1 /*
   2  * Copyright (c) 2000, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2012, 2019, SAP SE. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "c1/c1_Compilation.hpp"
  29 #include "c1/c1_LIRAssembler.hpp"
  30 #include "c1/c1_MacroAssembler.hpp"
  31 #include "c1/c1_Runtime1.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArrayKlass.hpp"
  34 #include "ci/ciInstance.hpp"
  35 #include "gc/shared/collectedHeap.hpp"
  36 #include "gc/shared/barrierSet.hpp"
  37 #include "gc/shared/cardTableBarrierSet.hpp"
  38 #include "memory/universe.hpp"
  39 #include "nativeInst_ppc.hpp"
  40 #include "oops/compressedOops.hpp"
  41 #include "oops/objArrayKlass.hpp"
  42 #include "runtime/frame.inline.hpp"
  43 #include "runtime/safepointMechanism.inline.hpp"
  44 #include "runtime/sharedRuntime.hpp"
  45 
  46 #define __ _masm->
  47 
  48 
  49 const ConditionRegister LIR_Assembler::BOOL_RESULT = CCR5;
  50 
  51 
  52 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
  53   Unimplemented(); return false; // Currently not used on this platform.
  54 }
  55 
  56 
  57 LIR_Opr LIR_Assembler::receiverOpr() {
  58   return FrameMap::R3_oop_opr;
  59 }
  60 
  61 
  62 LIR_Opr LIR_Assembler::osrBufferPointer() {
  63   return FrameMap::R3_opr;
  64 }
  65 
  66 
  67 // This specifies the stack pointer decrement needed to build the frame.
  68 int LIR_Assembler::initial_frame_size_in_bytes() const {
  69   return in_bytes(frame_map()->framesize_in_bytes());
  70 }
  71 
  72 
  73 // Inline cache check: the inline cached class is in inline_cache_reg;
  74 // we fetch the class of the receiver and compare it with the cached class.
  75 // If they do not match we jump to slow case.
  76 int LIR_Assembler::check_icache() {
  77   int offset = __ offset();
  78   __ inline_cache_check(R3_ARG1, R19_inline_cache_reg);
  79   return offset;
  80 }
  81 
  82 void LIR_Assembler::clinit_barrier(ciMethod* method) {
  83   assert(!method->holder()->is_not_initialized(), "initialization should have been started");
  84 
  85   Label L_skip_barrier;
  86   Register klass = R20;
  87 
  88   metadata2reg(method->holder()->constant_encoding(), klass);
  89   __ clinit_barrier(klass, R16_thread, &L_skip_barrier /*L_fast_path*/);
  90 
  91   __ load_const_optimized(klass, SharedRuntime::get_handle_wrong_method_stub(), R0);
  92   __ mtctr(klass);
  93   __ bctr();
  94 
  95   __ bind(L_skip_barrier);
  96 }
  97 
  98 void LIR_Assembler::osr_entry() {
  99   // On-stack-replacement entry sequence:
 100   //
 101   //   1. Create a new compiled activation.
 102   //   2. Initialize local variables in the compiled activation. The expression
 103   //      stack must be empty at the osr_bci; it is not initialized.
 104   //   3. Jump to the continuation address in compiled code to resume execution.
 105 
 106   // OSR entry point
 107   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
 108   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
 109   ValueStack* entry_state = osr_entry->end()->state();
 110   int number_of_locks = entry_state->locks_size();
 111 
 112   // Create a frame for the compiled activation.
 113   __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes());
 114 
 115   // OSR buffer is
 116   //
 117   // locals[nlocals-1..0]
 118   // monitors[number_of_locks-1..0]
 119   //
 120   // Locals is a direct copy of the interpreter frame so in the osr buffer
 121   // the first slot in the local array is the last local from the interpreter
 122   // and the last slot is local[0] (receiver) from the interpreter.
 123   //
 124   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
 125   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
 126   // in the interpreter frame (the method lock if a sync method).
 127 
 128   // Initialize monitors in the compiled activation.
 129   //   R3: pointer to osr buffer
 130   //
 131   // All other registers are dead at this point and the locals will be
 132   // copied into place by code emitted in the IR.
 133 
 134   Register OSR_buf = osrBufferPointer()->as_register();
 135   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
 136     int monitor_offset = BytesPerWord * method()->max_locals() +
 137       (2 * BytesPerWord) * (number_of_locks - 1);
 138     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
 139     // the OSR buffer using 2 word entries: first the lock and then
 140     // the oop.
 141     for (int i = 0; i < number_of_locks; i++) {
 142       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
 143 #ifdef ASSERT
 144       // Verify the interpreter's monitor has a non-null object.
 145       {
 146         Label L;
 147         __ ld(R0, slot_offset + 1*BytesPerWord, OSR_buf);
 148         __ cmpdi(CCR0, R0, 0);
 149         __ bne(CCR0, L);
 150         __ stop("locked object is NULL");
 151         __ bind(L);
 152       }
 153 #endif // ASSERT
 154       // Copy the lock field into the compiled activation.
 155       Address ml = frame_map()->address_for_monitor_lock(i),
 156               mo = frame_map()->address_for_monitor_object(i);
 157       assert(ml.index() == noreg && mo.index() == noreg, "sanity");
 158       __ ld(R0, slot_offset + 0, OSR_buf);
 159       __ std(R0, ml.disp(), ml.base());
 160       __ ld(R0, slot_offset + 1*BytesPerWord, OSR_buf);
 161       __ std(R0, mo.disp(), mo.base());
 162     }
 163   }
 164 }
 165 
 166 
 167 int LIR_Assembler::emit_exception_handler() {
 168   // If the last instruction is a call (typically to do a throw which
 169   // is coming at the end after block reordering) the return address
 170   // must still point into the code area in order to avoid assertion
 171   // failures when searching for the corresponding bci => add a nop
 172   // (was bug 5/14/1999 - gri).
 173   __ nop();
 174 
 175   // Generate code for the exception handler.
 176   address handler_base = __ start_a_stub(exception_handler_size());
 177 
 178   if (handler_base == NULL) {
 179     // Not enough space left for the handler.
 180     bailout("exception handler overflow");
 181     return -1;
 182   }
 183 
 184   int offset = code_offset();
 185   address entry_point = CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::handle_exception_from_callee_id));
 186   //__ load_const_optimized(R0, entry_point);
 187   __ add_const_optimized(R0, R29_TOC, MacroAssembler::offset_to_global_toc(entry_point));
 188   __ mtctr(R0);
 189   __ bctr();
 190 
 191   guarantee(code_offset() - offset <= exception_handler_size(), "overflow");
 192   __ end_a_stub();
 193 
 194   return offset;
 195 }
 196 
 197 
 198 // Emit the code to remove the frame from the stack in the exception
 199 // unwind path.
 200 int LIR_Assembler::emit_unwind_handler() {
 201   _masm->block_comment("Unwind handler");
 202 
 203   int offset = code_offset();
 204   bool preserve_exception = method()->is_synchronized() || compilation()->env()->dtrace_method_probes();
 205   const Register Rexception = R3 /*LIRGenerator::exceptionOopOpr()*/, Rexception_save = R31;
 206 
 207   // Fetch the exception from TLS and clear out exception related thread state.
 208   __ ld(Rexception, in_bytes(JavaThread::exception_oop_offset()), R16_thread);
 209   __ li(R0, 0);
 210   __ std(R0, in_bytes(JavaThread::exception_oop_offset()), R16_thread);
 211   __ std(R0, in_bytes(JavaThread::exception_pc_offset()), R16_thread);
 212 
 213   __ bind(_unwind_handler_entry);
 214   __ verify_not_null_oop(Rexception);
 215   if (preserve_exception) { __ mr(Rexception_save, Rexception); }
 216 
 217   // Perform needed unlocking
 218   MonitorExitStub* stub = NULL;
 219   if (method()->is_synchronized()) {
 220     monitor_address(0, FrameMap::R4_opr);
 221     stub = new MonitorExitStub(FrameMap::R4_opr, true, 0);
 222     __ unlock_object(R5, R6, R4, *stub->entry());
 223     __ bind(*stub->continuation());
 224   }
 225 
 226   if (compilation()->env()->dtrace_method_probes()) {
 227     Unimplemented();
 228   }
 229 
 230   // Dispatch to the unwind logic.
 231   address unwind_stub = Runtime1::entry_for(Runtime1::unwind_exception_id);
 232   //__ load_const_optimized(R0, unwind_stub);
 233   __ add_const_optimized(R0, R29_TOC, MacroAssembler::offset_to_global_toc(unwind_stub));
 234   if (preserve_exception) { __ mr(Rexception, Rexception_save); }
 235   __ mtctr(R0);
 236   __ bctr();
 237 
 238   // Emit the slow path assembly.
 239   if (stub != NULL) {
 240     stub->emit_code(this);
 241   }
 242 
 243   return offset;
 244 }
 245 
 246 
 247 int LIR_Assembler::emit_deopt_handler() {
 248   // If the last instruction is a call (typically to do a throw which
 249   // is coming at the end after block reordering) the return address
 250   // must still point into the code area in order to avoid assertion
 251   // failures when searching for the corresponding bci => add a nop
 252   // (was bug 5/14/1999 - gri).
 253   __ nop();
 254 
 255   // Generate code for deopt handler.
 256   address handler_base = __ start_a_stub(deopt_handler_size());
 257 
 258   if (handler_base == NULL) {
 259     // Not enough space left for the handler.
 260     bailout("deopt handler overflow");
 261     return -1;
 262   }
 263 
 264   int offset = code_offset();
 265   __ bl64_patchable(SharedRuntime::deopt_blob()->unpack(), relocInfo::runtime_call_type);
 266 
 267   guarantee(code_offset() - offset <= deopt_handler_size(), "overflow");
 268   __ end_a_stub();
 269 
 270   return offset;
 271 }
 272 
 273 
 274 void LIR_Assembler::jobject2reg(jobject o, Register reg) {
 275   if (o == NULL) {
 276     __ li(reg, 0);
 277   } else {
 278     AddressLiteral addrlit = __ constant_oop_address(o);
 279     __ load_const(reg, addrlit, (reg != R0) ? R0 : noreg);
 280   }
 281 }
 282 
 283 
 284 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
 285   // Allocate a new index in table to hold the object once it's been patched.
 286   int oop_index = __ oop_recorder()->allocate_oop_index(NULL);
 287   PatchingStub* patch = new PatchingStub(_masm, patching_id(info), oop_index);
 288 
 289   AddressLiteral addrlit((address)NULL, oop_Relocation::spec(oop_index));
 290   __ load_const(reg, addrlit, R0);
 291 
 292   patching_epilog(patch, lir_patch_normal, reg, info);
 293 }
 294 
 295 
 296 void LIR_Assembler::metadata2reg(Metadata* o, Register reg) {
 297   AddressLiteral md = __ constant_metadata_address(o); // Notify OOP recorder (don't need the relocation)
 298   __ load_const_optimized(reg, md.value(), (reg != R0) ? R0 : noreg);
 299 }
 300 
 301 
 302 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo *info) {
 303   // Allocate a new index in table to hold the klass once it's been patched.
 304   int index = __ oop_recorder()->allocate_metadata_index(NULL);
 305   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, index);
 306 
 307   AddressLiteral addrlit((address)NULL, metadata_Relocation::spec(index));
 308   assert(addrlit.rspec().type() == relocInfo::metadata_type, "must be an metadata reloc");
 309   __ load_const(reg, addrlit, R0);
 310 
 311   patching_epilog(patch, lir_patch_normal, reg, info);
 312 }
 313 
 314 
 315 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
 316   const bool is_int = result->is_single_cpu();
 317   Register Rdividend = is_int ? left->as_register() : left->as_register_lo();
 318   Register Rdivisor  = noreg;
 319   Register Rscratch  = temp->as_register();
 320   Register Rresult   = is_int ? result->as_register() : result->as_register_lo();
 321   long divisor = -1;
 322 
 323   if (right->is_register()) {
 324     Rdivisor = is_int ? right->as_register() : right->as_register_lo();
 325   } else {
 326     divisor = is_int ? right->as_constant_ptr()->as_jint()
 327                      : right->as_constant_ptr()->as_jlong();
 328   }
 329 
 330   assert(Rdividend != Rscratch, "");
 331   assert(Rdivisor  != Rscratch, "");
 332   assert(code == lir_idiv || code == lir_irem, "Must be irem or idiv");
 333 
 334   if (Rdivisor == noreg) {
 335     if (divisor == 1) { // stupid, but can happen
 336       if (code == lir_idiv) {
 337         __ mr_if_needed(Rresult, Rdividend);
 338       } else {
 339         __ li(Rresult, 0);
 340       }
 341 
 342     } else if (is_power_of_2(divisor)) {
 343       // Convert division by a power of two into some shifts and logical operations.
 344       int log2 = log2_intptr(divisor);
 345 
 346       // Round towards 0.
 347       if (divisor == 2) {
 348         if (is_int) {
 349           __ srwi(Rscratch, Rdividend, 31);
 350         } else {
 351           __ srdi(Rscratch, Rdividend, 63);
 352         }
 353       } else {
 354         if (is_int) {
 355           __ srawi(Rscratch, Rdividend, 31);
 356         } else {
 357           __ sradi(Rscratch, Rdividend, 63);
 358         }
 359         __ clrldi(Rscratch, Rscratch, 64-log2);
 360       }
 361       __ add(Rscratch, Rdividend, Rscratch);
 362 
 363       if (code == lir_idiv) {
 364         if (is_int) {
 365           __ srawi(Rresult, Rscratch, log2);
 366         } else {
 367           __ sradi(Rresult, Rscratch, log2);
 368         }
 369       } else { // lir_irem
 370         __ clrrdi(Rscratch, Rscratch, log2);
 371         __ sub(Rresult, Rdividend, Rscratch);
 372       }
 373 
 374     } else if (divisor == -1) {
 375       if (code == lir_idiv) {
 376         __ neg(Rresult, Rdividend);
 377       } else {
 378         __ li(Rresult, 0);
 379       }
 380 
 381     } else {
 382       __ load_const_optimized(Rscratch, divisor);
 383       if (code == lir_idiv) {
 384         if (is_int) {
 385           __ divw(Rresult, Rdividend, Rscratch); // Can't divide minint/-1.
 386         } else {
 387           __ divd(Rresult, Rdividend, Rscratch); // Can't divide minint/-1.
 388         }
 389       } else {
 390         assert(Rscratch != R0, "need both");
 391         if (is_int) {
 392           __ divw(R0, Rdividend, Rscratch); // Can't divide minint/-1.
 393           __ mullw(Rscratch, R0, Rscratch);
 394         } else {
 395           __ divd(R0, Rdividend, Rscratch); // Can't divide minint/-1.
 396           __ mulld(Rscratch, R0, Rscratch);
 397         }
 398         __ sub(Rresult, Rdividend, Rscratch);
 399       }
 400 
 401     }
 402     return;
 403   }
 404 
 405   Label regular, done;
 406   if (is_int) {
 407     __ cmpwi(CCR0, Rdivisor, -1);
 408   } else {
 409     __ cmpdi(CCR0, Rdivisor, -1);
 410   }
 411   __ bne(CCR0, regular);
 412   if (code == lir_idiv) {
 413     __ neg(Rresult, Rdividend);
 414     __ b(done);
 415     __ bind(regular);
 416     if (is_int) {
 417       __ divw(Rresult, Rdividend, Rdivisor); // Can't divide minint/-1.
 418     } else {
 419       __ divd(Rresult, Rdividend, Rdivisor); // Can't divide minint/-1.
 420     }
 421   } else { // lir_irem
 422     __ li(Rresult, 0);
 423     __ b(done);
 424     __ bind(regular);
 425     if (is_int) {
 426       __ divw(Rscratch, Rdividend, Rdivisor); // Can't divide minint/-1.
 427       __ mullw(Rscratch, Rscratch, Rdivisor);
 428     } else {
 429       __ divd(Rscratch, Rdividend, Rdivisor); // Can't divide minint/-1.
