8;
3219     __ ld(R24, -current_offs, R1_SP); current_offs += 8;
3220     __ ld(R25, -current_offs, R1_SP); current_offs += 8;
3221     __ ld(R26, -current_offs, R1_SP); current_offs += 8;
3222     __ ld(R27, -current_offs, R1_SP); current_offs += 8;
3223     __ ld(R28, -current_offs, R1_SP); current_offs += 8;
3224     __ ld(R29, -current_offs, R1_SP); current_offs += 8;
3225     __ ld(R30, -current_offs, R1_SP); current_offs += 8;
3226     __ ld(R31, -current_offs, R1_SP);
3227 
3228     __ blr();  // Return to caller.
3229 
3230     return start;
3231   }
3232 
3233   /**
3234   *  Arguments:
3235   *
3236   *  Input:
3237   *   R3_ARG1    - out address
3238   *   R4_ARG2    - in address
3239   *   R5_ARG3    - offset
3240   *   R6_ARG4    - len
3241   *   R7_ARG5    - k
3242   *  Output:
3243   *   R3_RET     - carry
3244   */
3245   address generate_mulAdd() {
3246     __ align(CodeEntryAlignment);
3247     StubCodeMark mark(this, "StubRoutines", "mulAdd");
3248 
3249     address start = __ function_entry();
3250 
3251     // C2 does not sign extend signed parameters to full 64 bits registers:
3252     __ rldic (R5_ARG3, R5_ARG3, 2, 32);  // always positive
3253     __ clrldi(R6_ARG4, R6_ARG4, 32);     // force zero bits on higher word
3254     __ clrldi(R7_ARG5, R7_ARG5, 32);     // force zero bits on higher word
3255 
3256     __ muladd(R3_ARG1, R4_ARG2, R5_ARG3, R6_ARG4, R7_ARG5, R8, R9, R10);
3257 
3258     // Moves output carry to return register
3259     __ mr    (R3_RET,  R10);
3260 
3261     __ blr();
3262 
3263     return start;
3264   }
3265 
3266   /**
3267   *  Arguments:
3268   *
3269   *  Input:
3270   *   R3_ARG1    - in address
3271   *   R4_ARG2    - in length
3272   *   R5_ARG3    - out address
3273   *   R6_ARG4    - out length
3274   */
3275   address generate_squareToLen() {
3276     __ align(CodeEntryAlignment);
3277     StubCodeMark mark(this, "StubRoutines", "squareToLen");
3278 
3279     address start = __ function_entry();
3280 
3281     // args - higher word is cleaned (unsignedly) due to int to long casting
3282     const Register in        = R3_ARG1;
3283     const Register in_len    = R4_ARG2;
3284     __ clrldi(in_len, in_len, 32);
3285     const Register out       = R5_ARG3;
3286     const Register out_len   = R6_ARG4;
3287     __ clrldi(out_len, out_len, 32);
3288 
3289     // output
3290     const Register ret       = R3_RET;
3291 
3292     // temporaries
3293     const Register lplw_s    = R7;
3294     const Register in_aux    = R8;
3295     const Register out_aux   = R9;
3296     const Register piece     = R10;
3297     const Register product   = R14;
3298     const Register lplw      = R15;
3299     const Register i_minus1  = R16;
3300     const Register carry     = R17;
3301     const Register offset    = R18;
3302     const Register off_aux   = R19;
3303     const Register t         = R20;
3304     const Register mlen      = R21;
3305     const Register len       = R22;
3306     const Register a         = R23;
3307     const Register b         = R24;
3308     const Register i         = R25;
3309     const Register c         = R26;
3310     const Register cs        = R27;
3311 
3312     // Labels
3313     Label SKIP_LSHIFT, SKIP_DIAGONAL_SUM, SKIP_ADDONE, SKIP_LOOP_SQUARE;
3314     Label LOOP_LSHIFT, LOOP_DIAGONAL_SUM, LOOP_ADDONE, LOOP_SQUARE;
3315 
3316     // Save non-volatile regs (frameless).
