< prev index next >
src/share/vm/oops/oop.inline.hpp
Print this page
rev 9803 : 8146401: Clean up oop.hpp: add inline directives and fix header files
@@ -1,7 +1,7 @@
/*
- * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
+ * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
@@ -39,46 +39,94 @@
#include "runtime/atomic.inline.hpp"
#include "runtime/orderAccess.inline.hpp"
#include "runtime/os.hpp"
#include "utilities/macros.hpp"
+inline void update_barrier_set(void* p, oop v, bool release = false) {
+ assert(oopDesc::bs() != NULL, "Uninitialized bs in oop!");
+ oopDesc::bs()->write_ref_field(p, v, release);
+}
+
+template <class T> inline void update_barrier_set_pre(T* p, oop v) {
+ oopDesc::bs()->write_ref_field_pre(p, v);
+}
+
+template <class T> void oop_store(T* p, oop v) {
+ if (always_do_update_barrier) {
+ oop_store((volatile T*)p, v);
+ } else {
+ update_barrier_set_pre(p, v);
+ oopDesc::encode_store_heap_oop(p, v);
+ // always_do_update_barrier == false =>
+ // Either we are at a safepoint (in GC) or CMS is not used. In both
+ // cases it's unnecessary to mark the card as dirty with release sematics.
+ update_barrier_set((void*)p, v, false /* release */); // cast away type
+ }
+}
+
+template <class T> void oop_store(volatile T* p, oop v) {
+ update_barrier_set_pre((T*)p, v); // cast away volatile
+ // Used by release_obj_field_put, so use release_store_ptr.
+ oopDesc::release_encode_store_heap_oop(p, v);
+ // When using CMS we must mark the card corresponding to p as dirty
+ // with release sematics to prevent that CMS sees the dirty card but
+ // not the new value v at p due to reordering of the two
+ // stores. Note that CMS has a concurrent precleaning phase, where
+ // it reads the card table while the Java threads are running.
+ update_barrier_set((void*)p, v, true /* release */); // cast away type
+}
+
+// Should replace *addr = oop assignments where addr type depends on UseCompressedOops
+// (without having to remember the function name this calls).
+inline void oop_store_raw(HeapWord* addr, oop value) {
+ if (UseCompressedOops) {
+ oopDesc::encode_store_heap_oop((narrowOop*)addr, value);
+ } else {
+ oopDesc::encode_store_heap_oop((oop*)addr, value);
+ }
+}
+
// Implementation of all inlined member functions defined in oop.hpp
// We need a separate file to avoid circular references
-inline void oopDesc::release_set_mark(markOop m) {
+void oopDesc::release_set_mark(markOop m) {
OrderAccess::release_store_ptr(&_mark, m);
}
-inline markOop oopDesc::cas_set_mark(markOop new_mark, markOop old_mark) {
+markOop oopDesc::cas_set_mark(markOop new_mark, markOop old_mark) {
return (markOop) Atomic::cmpxchg_ptr(new_mark, &_mark, old_mark);
}
+void oopDesc::init_mark() {
+ set_mark(markOopDesc::prototype_for_object(this));
+}
+
inline Klass* oopDesc::klass() const {
if (UseCompressedClassPointers) {
return Klass::decode_klass_not_null(_metadata._compressed_klass);
} else {
return _metadata._klass;
}
}
-inline Klass* oopDesc::klass_or_null() const volatile {
+Klass* oopDesc::klass_or_null() const volatile {
// can be NULL in CMS
if (UseCompressedClassPointers) {
return Klass::decode_klass(_metadata._compressed_klass);
} else {
return _metadata._klass;
}
}
-inline Klass** oopDesc::klass_addr() {
+Klass** oopDesc::klass_addr() {
// Only used internally and with CMS and will not work with
// UseCompressedOops
assert(!UseCompressedClassPointers, "only supported with uncompressed klass pointers");
return (Klass**) &_metadata._klass;
}
-inline narrowKlass* oopDesc::compressed_klass_addr() {
+narrowKlass* oopDesc::compressed_klass_addr() {
assert(UseCompressedClassPointers, "only called by compressed klass pointers");
return &_metadata._compressed_klass;
}
inline void oopDesc::set_klass(Klass* k) {
@@ -90,85 +138,182 @@
} else {
*klass_addr() = k;
}
}
-inline int oopDesc::klass_gap() const {
+int oopDesc::klass_gap() const {
return *(int*)(((intptr_t)this) + klass_gap_offset_in_bytes());
}
inline void oopDesc::set_klass_gap(int v) {
if (UseCompressedClassPointers) {
*(int*)(((intptr_t)this) + klass_gap_offset_in_bytes()) = v;
}
}
-inline void oopDesc::set_klass_to_list_ptr(oop k) {
+void oopDesc::set_klass_to_list_ptr(oop k) {
// This is only to be used during GC, for from-space objects, so no
// barrier is needed.
if (UseCompressedClassPointers) {
_metadata._compressed_klass = (narrowKlass)encode_heap_oop(k); // may be null (parnew overflow handling)
} else {
_metadata._klass = (Klass*)(address)k;
}
}
-inline oop oopDesc::list_ptr_from_klass() {
+oop oopDesc::list_ptr_from_klass() {
// This is only to be used during GC, for from-space objects.
if (UseCompressedClassPointers) {
return decode_heap_oop((narrowOop)_metadata._compressed_klass);
} else {
// Special case for GC
return (oop)(address)_metadata._klass;
}
}
-inline void oopDesc::init_mark() { set_mark(markOopDesc::prototype_for_object(this)); }
+bool oopDesc::is_a(Klass* k) const {
+ return klass()->is_subtype_of(k);
+}
+
+inline int oopDesc::size() {
+ return size_given_klass(klass());
+}
+
+int oopDesc::size_given_klass(Klass* klass) {
+ int lh = klass->layout_helper();
+ int s;
+
+ // lh is now a value computed at class initialization that may hint
+ // at the size. For instances, this is positive and equal to the
+ // size. For arrays, this is negative and provides log2 of the
+ // array element size. For other oops, it is zero and thus requires
+ // a virtual call.
