< prev index next >

src/share/vm/oops/oop.inline.hpp

Print this page
rev 9803 : 8146401: Clean up oop.hpp: add inline directives and fix header files

@@ -1,7 +1,7 @@
 /*
- * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
+ * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  *
  * This code is free software; you can redistribute it and/or modify it
  * under the terms of the GNU General Public License version 2 only, as
  * published by the Free Software Foundation.

@@ -39,46 +39,94 @@
 #include "runtime/atomic.inline.hpp"
 #include "runtime/orderAccess.inline.hpp"
 #include "runtime/os.hpp"
 #include "utilities/macros.hpp"
 
+inline void update_barrier_set(void* p, oop v, bool release = false) {
+  assert(oopDesc::bs() != NULL, "Uninitialized bs in oop!");
+  oopDesc::bs()->write_ref_field(p, v, release);
+}
+
+template <class T> inline void update_barrier_set_pre(T* p, oop v) {
+  oopDesc::bs()->write_ref_field_pre(p, v);
+}
+
+template <class T> void oop_store(T* p, oop v) {
+  if (always_do_update_barrier) {
+    oop_store((volatile T*)p, v);
+  } else {
+    update_barrier_set_pre(p, v);
+    oopDesc::encode_store_heap_oop(p, v);
+    // always_do_update_barrier == false =>
+    // Either we are at a safepoint (in GC) or CMS is not used. In both
+    // cases it's unnecessary to mark the card as dirty with release sematics.
+    update_barrier_set((void*)p, v, false /* release */);  // cast away type
+  }
+}
+
+template <class T> void oop_store(volatile T* p, oop v) {
+  update_barrier_set_pre((T*)p, v);   // cast away volatile
+  // Used by release_obj_field_put, so use release_store_ptr.
+  oopDesc::release_encode_store_heap_oop(p, v);
+  // When using CMS we must mark the card corresponding to p as dirty
+  // with release sematics to prevent that CMS sees the dirty card but
+  // not the new value v at p due to reordering of the two
+  // stores. Note that CMS has a concurrent precleaning phase, where
+  // it reads the card table while the Java threads are running.
+  update_barrier_set((void*)p, v, true /* release */);    // cast away type
+}
+
+// Should replace *addr = oop assignments where addr type depends on UseCompressedOops
+// (without having to remember the function name this calls).
+inline void oop_store_raw(HeapWord* addr, oop value) {
+  if (UseCompressedOops) {
+    oopDesc::encode_store_heap_oop((narrowOop*)addr, value);
+  } else {
+    oopDesc::encode_store_heap_oop((oop*)addr, value);
+  }
+}
+
 // Implementation of all inlined member functions defined in oop.hpp
 // We need a separate file to avoid circular references
 
-inline void oopDesc::release_set_mark(markOop m) {
+void oopDesc::release_set_mark(markOop m) {
   OrderAccess::release_store_ptr(&_mark, m);
 }
 
-inline markOop oopDesc::cas_set_mark(markOop new_mark, markOop old_mark) {
+markOop oopDesc::cas_set_mark(markOop new_mark, markOop old_mark) {
   return (markOop) Atomic::cmpxchg_ptr(new_mark, &_mark, old_mark);
 }
 
+void oopDesc::init_mark() {
+  set_mark(markOopDesc::prototype_for_object(this));
+}
+
 inline Klass* oopDesc::klass() const {
   if (UseCompressedClassPointers) {
     return Klass::decode_klass_not_null(_metadata._compressed_klass);
   } else {
     return _metadata._klass;
   }
 }
 
-inline Klass* oopDesc::klass_or_null() const volatile {
+Klass* oopDesc::klass_or_null() const volatile {
   // can be NULL in CMS
   if (UseCompressedClassPointers) {
     return Klass::decode_klass(_metadata._compressed_klass);
   } else {
     return _metadata._klass;
   }
 }
 
-inline Klass** oopDesc::klass_addr() {
+Klass** oopDesc::klass_addr() {
   // Only used internally and with CMS and will not work with
   // UseCompressedOops
   assert(!UseCompressedClassPointers, "only supported with uncompressed klass pointers");
   return (Klass**) &_metadata._klass;
 }
 
-inline narrowKlass* oopDesc::compressed_klass_addr() {
+narrowKlass* oopDesc::compressed_klass_addr() {
   assert(UseCompressedClassPointers, "only called by compressed klass pointers");
   return &_metadata._compressed_klass;
 }
 
 inline void oopDesc::set_klass(Klass* k) {

@@ -90,85 +138,182 @@
   } else {
     *klass_addr() = k;
   }
 }
 
-inline int oopDesc::klass_gap() const {
+int oopDesc::klass_gap() const {
   return *(int*)(((intptr_t)this) + klass_gap_offset_in_bytes());
 }
 
 inline void oopDesc::set_klass_gap(int v) {
   if (UseCompressedClassPointers) {
     *(int*)(((intptr_t)this) + klass_gap_offset_in_bytes()) = v;
   }
 }
 
-inline void oopDesc::set_klass_to_list_ptr(oop k) {
+void oopDesc::set_klass_to_list_ptr(oop k) {
   // This is only to be used during GC, for from-space objects, so no
   // barrier is needed.
   if (UseCompressedClassPointers) {
     _metadata._compressed_klass = (narrowKlass)encode_heap_oop(k);  // may be null (parnew overflow handling)
   } else {
     _metadata._klass = (Klass*)(address)k;
   }
 }
 
-inline oop oopDesc::list_ptr_from_klass() {
+oop oopDesc::list_ptr_from_klass() {
   // This is only to be used during GC, for from-space objects.
   if (UseCompressedClassPointers) {
     return decode_heap_oop((narrowOop)_metadata._compressed_klass);
   } else {
     // Special case for GC
     return (oop)(address)_metadata._klass;
   }
 }
 
-inline void   oopDesc::init_mark()                 { set_mark(markOopDesc::prototype_for_object(this)); }
+bool oopDesc::is_a(Klass* k) const {
+  return klass()->is_subtype_of(k);
+}
+
+inline int oopDesc::size()  {
+  return size_given_klass(klass());
+}
+
+int oopDesc::size_given_klass(Klass* klass)  {
+  int lh = klass->layout_helper();
+  int s;
+
+  // lh is now a value computed at class initialization that may hint
+  // at the size.  For instances, this is positive and equal to the
+  // size.  For arrays, this is negative and provides log2 of the
+  // array element size.  For other oops, it is zero and thus requires
+  // a virtual call.
+  //
+  // We go to all this trouble because the size computation is at the
+  // heart of phase 2 of mark-compaction, and called for every object,
+  // alive or dead.  So the speed here is equal in importance to the
+  // speed of allocation.
 
