rev 5190 : 8024342: PPC64 (part 111): Support for C calling conventions that require 64-bit ints. Summary: Some platforms, as ppc and s390x/zArch require that 32-bit ints are passed as 64-bit values to C functions. This change adds support to adapt the signature and to issue proper casts to c2-compiled stubs. The functions are used in generate_native_wrapper(). Adapt signature used by the compiler as in PhaseIdealLoop::intrinsify_fill().
1 /* 2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/systemDictionary.hpp" 27 #include "classfile/vmSymbols.hpp" 28 #include "code/compiledIC.hpp" 29 #include "code/scopeDesc.hpp" 30 #include "code/vtableStubs.hpp" 31 #include "compiler/abstractCompiler.hpp" 32 #include "compiler/compileBroker.hpp" 33 #include "compiler/compilerOracle.hpp" 34 #include "compiler/disassembler.hpp" 35 #include "interpreter/interpreter.hpp" 36 #include "interpreter/interpreterRuntime.hpp" 37 #include "memory/gcLocker.inline.hpp" 38 #include "memory/universe.inline.hpp" 39 #include "oops/oop.inline.hpp" 40 #include "prims/forte.hpp" 41 #include "prims/jvmtiExport.hpp" 42 #include "prims/jvmtiRedefineClassesTrace.hpp" 43 #include "prims/methodHandles.hpp" 44 #include "prims/nativeLookup.hpp" 45 #include "runtime/arguments.hpp" 46 #include "runtime/biasedLocking.hpp" 47 #include "runtime/handles.inline.hpp" 48 #include "runtime/init.hpp" 49 #include "runtime/interfaceSupport.hpp" 50 #include "runtime/javaCalls.hpp" 51 #include "runtime/sharedRuntime.hpp" 52 #include "runtime/stubRoutines.hpp" 53 #include "runtime/vframe.hpp" 54 #include "runtime/vframeArray.hpp" 55 #include "utilities/copy.hpp" 56 #include "utilities/dtrace.hpp" 57 #include "utilities/events.hpp" 58 #include "utilities/hashtable.inline.hpp" 59 #include "utilities/macros.hpp" 60 #include "utilities/xmlstream.hpp" 61 #ifdef TARGET_ARCH_x86 62 # include "nativeInst_x86.hpp" 63 # include "vmreg_x86.inline.hpp" 64 #endif 65 #ifdef TARGET_ARCH_sparc 66 # include "nativeInst_sparc.hpp" 67 # include "vmreg_sparc.inline.hpp" 68 #endif 69 #ifdef TARGET_ARCH_zero 70 # include "nativeInst_zero.hpp" 71 # include "vmreg_zero.inline.hpp" 72 #endif 73 #ifdef TARGET_ARCH_arm 74 # include "nativeInst_arm.hpp" 75 # include "vmreg_arm.inline.hpp" 76 #endif 77 #ifdef TARGET_ARCH_ppc 78 # include "nativeInst_ppc.hpp" 79 # include "vmreg_ppc.inline.hpp" 80 #endif 81 #ifdef COMPILER1 82 #include "c1/c1_Runtime1.hpp" 83 #endif 84 85 // Shared stub locations 86 RuntimeStub* SharedRuntime::_wrong_method_blob; 87 RuntimeStub* SharedRuntime::_ic_miss_blob; 88 RuntimeStub* SharedRuntime::_resolve_opt_virtual_call_blob; 89 RuntimeStub* SharedRuntime::_resolve_virtual_call_blob; 90 RuntimeStub* SharedRuntime::_resolve_static_call_blob; 91 92 DeoptimizationBlob* SharedRuntime::_deopt_blob; 93 SafepointBlob* SharedRuntime::_polling_page_vectors_safepoint_handler_blob; 94 SafepointBlob* SharedRuntime::_polling_page_safepoint_handler_blob; 95 SafepointBlob* SharedRuntime::_polling_page_return_handler_blob; 96 97 #ifdef COMPILER2 98 UncommonTrapBlob* SharedRuntime::_uncommon_trap_blob; 99 #endif // COMPILER2 100 101 102 //----------------------------generate_stubs----------------------------------- 103 void SharedRuntime::generate_stubs() { 104 _wrong_method_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method), "wrong_method_stub"); 105 _ic_miss_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss), "ic_miss_stub"); 106 _resolve_opt_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C), "resolve_opt_virtual_call"); 107 _resolve_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C), "resolve_virtual_call"); 108 _resolve_static_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C), "resolve_static_call"); 109 110 #ifdef COMPILER2 111 // Vectors are generated only by C2. 112 if (is_wide_vector(MaxVectorSize)) { 113 _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP); 114 } 115 #endif // COMPILER2 116 _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP); 117 _polling_page_return_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN); 118 119 generate_deopt_blob(); 120 121 #ifdef COMPILER2 122 generate_uncommon_trap_blob(); 123 #endif // COMPILER2 124 } 125 126 #include <math.h> 127 128 #ifndef USDT2 129 HS_DTRACE_PROBE_DECL4(hotspot, object__alloc, Thread*, char*, int, size_t); 130 HS_DTRACE_PROBE_DECL7(hotspot, method__entry, int, 131 char*, int, char*, int, char*, int); 132 HS_DTRACE_PROBE_DECL7(hotspot, method__return, int, 133 char*, int, char*, int, char*, int); 134 #endif /* !USDT2 */ 135 136 // Implementation of SharedRuntime 137 138 #ifndef PRODUCT 139 // For statistics 140 int SharedRuntime::_ic_miss_ctr = 0; 141 int SharedRuntime::_wrong_method_ctr = 0; 142 int SharedRuntime::_resolve_static_ctr = 0; 143 int SharedRuntime::_resolve_virtual_ctr = 0; 144 int SharedRuntime::_resolve_opt_virtual_ctr = 0; 145 int SharedRuntime::_implicit_null_throws = 0; 146 int SharedRuntime::_implicit_div0_throws = 0; 147 int SharedRuntime::_throw_null_ctr = 0; 148 149 int SharedRuntime::_nof_normal_calls = 0; 150 int SharedRuntime::_nof_optimized_calls = 0; 151 int SharedRuntime::_nof_inlined_calls = 0; 152 int SharedRuntime::_nof_megamorphic_calls = 0; 153 int SharedRuntime::_nof_static_calls = 0; 154 int SharedRuntime::_nof_inlined_static_calls = 0; 155 int SharedRuntime::_nof_interface_calls = 0; 156 int SharedRuntime::_nof_optimized_interface_calls = 0; 157 int SharedRuntime::_nof_inlined_interface_calls = 0; 158 int SharedRuntime::_nof_megamorphic_interface_calls = 0; 159 int SharedRuntime::_nof_removable_exceptions = 0; 160 161 int SharedRuntime::_new_instance_ctr=0; 162 int SharedRuntime::_new_array_ctr=0; 163 int SharedRuntime::_multi1_ctr=0; 164 int SharedRuntime::_multi2_ctr=0; 165 int SharedRuntime::_multi3_ctr=0; 166 int SharedRuntime::_multi4_ctr=0; 167 int SharedRuntime::_multi5_ctr=0; 168 int SharedRuntime::_mon_enter_stub_ctr=0; 169 int SharedRuntime::_mon_exit_stub_ctr=0; 170 int SharedRuntime::_mon_enter_ctr=0; 171 int SharedRuntime::_mon_exit_ctr=0; 172 int SharedRuntime::_partial_subtype_ctr=0; 173 int SharedRuntime::_jbyte_array_copy_ctr=0; 174 int SharedRuntime::_jshort_array_copy_ctr=0; 175 int SharedRuntime::_jint_array_copy_ctr=0; 176 int SharedRuntime::_jlong_array_copy_ctr=0; 177 int SharedRuntime::_oop_array_copy_ctr=0; 178 int SharedRuntime::_checkcast_array_copy_ctr=0; 179 int SharedRuntime::_unsafe_array_copy_ctr=0; 180 int SharedRuntime::_generic_array_copy_ctr=0; 181 int SharedRuntime::_slow_array_copy_ctr=0; 182 int SharedRuntime::_find_handler_ctr=0; 183 int SharedRuntime::_rethrow_ctr=0; 184 185 int SharedRuntime::_ICmiss_index = 0; 186 int SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count]; 187 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count]; 188 189 190 void SharedRuntime::trace_ic_miss(address at) { 191 for (int i = 0; i < _ICmiss_index; i++) { 192 if (_ICmiss_at[i] == at) { 193 _ICmiss_count[i]++; 194 return; 195 } 196 } 197 int index = _ICmiss_index++; 198 if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1; 199 _ICmiss_at[index] = at; 200 _ICmiss_count[index] = 1; 201 } 202 203 void SharedRuntime::print_ic_miss_histogram() { 204 if (ICMissHistogram) { 205 tty->print_cr ("IC Miss Histogram:"); 206 int tot_misses = 0; 207 for (int i = 0; i < _ICmiss_index; i++) { 208 tty->print_cr(" at: " INTPTR_FORMAT " nof: %d", _ICmiss_at[i], _ICmiss_count[i]); 209 tot_misses += _ICmiss_count[i]; 210 } 211 tty->print_cr ("Total IC misses: %7d", tot_misses); 212 } 213 } 214 #endif // PRODUCT 215 216 #if INCLUDE_ALL_GCS 217 218 // G1 write-barrier pre: executed before a pointer store. 219 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread)) 220 if (orig == NULL) { 221 assert(false, "should be optimized out"); 222 return; 223 } 224 assert(orig->is_oop(true /* ignore mark word */), "Error"); 225 // store the original value that was in the field reference 226 thread->satb_mark_queue().enqueue(orig); 227 JRT_END 228 229 // G1 write-barrier post: executed after a pointer store. 230 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread)) 231 thread->dirty_card_queue().enqueue(card_addr); 232 JRT_END 233 234 #endif // INCLUDE_ALL_GCS 235 236 237 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x)) 238 return x * y; 239 JRT_END 240 241 242 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x)) 243 if (x == min_jlong && y == CONST64(-1)) { 244 return x; 245 } else { 246 return x / y; 247 } 248 JRT_END 249 250 251 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x)) 252 if (x == min_jlong && y == CONST64(-1)) { 253 return 0; 254 } else { 255 return x % y; 256 } 257 JRT_END 258 259 260 const juint float_sign_mask = 0x7FFFFFFF; 261 const juint float_infinity = 0x7F800000; 262 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF); 263 const julong double_infinity = CONST64(0x7FF0000000000000); 264 265 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y)) 266 #ifdef _WIN64 267 // 64-bit Windows on amd64 returns the wrong values for 268 // infinity operands. 269 union { jfloat f; juint i; } xbits, ybits; 270 xbits.f = x; 271 ybits.f = y; 272 // x Mod Infinity == x unless x is infinity 273 if ( ((xbits.i & float_sign_mask) != float_infinity) && 274 ((ybits.i & float_sign_mask) == float_infinity) ) { 275 return x; 276 } 277 #endif 278 return ((jfloat)fmod((double)x,(double)y)); 279 JRT_END 280 281 282 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y)) 283 #ifdef _WIN64 284 union { jdouble d; julong l; } xbits, ybits; 285 xbits.d = x; 286 ybits.d = y; 287 // x Mod Infinity == x unless x is infinity 288 if ( ((xbits.l & double_sign_mask) != double_infinity) && 289 ((ybits.l & double_sign_mask) == double_infinity) ) { 290 return x; 291 } 292 #endif 293 return ((jdouble)fmod((double)x,(double)y)); 294 JRT_END 295 296 #ifdef __SOFTFP__ 297 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y)) 298 return x + y; 299 JRT_END 300 301 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y)) 302 return x - y; 303 JRT_END 304 305 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y)) 306 return x * y; 307 JRT_END 308 309 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y)) 310 return x / y; 311 JRT_END 312 313 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y)) 314 return x + y; 315 JRT_END 316 317 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y)) 318 return x - y; 319 JRT_END 320 321 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y)) 322 return x * y; 323 JRT_END 324 325 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y)) 326 return x / y; 327 JRT_END 328 329 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x)) 330 return (jfloat)x; 331 JRT_END 332 333 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x)) 334 return (jdouble)x; 335 JRT_END 336 337 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x)) 338 return (jdouble)x; 339 JRT_END 340 341 JRT_LEAF(int, SharedRuntime::fcmpl(float x, float y)) 342 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan*/ 343 JRT_END 344 345 JRT_LEAF(int, SharedRuntime::fcmpg(float x, float y)) 346 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */ 347 JRT_END 348 349 JRT_LEAF(int, SharedRuntime::dcmpl(double x, double y)) 350 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */ 351 JRT_END 352 353 JRT_LEAF(int, SharedRuntime::dcmpg(double x, double y)) 354 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */ 355 JRT_END 356 357 // Functions to return the opposite of the aeabi functions for nan. 358 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y)) 359 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 360 JRT_END 361 362 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y)) 363 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 364 JRT_END 365 366 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y)) 367 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 368 JRT_END 369 370 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y)) 371 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 372 JRT_END 373 374 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y)) 375 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 376 JRT_END 377 378 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y)) 379 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 380 JRT_END 381 382 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y)) 383 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 384 JRT_END 385 386 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y)) 387 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 388 JRT_END 389 390 // Intrinsics make gcc generate code for these. 391 float SharedRuntime::fneg(float f) { 392 return -f; 393 } 394 395 double SharedRuntime::dneg(double f) { 396 return -f; 397 } 398 399 #endif // __SOFTFP__ 400 401 #if defined(__SOFTFP__) || defined(E500V2) 402 // Intrinsics make gcc generate code for these. 