+ //
+ // We go to all this trouble because the size computation is at the
+ // heart of phase 2 of mark-compaction, and called for every object,
+ // alive or dead. So the speed here is equal in importance to the
+ // speed of allocation.
-inline bool oopDesc::is_a(Klass* k) const { return klass()->is_subtype_of(k); }
+ if (lh > Klass::_lh_neutral_value) {
+ if (!Klass::layout_helper_needs_slow_path(lh)) {
+ s = lh >> LogHeapWordSize; // deliver size scaled by wordSize
+ } else {
+ s = klass->oop_size(this);
+ }
+ } else if (lh <= Klass::_lh_neutral_value) {
+ // The most common case is instances; fall through if so.
+ if (lh < Klass::_lh_neutral_value) {
+ // Second most common case is arrays. We have to fetch the
+ // length of the array, shift (multiply) it appropriately,
+ // up to wordSize, add the header, and align to object size.
+ size_t size_in_bytes;
+#ifdef _M_IA64
+ // The Windows Itanium Aug 2002 SDK hoists this load above
+ // the check for s < 0. An oop at the end of the heap will
+ // cause an access violation if this load is performed on a non
+ // array oop. Making the reference volatile prohibits this.
+ // (%%% please explain by what magic the length is actually fetched!)
+ volatile int *array_length;
+ array_length = (volatile int *)( (intptr_t)this +
+ arrayOopDesc::length_offset_in_bytes() );
+ assert(array_length > 0, "Integer arithmetic problem somewhere");
+ // Put into size_t to avoid overflow.
+ size_in_bytes = (size_t) array_length;
+ size_in_bytes = size_in_bytes << Klass::layout_helper_log2_element_size(lh);
+#else
+ size_t array_length = (size_t) ((arrayOop)this)->length();
+ size_in_bytes = array_length << Klass::layout_helper_log2_element_size(lh);
+#endif
+ size_in_bytes += Klass::layout_helper_header_size(lh);
-inline bool oopDesc::is_instance() const {
- return klass()->is_instance_klass();
+ // This code could be simplified, but by keeping array_header_in_bytes
+ // in units of bytes and doing it this way we can round up just once,
+ // skipping the intermediate round to HeapWordSize. Cast the result
+ // of round_to to size_t to guarantee unsigned division == right shift.
+ s = (int)((size_t)round_to(size_in_bytes, MinObjAlignmentInBytes) /
+ HeapWordSize);
+
+ // ParNew (used by CMS), UseParallelGC and UseG1GC can change the length field
+ // of an "old copy" of an object array in the young gen so it indicates
+ // the grey portion of an already copied array. This will cause the first
+ // disjunct below to fail if the two comparands are computed across such
+ // a concurrent change.
+ // ParNew also runs with promotion labs (which look like int
+ // filler arrays) which are subject to changing their declared size
+ // when finally retiring a PLAB; this also can cause the first disjunct
+ // to fail for another worker thread that is concurrently walking the block
+ // offset table. Both these invariant failures are benign for their
+ // current uses; we relax the assertion checking to cover these two cases below:
+ // is_objArray() && is_forwarded() // covers first scenario above
+ // || is_typeArray() // covers second scenario above
+ // If and when UseParallelGC uses the same obj array oop stealing/chunking
+ // technique, we will need to suitably modify the assertion.
+ assert((s == klass->oop_size(this)) ||
+ (Universe::heap()->is_gc_active() &&
+ ((is_typeArray() && UseConcMarkSweepGC) ||
+ (is_objArray() && is_forwarded() && (UseConcMarkSweepGC || UseParallelGC || UseG1GC)))),
+ "wrong array object size");
+ } else {
+ // Must be zero, so bite the bullet and take the virtual call.
+ s = klass->oop_size(this);
+ }
+ }
+
+ assert(s % MinObjAlignment == 0, "alignment check");
+ assert(s > 0, "Bad size calculated");
+ return s;
}
+bool oopDesc::is_instance() const { return klass()->is_instance_klass(); }
inline bool oopDesc::is_array() const { return klass()->is_array_klass(); }
-inline bool oopDesc::is_objArray() const { return klass()->is_objArray_klass(); }
-inline bool oopDesc::is_typeArray() const { return klass()->is_typeArray_klass(); }
+bool oopDesc::is_objArray() const { return klass()->is_objArray_klass(); }
+bool oopDesc::is_typeArray() const { return klass()->is_typeArray_klass(); }
+
+void* oopDesc::field_base(int offset) const { return (void*)&((char*)this)[offset]; }
-inline void* oopDesc::field_base(int offset) const { return (void*)&((char*)this)[offset]; }
+jbyte* oopDesc::byte_field_addr(int offset) const { return (jbyte*) field_base(offset); }
+jchar* oopDesc::char_field_addr(int offset) const { return (jchar*) field_base(offset); }
+jboolean* oopDesc::bool_field_addr(int offset) const { return (jboolean*) field_base(offset); }
+jint* oopDesc::int_field_addr(int offset) const { return (jint*) field_base(offset); }
+jshort* oopDesc::short_field_addr(int offset) const { return (jshort*) field_base(offset); }
+jlong* oopDesc::long_field_addr(int offset) const { return (jlong*) field_base(offset); }
+jfloat* oopDesc::float_field_addr(int offset) const { return (jfloat*) field_base(offset); }
+jdouble* oopDesc::double_field_addr(int offset) const { return (jdouble*) field_base(offset); }
+Metadata** oopDesc::metadata_field_addr(int offset) const { return (Metadata**)field_base(offset); }
-template <class T> inline T* oopDesc::obj_field_addr(int offset) const { return (T*)field_base(offset); }
-inline Metadata** oopDesc::metadata_field_addr(int offset) const { return (Metadata**)field_base(offset); }
-inline jbyte* oopDesc::byte_field_addr(int offset) const { return (jbyte*) field_base(offset); }
-inline jchar* oopDesc::char_field_addr(int offset) const { return (jchar*) field_base(offset); }
-inline jboolean* oopDesc::bool_field_addr(int offset) const { return (jboolean*)field_base(offset); }
-inline jint* oopDesc::int_field_addr(int offset) const { return (jint*) field_base(offset); }
-inline jshort* oopDesc::short_field_addr(int offset) const { return (jshort*) field_base(offset); }
-inline jlong* oopDesc::long_field_addr(int offset) const { return (jlong*) field_base(offset); }
-inline jfloat* oopDesc::float_field_addr(int offset) const { return (jfloat*) field_base(offset); }
-inline jdouble* oopDesc::double_field_addr(int offset) const { return (jdouble*) field_base(offset); }
-inline address* oopDesc::address_field_addr(int offset) const { return (address*) field_base(offset); }
+template <class T> T* oopDesc::obj_field_addr(int offset) const { return (T*) field_base(offset); }
+address* oopDesc::address_field_addr(int offset) const { return (address*) field_base(offset); }
// Functions for getting and setting oops within instance objects.