 430       __ mulld(Rscratch, Rscratch, Rdivisor);
 431     }
 432     __ sub(Rresult, Rdividend, Rscratch);
 433   }
 434   __ bind(done);
 435 }
 436 
 437 
 438 void LIR_Assembler::emit_op3(LIR_Op3* op) {
 439   switch (op->code()) {
 440   case lir_idiv:
 441   case lir_irem:
 442     arithmetic_idiv(op->code(), op->in_opr1(), op->in_opr2(), op->in_opr3(),
 443                     op->result_opr(), op->info());
 444     break;
 445   case lir_fmad:
 446     __ fmadd(op->result_opr()->as_double_reg(), op->in_opr1()->as_double_reg(),
 447              op->in_opr2()->as_double_reg(), op->in_opr3()->as_double_reg());
 448     break;
 449   case lir_fmaf:
 450     __ fmadds(op->result_opr()->as_float_reg(), op->in_opr1()->as_float_reg(),
 451               op->in_opr2()->as_float_reg(), op->in_opr3()->as_float_reg());
 452     break;
 453   default: ShouldNotReachHere(); break;
 454   }
 455 }
 456 
 457 
 458 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
 459 #ifdef ASSERT
 460   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
 461   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
 462   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
 463   assert(op->info() == NULL, "shouldn't have CodeEmitInfo");
 464 #endif
 465 
 466   Label *L = op->label();
 467   if (op->cond() == lir_cond_always) {
 468     __ b(*L);
 469   } else {
 470     Label done;
 471     bool is_unordered = false;
 472     if (op->code() == lir_cond_float_branch) {
 473       assert(op->ublock() != NULL, "must have unordered successor");
 474       is_unordered = true;
 475     } else {
 476       assert(op->code() == lir_branch, "just checking");
 477     }
 478 
 479     bool positive = false;
 480     Assembler::Condition cond = Assembler::equal;
 481     switch (op->cond()) {
 482       case lir_cond_equal:        positive = true ; cond = Assembler::equal  ; is_unordered = false; break;
 483       case lir_cond_notEqual:     positive = false; cond = Assembler::equal  ; is_unordered = false; break;
 484       case lir_cond_less:         positive = true ; cond = Assembler::less   ; break;
 485       case lir_cond_belowEqual:   assert(op->code() != lir_cond_float_branch, ""); // fallthru
 486       case lir_cond_lessEqual:    positive = false; cond = Assembler::greater; break;
 487       case lir_cond_greater:      positive = true ; cond = Assembler::greater; break;
 488       case lir_cond_aboveEqual:   assert(op->code() != lir_cond_float_branch, ""); // fallthru
 489       case lir_cond_greaterEqual: positive = false; cond = Assembler::less   ; break;
 490       default:                    ShouldNotReachHere();
 491     }
 492     int bo = positive ? Assembler::bcondCRbiIs1 : Assembler::bcondCRbiIs0;
 493     int bi = Assembler::bi0(BOOL_RESULT, cond);
 494     if (is_unordered) {
 495       if (positive) {
 496         if (op->ublock() == op->block()) {
 497           __ bc_far_optimized(Assembler::bcondCRbiIs1, __ bi0(BOOL_RESULT, Assembler::summary_overflow), *L);
 498         }
 499       } else {
 500         if (op->ublock() != op->block()) { __ bso(BOOL_RESULT, done); }
 501       }
 502     }
 503     __ bc_far_optimized(bo, bi, *L);
 504     __ bind(done);
 505   }
 506 }
 507 
 508 
 509 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
 510   Bytecodes::Code code = op->bytecode();
 511   LIR_Opr src = op->in_opr(),
 512           dst = op->result_opr();
 513 
 514   switch(code) {
 515     case Bytecodes::_i2l: {
 516       __ extsw(dst->as_register_lo(), src->as_register());
 517       break;
 518     }
 519     case Bytecodes::_l2i: {
 520       __ mr_if_needed(dst->as_register(), src->as_register_lo()); // high bits are garbage
 521       break;
 522     }
 523     case Bytecodes::_i2b: {
 524       __ extsb(dst->as_register(), src->as_register());
 525       break;
 526     }
 527     case Bytecodes::_i2c: {
 528       __ clrldi(dst->as_register(), src->as_register(), 64-16);
 529       break;
 530     }
 531     case Bytecodes::_i2s: {
 532       __ extsh(dst->as_register(), src->as_register());
 533       break;
 534     }
 535     case Bytecodes::_i2d:
 536     case Bytecodes::_l2d: {
 537       bool src_in_memory = !VM_Version::has_mtfprd();
 538       FloatRegister rdst = dst->as_double_reg();
 539       FloatRegister rsrc;
 540       if (src_in_memory) {
 541         rsrc = src->as_double_reg(); // via mem
 542       } else {
 543         // move src to dst register
 544         if (code == Bytecodes::_i2d) {
 545           __ mtfprwa(rdst, src->as_register());
 546         } else {
 547           __ mtfprd(rdst, src->as_register_lo());
 548         }
 549         rsrc = rdst;
 550       }
 551       __ fcfid(rdst, rsrc);
 552       break;
 553     }
 554     case Bytecodes::_i2f:
 555     case Bytecodes::_l2f: {
 556       bool src_in_memory = !VM_Version::has_mtfprd();
 557       FloatRegister rdst = dst->as_float_reg();
 558       FloatRegister rsrc;
 559       if (src_in_memory) {
 560         rsrc = src->as_double_reg(); // via mem
 561       } else {
 562         // move src to dst register
 563         if (code == Bytecodes::_i2f) {
 564           __ mtfprwa(rdst, src->as_register());
 565         } else {
 566           __ mtfprd(rdst, src->as_register_lo());
 567         }
 568         rsrc = rdst;
 569       }
 570       if (VM_Version::has_fcfids()) {
 571         __ fcfids(rdst, rsrc);
 572       } else {
 573         assert(code == Bytecodes::_i2f, "fcfid+frsp needs fixup code to avoid rounding incompatibility");
 574         __ fcfid(rdst, rsrc);
 575         __ frsp(rdst, rdst);
 576       }
 577       break;
 578     }
 579     case Bytecodes::_f2d: {
 580       __ fmr_if_needed(dst->as_double_reg(), src->as_float_reg());
 581       break;
 582     }
 583     case Bytecodes::_d2f: {
 584       __ frsp(dst->as_float_reg(), src->as_double_reg());
 585       break;
 586     }
 587     case Bytecodes::_d2i:
 588     case Bytecodes::_f2i: {
 589       bool dst_in_memory = !VM_Version::has_mtfprd();
 590       FloatRegister rsrc = (code == Bytecodes::_d2i) ? src->as_double_reg() : src->as_float_reg();
 591       Address       addr = dst_in_memory ? frame_map()->address_for_slot(dst->double_stack_ix()) : NULL;
 592       Label L;
 593       // Result must be 0 if value is NaN; test by comparing value to itself.
 594       __ fcmpu(CCR0, rsrc, rsrc);
 595       if (dst_in_memory) {
 596         __ li(R0, 0); // 0 in case of NAN
 597         __ std(R0, addr.disp(), addr.base());
 598       } else {
 599         __ li(dst->as_register(), 0);
 600       }
 601       __ bso(CCR0, L);
 602       __ fctiwz(rsrc, rsrc); // USE_KILL
 603       if (dst_in_memory) {
 604         __ stfd(rsrc, addr.disp(), addr.base());
 605       } else {
 606         __ mffprd(dst->as_register(), rsrc);
 607       }
 608       __ bind(L);
 609       break;
 610     }
 611     case Bytecodes::_d2l:
 612     case Bytecodes::_f2l: {
 613       bool dst_in_memory = !VM_Version::has_mtfprd();
 614       FloatRegister rsrc = (code == Bytecodes::_d2l) ? src->as_double_reg() : src->as_float_reg();
 615       Address       addr = dst_in_memory ? frame_map()->address_for_slot(dst->double_stack_ix()) : NULL;
 616       Label L;
 617       // Result must be 0 if value is NaN; test by comparing value to itself.
 618       __ fcmpu(CCR0, rsrc, rsrc);
 619       if (dst_in_memory) {
 620         __ li(R0, 0); // 0 in case of NAN
 621         __ std(R0, addr.disp(), addr.base());
 622       } else {
 623         __ li(dst->as_register_lo(), 0);
 624       }
 625       __ bso(CCR0, L);
 626       __ fctidz(rsrc, rsrc); // USE_KILL
 627       if (dst_in_memory) {
 628         __ stfd(rsrc, addr.disp(), addr.base());
 629       } else {
 630         __ mffprd(dst->as_register_lo(), rsrc);
 631       }
 632       __ bind(L);
 633       break;
 634     }
 635 
 636     default: ShouldNotReachHere();
 637   }
 638 }
 639 
 640 
 641 void LIR_Assembler::align_call(LIR_Code) {
 642   // do nothing since all instructions are word aligned on ppc
 643 }
 644 
 645 
 646 bool LIR_Assembler::emit_trampoline_stub_for_call(address target, Register Rtoc) {
 647   int start_offset = __ offset();
 648   // Put the entry point as a constant into the constant pool.
 649   const address entry_point_toc_addr   = __ address_constant(target, RelocationHolder::none);
 650   if (entry_point_toc_addr == NULL) {
 651     bailout("const section overflow");
 652     return false;
 653   }
 654   const int     entry_point_toc_offset = __ offset_to_method_toc(entry_point_toc_addr);
 655 
 656   // Emit the trampoline stub which will be related to the branch-and-link below.
 657   address stub = __ emit_trampoline_stub(entry_point_toc_offset, start_offset, Rtoc);
 658   if (!stub) {
 659     bailout("no space for trampoline stub");
 660     return false;
 661   }
 662   return true;
 663 }
 664 
 665 
 666 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
 667   assert(rtype==relocInfo::opt_virtual_call_type || rtype==relocInfo::static_call_type, "unexpected rtype");
 668 
 669   bool success = emit_trampoline_stub_for_call(op->addr());
 670   if (!success) { return; }
 671 
 672   __ relocate(rtype);
 673   // Note: At this point we do not have the address of the trampoline
 674   // stub, and the entry point might be too far away for bl, so __ pc()
 675   // serves as dummy and the bl will be patched later.
 676   __ code()->set_insts_mark();
 677   __ bl(__ pc());
 678   add_call_info(code_offset(), op->info());
 679 }
 680 
 681 
 682 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
 683   __ calculate_address_from_global_toc(R2_TOC, __ method_toc());
 684 
 685   // Virtual call relocation will point to ic load.
 686   address virtual_call_meta_addr = __ pc();
 687   // Load a clear inline cache.
 688   AddressLiteral empty_ic((address) Universe::non_oop_word());
 689   bool success = __ load_const_from_method_toc(R19_inline_cache_reg, empty_ic, R2_TOC);
 690   if (!success) {
 691     bailout("const section overflow");
 692     return;
 693   }
 694   // Call to fixup routine. Fixup routine uses ScopeDesc info
 695   // to determine who we intended to call.
 696   __ relocate(virtual_call_Relocation::spec(virtual_call_meta_addr));
 697 
 698   success = emit_trampoline_stub_for_call(op->addr(), R2_TOC);
 699   if (!success) { return; }
 700 
 701   // Note: At this point we do not have the address of the trampoline
 702   // stub, and the entry point might be too far away for bl, so __ pc()
 703   // serves as dummy and the bl will be patched later.
 704   __ bl(__ pc());
 705   add_call_info(code_offset(), op->info());
 706 }
 707 
 708 
 709 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
 710   ShouldNotReachHere(); // ic_call is used instead.
 711 }
 712 
 713 
 714 void LIR_Assembler::explicit_null_check(Register addr, CodeEmitInfo* info) {
 715   ImplicitNullCheckStub* stub = new ImplicitNullCheckStub(code_offset(), info);
 716   __ null_check(addr, stub->entry());
 717   append_code_stub(stub);
 718 }
 719 
 720 
 721 // Attention: caller must encode oop if needed
 722 int LIR_Assembler::store(LIR_Opr from_reg, Register base, int offset, BasicType type, bool wide, bool unaligned) {
 723   int store_offset;
 724   if (!Assembler::is_simm16(offset)) {
 725     // For offsets larger than a simm16 we setup the offset.
 726     assert(wide && !from_reg->is_same_register(FrameMap::R0_opr), "large offset only supported in special case");
 727     __ load_const_optimized(R0, offset);
 728     store_offset = store(from_reg, base, R0, type, wide);
 729   } else {
 730     store_offset = code_offset();
 731     switch (type) {
 732       case T_BOOLEAN: // fall through
 733       case T_BYTE  : __ stb(from_reg->as_register(), offset, base); break;
 734       case T_CHAR  :
 735       case T_SHORT : __ sth(from_reg->as_register(), offset, base); break;
 736       case T_INT   : __ stw(from_reg->as_register(), offset, base); break;
 737       case T_LONG  : __ std(from_reg->as_register_lo(), offset, base); break;
 738       case T_ADDRESS:
 739       case T_METADATA: __ std(from_reg->as_register(), offset, base); break;
 740       case T_ARRAY : // fall through
 741       case T_OBJECT:
 742         {
 743           if (UseCompressedOops && !wide) {
 744             // Encoding done in caller
 745             __ stw(from_reg->as_register(), offset, base);
 746           } else {
 747             __ std(from_reg->as_register(), offset, base);
 748           }
 749           __ verify_oop(from_reg->as_register());
 750           break;
 751         }
 752       case T_FLOAT : __ stfs(from_reg->as_float_reg(), offset, base); break;
 753       case T_DOUBLE: __ stfd(from_reg->as_double_reg(), offset, base); break;
 754       default      : ShouldNotReachHere();
 755     }
 756   }
 757   return store_offset;
 758 }
 759 
 760 
 761 // Attention: caller must encode oop if needed
 762 int LIR_Assembler::store(LIR_Opr from_reg, Register base, Register disp, BasicType type, bool wide) {
 763   int store_offset = code_offset();
 764   switch (type) {
 765     case T_BOOLEAN: // fall through
 766     case T_BYTE  : __ stbx(from_reg->as_register(), base, disp); break;
 767     case T_CHAR  :
 768     case T_SHORT : __ sthx(from_reg->as_register(), base, disp); break;
 769     case T_INT   : __ stwx(from_reg->as_register(), base, disp); break;
 770     case T_LONG  :
 771 #ifdef _LP64
 772       __ stdx(from_reg->as_register_lo(), base, disp);
 773 #else
 774       Unimplemented();
 775 #endif
 776       break;
 777     case T_ADDRESS:
 778       __ stdx(from_reg->as_register(), base, disp);
 779       break;
 780     case T_ARRAY : // fall through
 781     case T_OBJECT:
 782       {
 783         if (UseCompressedOops && !wide) {
 784           // Encoding done in caller.
 785           __ stwx(from_reg->as_register(), base, disp);
 786         } else {
 787           __ stdx(from_reg->as_register(), base, disp);
 788         }
 789         __ verify_oop(from_reg->as_register()); // kills R0
 790         break;
 791       }
 792     case T_FLOAT : __ stfsx(from_reg->as_float_reg(), base, disp); break;
 793     case T_DOUBLE: __ stfdx(from_reg->as_double_reg(), base, disp); break;
 794     default      : ShouldNotReachHere();
 795   }
 796   return store_offset;
 797 }
 798 
 799 
 800 int LIR_Assembler::load(Register base, int offset, LIR_Opr to_reg, BasicType type, bool wide, bool unaligned) {
 801   int load_offset;
 802   if (!Assembler::is_simm16(offset)) {
 803     // For offsets larger than a simm16 we setup the offset.