403 double SharedRuntime::dabs(double f) { 404 return (f <= (double)0.0) ? (double)0.0 - f : f; 405 } 406 407 #endif 408 409 #if defined(__SOFTFP__) || defined(PPC32) 410 double SharedRuntime::dsqrt(double f) { 411 return sqrt(f); 412 } 413 #endif 414 415 JRT_LEAF(jint, SharedRuntime::f2i(jfloat x)) 416 if (g_isnan(x)) 417 return 0; 418 if (x >= (jfloat) max_jint) 419 return max_jint; 420 if (x <= (jfloat) min_jint) 421 return min_jint; 422 return (jint) x; 423 JRT_END 424 425 426 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat x)) 427 if (g_isnan(x)) 428 return 0; 429 if (x >= (jfloat) max_jlong) 430 return max_jlong; 431 if (x <= (jfloat) min_jlong) 432 return min_jlong; 433 return (jlong) x; 434 JRT_END 435 436 437 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x)) 438 if (g_isnan(x)) 439 return 0; 440 if (x >= (jdouble) max_jint) 441 return max_jint; 442 if (x <= (jdouble) min_jint) 443 return min_jint; 444 return (jint) x; 445 JRT_END 446 447 448 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x)) 449 if (g_isnan(x)) 450 return 0; 451 if (x >= (jdouble) max_jlong) 452 return max_jlong; 453 if (x <= (jdouble) min_jlong) 454 return min_jlong; 455 return (jlong) x; 456 JRT_END 457 458 459 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x)) 460 return (jfloat)x; 461 JRT_END 462 463 464 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x)) 465 return (jfloat)x; 466 JRT_END 467 468 469 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x)) 470 return (jdouble)x; 471 JRT_END 472 473 // Exception handling accross interpreter/compiler boundaries 474 // 475 // exception_handler_for_return_address(...) returns the continuation address. 476 // The continuation address is the entry point of the exception handler of the 477 // previous frame depending on the return address. 478 479 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) { 480 assert(frame::verify_return_pc(return_address), err_msg("must be a return address: " INTPTR_FORMAT, return_address)); 481 482 // Reset method handle flag. 483 thread->set_is_method_handle_return(false); 484 485 // The fastest case first 486 CodeBlob* blob = CodeCache::find_blob(return_address); 487 nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL; 488 if (nm != NULL) { 489 // Set flag if return address is a method handle call site. 490 thread->set_is_method_handle_return(nm->is_method_handle_return(return_address)); 491 // native nmethods don't have exception handlers 492 assert(!nm->is_native_method(), "no exception handler"); 493 assert(nm->header_begin() != nm->exception_begin(), "no exception handler"); 494 if (nm->is_deopt_pc(return_address)) { 495 return SharedRuntime::deopt_blob()->unpack_with_exception(); 496 } else { 497 return nm->exception_begin(); 498 } 499 } 500 501 // Entry code 502 if (StubRoutines::returns_to_call_stub(return_address)) { 503 return StubRoutines::catch_exception_entry(); 504 } 505 // Interpreted code 506 if (Interpreter::contains(return_address)) { 507 return Interpreter::rethrow_exception_entry(); 508 } 509 510 guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub"); 511 guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!"); 512 513 #ifndef PRODUCT 514 { ResourceMark rm; 515 tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address); 516 tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here"); 517 tty->print_cr("b) other problem"); 518 } 519 #endif // PRODUCT 520 521 ShouldNotReachHere(); 522 return NULL; 523 } 524 525 526 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address)) 527 return raw_exception_handler_for_return_address(thread, return_address); 528 JRT_END 529 530 531 address SharedRuntime::get_poll_stub(address pc) { 532 address stub; 533 // Look up the code blob 534 CodeBlob *cb = CodeCache::find_blob(pc); 535 536 // Should be an nmethod 537 assert( cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod" ); 538 539 // Look up the relocation information 540 assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc), 541 "safepoint polling: type must be poll" ); 542 543 assert( ((NativeInstruction*)pc)->is_safepoint_poll(), 544 "Only polling locations are used for safepoint"); 545 546 bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc); 547 bool has_wide_vectors = ((nmethod*)cb)->has_wide_vectors(); 548 if (at_poll_return) { 549 assert(SharedRuntime::polling_page_return_handler_blob() != NULL, 550 "polling page return stub not created yet"); 551 stub = SharedRuntime::polling_page_return_handler_blob()->entry_point(); 552 } else if (has_wide_vectors) { 553 assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL, 554 "polling page vectors safepoint stub not created yet"); 555 stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point(); 556 } else { 557 assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL, 558 "polling page safepoint stub not created yet"); 559 stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point(); 560 } 561 #ifndef PRODUCT 562 if( TraceSafepoint ) { 563 char buf[256]; 564 jio_snprintf(buf, sizeof(buf), 565 "... found polling page %s exception at pc = " 566 INTPTR_FORMAT ", stub =" INTPTR_FORMAT, 567 at_poll_return ? "return" : "loop", 568 (intptr_t)pc, (intptr_t)stub); 569 tty->print_raw_cr(buf); 570 } 571 #endif // PRODUCT 572 return stub; 573 } 574 575 576 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) { 577 assert(caller.is_interpreted_frame(), ""); 578 int args_size = ArgumentSizeComputer(sig).size() + 1; 579 assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack"); 580 oop result = (oop) *caller.interpreter_frame_tos_at(args_size - 1); 581 assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop"); 582 return result; 583 } 584 585 586 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) { 587 if (JvmtiExport::can_post_on_exceptions()) { 588 vframeStream vfst(thread, true); 589 methodHandle method = methodHandle(thread, vfst.method()); 590 address bcp = method()->bcp_from(vfst.bci()); 591 JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception()); 592 } 593 Exceptions::_throw(thread, __FILE__, __LINE__, h_exception); 594 } 595 596 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) { 597 Handle h_exception = Exceptions::new_exception(thread, name, message); 598 throw_and_post_jvmti_exception(thread, h_exception); 599 } 600 601 // The interpreter code to call this tracing function is only 602 // called/generated when TraceRedefineClasses has the right bits 603 // set. Since obsolete methods are never compiled, we don't have 604 // to modify the compilers to generate calls to this function. 605 // 606 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry( 607 JavaThread* thread, Method* method)) 608 assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call"); 609 610 if (method->is_obsolete()) { 611 // We are calling an obsolete method, but this is not necessarily 612 // an error. Our method could have been redefined just after we 613 // fetched the Method* from the constant pool. 614 615 // RC_TRACE macro has an embedded ResourceMark 616 RC_TRACE_WITH_THREAD(0x00001000, thread, 617 ("calling obsolete method '%s'", 618 method->name_and_sig_as_C_string())); 619 if (RC_TRACE_ENABLED(0x00002000)) { 620 // this option is provided to debug calls to obsolete methods 621 guarantee(false, "faulting at call to an obsolete method."); 622 } 623 } 624 return 0; 625 JRT_END 626 627 // ret_pc points into caller; we are returning caller's exception handler 628 // for given exception 629 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception, 630 bool force_unwind, bool top_frame_only) { 631 assert(nm != NULL, "must exist"); 632 ResourceMark rm; 633 634 ScopeDesc* sd = nm->scope_desc_at(ret_pc); 635 // determine handler bci, if any 636 EXCEPTION_MARK; 637 638 int handler_bci = -1; 639 int scope_depth = 0; 640 if (!force_unwind) { 641 int bci = sd->bci(); 642 bool recursive_exception = false; 643 do { 644 bool skip_scope_increment = false; 645 // exception handler lookup 646 KlassHandle ek (THREAD, exception->klass()); 647 methodHandle mh(THREAD, sd->method()); 648 handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD); 649 if (HAS_PENDING_EXCEPTION) { 650 recursive_exception = true; 651 // We threw an exception while trying to find the exception handler. 652 // Transfer the new exception to the exception handle which will 653 // be set into thread local storage, and do another lookup for an 654 // exception handler for this exception, this time starting at the 655 // BCI of the exception handler which caused the exception to be 656 // thrown (bugs 4307310 and 4546590). Set "exception" reference 657 // argument to ensure that the correct exception is thrown (4870175). 658 exception = Handle(THREAD, PENDING_EXCEPTION); 659 CLEAR_PENDING_EXCEPTION; 660 if (handler_bci >= 0) { 661 bci = handler_bci; 662 handler_bci = -1; 663 skip_scope_increment = true; 664 } 665 } 666 else { 667 recursive_exception = false; 668 } 669 if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) { 670 sd = sd->sender(); 671 if (sd != NULL) { 672 bci = sd->bci(); 673 } 674 ++scope_depth; 675 } 676 } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL)); 677 } 678 679 // found handling method => lookup exception handler 680 int catch_pco = ret_pc - nm->code_begin(); 681 682 ExceptionHandlerTable table(nm); 683 HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth); 684 if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) { 685 // Allow abbreviated catch tables. The idea is to allow a method 686 // to materialize its exceptions without committing to the exact 687 // routing of exceptions. In particular this is needed for adding 688 // a synthethic handler to unlock monitors when inlining 689 // synchonized methods since the unlock path isn't represented in 690 // the bytecodes. 691 t = table.entry_for(catch_pco, -1, 0); 692 } 693 694 #ifdef COMPILER1 695 if (t == NULL && nm->is_compiled_by_c1()) { 696 assert(nm->unwind_handler_begin() != NULL, ""); 697 return nm->unwind_handler_begin(); 698 } 699 #endif 700 701 if (t == NULL) { 702 tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci); 703 tty->print_cr(" Exception:"); 704 exception->print(); 705 tty->cr(); 706 tty->print_cr(" Compiled exception table :"); 707 table.print(); 708 nm->print_code(); 709 guarantee(false, "missing exception handler"); 710 return NULL; 711 } 712 713 return nm->code_begin() + t->pco(); 714 } 715 716 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread)) 717 // These errors occur only at call sites 718 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError()); 719 JRT_END 720 721 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread)) 722 // These errors occur only at call sites 723 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub"); 724 JRT_END 725 726 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread)) 727 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero"); 728 JRT_END 729 730 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread)) 731 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException()); 732 JRT_END 733 734 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread)) 735 // This entry point is effectively only used for NullPointerExceptions which occur at inline 736 // cache sites (when the callee activation is not yet set up) so we are at a call site 737 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException()); 738 JRT_END 739 740 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread)) 741 // We avoid using the normal exception construction in this case because 742 // it performs an upcall to Java, and we're already out of stack space. 743 Klass* k = SystemDictionary::StackOverflowError_klass(); 744 oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK); 745 Handle exception (thread, exception_oop); 746 if (StackTraceInThrowable) { 747 java_lang_Throwable::fill_in_stack_trace(exception); 748 } 749 throw_and_post_jvmti_exception(thread, exception); 750 JRT_END 751 752 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread, 753 address pc, 754 SharedRuntime::ImplicitExceptionKind exception_kind) 755 { 756 address target_pc = NULL; 757 758 if (Interpreter::contains(pc)) { 759 #ifdef CC_INTERP 760 // C++ interpreter doesn't throw implicit exceptions 761 ShouldNotReachHere(); 762 #else 763 switch (exception_kind) { 764 case IMPLICIT_NULL: return Interpreter::throw_NullPointerException_entry(); 765 case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry(); 766 case STACK_OVERFLOW: return Interpreter::throw_StackOverflowError_entry(); 767 default: ShouldNotReachHere(); 768 } 769 #endif // !CC_INTERP 770 } else { 771 switch (exception_kind) { 772 case STACK_OVERFLOW: { 773 // Stack overflow only occurs upon frame setup; the callee is 774 // going to be unwound. Dispatch to a shared runtime stub 775 // which will cause the StackOverflowError to be fabricated 776 // and processed. 777 // For stack overflow in deoptimization blob, cleanup thread. 778 if (thread->deopt_mark() != NULL) { 779 Deoptimization::cleanup_deopt_info(thread, NULL); 780 } 781 Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, pc); 782 return StubRoutines::throw_StackOverflowError_entry(); 783 } 784 785 case IMPLICIT_NULL: { 786 if (VtableStubs::contains(pc)) { 787 // We haven't yet entered the callee frame. Fabricate an 788 // exception and begin dispatching it in the caller. Since 789 // the caller was at a call site, it's safe to destroy all 790 // caller-saved registers, as these entry points do. 791 VtableStub* vt_stub = VtableStubs::stub_containing(pc); 792 793 // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error. 794 if (vt_stub == NULL) return NULL; 795 796 if (vt_stub->is_abstract_method_error(pc)) { 797 assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs"); 798 Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, pc); 799 return StubRoutines::throw_AbstractMethodError_entry(); 800 } else { 801 Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, pc); 802 return StubRoutines::throw_NullPointerException_at_call_entry(); 803 } 804 } else { 805 CodeBlob* cb = CodeCache::find_blob(pc); 806 807 // If code blob is NULL, then return NULL to signal handler to report the SEGV error. 