// If the oops are compressed, the type passed to these overloaded functions
// is narrowOop. All functions are overloaded so they can be called by
// template functions without conditionals (the compiler instantiates via
// the right type and inlines the appopriate code).
-inline bool oopDesc::is_null(oop obj) { return obj == NULL; }
-inline bool oopDesc::is_null(narrowOop obj) { return obj == 0; }
-
// Algorithm for encoding and decoding oops from 64 bit pointers to 32 bit
// offset from the heap base. Saving the check for null can save instructions
// in inner GC loops so these are separated.
inline bool check_obj_alignment(oop obj) {
return cast_from_oop<intptr_t>(obj) % MinObjAlignmentInBytes == 0;
}
-inline narrowOop oopDesc::encode_heap_oop_not_null(oop v) {
+inline oop oopDesc::decode_heap_oop_not_null(narrowOop v) {
+ assert(!is_null(v), "narrow oop value can never be zero");
+ address base = Universe::narrow_oop_base();
+ int shift = Universe::narrow_oop_shift();
+ oop result = (oop)(void*)((uintptr_t)base + ((uintptr_t)v << shift));
+ assert(check_obj_alignment(result), "address not aligned: " INTPTR_FORMAT, p2i((void*) result));
+ return result;
+}
+
+inline oop oopDesc::decode_heap_oop(narrowOop v) {
+ return is_null(v) ? (oop)NULL : decode_heap_oop_not_null(v);
+}
+
+narrowOop oopDesc::encode_heap_oop_not_null(oop v) {
assert(!is_null(v), "oop value can never be zero");
assert(check_obj_alignment(v), "Address not aligned");
assert(Universe::heap()->is_in_reserved(v), "Address not in heap");
address base = Universe::narrow_oop_base();
int shift = Universe::narrow_oop_shift();
@@ -182,92 +327,56 @@
inline narrowOop oopDesc::encode_heap_oop(oop v) {
return (is_null(v)) ? (narrowOop)0 : encode_heap_oop_not_null(v);
}
-inline oop oopDesc::decode_heap_oop_not_null(narrowOop v) {
- assert(!is_null(v), "narrow oop value can never be zero");
- address base = Universe::narrow_oop_base();
- int shift = Universe::narrow_oop_shift();
- oop result = (oop)(void*)((uintptr_t)base + ((uintptr_t)v << shift));
- assert(check_obj_alignment(result), "address not aligned: " INTPTR_FORMAT, p2i((void*) result));
- return result;
-}
-
-inline oop oopDesc::decode_heap_oop(narrowOop v) {
- return is_null(v) ? (oop)NULL : decode_heap_oop_not_null(v);
-}
-
-inline oop oopDesc::decode_heap_oop_not_null(oop v) { return v; }
-inline oop oopDesc::decode_heap_oop(oop v) { return v; }
-
-// Load an oop out of the Java heap as is without decoding.
-// Called by GC to check for null before decoding.
-inline oop oopDesc::load_heap_oop(oop* p) { return *p; }
-inline narrowOop oopDesc::load_heap_oop(narrowOop* p) { return *p; }
-
// Load and decode an oop out of the Java heap into a wide oop.
-inline oop oopDesc::load_decode_heap_oop_not_null(oop* p) { return *p; }
-inline oop oopDesc::load_decode_heap_oop_not_null(narrowOop* p) {
+oop oopDesc::load_decode_heap_oop_not_null(narrowOop* p) {
return decode_heap_oop_not_null(*p);
}
// Load and decode an oop out of the heap accepting null
-inline oop oopDesc::load_decode_heap_oop(oop* p) { return *p; }
-inline oop oopDesc::load_decode_heap_oop(narrowOop* p) {
+oop oopDesc::load_decode_heap_oop(narrowOop* p) {
return decode_heap_oop(*p);
}
-// Store already encoded heap oop into the heap.
-inline void oopDesc::store_heap_oop(oop* p, oop v) { *p = v; }
-inline void oopDesc::store_heap_oop(narrowOop* p, narrowOop v) { *p = v; }
-
// Encode and store a heap oop.
-inline void oopDesc::encode_store_heap_oop_not_null(narrowOop* p, oop v) {
+void oopDesc::encode_store_heap_oop_not_null(narrowOop* p, oop v) {
*p = encode_heap_oop_not_null(v);
}
-inline void oopDesc::encode_store_heap_oop_not_null(oop* p, oop v) { *p = v; }
// Encode and store a heap oop allowing for null.
-inline void oopDesc::encode_store_heap_oop(narrowOop* p, oop v) {
+void oopDesc::encode_store_heap_oop(narrowOop* p, oop v) {
*p = encode_heap_oop(v);
}
-inline void oopDesc::encode_store_heap_oop(oop* p, oop v) { *p = v; }
// Store heap oop as is for volatile fields.
-inline void oopDesc::release_store_heap_oop(volatile oop* p, oop v) {
+void oopDesc::release_store_heap_oop(volatile oop* p, oop v) {
OrderAccess::release_store_ptr(p, v);
}
-inline void oopDesc::release_store_heap_oop(volatile narrowOop* p,
- narrowOop v) {
+void oopDesc::release_store_heap_oop(volatile narrowOop* p, narrowOop v) {
OrderAccess::release_store(p, v);
}
-inline void oopDesc::release_encode_store_heap_oop_not_null(
- volatile narrowOop* p, oop v) {
+void oopDesc::release_encode_store_heap_oop_not_null(volatile narrowOop* p, oop v) {
// heap oop is not pointer sized.