 804     __ load_const_optimized(R0, offset);
 805     load_offset = load(base, R0, to_reg, type, wide);
 806   } else {
 807     load_offset = code_offset();
 808     switch(type) {
 809       case T_BOOLEAN: // fall through
 810       case T_BYTE  :   __ lbz(to_reg->as_register(), offset, base);
 811                        __ extsb(to_reg->as_register(), to_reg->as_register()); break;
 812       case T_CHAR  :   __ lhz(to_reg->as_register(), offset, base); break;
 813       case T_SHORT :   __ lha(to_reg->as_register(), offset, base); break;
 814       case T_INT   :   __ lwa(to_reg->as_register(), offset, base); break;
 815       case T_LONG  :   __ ld(to_reg->as_register_lo(), offset, base); break;
 816       case T_METADATA: __ ld(to_reg->as_register(), offset, base); break;
 817       case T_ADDRESS:
 818         if (offset == oopDesc::klass_offset_in_bytes() && UseCompressedClassPointers) {
 819           __ lwz(to_reg->as_register(), offset, base);
 820           __ decode_klass_not_null(to_reg->as_register());
 821         } else {
 822           __ ld(to_reg->as_register(), offset, base);
 823         }
 824         break;
 825       case T_ARRAY : // fall through
 826       case T_OBJECT:
 827         {
 828           if (UseCompressedOops && !wide) {
 829             __ lwz(to_reg->as_register(), offset, base);
 830             __ decode_heap_oop(to_reg->as_register());
 831           } else {
 832             __ ld(to_reg->as_register(), offset, base);
 833           }
 834           __ verify_oop(to_reg->as_register());
 835           break;
 836         }
 837       case T_FLOAT:  __ lfs(to_reg->as_float_reg(), offset, base); break;
 838       case T_DOUBLE: __ lfd(to_reg->as_double_reg(), offset, base); break;
 839       default      : ShouldNotReachHere();
 840     }
 841   }
 842   return load_offset;
 843 }
 844 
 845 
 846 int LIR_Assembler::load(Register base, Register disp, LIR_Opr to_reg, BasicType type, bool wide) {
 847   int load_offset = code_offset();
 848   switch(type) {
 849     case T_BOOLEAN: // fall through
 850     case T_BYTE  :  __ lbzx(to_reg->as_register(), base, disp);
 851                     __ extsb(to_reg->as_register(), to_reg->as_register()); break;
 852     case T_CHAR  :  __ lhzx(to_reg->as_register(), base, disp); break;
 853     case T_SHORT :  __ lhax(to_reg->as_register(), base, disp); break;
 854     case T_INT   :  __ lwax(to_reg->as_register(), base, disp); break;
 855     case T_ADDRESS: __ ldx(to_reg->as_register(), base, disp); break;
 856     case T_ARRAY : // fall through
 857     case T_OBJECT:
 858       {
 859         if (UseCompressedOops && !wide) {
 860           __ lwzx(to_reg->as_register(), base, disp);
 861           __ decode_heap_oop(to_reg->as_register());
 862         } else {
 863           __ ldx(to_reg->as_register(), base, disp);
 864         }
 865         __ verify_oop(to_reg->as_register());
 866         break;
 867       }
 868     case T_FLOAT:  __ lfsx(to_reg->as_float_reg() , base, disp); break;
 869     case T_DOUBLE: __ lfdx(to_reg->as_double_reg(), base, disp); break;
 870     case T_LONG  :
 871 #ifdef _LP64
 872       __ ldx(to_reg->as_register_lo(), base, disp);
 873 #else
 874       Unimplemented();
 875 #endif
 876       break;
 877     default      : ShouldNotReachHere();
 878   }
 879   return load_offset;
 880 }
 881 
 882 
 883 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
 884   LIR_Const* c = src->as_constant_ptr();
 885   Register src_reg = R0;
 886   switch (c->type()) {
 887     case T_INT:
 888     case T_FLOAT: {
 889       int value = c->as_jint_bits();
 890       __ load_const_optimized(src_reg, value);
 891       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
 892       __ stw(src_reg, addr.disp(), addr.base());
 893       break;
 894     }
 895     case T_ADDRESS: {
 896       int value = c->as_jint_bits();
 897       __ load_const_optimized(src_reg, value);
 898       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
 899       __ std(src_reg, addr.disp(), addr.base());
 900       break;
 901     }
 902     case T_OBJECT: {
 903       jobject2reg(c->as_jobject(), src_reg);
 904       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
 905       __ std(src_reg, addr.disp(), addr.base());
 906       break;
 907     }
 908     case T_LONG:
 909     case T_DOUBLE: {
 910       int value = c->as_jlong_bits();
 911       __ load_const_optimized(src_reg, value);
 912       Address addr = frame_map()->address_for_double_slot(dest->double_stack_ix());
 913       __ std(src_reg, addr.disp(), addr.base());
 914       break;
 915     }
 916     default:
 917       Unimplemented();
 918   }
 919 }
 920 
 921 
 922 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
 923   LIR_Const* c = src->as_constant_ptr();
 924   LIR_Address* addr = dest->as_address_ptr();
 925   Register base = addr->base()->as_pointer_register();
 926   LIR_Opr tmp = LIR_OprFact::illegalOpr;
 927   int offset = -1;
 928   // Null check for large offsets in LIRGenerator::do_StoreField.
 929   bool needs_explicit_null_check = !ImplicitNullChecks;
 930 
 931   if (info != NULL && needs_explicit_null_check) {
 932     explicit_null_check(base, info);
 933   }
 934 
 935   switch (c->type()) {
 936     case T_FLOAT: type = T_INT;
 937     case T_INT:
 938     case T_ADDRESS: {
 939       tmp = FrameMap::R0_opr;
 940       __ load_const_optimized(tmp->as_register(), c->as_jint_bits());
 941       break;
 942     }
 943     case T_DOUBLE: type = T_LONG;
 944     case T_LONG: {
 945       tmp = FrameMap::R0_long_opr;
 946       __ load_const_optimized(tmp->as_register_lo(), c->as_jlong_bits());
 947       break;
 948     }
 949     case T_OBJECT: {
 950       tmp = FrameMap::R0_opr;
 951       if (UseCompressedOops && !wide && c->as_jobject() != NULL) {
 952         AddressLiteral oop_addr = __ constant_oop_address(c->as_jobject());
 953         __ lis(R0, oop_addr.value() >> 16); // Don't care about sign extend (will use stw).
 954         __ relocate(oop_addr.rspec(), /*compressed format*/ 1);
 955         __ ori(R0, R0, oop_addr.value() & 0xffff);
 956       } else {
 957         jobject2reg(c->as_jobject(), R0);
 958       }
 959       break;
 960     }
 961     default:
 962       Unimplemented();
 963   }
 964 
 965   // Handle either reg+reg or reg+disp address.
 966   if (addr->index()->is_valid()) {
 967     assert(addr->disp() == 0, "must be zero");
 968     offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide);
 969   } else {
 970     assert(Assembler::is_simm16(addr->disp()), "can't handle larger addresses");
 971     offset = store(tmp, base, addr->disp(), type, wide, false);
 972   }
 973 
 974   if (info != NULL) {
 975     assert(offset != -1, "offset should've been set");
 976     if (!needs_explicit_null_check) {
 977       add_debug_info_for_null_check(offset, info);
 978     }
 979   }
 980 }
 981 
 982 
 983 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
 984   LIR_Const* c = src->as_constant_ptr();
 985   LIR_Opr to_reg = dest;
 986 
 987   switch (c->type()) {
 988     case T_INT: {
 989       assert(patch_code == lir_patch_none, "no patching handled here");
 990       __ load_const_optimized(dest->as_register(), c->as_jint(), R0);
 991       break;
 992     }
 993     case T_ADDRESS: {
 994       assert(patch_code == lir_patch_none, "no patching handled here");
 995       __ load_const_optimized(dest->as_register(), c->as_jint(), R0);  // Yes, as_jint ...
 996       break;
 997     }
 998     case T_LONG: {
 999       assert(patch_code == lir_patch_none, "no patching handled here");
1000       __ load_const_optimized(dest->as_register_lo(), c->as_jlong(), R0);
1001       break;
1002     }
1003 
1004     case T_OBJECT: {
1005       if (patch_code == lir_patch_none) {
1006         jobject2reg(c->as_jobject(), to_reg->as_register());
1007       } else {
1008         jobject2reg_with_patching(to_reg->as_register(), info);
1009       }
1010       break;
1011     }
1012 
1013     case T_METADATA:
1014       {
1015         if (patch_code == lir_patch_none) {
1016           metadata2reg(c->as_metadata(), to_reg->as_register());
1017         } else {
1018           klass2reg_with_patching(to_reg->as_register(), info);
1019         }
1020       }
1021       break;
1022 
1023     case T_FLOAT:
1024       {
1025         if (to_reg->is_single_fpu()) {
1026           address const_addr = __ float_constant(c->as_jfloat());
1027           if (const_addr == NULL) {
1028             bailout("const section overflow");
1029             break;
1030           }
1031           RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
1032           __ relocate(rspec);
1033           __ load_const(R0, const_addr);
1034           __ lfsx(to_reg->as_float_reg(), R0);
1035         } else {
1036           assert(to_reg->is_single_cpu(), "Must be a cpu register.");
1037           __ load_const_optimized(to_reg->as_register(), jint_cast(c->as_jfloat()), R0);
1038         }
1039       }
1040       break;
1041 
1042     case T_DOUBLE:
1043       {
1044         if (to_reg->is_double_fpu()) {
1045           address const_addr = __ double_constant(c->as_jdouble());
1046           if (const_addr == NULL) {
1047             bailout("const section overflow");
1048             break;
1049           }
1050           RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
1051           __ relocate(rspec);
1052           __ load_const(R0, const_addr);
1053           __ lfdx(to_reg->as_double_reg(), R0);
1054         } else {
1055           assert(to_reg->is_double_cpu(), "Must be a long register.");
1056           __ load_const_optimized(to_reg->as_register_lo(), jlong_cast(c->as_jdouble()), R0);
1057         }
1058       }
1059       break;
1060 
1061     default:
1062       ShouldNotReachHere();
1063   }
1064 }
1065 
1066 
1067 Address LIR_Assembler::as_Address(LIR_Address* addr) {
1068   Unimplemented(); return Address();
1069 }
1070 
1071 
1072 inline RegisterOrConstant index_or_disp(LIR_Address* addr) {
1073   if (addr->index()->is_illegal()) {
1074     return (RegisterOrConstant)(addr->disp());
1075   } else {
1076     return (RegisterOrConstant)(addr->index()->as_pointer_register());
1077   }
1078 }
1079 
1080 
1081 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
1082   const Register tmp = R0;
1083   switch (type) {
1084     case T_INT:
1085     case T_FLOAT: {
1086       Address from = frame_map()->address_for_slot(src->single_stack_ix());
1087       Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
1088       __ lwz(tmp, from.disp(), from.base());
1089       __ stw(tmp, to.disp(), to.base());
1090       break;
1091     }
1092     case T_ADDRESS:
1093     case T_OBJECT: {
1094       Address from = frame_map()->address_for_slot(src->single_stack_ix());
1095       Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
1096       __ ld(tmp, from.disp(), from.base());
1097       __ std(tmp, to.disp(), to.base());
1098       break;
1099     }
1100     case T_LONG:
1101     case T_DOUBLE: {
1102       Address from = frame_map()->address_for_double_slot(src->double_stack_ix());
1103       Address to   = frame_map()->address_for_double_slot(dest->double_stack_ix());
1104       __ ld(tmp, from.disp(), from.base());
1105       __ std(tmp, to.disp(), to.base());
1106       break;
1107     }
1108 
1109     default:
1110       ShouldNotReachHere();
1111   }
1112 }
1113 
1114 
1115 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
1116   Unimplemented(); return Address();
1117 }
1118 
1119 
1120 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
1121   Unimplemented(); return Address();
1122 }
1123 
1124 
1125 void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type,
1126                             LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool unaligned) {
1127 
1128   assert(type != T_METADATA, "load of metadata ptr not supported");
1129   LIR_Address* addr = src_opr->as_address_ptr();
1130   LIR_Opr to_reg = dest;
1131 
1132   Register src = addr->base()->as_pointer_register();
1133   Register disp_reg = noreg;
1134   int disp_value = addr->disp();
1135   bool needs_patching = (patch_code != lir_patch_none);
1136   // null check for large offsets in LIRGenerator::do_LoadField
1137   bool needs_explicit_null_check = !os::zero_page_read_protected() || !ImplicitNullChecks;
1138 
1139   if (info != NULL && needs_explicit_null_check) {
1140     explicit_null_check(src, info);
1141   }
1142 
1143   if (addr->base()->type() == T_OBJECT) {
1144     __ verify_oop(src);
1145   }
1146 
1147   PatchingStub* patch = NULL;
1148   if (needs_patching) {
1149     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1150     assert(!to_reg->is_double_cpu() ||
1151            patch_code == lir_patch_none ||
1152            patch_code == lir_patch_normal, "patching doesn't match register");
1153   }
1154 
1155   if (addr->index()->is_illegal()) {
1156     if (!Assembler::is_simm16(disp_value)) {
1157       if (needs_patching) {
1158         __ load_const32(R0, 0); // patchable int
1159       } else {
1160         __ load_const_optimized(R0, disp_value);
1161       }
1162       disp_reg = R0;
1163     }
1164   } else {
1165     disp_reg = addr->index()->as_pointer_register();
1166     assert(disp_value == 0, "can't handle 3 operand addresses");
1167   }
1168 
1169   // Remember the offset of the load. The patching_epilog must be done
1170   // before the call to add_debug_info, otherwise the PcDescs don't get
1171   // entered in increasing order.
1172   int offset;
1173 
1174   if (disp_reg == noreg) {
1175     assert(Assembler::is_simm16(disp_value), "should have set this up");
1176     offset = load(src, disp_value, to_reg, type, wide, unaligned);
1177   } else {
1178     assert(!unaligned, "unexpected");
1179     offset = load(src, disp_reg, to_reg, type, wide);
1180   }
1181 
1182   if (patch != NULL) {
1183     patching_epilog(patch, patch_code, src, info);
1184   }
1185   if (info != NULL && !needs_explicit_null_check) {
1186     add_debug_info_for_null_check(offset, info);
1187   }
1188 }
1189 
1190 
1191 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
1192   Address addr;
1193   if (src->is_single_word()) {
1194     addr = frame_map()->address_for_slot(src->single_stack_ix());
1195   } else if (src->is_double_word())  {
1196     addr = frame_map()->address_for_double_slot(src->double_stack_ix());
1197   }
1198 
1199   bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
1200   load(addr.base(), addr.disp(), dest, dest->type(), true /*wide*/, unaligned);
1201 }
1202 
1203 
1204 void LIR_Assembler::reg2stack(LIR_Opr from_reg, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
1205   Address addr;
1206   if (dest->is_single_word()) {
1207     addr = frame_map()->address_for_slot(dest->single_stack_ix());
1208   } else if (dest->is_double_word())  {
1209     addr = frame_map()->address_for_slot(dest->double_stack_ix());
1210   }
1211   bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
1212   store(from_reg, addr.base(), addr.disp(), from_reg->type(), true /*wide*/, unaligned);
1213 }
1214 
1215 
1216 void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) {
1217   if (from_reg->is_float_kind() && to_reg->is_float_kind()) {
1218     if (from_reg->is_double_fpu()) {
1219       // double to double moves
1220       assert(to_reg->is_double_fpu(), "should match");
1221       __ fmr_if_needed(to_reg->as_double_reg(), from_reg->as_double_reg());
1222     } else {
1223       // float to float moves
1224       assert(to_reg->is_single_fpu(), "should match");
1225       __ fmr_if_needed(to_reg->as_float_reg(), from_reg->as_float_reg());
1226     }
1227   } else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) {
1228     if (from_reg->is_double_cpu()) {
1229       __ mr_if_needed(to_reg->as_pointer_register(), from_reg->as_pointer_register());
1230     } else if (to_reg->is_double_cpu()) {
1231       // int to int moves
1232       __ mr_if_needed(to_reg->as_register_lo(), from_reg->as_register());
1233     } else {
1234       // int to int moves
1235       __ mr_if_needed(to_reg->as_register(), from_reg->as_register());
1236     }
1237   } else {
1238     ShouldNotReachHere();
1239   }
1240   if (is_reference_type(to_reg->type())) {
1241     __ verify_oop(to_reg->as_register());
1242   }
1243 }
1244 
1245 
1246 void LIR_Assembler::reg2mem(LIR_Opr from_reg, LIR_Opr dest, BasicType type,
1247                             LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack,
1248                             bool wide, bool unaligned) {
1249   assert(type != T_METADATA, "store of metadata ptr not supported");
1250   LIR_Address* addr = dest->as_address_ptr();
1251 
1252   Register src = addr->base()->as_pointer_register();
1253   Register disp_reg = noreg;
1254   int disp_value = addr->disp();
1255   bool needs_patching = (patch_code != lir_patch_none);
1256   bool compress_oop = (is_reference_type(type)) && UseCompressedOops && !wide &&
1257                       CompressedOops::mode() != CompressedOops::UnscaledNarrowOop;
1258   bool load_disp = addr->index()->is_illegal() && !Assembler::is_simm16(disp_value);
1259   bool use_R29 = compress_oop && load_disp; // Avoid register conflict, also do null check before killing R29.
1260   // Null check for large offsets in LIRGenerator::do_StoreField.