-inline bool oopDesc::is_a(Klass* k)        const { return klass()->is_subtype_of(k); }
+  if (lh > Klass::_lh_neutral_value) {
+    if (!Klass::layout_helper_needs_slow_path(lh)) {
+      s = lh >> LogHeapWordSize;  // deliver size scaled by wordSize
+    } else {
+      s = klass->oop_size(this);
+    }
+  } else if (lh <= Klass::_lh_neutral_value) {
+    // The most common case is instances; fall through if so.
+    if (lh < Klass::_lh_neutral_value) {
+      // Second most common case is arrays.  We have to fetch the
+      // length of the array, shift (multiply) it appropriately,
+      // up to wordSize, add the header, and align to object size.
+      size_t size_in_bytes;
+#ifdef _M_IA64
+      // The Windows Itanium Aug 2002 SDK hoists this load above
+      // the check for s < 0.  An oop at the end of the heap will
+      // cause an access violation if this load is performed on a non
+      // array oop.  Making the reference volatile prohibits this.
+      // (%%% please explain by what magic the length is actually fetched!)
+      volatile int *array_length;
+      array_length = (volatile int *)( (intptr_t)this +
+                          arrayOopDesc::length_offset_in_bytes() );
+      assert(array_length > 0, "Integer arithmetic problem somewhere");
+      // Put into size_t to avoid overflow.
+      size_in_bytes = (size_t) array_length;
+      size_in_bytes = size_in_bytes << Klass::layout_helper_log2_element_size(lh);
+#else
+      size_t array_length = (size_t) ((arrayOop)this)->length();
+      size_in_bytes = array_length << Klass::layout_helper_log2_element_size(lh);
+#endif
+      size_in_bytes += Klass::layout_helper_header_size(lh);
 
-inline bool oopDesc::is_instance() const {
-  return klass()->is_instance_klass();
+      // This code could be simplified, but by keeping array_header_in_bytes
+      // in units of bytes and doing it this way we can round up just once,
+      // skipping the intermediate round to HeapWordSize.  Cast the result
+      // of round_to to size_t to guarantee unsigned division == right shift.
+      s = (int)((size_t)round_to(size_in_bytes, MinObjAlignmentInBytes) /
+        HeapWordSize);
+
+      // ParNew (used by CMS), UseParallelGC and UseG1GC can change the length field
+      // of an "old copy" of an object array in the young gen so it indicates
+      // the grey portion of an already copied array. This will cause the first
+      // disjunct below to fail if the two comparands are computed across such
+      // a concurrent change.
+      // ParNew also runs with promotion labs (which look like int
+      // filler arrays) which are subject to changing their declared size
+      // when finally retiring a PLAB; this also can cause the first disjunct
+      // to fail for another worker thread that is concurrently walking the block
+      // offset table. Both these invariant failures are benign for their
+      // current uses; we relax the assertion checking to cover these two cases below:
+      //     is_objArray() && is_forwarded()   // covers first scenario above
+      //  || is_typeArray()                    // covers second scenario above
+      // If and when UseParallelGC uses the same obj array oop stealing/chunking
+      // technique, we will need to suitably modify the assertion.
+      assert((s == klass->oop_size(this)) ||
+             (Universe::heap()->is_gc_active() &&
+              ((is_typeArray() && UseConcMarkSweepGC) ||
+               (is_objArray()  && is_forwarded() && (UseConcMarkSweepGC || UseParallelGC || UseG1GC)))),
+             "wrong array object size");
+    } else {
+      // Must be zero, so bite the bullet and take the virtual call.
+      s = klass->oop_size(this);
+    }
+  }
+
+  assert(s % MinObjAlignment == 0, "alignment check");
+  assert(s > 0, "Bad size calculated");
+  return s;
 }
 
+bool oopDesc::is_instance()  const { return klass()->is_instance_klass();  }
 inline bool oopDesc::is_array()               const { return klass()->is_array_klass(); }
-inline bool oopDesc::is_objArray()            const { return klass()->is_objArray_klass(); }
-inline bool oopDesc::is_typeArray()           const { return klass()->is_typeArray_klass(); }
+bool oopDesc::is_objArray()  const { return klass()->is_objArray_klass();  }
+bool oopDesc::is_typeArray() const { return klass()->is_typeArray_klass(); }
+
+void*      oopDesc::field_base(int offset)          const { return (void*)&((char*)this)[offset]; }
 
-inline void*     oopDesc::field_base(int offset)        const { return (void*)&((char*)this)[offset]; }
+jbyte*     oopDesc::byte_field_addr(int offset)     const { return (jbyte*)    field_base(offset); }
+jchar*     oopDesc::char_field_addr(int offset)     const { return (jchar*)    field_base(offset); }
+jboolean*  oopDesc::bool_field_addr(int offset)     const { return (jboolean*) field_base(offset); }
+jint*      oopDesc::int_field_addr(int offset)      const { return (jint*)     field_base(offset); }
+jshort*    oopDesc::short_field_addr(int offset)    const { return (jshort*)   field_base(offset); }
+jlong*     oopDesc::long_field_addr(int offset)     const { return (jlong*)    field_base(offset); }
+jfloat*    oopDesc::float_field_addr(int offset)    const { return (jfloat*)   field_base(offset); }
+jdouble*   oopDesc::double_field_addr(int offset)   const { return (jdouble*)  field_base(offset); }
+Metadata** oopDesc::metadata_field_addr(int offset) const { return (Metadata**)field_base(offset); }
 