OrderAccess::release_store(p, encode_heap_oop_not_null(v));
}
-
-inline void oopDesc::release_encode_store_heap_oop_not_null(
- volatile oop* p, oop v) {
+void oopDesc::release_encode_store_heap_oop_not_null(volatile oop* p, oop v) {
OrderAccess::release_store_ptr(p, v);
}
-inline void oopDesc::release_encode_store_heap_oop(volatile oop* p,
- oop v) {
+void oopDesc::release_encode_store_heap_oop(volatile oop* p, oop v) {
OrderAccess::release_store_ptr(p, v);
}
-inline void oopDesc::release_encode_store_heap_oop(
- volatile narrowOop* p, oop v) {
+void oopDesc::release_encode_store_heap_oop(volatile narrowOop* p, oop v) {
OrderAccess::release_store(p, encode_heap_oop(v));
}
-
// These functions are only used to exchange oop fields in instances,
// not headers.
-inline oop oopDesc::atomic_exchange_oop(oop exchange_value, volatile HeapWord *dest) {
+oop oopDesc::atomic_exchange_oop(oop exchange_value, volatile HeapWord *dest) {
if (UseCompressedOops) {
// encode exchange value from oop to T
narrowOop val = encode_heap_oop(exchange_value);
narrowOop old = (narrowOop)Atomic::xchg(val, (narrowOop*)dest);
// decode old from T to oop
@@ -275,284 +384,139 @@
} else {
return (oop)Atomic::xchg_ptr(exchange_value, (oop*)dest);
}
}
+oop oopDesc::atomic_compare_exchange_oop(oop exchange_value,
+ volatile HeapWord *dest,
+ oop compare_value,
+ bool prebarrier) {
+ if (UseCompressedOops) {
+ if (prebarrier) {
+ update_barrier_set_pre((narrowOop*)dest, exchange_value);
+ }
+ // encode exchange and compare value from oop to T
+ narrowOop val = encode_heap_oop(exchange_value);
+ narrowOop cmp = encode_heap_oop(compare_value);
+
+ narrowOop old = (narrowOop) Atomic::cmpxchg(val, (narrowOop*)dest, cmp);
+ // decode old from T to oop
+ return decode_heap_oop(old);
+ } else {
+ if (prebarrier) {
+ update_barrier_set_pre((oop*)dest, exchange_value);
+ }
+ return (oop)Atomic::cmpxchg_ptr(exchange_value, (oop*)dest, compare_value);
+ }
+}
+
// In order to put or get a field out of an instance, must first check
// if the field has been compressed and uncompress it.
-inline oop oopDesc::obj_field(int offset) const {
+oop oopDesc::obj_field(int offset) const {
return UseCompressedOops ?
load_decode_heap_oop(obj_field_addr<narrowOop>(offset)) :
load_decode_heap_oop(obj_field_addr<oop>(offset));
}
-inline void oopDesc::obj_field_put(int offset, oop value) {
+void oopDesc::obj_field_put(int offset, oop value) {
UseCompressedOops ? oop_store(obj_field_addr<narrowOop>(offset), value) :
oop_store(obj_field_addr<oop>(offset), value);
}
-inline Metadata* oopDesc::metadata_field(int offset) const {
- return *metadata_field_addr(offset);
-}
-
-inline void oopDesc::metadata_field_put(int offset, Metadata* value) {
- *metadata_field_addr(offset) = value;
-}
-
-inline void oopDesc::obj_field_put_raw(int offset, oop value) {
+void oopDesc::obj_field_put_raw(int offset, oop value) {
UseCompressedOops ?
encode_store_heap_oop(obj_field_addr<narrowOop>(offset), value) :
encode_store_heap_oop(obj_field_addr<oop>(offset), value);
}
-inline void oopDesc::obj_field_put_volatile(int offset, oop value) {
+void oopDesc::obj_field_put_volatile(int offset, oop value) {
OrderAccess::release();
obj_field_put(offset, value);
OrderAccess::fence();
}
-inline jbyte oopDesc::byte_field(int offset) const { return (jbyte) *byte_field_addr(offset); }
-inline void oopDesc::byte_field_put(int offset, jbyte contents) { *byte_field_addr(offset) = (jint) contents; }
+Metadata* oopDesc::metadata_field(int offset) const { return *metadata_field_addr(offset); }
+void oopDesc::metadata_field_put(int offset, Metadata* value) { *metadata_field_addr(offset) = value; }
+
+jbyte oopDesc::byte_field(int offset) const { return (jbyte) *byte_field_addr(offset); }
+void oopDesc::byte_field_put(int offset, jbyte contents) { *byte_field_addr(offset) = (jint) contents; }
-inline jboolean oopDesc::bool_field(int offset) const { return (jboolean) *bool_field_addr(offset); }
-inline void oopDesc::bool_field_put(int offset, jboolean contents) { *bool_field_addr(offset) = (jint) contents; }
+jchar oopDesc::char_field(int offset) const { return (jchar) *char_field_addr(offset); }
+void oopDesc::char_field_put(int offset, jchar contents) { *char_field_addr(offset) = (jint) contents; }
-inline jchar oopDesc::char_field(int offset) const { return (jchar) *char_field_addr(offset); }
-inline void oopDesc::char_field_put(int offset, jchar contents) { *char_field_addr(offset) = (jint) contents; }
+jboolean oopDesc::bool_field(int offset) const { return (jboolean) *bool_field_addr(offset); }
+void oopDesc::bool_field_put(int offset, jboolean contents) { *bool_field_addr(offset) = (jint) contents; }
-inline jint oopDesc::int_field(int offset) const { return *int_field_addr(offset); }
-inline void oopDesc::int_field_put(int offset, jint contents) { *int_field_addr(offset) = contents; }
+jint oopDesc::int_field(int offset) const { return *int_field_addr(offset); }
+void oopDesc::int_field_put(int offset, jint contents) { *int_field_addr(offset) = contents; }
-inline jshort oopDesc::short_field(int offset) const { return (jshort) *short_field_addr(offset); }
-inline void oopDesc::short_field_put(int offset, jshort contents) { *short_field_addr(offset) = (jint) contents;}
+jshort oopDesc::short_field(int offset) const { return (jshort) *short_field_addr(offset); }
+void oopDesc::short_field_put(int offset, jshort contents) { *short_field_addr(offset) = (jint) contents;}
-inline jlong oopDesc::long_field(int offset) const { return *long_field_addr(offset); }
-inline void oopDesc::long_field_put(int offset, jlong contents) { *long_field_addr(offset) = contents; }
+jlong oopDesc::long_field(int offset) const { return *long_field_addr(offset); }
+void oopDesc::long_field_put(int offset, jlong contents) { *long_field_addr(offset) = contents; }
-inline jfloat oopDesc::float_field(int offset) const { return *float_field_addr(offset); }
-inline void oopDesc::float_field_put(int offset, jfloat contents) { *float_field_addr(offset) = contents; }
+jfloat oopDesc::float_field(int offset) const { return *float_field_addr(offset); }
+void oopDesc::float_field_put(int offset, jfloat contents) { *float_field_addr(offset) = contents; }
-inline jdouble oopDesc::double_field(int offset) const { return *double_field_addr(offset); }
-inline void oopDesc::double_field_put(int offset, jdouble contents) { *double_field_addr(offset) = contents; }