3317     int current_offs = -8;
3318     __ std(R28, current_offs, R1_SP); current_offs -= 8;
3319     __ std(R27, current_offs, R1_SP); current_offs -= 8;
3320     __ std(R26, current_offs, R1_SP); current_offs -= 8;
3321     __ std(R25, current_offs, R1_SP); current_offs -= 8;
3322     __ std(R24, current_offs, R1_SP); current_offs -= 8;
3323     __ std(R23, current_offs, R1_SP); current_offs -= 8;
3324     __ std(R22, current_offs, R1_SP); current_offs -= 8;
3325     __ std(R21, current_offs, R1_SP); current_offs -= 8;
3326     __ std(R20, current_offs, R1_SP); current_offs -= 8;
3327     __ std(R19, current_offs, R1_SP); current_offs -= 8;
3328     __ std(R18, current_offs, R1_SP); current_offs -= 8;
3329     __ std(R17, current_offs, R1_SP); current_offs -= 8;
3330     __ std(R16, current_offs, R1_SP); current_offs -= 8;
3331     __ std(R15, current_offs, R1_SP); current_offs -= 8;
3332     __ std(R14, current_offs, R1_SP);
3333 
3334     // Store the squares, right shifted one bit (i.e., divided by 2)
3335     __ subi   (out_aux,   out,       8);
3336     __ subi   (in_aux,    in,        4);
3337     __ cmpwi  (CCR0,      in_len,    0);
3338     // Initialize lplw outside of the loop
3339     __ xorr   (lplw,      lplw,      lplw);
3340     __ ble    (CCR0,      SKIP_LOOP_SQUARE);    // in_len <= 0
3341     __ mtctr  (in_len);
3342 
3343     __ bind(LOOP_SQUARE);
3344     __ lwzu   (piece,     4,         in_aux);
3345     __ mulld  (product,   piece,     piece);
3346     // shift left 63 bits and only keep the MSB
3347     __ rldic  (lplw_s,    lplw,      63, 0);
3348     __ mr     (lplw,      product);
3349     // shift right 1 bit without sign extension
3350     __ srdi   (product,   product,   1);
3351     // join them to the same register and store it
3352     __ orr    (product,   lplw_s,    product);
3353 #ifdef VM_LITTLE_ENDIAN
3354     // Swap low and high words for little endian
3355     __ rldicl (product,   product,   32, 0);
3356 #endif
3357     __ stdu   (product,   8,         out_aux);
3358     __ bdnz   (LOOP_SQUARE);
3359 
3360     __ bind(SKIP_LOOP_SQUARE);
3361 
3362     // Add in off-diagonal sums
3363     __ cmpwi  (CCR0,      in_len,    0);
3364     __ ble    (CCR0,      SKIP_DIAGONAL_SUM);
3365     // Avoid CTR usage here in order to use it at mulAdd
3366     __ subi   (i_minus1,  in_len,    1);
3367     __ li     (offset,    4);
3368 
3369     __ bind(LOOP_DIAGONAL_SUM);
3370 
3371     __ sldi   (off_aux,   out_len,   2);
3372     __ sub    (off_aux,   off_aux,   offset);
3373 
3374     __ mr     (len,       i_minus1);
3375     __ sldi   (mlen,      i_minus1,  2);
3376     __ lwzx   (t,         in,        mlen);
3377 
3378     __ muladd (out, in, off_aux, len, t, a, b, carry);
3379 
3380     // begin<addOne>
3381     // off_aux = out_len*4 - 4 - mlen - offset*4 - 4;
3382     __ addi   (mlen,      mlen,      4);
3383     __ sldi   (a,         out_len,   2);
3384     __ subi   (a,         a,         4);
3385     __ sub    (a,         a,         mlen);
