< prev index next >

src/share/vm/oops/oop.inline.hpp

Print this page
rev 9803 : 8146401: Clean up oop.hpp: add inline directives and fix header files

*** 1,7 **** /* ! * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. --- 1,7 ---- /* ! * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation.
*** 39,84 **** #include "runtime/atomic.inline.hpp" #include "runtime/orderAccess.inline.hpp" #include "runtime/os.hpp" #include "utilities/macros.hpp" // Implementation of all inlined member functions defined in oop.hpp // We need a separate file to avoid circular references ! inline void oopDesc::release_set_mark(markOop m) { OrderAccess::release_store_ptr(&_mark, m); } ! inline markOop oopDesc::cas_set_mark(markOop new_mark, markOop old_mark) { return (markOop) Atomic::cmpxchg_ptr(new_mark, &_mark, old_mark); } inline Klass* oopDesc::klass() const { if (UseCompressedClassPointers) { return Klass::decode_klass_not_null(_metadata._compressed_klass); } else { return _metadata._klass; } } ! inline Klass* oopDesc::klass_or_null() const volatile { // can be NULL in CMS if (UseCompressedClassPointers) { return Klass::decode_klass(_metadata._compressed_klass); } else { return _metadata._klass; } } ! inline Klass** oopDesc::klass_addr() { // Only used internally and with CMS and will not work with // UseCompressedOops assert(!UseCompressedClassPointers, "only supported with uncompressed klass pointers"); return (Klass**) &_metadata._klass; } ! inline narrowKlass* oopDesc::compressed_klass_addr() { assert(UseCompressedClassPointers, "only called by compressed klass pointers"); return &_metadata._compressed_klass; } inline void oopDesc::set_klass(Klass* k) { --- 39,132 ---- #include "runtime/atomic.inline.hpp" #include "runtime/orderAccess.inline.hpp" #include "runtime/os.hpp" #include "utilities/macros.hpp" + inline void update_barrier_set(void* p, oop v, bool release = false) { + assert(oopDesc::bs() != NULL, "Uninitialized bs in oop!"); + oopDesc::bs()->write_ref_field(p, v, release); + } + + template <class T> inline void update_barrier_set_pre(T* p, oop v) { + oopDesc::bs()->write_ref_field_pre(p, v); + } + + template <class T> void oop_store(T* p, oop v) { + if (always_do_update_barrier) { + oop_store((volatile T*)p, v); + } else { + update_barrier_set_pre(p, v); + oopDesc::encode_store_heap_oop(p, v); + // always_do_update_barrier == false => + // Either we are at a safepoint (in GC) or CMS is not used. In both + // cases it's unnecessary to mark the card as dirty with release sematics. + update_barrier_set((void*)p, v, false /* release */); // cast away type + } + } + + template <class T> void oop_store(volatile T* p, oop v) { + update_barrier_set_pre((T*)p, v); // cast away volatile + // Used by release_obj_field_put, so use release_store_ptr. + oopDesc::release_encode_store_heap_oop(p, v); + // When using CMS we must mark the card corresponding to p as dirty + // with release sematics to prevent that CMS sees the dirty card but + // not the new value v at p due to reordering of the two + // stores. Note that CMS has a concurrent precleaning phase, where + // it reads the card table while the Java threads are running. + update_barrier_set((void*)p, v, true /* release */); // cast away type + } + + // Should replace *addr = oop assignments where addr type depends on UseCompressedOops + // (without having to remember the function name this calls). + inline void oop_store_raw(HeapWord* addr, oop value) { + if (UseCompressedOops) { + oopDesc::encode_store_heap_oop((narrowOop*)addr, value); + } else { + oopDesc::encode_store_heap_oop((oop*)addr, value); + } + } + // Implementation of all inlined member functions defined in oop.hpp // We need a separate file to avoid circular references ! void oopDesc::release_set_mark(markOop m) { OrderAccess::release_store_ptr(&_mark, m); } ! markOop oopDesc::cas_set_mark(markOop new_mark, markOop old_mark) { return (markOop) Atomic::cmpxchg_ptr(new_mark, &_mark, old_mark); } + void oopDesc::init_mark() { + set_mark(markOopDesc::prototype_for_object(this)); + } + inline Klass* oopDesc::klass() const { if (UseCompressedClassPointers) { return Klass::decode_klass_not_null(_metadata._compressed_klass); } else { return _metadata._klass; } } ! Klass* oopDesc::klass_or_null() const volatile { // can be NULL in CMS if (UseCompressedClassPointers) { return Klass::decode_klass(_metadata._compressed_klass); } else { return _metadata._klass; } } ! Klass** oopDesc::klass_addr() { // Only used internally and with CMS and will not work with // UseCompressedOops assert(!UseCompressedClassPointers, "only supported with uncompressed klass pointers"); return (Klass**) &_metadata._klass; } ! narrowKlass* oopDesc::compressed_klass_addr() { assert(UseCompressedClassPointers, "only called by compressed klass pointers"); return &_metadata._compressed_klass; } inline void oopDesc::set_klass(Klass* k) {
*** 90,174 **** } else { *klass_addr() = k; } } ! inline int oopDesc::klass_gap() const { return *(int*)(((intptr_t)this) + klass_gap_offset_in_bytes()); } inline void oopDesc::set_klass_gap(int v) { if (UseCompressedClassPointers) { *(int*)(((intptr_t)this) + klass_gap_offset_in_bytes()) = v; } } ! inline void oopDesc::set_klass_to_list_ptr(oop k) { // This is only to be used during GC, for from-space objects, so no // barrier is needed. if (UseCompressedClassPointers) { _metadata._compressed_klass = (narrowKlass)encode_heap_oop(k); // may be null (parnew overflow handling) } else { _metadata._klass = (Klass*)(address)k; } } ! inline oop oopDesc::list_ptr_from_klass() { // This is only to be used during GC, for from-space objects. if (UseCompressedClassPointers) { return decode_heap_oop((narrowOop)_metadata._compressed_klass); } else { // Special case for GC return (oop)(address)_metadata._klass; } } ! inline void oopDesc::init_mark() { set_mark(markOopDesc::prototype_for_object(this)); } ! inline bool oopDesc::is_a(Klass* k) const { return klass()->is_subtype_of(k); } ! inline bool oopDesc::is_instance() const { ! return klass()->is_instance_klass(); } inline bool oopDesc::is_array() const { return klass()->is_array_klass(); } ! inline bool oopDesc::is_objArray() const { return klass()->is_objArray_klass(); } ! inline bool oopDesc::is_typeArray() const { return klass()->is_typeArray_klass(); } ! inline void* oopDesc::field_base(int offset) const { return (void*)&((char*)this)[offset]; } ! template <class T> inline T* oopDesc::obj_field_addr(int offset) const { return (T*)field_base(offset); } ! inline Metadata** oopDesc::metadata_field_addr(int offset) const { return (Metadata**)field_base(offset); } ! inline jbyte* oopDesc::byte_field_addr(int offset) const { return (jbyte*) field_base(offset); } ! inline jchar* oopDesc::char_field_addr(int offset) const { return (jchar*) field_base(offset); } ! inline jboolean* oopDesc::bool_field_addr(int offset) const { return (jboolean*)field_base(offset); } ! inline jint* oopDesc::int_field_addr(int offset) const { return (jint*) field_base(offset); } ! inline jshort* oopDesc::short_field_addr(int offset) const { return (jshort*) field_base(offset); } ! inline jlong* oopDesc::long_field_addr(int offset) const { return (jlong*) field_base(offset); } ! inline jfloat* oopDesc::float_field_addr(int offset) const { return (jfloat*) field_base(offset); } ! inline jdouble* oopDesc::double_field_addr(int offset) const { return (jdouble*) field_base(offset); } ! inline address* oopDesc::address_field_addr(int offset) const { return (address*) field_base(offset); } // Functions for getting and setting oops within instance objects. // If the oops are compressed, the type passed to these overloaded functions // is narrowOop. All functions are overloaded so they can be called by // template functions without conditionals (the compiler instantiates via // the right type and inlines the appopriate code). - inline bool oopDesc::is_null(oop obj) { return obj == NULL; } - inline bool oopDesc::is_null(narrowOop obj) { return obj == 0; } - // Algorithm for encoding and decoding oops from 64 bit pointers to 32 bit // offset from the heap base. Saving the check for null can save instructions // in inner GC loops so these are separated. inline bool check_obj_alignment(oop obj) { return cast_from_oop<intptr_t>(obj) % MinObjAlignmentInBytes == 0; } ! inline narrowOop oopDesc::encode_heap_oop_not_null(oop v) { assert(!is_null(v), "oop value can never be zero"); assert(check_obj_alignment(v), "Address not aligned"); assert(Universe::heap()->is_in_reserved(v), "Address not in heap"); address base = Universe::narrow_oop_base(); int shift = Universe::narrow_oop_shift(); --- 138,319 ---- } else { *klass_addr() = k; } } ! int oopDesc::klass_gap() const { return *(int*)(((intptr_t)this) + klass_gap_offset_in_bytes()); } inline void oopDesc::set_klass_gap(int v) { if (UseCompressedClassPointers) { *(int*)(((intptr_t)this) + klass_gap_offset_in_bytes()) = v; } } ! void oopDesc::set_klass_to_list_ptr(oop k) { // This is only to be used during GC, for from-space objects, so no // barrier is needed. if (UseCompressedClassPointers) { _metadata._compressed_klass = (narrowKlass)encode_heap_oop(k); // may be null (parnew overflow handling) } else { _metadata._klass = (Klass*)(address)k; } } ! oop oopDesc::list_ptr_from_klass() { // This is only to be used during GC, for from-space objects. if (UseCompressedClassPointers) { return decode_heap_oop((narrowOop)_metadata._compressed_klass); } else { // Special case for GC return (oop)(address)_metadata._klass; } } ! bool oopDesc::is_a(Klass* k) const { ! return klass()->is_subtype_of(k); ! } ! ! inline int oopDesc::size() { ! return size_given_klass(klass()); ! } ! ! int oopDesc::size_given_klass(Klass* klass) { ! int lh = klass->layout_helper(); ! int s; ! ! // lh is now a value computed at class initialization that may hint ! // at the size. For instances, this is positive and equal to the ! // size. For arrays, this is negative and provides log2 of the ! // array element size. For other oops, it is zero and thus requires ! // a virtual call. ! // ! // We go to all this trouble because the size computation is at the ! // heart of phase 2 of mark-compaction, and called for every object, ! // alive or dead. So the speed here is equal in importance to the ! // speed of allocation. ! if (lh > Klass::_lh_neutral_value) { ! if (!Klass::layout_helper_needs_slow_path(lh)) { ! s = lh >> LogHeapWordSize; // deliver size scaled by wordSize ! } else { ! s = klass->oop_size(this); ! } ! } else if (lh <= Klass::_lh_neutral_value) { ! // The most common case is instances; fall through if so. ! if (lh < Klass::_lh_neutral_value) { ! // Second most common case is arrays. We have to fetch the ! // length of the array, shift (multiply) it appropriately, ! // up to wordSize, add the header, and align to object size. ! size_t size_in_bytes; ! #ifdef _M_IA64 ! // The Windows Itanium Aug 2002 SDK hoists this load above ! // the check for s < 0. An oop at the end of the heap will ! // cause an access violation if this load is performed on a non ! // array oop. Making the reference volatile prohibits this. ! // (%%% please explain by what magic the length is actually fetched!) ! volatile int *array_length; ! array_length = (volatile int *)( (intptr_t)this + ! arrayOopDesc::length_offset_in_bytes() ); ! assert(array_length > 0, "Integer arithmetic problem somewhere"); ! // Put into size_t to avoid overflow. ! size_in_bytes = (size_t) array_length; ! size_in_bytes = size_in_bytes << Klass::layout_helper_log2_element_size(lh); ! #else ! size_t array_length = (size_t) ((arrayOop)this)->length(); ! size_in_bytes = array_length << Klass::layout_helper_log2_element_size(lh); ! #endif ! size_in_bytes += Klass::layout_helper_header_size(lh); ! // This code could be simplified, but by keeping array_header_in_bytes ! // in units of bytes and doing it this way we can round up just once, ! // skipping the intermediate round to HeapWordSize. Cast the result ! // of round_to to size_t to guarantee unsigned division == right shift. ! s = (int)((size_t)round_to(size_in_bytes, MinObjAlignmentInBytes) / ! HeapWordSize); ! ! // ParNew (used by CMS), UseParallelGC and UseG1GC can change the length field ! // of an "old copy" of an object array in the young gen so it indicates ! // the grey portion of an already copied array. This will cause the first ! // disjunct below to fail if the two comparands are computed across such ! // a concurrent change. ! // ParNew also runs with promotion labs (which look like int ! // filler arrays) which are subject to changing their declared size ! // when finally retiring a PLAB; this also can cause the first disjunct ! // to fail for another worker thread that is concurrently walking the block ! // offset table. Both these invariant failures are benign for their ! // current uses; we relax the assertion checking to cover these two cases below: ! // is_objArray() && is_forwarded() // covers first scenario above ! // || is_typeArray() // covers second scenario above ! // If and when UseParallelGC uses the same obj array oop stealing/chunking ! // technique, we will need to suitably modify the assertion. ! assert((s == klass->oop_size(this)) || ! (Universe::heap()->is_gc_active() && ! ((is_typeArray() && UseConcMarkSweepGC) || ! (is_objArray() && is_forwarded() && (UseConcMarkSweepGC || UseParallelGC || UseG1GC)))), ! "wrong array object size"); ! } else { ! // Must be zero, so bite the bullet and take the virtual call. ! s = klass->oop_size(this); ! } ! } ! ! assert(s % MinObjAlignment == 0, "alignment check"); ! assert(s > 0, "Bad size calculated"); ! return s; } + bool oopDesc::is_instance() const { return klass()->is_instance_klass(); } inline bool oopDesc::is_array() const { return klass()->is_array_klass(); } ! bool oopDesc::is_objArray() const { return klass()->is_objArray_klass(); } ! bool oopDesc::is_typeArray() const { return klass()->is_typeArray_klass(); } ! ! void* oopDesc::field_base(int offset) const { return (void*)&((char*)this)[offset]; } ! jbyte* oopDesc::byte_field_addr(int offset) const { return (jbyte*) field_base(offset); } ! jchar* oopDesc::char_field_addr(int offset) const { return (jchar*) field_base(offset); } ! jboolean* oopDesc::bool_field_addr(int offset) const { return (jboolean*) field_base(offset); } ! jint* oopDesc::int_field_addr(int offset) const { return (jint*) field_base(offset); } ! jshort* oopDesc::short_field_addr(int offset) const { return (jshort*) field_base(offset); } ! jlong* oopDesc::long_field_addr(int offset) const { return (jlong*) field_base(offset); } ! jfloat* oopDesc::float_field_addr(int offset) const { return (jfloat*) field_base(offset); } ! jdouble* oopDesc::double_field_addr(int offset) const { return (jdouble*) field_base(offset); } ! Metadata** oopDesc::metadata_field_addr(int offset) const { return (Metadata**)field_base(offset); } ! template <class T> T* oopDesc::obj_field_addr(int offset) const { return (T*) field_base(offset); } ! address* oopDesc::address_field_addr(int offset) const { return (address*) field_base(offset); } // Functions for getting and setting oops within instance objects. // If the oops are compressed, the type passed to these overloaded functions // is narrowOop. All functions are overloaded so they can be called by // template functions without conditionals (the compiler instantiates via // the right type and inlines the appopriate code). // Algorithm for encoding and decoding oops from 64 bit pointers to 32 bit // offset from the heap base. Saving the check for null can save instructions // in inner GC loops so these are separated. inline bool check_obj_alignment(oop obj) { return cast_from_oop<intptr_t>(obj) % MinObjAlignmentInBytes == 0; } ! inline oop oopDesc::decode_heap_oop_not_null(narrowOop v) { ! assert(!is_null(v), "narrow oop value can never be zero"); ! address base = Universe::narrow_oop_base(); ! int shift = Universe::narrow_oop_shift(); ! oop result = (oop)(void*)((uintptr_t)base + ((uintptr_t)v << shift)); ! assert(check_obj_alignment(result), "address not aligned: " INTPTR_FORMAT, p2i((void*) result)); ! return result; ! } ! ! inline oop oopDesc::decode_heap_oop(narrowOop v) { ! return is_null(v) ? (oop)NULL : decode_heap_oop_not_null(v); ! } ! ! narrowOop oopDesc::encode_heap_oop_not_null(oop v) { assert(!is_null(v), "oop value can never be zero"); assert(check_obj_alignment(v), "Address not aligned"); assert(Universe::heap()->is_in_reserved(v), "Address not in heap"); address base = Universe::narrow_oop_base(); int shift = Universe::narrow_oop_shift();
*** 182,273 **** inline narrowOop oopDesc::encode_heap_oop(oop v) { return (is_null(v)) ? (narrowOop)0 : encode_heap_oop_not_null(v); } - inline oop oopDesc::decode_heap_oop_not_null(narrowOop v) { - assert(!is_null(v), "narrow oop value can never be zero"); - address base = Universe::narrow_oop_base(); - int shift = Universe::narrow_oop_shift(); - oop result = (oop)(void*)((uintptr_t)base + ((uintptr_t)v << shift)); - assert(check_obj_alignment(result), "address not aligned: " INTPTR_FORMAT, p2i((void*) result)); - return result; - } - - inline oop oopDesc::decode_heap_oop(narrowOop v) { - return is_null(v) ? (oop)NULL : decode_heap_oop_not_null(v); - } - - inline oop oopDesc::decode_heap_oop_not_null(oop v) { return v; } - inline oop oopDesc::decode_heap_oop(oop v) { return v; } - - // Load an oop out of the Java heap as is without decoding. - // Called by GC to check for null before decoding. - inline oop oopDesc::load_heap_oop(oop* p) { return *p; } - inline narrowOop oopDesc::load_heap_oop(narrowOop* p) { return *p; } - // Load and decode an oop out of the Java heap into a wide oop. ! inline oop oopDesc::load_decode_heap_oop_not_null(oop* p) { return *p; } ! inline oop oopDesc::load_decode_heap_oop_not_null(narrowOop* p) { return decode_heap_oop_not_null(*p); } // Load and decode an oop out of the heap accepting null ! inline oop oopDesc::load_decode_heap_oop(oop* p) { return *p; } ! inline oop oopDesc::load_decode_heap_oop(narrowOop* p) { return decode_heap_oop(*p); } - // Store already encoded heap oop into the heap. - inline void oopDesc::store_heap_oop(oop* p, oop v) { *p = v; } - inline void oopDesc::store_heap_oop(narrowOop* p, narrowOop v) { *p = v; } - // Encode and store a heap oop. ! inline void oopDesc::encode_store_heap_oop_not_null(narrowOop* p, oop v) { *p = encode_heap_oop_not_null(v); } - inline void oopDesc::encode_store_heap_oop_not_null(oop* p, oop v) { *p = v; } // Encode and store a heap oop allowing for null. ! inline void oopDesc::encode_store_heap_oop(narrowOop* p, oop v) { *p = encode_heap_oop(v); } - inline void oopDesc::encode_store_heap_oop(oop* p, oop v) { *p = v; } // Store heap oop as is for volatile fields. ! inline void oopDesc::release_store_heap_oop(volatile oop* p, oop v) { OrderAccess::release_store_ptr(p, v); } ! inline void oopDesc::release_store_heap_oop(volatile narrowOop* p, ! narrowOop v) { OrderAccess::release_store(p, v); } ! inline void oopDesc::release_encode_store_heap_oop_not_null( ! volatile narrowOop* p, oop v) { // heap oop is not pointer sized. OrderAccess::release_store(p, encode_heap_oop_not_null(v)); } ! ! inline void oopDesc::release_encode_store_heap_oop_not_null( ! volatile oop* p, oop v) { OrderAccess::release_store_ptr(p, v); } ! inline void oopDesc::release_encode_store_heap_oop(volatile oop* p, ! oop v) { OrderAccess::release_store_ptr(p, v); } ! inline void oopDesc::release_encode_store_heap_oop( ! volatile narrowOop* p, oop v) { OrderAccess::release_store(p, encode_heap_oop(v)); } - // These functions are only used to exchange oop fields in instances, // not headers. ! inline oop oopDesc::atomic_exchange_oop(oop exchange_value, volatile HeapWord *dest) { if (UseCompressedOops) { // encode exchange value from oop to T narrowOop val = encode_heap_oop(exchange_value); narrowOop old = (narrowOop)Atomic::xchg(val, (narrowOop*)dest); // decode old from T to oop --- 327,382 ---- inline narrowOop oopDesc::encode_heap_oop(oop v) { return (is_null(v)) ? (narrowOop)0 : encode_heap_oop_not_null(v); } // Load and decode an oop out of the Java heap into a wide oop. ! oop oopDesc::load_decode_heap_oop_not_null(narrowOop* p) { return decode_heap_oop_not_null(*p); } // Load and decode an oop out of the heap accepting null ! oop oopDesc::load_decode_heap_oop(narrowOop* p) { return decode_heap_oop(*p); } // Encode and store a heap oop. ! void oopDesc::encode_store_heap_oop_not_null(narrowOop* p, oop v) { *p = encode_heap_oop_not_null(v); } // Encode and store a heap oop allowing for null. ! void oopDesc::encode_store_heap_oop(narrowOop* p, oop v) { *p = encode_heap_oop(v); } // Store heap oop as is for volatile fields. ! void oopDesc::release_store_heap_oop(volatile oop* p, oop v) { OrderAccess::release_store_ptr(p, v); } ! void oopDesc::release_store_heap_oop(volatile narrowOop* p, narrowOop v) { OrderAccess::release_store(p, v); } ! void oopDesc::release_encode_store_heap_oop_not_null(volatile narrowOop* p, oop v) { // heap oop is not pointer sized. OrderAccess::release_store(p, encode_heap_oop_not_null(v)); } ! void oopDesc::release_encode_store_heap_oop_not_null(volatile oop* p, oop v) { OrderAccess::release_store_ptr(p, v); } ! void oopDesc::release_encode_store_heap_oop(volatile oop* p, oop v) { OrderAccess::release_store_ptr(p, v); } ! void oopDesc::release_encode_store_heap_oop(volatile narrowOop* p, oop v) { OrderAccess::release_store(p, encode_heap_oop(v)); } // These functions are only used to exchange oop fields in instances, // not headers. ! oop oopDesc::atomic_exchange_oop(oop exchange_value, volatile HeapWord *dest) { if (UseCompressedOops) { // encode exchange value from oop to T narrowOop val = encode_heap_oop(exchange_value); narrowOop old = (narrowOop)Atomic::xchg(val, (narrowOop*)dest); // decode old from T to oop
*** 275,558 **** } else { return (oop)Atomic::xchg_ptr(exchange_value, (oop*)dest); } } // In order to put or get a field out of an instance, must first check // if the field has been compressed and uncompress it. ! inline oop oopDesc::obj_field(int offset) const { return UseCompressedOops ? load_decode_heap_oop(obj_field_addr<narrowOop>(offset)) : load_decode_heap_oop(obj_field_addr<oop>(offset)); } ! inline void oopDesc::obj_field_put(int offset, oop value) { UseCompressedOops ? oop_store(obj_field_addr<narrowOop>(offset), value) : oop_store(obj_field_addr<oop>(offset), value); } ! inline Metadata* oopDesc::metadata_field(int offset) const { ! return *metadata_field_addr(offset); ! } ! ! inline void oopDesc::metadata_field_put(int offset, Metadata* value) { ! *metadata_field_addr(offset) = value; ! } ! ! inline void oopDesc::obj_field_put_raw(int offset, oop value) { UseCompressedOops ? encode_store_heap_oop(obj_field_addr<narrowOop>(offset), value) : encode_store_heap_oop(obj_field_addr<oop>(offset), value); } ! inline void oopDesc::obj_field_put_volatile(int offset, oop value) { OrderAccess::release(); obj_field_put(offset, value); OrderAccess::fence(); } ! inline jbyte oopDesc::byte_field(int offset) const { return (jbyte) *byte_field_addr(offset); } ! inline void oopDesc::byte_field_put(int offset, jbyte contents) { *byte_field_addr(offset) = (jint) contents; } ! inline jboolean oopDesc::bool_field(int offset) const { return (jboolean) *bool_field_addr(offset); } ! inline void oopDesc::bool_field_put(int offset, jboolean contents) { *bool_field_addr(offset) = (jint) contents; } ! inline jchar oopDesc::char_field(int offset) const { return (jchar) *char_field_addr(offset); } ! inline void oopDesc::char_field_put(int offset, jchar contents) { *char_field_addr(offset) = (jint) contents; } ! inline jint oopDesc::int_field(int offset) const { return *int_field_addr(offset); } ! inline void oopDesc::int_field_put(int offset, jint contents) { *int_field_addr(offset) = contents; } ! inline jshort oopDesc::short_field(int offset) const { return (jshort) *short_field_addr(offset); } ! inline void oopDesc::short_field_put(int offset, jshort contents) { *short_field_addr(offset) = (jint) contents;} ! inline jlong oopDesc::long_field(int offset) const { return *long_field_addr(offset); } ! inline void oopDesc::long_field_put(int offset, jlong contents) { *long_field_addr(offset) = contents; } ! inline jfloat oopDesc::float_field(int offset) const { return *float_field_addr(offset); } ! inline void oopDesc::float_field_put(int offset, jfloat contents) { *float_field_addr(offset) = contents; } ! inline jdouble oopDesc::double_field(int offset) const { return *double_field_addr(offset); } ! inline void oopDesc::double_field_put(int offset, jdouble contents) { *double_field_addr(offset) = contents; } ! inline address oopDesc::address_field(int offset) const { return *address_field_addr(offset); } ! inline void oopDesc::address_field_put(int offset, address contents) { *address_field_addr(offset) = contents; } ! inline oop oopDesc::obj_field_acquire(int offset) const { return UseCompressedOops ? decode_heap_oop((narrowOop) OrderAccess::load_acquire(obj_field_addr<narrowOop>(offset))) : decode_heap_oop((oop) OrderAccess::load_ptr_acquire(obj_field_addr<oop>(offset))); } ! inline void oopDesc::release_obj_field_put(int offset, oop value) { UseCompressedOops ? oop_store((volatile narrowOop*)obj_field_addr<narrowOop>(offset), value) : oop_store((volatile oop*) obj_field_addr<oop>(offset), value); } ! inline jbyte oopDesc::byte_field_acquire(int offset) const { return OrderAccess::load_acquire(byte_field_addr(offset)); } ! inline void oopDesc::release_byte_field_put(int offset, jbyte contents) { OrderAccess::release_store(byte_field_addr(offset), contents); } ! inline jboolean oopDesc::bool_field_acquire(int offset) const { return OrderAccess::load_acquire(bool_field_addr(offset)); } ! inline void oopDesc::release_bool_field_put(int offset, jboolean contents) { OrderAccess::release_store(bool_field_addr(offset), contents); } ! inline jchar oopDesc::char_field_acquire(int offset) const { return OrderAccess::load_acquire(char_field_addr(offset)); } ! inline void oopDesc::release_char_field_put(int offset, jchar contents) { OrderAccess::release_store(char_field_addr(offset), contents); } ! inline jint oopDesc::int_field_acquire(int offset) const { return OrderAccess::load_acquire(int_field_addr(offset)); } ! inline void oopDesc::release_int_field_put(int offset, jint contents) { OrderAccess::release_store(int_field_addr(offset), contents); } ! inline jshort oopDesc::short_field_acquire(int offset) const { return (jshort)OrderAccess::load_acquire(short_field_addr(offset)); } ! inline void oopDesc::release_short_field_put(int offset, jshort contents) { OrderAccess::release_store(short_field_addr(offset), contents); } ! inline jlong