+jdouble oopDesc::double_field(int offset) const { return *double_field_addr(offset); }
+void oopDesc::double_field_put(int offset, jdouble contents) { *double_field_addr(offset) = contents; }
-inline address oopDesc::address_field(int offset) const { return *address_field_addr(offset); }
-inline void oopDesc::address_field_put(int offset, address contents) { *address_field_addr(offset) = contents; }
+address oopDesc::address_field(int offset) const { return *address_field_addr(offset); }
+void oopDesc::address_field_put(int offset, address contents) { *address_field_addr(offset) = contents; }
-inline oop oopDesc::obj_field_acquire(int offset) const {
+oop oopDesc::obj_field_acquire(int offset) const {
return UseCompressedOops ?
decode_heap_oop((narrowOop)
OrderAccess::load_acquire(obj_field_addr<narrowOop>(offset)))
: decode_heap_oop((oop)
OrderAccess::load_ptr_acquire(obj_field_addr<oop>(offset)));
}
-inline void oopDesc::release_obj_field_put(int offset, oop value) {
+void oopDesc::release_obj_field_put(int offset, oop value) {
UseCompressedOops ?
oop_store((volatile narrowOop*)obj_field_addr<narrowOop>(offset), value) :
oop_store((volatile oop*) obj_field_addr<oop>(offset), value);
}
-inline jbyte oopDesc::byte_field_acquire(int offset) const { return OrderAccess::load_acquire(byte_field_addr(offset)); }
-inline void oopDesc::release_byte_field_put(int offset, jbyte contents) { OrderAccess::release_store(byte_field_addr(offset), contents); }
+jbyte oopDesc::byte_field_acquire(int offset) const { return OrderAccess::load_acquire(byte_field_addr(offset)); }
+void oopDesc::release_byte_field_put(int offset, jbyte contents) { OrderAccess::release_store(byte_field_addr(offset), contents); }
-inline jboolean oopDesc::bool_field_acquire(int offset) const { return OrderAccess::load_acquire(bool_field_addr(offset)); }
-inline void oopDesc::release_bool_field_put(int offset, jboolean contents) { OrderAccess::release_store(bool_field_addr(offset), contents); }
+jchar oopDesc::char_field_acquire(int offset) const { return OrderAccess::load_acquire(char_field_addr(offset)); }
+void oopDesc::release_char_field_put(int offset, jchar contents) { OrderAccess::release_store(char_field_addr(offset), contents); }
-inline jchar oopDesc::char_field_acquire(int offset) const { return OrderAccess::load_acquire(char_field_addr(offset)); }
-inline void oopDesc::release_char_field_put(int offset, jchar contents) { OrderAccess::release_store(char_field_addr(offset), contents); }
+jboolean oopDesc::bool_field_acquire(int offset) const { return OrderAccess::load_acquire(bool_field_addr(offset)); }
+void oopDesc::release_bool_field_put(int offset, jboolean contents) { OrderAccess::release_store(bool_field_addr(offset), contents); }
-inline jint oopDesc::int_field_acquire(int offset) const { return OrderAccess::load_acquire(int_field_addr(offset)); }
-inline void oopDesc::release_int_field_put(int offset, jint contents) { OrderAccess::release_store(int_field_addr(offset), contents); }
+jint oopDesc::int_field_acquire(int offset) const { return OrderAccess::load_acquire(int_field_addr(offset)); }
+void oopDesc::release_int_field_put(int offset, jint contents) { OrderAccess::release_store(int_field_addr(offset), contents); }
-inline jshort oopDesc::short_field_acquire(int offset) const { return (jshort)OrderAccess::load_acquire(short_field_addr(offset)); }
-inline void oopDesc::release_short_field_put(int offset, jshort contents) { OrderAccess::release_store(short_field_addr(offset), contents); }
+jshort oopDesc::short_field_acquire(int offset) const { return (jshort)OrderAccess::load_acquire(short_field_addr(offset)); }
+void oopDesc::release_short_field_put(int offset, jshort contents) { OrderAccess::release_store(short_field_addr(offset), contents); }
-inline jlong oopDesc::long_field_acquire(int offset) const { return OrderAccess::load_acquire(long_field_addr(offset)); }
-inline void oopDesc::release_long_field_put(int offset, jlong contents) { OrderAccess::release_store(long_field_addr(offset), contents); }
+jlong oopDesc::long_field_acquire(int offset) const { return OrderAccess::load_acquire(long_field_addr(offset)); }
+void oopDesc::release_long_field_put(int offset, jlong contents) { OrderAccess::release_store(long_field_addr(offset), contents); }
-inline jfloat oopDesc::float_field_acquire(int offset) const { return OrderAccess::load_acquire(float_field_addr(offset)); }
-inline void oopDesc::release_float_field_put(int offset, jfloat contents) { OrderAccess::release_store(float_field_addr(offset), contents); }
+jfloat oopDesc::float_field_acquire(int offset) const { return OrderAccess::load_acquire(float_field_addr(offset)); }
+void oopDesc::release_float_field_put(int offset, jfloat contents) { OrderAccess::release_store(float_field_addr(offset), contents); }
-inline jdouble oopDesc::double_field_acquire(int offset) const { return OrderAccess::load_acquire(double_field_addr(offset)); }
-inline void oopDesc::release_double_field_put(int offset, jdouble contents) { OrderAccess::release_store(double_field_addr(offset), contents); }
+jdouble oopDesc::double_field_acquire(int offset) const { return OrderAccess::load_acquire(double_field_addr(offset)); }
+void oopDesc::release_double_field_put(int offset, jdouble contents) { OrderAccess::release_store(double_field_addr(offset), contents); }
-inline address oopDesc::address_field_acquire(int offset) const { return (address) OrderAccess::load_ptr_acquire(address_field_addr(offset)); }
-inline void oopDesc::release_address_field_put(int offset, address contents) { OrderAccess::release_store_ptr(address_field_addr(offset), contents); }
-
-inline int oopDesc::size_given_klass(Klass* klass) {
- int lh = klass->layout_helper();
- int s;
+address oopDesc::address_field_acquire(int offset) const { return (address) OrderAccess::load_ptr_acquire(address_field_addr(offset)); }
+void oopDesc::release_address_field_put(int offset, address contents) { OrderAccess::release_store_ptr(address_field_addr(offset), contents); }
- // lh is now a value computed at class initialization that may hint
- // at the size. For instances, this is positive and equal to the
- // size. For arrays, this is negative and provides log2 of the
- // array element size. For other oops, it is zero and thus requires
- // a virtual call.