3386     __ subi   (off_aux,   offset,    4);
3387     __ sub    (off_aux,   a,         off_aux);
3388 
3389     __ lwzx   (b,         off_aux,   out);
3390     __ add    (b,         b,         carry);
3391     __ stwx   (b,         off_aux,   out);
3392 
3393     // if (((uint64_t)s >> 32) != 0) {
3394     __ srdi_  (a,         b,         32);
3395     __ beq    (CCR0,      SKIP_ADDONE);
3396 
3397     // while (--mlen >= 0) {
3398     __ bind(LOOP_ADDONE);
3399     __ subi   (mlen,      mlen,      4);
3400     __ cmpwi  (CCR0,      mlen,      0);
3401     __ beq    (CCR0,      SKIP_ADDONE);
3402 
3403     // if (--offset_aux < 0) { // Carry out of number
3404     __ subi   (off_aux,   off_aux,   4);
3405     __ cmpwi  (CCR0,      off_aux,   0);
3406     __ blt    (CCR0,      SKIP_ADDONE);
3407 
3408     // } else {
3409     __ lwzx   (b,         off_aux,   out);
3410     __ addi   (b,         b,         1);
3411     __ stwx   (b,         off_aux,   out);
3412     __ cmpwi  (CCR0,      b,         0);
3413     __ bne    (CCR0,      SKIP_ADDONE);
3414     __ b      (LOOP_ADDONE);
3415 
3416     __ bind(SKIP_ADDONE);
3417     // } } } end<addOne>
3418 
3419     __ addi   (offset,    offset,    8);
3420     __ subi   (i_minus1,  i_minus1,  1);
3421     __ cmpwi  (CCR0,      i_minus1,  0);
3422     __ bge    (CCR0,      LOOP_DIAGONAL_SUM);
3423 
3424     __ bind(SKIP_DIAGONAL_SUM);
3425 
3426     // Shift back up and set low bit
3427     // Shifts 1 bit left up to len positions. Assumes no leading zeros
3428     // begin<primitiveLeftShift>
3429     __ cmpwi  (CCR0,      out_len,   0);
3430     __ ble    (CCR0,      SKIP_LSHIFT);
3431     __ li     (i,         0);
3432     __ lwz    (c,         0,         out);
3433     __ subi   (b,         out_len,   1);
3434     __ mtctr  (b);
3435 
3436     __ bind(LOOP_LSHIFT);
3437     __ mr     (b,         c);
3438     __ addi   (cs,        i,         4);
3439     __ lwzx   (c,         out,       cs);
3440 
3441     __ sldi   (b,         b,         1);
3442     __ srwi   (cs,        c,         31);
3443     __ orr    (b,         b,         cs);
3444     __ stwx   (b,         i,         out);
3445 
3446     __ addi   (i,         i,         4);
3447     __ bdnz   (LOOP_LSHIFT);
3448 
3449     __ sldi   (c,         out_len,   2);
3450     __ subi   (c,         c,         4);
3451     __ lwzx   (b,         out,       c);
3452     __ sldi   (b,         b,         1);
3453     __ stwx   (b,         out,       c);
3454 
3455     __ bind(SKIP_LSHIFT);
3456     // end<primitiveLeftShift>
3457 
3458     // Set low bit
3459     __ sldi   (i,         in_len,    2);
3460     __ subi   (i,         i,         4);
3461     __ lwzx   (i,         in,        i);
3462     __ sldi   (c,         out_len,   2);
3463     __ subi   (c,         c,         4);
3464     __ lwzx   (b,         out,       c);
3465 
3466     __ andi   (i,         i,         1);
3467     __ orr    (i,         b,         i);
3468 
3469     __ stwx   (i,         out,       c);
3470 
3471     // Restore non-volatile regs.