1261   bool needs_explicit_null_check = !ImplicitNullChecks || use_R29;
1262 
1263   if (info != NULL && needs_explicit_null_check) {
1264     explicit_null_check(src, info);
1265   }
1266 
1267   if (addr->base()->is_oop_register()) {
1268     __ verify_oop(src);
1269   }
1270 
1271   PatchingStub* patch = NULL;
1272   if (needs_patching) {
1273     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1274     assert(!from_reg->is_double_cpu() ||
1275            patch_code == lir_patch_none ||
1276            patch_code == lir_patch_normal, "patching doesn't match register");
1277   }
1278 
1279   if (addr->index()->is_illegal()) {
1280     if (load_disp) {
1281       disp_reg = use_R29 ? R29_TOC : R0;
1282       if (needs_patching) {
1283         __ load_const32(disp_reg, 0); // patchable int
1284       } else {
1285         __ load_const_optimized(disp_reg, disp_value);
1286       }
1287     }
1288   } else {
1289     disp_reg = addr->index()->as_pointer_register();
1290     assert(disp_value == 0, "can't handle 3 operand addresses");
1291   }
1292 
1293   // remember the offset of the store. The patching_epilog must be done
1294   // before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get
1295   // entered in increasing order.
1296   int offset;
1297 
1298   if (compress_oop) {
1299     Register co = __ encode_heap_oop(R0, from_reg->as_register());
1300     from_reg = FrameMap::as_opr(co);
1301   }
1302 
1303   if (disp_reg == noreg) {
1304     assert(Assembler::is_simm16(disp_value), "should have set this up");
1305     offset = store(from_reg, src, disp_value, type, wide, unaligned);
1306   } else {
1307     assert(!unaligned, "unexpected");
1308     offset = store(from_reg, src, disp_reg, type, wide);
1309   }
1310 
1311   if (use_R29) {
1312     __ load_const_optimized(R29_TOC, MacroAssembler::global_toc(), R0); // reinit
1313   }
1314 
1315   if (patch != NULL) {
1316     patching_epilog(patch, patch_code, src, info);
1317   }
1318 
1319   if (info != NULL && !needs_explicit_null_check) {
1320     add_debug_info_for_null_check(offset, info);
1321   }
1322 }
1323 
1324 
1325 void LIR_Assembler::return_op(LIR_Opr result) {
1326   const Register return_pc        = R31;  // Must survive C-call to enable_stack_reserved_zone().
1327   const Register polling_page     = R12;
1328 
1329   // Pop the stack before the safepoint code.
1330   int frame_size = initial_frame_size_in_bytes();
1331   if (Assembler::is_simm(frame_size, 16)) {
1332     __ addi(R1_SP, R1_SP, frame_size);
1333   } else {
1334     __ pop_frame();
1335   }
1336 
1337   if (SafepointMechanism::uses_thread_local_poll()) {
1338     __ ld(polling_page, in_bytes(Thread::polling_page_offset()), R16_thread);
1339   } else {
1340     __ load_const_optimized(polling_page, (long)(address) os::get_polling_page(), R0);
1341   }
1342 
1343   // Restore return pc relative to callers' sp.
1344   __ ld(return_pc, _abi(lr), R1_SP);
1345   // Move return pc to LR.
1346   __ mtlr(return_pc);
1347 
1348   if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) {
1349     __ reserved_stack_check(return_pc);
1350   }
1351 
1352   // We need to mark the code position where the load from the safepoint
1353   // polling page was emitted as relocInfo::poll_return_type here.
1354   __ relocate(relocInfo::poll_return_type);
1355   __ load_from_polling_page(polling_page);
1356 
1357   // Return.
1358   __ blr();
1359 }
1360 
1361 
1362 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
1363   const Register poll_addr = tmp->as_register();
1364   if (SafepointMechanism::uses_thread_local_poll()) {
1365     __ ld(poll_addr, in_bytes(Thread::polling_page_offset()), R16_thread);
1366   } else {
1367     __ load_const_optimized(poll_addr, (intptr_t)os::get_polling_page(), R0);
1368   }
1369   if (info != NULL) {
1370     add_debug_info_for_branch(info);
1371   }
1372   int offset = __ offset();
1373   __ relocate(relocInfo::poll_type);
1374   __ load_from_polling_page(poll_addr);
1375 
1376   return offset;
1377 }
1378 
1379 
1380 void LIR_Assembler::emit_static_call_stub() {
1381   address call_pc = __ pc();
1382   address stub = __ start_a_stub(static_call_stub_size());
1383   if (stub == NULL) {
1384     bailout("static call stub overflow");
1385     return;
1386   }
1387 
1388   // For java_to_interp stubs we use R11_scratch1 as scratch register
1389   // and in call trampoline stubs we use R12_scratch2. This way we
1390   // can distinguish them (see is_NativeCallTrampolineStub_at()).
1391   const Register reg_scratch = R11_scratch1;
1392 
1393   // Create a static stub relocation which relates this stub
1394   // with the call instruction at insts_call_instruction_offset in the
1395   // instructions code-section.
1396   int start = __ offset();
1397   __ relocate(static_stub_Relocation::spec(call_pc));
1398 
1399   // Now, create the stub's code:
1400   // - load the TOC
1401   // - load the inline cache oop from the constant pool
1402   // - load the call target from the constant pool
1403   // - call
1404   __ calculate_address_from_global_toc(reg_scratch, __ method_toc());
1405   AddressLiteral ic = __ allocate_metadata_address((Metadata *)NULL);
1406   bool success = __ load_const_from_method_toc(R19_inline_cache_reg, ic, reg_scratch, /*fixed_size*/ true);
1407 
1408   if (ReoptimizeCallSequences) {
1409     __ b64_patchable((address)-1, relocInfo::none);
1410   } else {
1411     AddressLiteral a((address)-1);
1412     success = success && __ load_const_from_method_toc(reg_scratch, a, reg_scratch, /*fixed_size*/ true);
1413     __ mtctr(reg_scratch);
1414     __ bctr();
1415   }
1416   if (!success) {
1417     bailout("const section overflow");
1418     return;
1419   }
1420 
1421   assert(__ offset() - start <= static_call_stub_size(), "stub too big");
1422   __ end_a_stub();
1423 }
1424 
1425 
1426 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
1427   bool unsigned_comp = (condition == lir_cond_belowEqual || condition == lir_cond_aboveEqual);
1428   if (opr1->is_single_fpu()) {
1429     __ fcmpu(BOOL_RESULT, opr1->as_float_reg(), opr2->as_float_reg());
1430   } else if (opr1->is_double_fpu()) {
1431     __ fcmpu(BOOL_RESULT, opr1->as_double_reg(), opr2->as_double_reg());
1432   } else if (opr1->is_single_cpu()) {
1433     if (opr2->is_constant()) {
1434       switch (opr2->as_constant_ptr()->type()) {
1435         case T_INT:
1436           {
1437             jint con = opr2->as_constant_ptr()->as_jint();
1438             if (unsigned_comp) {
1439               if (Assembler::is_uimm(con, 16)) {
1440                 __ cmplwi(BOOL_RESULT, opr1->as_register(), con);
1441               } else {
1442                 __ load_const_optimized(R0, con);
1443                 __ cmplw(BOOL_RESULT, opr1->as_register(), R0);
1444               }
1445             } else {
1446               if (Assembler::is_simm(con, 16)) {
1447                 __ cmpwi(BOOL_RESULT, opr1->as_register(), con);
1448               } else {
1449                 __ load_const_optimized(R0, con);
1450                 __ cmpw(BOOL_RESULT, opr1->as_register(), R0);
1451               }
1452             }
1453           }
1454           break;
1455 
1456         case T_OBJECT:
1457           // There are only equal/notequal comparisons on objects.
1458           {
1459             assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "oops");
1460             jobject con = opr2->as_constant_ptr()->as_jobject();
1461             if (con == NULL) {
1462               __ cmpdi(BOOL_RESULT, opr1->as_register(), 0);
1463             } else {
1464               jobject2reg(con, R0);
1465               __ cmpd(BOOL_RESULT, opr1->as_register(), R0);
1466             }
1467           }
1468           break;
1469 
1470         default:
1471           ShouldNotReachHere();
1472           break;
1473       }
1474     } else {
1475       assert(opr1->type() != T_ADDRESS && opr2->type() != T_ADDRESS, "currently unsupported");
1476       if (is_reference_type(opr1->type())) {
1477         // There are only equal/notequal comparisons on objects.
1478         assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "oops");
1479         __ cmpd(BOOL_RESULT, opr1->as_register(), opr2->as_register());
1480       } else {
1481         if (unsigned_comp) {
1482           __ cmplw(BOOL_RESULT, opr1->as_register(), opr2->as_register());
1483         } else {
1484           __ cmpw(BOOL_RESULT, opr1->as_register(), opr2->as_register());
1485         }
1486       }
1487     }
1488   } else if (opr1->is_double_cpu()) {
1489     if (opr2->is_constant()) {
1490       jlong con = opr2->as_constant_ptr()->as_jlong();
1491       if (unsigned_comp) {
1492         if (Assembler::is_uimm(con, 16)) {
1493           __ cmpldi(BOOL_RESULT, opr1->as_register_lo(), con);
1494         } else {
1495           __ load_const_optimized(R0, con);
1496           __ cmpld(BOOL_RESULT, opr1->as_register_lo(), R0);
1497         }
1498       } else {
1499         if (Assembler::is_simm(con, 16)) {
1500           __ cmpdi(BOOL_RESULT, opr1->as_register_lo(), con);
1501         } else {
1502           __ load_const_optimized(R0, con);
1503           __ cmpd(BOOL_RESULT, opr1->as_register_lo(), R0);
1504         }
1505       }
1506     } else if (opr2->is_register()) {
1507       if (unsigned_comp) {
1508         __ cmpld(BOOL_RESULT, opr1->as_register_lo(), opr2->as_register_lo());
1509       } else {
1510         __ cmpd(BOOL_RESULT, opr1->as_register_lo(), opr2->as_register_lo());
1511       }
1512     } else {
1513       ShouldNotReachHere();
1514     }
1515   } else {
1516     ShouldNotReachHere();
1517   }
1518 }
1519 
1520 
1521 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){
1522   const Register Rdst = dst->as_register();
1523   Label done;
1524   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
1525     bool is_unordered_less = (code == lir_ucmp_fd2i);
1526     if (left->is_single_fpu()) {
1527       __ fcmpu(CCR0, left->as_float_reg(), right->as_float_reg());
1528     } else if (left->is_double_fpu()) {
1529       __ fcmpu(CCR0, left->as_double_reg(), right->as_double_reg());
1530     } else {
1531       ShouldNotReachHere();
1532     }
1533     __ li(Rdst, is_unordered_less ? -1 : 1);
1534     __ bso(CCR0, done);
1535   } else if (code == lir_cmp_l2i) {
1536     __ cmpd(CCR0, left->as_register_lo(), right->as_register_lo());
1537   } else {
1538     ShouldNotReachHere();
1539   }
1540   __ mfcr(R0); // set bit 32..33 as follows: <: 0b10, =: 0b00, >: 0b01
1541   __ srwi(Rdst, R0, 30);
1542   __ srawi(R0, R0, 31);
1543   __ orr(Rdst, R0, Rdst); // set result as follows: <: -1, =: 0, >: 1
1544   __ bind(done);
1545 }
1546 
1547 
1548 inline void load_to_reg(LIR_Assembler *lasm, LIR_Opr src, LIR_Opr dst) {
1549   if (src->is_constant()) {
1550     lasm->const2reg(src, dst, lir_patch_none, NULL);
1551   } else if (src->is_register()) {
1552     lasm->reg2reg(src, dst);
1553   } else if (src->is_stack()) {
1554     lasm->stack2reg(src, dst, dst->type());
1555   } else {
1556     ShouldNotReachHere();
1557   }
1558 }
1559 
1560 
1561 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
1562   if (opr1->is_equal(opr2) || opr1->is_same_register(opr2)) {
1563     load_to_reg(this, opr1, result); // Condition doesn't matter.
1564     return;
1565   }
1566 
1567   bool positive = false;
1568   Assembler::Condition cond = Assembler::equal;
1569   switch (condition) {
1570     case lir_cond_equal:        positive = true ; cond = Assembler::equal  ; break;
1571     case lir_cond_notEqual:     positive = false; cond = Assembler::equal  ; break;
1572     case lir_cond_less:         positive = true ; cond = Assembler::less   ; break;
1573     case lir_cond_belowEqual:
1574     case lir_cond_lessEqual:    positive = false; cond = Assembler::greater; break;
1575     case lir_cond_greater:      positive = true ; cond = Assembler::greater; break;
1576     case lir_cond_aboveEqual:
1577     case lir_cond_greaterEqual: positive = false; cond = Assembler::less   ; break;
1578     default:                    ShouldNotReachHere();
1579   }
1580 
1581   // Try to use isel on >=Power7.
1582   if (VM_Version::has_isel() && result->is_cpu_register()) {
1583     bool o1_is_reg = opr1->is_cpu_register(), o2_is_reg = opr2->is_cpu_register();
1584     const Register result_reg = result->is_single_cpu() ? result->as_register() : result->as_register_lo();
1585 
1586     // We can use result_reg to load one operand if not already in register.