- //
- // We go to all this trouble because the size computation is at the
- // heart of phase 2 of mark-compaction, and called for every object,
- // alive or dead. So the speed here is equal in importance to the
- // speed of allocation.
-
- if (lh > Klass::_lh_neutral_value) {
- if (!Klass::layout_helper_needs_slow_path(lh)) {
- s = lh >> LogHeapWordSize; // deliver size scaled by wordSize
- } else {
- s = klass->oop_size(this);
- }
- } else if (lh <= Klass::_lh_neutral_value) {
- // The most common case is instances; fall through if so.
- if (lh < Klass::_lh_neutral_value) {
- // Second most common case is arrays. We have to fetch the
- // length of the array, shift (multiply) it appropriately,
- // up to wordSize, add the header, and align to object size.
- size_t size_in_bytes;
-#ifdef _M_IA64
- // The Windows Itanium Aug 2002 SDK hoists this load above
- // the check for s < 0. An oop at the end of the heap will
- // cause an access violation if this load is performed on a non
- // array oop. Making the reference volatile prohibits this.
- // (%%% please explain by what magic the length is actually fetched!)
- volatile int *array_length;
- array_length = (volatile int *)( (intptr_t)this +
- arrayOopDesc::length_offset_in_bytes() );
- assert(array_length > 0, "Integer arithmetic problem somewhere");
- // Put into size_t to avoid overflow.
- size_in_bytes = (size_t) array_length;
- size_in_bytes = size_in_bytes << Klass::layout_helper_log2_element_size(lh);
-#else
- size_t array_length = (size_t) ((arrayOop)this)->length();
- size_in_bytes = array_length << Klass::layout_helper_log2_element_size(lh);
-#endif
- size_in_bytes += Klass::layout_helper_header_size(lh);
-
- // This code could be simplified, but by keeping array_header_in_bytes
- // in units of bytes and doing it this way we can round up just once,
- // skipping the intermediate round to HeapWordSize. Cast the result
- // of round_to to size_t to guarantee unsigned division == right shift.
- s = (int)((size_t)round_to(size_in_bytes, MinObjAlignmentInBytes) /
- HeapWordSize);
-
- // ParNew (used by CMS), UseParallelGC and UseG1GC can change the length field
- // of an "old copy" of an object array in the young gen so it indicates
- // the grey portion of an already copied array. This will cause the first
- // disjunct below to fail if the two comparands are computed across such
- // a concurrent change.
- // ParNew also runs with promotion labs (which look like int
- // filler arrays) which are subject to changing their declared size
- // when finally retiring a PLAB; this also can cause the first disjunct
- // to fail for another worker thread that is concurrently walking the block
- // offset table. Both these invariant failures are benign for their
- // current uses; we relax the assertion checking to cover these two cases below:
- // is_objArray() && is_forwarded() // covers first scenario above
- // || is_typeArray() // covers second scenario above
- // If and when UseParallelGC uses the same obj array oop stealing/chunking
- // technique, we will need to suitably modify the assertion.
- assert((s == klass->oop_size(this)) ||
- (Universe::heap()->is_gc_active() &&
- ((is_typeArray() && UseConcMarkSweepGC) ||
- (is_objArray() && is_forwarded() && (UseConcMarkSweepGC || UseParallelGC || UseG1GC)))),
- "wrong array object size");
- } else {
- // Must be zero, so bite the bullet and take the virtual call.
- s = klass->oop_size(this);
- }
- }
-
- assert(s % MinObjAlignment == 0, "alignment check");
- assert(s > 0, "Bad size calculated");
- return s;
-}
-
-
-inline int oopDesc::size() {
- return size_given_klass(klass());
-}
-
-inline void update_barrier_set(void* p, oop v, bool release = false) {
- assert(oopDesc::bs() != NULL, "Uninitialized bs in oop!");
- oopDesc::bs()->write_ref_field(p, v, release);
-}
-
-template <class T> inline void update_barrier_set_pre(T* p, oop v) {
- oopDesc::bs()->write_ref_field_pre(p, v);
-}
-
-template <class T> inline void oop_store(T* p, oop v) {
- if (always_do_update_barrier) {
- oop_store((volatile T*)p, v);
- } else {
- update_barrier_set_pre(p, v);
- oopDesc::encode_store_heap_oop(p, v);
- // always_do_update_barrier == false =>
- // Either we are at a safepoint (in GC) or CMS is not used. In both
- // cases it's unnecessary to mark the card as dirty with release sematics.