-template <class T> inline T* oopDesc::obj_field_addr(int offset) const { return (T*)field_base(offset); }
-inline Metadata** oopDesc::metadata_field_addr(int offset) const { return (Metadata**)field_base(offset); }
-inline jbyte*    oopDesc::byte_field_addr(int offset)   const { return (jbyte*)   field_base(offset); }
-inline jchar*    oopDesc::char_field_addr(int offset)   const { return (jchar*)   field_base(offset); }
-inline jboolean* oopDesc::bool_field_addr(int offset)   const { return (jboolean*)field_base(offset); }
-inline jint*     oopDesc::int_field_addr(int offset)    const { return (jint*)    field_base(offset); }
-inline jshort*   oopDesc::short_field_addr(int offset)  const { return (jshort*)  field_base(offset); }
-inline jlong*    oopDesc::long_field_addr(int offset)   const { return (jlong*)   field_base(offset); }
-inline jfloat*   oopDesc::float_field_addr(int offset)  const { return (jfloat*)  field_base(offset); }
-inline jdouble*  oopDesc::double_field_addr(int offset) const { return (jdouble*) field_base(offset); }
-inline address*  oopDesc::address_field_addr(int offset) const { return (address*) field_base(offset); }
+template <class T> T* oopDesc::obj_field_addr(int offset) const { return (T*)  field_base(offset); }
+address*   oopDesc::address_field_addr(int offset)  const { return (address*)  field_base(offset); }
 
 
 // Functions for getting and setting oops within instance objects.
 // If the oops are compressed, the type passed to these overloaded functions
 // is narrowOop.  All functions are overloaded so they can be called by
 // template functions without conditionals (the compiler instantiates via
 // the right type and inlines the appopriate code).
 
-inline bool oopDesc::is_null(oop obj)       { return obj == NULL; }
-inline bool oopDesc::is_null(narrowOop obj) { return obj == 0; }
-
 // Algorithm for encoding and decoding oops from 64 bit pointers to 32 bit
 // offset from the heap base.  Saving the check for null can save instructions
 // in inner GC loops so these are separated.
 
 inline bool check_obj_alignment(oop obj) {
   return cast_from_oop<intptr_t>(obj) % MinObjAlignmentInBytes == 0;
 }
 
-inline narrowOop oopDesc::encode_heap_oop_not_null(oop v) {
+inline oop oopDesc::decode_heap_oop_not_null(narrowOop v) {
+  assert(!is_null(v), "narrow oop value can never be zero");
+  address base = Universe::narrow_oop_base();
+  int    shift = Universe::narrow_oop_shift();
+  oop result = (oop)(void*)((uintptr_t)base + ((uintptr_t)v << shift));
+  assert(check_obj_alignment(result), "address not aligned: " INTPTR_FORMAT, p2i((void*) result));
+  return result;
+}
+
+inline oop oopDesc::decode_heap_oop(narrowOop v) {
+  return is_null(v) ? (oop)NULL : decode_heap_oop_not_null(v);
+}
+
+narrowOop oopDesc::encode_heap_oop_not_null(oop v) {
   assert(!is_null(v), "oop value can never be zero");
   assert(check_obj_alignment(v), "Address not aligned");
   assert(Universe::heap()->is_in_reserved(v), "Address not in heap");
   address base = Universe::narrow_oop_base();
   int    shift = Universe::narrow_oop_shift();

@@ -182,92 +327,56 @@
 
 inline narrowOop oopDesc::encode_heap_oop(oop v) {
   return (is_null(v)) ? (narrowOop)0 : encode_heap_oop_not_null(v);
 }
 
-inline oop oopDesc::decode_heap_oop_not_null(narrowOop v) {
-  assert(!is_null(v), "narrow oop value can never be zero");
-  address base = Universe::narrow_oop_base();
-  int    shift = Universe::narrow_oop_shift();
-  oop result = (oop)(void*)((uintptr_t)base + ((uintptr_t)v << shift));
-  assert(check_obj_alignment(result), "address not aligned: " INTPTR_FORMAT, p2i((void*) result));
-  return result;
-}
-
-inline oop oopDesc::decode_heap_oop(narrowOop v) {
-  return is_null(v) ? (oop)NULL : decode_heap_oop_not_null(v);
-}
-
-inline oop oopDesc::decode_heap_oop_not_null(oop v) { return v; }
-inline oop oopDesc::decode_heap_oop(oop v)  { return v; }
-
-// Load an oop out of the Java heap as is without decoding.
-// Called by GC to check for null before decoding.
-inline oop       oopDesc::load_heap_oop(oop* p)          { return *p; }
-inline narrowOop oopDesc::load_heap_oop(narrowOop* p)    { return *p; }
-
 // Load and decode an oop out of the Java heap into a wide oop.
-inline oop oopDesc::load_decode_heap_oop_not_null(oop* p)       { return *p; }
-inline oop oopDesc::load_decode_heap_oop_not_null(narrowOop* p) {
+oop oopDesc::load_decode_heap_oop_not_null(narrowOop* p) {
   return decode_heap_oop_not_null(*p);
 }
 
 // Load and decode an oop out of the heap accepting null
-inline oop oopDesc::load_decode_heap_oop(oop* p) { return *p; }
-inline oop oopDesc::load_decode_heap_oop(narrowOop* p) {
+oop oopDesc::load_decode_heap_oop(narrowOop* p) {
   return decode_heap_oop(*p);
 }
 
-// Store already encoded heap oop into the heap.
-inline void oopDesc::store_heap_oop(oop* p, oop v)                 { *p = v; }
-inline void oopDesc::store_heap_oop(narrowOop* p, narrowOop v)     { *p = v; }
-
 // Encode and store a heap oop.
-inline void oopDesc::encode_store_heap_oop_not_null(narrowOop* p, oop v) {
+void oopDesc::encode_store_heap_oop_not_null(narrowOop* p, oop v) {
   *p = encode_heap_oop_not_null(v);
 }
-inline void oopDesc::encode_store_heap_oop_not_null(oop* p, oop v) { *p = v; }
 
 // Encode and store a heap oop allowing for null.
-inline void oopDesc::encode_store_heap_oop(narrowOop* p, oop v) {
+void oopDesc::encode_store_heap_oop(narrowOop* p, oop v) {
   *p = encode_heap_oop(v);
 }
-inline void oopDesc::encode_store_heap_oop(oop* p, oop v) { *p = v; }
 
 // Store heap oop as is for volatile fields.
-inline void oopDesc::release_store_heap_oop(volatile oop* p, oop v) {
+void oopDesc::release_store_heap_oop(volatile oop* p, oop v) {
   OrderAccess::release_store_ptr(p, v);
 }
-inline void oopDesc::release_store_heap_oop(volatile narrowOop* p,
-                                            narrowOop v) {
+void oopDesc::release_store_heap_oop(volatile narrowOop* p, narrowOop v) {
   OrderAccess::release_store(p, v);
 }
 