1587     Register first  = o1_is_reg ? (opr1->is_single_cpu() ? opr1->as_register() : opr1->as_register_lo()) : result_reg,
1588              second = o2_is_reg ? (opr2->is_single_cpu() ? opr2->as_register() : opr2->as_register_lo()) : result_reg;
1589 
1590     if (first != second) {
1591       if (!o1_is_reg) {
1592         load_to_reg(this, opr1, result);
1593       }
1594 
1595       if (!o2_is_reg) {
1596         load_to_reg(this, opr2, result);
1597       }
1598 
1599       __ isel(result_reg, BOOL_RESULT, cond, !positive, first, second);
1600       return;
1601     }
1602   } // isel
1603 
1604   load_to_reg(this, opr1, result);
1605 
1606   Label skip;
1607   int bo = positive ? Assembler::bcondCRbiIs1 : Assembler::bcondCRbiIs0;
1608   int bi = Assembler::bi0(BOOL_RESULT, cond);
1609   __ bc(bo, bi, skip);
1610 
1611   load_to_reg(this, opr2, result);
1612   __ bind(skip);
1613 }
1614 
1615 
1616 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest,
1617                              CodeEmitInfo* info, bool pop_fpu_stack) {
1618   assert(info == NULL, "unused on this code path");
1619   assert(left->is_register(), "wrong items state");
1620   assert(dest->is_register(), "wrong items state");
1621 
1622   if (right->is_register()) {
1623     if (dest->is_float_kind()) {
1624 
1625       FloatRegister lreg, rreg, res;
1626       if (right->is_single_fpu()) {
1627         lreg = left->as_float_reg();
1628         rreg = right->as_float_reg();
1629         res  = dest->as_float_reg();
1630         switch (code) {
1631           case lir_add: __ fadds(res, lreg, rreg); break;
1632           case lir_sub: __ fsubs(res, lreg, rreg); break;
1633           case lir_mul: // fall through
1634           case lir_mul_strictfp: __ fmuls(res, lreg, rreg); break;
1635           case lir_div: // fall through
1636           case lir_div_strictfp: __ fdivs(res, lreg, rreg); break;
1637           default: ShouldNotReachHere();
1638         }
1639       } else {
1640         lreg = left->as_double_reg();
1641         rreg = right->as_double_reg();
1642         res  = dest->as_double_reg();
1643         switch (code) {
1644           case lir_add: __ fadd(res, lreg, rreg); break;
1645           case lir_sub: __ fsub(res, lreg, rreg); break;
1646           case lir_mul: // fall through
1647           case lir_mul_strictfp: __ fmul(res, lreg, rreg); break;
1648           case lir_div: // fall through
1649           case lir_div_strictfp: __ fdiv(res, lreg, rreg); break;
1650           default: ShouldNotReachHere();
1651         }
1652       }
1653 
1654     } else if (dest->is_double_cpu()) {
1655 
1656       Register dst_lo = dest->as_register_lo();
1657       Register op1_lo = left->as_pointer_register();
1658       Register op2_lo = right->as_pointer_register();
1659 
1660       switch (code) {
1661         case lir_add: __ add(dst_lo, op1_lo, op2_lo); break;
1662         case lir_sub: __ sub(dst_lo, op1_lo, op2_lo); break;
1663         case lir_mul: __ mulld(dst_lo, op1_lo, op2_lo); break;
1664         default: ShouldNotReachHere();
1665       }
1666     } else {
1667       assert (right->is_single_cpu(), "Just Checking");
1668 
1669       Register lreg = left->as_register();
1670       Register res  = dest->as_register();
1671       Register rreg = right->as_register();
1672       switch (code) {
1673         case lir_add:  __ add  (res, lreg, rreg); break;
1674         case lir_sub:  __ sub  (res, lreg, rreg); break;
1675         case lir_mul:  __ mullw(res, lreg, rreg); break;
1676         default: ShouldNotReachHere();
1677       }
1678     }
1679   } else {
1680     assert (right->is_constant(), "must be constant");
1681 
1682     if (dest->is_single_cpu()) {
1683       Register lreg = left->as_register();
1684       Register res  = dest->as_register();
1685       int    simm16 = right->as_constant_ptr()->as_jint();
1686 
1687       switch (code) {
1688         case lir_sub:  assert(Assembler::is_simm16(-simm16), "cannot encode"); // see do_ArithmeticOp_Int
1689                        simm16 = -simm16;
1690         case lir_add:  if (res == lreg && simm16 == 0) break;
1691                        __ addi(res, lreg, simm16); break;
1692         case lir_mul:  if (res == lreg && simm16 == 1) break;
1693                        __ mulli(res, lreg, simm16); break;
1694         default: ShouldNotReachHere();
1695       }
1696     } else {
1697       Register lreg = left->as_pointer_register();
1698       Register res  = dest->as_register_lo();
1699       long con = right->as_constant_ptr()->as_jlong();
1700       assert(Assembler::is_simm16(con), "must be simm16");
1701 
1702       switch (code) {
1703         case lir_sub:  assert(Assembler::is_simm16(-con), "cannot encode");  // see do_ArithmeticOp_Long
1704                        con = -con;
1705         case lir_add:  if (res == lreg && con == 0) break;
1706                        __ addi(res, lreg, (int)con); break;
1707         case lir_mul:  if (res == lreg && con == 1) break;
1708                        __ mulli(res, lreg, (int)con); break;
1709         default: ShouldNotReachHere();
1710       }
1711     }
1712   }
1713 }
1714 
1715 
1716 void LIR_Assembler::fpop() {
1717   Unimplemented();
1718   // do nothing
1719 }
1720 
1721 
1722 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr thread, LIR_Opr dest, LIR_Op* op) {
1723   switch (code) {
1724     case lir_sqrt: {
1725       __ fsqrt(dest->as_double_reg(), value->as_double_reg());
1726       break;
1727     }
1728     case lir_abs: {
1729       __ fabs(dest->as_double_reg(), value->as_double_reg());
1730       break;
1731     }
1732     default: {
1733       ShouldNotReachHere();
1734       break;
1735     }
1736   }
1737 }
1738 
1739 
1740 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest) {
1741   if (right->is_constant()) { // see do_LogicOp
1742     long uimm;
1743     Register d, l;
1744     if (dest->is_single_cpu()) {
1745       uimm = right->as_constant_ptr()->as_jint();
1746       d = dest->as_register();
1747       l = left->as_register();
1748     } else {
1749       uimm = right->as_constant_ptr()->as_jlong();
1750       d = dest->as_register_lo();
1751       l = left->as_register_lo();
1752     }
1753     long uimms  = (unsigned long)uimm >> 16,
1754          uimmss = (unsigned long)uimm >> 32;
1755 
1756     switch (code) {
1757       case lir_logic_and:
1758         if (uimmss != 0 || (uimms != 0 && (uimm & 0xFFFF) != 0) || is_power_of_2_long(uimm)) {
1759           __ andi(d, l, uimm); // special cases
1760         } else if (uimms != 0) { __ andis_(d, l, uimms); }
1761         else { __ andi_(d, l, uimm); }
1762         break;
1763 
1764       case lir_logic_or:
1765         if (uimms != 0) { assert((uimm & 0xFFFF) == 0, "sanity"); __ oris(d, l, uimms); }
1766         else { __ ori(d, l, uimm); }
1767         break;
1768 
1769       case lir_logic_xor:
1770         if (uimm == -1) { __ nand(d, l, l); } // special case
1771         else if (uimms != 0) { assert((uimm & 0xFFFF) == 0, "sanity"); __ xoris(d, l, uimms); }
1772         else { __ xori(d, l, uimm); }
1773         break;
1774 
1775       default: ShouldNotReachHere();
1776     }
1777   } else {
1778     assert(right->is_register(), "right should be in register");
1779 
1780     if (dest->is_single_cpu()) {
1781       switch (code) {
1782         case lir_logic_and: __ andr(dest->as_register(), left->as_register(), right->as_register()); break;
1783         case lir_logic_or:  __ orr (dest->as_register(), left->as_register(), right->as_register()); break;
1784         case lir_logic_xor: __ xorr(dest->as_register(), left->as_register(), right->as_register()); break;
1785         default: ShouldNotReachHere();
1786       }
1787     } else {
1788       Register l = (left->is_single_cpu() && left->is_oop_register()) ? left->as_register() :
1789                                                                         left->as_register_lo();
1790       Register r = (right->is_single_cpu() && right->is_oop_register()) ? right->as_register() :
1791                                                                           right->as_register_lo();
1792 
1793       switch (code) {
1794         case lir_logic_and: __ andr(dest->as_register_lo(), l, r); break;
1795         case lir_logic_or:  __ orr (dest->as_register_lo(), l, r); break;
1796         case lir_logic_xor: __ xorr(dest->as_register_lo(), l, r); break;
1797         default: ShouldNotReachHere();
1798       }
1799     }
1800   }
1801 }
1802 
1803 
1804 int LIR_Assembler::shift_amount(BasicType t) {
1805   int elem_size = type2aelembytes(t);
1806   switch (elem_size) {
1807     case 1 : return 0;
1808     case 2 : return 1;
1809     case 4 : return 2;
1810     case 8 : return 3;
1811   }
1812   ShouldNotReachHere();
1813   return -1;
1814 }
1815 
1816 
1817 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
1818   info->add_register_oop(exceptionOop);
1819 
1820   // Reuse the debug info from the safepoint poll for the throw op itself.
1821   address pc_for_athrow = __ pc();
1822   int pc_for_athrow_offset = __ offset();
1823   //RelocationHolder rspec = internal_word_Relocation::spec(pc_for_athrow);
1824   //__ relocate(rspec);
1825   //__ load_const(exceptionPC->as_register(), pc_for_athrow, R0);
1826   __ calculate_address_from_global_toc(exceptionPC->as_register(), pc_for_athrow, true, true, /*add_relocation*/ true);
1827   add_call_info(pc_for_athrow_offset, info); // for exception handler
1828 
1829   address stub = Runtime1::entry_for(compilation()->has_fpu_code() ? Runtime1::handle_exception_id
1830                                                                    : Runtime1::handle_exception_nofpu_id);
1831   //__ load_const_optimized(R0, stub);
1832   __ add_const_optimized(R0, R29_TOC, MacroAssembler::offset_to_global_toc(stub));
1833   __ mtctr(R0);
1834   __ bctr();
1835 }
1836 
1837 
1838 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
1839   // Note: Not used with EnableDebuggingOnDemand.
1840   assert(exceptionOop->as_register() == R3, "should match");
1841   __ b(_unwind_handler_entry);
1842 }
1843 
1844 
1845 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
1846   Register src = op->src()->as_register();
1847   Register dst = op->dst()->as_register();
1848   Register src_pos = op->src_pos()->as_register();
1849   Register dst_pos = op->dst_pos()->as_register();
1850   Register length  = op->length()->as_register();
1851   Register tmp = op->tmp()->as_register();
1852   Register tmp2 = R0;
1853 
1854   int flags = op->flags();
1855   ciArrayKlass* default_type = op->expected_type();
1856   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
1857   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
1858 
1859   // Set up the arraycopy stub information.
1860   ArrayCopyStub* stub = op->stub();
1861   const int frame_resize = frame::abi_reg_args_size - sizeof(frame::jit_abi); // C calls need larger frame.
1862 
1863   // Always do stub if no type information is available. It's ok if
1864   // the known type isn't loaded since the code sanity checks
1865   // in debug mode and the type isn't required when we know the exact type
1866   // also check that the type is an array type.
1867   if (op->expected_type() == NULL) {
1868     assert(src->is_nonvolatile() && src_pos->is_nonvolatile() && dst->is_nonvolatile() && dst_pos->is_nonvolatile() &&
1869            length->is_nonvolatile(), "must preserve");
1870     address copyfunc_addr = StubRoutines::generic_arraycopy();
1871     assert(copyfunc_addr != NULL, "generic arraycopy stub required");
1872 
1873     // 3 parms are int. Convert to long.
1874     __ mr(R3_ARG1, src);
1875     __ extsw(R4_ARG2, src_pos);
1876     __ mr(R5_ARG3, dst);
1877     __ extsw(R6_ARG4, dst_pos);
1878     __ extsw(R7_ARG5, length);
1879 
1880 #ifndef PRODUCT
1881     if (PrintC1Statistics) {
1882       address counter = (address)&Runtime1::_generic_arraycopystub_cnt;
1883       int simm16_offs = __ load_const_optimized(tmp, counter, tmp2, true);
1884       __ lwz(R11_scratch1, simm16_offs, tmp);
1885       __ addi(R11_scratch1, R11_scratch1, 1);
1886       __ stw(R11_scratch1, simm16_offs, tmp);
1887     }
1888 #endif
1889     __ call_c_with_frame_resize(copyfunc_addr, /*stub does not need resized frame*/ 0);
1890 
1891     __ nand(tmp, R3_RET, R3_RET);
1892     __ subf(length, tmp, length);
1893     __ add(src_pos, tmp, src_pos);
1894     __ add(dst_pos, tmp, dst_pos);
1895 
1896     __ cmpwi(CCR0, R3_RET, 0);
1897     __ bc_far_optimized(Assembler::bcondCRbiIs1, __ bi0(CCR0, Assembler::less), *stub->entry());
1898     __ bind(*stub->continuation());
1899     return;
1900   }
1901 
1902   assert(default_type != NULL && default_type->is_array_klass(), "must be true at this point");
1903   Label cont, slow, copyfunc;
1904 
1905   bool simple_check_flag_set = flags & (LIR_OpArrayCopy::src_null_check |
1906                                         LIR_OpArrayCopy::dst_null_check |
1907                                         LIR_OpArrayCopy::src_pos_positive_check |
1908                                         LIR_OpArrayCopy::dst_pos_positive_check |
1909                                         LIR_OpArrayCopy::length_positive_check);
1910 
1911   // Use only one conditional branch for simple checks.
1912   if (simple_check_flag_set) {
1913     ConditionRegister combined_check = CCR1, tmp_check = CCR1;
1914 
1915     // Make sure src and dst are non-null.
1916     if (flags & LIR_OpArrayCopy::src_null_check) {
1917       __ cmpdi(combined_check, src, 0);
1918       tmp_check = CCR0;
1919     }
1920 
1921     if (flags & LIR_OpArrayCopy::dst_null_check) {
1922       __ cmpdi(tmp_check, dst, 0);
1923       if (tmp_check != combined_check) {
1924         __ cror(combined_check, Assembler::equal, tmp_check, Assembler::equal);
1925       }
1926       tmp_check = CCR0;
1927     }
1928 
1929     // Clear combined_check.eq if not already used.
1930     if (tmp_check == combined_check) {
1931       __ crandc(combined_check, Assembler::equal, combined_check, Assembler::equal);
1932       tmp_check = CCR0;
1933     }
1934 
1935     if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
1936       // Test src_pos register.
1937       __ cmpwi(tmp_check, src_pos, 0);
1938       __ cror(combined_check, Assembler::equal, tmp_check, Assembler::less);
1939     }
1940 
1941     if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
1942       // Test dst_pos register.
1943       __ cmpwi(tmp_check, dst_pos, 0);
1944       __ cror(combined_check, Assembler::equal, tmp_check, Assembler::less);
1945     }
1946 
1947     if (flags & LIR_OpArrayCopy::length_positive_check) {
1948       // Make sure length isn't negative.
1949       __ cmpwi(tmp_check, length, 0);
1950       __ cror(combined_check, Assembler::equal, tmp_check, Assembler::less);
1951     }
1952 
1953     __ beq(combined_check, slow);
1954   }
1955 
1956   // If the compiler was not able to prove that exact type of the source or the destination
1957   // of the arraycopy is an array type, check at runtime if the source or the destination is
1958   // an instance type.
1959   if (flags & LIR_OpArrayCopy::type_check) {
1960     if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
1961       __ load_klass(tmp, dst);
1962       __ lwz(tmp2, in_bytes(Klass::layout_helper_offset()), tmp);
1963       __ cmpwi(CCR0, tmp2, Klass::_lh_neutral_value);
1964       __ bge(CCR0, slow);
1965     }
1966 
1967     if (!(flags & LIR_OpArrayCopy::src_objarray)) {
1968       __ load_klass(tmp, src);
1969       __ lwz(tmp2, in_bytes(Klass::layout_helper_offset()), tmp);
1970       __ cmpwi(CCR0, tmp2, Klass::_lh_neutral_value);
1971       __ bge(CCR0, slow);
1972     }
1973   }
1974 
1975   // Higher 32bits must be null.
1976   __ extsw(length, length);
1977 
1978   __ extsw(src_pos, src_pos);
1979   if (flags & LIR_OpArrayCopy::src_range_check) {
1980     __ lwz(tmp2, arrayOopDesc::length_offset_in_bytes(), src);
1981     __ add(tmp, length, src_pos);
1982     __ cmpld(CCR0, tmp2, tmp);
1983     __ ble(CCR0, slow);
1984   }
1985 
1986   __ extsw(dst_pos, dst_pos);
1987   if (flags & LIR_OpArrayCopy::dst_range_check) {
1988     __ lwz(tmp2, arrayOopDesc::length_offset_in_bytes(), dst);
1989     __ add(tmp, length, dst_pos);
1990     __ cmpld(CCR0, tmp2, tmp);
1991     __ ble(CCR0, slow);
1992   }
1993 
1994   int shift = shift_amount(basic_type);
1995 
1996   if (!(flags & LIR_OpArrayCopy::type_check)) {
1997     __ b(cont);
1998   } else {
1999     // We don't know the array types are compatible.
2000     if (basic_type != T_OBJECT) {
2001       // Simple test for basic type arrays.
2002       if (UseCompressedClassPointers) {
2003         // We don't need decode because we just need to compare.
2004         __ lwz(tmp, oopDesc::klass_offset_in_bytes(), src);
2005         __ lwz(tmp2, oopDesc::klass_offset_in_bytes(), dst);
2006         __ cmpw(CCR0, tmp, tmp2);
2007       } else {
2008         __ ld(tmp, oopDesc::klass_offset_in_bytes(), src);
2009         __ ld(tmp2, oopDesc::klass_offset_in_bytes(), dst);
2010         __ cmpd(CCR0, tmp, tmp2);
2011       }
2012       __ beq(CCR0, cont);
2013     } else {
2014       // For object arrays, if src is a sub class of dst then we can
2015       // safely do the copy.
2016       address copyfunc_addr = StubRoutines::checkcast_arraycopy();
2017 
2018       const Register sub_klass = R5, super_klass = R4; // like CheckCast/InstanceOf
2019       assert_different_registers(tmp, tmp2, sub_klass, super_klass);
2020 
2021       __ load_klass(sub_klass, src);
2022       __ load_klass(super_klass, dst);
2023 
2024       __ check_klass_subtype_fast_path(sub_klass, super_klass, tmp, tmp2,
2025                                        &cont, copyfunc_addr != NULL ? &copyfunc : &slow, NULL);
2026 
2027       address slow_stc = Runtime1::entry_for(Runtime1::slow_subtype_check_id);
2028       //__ load_const_optimized(tmp, slow_stc, tmp2);
2029       __ calculate_address_from_global_toc(tmp, slow_stc, true, true, false);
2030       __ mtctr(tmp);
2031       __ bctrl(); // sets CR0
2032       __ beq(CCR0, cont);
2033 
2034       if (copyfunc_addr != NULL) { // Use stub if available.
2035         __ bind(copyfunc);
2036         // Src is not a sub class of dst so we have to do a
2037         // per-element check.