3472     current_offs = -8;
3473     __ ld(R28, current_offs, R1_SP); current_offs -= 8;
3474     __ ld(R27, current_offs, R1_SP); current_offs -= 8;
3475     __ ld(R26, current_offs, R1_SP); current_offs -= 8;
3476     __ ld(R25, current_offs, R1_SP); current_offs -= 8;
3477     __ ld(R24, current_offs, R1_SP); current_offs -= 8;
3478     __ ld(R23, current_offs, R1_SP); current_offs -= 8;
3479     __ ld(R22, current_offs, R1_SP); current_offs -= 8;
3480     __ ld(R21, current_offs, R1_SP); current_offs -= 8;
3481     __ ld(R20, current_offs, R1_SP); current_offs -= 8;
3482     __ ld(R19, current_offs, R1_SP); current_offs -= 8;
3483     __ ld(R18, current_offs, R1_SP); current_offs -= 8;
3484     __ ld(R17, current_offs, R1_SP); current_offs -= 8;
3485     __ ld(R16, current_offs, R1_SP); current_offs -= 8;
3486     __ ld(R15, current_offs, R1_SP); current_offs -= 8;
3487     __ ld(R14, current_offs, R1_SP);
3488 
3489     __ mr(ret, out);
3490     __ blr();
3491 
3492     return start;
3493   }
3494 
3495   /**
3496    * Arguments:
3497    *
3498    * Inputs:
3499    *   R3_ARG1    - int   crc
3500    *   R4_ARG2    - byte* buf
3501    *   R5_ARG3    - int   length (of buffer)
3502    *
3503    * scratch:
3504    *   R2, R6-R12
3505    *
3506    * Ouput:
3507    *   R3_RET     - int   crc result
3508    */
3509   // Compute CRC32 function.
3510   address generate_CRC32_updateBytes(bool is_crc32c) {
3511     __ align(CodeEntryAlignment);
3512     StubCodeMark mark(this, "StubRoutines", is_crc32c ? "CRC32C_updateBytes" : "CRC32_updateBytes");
3513     address start = __ function_entry();  // Remember stub start address (is rtn value).
3514     __ crc32(R3_ARG1, R4_ARG2, R5_ARG3, R2, R6, R7, R8, R9, R10, R11, R12, is_crc32c);
3515     __ blr();
3516     return start;
3517   }
3518 
3519   // Initialization
3520   void generate_initial() {
3521     // Generates all stubs and initializes the entry points
3522 
3523     // Entry points that exist in all platforms.
3524     // Note: This is code that could be shared among different platforms - however the
3525     // benefit seems to be smaller than the disadvantage of having a
3526     // much more complicated generator structure. See also comment in
3527     // stubRoutines.hpp.
3528 
3529     StubRoutines::_forward_exception_entry          = generate_forward_exception();
3530     StubRoutines::_call_stub_entry                  = generate_call_stub(StubRoutines::_call_stub_return_address);
3531     StubRoutines::_catch_exception_entry            = generate_catch_exception();
3532 
3533     // Build this early so it's available for the interpreter.
3534     StubRoutines::_throw_StackOverflowError_entry   =
3535       generate_throw_exception("StackOverflowError throw_exception",
3536                                CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError), false);
3537     StubRoutines::_throw_delayed_StackOverflowError_entry =
3538       generate_throw_exception("delayed StackOverflowError throw_exception",
3539                                CAST_FROM_FN_PTR(address, SharedRuntime::throw_delayed_StackOverflowError), false);
3540 
3541     // CRC32 Intrinsics.
3542     if (UseCRC32Intrinsics) {
3543       StubRoutines::_crc_table_adr = StubRoutines::generate_crc_constants(REVERSE_CRC32_POLY);
3544       StubRoutines::_updateBytesCRC32 = generate_CRC32_updateBytes(false);
3545     }
3546 
3547     // CRC32C Intrinsics.
3548     if (UseCRC32CIntrinsics) {
3549       StubRoutines::_crc32c_table_addr = StubRoutines::generate_crc_constants(REVERSE_CRC32C_POLY);
3550       StubRoutines::_updateBytesCRC32C = generate_CRC32_updateBytes(true);
3551     }
3552   }
3553 
3554   void generate_all() {
3555     // Generates all stubs and initializes the entry points
3556 
3557     // These entry points require SharedInfo::stack0 to be set up in
3558     // non-core builds
3559     StubRoutines::_throw_AbstractMethodError_entry         = generate_throw_exception("AbstractMethodError throw_exception",          CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError),  false);
3560     // Handle IncompatibleClassChangeError in itable stubs.