-inline void oopDesc::release_encode_store_heap_oop_not_null(
-                                                volatile narrowOop* p, oop v) {
+void oopDesc::release_encode_store_heap_oop_not_null(volatile narrowOop* p, oop v) {
   // heap oop is not pointer sized.
   OrderAccess::release_store(p, encode_heap_oop_not_null(v));
 }
-
-inline void oopDesc::release_encode_store_heap_oop_not_null(
-                                                      volatile oop* p, oop v) {
+void oopDesc::release_encode_store_heap_oop_not_null(volatile oop* p, oop v) {
   OrderAccess::release_store_ptr(p, v);
 }
 
-inline void oopDesc::release_encode_store_heap_oop(volatile oop* p,
-                                                           oop v) {
+void oopDesc::release_encode_store_heap_oop(volatile oop* p, oop v) {
   OrderAccess::release_store_ptr(p, v);
 }
-inline void oopDesc::release_encode_store_heap_oop(
-                                                volatile narrowOop* p, oop v) {
+void oopDesc::release_encode_store_heap_oop(volatile narrowOop* p, oop v) {
   OrderAccess::release_store(p, encode_heap_oop(v));
 }
 
-
 // These functions are only used to exchange oop fields in instances,
 // not headers.
-inline oop oopDesc::atomic_exchange_oop(oop exchange_value, volatile HeapWord *dest) {
+oop oopDesc::atomic_exchange_oop(oop exchange_value, volatile HeapWord *dest) {
   if (UseCompressedOops) {
     // encode exchange value from oop to T
     narrowOop val = encode_heap_oop(exchange_value);
     narrowOop old = (narrowOop)Atomic::xchg(val, (narrowOop*)dest);
     // decode old from T to oop

@@ -275,284 +384,139 @@
   } else {
     return (oop)Atomic::xchg_ptr(exchange_value, (oop*)dest);
   }
 }
 
+oop oopDesc::atomic_compare_exchange_oop(oop exchange_value,
+                                         volatile HeapWord *dest,
+                                         oop compare_value,
+                                         bool prebarrier) {
+  if (UseCompressedOops) {
+    if (prebarrier) {
+      update_barrier_set_pre((narrowOop*)dest, exchange_value);
+    }
+    // encode exchange and compare value from oop to T
+    narrowOop val = encode_heap_oop(exchange_value);
+    narrowOop cmp = encode_heap_oop(compare_value);
+
+    narrowOop old = (narrowOop) Atomic::cmpxchg(val, (narrowOop*)dest, cmp);
+    // decode old from T to oop
+    return decode_heap_oop(old);
+  } else {
+    if (prebarrier) {
+      update_barrier_set_pre((oop*)dest, exchange_value);
+    }
+    return (oop)Atomic::cmpxchg_ptr(exchange_value, (oop*)dest, compare_value);
+  }
+}
+
 // In order to put or get a field out of an instance, must first check
 // if the field has been compressed and uncompress it.
-inline oop oopDesc::obj_field(int offset) const {
+oop oopDesc::obj_field(int offset) const {
   return UseCompressedOops ?
     load_decode_heap_oop(obj_field_addr<narrowOop>(offset)) :
     load_decode_heap_oop(obj_field_addr<oop>(offset));
 }
 
-inline void oopDesc::obj_field_put(int offset, oop value) {
+void oopDesc::obj_field_put(int offset, oop value) {
   UseCompressedOops ? oop_store(obj_field_addr<narrowOop>(offset), value) :
                       oop_store(obj_field_addr<oop>(offset),       value);
 }
 
-inline Metadata* oopDesc::metadata_field(int offset) const {
-  return *metadata_field_addr(offset);
-}
-
-inline void oopDesc::metadata_field_put(int offset, Metadata* value) {
-  *metadata_field_addr(offset) = value;
-}
-
-inline void oopDesc::obj_field_put_raw(int offset, oop value) {
+void oopDesc::obj_field_put_raw(int offset, oop value) {
   UseCompressedOops ?
     encode_store_heap_oop(obj_field_addr<narrowOop>(offset), value) :
     encode_store_heap_oop(obj_field_addr<oop>(offset),       value);
 }
-inline void oopDesc::obj_field_put_volatile(int offset, oop value) {
+void oopDesc::obj_field_put_volatile(int offset, oop value) {
   OrderAccess::release();
   obj_field_put(offset, value);
   OrderAccess::fence();
 }
 
-inline jbyte oopDesc::byte_field(int offset) const                  { return (jbyte) *byte_field_addr(offset);    }
-inline void oopDesc::byte_field_put(int offset, jbyte contents)     { *byte_field_addr(offset) = (jint) contents; }
+Metadata* oopDesc::metadata_field(int offset) const           { return *metadata_field_addr(offset);   }
+void oopDesc::metadata_field_put(int offset, Metadata* value) { *metadata_field_addr(offset) = value;  }
+
+jbyte oopDesc::byte_field(int offset) const                   { return (jbyte) *byte_field_addr(offset);    }
+void oopDesc::byte_field_put(int offset, jbyte contents)      { *byte_field_addr(offset) = (jint) contents; }
 
-inline jboolean oopDesc::bool_field(int offset) const               { return (jboolean) *bool_field_addr(offset); }
-inline void oopDesc::bool_field_put(int offset, jboolean contents)  { *bool_field_addr(offset) = (jint) contents; }
+jchar oopDesc::char_field(int offset) const                   { return (jchar) *char_field_addr(offset);    }
+void oopDesc::char_field_put(int offset, jchar contents)      { *char_field_addr(offset) = (jint) contents; }
 
-inline jchar oopDesc::char_field(int offset) const                  { return (jchar) *char_field_addr(offset);    }
-inline void oopDesc::char_field_put(int offset, jchar contents)     { *char_field_addr(offset) = (jint) contents; }
+jboolean oopDesc::bool_field(int offset) const                { return (jboolean) *bool_field_addr(offset); }
+void oopDesc::bool_field_put(int offset, jboolean contents)   { *bool_field_addr(offset) = (jint) contents; }
 
-inline jint oopDesc::int_field(int offset) const                    { return *int_field_addr(offset);        }
-inline void oopDesc::int_field_put(int offset, jint contents)       { *int_field_addr(offset) = contents;    }
+jint oopDesc::int_field(int offset) const                     { return *int_field_addr(offset);        }
+void oopDesc::int_field_put(int offset, jint contents)        { *int_field_addr(offset) = contents;    }
 