2038         int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
2039         if ((flags & mask) != mask) {
2040           assert(flags & mask, "one of the two should be known to be an object array");
2041 
2042           if (!(flags & LIR_OpArrayCopy::src_objarray)) {
2043             __ load_klass(tmp, src);
2044           } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
2045             __ load_klass(tmp, dst);
2046           }
2047 
2048           __ lwz(tmp2, in_bytes(Klass::layout_helper_offset()), tmp);
2049 
2050           jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
2051           __ load_const_optimized(tmp, objArray_lh);
2052           __ cmpw(CCR0, tmp, tmp2);
2053           __ bne(CCR0, slow);
2054         }
2055 
2056         Register src_ptr = R3_ARG1;
2057         Register dst_ptr = R4_ARG2;
2058         Register len     = R5_ARG3;
2059         Register chk_off = R6_ARG4;
2060         Register super_k = R7_ARG5;
2061 
2062         __ addi(src_ptr, src, arrayOopDesc::base_offset_in_bytes(basic_type));
2063         __ addi(dst_ptr, dst, arrayOopDesc::base_offset_in_bytes(basic_type));
2064         if (shift == 0) {
2065           __ add(src_ptr, src_pos, src_ptr);
2066           __ add(dst_ptr, dst_pos, dst_ptr);
2067         } else {
2068           __ sldi(tmp, src_pos, shift);
2069           __ sldi(tmp2, dst_pos, shift);
2070           __ add(src_ptr, tmp, src_ptr);
2071           __ add(dst_ptr, tmp2, dst_ptr);
2072         }
2073 
2074         __ load_klass(tmp, dst);
2075         __ mr(len, length);
2076 
2077         int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
2078         __ ld(super_k, ek_offset, tmp);
2079 
2080         int sco_offset = in_bytes(Klass::super_check_offset_offset());
2081         __ lwz(chk_off, sco_offset, super_k);
2082 
2083         __ call_c_with_frame_resize(copyfunc_addr, /*stub does not need resized frame*/ 0);
2084 
2085 #ifndef PRODUCT
2086         if (PrintC1Statistics) {
2087           Label failed;
2088           __ cmpwi(CCR0, R3_RET, 0);
2089           __ bne(CCR0, failed);
2090           address counter = (address)&Runtime1::_arraycopy_checkcast_cnt;
2091           int simm16_offs = __ load_const_optimized(tmp, counter, tmp2, true);
2092           __ lwz(R11_scratch1, simm16_offs, tmp);
2093           __ addi(R11_scratch1, R11_scratch1, 1);
2094           __ stw(R11_scratch1, simm16_offs, tmp);
2095           __ bind(failed);
2096         }
2097 #endif
2098 
2099         __ nand(tmp, R3_RET, R3_RET);
2100         __ cmpwi(CCR0, R3_RET, 0);
2101         __ beq(CCR0, *stub->continuation());
2102 
2103 #ifndef PRODUCT
2104         if (PrintC1Statistics) {
2105           address counter = (address)&Runtime1::_arraycopy_checkcast_attempt_cnt;
2106           int simm16_offs = __ load_const_optimized(tmp, counter, tmp2, true);
2107           __ lwz(R11_scratch1, simm16_offs, tmp);
2108           __ addi(R11_scratch1, R11_scratch1, 1);
2109           __ stw(R11_scratch1, simm16_offs, tmp);
2110         }
2111 #endif
2112 
2113         __ subf(length, tmp, length);
2114         __ add(src_pos, tmp, src_pos);
2115         __ add(dst_pos, tmp, dst_pos);
2116       }
2117     }
2118   }
2119   __ bind(slow);
2120   __ b(*stub->entry());
2121   __ bind(cont);
2122 
2123 #ifdef ASSERT
2124   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
2125     // Sanity check the known type with the incoming class. For the
2126     // primitive case the types must match exactly with src.klass and
2127     // dst.klass each exactly matching the default type. For the
2128     // object array case, if no type check is needed then either the
2129     // dst type is exactly the expected type and the src type is a
2130     // subtype which we can't check or src is the same array as dst
2131     // but not necessarily exactly of type default_type.
2132     Label known_ok, halt;
2133     metadata2reg(op->expected_type()->constant_encoding(), tmp);
2134     if (UseCompressedClassPointers) {
2135       // Tmp holds the default type. It currently comes uncompressed after the
2136       // load of a constant, so encode it.
2137       __ encode_klass_not_null(tmp);
2138       // Load the raw value of the dst klass, since we will be comparing
2139       // uncompressed values directly.
2140       __ lwz(tmp2, oopDesc::klass_offset_in_bytes(), dst);
2141       __ cmpw(CCR0, tmp, tmp2);
2142       if (basic_type != T_OBJECT) {
2143         __ bne(CCR0, halt);
2144         // Load the raw value of the src klass.
2145         __ lwz(tmp2, oopDesc::klass_offset_in_bytes(), src);
2146         __ cmpw(CCR0, tmp, tmp2);
2147         __ beq(CCR0, known_ok);
2148       } else {
2149         __ beq(CCR0, known_ok);
2150         __ cmpw(CCR0, src, dst);
2151         __ beq(CCR0, known_ok);
2152       }
2153     } else {
2154       __ ld(tmp2, oopDesc::klass_offset_in_bytes(), dst);
2155       __ cmpd(CCR0, tmp, tmp2);
2156       if (basic_type != T_OBJECT) {
2157         __ bne(CCR0, halt);
2158         // Load the raw value of the src klass.
2159         __ ld(tmp2, oopDesc::klass_offset_in_bytes(), src);
2160         __ cmpd(CCR0, tmp, tmp2);
2161         __ beq(CCR0, known_ok);
2162       } else {
2163         __ beq(CCR0, known_ok);
2164         __ cmpd(CCR0, src, dst);
2165         __ beq(CCR0, known_ok);
2166       }
2167     }
2168     __ bind(halt);
2169     __ stop("incorrect type information in arraycopy");
2170     __ bind(known_ok);
2171   }
2172 #endif
2173 
2174 #ifndef PRODUCT
2175   if (PrintC1Statistics) {
2176     address counter = Runtime1::arraycopy_count_address(basic_type);
2177     int simm16_offs = __ load_const_optimized(tmp, counter, tmp2, true);
2178     __ lwz(R11_scratch1, simm16_offs, tmp);
2179     __ addi(R11_scratch1, R11_scratch1, 1);
2180     __ stw(R11_scratch1, simm16_offs, tmp);
2181   }
2182 #endif
2183 
2184   Register src_ptr = R3_ARG1;
2185   Register dst_ptr = R4_ARG2;
2186   Register len     = R5_ARG3;
2187 
2188   __ addi(src_ptr, src, arrayOopDesc::base_offset_in_bytes(basic_type));
2189   __ addi(dst_ptr, dst, arrayOopDesc::base_offset_in_bytes(basic_type));
2190   if (shift == 0) {
2191     __ add(src_ptr, src_pos, src_ptr);
2192     __ add(dst_ptr, dst_pos, dst_ptr);
2193   } else {
2194     __ sldi(tmp, src_pos, shift);
2195     __ sldi(tmp2, dst_pos, shift);
2196     __ add(src_ptr, tmp, src_ptr);
2197     __ add(dst_ptr, tmp2, dst_ptr);
2198   }
2199 
2200   bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
2201   bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
2202   const char *name;
2203   address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
2204 
2205   // Arraycopy stubs takes a length in number of elements, so don't scale it.
2206   __ mr(len, length);
2207   __ call_c_with_frame_resize(entry, /*stub does not need resized frame*/ 0);
2208 
2209   __ bind(*stub->continuation());
2210 }
2211 
2212 
2213 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2214   if (dest->is_single_cpu()) {
2215     __ rldicl(tmp->as_register(), count->as_register(), 0, 64-5);
2216 #ifdef _LP64
2217     if (left->type() == T_OBJECT) {
2218       switch (code) {
2219         case lir_shl:  __ sld(dest->as_register(), left->as_register(), tmp->as_register()); break;
2220         case lir_shr:  __ srad(dest->as_register(), left->as_register(), tmp->as_register()); break;
2221         case lir_ushr: __ srd(dest->as_register(), left->as_register(), tmp->as_register()); break;
2222         default: ShouldNotReachHere();
2223       }
2224     } else
2225 #endif
2226       switch (code) {
2227         case lir_shl:  __ slw(dest->as_register(), left->as_register(), tmp->as_register()); break;
2228         case lir_shr:  __ sraw(dest->as_register(), left->as_register(), tmp->as_register()); break;
2229         case lir_ushr: __ srw(dest->as_register(), left->as_register(), tmp->as_register()); break;
2230         default: ShouldNotReachHere();
2231       }
2232   } else {
2233     __ rldicl(tmp->as_register(), count->as_register(), 0, 64-6);
2234     switch (code) {
2235       case lir_shl:  __ sld(dest->as_register_lo(), left->as_register_lo(), tmp->as_register()); break;
2236       case lir_shr:  __ srad(dest->as_register_lo(), left->as_register_lo(), tmp->as_register()); break;
2237       case lir_ushr: __ srd(dest->as_register_lo(), left->as_register_lo(), tmp->as_register()); break;
2238       default: ShouldNotReachHere();
2239     }
2240   }
2241 }
2242 
2243 
2244 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
2245 #ifdef _LP64
2246   if (left->type() == T_OBJECT) {
2247     count = count & 63;  // Shouldn't shift by more than sizeof(intptr_t).
2248     if (count == 0) { __ mr_if_needed(dest->as_register_lo(), left->as_register()); }
2249     else {
2250       switch (code) {
2251         case lir_shl:  __ sldi(dest->as_register_lo(), left->as_register(), count); break;
2252         case lir_shr:  __ sradi(dest->as_register_lo(), left->as_register(), count); break;
2253         case lir_ushr: __ srdi(dest->as_register_lo(), left->as_register(), count); break;
2254         default: ShouldNotReachHere();
2255       }
2256     }
2257     return;
2258   }
2259 #endif
2260 
2261   if (dest->is_single_cpu()) {
2262     count = count & 0x1F; // Java spec
2263     if (count == 0) { __ mr_if_needed(dest->as_register(), left->as_register()); }
2264     else {
2265       switch (code) {
2266         case lir_shl: __ slwi(dest->as_register(), left->as_register(), count); break;
2267         case lir_shr:  __ srawi(dest->as_register(), left->as_register(), count); break;
2268         case lir_ushr: __ srwi(dest->as_register(), left->as_register(), count); break;
2269         default: ShouldNotReachHere();
2270       }
2271     }
2272   } else if (dest->is_double_cpu()) {
2273     count = count & 63; // Java spec
2274     if (count == 0) { __ mr_if_needed(dest->as_pointer_register(), left->as_pointer_register()); }
2275     else {
2276       switch (code) {
2277         case lir_shl:  __ sldi(dest->as_pointer_register(), left->as_pointer_register(), count); break;
2278         case lir_shr:  __ sradi(dest->as_pointer_register(), left->as_pointer_register(), count); break;
2279         case lir_ushr: __ srdi(dest->as_pointer_register(), left->as_pointer_register(), count); break;
2280         default: ShouldNotReachHere();
2281       }
2282     }
2283   } else {
2284     ShouldNotReachHere();
2285   }
2286 }
2287 
2288 
2289 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
2290   if (op->init_check()) {
2291     if (!os::zero_page_read_protected() || !ImplicitNullChecks) {
2292       explicit_null_check(op->klass()->as_register(), op->stub()->info());
2293     } else {
2294       add_debug_info_for_null_check_here(op->stub()->info());
2295     }
2296     __ lbz(op->tmp1()->as_register(),
2297            in_bytes(InstanceKlass::init_state_offset()), op->klass()->as_register());
2298     __ cmpwi(CCR0, op->tmp1()->as_register(), InstanceKlass::fully_initialized);
2299     __ bc_far_optimized(Assembler::bcondCRbiIs0, __ bi0(CCR0, Assembler::equal), *op->stub()->entry());
2300   }
2301   __ allocate_object(op->obj()->as_register(),
2302                      op->tmp1()->as_register(),
2303                      op->tmp2()->as_register(),
2304                      op->tmp3()->as_register(),
2305                      op->header_size(),
2306                      op->object_size(),
2307                      op->klass()->as_register(),
2308                      *op->stub()->entry());
2309 
2310   __ bind(*op->stub()->continuation());
2311   __ verify_oop(op->obj()->as_register());
2312 }
2313 
2314 
2315 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
2316   LP64_ONLY( __ extsw(op->len()->as_register(), op->len()->as_register()); )
2317   if (UseSlowPath ||
2318       (!UseFastNewObjectArray && (is_reference_type(op->type()))) ||
2319       (!UseFastNewTypeArray   && (!is_reference_type(op->type())))) {
2320     __ b(*op->stub()->entry());
2321   } else {
2322     __ allocate_array(op->obj()->as_register(),
2323                       op->len()->as_register(),
2324                       op->tmp1()->as_register(),
2325                       op->tmp2()->as_register(),
2326                       op->tmp3()->as_register(),
2327                       arrayOopDesc::header_size(op->type()),
2328                       type2aelembytes(op->type()),
2329                       op->klass()->as_register(),
2330                       *op->stub()->entry());
2331   }
2332   __ bind(*op->stub()->continuation());
2333 }
2334 
2335 
2336 void LIR_Assembler::type_profile_helper(Register mdo, int mdo_offset_bias,
2337                                         ciMethodData *md, ciProfileData *data,
2338                                         Register recv, Register tmp1, Label* update_done) {
2339   uint i;
2340   for (i = 0; i < VirtualCallData::row_limit(); i++) {
2341     Label next_test;
2342     // See if the receiver is receiver[n].
2343     __ ld(tmp1, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) - mdo_offset_bias, mdo);
2344     __ verify_klass_ptr(tmp1);
2345     __ cmpd(CCR0, recv, tmp1);
2346     __ bne(CCR0, next_test);
2347 
2348     __ ld(tmp1, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) - mdo_offset_bias, mdo);
2349     __ addi(tmp1, tmp1, DataLayout::counter_increment);
2350     __ std(tmp1, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) - mdo_offset_bias, mdo);
2351     __ b(*update_done);
2352 
2353     __ bind(next_test);
2354   }
2355 
2356   // Didn't find receiver; find next empty slot and fill it in.
2357   for (i = 0; i < VirtualCallData::row_limit(); i++) {
2358     Label next_test;
2359     __ ld(tmp1, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) - mdo_offset_bias, mdo);
2360     __ cmpdi(CCR0, tmp1, 0);
2361     __ bne(CCR0, next_test);
2362     __ li(tmp1, DataLayout::counter_increment);
2363     __ std(recv, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) - mdo_offset_bias, mdo);
2364     __ std(tmp1, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) - mdo_offset_bias, mdo);
2365     __ b(*update_done);
2366 
2367     __ bind(next_test);
2368   }
2369 }
2370 
2371 
2372 void LIR_Assembler::setup_md_access(ciMethod* method, int bci,
2373                                     ciMethodData*& md, ciProfileData*& data, int& mdo_offset_bias) {
2374   md = method->method_data_or_null();
2375   assert(md != NULL, "Sanity");
2376   data = md->bci_to_data(bci);
2377   assert(data != NULL,       "need data for checkcast");
2378   assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
2379   if (!Assembler::is_simm16(md->byte_offset_of_slot(data, DataLayout::header_offset()) + data->size_in_bytes())) {
2380     // The offset is large so bias the mdo by the base of the slot so
2381     // that the ld can use simm16s to reference the slots of the data.
2382     mdo_offset_bias = md->byte_offset_of_slot(data, DataLayout::header_offset());
2383   }
2384 }
2385 
2386 
2387 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
2388   const Register obj = op->object()->as_register(); // Needs to live in this register at safepoint (patching stub).
2389   Register k_RInfo = op->tmp1()->as_register();
2390   Register klass_RInfo = op->tmp2()->as_register();
2391   Register Rtmp1 = op->tmp3()->as_register();
2392   Register dst = op->result_opr()->as_register();
2393   ciKlass* k = op->klass();
2394   bool should_profile = op->should_profile();
2395   // Attention: do_temp(opTypeCheck->_object) is not used, i.e. obj may be same as one of the temps.