808 if (cb == NULL) return NULL; 809 810 // Exception happened in CodeCache. Must be either: 811 // 1. Inline-cache check in C2I handler blob, 812 // 2. Inline-cache check in nmethod, or 813 // 3. Implict null exception in nmethod 814 815 if (!cb->is_nmethod()) { 816 bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob(); 817 if (!is_in_blob) { 818 cb->print(); 819 fatal(err_msg("exception happened outside interpreter, nmethods and vtable stubs at pc " INTPTR_FORMAT, pc)); 820 } 821 Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, pc); 822 // There is no handler here, so we will simply unwind. 823 return StubRoutines::throw_NullPointerException_at_call_entry(); 824 } 825 826 // Otherwise, it's an nmethod. Consult its exception handlers. 827 nmethod* nm = (nmethod*)cb; 828 if (nm->inlinecache_check_contains(pc)) { 829 // exception happened inside inline-cache check code 830 // => the nmethod is not yet active (i.e., the frame 831 // is not set up yet) => use return address pushed by 832 // caller => don't push another return address 833 Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, pc); 834 return StubRoutines::throw_NullPointerException_at_call_entry(); 835 } 836 837 if (nm->method()->is_method_handle_intrinsic()) { 838 // exception happened inside MH dispatch code, similar to a vtable stub 839 Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, pc); 840 return StubRoutines::throw_NullPointerException_at_call_entry(); 841 } 842 843 #ifndef PRODUCT 844 _implicit_null_throws++; 845 #endif 846 target_pc = nm->continuation_for_implicit_exception(pc); 847 // If there's an unexpected fault, target_pc might be NULL, 848 // in which case we want to fall through into the normal 849 // error handling code. 850 } 851 852 break; // fall through 853 } 854 855 856 case IMPLICIT_DIVIDE_BY_ZERO: { 857 nmethod* nm = CodeCache::find_nmethod(pc); 858 guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions"); 859 #ifndef PRODUCT 860 _implicit_div0_throws++; 861 #endif 862 target_pc = nm->continuation_for_implicit_exception(pc); 863 // If there's an unexpected fault, target_pc might be NULL, 864 // in which case we want to fall through into the normal 865 // error handling code. 866 break; // fall through 867 } 868 869 default: ShouldNotReachHere(); 870 } 871 872 assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind"); 873 874 // for AbortVMOnException flag 875 NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException")); 876 if (exception_kind == IMPLICIT_NULL) { 877 Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc); 878 } else { 879 Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc); 880 } 881 return target_pc; 882 } 883 884 ShouldNotReachHere(); 885 return NULL; 886 } 887 888 889 /** 890 * Throws an java/lang/UnsatisfiedLinkError. The address of this method is 891 * installed in the native function entry of all native Java methods before 892 * they get linked to their actual native methods. 893 * 894 * \note 895 * This method actually never gets called! The reason is because 896 * the interpreter's native entries call NativeLookup::lookup() which 897 * throws the exception when the lookup fails. The exception is then 898 * caught and forwarded on the return from NativeLookup::lookup() call 899 * before the call to the native function. This might change in the future. 900 */ 901 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...)) 902 { 903 // We return a bad value here to make sure that the exception is 904 // forwarded before we look at the return value. 905 THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badJNIHandle); 906 } 907 JNI_END 908 909 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() { 910 return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error); 911 } 912 913 914 #ifndef PRODUCT 915 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2)) 916 const frame f = thread->last_frame(); 917 assert(f.is_interpreted_frame(), "must be an interpreted frame"); 918 #ifndef PRODUCT 919 methodHandle mh(THREAD, f.interpreter_frame_method()); 920 BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2); 921 #endif // !PRODUCT 922 return preserve_this_value; 923 JRT_END 924 #endif // !PRODUCT 925 926 927 JRT_ENTRY(void, SharedRuntime::yield_all(JavaThread* thread, int attempts)) 928 os::yield_all(attempts); 929 JRT_END 930 931 932 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj)) 933 assert(obj->is_oop(), "must be a valid oop"); 934 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise"); 935 InstanceKlass::register_finalizer(instanceOop(obj), CHECK); 936 JRT_END 937 938 939 jlong SharedRuntime::get_java_tid(Thread* thread) { 940 if (thread != NULL) { 941 if (thread->is_Java_thread()) { 942 oop obj = ((JavaThread*)thread)->threadObj(); 943 return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj); 944 } 945 } 946 return 0; 947 } 948 949 /** 950 * This function ought to be a void function, but cannot be because 951 * it gets turned into a tail-call on sparc, which runs into dtrace bug 952 * 6254741. Once that is fixed we can remove the dummy return value. 953 */ 954 int SharedRuntime::dtrace_object_alloc(oopDesc* o) { 955 return dtrace_object_alloc_base(Thread::current(), o); 956 } 957 958 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o) { 959 assert(DTraceAllocProbes, "wrong call"); 960 Klass* klass = o->klass(); 961 int size = o->size(); 962 Symbol* name = klass->name(); 963 #ifndef USDT2 964 HS_DTRACE_PROBE4(hotspot, object__alloc, get_java_tid(thread), 965 name->bytes(), name->utf8_length(), size * HeapWordSize); 966 #else /* USDT2 */ 967 HOTSPOT_OBJECT_ALLOC( 968 get_java_tid(thread), 969 (char *) name->bytes(), name->utf8_length(), size * HeapWordSize); 970 #endif /* USDT2 */ 971 return 0; 972 } 973 974 JRT_LEAF(int, SharedRuntime::dtrace_method_entry( 975 JavaThread* thread, Method* method)) 976 assert(DTraceMethodProbes, "wrong call"); 977 Symbol* kname = method->klass_name(); 978 Symbol* name = method->name(); 979 Symbol* sig = method->signature(); 980 #ifndef USDT2 981 HS_DTRACE_PROBE7(hotspot, method__entry, get_java_tid(thread), 982 kname->bytes(), kname->utf8_length(), 983 name->bytes(), name->utf8_length(), 984 sig->bytes(), sig->utf8_length()); 985 #else /* USDT2 */ 986 HOTSPOT_METHOD_ENTRY( 987 get_java_tid(thread), 988 (char *) kname->bytes(), kname->utf8_length(), 989 (char *) name->bytes(), name->utf8_length(), 990 (char *) sig->bytes(), sig->utf8_length()); 991 #endif /* USDT2 */ 992 return 0; 993 JRT_END 994 995 JRT_LEAF(int, SharedRuntime::dtrace_method_exit( 996 JavaThread* thread, Method* method)) 997 assert(DTraceMethodProbes, "wrong call"); 998 Symbol* kname = method->klass_name(); 999 Symbol* name = method->name(); 1000 Symbol* sig = method->signature(); 1001 #ifndef USDT2 1002 HS_DTRACE_PROBE7(hotspot, method__return, get_java_tid(thread), 1003 kname->bytes(), kname->utf8_length(), 1004 name->bytes(), name->utf8_length(), 1005 sig->bytes(), sig->utf8_length()); 1006 #else /* USDT2 */ 1007 HOTSPOT_METHOD_RETURN( 1008 get_java_tid(thread), 1009 (char *) kname->bytes(), kname->utf8_length(), 1010 (char *) name->bytes(), name->utf8_length(), 1011 (char *) sig->bytes(), sig->utf8_length()); 1012 #endif /* USDT2 */ 1013 return 0; 1014 JRT_END 1015 1016 1017 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode) 1018 // for a call current in progress, i.e., arguments has been pushed on stack 1019 // put callee has not been invoked yet. Used by: resolve virtual/static, 1020 // vtable updates, etc. Caller frame must be compiled. 1021 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) { 1022 ResourceMark rm(THREAD); 1023 1024 // last java frame on stack (which includes native call frames) 1025 vframeStream vfst(thread, true); // Do not skip and javaCalls 1026 1027 return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle())); 1028 } 1029 1030 1031 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode 1032 // for a call current in progress, i.e., arguments has been pushed on stack 1033 // but callee has not been invoked yet. Caller frame must be compiled. 1034 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread, 1035 vframeStream& vfst, 1036 Bytecodes::Code& bc, 1037 CallInfo& callinfo, TRAPS) { 1038 Handle receiver; 1039 Handle nullHandle; //create a handy null handle for exception returns 1040 1041 assert(!vfst.at_end(), "Java frame must exist"); 1042 1043 // Find caller and bci from vframe 1044 methodHandle caller(THREAD, vfst.method()); 1045 int bci = vfst.bci(); 1046 1047 // Find bytecode 1048 Bytecode_invoke bytecode(caller, bci); 1049 bc = bytecode.invoke_code(); 1050 int bytecode_index = bytecode.index(); 1051 1052 // Find receiver for non-static call 1053 if (bc != Bytecodes::_invokestatic && 1054 bc != Bytecodes::_invokedynamic) { 1055 // This register map must be update since we need to find the receiver for 1056 // compiled frames. The receiver might be in a register. 1057 RegisterMap reg_map2(thread); 1058 frame stubFrame = thread->last_frame(); 1059 // Caller-frame is a compiled frame 1060 frame callerFrame = stubFrame.sender(®_map2); 1061 1062 methodHandle callee = bytecode.static_target(CHECK_(nullHandle)); 1063 if (callee.is_null()) { 1064 THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle); 1065 } 1066 // Retrieve from a compiled argument list 1067 receiver = Handle(THREAD, callerFrame.retrieve_receiver(®_map2)); 1068 1069 if (receiver.is_null()) { 1070 THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle); 1071 } 1072 } 1073 1074 // Resolve method. This is parameterized by bytecode. 1075 constantPoolHandle constants(THREAD, caller->constants()); 1076 assert(receiver.is_null() || receiver->is_oop(), "wrong receiver"); 1077 LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle)); 1078 1079 #ifdef ASSERT 1080 // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls 1081 if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic) { 1082 assert(receiver.not_null(), "should have thrown exception"); 1083 KlassHandle receiver_klass(THREAD, receiver->klass()); 1084 Klass* rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle)); 1085 // klass is already loaded 1086 KlassHandle static_receiver_klass(THREAD, rk); 1087 // Method handle invokes might have been optimized to a direct call 1088 // so don't check for the receiver class. 1089 // FIXME this weakens the assert too much 1090 methodHandle callee = callinfo.selected_method(); 1091 assert(receiver_klass->is_subtype_of(static_receiver_klass()) || 1092 callee->is_method_handle_intrinsic() || 1093 callee->is_compiled_lambda_form(), 1094 "actual receiver must be subclass of static receiver klass"); 1095 if (receiver_klass->oop_is_instance()) { 1096 if (InstanceKlass::cast(receiver_klass())->is_not_initialized()) { 1097 tty->print_cr("ERROR: Klass not yet initialized!!"); 1098 receiver_klass()->print(); 1099 } 1100 assert(!InstanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized"); 1101 } 1102 } 1103 #endif 1104 1105 return receiver; 1106 } 1107 1108 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) { 1109 ResourceMark rm(THREAD); 1110 // We need first to check if any Java activations (compiled, interpreted) 1111 // exist on the stack since last JavaCall. If not, we need 1112 // to get the target method from the JavaCall wrapper. 1113 vframeStream vfst(thread, true); // Do not skip any javaCalls 1114 methodHandle callee_method; 1115 if (vfst.at_end()) { 1116 // No Java frames were found on stack since we did the JavaCall. 1117 // Hence the stack can only contain an entry_frame. We need to 1118 // find the target method from the stub frame. 1119 RegisterMap reg_map(thread, false); 1120 frame fr = thread->last_frame(); 1121 assert(fr.is_runtime_frame(), "must be a runtimeStub"); 1122 fr = fr.sender(®_map); 1123 assert(fr.is_entry_frame(), "must be"); 1124 // fr is now pointing to the entry frame. 1125 callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method()); 1126 assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??"); 1127 } else { 1128 Bytecodes::Code bc; 1129 CallInfo callinfo; 1130 find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle())); 1131 callee_method = callinfo.selected_method(); 1132 } 1133 assert(callee_method()->is_method(), "must be"); 1134 return callee_method; 1135 } 1136 1137 // Resolves a call. 1138 methodHandle SharedRuntime::resolve_helper(JavaThread *thread, 1139 bool is_virtual, 1140 bool is_optimized, TRAPS) { 1141 methodHandle callee_method; 1142 callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD); 1143 if (JvmtiExport::can_hotswap_or_post_breakpoint()) { 1144 int retry_count = 0; 1145 while (!HAS_PENDING_EXCEPTION && callee_method->is_old() && 1146 callee_method->method_holder() != SystemDictionary::Object_klass()) { 1147 // If has a pending exception then there is no need to re-try to 1148 // resolve this method. 1149 // If the method has been redefined, we need to try again. 1150 // Hack: we have no way to update the vtables of arrays, so don't 1151 // require that java.lang.Object has been updated. 