-inline jshort oopDesc::short_field(int offset) const                { return (jshort) *short_field_addr(offset);  }
-inline void oopDesc::short_field_put(int offset, jshort contents)   { *short_field_addr(offset) = (jint) contents;}
+jshort oopDesc::short_field(int offset) const                 { return (jshort) *short_field_addr(offset);  }
+void oopDesc::short_field_put(int offset, jshort contents)    { *short_field_addr(offset) = (jint) contents;}
 
-inline jlong oopDesc::long_field(int offset) const                  { return *long_field_addr(offset);       }
-inline void oopDesc::long_field_put(int offset, jlong contents)     { *long_field_addr(offset) = contents;   }
+jlong oopDesc::long_field(int offset) const                   { return *long_field_addr(offset);       }
+void oopDesc::long_field_put(int offset, jlong contents)      { *long_field_addr(offset) = contents;   }
 
-inline jfloat oopDesc::float_field(int offset) const                { return *float_field_addr(offset);      }
-inline void oopDesc::float_field_put(int offset, jfloat contents)   { *float_field_addr(offset) = contents;  }
+jfloat oopDesc::float_field(int offset) const                 { return *float_field_addr(offset);      }
+void oopDesc::float_field_put(int offset, jfloat contents)    { *float_field_addr(offset) = contents;  }
 
-inline jdouble oopDesc::double_field(int offset) const              { return *double_field_addr(offset);     }
-inline void oopDesc::double_field_put(int offset, jdouble contents) { *double_field_addr(offset) = contents; }
+jdouble oopDesc::double_field(int offset) const               { return *double_field_addr(offset);     }
+void oopDesc::double_field_put(int offset, jdouble contents)  { *double_field_addr(offset) = contents; }
 
-inline address oopDesc::address_field(int offset) const              { return *address_field_addr(offset);     }
-inline void oopDesc::address_field_put(int offset, address contents) { *address_field_addr(offset) = contents; }
+address oopDesc::address_field(int offset) const              { return *address_field_addr(offset);     }
+void oopDesc::address_field_put(int offset, address contents) { *address_field_addr(offset) = contents; }
 
-inline oop oopDesc::obj_field_acquire(int offset) const {
+oop oopDesc::obj_field_acquire(int offset) const {
   return UseCompressedOops ?
              decode_heap_oop((narrowOop)
                OrderAccess::load_acquire(obj_field_addr<narrowOop>(offset)))
            : decode_heap_oop((oop)
                OrderAccess::load_ptr_acquire(obj_field_addr<oop>(offset)));
 }
-inline void oopDesc::release_obj_field_put(int offset, oop value) {
+void oopDesc::release_obj_field_put(int offset, oop value) {
   UseCompressedOops ?
     oop_store((volatile narrowOop*)obj_field_addr<narrowOop>(offset), value) :
     oop_store((volatile oop*)      obj_field_addr<oop>(offset),       value);
 }
 
-inline jbyte oopDesc::byte_field_acquire(int offset) const                  { return OrderAccess::load_acquire(byte_field_addr(offset));     }
-inline void oopDesc::release_byte_field_put(int offset, jbyte contents)     { OrderAccess::release_store(byte_field_addr(offset), contents); }
+jbyte oopDesc::byte_field_acquire(int offset) const                   { return OrderAccess::load_acquire(byte_field_addr(offset));     }
+void oopDesc::release_byte_field_put(int offset, jbyte contents)      { OrderAccess::release_store(byte_field_addr(offset), contents); }
 
-inline jboolean oopDesc::bool_field_acquire(int offset) const               { return OrderAccess::load_acquire(bool_field_addr(offset));     }
-inline void oopDesc::release_bool_field_put(int offset, jboolean contents)  { OrderAccess::release_store(bool_field_addr(offset), contents); }
+jchar oopDesc::char_field_acquire(int offset) const                   { return OrderAccess::load_acquire(char_field_addr(offset));     }
+void oopDesc::release_char_field_put(int offset, jchar contents)      { OrderAccess::release_store(char_field_addr(offset), contents); }
 
-inline jchar oopDesc::char_field_acquire(int offset) const                  { return OrderAccess::load_acquire(char_field_addr(offset));     }
-inline void oopDesc::release_char_field_put(int offset, jchar contents)     { OrderAccess::release_store(char_field_addr(offset), contents); }
+jboolean oopDesc::bool_field_acquire(int offset) const                { return OrderAccess::load_acquire(bool_field_addr(offset));     }
+void oopDesc::release_bool_field_put(int offset, jboolean contents)   { OrderAccess::release_store(bool_field_addr(offset), contents); }
 
-inline jint oopDesc::int_field_acquire(int offset) const                    { return OrderAccess::load_acquire(int_field_addr(offset));      }
-inline void oopDesc::release_int_field_put(int offset, jint contents)       { OrderAccess::release_store(int_field_addr(offset), contents);  }
+jint oopDesc::int_field_acquire(int offset) const                     { return OrderAccess::load_acquire(int_field_addr(offset));      }
+void oopDesc::release_int_field_put(int offset, jint contents)        { OrderAccess::release_store(int_field_addr(offset), contents);  }
 
-inline jshort oopDesc::short_field_acquire(int offset) const                { return (jshort)OrderAccess::load_acquire(short_field_addr(offset)); }
-inline void oopDesc::release_short_field_put(int offset, jshort contents)   { OrderAccess::release_store(short_field_addr(offset), contents);     }
+jshort oopDesc::short_field_acquire(int offset) const                 { return (jshort)OrderAccess::load_acquire(short_field_addr(offset)); }
+void oopDesc::release_short_field_put(int offset, jshort contents)    { OrderAccess::release_store(short_field_addr(offset), contents);     }
 
-inline jlong oopDesc::long_field_acquire(int offset) const                  { return OrderAccess::load_acquire(long_field_addr(offset));       }
-inline void oopDesc::release_long_field_put(int offset, jlong contents)     { OrderAccess::release_store(long_field_addr(offset), contents);   }
+jlong oopDesc::long_field_acquire(int offset) const                   { return OrderAccess::load_acquire(long_field_addr(offset));       }
+void oopDesc::release_long_field_put(int offset, jlong contents)      { OrderAccess::release_store(long_field_addr(offset), contents);   }
 
-inline jfloat oopDesc::float_field_acquire(int offset) const                { return OrderAccess::load_acquire(float_field_addr(offset));      }
-inline void oopDesc::release_float_field_put(int offset, jfloat contents)   { OrderAccess::release_store(float_field_addr(offset), contents);  }
+jfloat oopDesc::float_field_acquire(int offset) const                 { return OrderAccess::load_acquire(float_field_addr(offset));      }
+void oopDesc::release_float_field_put(int offset, jfloat contents)    { OrderAccess::release_store(float_field_addr(offset), contents);  }
 