3561     StubRoutines::_throw_IncompatibleClassChangeError_entry= generate_throw_exception("IncompatibleClassChangeError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError),  false);
3562     StubRoutines::_throw_NullPointerException_at_call_entry= generate_throw_exception("NullPointerException at call throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call), false);
3563 
3564     // support for verify_oop (must happen after universe_init)
3565     StubRoutines::_verify_oop_subroutine_entry             = generate_verify_oop();
3566 
3567     // arraycopy stubs used by compilers
3568     generate_arraycopy_stubs();
3569 
3570     // Safefetch stubs.
3571     generate_safefetch("SafeFetch32", sizeof(int),     &StubRoutines::_safefetch32_entry,
3572                                                        &StubRoutines::_safefetch32_fault_pc,
3573                                                        &StubRoutines::_safefetch32_continuation_pc);
3574     generate_safefetch("SafeFetchN", sizeof(intptr_t), &StubRoutines::_safefetchN_entry,
3575                                                        &StubRoutines::_safefetchN_fault_pc,
3576                                                        &StubRoutines::_safefetchN_continuation_pc);
3577 
3578 #ifdef COMPILER2
3579     if (UseMultiplyToLenIntrinsic) {
3580       StubRoutines::_multiplyToLen = generate_multiplyToLen();
3581     }
3582 #endif
3583 
3584     if (UseSquareToLenIntrinsic) {
3585       StubRoutines::_squareToLen = generate_squareToLen();
3586     }
3587     if (UseMulAddIntrinsic) {
3588       StubRoutines::_mulAdd = generate_mulAdd();
3589     }
3590     if (UseMontgomeryMultiplyIntrinsic) {
3591       StubRoutines::_montgomeryMultiply
3592         = CAST_FROM_FN_PTR(address, SharedRuntime::montgomery_multiply);
3593     }
3594     if (UseMontgomerySquareIntrinsic) {
3595       StubRoutines::_montgomerySquare
3596         = CAST_FROM_FN_PTR(address, SharedRuntime::montgomery_square);
3597     }
3598 
3599     if (UseAESIntrinsics) {
3600       StubRoutines::_aescrypt_encryptBlock = generate_aescrypt_encryptBlock();
3601       StubRoutines::_aescrypt_decryptBlock = generate_aescrypt_decryptBlock();
3602     }
3603 
3604     if (UseSHA256Intrinsics) {
3605       StubRoutines::_sha256_implCompress   = generate_sha256_implCompress(false, "sha256_implCompress");
3606       StubRoutines::_sha256_implCompressMB = generate_sha256_implCompress(true,  "sha256_implCompressMB");
3607     }
3608     if (UseSHA512Intrinsics) {
3609       StubRoutines::_sha512_implCompress   = generate_sha512_implCompress(false, "sha512_implCompress");
3610       StubRoutines::_sha512_implCompressMB = generate_sha512_implCompress(true, "sha512_implCompressMB");
3611     }
3612   }
3613 
3614  public:
3615   StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
3616     // replace the standard masm with a special one:
3617     _masm = new MacroAssembler(code);
3618     if (all) {
3619       generate_all();
3620     } else {
3621       generate_initial();
3622     }
3623   }
3624 };
3625 
3626 #define UCM_TABLE_MAX_ENTRIES 8
3627 void StubGenerator_generate(CodeBuffer* code, bool all) {
3628   if (UnsafeCopyMemory::_table == NULL) {
3629     UnsafeCopyMemory::create_table(UCM_TABLE_MAX_ENTRIES);
3630   }
3631   StubGenerator g(code, all);
3632 }