1152 1153 // It is very unlikely that method is redefined more than 100 times 1154 // in the middle of resolve. If it is looping here more than 100 times 1155 // means then there could be a bug here. 1156 guarantee((retry_count++ < 100), 1157 "Could not resolve to latest version of redefined method"); 1158 // method is redefined in the middle of resolve so re-try. 1159 callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD); 1160 } 1161 } 1162 return callee_method; 1163 } 1164 1165 // Resolves a call. The compilers generate code for calls that go here 1166 // and are patched with the real destination of the call. 1167 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread, 1168 bool is_virtual, 1169 bool is_optimized, TRAPS) { 1170 1171 ResourceMark rm(thread); 1172 RegisterMap cbl_map(thread, false); 1173 frame caller_frame = thread->last_frame().sender(&cbl_map); 1174 1175 CodeBlob* caller_cb = caller_frame.cb(); 1176 guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod"); 1177 nmethod* caller_nm = caller_cb->as_nmethod_or_null(); 1178 // make sure caller is not getting deoptimized 1179 // and removed before we are done with it. 1180 // CLEANUP - with lazy deopt shouldn't need this lock 1181 nmethodLocker caller_lock(caller_nm); 1182 1183 1184 // determine call info & receiver 1185 // note: a) receiver is NULL for static calls 1186 // b) an exception is thrown if receiver is NULL for non-static calls 1187 CallInfo call_info; 1188 Bytecodes::Code invoke_code = Bytecodes::_illegal; 1189 Handle receiver = find_callee_info(thread, invoke_code, 1190 call_info, CHECK_(methodHandle())); 1191 methodHandle callee_method = call_info.selected_method(); 1192 1193 assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) || 1194 (!is_virtual && invoke_code == Bytecodes::_invokehandle ) || 1195 (!is_virtual && invoke_code == Bytecodes::_invokedynamic) || 1196 ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode"); 1197 1198 #ifndef PRODUCT 1199 // tracing/debugging/statistics 1200 int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) : 1201 (is_virtual) ? (&_resolve_virtual_ctr) : 1202 (&_resolve_static_ctr); 1203 Atomic::inc(addr); 1204 1205 if (TraceCallFixup) { 1206 ResourceMark rm(thread); 1207 tty->print("resolving %s%s (%s) call to", 1208 (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static", 1209 Bytecodes::name(invoke_code)); 1210 callee_method->print_short_name(tty); 1211 tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT, caller_frame.pc(), callee_method->code()); 1212 } 1213 #endif 1214 1215 // JSR 292 key invariant: 1216 // If the resolved method is a MethodHandle invoke target the call 1217 // site must be a MethodHandle call site, because the lambda form might tail-call 1218 // leaving the stack in a state unknown to either caller or callee 1219 // TODO detune for now but we might need it again 1220 // assert(!callee_method->is_compiled_lambda_form() || 1221 // caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site"); 1222 1223 // Compute entry points. This might require generation of C2I converter 1224 // frames, so we cannot be holding any locks here. Furthermore, the 1225 // computation of the entry points is independent of patching the call. We 1226 // always return the entry-point, but we only patch the stub if the call has 1227 // not been deoptimized. Return values: For a virtual call this is an 1228 // (cached_oop, destination address) pair. For a static call/optimized 1229 // virtual this is just a destination address. 1230 1231 StaticCallInfo static_call_info; 1232 CompiledICInfo virtual_call_info; 1233 1234 // Make sure the callee nmethod does not get deoptimized and removed before 1235 // we are done patching the code. 1236 nmethod* callee_nm = callee_method->code(); 1237 nmethodLocker nl_callee(callee_nm); 1238 #ifdef ASSERT 1239 address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below 1240 #endif 1241 1242 if (is_virtual) { 1243 assert(receiver.not_null(), "sanity check"); 1244 bool static_bound = call_info.resolved_method()->can_be_statically_bound(); 1245 KlassHandle h_klass(THREAD, receiver->klass()); 1246 CompiledIC::compute_monomorphic_entry(callee_method, h_klass, 1247 is_optimized, static_bound, virtual_call_info, 1248 CHECK_(methodHandle())); 1249 } else { 1250 // static call 1251 CompiledStaticCall::compute_entry(callee_method, static_call_info); 1252 } 1253 1254 // grab lock, check for deoptimization and potentially patch caller 1255 { 1256 MutexLocker ml_patch(CompiledIC_lock); 1257 1258 // Now that we are ready to patch if the Method* was redefined then 1259 // don't update call site and let the caller retry. 1260 1261 if (!callee_method->is_old()) { 1262 #ifdef ASSERT 1263 // We must not try to patch to jump to an already unloaded method. 1264 if (dest_entry_point != 0) { 1265 assert(CodeCache::find_blob(dest_entry_point) != NULL, 1266 "should not unload nmethod while locked"); 1267 } 1268 #endif 1269 if (is_virtual) { 1270 nmethod* nm = callee_nm; 1271 if (nm == NULL) CodeCache::find_blob(caller_frame.pc()); 1272 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc()); 1273 if (inline_cache->is_clean()) { 1274 inline_cache->set_to_monomorphic(virtual_call_info); 1275 } 1276 } else { 1277 CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc()); 1278 if (ssc->is_clean()) ssc->set(static_call_info); 1279 } 1280 } 1281 1282 } // unlock CompiledIC_lock 1283 1284 return callee_method; 1285 } 1286 1287 1288 // Inline caches exist only in compiled code 1289 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread)) 1290 #ifdef ASSERT 1291 RegisterMap reg_map(thread, false); 1292 frame stub_frame = thread->last_frame(); 1293 assert(stub_frame.is_runtime_frame(), "sanity check"); 1294 frame caller_frame = stub_frame.sender(®_map); 1295 assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame"); 1296 #endif /* ASSERT */ 1297 1298 methodHandle callee_method; 1299 JRT_BLOCK 1300 callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL); 1301 // Return Method* through TLS 1302 thread->set_vm_result_2(callee_method()); 1303 JRT_BLOCK_END 1304 // return compiled code entry point after potential safepoints 1305 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!"); 1306 return callee_method->verified_code_entry(); 1307 JRT_END 1308 1309 1310 // Handle call site that has been made non-entrant 1311 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread)) 1312 // 6243940 We might end up in here if the callee is deoptimized 1313 // as we race to call it. We don't want to take a safepoint if 1314 // the caller was interpreted because the caller frame will look 1315 // interpreted to the stack walkers and arguments are now 1316 // "compiled" so it is much better to make this transition 1317 // invisible to the stack walking code. The i2c path will 1318 // place the callee method in the callee_target. It is stashed 1319 // there because if we try and find the callee by normal means a 1320 // safepoint is possible and have trouble gc'ing the compiled args. 1321 RegisterMap reg_map(thread, false); 1322 frame stub_frame = thread->last_frame(); 1323 assert(stub_frame.is_runtime_frame(), "sanity check"); 1324 frame caller_frame = stub_frame.sender(®_map); 1325 1326 if (caller_frame.is_interpreted_frame() || 1327 caller_frame.is_entry_frame()) { 1328 Method* callee = thread->callee_target(); 1329 guarantee(callee != NULL && callee->is_method(), "bad handshake"); 1330 thread->set_vm_result_2(callee); 1331 thread->set_callee_target(NULL); 1332 return callee->get_c2i_entry(); 1333 } 1334 1335 // Must be compiled to compiled path which is safe to stackwalk 1336 methodHandle callee_method; 1337 JRT_BLOCK 1338 // Force resolving of caller (if we called from compiled frame) 1339 callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL); 1340 thread->set_vm_result_2(callee_method()); 1341 JRT_BLOCK_END 1342 // return compiled code entry point after potential safepoints 1343 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!"); 1344 return callee_method->verified_code_entry(); 1345 JRT_END 1346 1347 1348 // resolve a static call and patch code 1349 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread )) 1350 methodHandle callee_method; 1351 JRT_BLOCK 1352 callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL); 1353 thread->set_vm_result_2(callee_method()); 1354 JRT_BLOCK_END 1355 // return compiled code entry point after potential safepoints 1356 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!"); 1357 return callee_method->verified_code_entry(); 1358 JRT_END 1359 1360 1361 // resolve virtual call and update inline cache to monomorphic 1362 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread )) 1363 methodHandle callee_method; 1364 JRT_BLOCK 1365 callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL); 1366 thread->set_vm_result_2(callee_method()); 1367 JRT_BLOCK_END 1368 // return compiled code entry point after potential safepoints 1369 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!"); 1370 return callee_method->verified_code_entry(); 1371 JRT_END 1372 1373 1374 // Resolve a virtual call that can be statically bound (e.g., always 1375 // monomorphic, so it has no inline cache). Patch code to resolved target. 1376 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread)) 1377 methodHandle callee_method; 1378 JRT_BLOCK 1379 callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL); 1380 thread->set_vm_result_2(callee_method()); 1381 JRT_BLOCK_END 1382 // return compiled code entry point after potential safepoints 1383 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!"); 1384 return callee_method->verified_code_entry(); 1385 JRT_END 1386 1387 1388 1389 1390 1391 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) { 1392 ResourceMark rm(thread); 1393 CallInfo call_info; 1394 Bytecodes::Code bc; 1395 1396 // receiver is NULL for static calls. An exception is thrown for NULL 1397 // receivers for non-static calls 1398 Handle receiver = find_callee_info(thread, bc, call_info, 1399 CHECK_(methodHandle())); 1400 // Compiler1 can produce virtual call sites that can actually be statically bound 1401 // If we fell thru to below we would think that the site was going megamorphic 1402 // when in fact the site can never miss. Worse because we'd think it was megamorphic 1403 // we'd try and do a vtable dispatch however methods that can be statically bound 1404 // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a 1405 // reresolution of the call site (as if we did a handle_wrong_method and not an 1406 // plain ic_miss) and the site will be converted to an optimized virtual call site 1407 // never to miss again. I don't believe C2 will produce code like this but if it 1408 // did this would still be the correct thing to do for it too, hence no ifdef. 1409 // 1410 if (call_info.resolved_method()->can_be_statically_bound()) { 1411 methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle())); 1412 if (TraceCallFixup) { 1413 RegisterMap reg_map(thread, false); 1414 frame caller_frame = thread->last_frame().sender(®_map); 1415 ResourceMark rm(thread); 1416 tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc)); 1417 callee_method->print_short_name(tty); 1418 tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc()); 1419 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code()); 1420 } 1421 return callee_method; 1422 } 1423 1424 methodHandle callee_method = call_info.selected_method(); 1425 1426 bool should_be_mono = false; 1427 1428 #ifndef PRODUCT 1429 Atomic::inc(&_ic_miss_ctr); 1430 1431 // Statistics & Tracing 1432 if (TraceCallFixup) { 1433 ResourceMark rm(thread); 1434 tty->print("IC miss (%s) call to", Bytecodes::name(bc)); 1435 callee_method->print_short_name(tty); 1436 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code()); 1437 } 1438 1439 if (ICMissHistogram) { 1440 MutexLocker m(VMStatistic_lock); 1441 RegisterMap reg_map(thread, false); 1442 frame f = thread->last_frame().real_sender(®_map);// skip runtime stub 1443 // produce statistics under the lock 1444 trace_ic_miss(f.pc()); 1445 } 1446 #endif 1447 1448 // install an event collector so that when a vtable stub is created the 1449 // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The 1450 // event can't be posted when the stub is created as locks are held 1451 // - instead the event will be deferred until the event collector goes 1452 // out of scope. 1453 JvmtiDynamicCodeEventCollector event_collector; 1454 1455 // Update inline cache to megamorphic. Skip update if caller has been 1456 // made non-entrant or we are called from interpreted. 1457 { MutexLocker ml_patch (CompiledIC_lock); 1458 RegisterMap reg_map(thread, false); 1459 frame caller_frame = thread->last_frame().sender(®_map); 1460 CodeBlob* cb = caller_frame.cb(); 1461 if (cb->is_nmethod() && ((nmethod*)cb)->is_in_use()) { 1462 // Not a non-entrant nmethod, so find inline_cache 1463 CompiledIC* inline_cache = CompiledIC_before(((nmethod*)cb), caller_frame.pc()); 1464 bool should_be_mono = false; 1465 if (inline_cache->is_optimized()) { 1466 if (TraceCallFixup) { 1467 ResourceMark rm(thread); 1468 tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc)); 1469 callee_method->print_short_name(tty); 1470 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code()); 1471 } 1472 should_be_mono = true; 1473 } else if (inline_cache->is_icholder_call()) { 1474 CompiledICHolder* ic_oop = inline_cache->cached_icholder(); 1475 if ( ic_oop != NULL) { 1476 1477 if (receiver()->klass() == ic_oop->holder_klass()) { 1478 // This isn't a real miss. We must have seen that compiled code 1479 // is now available and we want the call site converted to a 1480 // monomorphic compiled call site. 1481 // We can't assert for callee_method->code() != NULL because it 1482 // could have been deoptimized in the meantime 1483 if (TraceCallFixup) { 1484 ResourceMark rm(thread); 1485 tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc)); 1486 callee_method->print_short_name(tty); 1487 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code()); 1488 } 1489 should_be_mono = true; 1490 } 1491 } 1492 } 1493 1494 if (should_be_mono) { 1495 1496 // We have a path that was monomorphic but was going interpreted 1497 // and now we have (or had) a compiled entry. We correct the IC 1498 // by using a new icBuffer. 