oopDesc::long_field_acquire(int offset) const { return OrderAccess::load_acquire(long_field_addr(offset)); } ! inline void oopDesc::release_long_field_put(int offset, jlong contents) { OrderAccess::release_store(long_field_addr(offset), contents); } ! inline jfloat oopDesc::float_field_acquire(int offset) const { return OrderAccess::load_acquire(float_field_addr(offset)); } ! inline void oopDesc::release_float_field_put(int offset, jfloat contents) { OrderAccess::release_store(float_field_addr(offset), contents); } ! inline jdouble oopDesc::double_field_acquire(int offset) const { return OrderAccess::load_acquire(double_field_addr(offset)); } ! inline void oopDesc::release_double_field_put(int offset, jdouble contents) { OrderAccess::release_store(double_field_addr(offset), contents); } ! inline address oopDesc::address_field_acquire(int offset) const { return (address) OrderAccess::load_ptr_acquire(address_field_addr(offset)); } ! inline void oopDesc::release_address_field_put(int offset, address contents) { OrderAccess::release_store_ptr(address_field_addr(offset), contents); } ! ! inline int oopDesc::size_given_klass(Klass* klass) { ! int lh = klass->layout_helper(); ! int s; ! // lh is now a value computed at class initialization that may hint ! // at the size. For instances, this is positive and equal to the ! // size. For arrays, this is negative and provides log2 of the ! // array element size. For other oops, it is zero and thus requires ! // a virtual call. ! // ! // We go to all this trouble because the size computation is at the ! // heart of phase 2 of mark-compaction, and called for every object, ! // alive or dead. So the speed here is equal in importance to the ! // speed of allocation. ! ! if (lh > Klass::_lh_neutral_value) { ! if (!Klass::layout_helper_needs_slow_path(lh)) { ! s = lh >> LogHeapWordSize; // deliver size scaled by wordSize ! } else { ! s = klass->oop_size(this); ! } ! } else if (lh <= Klass::_lh_neutral_value) { ! // The most common case is instances; fall through if so. ! if (lh < Klass::_lh_neutral_value) { ! // Second most common case is arrays. We have to fetch the ! // length of the array, shift (multiply) it appropriately, ! // up to wordSize, add the header, and align to object size. ! size_t size_in_bytes; ! #ifdef _M_IA64 ! // The Windows Itanium Aug 2002 SDK hoists this load above ! // the check for s < 0. An oop at the end of the heap will ! // cause an access violation if this load is performed on a non ! // array oop. Making the reference volatile prohibits this. ! // (%%% please explain by what magic the length is actually fetched!) ! volatile int *array_length; ! array_length = (volatile int *)( (intptr_t)this + ! arrayOopDesc::length_offset_in_bytes() ); ! assert(array_length > 0, "Integer arithmetic problem somewhere"); ! // Put into size_t to avoid overflow. ! size_in_bytes = (size_t) array_length; ! size_in_bytes = size_in_bytes << Klass::layout_helper_log2_element_size(lh); ! #else ! size_t array_length = (size_t) ((arrayOop)this)->length(); ! size_in_bytes = array_length << Klass::layout_helper_log2_element_size(lh); ! #endif ! size_in_bytes += Klass::layout_helper_header_size(lh); ! ! // This code could be simplified, but by keeping array_header_in_bytes ! // in units of bytes and doing it this way we can round up just once, ! // skipping the intermediate round to HeapWordSize. Cast the result ! // of round_to to size_t to guarantee unsigned division == right shift. ! s = (int)((size_t)round_to(size_in_bytes, MinObjAlignmentInBytes) / ! HeapWordSize); ! ! // ParNew (used by CMS), UseParallelGC and UseG1GC can change the length field ! // of an "old copy" of an object array in the young gen so it indicates ! // the grey portion of an already copied array. This will cause the first ! // disjunct below to fail if the two comparands are computed across such ! // a concurrent change. ! // ParNew also runs with promotion labs (which look like int ! // filler arrays) which are subject to changing their declared size ! // when finally retiring a PLAB; this also can cause the first disjunct ! // to fail for another worker thread that is concurrently walking the block ! // offset table. Both these invariant failures are benign for their ! // current uses; we relax the assertion checking to cover these two cases below: ! // is_objArray() && is_forwarded() // covers first scenario above ! // || is_typeArray() // covers second scenario above ! // If and when UseParallelGC uses the same obj array oop stealing/chunking ! // technique, we will need to suitably modify the assertion. ! assert((s == klass->oop_size(this)) || ! (Universe::heap()->is_gc_active() && ! ((is_typeArray() && UseConcMarkSweepGC) || ! (is_objArray() && is_forwarded() && (UseConcMarkSweepGC || UseParallelGC || UseG1GC)))), ! "wrong array object size"); ! } else { ! // Must be zero, so bite the bullet and take the virtual call. ! s = klass->oop_size(this); ! } ! } ! ! assert(s % MinObjAlignment == 0, "alignment check"); ! assert(s > 0, "Bad size calculated"); ! return s; ! } ! ! ! inline int oopDesc::size() { ! return size_given_klass(klass()); ! } ! ! inline void update_barrier_set(void* p, oop v, bool release = false) { ! assert(oopDesc::bs() != NULL, "Uninitialized bs in oop!"); ! oopDesc::bs()->write_ref_field(p, v, release); ! } ! ! template <class T> inline void update_barrier_set_pre(T* p, oop v) { ! oopDesc::bs()->write_ref_field_pre(p, v); ! } ! ! template <class T> inline void oop_store(T* p, oop v) { ! if (always_do_update_barrier) { ! oop_store((volatile T*)p, v); ! } else { ! update_barrier_set_pre(p, v); ! oopDesc::encode_store_heap_oop(p, v); ! // always_do_update_barrier == false => ! // Either we are at a safepoint (in GC) or CMS is not used. In both ! // cases it's unnecessary to mark the card as dirty with release sematics. ! update_barrier_set((void*)p, v, false /* release */); // cast away type ! } ! } ! ! template <class T> inline void oop_store(volatile T* p, oop v) { ! update_barrier_set_pre((T*)p, v); // cast away volatile ! // Used by release_obj_field_put, so use release_store_ptr. ! oopDesc::release_encode_store_heap_oop(p, v); ! // When using CMS we must mark the card corresponding to p as dirty ! // with release sematics to prevent that CMS sees the dirty card but ! // not the new value v at p due to reordering of the two ! // stores. Note that CMS has a concurrent precleaning phase, where ! // it reads the card table while the Java threads are running. ! update_barrier_set((void*)p, v, true /* release */); // cast away type ! } ! ! // Should replace *addr = oop assignments where addr type depends on UseCompressedOops ! // (without having to remember the