2396   bool reg_conflict = false;
2397   if (obj == k_RInfo) {
2398     k_RInfo = dst;
2399     reg_conflict = true;
2400   } else if (obj == klass_RInfo) {
2401     klass_RInfo = dst;
2402     reg_conflict = true;
2403   } else if (obj == Rtmp1) {
2404     Rtmp1 = dst;
2405     reg_conflict = true;
2406   }
2407   assert_different_registers(obj, k_RInfo, klass_RInfo, Rtmp1);
2408 
2409   __ cmpdi(CCR0, obj, 0);
2410 
2411   ciMethodData* md = NULL;
2412   ciProfileData* data = NULL;
2413   int mdo_offset_bias = 0;
2414   if (should_profile) {
2415     ciMethod* method = op->profiled_method();
2416     assert(method != NULL, "Should have method");
2417     setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
2418 
2419     Register mdo      = k_RInfo;
2420     Register data_val = Rtmp1;
2421     Label not_null;
2422     __ bne(CCR0, not_null);
2423     metadata2reg(md->constant_encoding(), mdo);
2424     __ add_const_optimized(mdo, mdo, mdo_offset_bias, R0);
2425     __ lbz(data_val, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias, mdo);
2426     __ ori(data_val, data_val, BitData::null_seen_byte_constant());
2427     __ stb(data_val, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias, mdo);
2428     __ b(*obj_is_null);
2429     __ bind(not_null);
2430   } else {
2431     __ beq(CCR0, *obj_is_null);
2432   }
2433 
2434   // get object class
2435   __ load_klass(klass_RInfo, obj);
2436 
2437   if (k->is_loaded()) {
2438     metadata2reg(k->constant_encoding(), k_RInfo);
2439   } else {
2440     klass2reg_with_patching(k_RInfo, op->info_for_patch());
2441   }
2442 
2443   Label profile_cast_failure, failure_restore_obj, profile_cast_success;
2444   Label *failure_target = should_profile ? &profile_cast_failure : failure;
2445   Label *success_target = should_profile ? &profile_cast_success : success;
2446 
2447   if (op->fast_check()) {
2448     assert_different_registers(klass_RInfo, k_RInfo);
2449     __ cmpd(CCR0, k_RInfo, klass_RInfo);
2450     if (should_profile) {
2451       __ bne(CCR0, *failure_target);
2452       // Fall through to success case.
2453     } else {
2454       __ beq(CCR0, *success);
2455       // Fall through to failure case.
2456     }
2457   } else {
2458     bool need_slow_path = true;
2459     if (k->is_loaded()) {
2460       if ((int) k->super_check_offset() != in_bytes(Klass::secondary_super_cache_offset())) {
2461         need_slow_path = false;
2462       }
2463       // Perform the fast part of the checking logic.
2464       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, R0, (need_slow_path ? success_target : NULL),
2465                                        failure_target, NULL, RegisterOrConstant(k->super_check_offset()));
2466     } else {
2467       // Perform the fast part of the checking logic.
2468       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, R0, success_target, failure_target);
2469     }
2470     if (!need_slow_path) {
2471       if (!should_profile) { __ b(*success); }
2472     } else {
2473       // Call out-of-line instance of __ check_klass_subtype_slow_path(...):
2474       address entry = Runtime1::entry_for(Runtime1::slow_subtype_check_id);
2475       // Stub needs fixed registers (tmp1-3).
2476       Register original_k_RInfo = op->tmp1()->as_register();
2477       Register original_klass_RInfo = op->tmp2()->as_register();
2478       Register original_Rtmp1 = op->tmp3()->as_register();
2479       bool keep_obj_alive = reg_conflict && (op->code() == lir_checkcast);
2480       bool keep_klass_RInfo_alive = (obj == original_klass_RInfo) && should_profile;
2481       if (keep_obj_alive && (obj != original_Rtmp1)) { __ mr(R0, obj); }
2482       __ mr_if_needed(original_k_RInfo, k_RInfo);
2483       __ mr_if_needed(original_klass_RInfo, klass_RInfo);
2484       if (keep_obj_alive) { __ mr(dst, (obj == original_Rtmp1) ? obj : R0); }
2485       //__ load_const_optimized(original_Rtmp1, entry, R0);
2486       __ calculate_address_from_global_toc(original_Rtmp1, entry, true, true, false);
2487       __ mtctr(original_Rtmp1);
2488       __ bctrl(); // sets CR0
2489       if (keep_obj_alive) {
2490         if (keep_klass_RInfo_alive) { __ mr(R0, obj); }
2491         __ mr(obj, dst);
2492       }
2493       if (should_profile) {
2494         __ bne(CCR0, *failure_target);
2495         if (keep_klass_RInfo_alive) { __ mr(klass_RInfo, keep_obj_alive ? R0 : obj); }
2496         // Fall through to success case.
2497       } else {
2498         __ beq(CCR0, *success);
2499         // Fall through to failure case.
2500       }
2501     }
2502   }
2503 
2504   if (should_profile) {
2505     Register mdo = k_RInfo, recv = klass_RInfo;
2506     assert_different_registers(mdo, recv, Rtmp1);
2507     __ bind(profile_cast_success);
2508     metadata2reg(md->constant_encoding(), mdo);
2509     __ add_const_optimized(mdo, mdo, mdo_offset_bias, R0);
2510     type_profile_helper(mdo, mdo_offset_bias, md, data, recv, Rtmp1, success);
2511     __ b(*success);
2512 
2513     // Cast failure case.
2514     __ bind(profile_cast_failure);
2515     metadata2reg(md->constant_encoding(), mdo);
2516     __ add_const_optimized(mdo, mdo, mdo_offset_bias, R0);
2517     __ ld(Rtmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo);
2518     __ addi(Rtmp1, Rtmp1, -DataLayout::counter_increment);
2519     __ std(Rtmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo);
2520   }
2521 
2522   __ bind(*failure);
2523 }
2524 
2525 
2526 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
2527   LIR_Code code = op->code();
2528   if (code == lir_store_check) {
2529     Register value = op->object()->as_register();
2530     Register array = op->array()->as_register();
2531     Register k_RInfo = op->tmp1()->as_register();
2532     Register klass_RInfo = op->tmp2()->as_register();
2533     Register Rtmp1 = op->tmp3()->as_register();
2534     bool should_profile = op->should_profile();
2535 
2536     __ verify_oop(value);
2537     CodeStub* stub = op->stub();
2538     // Check if it needs to be profiled.
2539     ciMethodData* md = NULL;
2540     ciProfileData* data = NULL;
2541     int mdo_offset_bias = 0;
2542     if (should_profile) {
2543       ciMethod* method = op->profiled_method();
2544       assert(method != NULL, "Should have method");
2545       setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
2546     }
2547     Label profile_cast_success, failure, done;
2548     Label *success_target = should_profile ? &profile_cast_success : &done;
2549 
2550     __ cmpdi(CCR0, value, 0);
2551     if (should_profile) {
2552       Label not_null;
2553       __ bne(CCR0, not_null);
2554       Register mdo      = k_RInfo;
2555       Register data_val = Rtmp1;
2556       metadata2reg(md->constant_encoding(), mdo);
2557       __ add_const_optimized(mdo, mdo, mdo_offset_bias, R0);
2558       __ lbz(data_val, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias, mdo);
2559       __ ori(data_val, data_val, BitData::null_seen_byte_constant());
2560       __ stb(data_val, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias, mdo);
2561       __ b(done);
2562       __ bind(not_null);
2563     } else {
2564       __ beq(CCR0, done);
2565     }
2566     if (!os::zero_page_read_protected() || !ImplicitNullChecks) {
2567       explicit_null_check(array, op->info_for_exception());
2568     } else {
2569       add_debug_info_for_null_check_here(op->info_for_exception());
2570     }
2571     __ load_klass(k_RInfo, array);
2572     __ load_klass(klass_RInfo, value);
2573 
2574     // Get instance klass.
2575     __ ld(k_RInfo, in_bytes(ObjArrayKlass::element_klass_offset()), k_RInfo);
2576     // Perform the fast part of the checking logic.
2577     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, R0, success_target, &failure, NULL);
2578 
2579     // Call out-of-line instance of __ check_klass_subtype_slow_path(...):
2580     const address slow_path = Runtime1::entry_for(Runtime1::slow_subtype_check_id);
2581     //__ load_const_optimized(R0, slow_path);
2582     __ add_const_optimized(R0, R29_TOC, MacroAssembler::offset_to_global_toc(slow_path));
2583     __ mtctr(R0);
2584     __ bctrl(); // sets CR0
2585     if (!should_profile) {
2586       __ beq(CCR0, done);
2587       __ bind(failure);
2588     } else {
2589       __ bne(CCR0, failure);
2590       // Fall through to the success case.
2591 
2592       Register mdo  = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
2593       assert_different_registers(value, mdo, recv, tmp1);
2594       __ bind(profile_cast_success);
2595       metadata2reg(md->constant_encoding(), mdo);
2596       __ add_const_optimized(mdo, mdo, mdo_offset_bias, R0);
2597       __ load_klass(recv, value);
2598       type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &done);
2599       __ b(done);
2600 
2601       // Cast failure case.
2602       __ bind(failure);
2603       metadata2reg(md->constant_encoding(), mdo);
2604       __ add_const_optimized(mdo, mdo, mdo_offset_bias, R0);
2605       Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
2606       __ ld(tmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo);
2607       __ addi(tmp1, tmp1, -DataLayout::counter_increment);
2608       __ std(tmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo);
2609     }
2610     __ b(*stub->entry());
2611     __ bind(done);
2612 
2613   } else if (code == lir_checkcast) {
2614     Label success, failure;
2615     emit_typecheck_helper(op, &success, /*fallthru*/&failure, &success);
2616     __ b(*op->stub()->entry());
2617     __ align(32, 12);
2618     __ bind(success);
2619     __ mr_if_needed(op->result_opr()->as_register(), op->object()->as_register());
2620   } else if (code == lir_instanceof) {
2621     Register dst = op->result_opr()->as_register();
2622     Label success, failure, done;
2623     emit_typecheck_helper(op, &success, /*fallthru*/&failure, &failure);
2624     __ li(dst, 0);
2625     __ b(done);
2626     __ align(32, 12);
2627     __ bind(success);
2628     __ li(dst, 1);
2629     __ bind(done);
2630   } else {
2631     ShouldNotReachHere();
2632   }
2633 }
2634 
2635 
2636 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
2637   Register addr = op->addr()->as_pointer_register();
2638   Register cmp_value = noreg, new_value = noreg;
2639   bool is_64bit = false;
2640 
2641   if (op->code() == lir_cas_long) {
2642     cmp_value = op->cmp_value()->as_register_lo();
2643     new_value = op->new_value()->as_register_lo();
2644     is_64bit = true;
2645   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) {
2646     cmp_value = op->cmp_value()->as_register();
2647     new_value = op->new_value()->as_register();
2648     if (op->code() == lir_cas_obj) {
2649       if (UseCompressedOops) {
2650         Register t1 = op->tmp1()->as_register();
2651         Register t2 = op->tmp2()->as_register();
2652         cmp_value = __ encode_heap_oop(t1, cmp_value);
2653         new_value = __ encode_heap_oop(t2, new_value);
2654       } else {
2655         is_64bit = true;
2656       }
2657     }
2658   } else {
2659     Unimplemented();
2660   }
2661 
2662   if (is_64bit) {
2663     __ cmpxchgd(BOOL_RESULT, /*current_value=*/R0, cmp_value, new_value, addr,
2664                 MacroAssembler::MemBarNone,
2665                 MacroAssembler::cmpxchgx_hint_atomic_update(),
2666                 noreg, NULL, /*check without ldarx first*/true);
2667   } else {
2668     __ cmpxchgw(BOOL_RESULT, /*current_value=*/R0, cmp_value, new_value, addr,
2669                 MacroAssembler::MemBarNone,
2670                 MacroAssembler::cmpxchgx_hint_atomic_update(),
2671                 noreg, /*check without ldarx first*/true);
2672   }
2673 
2674   if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2675     __ isync();
2676   } else {
2677     __ sync();
2678   }
2679 }
2680 
2681 
2682 void LIR_Assembler::set_24bit_FPU() {
2683   Unimplemented();
2684 }
2685 
2686 void LIR_Assembler::reset_FPU() {
2687   Unimplemented();
2688 }
2689 
2690 
2691 void LIR_Assembler::breakpoint() {
2692   __ illtrap();
2693 }
2694 
2695 
2696 void LIR_Assembler::push(LIR_Opr opr) {
2697   Unimplemented();
2698 }
2699 
2700 void LIR_Assembler::pop(LIR_Opr opr) {
2701   Unimplemented();
2702 }
2703 
2704 
2705 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst_opr) {
2706   Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
2707   Register dst = dst_opr->as_register();
2708   Register reg = mon_addr.base();
2709   int offset = mon_addr.disp();
2710   // Compute pointer to BasicLock.
2711   __ add_const_optimized(dst, reg, offset);
2712 }
2713 
2714 
2715 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
2716   Register obj = op->obj_opr()->as_register();
2717   Register hdr = op->hdr_opr()->as_register();
2718   Register lock = op->lock_opr()->as_register();
2719 
2720   // Obj may not be an oop.
2721   if (op->code() == lir_lock) {
2722     MonitorEnterStub* stub = (MonitorEnterStub*)op->stub();
2723     if (UseFastLocking) {
2724       assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2725       // Add debug info for NullPointerException only if one is possible.
2726       if (op->info() != NULL) {
2727         if (!os::zero_page_read_protected() || !ImplicitNullChecks) {
2728           explicit_null_check(obj, op->info());
2729         } else {
2730           add_debug_info_for_null_check_here(op->info());
2731         }
2732       }
2733       __ lock_object(hdr, obj, lock, op->scratch_opr()->as_register(), *op->stub()->entry());
2734     } else {
2735       // always do slow locking
2736       // note: The slow locking code could be inlined here, however if we use
2737       //       slow locking, speed doesn't matter anyway and this solution is
2738       //       simpler and requires less duplicated code - additionally, the
2739       //       slow locking code is the same in either case which simplifies
2740       //       debugging.
2741       __ b(*op->stub()->entry());
2742     }
2743   } else {
2744     assert (op->code() == lir_unlock, "Invalid code, expected lir_unlock");
2745     if (UseFastLocking) {
2746       assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2747       __ unlock_object(hdr, obj, lock, *op->stub()->entry());
2748     } else {
2749       // always do slow unlocking
2750       // note: The slow unlocking code could be inlined here, however if we use
2751       //       slow unlocking, speed doesn't matter anyway and this solution is
2752       //       simpler and requires less duplicated code - additionally, the
2753       //       slow unlocking code is the same in either case which simplifies
2754       //       debugging.
2755       __ b(*op->stub()->entry());
2756     }
2757   }
2758   __ bind(*op->stub()->continuation());
2759 }
2760 
2761 
2762 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
2763   ciMethod* method = op->profiled_method();
2764   int bci          = op->profiled_bci();
2765   ciMethod* callee = op->profiled_callee();
2766 
2767   // Update counter for all call types.
2768   ciMethodData* md = method->method_data_or_null();
2769   assert(md != NULL, "Sanity");
2770   ciProfileData* data = md->bci_to_data(bci);
2771   assert(data != NULL && data->is_CounterData(), "need CounterData for calls");
2772   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
2773   Register mdo = op->mdo()->as_register();
2774 #ifdef _LP64
2775   assert(op->tmp1()->is_double_cpu(), "tmp1 must be allocated");
2776   Register tmp1 = op->tmp1()->as_register_lo();
2777 #else
2778   assert(op->tmp1()->is_single_cpu(), "tmp1 must be allocated");
2779   Register tmp1 = op->tmp1()->as_register();
2780 #endif
2781   metadata2reg(md->constant_encoding(), mdo);
2782   int mdo_offset_bias = 0;
2783   if (!Assembler::is_simm16(md->byte_offset_of_slot(data, CounterData::count_offset()) +
2784                             data->size_in_bytes())) {
2785     // The offset is large so bias the mdo by the base of the slot so
2786     // that the ld can use simm16s to reference the slots of the data.
2787     mdo_offset_bias = md->byte_offset_of_slot(data, CounterData::count_offset());
2788     __ add_const_optimized(mdo, mdo, mdo_offset_bias, R0);
2789   }
2790 
2791   // Perform additional virtual call profiling for invokevirtual and
2792   // invokeinterface bytecodes
2793   if (op->should_profile_receiver_type()) {
2794     assert(op->recv()->is_single_cpu(), "recv must be allocated");
2795     Register recv = op->recv()->as_register();
2796     assert_different_registers(mdo, tmp1, recv);
2797     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
2798     ciKlass* known_klass = op->known_holder();
2799     if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
2800       // We know the type that will be seen at this call site; we can
2801       // statically update the MethodData* rather than needing to do
2802       // dynamic tests on the receiver type.
2803 
2804       // NOTE: we should probably put a lock around this search to
2805       // avoid collisions by concurrent compilations.