1499 CompiledICInfo info; 1500 KlassHandle receiver_klass(THREAD, receiver()->klass()); 1501 inline_cache->compute_monomorphic_entry(callee_method, 1502 receiver_klass, 1503 inline_cache->is_optimized(), 1504 false, 1505 info, CHECK_(methodHandle())); 1506 inline_cache->set_to_monomorphic(info); 1507 } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) { 1508 // Change to megamorphic 1509 inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle())); 1510 } else { 1511 // Either clean or megamorphic 1512 } 1513 } 1514 } // Release CompiledIC_lock 1515 1516 return callee_method; 1517 } 1518 1519 // 1520 // Resets a call-site in compiled code so it will get resolved again. 1521 // This routines handles both virtual call sites, optimized virtual call 1522 // sites, and static call sites. Typically used to change a call sites 1523 // destination from compiled to interpreted. 1524 // 1525 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) { 1526 ResourceMark rm(thread); 1527 RegisterMap reg_map(thread, false); 1528 frame stub_frame = thread->last_frame(); 1529 assert(stub_frame.is_runtime_frame(), "must be a runtimeStub"); 1530 frame caller = stub_frame.sender(®_map); 1531 1532 // Do nothing if the frame isn't a live compiled frame. 1533 // nmethod could be deoptimized by the time we get here 1534 // so no update to the caller is needed. 1535 1536 if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) { 1537 1538 address pc = caller.pc(); 1539 1540 // Default call_addr is the location of the "basic" call. 1541 // Determine the address of the call we a reresolving. With 1542 // Inline Caches we will always find a recognizable call. 1543 // With Inline Caches disabled we may or may not find a 1544 // recognizable call. We will always find a call for static 1545 // calls and for optimized virtual calls. For vanilla virtual 1546 // calls it depends on the state of the UseInlineCaches switch. 1547 // 1548 // With Inline Caches disabled we can get here for a virtual call 1549 // for two reasons: 1550 // 1 - calling an abstract method. The vtable for abstract methods 1551 // will run us thru handle_wrong_method and we will eventually 1552 // end up in the interpreter to throw the ame. 1553 // 2 - a racing deoptimization. We could be doing a vanilla vtable 1554 // call and between the time we fetch the entry address and 1555 // we jump to it the target gets deoptimized. Similar to 1 1556 // we will wind up in the interprter (thru a c2i with c2). 1557 // 1558 address call_addr = NULL; 1559 { 1560 // Get call instruction under lock because another thread may be 1561 // busy patching it. 1562 MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag); 1563 // Location of call instruction 1564 if (NativeCall::is_call_before(pc)) { 1565 NativeCall *ncall = nativeCall_before(pc); 1566 call_addr = ncall->instruction_address(); 1567 } 1568 } 1569 1570 // Check for static or virtual call 1571 bool is_static_call = false; 1572 nmethod* caller_nm = CodeCache::find_nmethod(pc); 1573 // Make sure nmethod doesn't get deoptimized and removed until 1574 // this is done with it. 1575 // CLEANUP - with lazy deopt shouldn't need this lock 1576 nmethodLocker nmlock(caller_nm); 1577 1578 if (call_addr != NULL) { 1579 RelocIterator iter(caller_nm, call_addr, call_addr+1); 1580 int ret = iter.next(); // Get item 1581 if (ret) { 1582 assert(iter.addr() == call_addr, "must find call"); 1583 if (iter.type() == relocInfo::static_call_type) { 1584 is_static_call = true; 1585 } else { 1586 assert(iter.type() == relocInfo::virtual_call_type || 1587 iter.type() == relocInfo::opt_virtual_call_type 1588 , "unexpected relocInfo. type"); 1589 } 1590 } else { 1591 assert(!UseInlineCaches, "relocation info. must exist for this address"); 1592 } 1593 1594 // Cleaning the inline cache will force a new resolve. This is more robust 1595 // than directly setting it to the new destination, since resolving of calls 1596 // is always done through the same code path. (experience shows that it 1597 // leads to very hard to track down bugs, if an inline cache gets updated 1598 // to a wrong method). It should not be performance critical, since the 1599 // resolve is only done once. 1600 1601 MutexLocker ml(CompiledIC_lock); 1602 // 1603 // We do not patch the call site if the nmethod has been made non-entrant 1604 // as it is a waste of time 1605 // 1606 if (caller_nm->is_in_use()) { 1607 if (is_static_call) { 1608 CompiledStaticCall* ssc= compiledStaticCall_at(call_addr); 1609 ssc->set_to_clean(); 1610 } else { 1611 // compiled, dispatched call (which used to call an interpreted method) 1612 CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr); 1613 inline_cache->set_to_clean(); 1614 } 1615 } 1616 } 1617 1618 } 1619 1620 methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle())); 1621 1622 1623 #ifndef PRODUCT 1624 Atomic::inc(&_wrong_method_ctr); 1625 1626 if (TraceCallFixup) { 1627 ResourceMark rm(thread); 1628 tty->print("handle_wrong_method reresolving call to"); 1629 callee_method->print_short_name(tty); 1630 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code()); 1631 } 1632 #endif 1633 1634 return callee_method; 1635 } 1636 1637 #ifdef ASSERT 1638 void SharedRuntime::check_member_name_argument_is_last_argument(methodHandle method, 1639 const BasicType* sig_bt, 1640 const VMRegPair* regs) { 1641 ResourceMark rm; 1642 const int total_args_passed = method->size_of_parameters(); 1643 const VMRegPair* regs_with_member_name = regs; 1644 VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1); 1645 1646 const int member_arg_pos = total_args_passed - 1; 1647 assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob"); 1648 assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object"); 1649 1650 const bool is_outgoing = method->is_method_handle_intrinsic(); 1651 int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing); 1652 1653 for (int i = 0; i < member_arg_pos; i++) { 1654 VMReg a = regs_with_member_name[i].first(); 1655 VMReg b = regs_without_member_name[i].first(); 1656 assert(a->value() == b->value(), err_msg_res("register allocation mismatch: a=%d, b=%d", a->value(), b->value())); 1657 } 1658 assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg"); 1659 } 1660 #endif 1661 1662 // --------------------------------------------------------------------------- 1663 // We are calling the interpreter via a c2i. Normally this would mean that 1664 // we were called by a compiled method. However we could have lost a race 1665 // where we went int -> i2c -> c2i and so the caller could in fact be 1666 // interpreted. If the caller is compiled we attempt to patch the caller 1667 // so he no longer calls into the interpreter. 1668 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc)) 1669 Method* moop(method); 1670 1671 address entry_point = moop->from_compiled_entry(); 1672 1673 // It's possible that deoptimization can occur at a call site which hasn't 1674 // been resolved yet, in which case this function will be called from 1675 // an nmethod that has been patched for deopt and we can ignore the 1676 // request for a fixup. 1677 // Also it is possible that we lost a race in that from_compiled_entry 1678 // is now back to the i2c in that case we don't need to patch and if 1679 // we did we'd leap into space because the callsite needs to use 1680 // "to interpreter" stub in order to load up the Method*. Don't 1681 // ask me how I know this... 1682 1683 CodeBlob* cb = CodeCache::find_blob(caller_pc); 1684 if (!cb->is_nmethod() || entry_point == moop->get_c2i_entry()) { 1685 return; 1686 } 1687 1688 // The check above makes sure this is a nmethod. 1689 nmethod* nm = cb->as_nmethod_or_null(); 1690 assert(nm, "must be"); 1691 1692 // Get the return PC for the passed caller PC. 1693 address return_pc = caller_pc + frame::pc_return_offset; 1694 1695 // There is a benign race here. We could be attempting to patch to a compiled 1696 // entry point at the same time the callee is being deoptimized. If that is 1697 // the case then entry_point may in fact point to a c2i and we'd patch the 1698 // call site with the same old data. clear_code will set code() to NULL 1699 // at the end of it. If we happen to see that NULL then we can skip trying 1700 // to patch. If we hit the window where the callee has a c2i in the 1701 // from_compiled_entry and the NULL isn't present yet then we lose the race 1702 // and patch the code with the same old data. Asi es la vida. 1703 1704 if (moop->code() == NULL) return; 1705 1706 if (nm->is_in_use()) { 1707 1708 // Expect to find a native call there (unless it was no-inline cache vtable dispatch) 1709 MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag); 1710 if (NativeCall::is_call_before(return_pc)) { 1711 NativeCall *call = nativeCall_before(return_pc); 1712 // 1713 // bug 6281185. We might get here after resolving a call site to a vanilla 1714 // virtual call. Because the resolvee uses the verified entry it may then 1715 // see compiled code and attempt to patch the site by calling us. This would 1716 // then incorrectly convert the call site to optimized and its downhill from 1717 // there. If you're lucky you'll get the assert in the bugid, if not you've 1718 // just made a call site that could be megamorphic into a monomorphic site 1719 // for the rest of its life! Just another racing bug in the life of 1720 // fixup_callers_callsite ... 1721 // 1722 RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address()); 1723 iter.next(); 1724 assert(iter.has_current(), "must have a reloc at java call site"); 1725 relocInfo::relocType typ = iter.reloc()->type(); 1726 if ( typ != relocInfo::static_call_type && 1727 typ != relocInfo::opt_virtual_call_type && 1728 typ != relocInfo::static_stub_type) { 1729 return; 1730 } 1731 address destination = call->destination(); 1732 if (destination != entry_point) { 1733 CodeBlob* callee = CodeCache::find_blob(destination); 1734 // callee == cb seems weird. It means calling interpreter thru stub. 1735 if (callee == cb || callee->is_adapter_blob()) { 1736 // static call or optimized virtual 1737 if (TraceCallFixup) { 1738 tty->print("fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc); 1739 moop->print_short_name(tty); 1740 tty->print_cr(" to " INTPTR_FORMAT, entry_point); 1741 } 1742 call->set_destination_mt_safe(entry_point); 1743 } else { 1744 if (TraceCallFixup) { 1745 tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc); 1746 moop->print_short_name(tty); 1747 tty->print_cr(" to " INTPTR_FORMAT, entry_point); 1748 } 1749 // assert is too strong could also be resolve destinations. 1750 // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be"); 1751 } 1752 } else { 1753 if (TraceCallFixup) { 1754 tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc); 1755 moop->print_short_name(tty); 1756 tty->print_cr(" to " INTPTR_FORMAT, entry_point); 1757 } 1758 } 1759 } 1760 } 1761 IRT_END 1762 1763 1764 // same as JVM_Arraycopy, but called directly from compiled code 1765 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src, jint src_pos, 1766 oopDesc* dest, jint dest_pos, 1767 jint length, 1768 JavaThread* thread)) { 1769 #ifndef PRODUCT 1770 _slow_array_copy_ctr++; 1771 #endif 1772 // Check if we have null pointers 1773 if (src == NULL || dest == NULL) { 1774 THROW(vmSymbols::java_lang_NullPointerException()); 1775 } 1776 // Do the copy. The casts to arrayOop are necessary to the copy_array API, 1777 // even though the copy_array API also performs dynamic checks to ensure 1778 // that src and dest are truly arrays (and are conformable). 1779 // The copy_array mechanism is awkward and could be removed, but 1780 // the compilers don't call this function except as a last resort, 1781 // so it probably doesn't matter. 