- update_barrier_set((void*)p, v, false /* release */); // cast away type
- }
-}
-
-template <class T> inline void oop_store(volatile T* p, oop v) {
- update_barrier_set_pre((T*)p, v); // cast away volatile
- // Used by release_obj_field_put, so use release_store_ptr.
- oopDesc::release_encode_store_heap_oop(p, v);
- // When using CMS we must mark the card corresponding to p as dirty
- // with release sematics to prevent that CMS sees the dirty card but
- // not the new value v at p due to reordering of the two
- // stores. Note that CMS has a concurrent precleaning phase, where
- // it reads the card table while the Java threads are running.
- update_barrier_set((void*)p, v, true /* release */); // cast away type
-}
-
-// Should replace *addr = oop assignments where addr type depends on UseCompressedOops
-// (without having to remember the function name this calls).
-inline void oop_store_raw(HeapWord* addr, oop value) {
- if (UseCompressedOops) {
- oopDesc::encode_store_heap_oop((narrowOop*)addr, value);
- } else {
- oopDesc::encode_store_heap_oop((oop*)addr, value);
- }
-}
-
-inline oop oopDesc::atomic_compare_exchange_oop(oop exchange_value,
- volatile HeapWord *dest,
- oop compare_value,
- bool prebarrier) {
- if (UseCompressedOops) {
- if (prebarrier) {
- update_barrier_set_pre((narrowOop*)dest, exchange_value);
- }
- // encode exchange and compare value from oop to T
- narrowOop val = encode_heap_oop(exchange_value);
- narrowOop cmp = encode_heap_oop(compare_value);
-
- narrowOop old = (narrowOop) Atomic::cmpxchg(val, (narrowOop*)dest, cmp);
- // decode old from T to oop
- return decode_heap_oop(old);
- } else {
- if (prebarrier) {
- update_barrier_set_pre((oop*)dest, exchange_value);
- }
- return (oop)Atomic::cmpxchg_ptr(exchange_value, (oop*)dest, compare_value);
- }
-}
-
-// Used only for markSweep, scavenging
-inline bool oopDesc::is_gc_marked() const {
- return mark()->is_marked();
-}
-
-inline bool oopDesc::is_locked() const {
+bool oopDesc::is_locked() const {
return mark()->is_locked();
}
-inline bool oopDesc::is_unlocked() const {
+bool oopDesc::is_unlocked() const {
return mark()->is_unlocked();
}
-inline bool oopDesc::has_bias_pattern() const {
+bool oopDesc::has_bias_pattern() const {
return mark()->has_bias_pattern();
}
-
// used only for asserts
inline bool oopDesc::is_oop(bool ignore_mark_word) const {
oop obj = (oop) this;
if (!check_obj_alignment(obj)) return false;
if (!Universe::heap()->is_in_reserved(obj)) return false;
@@ -578,51 +542,56 @@
return this == NULL ? true : is_oop(ignore_mark_word);
}
#ifndef PRODUCT
// used only for asserts
-inline bool oopDesc::is_unlocked_oop() const {
+bool oopDesc::is_unlocked_oop() const {
if (!Universe::heap()->is_in_reserved(this)) return false;
return mark()->is_unlocked();
}
#endif // PRODUCT
-inline bool oopDesc::is_scavengable() const {
+// Used only for markSweep, scavenging
+bool oopDesc::is_gc_marked() const {
+ return mark()->is_marked();
+}
+
+bool oopDesc::is_scavengable() const {
return Universe::heap()->is_scavengable(this);
}
// Used by scavengers
-inline bool oopDesc::is_forwarded() const {
+bool oopDesc::is_forwarded() const {
// The extra heap check is needed since the obj might be locked, in which case the
// mark would point to a stack location and have the sentinel bit cleared
return mark()->is_marked();
}
// Used by scavengers
-inline void oopDesc::forward_to(oop p) {
+void oopDesc::forward_to(oop p) {
assert(check_obj_alignment(p),
"forwarding to something not aligned");
assert(Universe::heap()->is_in_reserved(p),
"forwarding to something not in heap");
markOop m = markOopDesc::encode_pointer_as_mark(p);
assert(m->decode_pointer() == p, "encoding must be reversable");
set_mark(m);
}
// Used by parallel scavengers
-inline bool oopDesc::cas_forward_to(oop p, markOop compare) {
+bool oopDesc::cas_forward_to(oop p, markOop compare) {
assert(check_obj_alignment(p),
"forwarding to something not aligned");
assert(Universe::heap()->is_in_reserved(p),
"forwarding to something not in heap");
markOop m = markOopDesc::encode_pointer_as_mark(p);
assert(m->decode_pointer() == p, "encoding must be reversable");
return cas_set_mark(m, compare) == compare;
}
#if INCLUDE_ALL_GCS
-inline oop oopDesc::forward_to_atomic(oop p) {
+oop oopDesc::forward_to_atomic(oop p) {
markOop oldMark = mark();
markOop forwardPtrMark = markOopDesc::encode_pointer_as_mark(p);
markOop curMark;
assert(forwardPtrMark->decode_pointer() == p, "encoding must be reversable");
@@ -644,125 +613,98 @@
#endif
// Note that the forwardee is not the same thing as the displaced_mark.
// The forwardee is used when copying during scavenge and mark-sweep.
// It does need to clear the low two locking- and GC-related bits.
-inline oop oopDesc::forwardee() const {
+oop oopDesc::forwardee() const {
return (oop) mark()->decode_pointer();
}
-inline bool oopDesc::has_displaced_mark() const {
- return mark()->has_displaced_mark_helper();
-}
-
-inline markOop oopDesc::displaced_mark() const {
- return mark()->displaced_mark_helper();
-}
-
-inline void oopDesc::set_displaced_mark(markOop m) {
- mark()->set_displaced_mark_helper(m);
-}
-
// The following method needs to be MT safe.
inline uint oopDesc::age() const {
assert(!is_forwarded(), "Attempt to read age from forwarded mark");
if (has_displaced_mark()) {
return displaced_mark()->age();
} else {
return mark()->age();
}
}
-inline void oopDesc::incr_age() {
+void oopDesc::incr_age() {
assert(!is_forwarded(), "Attempt to increment age of forwarded mark");
if (has_displaced_mark()) {
set_displaced_mark(displaced_mark()->incr_age());
} else {
set_mark(mark()->incr_age());
}
}
-
-inline intptr_t oopDesc::identity_hash() {
- // Fast case; if the object is unlocked and the hash value is set, no locking is needed
- // Note: The mark must be read into local variable to avoid concurrent updates.