function name this calls). ! inline void oop_store_raw(HeapWord* addr, oop value) { ! if (UseCompressedOops) { ! oopDesc::encode_store_heap_oop((narrowOop*)addr, value); ! } else { ! oopDesc::encode_store_heap_oop((oop*)addr, value); ! } ! } ! ! inline oop oopDesc::atomic_compare_exchange_oop(oop exchange_value, ! volatile HeapWord *dest, ! oop compare_value, ! bool prebarrier) { ! if (UseCompressedOops) { ! if (prebarrier) { ! update_barrier_set_pre((narrowOop*)dest, exchange_value); ! } ! // encode exchange and compare value from oop to T ! narrowOop val = encode_heap_oop(exchange_value); ! narrowOop cmp = encode_heap_oop(compare_value); ! ! narrowOop old = (narrowOop) Atomic::cmpxchg(val, (narrowOop*)dest, cmp); ! // decode old from T to oop ! return decode_heap_oop(old); ! } else { ! if (prebarrier) { ! update_barrier_set_pre((oop*)dest, exchange_value); ! } ! return (oop)Atomic::cmpxchg_ptr(exchange_value, (oop*)dest, compare_value); ! } ! } ! ! // Used only for markSweep, scavenging ! inline bool oopDesc::is_gc_marked() const { ! return mark()->is_marked(); ! } ! ! inline bool oopDesc::is_locked() const { return mark()->is_locked(); } ! inline bool oopDesc::is_unlocked() const { return mark()->is_unlocked(); } ! inline bool oopDesc::has_bias_pattern() const { return mark()->has_bias_pattern(); } - // used only for asserts inline bool oopDesc::is_oop(bool ignore_mark_word) const { oop obj = (oop) this; if (!check_obj_alignment(obj)) return false; if (!Universe::heap()->is_in_reserved(obj)) return false; --- 384,522 ---- } else { return (oop)Atomic::xchg_ptr(exchange_value, (oop*)dest); } } + oop oopDesc::atomic_compare_exchange_oop(oop exchange_value, + volatile HeapWord *dest, + oop compare_value, + bool prebarrier) { + if (UseCompressedOops) { + if (prebarrier) { + update_barrier_set_pre((narrowOop*)dest, exchange_value); + } + // encode exchange and compare value from oop to T + narrowOop val = encode_heap_oop(exchange_value); + narrowOop cmp = encode_heap_oop(compare_value); + + narrowOop old = (narrowOop) Atomic::cmpxchg(val, (narrowOop*)dest, cmp); + // decode old from T to oop + return decode_heap_oop(old); + } else { + if (prebarrier) { + update_barrier_set_pre((oop*)dest, exchange_value); + } + return (oop)Atomic::cmpxchg_ptr(exchange_value, (oop*)dest, compare_value); + } + } + // In order to put or get a field out of an instance, must first check // if the field has been compressed and uncompress it. ! oop oopDesc::obj_field(int offset) const { return UseCompressedOops ? load_decode_heap_oop(obj_field_addr<narrowOop>(offset)) : load_decode_heap_oop(obj_field_addr<oop>(offset)); } ! void oopDesc::obj_field_put(int offset, oop value) { UseCompressedOops ? oop_store(obj_field_addr<narrowOop>(offset), value) : oop_store(obj_field_addr<oop>(offset), value); } ! void oopDesc::obj_field_put_raw(int offset, oop value) { UseCompressedOops ? encode_store_heap_oop(obj_field_addr<narrowOop>(offset), value) : encode_store_heap_oop(obj_field_addr<oop>(offset), value); } ! void oopDesc::obj_field_put_volatile(int offset, oop value) { OrderAccess::release(); obj_field_put(offset, value); OrderAccess::fence(); } ! Metadata* oopDesc::metadata_field(int offset) const { return *metadata_field_addr(offset); } ! void oopDesc::metadata_field_put(int offset, Metadata* value) { *metadata_field_addr(offset) = value; } ! ! jbyte oopDesc::byte_field(int offset) const { return (jbyte) *byte_field_addr(offset); } ! void oopDesc::byte_field_put(int offset, jbyte contents) { *byte_field_addr(offset) = (jint) contents; } ! jchar oopDesc::char_field(int offset) const { return (jchar) *char_field_addr(offset); } ! void oopDesc::char_field_put(int offset, jchar contents) { *char_field_addr(offset) = (jint) contents; } ! jboolean oopDesc::bool_field(int offset) const { return (jboolean) *bool_field_addr(offset); } ! void oopDesc::bool_field_put(int offset, jboolean contents) { *bool_field_addr(offset) = (jint) contents; } ! jint oopDesc::int_field(int offset) const { return *int_field_addr(offset); } ! void oopDesc::int_field_put(int offset, jint contents) { *int_field_addr(offset) = contents; } ! jshort oopDesc::short_field(int offset) const { return (jshort) *short_field_addr(offset); } ! void oopDesc::short_field_put(int offset, jshort contents) { *short_field_addr(offset) = (jint) contents;} ! jlong oopDesc::long_field(int offset) const { return *long_field_addr(offset); } ! void oopDesc::long_field_put(int offset, jlong contents) { *long_field_addr(offset) = contents; } ! jfloat oopDesc::float_field(int offset) const { return *float_field_addr(offset); } ! void oopDesc::float_field_put(int offset, jfloat contents) { *float_field_addr(offset) = contents; } ! jdouble oopDesc::double_field(int offset) const { return *double_field_addr(offset); } ! void oopDesc::double_field_put(int offset, jdouble contents) { *double_field_addr(offset) = contents; } ! address oopDesc::address_field(int offset) const { return *address_field_addr(offset); } ! void oopDesc::address_field_put(int offset, address contents) { *address_field_addr(offset) = contents; } ! oop oopDesc::obj_field_acquire(int offset) const { return UseCompressedOops ? decode_heap_oop((narrowOop) OrderAccess::load_acquire(obj_field_addr<narrowOop>(offset))) : decode_heap_oop((oop) OrderAccess::load_ptr_acquire(obj_field_addr<oop>(offset))); } ! void oopDesc::release_obj_field_put(int offset, oop value) { UseCompressedOops ? oop_store((volatile narrowOop*)obj_field_addr<narrowOop>(offset), value) : oop_store((volatile oop*) obj_field_addr<oop>(offset), value); } ! jbyte oopDesc::byte_field_acquire(int offset) const { return OrderAccess::load_acquire(byte_field_addr(offset)); } ! void oopDesc::release_byte_field_put(int offset, jbyte contents) { OrderAccess::release_store(byte_field_addr(offset), contents); } ! jchar oopDesc::char_field_acquire(int offset) const { return OrderAccess::load_acquire(char_field_addr(offset)); } ! void oopDesc::release_char_field_put(int offset, jchar contents) { OrderAccess::release_store(char_field_addr(offset), contents); } ! jboolean oopDesc::bool_field_acquire(int offset) const { return OrderAccess::load_acquire(bool_field_addr(offset)); } ! void oopDesc::release_bool_field_put(int offset, jboolean contents) { OrderAccess::release_store(bool_field_addr(offset), contents); } ! jint oopDesc::int_field_acquire(int offset) const { return OrderAccess::load_acquire(int_field_addr(offset)); } ! void oopDesc::release_int_field_put(int offset, jint contents) { OrderAccess::release_store(int_field_addr(offset), contents); } ! jshort oopDesc::short_field_acquire(int offset) const { return (jshort)OrderAccess::load_acquire(short_field_addr(offset)); } ! void oopDesc::release_short_field_put(int offset, jshort contents) { OrderAccess::release_store(short_field_addr(offset), contents); } ! jlong oopDesc::long_field_acquire(int offset) const { return OrderAccess::load_acquire(long_field_addr(offset)); } ! void oopDesc::release_long_field_put(int offset, jlong contents) { OrderAccess::release_store(long_field_addr(offset), contents); } ! jfloat oopDesc::float_field_acquire(int offset) const { return OrderAccess::load_acquire(float_field_addr(offset)); } ! void oopDesc::release_float_field_put(int offset, jfloat contents) { OrderAccess::release_store(float_field_addr(offset), contents); } ! jdouble oopDesc::double_field_acquire(int offset) const { return OrderAccess::load_acquire(double_field_addr(offset)); } ! void oopDesc::release_double_field_put(int offset, jdouble contents) { OrderAccess::release_store(double_field_addr(offset), contents); } ! address oopDesc::address_field_acquire(int offset) const { return (address) OrderAccess::load_ptr_acquire(address_field_addr(offset)); } ! void oopDesc::release_address_field_put(int offset, address contents) { OrderAccess::release_store_ptr(address_field_addr(offset), contents); } ! bool oopDesc::is_locked() const { return mark()->is_locked(); } ! bool oopDesc::is_unlocked() const { return mark()->is_unlocked(); } ! bool oopDesc::has_bias_pattern() const { return mark()->has_bias_pattern(); } // used only for asserts inline bool oopDesc::is_oop(bool ignore_mark_word) const { oop obj = (oop) this; if (!check_obj_alignment(obj)) return false; if (!Universe::heap()->is_in_reserved(obj)) return false;
*** 578,628 **** return this == NULL ? true : is_oop(ignore_mark_word); } #ifndef PRODUCT // used only for asserts ! inline bool oopDesc::is_unlocked_oop() const { if (!Universe::heap()->is_in_reserved(this)) return false; return mark()->is_unlocked(); } #endif // PRODUCT ! inline bool oopDesc::is_scavengable() const { return Universe::heap()->is_scavengable(this); } // Used by scavengers ! inline bool oopDesc::is_forwarded() const { // The extra heap check is needed since the obj might be locked, in which case the // mark would point to a stack location and have the sentinel bit cleared return mark()->is_marked(); } // Used by scavengers ! inline void oopDesc::forward_to(oop p) { assert(check_obj_alignment(p), "forwarding to something not aligned"); assert(Universe::heap()->is_in_reserved(p), "forwarding to something not in heap"); markOop m = markOopDesc::encode_pointer_as_mark(p); assert(m->decode_pointer() == p, "encoding must be reversable"); set_mark(m); } // Used by parallel scavengers ! inline bool oopDesc::cas_forward_to(oop p, markOop compare) { assert(check_obj_alignment(p), "forwarding to something not aligned"); assert(Universe::heap()->is_in_reserved(p), "forwarding to something not in heap"); markOop m = markOopDesc::encode_pointer_as_mark(p); assert(m->decode_pointer() == p, "encoding must be reversable"); return cas_set_mark(m, compare) == compare; } #if INCLUDE_ALL_GCS ! inline oop oopDesc::forward_to_atomic(oop p) { markOop oldMark = mark(); markOop forwardPtrMark = markOopDesc::encode_pointer_as_mark(p); markOop curMark; assert(forwardPtrMark->decode_pointer() == p, "encoding must be reversable"); --- 542,597 ---- return this == NULL ? true : is_oop(ignore_mark_word); } #ifndef PRODUCT // used only for asserts ! bool oopDesc::is_unlocked_oop() const { if (!Universe::heap()->is_in_reserved(this)) return false; return mark()->is_unlocked(); } #endif // PRODUCT ! // Used only for markSweep, scavenging ! bool oopDesc::is_gc_marked() const { ! return mark()->is_marked(); ! } ! ! bool oopDesc::is_scavengable() const { return Universe::heap()->is_scavengable(this); } // Used by scavengers ! bool oopDesc::is_forwarded() const { // The extra heap check is needed since the obj might be locked, in which case the // mark would point to a stack location and have the sentinel bit cleared return mark()->is_marked(); } // Used by scavengers ! void oopDesc::forward_to(oop p) { assert(check_obj_alignment(p), "forwarding to something not aligned"); assert(Universe::heap()->is_in_reserved(p), "forwarding to something not in heap"); markOop m = markOopDesc::encode_pointer_as_mark(p); assert(m->decode_pointer() == p, "encoding must be reversable"); set_mark(m); } // Used by parallel scavengers ! bool oopDesc::cas_forward_to(oop p, markOop compare) { assert(check_obj_alignment(p), "forwarding to something not aligned"); assert(Universe::heap()->is_in_reserved(p), "forwarding to something not in heap"); markOop m = markOopDesc::encode_pointer_as_mark(p); assert(m->decode_pointer() == p, "encoding must be reversable"); return cas_set_mark(m, compare) == compare; } #if INCLUDE_ALL_GCS ! oop oopDesc::forward_to_atomic(oop p) { markOop oldMark = mark(); markOop forwardPtrMark = markOopDesc::encode_pointer_as_mark(p); markOop curMark; assert(forwardPtrMark->decode_pointer() == p, "encoding must be reversable");
*** 644,768 **** #endif // Note that the forwardee is not the same thing as the displaced_mark. // The forwardee is used when copying during scavenge and mark-sweep. // It does need to clear the low two locking- and GC-related bits. ! inline oop oopDesc::forwardee() const { return (oop) mark()->decode_pointer(); } - inline bool oopDesc::has_displaced_mark() const { - return mark()->has_displaced_mark_helper(); - } - - inline markOop oopDesc::displaced_mark() const { - return mark()->displaced_mark_helper(); - } - - inline void oopDesc::set_displaced_mark(markOop m) { - mark()->set_displaced_mark_helper(m); - } - // The following method needs to be MT safe. inline uint oopDesc::age() const { assert(!is_forwarded(), "Attempt to read age from forwarded mark"); if (has_displaced_mark()) { return displaced_mark()->age(); } else { return mark()->age(); } } ! inline void oopDesc::incr_age() { assert(!is_forwarded(), "Attempt to increment age of forwarded mark"); if (has_displaced_mark()) { set_displaced_mark(displaced_mark()->incr_age()); } else { set_mark(mark()->incr_age()); } } ! ! inline intptr_t oopDesc::identity_hash() { ! // Fast case; if the object is unlocked and the hash value is set, no locking is needed ! // Note: The mark must be read into local variable to avoid concurrent updates. ! markOop mrk = mark(); ! if (mrk->is_unlocked() && !mrk->has_no_hash()) { ! return mrk->hash(); ! } else if (mrk->is_marked()) { ! return mrk->hash(); ! } else { ! return slow_identity_hash(); ! } ! } ! ! inline int oopDesc::ms_adjust_pointers() { debug_only(int check_size = size()); int s = klass()->oop_ms_adjust_pointers(this); assert(s == check_size, "should be the same"); return