1782 src->klass()->copy_array((arrayOopDesc*)src, src_pos, 1783 (arrayOopDesc*)dest, dest_pos, 1784 length, thread); 1785 } 1786 JRT_END 1787 1788 char* SharedRuntime::generate_class_cast_message( 1789 JavaThread* thread, const char* objName) { 1790 1791 // Get target class name from the checkcast instruction 1792 vframeStream vfst(thread, true); 1793 assert(!vfst.at_end(), "Java frame must exist"); 1794 Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci())); 1795 Klass* targetKlass = vfst.method()->constants()->klass_at( 1796 cc.index(), thread); 1797 return generate_class_cast_message(objName, targetKlass->external_name()); 1798 } 1799 1800 char* SharedRuntime::generate_class_cast_message( 1801 const char* objName, const char* targetKlassName, const char* desc) { 1802 size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1; 1803 1804 char* message = NEW_RESOURCE_ARRAY(char, msglen); 1805 if (NULL == message) { 1806 // Shouldn't happen, but don't cause even more problems if it does 1807 message = const_cast<char*>(objName); 1808 } else { 1809 jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName); 1810 } 1811 return message; 1812 } 1813 1814 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages()) 1815 (void) JavaThread::current()->reguard_stack(); 1816 JRT_END 1817 1818 1819 // Handles the uncommon case in locking, i.e., contention or an inflated lock. 1820 #ifndef PRODUCT 1821 int SharedRuntime::_monitor_enter_ctr=0; 1822 #endif 1823 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread)) 1824 oop obj(_obj); 1825 #ifndef PRODUCT 1826 _monitor_enter_ctr++; // monitor enter slow 1827 #endif 1828 if (PrintBiasedLockingStatistics) { 1829 Atomic::inc(BiasedLocking::slow_path_entry_count_addr()); 1830 } 1831 Handle h_obj(THREAD, obj); 1832 if (UseBiasedLocking) { 1833 // Retry fast entry if bias is revoked to avoid unnecessary inflation 1834 ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK); 1835 } else { 1836 ObjectSynchronizer::slow_enter(h_obj, lock, CHECK); 1837 } 1838 assert(!HAS_PENDING_EXCEPTION, "Should have no exception here"); 1839 JRT_END 1840 1841 #ifndef PRODUCT 1842 int SharedRuntime::_monitor_exit_ctr=0; 1843 #endif 1844 // Handles the uncommon cases of monitor unlocking in compiled code 1845 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock)) 1846 oop obj(_obj); 1847 #ifndef PRODUCT 1848 _monitor_exit_ctr++; // monitor exit slow 1849 #endif 1850 Thread* THREAD = JavaThread::current(); 1851 // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore 1852 // testing was unable to ever fire the assert that guarded it so I have removed it. 1853 assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?"); 1854 #undef MIGHT_HAVE_PENDING 1855 #ifdef MIGHT_HAVE_PENDING 1856 // Save and restore any pending_exception around the exception mark. 1857 // While the slow_exit must not throw an exception, we could come into 1858 // this routine with one set. 1859 oop pending_excep = NULL; 1860 const char* pending_file; 1861 int pending_line; 1862 if (HAS_PENDING_EXCEPTION) { 1863 pending_excep = PENDING_EXCEPTION; 1864 pending_file = THREAD->exception_file(); 1865 pending_line = THREAD->exception_line(); 1866 CLEAR_PENDING_EXCEPTION; 1867 } 1868 #endif /* MIGHT_HAVE_PENDING */ 1869 1870 { 1871 // Exit must be non-blocking, and therefore no exceptions can be thrown. 1872 EXCEPTION_MARK; 1873 ObjectSynchronizer::slow_exit(obj, lock, THREAD); 1874 } 1875 1876 #ifdef MIGHT_HAVE_PENDING 1877 if (pending_excep != NULL) { 1878 THREAD->set_pending_exception(pending_excep, pending_file, pending_line); 1879 } 1880 #endif /* MIGHT_HAVE_PENDING */ 1881 JRT_END 1882 1883 #ifndef PRODUCT 1884 1885 void SharedRuntime::print_statistics() { 1886 ttyLocker ttyl; 1887 if (xtty != NULL) xtty->head("statistics type='SharedRuntime'"); 1888 1889 if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow", _monitor_enter_ctr); 1890 if (_monitor_exit_ctr ) tty->print_cr("%5d monitor exit slow", _monitor_exit_ctr); 1891 if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr); 1892 1893 SharedRuntime::print_ic_miss_histogram(); 1894 1895 if (CountRemovableExceptions) { 1896 if (_nof_removable_exceptions > 0) { 1897 Unimplemented(); // this counter is not yet incremented 1898 tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions); 1899 } 1900 } 1901 1902 // Dump the JRT_ENTRY counters 1903 if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr); 1904 if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr); 1905 if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr); 1906 if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr); 1907 if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr); 1908 if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr); 1909 if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr); 1910 1911 tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr ); 1912 tty->print_cr("%5d wrong method", _wrong_method_ctr ); 1913 tty->print_cr("%5d unresolved static call site", _resolve_static_ctr ); 1914 tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr ); 1915 tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr ); 1916 1917 if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr ); 1918 if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr ); 1919 if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr ); 1920 if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr ); 1921 if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr ); 1922 if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr ); 1923 if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr ); 1924 if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr ); 1925 if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr ); 1926 if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr ); 1927 if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr ); 1928 if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr ); 1929 if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr ); 1930 if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr ); 1931 if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr ); 1932 if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr ); 1933 1934 AdapterHandlerLibrary::print_statistics(); 1935 1936 if (xtty != NULL) xtty->tail("statistics"); 1937 } 1938 1939 inline double percent(int x, int y) { 1940 return 100.0 * x / MAX2(y, 1); 1941 } 1942 1943 class MethodArityHistogram { 1944 public: 1945 enum { MAX_ARITY = 256 }; 1946 private: 1947 static int _arity_histogram[MAX_ARITY]; // histogram of #args 1948 static int _size_histogram[MAX_ARITY]; // histogram of arg size in words 1949 static int _max_arity; // max. arity seen 1950 static int _max_size; // max. arg size seen 1951 1952 static void add_method_to_histogram(nmethod* nm) { 1953 Method* m = nm->method(); 1954 ArgumentCount args(m->signature()); 1955 int arity = args.size() + (m->is_static() ? 0 : 1); 1956 int argsize = m->size_of_parameters(); 1957 arity = MIN2(arity, MAX_ARITY-1); 1958 argsize = MIN2(argsize, MAX_ARITY-1); 1959 int count = nm->method()->compiled_invocation_count(); 1960 _arity_histogram[arity] += count; 1961 _size_histogram[argsize] += count; 1962 _max_arity = MAX2(_max_arity, arity); 1963 _max_size = MAX2(_max_size, argsize); 1964 } 1965 1966 void print_histogram_helper(int n, int* histo, const char* name) { 1967 const int N = MIN2(5, n); 1968 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):"); 1969 double sum = 0; 1970 double weighted_sum = 0; 1971 int i; 1972 for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; } 1973 double rest = sum; 1974 double percent = sum / 100; 1975 for (i = 0; i <= N; i++) { 1976 rest -= histo[i]; 1977 tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent); 1978 } 1979 tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent); 1980 tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n); 1981 } 1982 1983 void print_histogram() { 1984 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):"); 1985 print_histogram_helper(_max_arity, _arity_histogram, "arity"); 1986 tty->print_cr("\nSame for parameter size (in words):"); 1987 print_histogram_helper(_max_size, _size_histogram, "size"); 1988 tty->cr(); 1989 } 1990 1991 public: 1992 MethodArityHistogram() { 1993 MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag); 1994 _max_arity = _max_size = 0; 1995 for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0; 1996 CodeCache::nmethods_do(add_method_to_histogram); 1997 print_histogram(); 1998 } 1999 }; 2000 2001 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY]; 2002 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY]; 2003 int MethodArityHistogram::_max_arity; 2004 int MethodArityHistogram::_max_size; 2005 2006 void SharedRuntime::print_call_statistics(int comp_total) { 2007 tty->print_cr("Calls from compiled code:"); 2008 int total = _nof_normal_calls + _nof_interface_calls + _nof_static_calls; 2009 int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls; 2010 int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls; 2011 tty->print_cr("\t%9d (%4.1f%%) total non-inlined ", total, percent(total, total)); 2012 tty->print_cr("\t%9d (%4.1f%%) virtual calls ", _nof_normal_calls, percent(_nof_normal_calls, total)); 2013 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls)); 2014 tty->print_cr("\t %9d (%3.0f%%) optimized ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls)); 2015 tty->print_cr("\t %9d (%3.0f%%) monomorphic ", mono_c, percent(mono_c, _nof_normal_calls)); 2016 tty->print_cr("\t %9d (%3.0f%%) megamorphic ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls)); 2017 tty->print_cr("\t%9d (%4.1f%%) interface calls ", _nof_interface_calls, percent(_nof_interface_calls, total)); 2018 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls)); 2019 tty->print_cr("\t %9d (%3.0f%%) optimized ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls)); 2020 tty->print_cr("\t %9d (%3.0f%%) monomorphic ", mono_i, percent(mono_i, _nof_interface_calls)); 2021 tty->print_cr("\t %9d (%3.0f%%) megamorphic ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls)); 2022 tty->print_cr("\t%9d (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total)); 2023 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls)); 2024 tty->cr(); 2025 tty->print_cr("Note 1: counter updates are not MT-safe."); 2026 tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;"); 2027 tty->print_cr(" %% in nested categories are relative to their category"); 2028 tty->print_cr(" (and thus add up to more than 100%% with inlining)"); 2029 tty->cr(); 2030 2031 MethodArityHistogram h; 2032 } 2033 #endif 2034 2035 2036 // A simple wrapper class around the calling convention information 2037 // that allows sharing of adapters for the same calling convention. 2038 class AdapterFingerPrint : public CHeapObj<mtCode> { 2039 private: 2040 enum { 2041 _basic_type_bits = 4, 2042 _basic_type_mask = right_n_bits(_basic_type_bits), 2043 _basic_types_per_int = BitsPerInt / _basic_type_bits, 2044 _compact_int_count = 3 2045 }; 2046 // TO DO: Consider integrating this with a more global scheme for compressing signatures. 2047 // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive. 2048 2049 union { 2050 int _compact[_compact_int_count]; 2051 int* _fingerprint; 2052 } _value; 2053 int _length; // A negative length indicates the fingerprint is in the compact form, 2054 // Otherwise _value._fingerprint is the array. 2055 2056 // Remap BasicTypes that are handled equivalently by the adapters. 2057 // These are correct for the current system but someday it might be 2058 // necessary to make this mapping platform dependent. 2059 static int adapter_encoding(BasicType in) { 2060 switch(in) { 2061 case T_BOOLEAN: 2062 case T_BYTE: 2063 case T_SHORT: 2064 case T_CHAR: 2065 // There are all promoted to T_INT in the calling convention 2066 return T_INT; 2067 2068 case T_OBJECT: 2069 case T_ARRAY: 2070 // In other words, we assume that any register good enough for 2071 // an int or long is good enough for a managed pointer. 2072 #ifdef _LP64 2073 return T_LONG; 2074 #else 2075 return T_INT; 2076 #endif 2077 2078 case T_INT: 2079 case T_LONG: 2080 case T_FLOAT: 2081 case T_DOUBLE: 2082 case T_VOID: 2083 return in; 2084 2085 default: 2086 ShouldNotReachHere(); 2087 return T_CONFLICT; 2088 } 2089 } 2090 2091 public: 2092 AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) { 2093 // The fingerprint is based on the BasicType signature encoded 2094 // into an array of ints with eight entries per int. 2095 int* ptr; 2096 int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int; 2097 if (len <= _compact_int_count) { 2098 assert(_compact_int_count == 3, "else change next line"); 2099 _value._compact[0] = _value._compact[1] = _value._compact[2] = 0; 2100 // Storing the signature encoded as signed chars hits about 98% 2101 // of the time. 2102 _length = -len; 2103 ptr = _value._compact; 2104 } else { 2105 _length = len; 2106 _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode); 2107 ptr = _value._fingerprint; 2108 } 2109 2110 // Now pack the BasicTypes with 8 per int 2111 int sig_index = 0; 2112 for (int index = 0; index < len; index++) { 2113 int value = 0; 2114 for (int byte = 0; byte < _basic_types_per_int; byte++) { 2115 int bt = ((sig_index < total_args_passed) 2116 ? adapter_encoding(sig_bt[sig_index++]) 2117 : 0); 2118 assert((bt & _basic_type_mask) == bt, "must fit in 4 bits"); 2119 value = (value << _basic_type_bits) | bt; 2120 } 2121 ptr[index] = value; 2122 } 2123 } 2124 2125 ~AdapterFingerPrint() { 2126 if (_length > 0) { 2127 FREE_C_HEAP_ARRAY(int, _value._fingerprint, mtCode); 2128 } 2129 } 2130 2131 int value(int index) { 2132 if (_length < 0) { 2133 return _value._compact[index]; 2134 } 2135 return _value._fingerprint[index]; 2136 } 2137 int length() { 2138 if (_length < 0) return -_length; 2139 return _length; 2140 } 2141 2142 bool is_compact() { 2143 return _length <= 0; 2144 } 2145 2146 unsigned int compute_hash() { 2147 int hash = 0; 2148 for (int i = 0; i < length(); i++) { 2149 int v = value(i); 2150 hash = (hash << 8) ^ v ^ (hash >> 5); 2151 } 2152 return (unsigned int)hash; 2153 } 2154 2155 const char* as_string() { 2156 stringStream st; 2157 st.print("0x"); 2158 for (int i = 0; i < length(); i++) { 2159 st.print("%08x", value(i)); 2160 } 2161 return st.as_string(); 2162 } 2163 2164 bool equals(AdapterFingerPrint* other) { 2165 if (other->_length != _length) { 2166 return false; 2167 } 2168 if (_length < 0) { 2169 assert(_compact_int_count == 3, "else change next line"); 2170 return _value._compact[0] == other->_value._compact[0] && 2171 _value._compact[1] == other->_value._compact[1] && 2172 _value._compact[2] == other->_value._compact[2]; 2173 } else { 2174 for (int i = 0; i < _length; i++) { 2175 if (_value._fingerprint[i] != other->_value._fingerprint[i]) { 2176 return false; 2177 } 2178 } 2179 } 2180 return true; 2181 } 2182 }; 2183 2184 2185 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries 2186 class AdapterHandlerTable : public BasicHashtable<mtCode> { 2187 friend class AdapterHandlerTableIterator; 2188 2189 private: 2190 2191 #ifndef PRODUCT 2192 static