-inline jdouble oopDesc::double_field_acquire(int offset) const              { return OrderAccess::load_acquire(double_field_addr(offset));     }
-inline void oopDesc::release_double_field_put(int offset, jdouble contents) { OrderAccess::release_store(double_field_addr(offset), contents); }
+jdouble oopDesc::double_field_acquire(int offset) const               { return OrderAccess::load_acquire(double_field_addr(offset));     }
+void oopDesc::release_double_field_put(int offset, jdouble contents)  { OrderAccess::release_store(double_field_addr(offset), contents); }
 
-inline address oopDesc::address_field_acquire(int offset) const             { return (address) OrderAccess::load_ptr_acquire(address_field_addr(offset)); }
-inline void oopDesc::release_address_field_put(int offset, address contents) { OrderAccess::release_store_ptr(address_field_addr(offset), contents); }
-
-inline int oopDesc::size_given_klass(Klass* klass)  {
-  int lh = klass->layout_helper();
-  int s;
+address oopDesc::address_field_acquire(int offset) const              { return (address) OrderAccess::load_ptr_acquire(address_field_addr(offset)); }
+void oopDesc::release_address_field_put(int offset, address contents) { OrderAccess::release_store_ptr(address_field_addr(offset), contents); }
 
-  // lh is now a value computed at class initialization that may hint
-  // at the size.  For instances, this is positive and equal to the
-  // size.  For arrays, this is negative and provides log2 of the
-  // array element size.  For other oops, it is zero and thus requires
-  // a virtual call.
-  //
-  // We go to all this trouble because the size computation is at the
-  // heart of phase 2 of mark-compaction, and called for every object,
-  // alive or dead.  So the speed here is equal in importance to the
-  // speed of allocation.
-
-  if (lh > Klass::_lh_neutral_value) {
-    if (!Klass::layout_helper_needs_slow_path(lh)) {
-      s = lh >> LogHeapWordSize;  // deliver size scaled by wordSize
-    } else {
-      s = klass->oop_size(this);
-    }
-  } else if (lh <= Klass::_lh_neutral_value) {
-    // The most common case is instances; fall through if so.
-    if (lh < Klass::_lh_neutral_value) {
-      // Second most common case is arrays.  We have to fetch the
-      // length of the array, shift (multiply) it appropriately,
-      // up to wordSize, add the header, and align to object size.
-      size_t size_in_bytes;
-#ifdef _M_IA64
-      // The Windows Itanium Aug 2002 SDK hoists this load above
-      // the check for s < 0.  An oop at the end of the heap will
-      // cause an access violation if this load is performed on a non
-      // array oop.  Making the reference volatile prohibits this.
-      // (%%% please explain by what magic the length is actually fetched!)
-      volatile int *array_length;
-      array_length = (volatile int *)( (intptr_t)this +
-                          arrayOopDesc::length_offset_in_bytes() );
-      assert(array_length > 0, "Integer arithmetic problem somewhere");
-      // Put into size_t to avoid overflow.
-      size_in_bytes = (size_t) array_length;
-      size_in_bytes = size_in_bytes << Klass::layout_helper_log2_element_size(lh);
-#else
-      size_t array_length = (size_t) ((arrayOop)this)->length();
-      size_in_bytes = array_length << Klass::layout_helper_log2_element_size(lh);
-#endif
-      size_in_bytes += Klass::layout_helper_header_size(lh);
-
-      // This code could be simplified, but by keeping array_header_in_bytes
-      // in units of bytes and doing it this way we can round up just once,
-      // skipping the intermediate round to HeapWordSize.  Cast the result
-      // of round_to to size_t to guarantee unsigned division == right shift.
-      s = (int)((size_t)round_to(size_in_bytes, MinObjAlignmentInBytes) /
-        HeapWordSize);
-
-      // ParNew (used by CMS), UseParallelGC and UseG1GC can change the length field
-      // of an "old copy" of an object array in the young gen so it indicates
-      // the grey portion of an already copied array. This will cause the first
-      // disjunct below to fail if the two comparands are computed across such
-      // a concurrent change.
-      // ParNew also runs with promotion labs (which look like int
-      // filler arrays) which are subject to changing their declared size
-      // when finally retiring a PLAB; this also can cause the first disjunct
-      // to fail for another worker thread that is concurrently walking the block
-      // offset table. Both these invariant failures are benign for their
-      // current uses; we relax the assertion checking to cover these two cases below:
-      //     is_objArray() && is_forwarded()   // covers first scenario above
-      //  || is_typeArray()                    // covers second scenario above
-      // If and when UseParallelGC uses the same obj array oop stealing/chunking
-      // technique, we will need to suitably modify the assertion.
-      assert((s == klass->oop_size(this)) ||
-             (Universe::heap()->is_gc_active() &&
-              ((is_typeArray() && UseConcMarkSweepGC) ||
-               (is_objArray()  && is_forwarded() && (UseConcMarkSweepGC || UseParallelGC || UseG1GC)))),
-             "wrong array object size");
-    } else {
-      // Must be zero, so bite the bullet and take the virtual call.
-      s = klass->oop_size(this);
-    }
-  }
-
-  assert(s % MinObjAlignment == 0, "alignment check");
-  assert(s > 0, "Bad size calculated");
-  return s;
-}
-
-
-inline int oopDesc::size()  {
-  return size_given_klass(klass());
-}
-
-inline void update_barrier_set(void* p, oop v, bool release = false) {
-  assert(oopDesc::bs() != NULL, "Uninitialized bs in oop!");
-  oopDesc::bs()->write_ref_field(p, v, release);
-}
-
-template <class T> inline void update_barrier_set_pre(T* p, oop v) {
-  oopDesc::bs()->write_ref_field_pre(p, v);
-}
-
-template <class T> inline void oop_store(T* p, oop v) {
-  if (always_do_update_barrier) {
-    oop_store((volatile T*)p, v);
-  } else {
-    update_barrier_set_pre(p, v);
-    oopDesc::encode_store_heap_oop(p, v);
-    // always_do_update_barrier == false =>
-    // Either we are at a safepoint (in GC) or CMS is not used. In both
-    // cases it's unnecessary to mark the card as dirty with release sematics.
-    update_barrier_set((void*)p, v, false /* release */);  // cast away type
-  }
-}
-
-template <class T> inline void oop_store(volatile T* p, oop v) {
-  update_barrier_set_pre((T*)p, v);   // cast away volatile
-  // Used by release_obj_field_put, so use release_store_ptr.
-  oopDesc::release_encode_store_heap_oop(p, v);
-  // When using CMS we must mark the card corresponding to p as dirty
-  // with release sematics to prevent that CMS sees the dirty card but
-  // not the new value v at p due to reordering of the two
-  // stores. Note that CMS has a concurrent precleaning phase, where
-  // it reads the card table while the Java threads are running.
-  update_barrier_set((void*)p, v, true /* release */);    // cast away type
-}
-
-// Should replace *addr = oop assignments where addr type depends on UseCompressedOops
-// (without having to remember the function name this calls).
-inline void oop_store_raw(HeapWord* addr, oop value) {
-  if (UseCompressedOops) {
-    oopDesc::encode_store_heap_oop((narrowOop*)addr, value);
-  } else {
-    oopDesc::encode_store_heap_oop((oop*)addr, value);
-  }
-}
-
-inline oop oopDesc::atomic_compare_exchange_oop(oop exchange_value,
-                                                volatile HeapWord *dest,
-                                                oop compare_value,
-                                                bool prebarrier) {
-  if (UseCompressedOops) {
-    if (prebarrier) {
-      update_barrier_set_pre((narrowOop*)dest, exchange_value);
-    }
-    // encode exchange and compare value from oop to T
-    narrowOop val = encode_heap_oop(exchange_value);
-    narrowOop cmp = encode_heap_oop(compare_value);
-
-    narrowOop old = (narrowOop) Atomic::cmpxchg(val, (narrowOop*)dest, cmp);
-    // decode old from T to oop
-    return decode_heap_oop(old);
-  } else {
-    if (prebarrier) {
-      update_barrier_set_pre((oop*)dest, exchange_value);
-    }
-    return (oop)Atomic::cmpxchg_ptr(exchange_value, (oop*)dest, compare_value);
-  }
-}
-
-// Used only for markSweep, scavenging
-inline bool oopDesc::is_gc_marked() const {
-  return mark()->is_marked();
-}
-
-inline bool oopDesc::is_locked() const {
+bool oopDesc::is_locked() const {
   return mark()->is_locked();
 }
 