2806       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
2807       uint i;
2808       for (i = 0; i < VirtualCallData::row_limit(); i++) {
2809         ciKlass* receiver = vc_data->receiver(i);
2810         if (known_klass->equals(receiver)) {
2811           __ ld(tmp1, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) - mdo_offset_bias, mdo);
2812           __ addi(tmp1, tmp1, DataLayout::counter_increment);
2813           __ std(tmp1, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) - mdo_offset_bias, mdo);
2814           return;
2815         }
2816       }
2817 
2818       // Receiver type not found in profile data; select an empty slot.
2819 
2820       // Note that this is less efficient than it should be because it
2821       // always does a write to the receiver part of the
2822       // VirtualCallData rather than just the first time.
2823       for (i = 0; i < VirtualCallData::row_limit(); i++) {
2824         ciKlass* receiver = vc_data->receiver(i);
2825         if (receiver == NULL) {
2826           metadata2reg(known_klass->constant_encoding(), tmp1);
2827           __ std(tmp1, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) - mdo_offset_bias, mdo);
2828 
2829           __ ld(tmp1, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) - mdo_offset_bias, mdo);
2830           __ addi(tmp1, tmp1, DataLayout::counter_increment);
2831           __ std(tmp1, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) - mdo_offset_bias, mdo);
2832           return;
2833         }
2834       }
2835     } else {
2836       __ load_klass(recv, recv);
2837       Label update_done;
2838       type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &update_done);
2839       // Receiver did not match any saved receiver and there is no empty row for it.
2840       // Increment total counter to indicate polymorphic case.
2841       __ ld(tmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo);
2842       __ addi(tmp1, tmp1, DataLayout::counter_increment);
2843       __ std(tmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo);
2844 
2845       __ bind(update_done);
2846     }
2847   } else {
2848     // Static call
2849     __ ld(tmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo);
2850     __ addi(tmp1, tmp1, DataLayout::counter_increment);
2851     __ std(tmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo);
2852   }
2853 }
2854 
2855 
2856 void LIR_Assembler::align_backward_branch_target() {
2857   __ align(32, 12); // Insert up to 3 nops to align with 32 byte boundary.
2858 }
2859 
2860 
2861 void LIR_Assembler::emit_delay(LIR_OpDelay* op) {
2862   Unimplemented();
2863 }
2864 
2865 
2866 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest, LIR_Opr tmp) {
2867   // tmp must be unused
2868   assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
2869   assert(left->is_register(), "can only handle registers");
2870 
2871   if (left->is_single_cpu()) {
2872     __ neg(dest->as_register(), left->as_register());
2873   } else if (left->is_single_fpu()) {
2874     __ fneg(dest->as_float_reg(), left->as_float_reg());
2875   } else if (left->is_double_fpu()) {
2876     __ fneg(dest->as_double_reg(), left->as_double_reg());
2877   } else {
2878     assert (left->is_double_cpu(), "Must be a long");
2879     __ neg(dest->as_register_lo(), left->as_register_lo());
2880   }
2881 }
2882 
2883 
2884 void LIR_Assembler::fxch(int i) {
2885   Unimplemented();
2886 }
2887 
2888 void LIR_Assembler::fld(int i) {
2889   Unimplemented();
2890 }
2891 
2892 void LIR_Assembler::ffree(int i) {
2893   Unimplemented();
2894 }
2895 
2896 
2897 void LIR_Assembler::rt_call(LIR_Opr result, address dest,
2898                             const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
2899   // Stubs: Called via rt_call, but dest is a stub address (no function descriptor).
2900   if (dest == Runtime1::entry_for(Runtime1::register_finalizer_id) ||
2901       dest == Runtime1::entry_for(Runtime1::new_multi_array_id   )) {
2902     //__ load_const_optimized(R0, dest);
2903     __ add_const_optimized(R0, R29_TOC, MacroAssembler::offset_to_global_toc(dest));
2904     __ mtctr(R0);
2905     __ bctrl();
2906     assert(info != NULL, "sanity");
2907     add_call_info_here(info);
2908     return;
2909   }
2910 
2911   __ call_c_with_frame_resize(dest, /*no resizing*/ 0);
2912   if (info != NULL) {
2913     add_call_info_here(info);
2914   }
2915 }
2916 
2917 
2918 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
2919   ShouldNotReachHere(); // Not needed on _LP64.
2920 }
2921 
2922 void LIR_Assembler::membar() {
2923   __ fence();
2924 }
2925 
2926 void LIR_Assembler::membar_acquire() {
2927   __ acquire();
2928 }
2929 
2930 void LIR_Assembler::membar_release() {
2931   __ release();
2932 }
2933 
2934 void LIR_Assembler::membar_loadload() {
2935   __ membar(Assembler::LoadLoad);
2936 }
2937 
2938 void LIR_Assembler::membar_storestore() {
2939   __ membar(Assembler::StoreStore);
2940 }
2941 
2942 void LIR_Assembler::membar_loadstore() {
2943   __ membar(Assembler::LoadStore);
2944 }
2945 
2946 void LIR_Assembler::membar_storeload() {
2947   __ membar(Assembler::StoreLoad);
2948 }
2949 
2950 void LIR_Assembler::on_spin_wait() {
2951   Unimplemented();
2952 }
2953 
2954 void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
2955   assert(patch_code == lir_patch_none, "Patch code not supported");
2956   LIR_Address* addr = addr_opr->as_address_ptr();
2957   assert(addr->scale() == LIR_Address::times_1, "no scaling on this platform");
2958   if (addr->index()->is_illegal()) {
2959     __ add_const_optimized(dest->as_pointer_register(), addr->base()->as_pointer_register(), addr->disp());
2960   } else {
2961     assert(addr->disp() == 0, "can't have both: index and disp");
2962     __ add(dest->as_pointer_register(), addr->index()->as_pointer_register(), addr->base()->as_pointer_register());
2963   }
2964 }
2965 
2966 
2967 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
2968   ShouldNotReachHere();
2969 }
2970 
2971 
2972 #ifdef ASSERT
2973 // Emit run-time assertion.
2974 void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
2975   Unimplemented();
2976 }
2977 #endif
2978 
2979 
2980 void LIR_Assembler::peephole(LIR_List* lir) {
2981   // Optimize instruction pairs before emitting.
2982   LIR_OpList* inst = lir->instructions_list();
2983   for (int i = 1; i < inst->length(); i++) {
2984     LIR_Op* op = inst->at(i);
2985 
2986     // 2 register-register-moves
2987     if (op->code() == lir_move) {
2988       LIR_Opr in2  = ((LIR_Op1*)op)->in_opr(),
2989               res2 = ((LIR_Op1*)op)->result_opr();
2990       if (in2->is_register() && res2->is_register()) {
2991         LIR_Op* prev = inst->at(i - 1);
2992         if (prev && prev->code() == lir_move) {
2993           LIR_Opr in1  = ((LIR_Op1*)prev)->in_opr(),
2994                   res1 = ((LIR_Op1*)prev)->result_opr();
2995           if (in1->is_same_register(res2) && in2->is_same_register(res1)) {
2996             inst->remove_at(i);
2997           }
2998         }
2999       }
3000     }
3001 
3002   }
3003   return;
3004 }
3005 
3006 
3007 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) {
3008   const LIR_Address *addr = src->as_address_ptr();
3009   assert(addr->disp() == 0 && addr->index()->is_illegal(), "use leal!");
3010   const Register Rptr = addr->base()->as_pointer_register(),
3011                  Rtmp = tmp->as_register();
3012   Register Rco = noreg;
3013   if (UseCompressedOops && data->is_oop()) {
3014     Rco = __ encode_heap_oop(Rtmp, data->as_register());
3015   }
3016 
3017   Label Lretry;
3018   __ bind(Lretry);
3019 
3020   if (data->type() == T_INT) {
3021     const Register Rold = dest->as_register(),
3022                    Rsrc = data->as_register();
3023     assert_different_registers(Rptr, Rtmp, Rold, Rsrc);
3024     __ lwarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
3025     if (code == lir_xadd) {
3026       __ add(Rtmp, Rsrc, Rold);
3027       __ stwcx_(Rtmp, Rptr);
3028     } else {
3029       __ stwcx_(Rsrc, Rptr);
3030     }
3031   } else if (data->is_oop()) {
3032     assert(code == lir_xchg, "xadd for oops");
3033     const Register Rold = dest->as_register();
3034     if (UseCompressedOops) {
3035       assert_different_registers(Rptr, Rold, Rco);
3036       __ lwarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
3037       __ stwcx_(Rco, Rptr);
3038     } else {
3039       const Register Robj = data->as_register();
3040       assert_different_registers(Rptr, Rold, Robj);
3041       __ ldarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
3042       __ stdcx_(Robj, Rptr);
3043     }
3044   } else if (data->type() == T_LONG) {
3045     const Register Rold = dest->as_register_lo(),
3046                    Rsrc = data->as_register_lo();
3047     assert_different_registers(Rptr, Rtmp, Rold, Rsrc);
3048     __ ldarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
3049     if (code == lir_xadd) {
3050       __ add(Rtmp, Rsrc, Rold);
3051       __ stdcx_(Rtmp, Rptr);
3052     } else {
3053       __ stdcx_(Rsrc, Rptr);
3054     }
3055   } else {
3056     ShouldNotReachHere();
3057   }
3058 
3059   if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
3060     __ bne_predict_not_taken(CCR0, Lretry);
3061   } else {
3062     __ bne(                  CCR0, Lretry);
3063   }
3064 
3065   if (UseCompressedOops && data->is_oop()) {
3066     __ decode_heap_oop(dest->as_register());
3067   }
3068 }
3069 
3070 
3071 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) {
3072   Register obj = op->obj()->as_register();
3073   Register tmp = op->tmp()->as_pointer_register();
3074   LIR_Address* mdo_addr = op->mdp()->as_address_ptr();
3075   ciKlass* exact_klass = op->exact_klass();
3076   intptr_t current_klass = op->current_klass();
3077   bool not_null = op->not_null();
3078   bool no_conflict = op->no_conflict();
3079 
3080   Label Lupdate, Ldo_update, Ldone;
3081 
3082   bool do_null = !not_null;
3083   bool exact_klass_set = exact_klass != NULL && ciTypeEntries::valid_ciklass(current_klass) == exact_klass;
3084   bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set;
3085 
3086   assert(do_null || do_update, "why are we here?");
3087   assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?");
3088 
3089   __ verify_oop(obj);
3090 
3091   if (do_null) {
3092     if (!TypeEntries::was_null_seen(current_klass)) {
3093       __ cmpdi(CCR0, obj, 0);
3094       __ bne(CCR0, Lupdate);
3095       __ ld(R0, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register());
3096       __ ori(R0, R0, TypeEntries::null_seen);
3097       if (do_update) {
3098         __ b(Ldo_update);
3099       } else {
3100         __ std(R0, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register());
3101       }
3102     } else {
3103       if (do_update) {
3104         __ cmpdi(CCR0, obj, 0);
3105         __ beq(CCR0, Ldone);
3106       }
3107     }
3108 #ifdef ASSERT
3109   } else {
3110     __ cmpdi(CCR0, obj, 0);
3111     __ bne(CCR0, Lupdate);
3112     __ stop("unexpect null obj", 0x9652);
3113 #endif
3114   }
3115 
3116   __ bind(Lupdate);
3117   if (do_update) {
3118     Label Lnext;
3119     const Register klass = R29_TOC; // kill and reload
3120     bool klass_reg_used = false;
3121 #ifdef ASSERT
3122     if (exact_klass != NULL) {
3123       Label ok;
3124       klass_reg_used = true;
3125       __ load_klass(klass, obj);
3126       metadata2reg(exact_klass->constant_encoding(), R0);
3127       __ cmpd(CCR0, klass, R0);
3128       __ beq(CCR0, ok);
3129       __ stop("exact klass and actual klass differ", 0x8564);
3130       __ bind(ok);
3131     }
3132 #endif
3133 
3134     if (!no_conflict) {
3135       if (exact_klass == NULL || TypeEntries::is_type_none(current_klass)) {
3136         klass_reg_used = true;
3137         if (exact_klass != NULL) {
3138           __ ld(tmp, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register());
3139           metadata2reg(exact_klass->constant_encoding(), klass);
3140         } else {
3141           __ load_klass(klass, obj);
3142           __ ld(tmp, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register()); // may kill obj
3143         }
3144 
3145         // Like InterpreterMacroAssembler::profile_obj_type
3146         __ clrrdi(R0, tmp, exact_log2(-TypeEntries::type_klass_mask));
3147         // Basically same as andi(R0, tmp, TypeEntries::type_klass_mask);
3148         __ cmpd(CCR1, R0, klass);
3149         // Klass seen before, nothing to do (regardless of unknown bit).
3150         //beq(CCR1, do_nothing);
3151 
3152         __ andi_(R0, klass, TypeEntries::type_unknown);
3153         // Already unknown. Nothing to do anymore.
3154         //bne(CCR0, do_nothing);
3155         __ crorc(CCR0, Assembler::equal, CCR1, Assembler::equal); // cr0 eq = cr1 eq or cr0 ne
3156         __ beq(CCR0, Lnext);
3157 
3158         if (TypeEntries::is_type_none(current_klass)) {
3159           __ clrrdi_(R0, tmp, exact_log2(-TypeEntries::type_mask));
3160           __ orr(R0, klass, tmp); // Combine klass and null_seen bit (only used if (tmp & type_mask)==0).
3161           __ beq(CCR0, Ldo_update); // First time here. Set profile type.
3162         }
3163 
3164       } else {
3165         assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
3166                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only");
3167 
3168         __ ld(tmp, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register());
3169         __ andi_(R0, tmp, TypeEntries::type_unknown);
3170         // Already unknown. Nothing to do anymore.
3171         __ bne(CCR0, Lnext);
3172       }
3173 
3174       // Different than before. Cannot keep accurate profile.
3175       __ ori(R0, tmp, TypeEntries::type_unknown);
3176     } else {
3177       // There's a single possible klass at this profile point
3178       assert(exact_klass != NULL, "should be");
3179       __ ld(tmp, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register());
3180 
3181       if (TypeEntries::is_type_none(current_klass)) {
3182         klass_reg_used = true;
3183         metadata2reg(exact_klass->constant_encoding(), klass);
3184 
3185         __ clrrdi(R0, tmp, exact_log2(-TypeEntries::type_klass_mask));
3186         // Basically same as andi(R0, tmp, TypeEntries::type_klass_mask);
3187         __ cmpd(CCR1, R0, klass);
3188         // Klass seen before, nothing to do (regardless of unknown bit).
3189         __ beq(CCR1, Lnext);
3190 #ifdef ASSERT
3191         {
3192           Label ok;
3193           __ clrrdi_(R0, tmp, exact_log2(-TypeEntries::type_mask));
3194           __ beq(CCR0, ok); // First time here.
3195 
3196           __ stop("unexpected profiling mismatch", 0x7865);
3197           __ bind(ok);
3198         }
3199 #endif
3200         // First time here. Set profile type.
3201         __ orr(R0, klass, tmp); // Combine klass and null_seen bit (only used if (tmp & type_mask)==0).
3202       } else {
3203         assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
3204                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent");
3205 
3206         // Already unknown. Nothing to do anymore.
3207         __ andi_(R0, tmp, TypeEntries::type_unknown);
3208         __ bne(CCR0, Lnext);
3209 
3210         // Different than before. Cannot keep accurate profile.
3211         __ ori(R0, tmp, TypeEntries::type_unknown);
3212       }
3213     }
3214 
3215     __ bind(Ldo_update);
3216     __ std(R0, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register());
3217 
3218     __ bind(Lnext);
3219     if (klass_reg_used) { __ load_const_optimized(R29_TOC, MacroAssembler::global_toc(), R0); } // reinit
3220   }
3221   __ bind(Ldone);
3222 }
3223 
3224 
3225 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
3226   assert(op->crc()->is_single_cpu(), "crc must be register");
3227   assert(op->val()->is_single_cpu(), "byte value must be register");
3228   assert(op->result_opr()->is_single_cpu(), "result must be register");
3229   Register crc = op->crc()->as_register();
3230   Register val = op->val()->as_register();
3231   Register res = op->result_opr()->as_register();
3232 
3233   assert_different_registers(val, crc, res);
3234 
3235   __ load_const_optimized(res, StubRoutines::crc_table_addr(), R0);
3236   __ kernel_crc32_singleByteReg(crc, val, res, true);
3237   __ mr(res, crc);
3238 }
3239 
3240 #undef __