int _lookups; // number of calls to lookup 2193 static int _buckets; // number of buckets checked 2194 static int _equals; // number of buckets checked with matching hash 2195 static int _hits; // number of successful lookups 2196 static int _compact; // number of equals calls with compact signature 2197 #endif 2198 2199 AdapterHandlerEntry* bucket(int i) { 2200 return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i); 2201 } 2202 2203 public: 2204 AdapterHandlerTable() 2205 : BasicHashtable<mtCode>(293, sizeof(AdapterHandlerEntry)) { } 2206 2207 // Create a new entry suitable for insertion in the table 2208 AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) { 2209 AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash()); 2210 entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry); 2211 return entry; 2212 } 2213 2214 // Insert an entry into the table 2215 void add(AdapterHandlerEntry* entry) { 2216 int index = hash_to_index(entry->hash()); 2217 add_entry(index, entry); 2218 } 2219 2220 void free_entry(AdapterHandlerEntry* entry) { 2221 entry->deallocate(); 2222 BasicHashtable<mtCode>::free_entry(entry); 2223 } 2224 2225 // Find a entry with the same fingerprint if it exists 2226 AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) { 2227 NOT_PRODUCT(_lookups++); 2228 AdapterFingerPrint fp(total_args_passed, sig_bt); 2229 unsigned int hash = fp.compute_hash(); 2230 int index = hash_to_index(hash); 2231 for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) { 2232 NOT_PRODUCT(_buckets++); 2233 if (e->hash() == hash) { 2234 NOT_PRODUCT(_equals++); 2235 if (fp.equals(e->fingerprint())) { 2236 #ifndef PRODUCT 2237 if (fp.is_compact()) _compact++; 2238 _hits++; 2239 #endif 2240 return e; 2241 } 2242 } 2243 } 2244 return NULL; 2245 } 2246 2247 #ifndef PRODUCT 2248 void print_statistics() { 2249 ResourceMark rm; 2250 int longest = 0; 2251 int empty = 0; 2252 int total = 0; 2253 int nonempty = 0; 2254 for (int index = 0; index < table_size(); index++) { 2255 int count = 0; 2256 for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) { 2257 count++; 2258 } 2259 if (count != 0) nonempty++; 2260 if (count == 0) empty++; 2261 if (count > longest) longest = count; 2262 total += count; 2263 } 2264 tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f", 2265 empty, longest, total, total / (double)nonempty); 2266 tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d", 2267 _lookups, _buckets, _equals, _hits, _compact); 2268 } 2269 #endif 2270 }; 2271 2272 2273 #ifndef PRODUCT 2274 2275 int AdapterHandlerTable::_lookups; 2276 int AdapterHandlerTable::_buckets; 2277 int AdapterHandlerTable::_equals; 2278 int AdapterHandlerTable::_hits; 2279 int AdapterHandlerTable::_compact; 2280 2281 #endif 2282 2283 class AdapterHandlerTableIterator : public StackObj { 2284 private: 2285 AdapterHandlerTable* _table; 2286 int _index; 2287 AdapterHandlerEntry* _current; 2288 2289 void scan() { 2290 while (_index < _table->table_size()) { 2291 AdapterHandlerEntry* a = _table->bucket(_index); 2292 _index++; 2293 if (a != NULL) { 2294 _current = a; 2295 return; 2296 } 2297 } 2298 } 2299 2300 public: 2301 AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) { 2302 scan(); 2303 } 2304 bool has_next() { 2305 return _current != NULL; 2306 } 2307 AdapterHandlerEntry* next() { 2308 if (_current != NULL) { 2309 AdapterHandlerEntry* result = _current; 2310 _current = _current->next(); 2311 if (_current == NULL) scan(); 2312 return result; 2313 } else { 2314 return NULL; 2315 } 2316 } 2317 }; 2318 2319 2320 // --------------------------------------------------------------------------- 2321 // Implementation of AdapterHandlerLibrary 2322 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL; 2323 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL; 2324 const int AdapterHandlerLibrary_size = 16*K; 2325 BufferBlob* AdapterHandlerLibrary::_buffer = NULL; 2326 2327 BufferBlob* AdapterHandlerLibrary::buffer_blob() { 2328 // Should be called only when AdapterHandlerLibrary_lock is active. 2329 if (_buffer == NULL) // Initialize lazily 2330 _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size); 2331 return _buffer; 2332 } 2333 2334 void AdapterHandlerLibrary::initialize() { 2335 if (_adapters != NULL) return; 2336 _adapters = new AdapterHandlerTable(); 2337 2338 // Create a special handler for abstract methods. Abstract methods 2339 // are never compiled so an i2c entry is somewhat meaningless, but 2340 // fill it in with something appropriate just in case. Pass handle 2341 // wrong method for the c2i transitions. 2342 address wrong_method = SharedRuntime::get_handle_wrong_method_stub(); 2343 _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL), 2344 StubRoutines::throw_AbstractMethodError_entry(), 2345 wrong_method, wrong_method); 2346 } 2347 2348 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint, 2349 address i2c_entry, 2350 address c2i_entry, 2351 address c2i_unverified_entry) { 2352 return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry); 2353 } 2354 2355 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) { 2356 // Use customized signature handler. Need to lock around updates to 2357 // the AdapterHandlerTable (it is not safe for concurrent readers 2358 // and a single writer: this could be fixed if it becomes a 2359 // problem). 2360 2361 // Get the address of the ic_miss handlers before we grab the 2362 // AdapterHandlerLibrary_lock. This fixes bug 6236259 which 2363 // was caused by the initialization of the stubs happening 2364 // while we held the lock and then notifying jvmti while 2365 // holding it. This just forces the initialization to be a little 2366 // earlier. 2367 address ic_miss = SharedRuntime::get_ic_miss_stub(); 2368 assert(ic_miss != NULL, "must have handler"); 2369 2370 ResourceMark rm; 2371 2372 NOT_PRODUCT(int insts_size); 2373 AdapterBlob* B = NULL; 2374 AdapterHandlerEntry* entry = NULL; 2375 AdapterFingerPrint* fingerprint = NULL; 2376 { 2377 MutexLocker mu(AdapterHandlerLibrary_lock); 2378 // make sure data structure is initialized 2379 initialize(); 2380 2381 if (method->is_abstract()) { 2382 return _abstract_method_handler; 2383 } 2384 2385 // Fill in the signature array, for the calling-convention call. 2386 int total_args_passed = method->size_of_parameters(); // All args on stack 2387 2388 BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed); 2389 VMRegPair* regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed); 2390 int i = 0; 2391 if (!method->is_static()) // Pass in receiver first 2392 sig_bt[i++] = T_OBJECT; 2393 for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) { 2394 sig_bt[i++] = ss.type(); // Collect remaining bits of signature 2395 if (ss.type() == T_LONG || ss.type() == T_DOUBLE) 2396 sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots 2397 } 2398 assert(i == total_args_passed, ""); 2399 2400 // Lookup method signature's fingerprint 2401 entry = _adapters->lookup(total_args_passed, sig_bt); 2402 2403 #ifdef ASSERT 2404 AdapterHandlerEntry* shared_entry = NULL; 2405 if (VerifyAdapterSharing && entry != NULL) { 2406 shared_entry = entry; 2407 entry = NULL; 2408 } 2409 #endif 2410 2411 if (entry != NULL) { 2412 return entry; 2413 } 2414 2415 // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage 2416 int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false); 2417 2418 // Make a C heap allocated version of the fingerprint to store in the adapter 2419 fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt); 2420 2421 // Create I2C & C2I handlers 2422 2423 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache 2424 if (buf != NULL) { 2425 CodeBuffer buffer(buf); 2426 short buffer_locs[20]; 2427 buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs, 2428 sizeof(buffer_locs)/sizeof(relocInfo)); 2429 MacroAssembler _masm(&buffer); 2430 2431 entry = SharedRuntime::generate_i2c2i_adapters(&_masm, 2432 total_args_passed, 2433 comp_args_on_stack, 2434 sig_bt, 2435 regs, 2436 fingerprint); 2437 2438 #ifdef ASSERT 2439 if (VerifyAdapterSharing) { 2440 if (shared_entry != NULL) { 2441 assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt), 2442 "code must match"); 2443 // Release the one just created and return the original 2444 _adapters->free_entry(entry); 2445 return shared_entry; 2446 } else { 2447 entry->save_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt); 2448 } 2449 } 2450 #endif 2451 2452 B = AdapterBlob::create(&buffer); 2453 NOT_PRODUCT(insts_size = buffer.insts_size()); 2454 } 2455 if (B == NULL) { 2456 // CodeCache is full, disable compilation 2457 // Ought to log this but compile log is only per compile thread 2458 // and we're some non descript Java thread. 2459 MutexUnlocker mu(AdapterHandlerLibrary_lock); 2460 CompileBroker::handle_full_code_cache(); 2461 return NULL; // Out of CodeCache space 2462 } 2463 entry->relocate(B->content_begin()); 2464 #ifndef PRODUCT 2465 // debugging suppport 2466 if (PrintAdapterHandlers || PrintStubCode) { 2467 ttyLocker ttyl; 2468 entry->print_adapter_on(tty); 2469 tty->print_cr("i2c argument handler #%d for: %s %s (%d bytes generated)", 2470 _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"), 2471 method->signature()->as_C_string(), insts_size); 2472 tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry()); 2473 if (Verbose || PrintStubCode) { 2474 address first_pc = entry->base_address(); 2475 if (first_pc != NULL) { 2476 Disassembler::decode(first_pc, first_pc + insts_size); 2477 tty->cr(); 2478 } 2479 } 2480 } 2481 #endif 2482 2483 _adapters->add(entry); 2484 } 2485 // Outside of the lock 2486 if (B != NULL) { 2487 char blob_id[256]; 2488 jio_snprintf(blob_id, 2489 sizeof(blob_id), 2490 "%s(%s)@" PTR_FORMAT, 2491 B->name(), 2492 fingerprint->as_string(), 2493 B->content_begin()); 2494 Forte::register_stub(blob_id, B->content_begin(), B->content_end()); 2495 2496 if (JvmtiExport::should_post_dynamic_code_generated()) { 2497 JvmtiExport::post_dynamic_code_generated(blob_id, B->content_begin(), B->content_end()); 2498 } 2499 } 2500 return entry; 2501 } 2502 2503 address AdapterHandlerEntry::base_address() { 2504 address base = _i2c_entry; 2505 if (base == NULL) base = _c2i_entry; 2506 assert(base <= _c2i_entry || _c2i_entry == NULL, ""); 2507 assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, ""); 2508 return base; 2509 } 2510 2511 void AdapterHandlerEntry::relocate(address new_base) { 2512 address old_base = base_address(); 2513 assert(old_base != NULL, ""); 2514 ptrdiff_t delta = new_base - old_base; 2515 if (_i2c_entry != NULL) 2516 _i2c_entry += delta; 2517 if (_c2i_entry != NULL) 2518 _c2i_entry += delta; 2519 if (_c2i_unverified_entry != NULL) 2520 _c2i_unverified_entry += delta; 2521 assert(base_address() == new_base, ""); 2522 } 2523 2524 2525 void AdapterHandlerEntry::deallocate() { 2526 delete _fingerprint; 2527 #ifdef ASSERT 2528 if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code, mtCode); 2529 if (_saved_sig) FREE_C_HEAP_ARRAY(Basictype, _saved_sig, mtCode); 2530 #endif 2531 } 2532 2533 2534 #ifdef ASSERT 2535 // Capture the code before relocation so that it can be compared 2536 // against other versions. If the code is captured after relocation 2537 // then relative instructions won't be equivalent. 2538 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) { 2539 _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode); 2540 _code_length = length; 2541 memcpy(_saved_code, buffer, length); 2542 _total_args_passed = total_args_passed; 2543 _saved_sig = NEW_C_HEAP_ARRAY(BasicType, _total_args_passed, mtCode); 2544 memcpy(_saved_sig, sig_bt, _total_args_passed * sizeof(BasicType)); 2545 } 2546 2547 2548 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) { 2549 if (length != _code_length) { 2550 return false; 2551 } 2552 for (int i = 0; i < length; i++) { 2553 if (buffer[i] != _saved_code[i]) { 2554 return false; 2555 } 2556 } 2557 return true; 2558 } 2559 #endif 2560 2561 2562 // Create a native wrapper for this native method. The wrapper converts the 2563 // java compiled calling convention to the native convention, handlizes 2564 // arguments, and transitions to native. On return from the native we transition 2565 // back to java blocking if a safepoint is in progress. 2566 nmethod *AdapterHandlerLibrary::create_native_wrapper(methodHandle method, int compile_id) { 2567 ResourceMark rm; 2568 nmethod* nm = NULL; 2569 2570 assert(method->is_native(), "must be native"); 2571 assert(method->is_method_handle_intrinsic() || 2572 method->has_native_function(), "must have something valid to call!"); 2573 2574 { 2575 // perform the work while holding the lock, but perform any printing outside the lock 2576 MutexLocker mu(AdapterHandlerLibrary_lock); 2577 // See if somebody beat us to it 2578 nm = method->code(); 2579 if (nm) { 2580 return nm; 2581 } 2582 2583 ResourceMark rm; 2584 2585 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache 2586 if (buf != NULL) { 2587 CodeBuffer buffer(buf); 2588 double locs_buf[20]; 2589 buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo)); 2590 MacroAssembler _masm(&buffer); 2591 2592 // Fill in the signature array, for the calling-convention call. 2593 const int total_args_passed = method->size_of_parameters(); 2594 2595 BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed); 2596 VMRegPair* regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed); 2597 int i=0; 2598 if( !method->is_static() ) // Pass in receiver first 2599 sig_bt[i++] = T_OBJECT; 2600 SignatureStream ss(method->signature()); 2601 for( ; !ss.at_return_type(); ss.next()) { 2602 sig_bt[i++] = ss.type(); // Collect remaining bits of signature 2603 if( ss.type() == T_LONG || ss.type() == T_DOUBLE ) 2604 sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots 2605 } 2606 assert(i == total_args_passed, ""); 2607 BasicType ret_type = ss.type(); 2608 2609 // Now get the compiled-Java layout as input (or output) arguments. 