-inline bool oopDesc::is_unlocked() const {
+bool oopDesc::is_unlocked() const {
   return mark()->is_unlocked();
 }
 
-inline bool oopDesc::has_bias_pattern() const {
+bool oopDesc::has_bias_pattern() const {
   return mark()->has_bias_pattern();
 }
 
-
 // used only for asserts
 inline bool oopDesc::is_oop(bool ignore_mark_word) const {
   oop obj = (oop) this;
   if (!check_obj_alignment(obj)) return false;
   if (!Universe::heap()->is_in_reserved(obj)) return false;

@@ -578,51 +542,56 @@
   return this == NULL ? true : is_oop(ignore_mark_word);
 }
 
 #ifndef PRODUCT
 // used only for asserts
-inline bool oopDesc::is_unlocked_oop() const {
+bool oopDesc::is_unlocked_oop() const {
   if (!Universe::heap()->is_in_reserved(this)) return false;
   return mark()->is_unlocked();
 }
 #endif // PRODUCT
 
-inline bool oopDesc::is_scavengable() const {
+// Used only for markSweep, scavenging
+bool oopDesc::is_gc_marked() const {
+  return mark()->is_marked();
+}
+
+bool oopDesc::is_scavengable() const {
   return Universe::heap()->is_scavengable(this);
 }
 
 // Used by scavengers
-inline bool oopDesc::is_forwarded() const {
+bool oopDesc::is_forwarded() const {
   // The extra heap check is needed since the obj might be locked, in which case the
   // mark would point to a stack location and have the sentinel bit cleared
   return mark()->is_marked();
 }
 
 // Used by scavengers
-inline void oopDesc::forward_to(oop p) {
+void oopDesc::forward_to(oop p) {
   assert(check_obj_alignment(p),
          "forwarding to something not aligned");
   assert(Universe::heap()->is_in_reserved(p),
          "forwarding to something not in heap");
   markOop m = markOopDesc::encode_pointer_as_mark(p);
   assert(m->decode_pointer() == p, "encoding must be reversable");
   set_mark(m);
 }
 
 // Used by parallel scavengers
-inline bool oopDesc::cas_forward_to(oop p, markOop compare) {
+bool oopDesc::cas_forward_to(oop p, markOop compare) {
   assert(check_obj_alignment(p),
          "forwarding to something not aligned");
   assert(Universe::heap()->is_in_reserved(p),
          "forwarding to something not in heap");
   markOop m = markOopDesc::encode_pointer_as_mark(p);
   assert(m->decode_pointer() == p, "encoding must be reversable");
   return cas_set_mark(m, compare) == compare;
 }
 
 #if INCLUDE_ALL_GCS
-inline oop oopDesc::forward_to_atomic(oop p) {
+oop oopDesc::forward_to_atomic(oop p) {
   markOop oldMark = mark();
   markOop forwardPtrMark = markOopDesc::encode_pointer_as_mark(p);
   markOop curMark;
 
   assert(forwardPtrMark->decode_pointer() == p, "encoding must be reversable");

@@ -644,125 +613,98 @@
 #endif
 
 // Note that the forwardee is not the same thing as the displaced_mark.
 // The forwardee is used when copying during scavenge and mark-sweep.
 // It does need to clear the low two locking- and GC-related bits.
-inline oop oopDesc::forwardee() const {
+oop oopDesc::forwardee() const {
   return (oop) mark()->decode_pointer();
 }
 
-inline bool oopDesc::has_displaced_mark() const {
-  return mark()->has_displaced_mark_helper();
-}
-
-inline markOop oopDesc::displaced_mark() const {
-  return mark()->displaced_mark_helper();
-}
-
-inline void oopDesc::set_displaced_mark(markOop m) {
-  mark()->set_displaced_mark_helper(m);
-}
-
 // The following method needs to be MT safe.
 inline uint oopDesc::age() const {
   assert(!is_forwarded(), "Attempt to read age from forwarded mark");
   if (has_displaced_mark()) {
     return displaced_mark()->age();
   } else {
     return mark()->age();
   }
 }
 