s; } #if INCLUDE_ALL_GCS ! inline void oopDesc::pc_follow_contents(ParCompactionManager* cm) { klass()->oop_pc_follow_contents(this, cm); } ! inline void oopDesc::pc_update_contents() { Klass* k = klass(); if (!k->is_typeArray_klass()) { // It might contain oops beyond the header, so take the virtual call. k->oop_pc_update_pointers(this); } // Else skip it. The TypeArrayKlass in the header never needs scavenging. } ! inline void oopDesc::ps_push_contents(PSPromotionManager* pm) { Klass* k = klass(); if (!k->is_typeArray_klass()) { // It might contain oops beyond the header, so take the virtual call. k->oop_ps_push_contents(this, pm); } // Else skip it. The TypeArrayKlass in the header never needs scavenging. } ! #endif #define OOP_ITERATE_DEFN(OopClosureType, nv_suffix) \ \ ! inline void oopDesc::oop_iterate(OopClosureType* blk) { \ klass()->oop_oop_iterate##nv_suffix(this, blk); \ } \ \ ! inline void oopDesc::oop_iterate(OopClosureType* blk, MemRegion mr) { \ klass()->oop_oop_iterate_bounded##nv_suffix(this, blk, mr); \ } #define OOP_ITERATE_SIZE_DEFN(OopClosureType, nv_suffix) \ \ ! inline int oopDesc::oop_iterate_size(OopClosureType* blk) { \ Klass* k = klass(); \ int size = size_given_klass(k); \ k->oop_oop_iterate##nv_suffix(this, blk); \ return size; \ } \ \ ! inline int oopDesc::oop_iterate_size(OopClosureType* blk, \ ! MemRegion mr) { \ Klass* k = klass(); \ int size = size_given_klass(k); \ k->oop_oop_iterate_bounded##nv_suffix(this, blk, mr); \ return size; \ } ! inline int oopDesc::oop_iterate_no_header(OopClosure* blk) { // The NoHeaderExtendedOopClosure wraps the OopClosure and proxies all // the do_oop calls, but turns off all other features in ExtendedOopClosure. NoHeaderExtendedOopClosure cl(blk); return oop_iterate_size(&cl); } ! inline int oopDesc::oop_iterate_no_header(OopClosure* blk, MemRegion mr) { NoHeaderExtendedOopClosure cl(blk); return oop_iterate_size(&cl, mr); } #if INCLUDE_ALL_GCS --- 613,710 ---- #endif // Note that the forwardee is not the same thing as the displaced_mark. // The forwardee is used when copying during scavenge and mark-sweep. // It does need to clear the low two locking- and GC-related bits. ! oop oopDesc::forwardee() const { return (oop) mark()->decode_pointer(); } // The following method needs to be MT safe. inline uint oopDesc::age() const { assert(!is_forwarded(), "Attempt to read age from forwarded mark"); if (has_displaced_mark()) { return displaced_mark()->age(); } else { return mark()->age(); } } ! void oopDesc::incr_age() { assert(!is_forwarded(), "Attempt to increment age of forwarded mark"); if (has_displaced_mark()) { set_displaced_mark(displaced_mark()->incr_age()); } else { set_mark(mark()->incr_age()); } } ! int oopDesc::ms_adjust_pointers() { debug_only(int check_size = size()); int s = klass()->oop_ms_adjust_pointers(this); assert(s == check_size, "should be the same"); return s; } #if INCLUDE_ALL_GCS ! void oopDesc::pc_follow_contents(ParCompactionManager* cm) { klass()->oop_pc_follow_contents(this, cm); } ! void oopDesc::pc_update_contents() { Klass* k = klass(); if (!k->is_typeArray_klass()) { // It might contain oops beyond the header, so take the virtual call. k->oop_pc_update_pointers(this); } // Else skip it. The TypeArrayKlass in the header never needs scavenging. } ! void oopDesc::ps_push_contents(PSPromotionManager* pm) { Klass* k = klass(); if (!k->is_typeArray_klass()) { // It might contain oops beyond the header, so take the virtual call. k->oop_ps_push_contents(this, pm); } // Else skip it. The TypeArrayKlass in the header never needs scavenging. } ! #endif // INCLUDE_ALL_GCS #define OOP_ITERATE_DEFN(OopClosureType, nv_suffix) \ \ ! void oopDesc::oop_iterate(OopClosureType* blk) { \ klass()->oop_oop_iterate##nv_suffix(this, blk); \ } \ \ ! void oopDesc::oop_iterate(OopClosureType* blk, MemRegion mr) { \ klass()->oop_oop_iterate_bounded##nv_suffix(this, blk, mr); \ } #define OOP_ITERATE_SIZE_DEFN(OopClosureType, nv_suffix) \ \ ! int oopDesc::oop_iterate_size(OopClosureType* blk) { \ Klass* k = klass(); \ int size = size_given_klass(k); \ k->oop_oop_iterate##nv_suffix(this, blk); \ return size; \ } \ \ ! int oopDesc::oop_iterate_size(OopClosureType* blk, MemRegion mr) { \ Klass* k = klass(); \ int size = size_given_klass(k); \ k->oop_oop_iterate_bounded##nv_suffix(this, blk, mr); \ return size; \ } ! int oopDesc::oop_iterate_no_header(OopClosure* blk) { // The NoHeaderExtendedOopClosure wraps the OopClosure and proxies all // the do_oop calls, but turns off all other features in ExtendedOopClosure. NoHeaderExtendedOopClosure cl(blk); return oop_iterate_size(&cl); } ! int oopDesc::oop_iterate_no_header(OopClosure* blk, MemRegion mr) { NoHeaderExtendedOopClosure cl(blk); return oop_iterate_size(&cl, mr); } #if INCLUDE_ALL_GCS
*** 771,786 **** inline void oopDesc::oop_iterate_backwards(OopClosureType* blk) { \ klass()->oop_oop_iterate_backwards##nv_suffix(this, blk); \ } #else #define OOP_ITERATE_BACKWARDS_DEFN(OopClosureType, nv_suffix) ! #endif #define ALL_OOPDESC_OOP_ITERATE(OopClosureType, nv_suffix) \ OOP_ITERATE_DEFN(OopClosureType, nv_suffix) \ OOP_ITERATE_SIZE_DEFN(OopClosureType, nv_suffix) \ OOP_ITERATE_BACKWARDS_DEFN(OopClosureType, nv_suffix) ALL_OOP_OOP_ITERATE_CLOSURES_1(ALL_OOPDESC_OOP_ITERATE) ALL_OOP_OOP_ITERATE_CLOSURES_2(ALL_OOPDESC_OOP_ITERATE) #endif // SHARE_VM_OOPS_OOP_INLINE_HPP --- 713,753 ---- inline void oopDesc::oop_iterate_backwards(OopClosureType* blk) { \ klass()->oop_oop_iterate_backwards##nv_suffix(this, blk); \ } #else #define OOP_ITERATE_BACKWARDS_DEFN(OopClosureType, nv_suffix) ! #endif // INCLUDE_ALL_GCS #define ALL_OOPDESC_OOP_ITERATE(OopClosureType, nv_suffix) \ OOP_ITERATE_DEFN(OopClosureType, nv_suffix) \ OOP_ITERATE_SIZE_DEFN(OopClosureType, nv_suffix) \ OOP_ITERATE_BACKWARDS_DEFN(OopClosureType, nv_suffix) ALL_OOP_OOP_ITERATE_CLOSURES_1(ALL_OOPDESC_OOP_ITERATE) ALL_OOP_OOP_ITERATE_CLOSURES_2(ALL_OOPDESC_OOP_ITERATE) + intptr_t oopDesc::identity_hash() { + // Fast case; if the object is unlocked and the hash value is set, no locking is needed + // Note: The mark must be read into local variable to avoid concurrent updates. + markOop mrk = mark(); + if (mrk->is_unlocked() && !mrk->has_no_hash()) { + return mrk->hash(); + } else if (mrk->is_marked()) { + return mrk->hash(); + } else { + return slow_identity_hash(); + } + } + + bool oopDesc::has_displaced_mark() const { + return mark()->has_displaced_mark_helper(); + } + + markOop oopDesc::displaced_mark() const { + return mark()->displaced_mark_helper(); + } + + void oopDesc::set_displaced_mark(markOop m) { + mark()->set_displaced_mark_helper(m); + } + #endif // SHARE_VM_OOPS_OOP_INLINE_HPP
< prev index next >