2610 // NOTE: Stubs for compiled entry points of method handle intrinsics 2611 // are just trampolines so the argument registers must be outgoing ones. 2612 const bool is_outgoing = method->is_method_handle_intrinsic(); 2613 int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing); 2614 2615 // Generate the compiled-to-native wrapper code 2616 nm = SharedRuntime::generate_native_wrapper(&_masm, 2617 method, 2618 compile_id, 2619 sig_bt, 2620 regs, 2621 ret_type); 2622 } 2623 } 2624 2625 // Must unlock before calling set_code 2626 2627 // Install the generated code. 2628 if (nm != NULL) { 2629 if (PrintCompilation) { 2630 ttyLocker ttyl; 2631 CompileTask::print_compilation(tty, nm, method->is_static() ? "(static)" : ""); 2632 } 2633 method->set_code(method, nm); 2634 nm->post_compiled_method_load_event(); 2635 } else { 2636 // CodeCache is full, disable compilation 2637 CompileBroker::handle_full_code_cache(); 2638 } 2639 return nm; 2640 } 2641 2642 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread)) 2643 assert(thread == JavaThread::current(), "must be"); 2644 // The code is about to enter a JNI lazy critical native method and 2645 // _needs_gc is true, so if this thread is already in a critical 2646 // section then just return, otherwise this thread should block 2647 // until needs_gc has been cleared. 2648 if (thread->in_critical()) { 2649 return; 2650 } 2651 // Lock and unlock a critical section to give the system a chance to block 2652 GC_locker::lock_critical(thread); 2653 GC_locker::unlock_critical(thread); 2654 JRT_END 2655 2656 #ifdef HAVE_DTRACE_H 2657 // Create a dtrace nmethod for this method. The wrapper converts the 2658 // java compiled calling convention to the native convention, makes a dummy call 2659 // (actually nops for the size of the call instruction, which become a trap if 2660 // probe is enabled). The returns to the caller. Since this all looks like a 2661 // leaf no thread transition is needed. 2662 2663 nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) { 2664 ResourceMark rm; 2665 nmethod* nm = NULL; 2666 2667 if (PrintCompilation) { 2668 ttyLocker ttyl; 2669 tty->print("--- n%s "); 2670 method->print_short_name(tty); 2671 if (method->is_static()) { 2672 tty->print(" (static)"); 2673 } 2674 tty->cr(); 2675 } 2676 2677 { 2678 // perform the work while holding the lock, but perform any printing 2679 // outside the lock 2680 MutexLocker mu(AdapterHandlerLibrary_lock); 2681 // See if somebody beat us to it 2682 nm = method->code(); 2683 if (nm) { 2684 return nm; 2685 } 2686 2687 ResourceMark rm; 2688 2689 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache 2690 if (buf != NULL) { 2691 CodeBuffer buffer(buf); 2692 // Need a few relocation entries 2693 double locs_buf[20]; 2694 buffer.insts()->initialize_shared_locs( 2695 (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo)); 2696 MacroAssembler _masm(&buffer); 2697 2698 // Generate the compiled-to-native wrapper code 2699 nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method); 2700 } 2701 } 2702 return nm; 2703 } 2704 2705 // the dtrace method needs to convert java lang string to utf8 string. 2706 void SharedRuntime::get_utf(oopDesc* src, address dst) { 2707 typeArrayOop jlsValue = java_lang_String::value(src); 2708 int jlsOffset = java_lang_String::offset(src); 2709 int jlsLen = java_lang_String::length(src); 2710 jchar* jlsPos = (jlsLen == 0) ? NULL : 2711 jlsValue->char_at_addr(jlsOffset); 2712 assert(TypeArrayKlass::cast(jlsValue->klass())->element_type() == T_CHAR, "compressed string"); 2713 (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size); 2714 } 2715 #endif // ndef HAVE_DTRACE_H 2716 2717 int SharedRuntime::convert_ints_to_longints_argcnt(int in_args_count, BasicType* in_sig_bt) { 2718 int argcnt = in_args_count; 2719 if (CCallingConventionRequiresIntsAsLongs) { 2720 for (int in = 0; in < in_args_count; in++) { 2721 BasicType bt = in_sig_bt[in]; 2722 switch (bt) { 2723 case T_BOOLEAN: 2724 case T_CHAR: 2725 case T_BYTE: 2726 case T_SHORT: 2727 case T_INT: 2728 argcnt++; 2729 break; 2730 default: 2731 break; 2732 } 2733 } 2734 } else { 2735 assert(0, "This should not be needed on this platform"); 2736 } 2737 2738 return argcnt; 2739 } 2740 2741 void SharedRuntime::convert_ints_to_longints(int i2l_argcnt, int& in_args_count, 2742 BasicType*& in_sig_bt, VMRegPair*& in_regs) { 2743 if (CCallingConventionRequiresIntsAsLongs) { 2744 VMRegPair *new_in_regs = NEW_RESOURCE_ARRAY(VMRegPair, i2l_argcnt); 2745 BasicType *new_in_sig_bt = NEW_RESOURCE_ARRAY(BasicType, i2l_argcnt); 2746 2747 int argcnt = 0; 2748 for (int in = 0; in < in_args_count; in++, argcnt++) { 2749 BasicType bt = in_sig_bt[in]; 2750 VMRegPair reg = in_regs[in]; 2751 switch (bt) { 2752 case T_BOOLEAN: 2753 case T_CHAR: 2754 case T_BYTE: 2755 case T_SHORT: 2756 case T_INT: 2757 // Convert (bt) to (T_LONG,bt). 2758 new_in_sig_bt[argcnt ] = T_LONG; 2759 new_in_sig_bt[argcnt+1] = bt; 2760 assert(reg.first()->is_valid() && !reg.second()->is_valid(), ""); 2761 new_in_regs[argcnt ].set2(reg.first()); 2762 new_in_regs[argcnt+1].set_bad(); 2763 argcnt++; 2764 break; 2765 default: 2766 // No conversion needed. 2767 new_in_sig_bt[argcnt] = bt; 2768 new_in_regs[argcnt] = reg; 2769 break; 2770 } 2771 } 2772 assert(argcnt == i2l_argcnt, "must match"); 2773 2774 in_regs = new_in_regs; 2775 in_sig_bt = new_in_sig_bt; 2776 in_args_count = i2l_argcnt; 2777 } else { 2778 assert(0, "This should not be needed on this platform"); 2779 } 2780 } 2781 2782 // ------------------------------------------------------------------------- 2783 // Java-Java calling convention 2784 // (what you use when Java calls Java) 2785 2786 //------------------------------name_for_receiver---------------------------------- 2787 // For a given signature, return the VMReg for parameter 0. 2788 VMReg SharedRuntime::name_for_receiver() { 2789 VMRegPair regs; 2790 BasicType sig_bt = T_OBJECT; 2791 (void) java_calling_convention(&sig_bt, ®s, 1, true); 2792 // Return argument 0 register. In the LP64 build pointers 2793 // take 2 registers, but the VM wants only the 'main' name. 2794 return regs.first(); 2795 } 2796 2797 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) { 2798 // This method is returning a data structure allocating as a 2799 // ResourceObject, so do not put any ResourceMarks in here. 2800 char *s = sig->as_C_string(); 2801 int len = (int)strlen(s); 2802 s++; len--; // Skip opening paren 2803 char *t = s+len; 2804 while( *(--t) != ')' ) ; // Find close paren 2805 2806 BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 ); 2807 VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 ); 2808 int cnt = 0; 2809 if (has_receiver) { 2810 sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature 2811 } 2812 2813 while( s < t ) { 2814 switch( *s++ ) { // Switch on signature character 2815 case 'B': sig_bt[cnt++] = T_BYTE; break; 2816 case 'C': sig_bt[cnt++] = T_CHAR; break; 2817 case 'D': sig_bt[cnt++] = T_DOUBLE; sig_bt[cnt++] = T_VOID; break; 2818 case 'F': sig_bt[cnt++] = T_FLOAT; break; 2819 case 'I': sig_bt[cnt++] = T_INT; break; 2820 case 'J': sig_bt[cnt++] = T_LONG; sig_bt[cnt++] = T_VOID; break; 2821 case 'S': sig_bt[cnt++] = T_SHORT; break; 2822 case 'Z': sig_bt[cnt++] = T_BOOLEAN; break; 2823 case 'V': sig_bt[cnt++] = T_VOID; break; 2824 case 'L': // Oop 2825 while( *s++ != ';' ) ; // Skip signature 2826 sig_bt[cnt++] = T_OBJECT; 2827 break; 2828 case '[': { // Array 2829 do { // Skip optional size 2830 while( *s >= '0' && *s <= '9' ) s++; 2831 } while( *s++ == '[' ); // Nested arrays? 2832 // Skip element type 2833 if( s[-1] == 'L' ) 2834 while( *s++ != ';' ) ; // Skip signature 2835 sig_bt[cnt++] = T_ARRAY; 2836 break; 2837 } 2838 default : ShouldNotReachHere(); 2839 } 2840 } 2841 2842 if (has_appendix) { 2843 sig_bt[cnt++] = T_OBJECT; 2844 } 2845 2846 assert( cnt < 256, "grow table size" ); 2847 2848 int comp_args_on_stack; 2849 comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true); 2850 2851 // the calling convention doesn't count out_preserve_stack_slots so 2852 // we must add that in to get "true" stack offsets. 2853 2854 if (comp_args_on_stack) { 2855 for (int i = 0; i < cnt; i++) { 2856 VMReg reg1 = regs[i].first(); 2857 if( reg1->is_stack()) { 2858 // Yuck 2859 reg1 = reg1->bias(out_preserve_stack_slots()); 2860 } 2861 VMReg reg2 = regs[i].second(); 2862 if( reg2->is_stack()) { 2863 // Yuck 2864 reg2 = reg2->bias(out_preserve_stack_slots()); 2865 } 2866 regs[i].set_pair(reg2, reg1); 2867 } 2868 } 2869 2870 // results 2871 *arg_size = cnt; 2872 return regs; 2873 } 2874 2875 // OSR Migration Code 2876 // 2877 // This code is used convert interpreter frames into compiled frames. It is 2878 // called from very start of a compiled OSR nmethod. A temp array is 2879 // allocated to hold the interesting bits of the interpreter frame. All 2880 // active locks are inflated to allow them to move. The displaced headers and 2881 // active interpeter locals are copied into the temp buffer. Then we return 2882 // back to the compiled code. The compiled code then pops the current 2883 // interpreter frame off the stack and pushes a new compiled frame. Then it 2884 // copies the interpreter locals and displaced headers where it wants. 2885 // Finally it calls back to free the temp buffer. 2886 // 2887 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed. 2888 2889 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) ) 2890 2891 // 2892 // This code is dependent on the memory layout of the interpreter local 2893 // array and the monitors. On all of our platforms the layout is identical 2894 // so this code is shared. If some platform lays the their arrays out 2895 // differently then this code could move to platform specific code or 2896 // the code here could be modified to copy items one at a time using 2897 // frame accessor methods and be platform independent. 2898 2899 frame fr = thread->last_frame(); 2900 assert( fr.is_interpreted_frame(), "" ); 2901 assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" ); 2902 2903 // Figure out how many monitors are active. 2904 int active_monitor_count = 0; 2905 for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end(); 2906 kptr < fr.interpreter_frame_monitor_begin(); 2907 kptr = fr.next_monitor_in_interpreter_frame(kptr) ) { 2908 if( kptr->obj() != NULL ) active_monitor_count++; 2909 } 2910 2911 // QQQ we could place number of active monitors in the array so that compiled code 2912 // could double check it. 2913 2914 Method* moop = fr.interpreter_frame_method(); 2915 int max_locals = moop->max_locals(); 2916 // Allocate temp buffer, 1 word per local & 2 per active monitor 2917 int buf_size_words = max_locals + active_monitor_count*2; 2918 intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode); 2919 2920 // Copy the locals. Order is preserved so that loading of longs works. 2921 // Since there's no GC I can copy the oops blindly. 2922 assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code"); 2923 Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1), 2924 (HeapWord*)&buf[0], 2925 max_locals); 2926 2927 // Inflate locks. Copy the displaced headers. Be careful, there can be holes. 2928 int i = max_locals; 2929 for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end(); 2930 kptr2 < fr.interpreter_frame_monitor_begin(); 2931 kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) { 2932 if( kptr2->obj() != NULL) { // Avoid 'holes' in the monitor array 2933 BasicLock *lock = kptr2->lock(); 2934 // Inflate so the displaced header becomes position-independent 2935 if (lock->displaced_header()->is_unlocked()) 2936 ObjectSynchronizer::inflate_helper(kptr2->obj()); 2937 // Now the displaced header is free to move 2938 buf[i++] = (intptr_t)lock->displaced_header(); 2939 buf[i++] = (intptr_t)kptr2->obj(); 2940 } 2941 } 2942 assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" ); 2943 2944 return buf; 2945 JRT_END 2946 2947 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) ) 2948 FREE_C_HEAP_ARRAY(intptr_t,buf, mtCode); 2949 JRT_END 2950 2951 bool AdapterHandlerLibrary::contains(CodeBlob* b) { 2952 AdapterHandlerTableIterator iter(_adapters); 2953 while (iter.has_next()) { 2954 AdapterHandlerEntry* a = iter.next(); 2955 if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) return true; 2956 } 2957 return false; 2958 } 2959 2960 void AdapterHandlerLibrary::print_handler_on(outputStream* st, CodeBlob* b) { 2961 AdapterHandlerTableIterator iter(_adapters); 2962 while (iter.has_next()) { 2963 AdapterHandlerEntry* a = iter.next(); 2964 if (b == CodeCache::find_blob(a->get_i2c_entry())) { 2965 st->print("Adapter for signature: "); 2966 a->print_adapter_on(tty); 2967 return; 2968 } 2969 } 2970 assert(false, "Should have found handler"); 2971 } 2972 2973 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const { 2974 st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT, 2975 (intptr_t) this, fingerprint()->as_string(), 2976 get_i2c_entry(), get_c2i_entry(), get_c2i_unverified_entry()); 2977 2978 } 2979 2980 #ifndef PRODUCT 2981 2982 void AdapterHandlerLibrary::print_statistics() { 2983 _adapters->print_statistics(); 2984 } 2985 2986 #endif /* PRODUCT */ --- EOF ---