-inline void oopDesc::incr_age() {
+void oopDesc::incr_age() {
   assert(!is_forwarded(), "Attempt to increment age of forwarded mark");
   if (has_displaced_mark()) {
     set_displaced_mark(displaced_mark()->incr_age());
   } else {
     set_mark(mark()->incr_age());
   }
 }
 
-
-inline intptr_t oopDesc::identity_hash() {
-  // Fast case; if the object is unlocked and the hash value is set, no locking is needed
-  // Note: The mark must be read into local variable to avoid concurrent updates.
-  markOop mrk = mark();
-  if (mrk->is_unlocked() && !mrk->has_no_hash()) {
-    return mrk->hash();
-  } else if (mrk->is_marked()) {
-    return mrk->hash();
-  } else {
-    return slow_identity_hash();
-  }
-}
-
-inline int oopDesc::ms_adjust_pointers() {
+int oopDesc::ms_adjust_pointers() {
   debug_only(int check_size = size());
   int s = klass()->oop_ms_adjust_pointers(this);
   assert(s == check_size, "should be the same");
   return s;
 }
 
 #if INCLUDE_ALL_GCS
-inline void oopDesc::pc_follow_contents(ParCompactionManager* cm) {
+void oopDesc::pc_follow_contents(ParCompactionManager* cm) {
   klass()->oop_pc_follow_contents(this, cm);
 }
 
-inline void oopDesc::pc_update_contents() {
+void oopDesc::pc_update_contents() {
   Klass* k = klass();
   if (!k->is_typeArray_klass()) {
     // It might contain oops beyond the header, so take the virtual call.
     k->oop_pc_update_pointers(this);
   }
   // Else skip it.  The TypeArrayKlass in the header never needs scavenging.
 }
 
-inline void oopDesc::ps_push_contents(PSPromotionManager* pm) {
+void oopDesc::ps_push_contents(PSPromotionManager* pm) {
   Klass* k = klass();
   if (!k->is_typeArray_klass()) {
     // It might contain oops beyond the header, so take the virtual call.
     k->oop_ps_push_contents(this, pm);
   }
   // Else skip it.  The TypeArrayKlass in the header never needs scavenging.
 }
-#endif
+#endif // INCLUDE_ALL_GCS
 
 #define OOP_ITERATE_DEFN(OopClosureType, nv_suffix)                    \
                                                                        \
-inline void oopDesc::oop_iterate(OopClosureType* blk) {                \
+void oopDesc::oop_iterate(OopClosureType* blk) {                    \
   klass()->oop_oop_iterate##nv_suffix(this, blk);                      \
 }                                                                      \
                                                                        \
-inline void oopDesc::oop_iterate(OopClosureType* blk, MemRegion mr) {  \
+void oopDesc::oop_iterate(OopClosureType* blk, MemRegion mr) {      \
   klass()->oop_oop_iterate_bounded##nv_suffix(this, blk, mr);          \
 }
 
 #define OOP_ITERATE_SIZE_DEFN(OopClosureType, nv_suffix)               \
                                                                        \
-inline int oopDesc::oop_iterate_size(OopClosureType* blk) {            \
+int oopDesc::oop_iterate_size(OopClosureType* blk) {                \
   Klass* k = klass();                                                  \
   int size = size_given_klass(k);                                      \
   k->oop_oop_iterate##nv_suffix(this, blk);                            \
   return size;                                                         \
 }                                                                      \
                                                                        \
-inline int oopDesc::oop_iterate_size(OopClosureType* blk,              \
-                                     MemRegion mr) {                   \
+int oopDesc::oop_iterate_size(OopClosureType* blk, MemRegion mr) {  \
   Klass* k = klass();                                                  \
   int size = size_given_klass(k);                                      \
   k->oop_oop_iterate_bounded##nv_suffix(this, blk, mr);                \
   return size;                                                         \
 }
 
-inline int oopDesc::oop_iterate_no_header(OopClosure* blk) {
+int oopDesc::oop_iterate_no_header(OopClosure* blk) {
   // The NoHeaderExtendedOopClosure wraps the OopClosure and proxies all
   // the do_oop calls, but turns off all other features in ExtendedOopClosure.
   NoHeaderExtendedOopClosure cl(blk);
   return oop_iterate_size(&cl);
 }
 
-inline int oopDesc::oop_iterate_no_header(OopClosure* blk, MemRegion mr) {
+int oopDesc::oop_iterate_no_header(OopClosure* blk, MemRegion mr) {
   NoHeaderExtendedOopClosure cl(blk);
   return oop_iterate_size(&cl, mr);
 }
 
 #if INCLUDE_ALL_GCS

@@ -771,16 +713,41 @@
 inline void oopDesc::oop_iterate_backwards(OopClosureType* blk) {   \
   klass()->oop_oop_iterate_backwards##nv_suffix(this, blk);         \
 }
 #else
 #define OOP_ITERATE_BACKWARDS_DEFN(OopClosureType, nv_suffix)
-#endif
+#endif // INCLUDE_ALL_GCS
 
 #define ALL_OOPDESC_OOP_ITERATE(OopClosureType, nv_suffix)  \
   OOP_ITERATE_DEFN(OopClosureType, nv_suffix)               \
   OOP_ITERATE_SIZE_DEFN(OopClosureType, nv_suffix)          \
   OOP_ITERATE_BACKWARDS_DEFN(OopClosureType, nv_suffix)
 
 ALL_OOP_OOP_ITERATE_CLOSURES_1(ALL_OOPDESC_OOP_ITERATE)
 ALL_OOP_OOP_ITERATE_CLOSURES_2(ALL_OOPDESC_OOP_ITERATE)
 
+intptr_t oopDesc::identity_hash() {
+  // Fast case; if the object is unlocked and the hash value is set, no locking is needed
+  // Note: The mark must be read into local variable to avoid concurrent updates.
+  markOop mrk = mark();
+  if (mrk->is_unlocked() && !mrk->has_no_hash()) {
+    return mrk->hash();
+  } else if (mrk->is_marked()) {
+    return mrk->hash();
+  } else {
+    return slow_identity_hash();
+  }
+}
+
+bool oopDesc::has_displaced_mark() const {
+  return mark()->has_displaced_mark_helper();
+}
+
+markOop oopDesc::displaced_mark() const {
+  return mark()->displaced_mark_helper();
+}
+
+void oopDesc::set_displaced_mark(markOop m) {
+  mark()->set_displaced_mark_helper(m);
+}
+
 #endif // SHARE_VM_OOPS_OOP_INLINE_HPP
< prev index next >