- markOop mrk = mark();
- if (mrk->is_unlocked() && !mrk->has_no_hash()) {
- return mrk->hash();
- } else if (mrk->is_marked()) {
- return mrk->hash();
- } else {
- return slow_identity_hash();
- }
-}
-
-inline int oopDesc::ms_adjust_pointers() {
+int oopDesc::ms_adjust_pointers() {
debug_only(int check_size = size());
int s = klass()->oop_ms_adjust_pointers(this);
assert(s == check_size, "should be the same");
return s;
}
#if INCLUDE_ALL_GCS
-inline void oopDesc::pc_follow_contents(ParCompactionManager* cm) {
+void oopDesc::pc_follow_contents(ParCompactionManager* cm) {
klass()->oop_pc_follow_contents(this, cm);
}
-inline void oopDesc::pc_update_contents() {
+void oopDesc::pc_update_contents() {
Klass* k = klass();
if (!k->is_typeArray_klass()) {
// It might contain oops beyond the header, so take the virtual call.
k->oop_pc_update_pointers(this);
}
// Else skip it. The TypeArrayKlass in the header never needs scavenging.
}
-inline void oopDesc::ps_push_contents(PSPromotionManager* pm) {
+void oopDesc::ps_push_contents(PSPromotionManager* pm) {
Klass* k = klass();
if (!k->is_typeArray_klass()) {
// It might contain oops beyond the header, so take the virtual call.
k->oop_ps_push_contents(this, pm);
}
// Else skip it. The TypeArrayKlass in the header never needs scavenging.
}
-#endif
+#endif // INCLUDE_ALL_GCS
#define OOP_ITERATE_DEFN(OopClosureType, nv_suffix) \
\
-inline void oopDesc::oop_iterate(OopClosureType* blk) { \
+void oopDesc::oop_iterate(OopClosureType* blk) { \
klass()->oop_oop_iterate##nv_suffix(this, blk); \
} \
\
-inline void oopDesc::oop_iterate(OopClosureType* blk, MemRegion mr) { \
+void oopDesc::oop_iterate(OopClosureType* blk, MemRegion mr) { \
klass()->oop_oop_iterate_bounded##nv_suffix(this, blk, mr); \
}
#define OOP_ITERATE_SIZE_DEFN(OopClosureType, nv_suffix) \
\
-inline int oopDesc::oop_iterate_size(OopClosureType* blk) { \
+int oopDesc::oop_iterate_size(OopClosureType* blk) { \
Klass* k = klass(); \
int size = size_given_klass(k); \
k->oop_oop_iterate##nv_suffix(this, blk); \
return size; \
} \
\
-inline int oopDesc::oop_iterate_size(OopClosureType* blk, \
- MemRegion mr) { \
+int oopDesc::oop_iterate_size(OopClosureType* blk, MemRegion mr) { \
Klass* k = klass(); \
int size = size_given_klass(k); \
k->oop_oop_iterate_bounded##nv_suffix(this, blk, mr); \
return size; \
}
-inline int oopDesc::oop_iterate_no_header(OopClosure* blk) {
+int oopDesc::oop_iterate_no_header(OopClosure* blk) {
// The NoHeaderExtendedOopClosure wraps the OopClosure and proxies all
// the do_oop calls, but turns off all other features in ExtendedOopClosure.
NoHeaderExtendedOopClosure cl(blk);
return oop_iterate_size(&cl);
}
-inline int oopDesc::oop_iterate_no_header(OopClosure* blk, MemRegion mr) {
+int oopDesc::oop_iterate_no_header(OopClosure* blk, MemRegion mr) {
NoHeaderExtendedOopClosure cl(blk);
return oop_iterate_size(&cl, mr);
}
#if INCLUDE_ALL_GCS
@@ -771,16 +713,41 @@
inline void oopDesc::oop_iterate_backwards(OopClosureType* blk) { \
klass()->oop_oop_iterate_backwards##nv_suffix(this, blk); \
}
#else
#define OOP_ITERATE_BACKWARDS_DEFN(OopClosureType, nv_suffix)
-#endif
+#endif // INCLUDE_ALL_GCS
#define ALL_OOPDESC_OOP_ITERATE(OopClosureType, nv_suffix) \
OOP_ITERATE_DEFN(OopClosureType, nv_suffix) \
OOP_ITERATE_SIZE_DEFN(OopClosureType, nv_suffix) \
OOP_ITERATE_BACKWARDS_DEFN(OopClosureType, nv_suffix)
ALL_OOP_OOP_ITERATE_CLOSURES_1(ALL_OOPDESC_OOP_ITERATE)
ALL_OOP_OOP_ITERATE_CLOSURES_2(ALL_OOPDESC_OOP_ITERATE)
+intptr_t oopDesc::identity_hash() {
+ // Fast case; if the object is unlocked and the hash value is set, no locking is needed
+ // Note: The mark must be read into local variable to avoid concurrent updates.
+ markOop mrk = mark();
+ if (mrk->is_unlocked() && !mrk->has_no_hash()) {
+ return mrk->hash();
+ } else if (mrk->is_marked()) {
+ return mrk->hash();
+ } else {
+ return slow_identity_hash();
+ }
+}
+
+bool oopDesc::has_displaced_mark() const {
+ return mark()->has_displaced_mark_helper();
+}
+
+markOop oopDesc::displaced_mark() const {
+ return mark()->displaced_mark_helper();
+}
+
+void oopDesc::set_displaced_mark(markOop m) {
+ mark()->set_displaced_mark_helper(m);
+}
+
#endif // SHARE_VM_OOPS_OOP_INLINE_HPP
< prev index next >