1 /* 2 * Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/systemDictionary.hpp" 27 #include "classfile/vmSymbols.hpp" 28 #include "code/compiledIC.hpp" 29 #include "code/icBuffer.hpp" 30 #include "code/nmethod.hpp" 31 #include "code/pcDesc.hpp" 32 #include "code/scopeDesc.hpp" 33 #include "code/vtableStubs.hpp" 34 #include "compiler/compileBroker.hpp" 35 #include "compiler/compilerOracle.hpp" 36 #include "compiler/oopMap.hpp" 37 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp" 38 #include "gc_implementation/g1/heapRegion.hpp" 39 #include "gc_interface/collectedHeap.hpp" 40 #include "interpreter/bytecode.hpp" 41 #include "interpreter/interpreter.hpp" 42 #include "interpreter/linkResolver.hpp" 43 #include "memory/barrierSet.hpp" 44 #include "memory/gcLocker.inline.hpp" 45 #include "memory/oopFactory.hpp" 46 #include "oops/objArrayKlass.hpp" 47 #include "oops/oop.inline.hpp" 48 #include "opto/addnode.hpp" 49 #include "opto/callnode.hpp" 50 #include "opto/cfgnode.hpp" 51 #include "opto/connode.hpp" 52 #include "opto/graphKit.hpp" 53 #include "opto/machnode.hpp" 54 #include "opto/matcher.hpp" 55 #include "opto/memnode.hpp" 56 #include "opto/mulnode.hpp" 57 #include "opto/runtime.hpp" 58 #include "opto/subnode.hpp" 59 #include "runtime/fprofiler.hpp" 60 #include "runtime/handles.inline.hpp" 61 #include "runtime/interfaceSupport.hpp" 62 #include "runtime/javaCalls.hpp" 63 #include "runtime/sharedRuntime.hpp" 64 #include "runtime/signature.hpp" 65 #include "runtime/threadCritical.hpp" 66 #include "runtime/vframe.hpp" 67 #include "runtime/vframeArray.hpp" 68 #include "runtime/vframe_hp.hpp" 69 #include "utilities/copy.hpp" 70 #include "utilities/preserveException.hpp" 71 #ifdef TARGET_ARCH_MODEL_x86_32 72 # include "adfiles/ad_x86_32.hpp" 73 #endif 74 #ifdef TARGET_ARCH_MODEL_x86_64 75 # include "adfiles/ad_x86_64.hpp" 76 #endif 77 #ifdef TARGET_ARCH_MODEL_sparc 78 # include "adfiles/ad_sparc.hpp" 79 #endif 80 #ifdef TARGET_ARCH_MODEL_zero 81 # include "adfiles/ad_zero.hpp" 82 #endif 83 #ifdef TARGET_ARCH_MODEL_arm 84 # include "adfiles/ad_arm.hpp" 85 #endif 86 #ifdef TARGET_ARCH_MODEL_ppc_32 87 # include "adfiles/ad_ppc_32.hpp" 88 #endif 89 #ifdef TARGET_ARCH_MODEL_ppc_64 90 # include "adfiles/ad_ppc_64.hpp" 91 #endif 92 93 94 // For debugging purposes: 95 // To force FullGCALot inside a runtime function, add the following two lines 96 // 97 // Universe::release_fullgc_alot_dummy(); 98 // MarkSweep::invoke(0, "Debugging"); 99 // 100 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000 101 102 103 104 105 // Compiled code entry points 106 address OptoRuntime::_new_instance_Java = NULL; 107 address OptoRuntime::_new_array_Java = NULL; 108 address OptoRuntime::_new_array_nozero_Java = NULL; 109 address OptoRuntime::_multianewarray2_Java = NULL; 110 address OptoRuntime::_multianewarray3_Java = NULL; 111 address OptoRuntime::_multianewarray4_Java = NULL; 112 address OptoRuntime::_multianewarray5_Java = NULL; 113 address OptoRuntime::_multianewarrayN_Java = NULL; 114 address OptoRuntime::_g1_wb_pre_Java = NULL; 115 address OptoRuntime::_g1_wb_post_Java = NULL; 116 address OptoRuntime::_vtable_must_compile_Java = NULL; 117 address OptoRuntime::_complete_monitor_locking_Java = NULL; 118 address OptoRuntime::_rethrow_Java = NULL; 119 120 address OptoRuntime::_slow_arraycopy_Java = NULL; 121 address OptoRuntime::_register_finalizer_Java = NULL; 122 123 # ifdef ENABLE_ZAP_DEAD_LOCALS 124 address OptoRuntime::_zap_dead_Java_locals_Java = NULL; 125 address OptoRuntime::_zap_dead_native_locals_Java = NULL; 126 # endif 127 128 ExceptionBlob* OptoRuntime::_exception_blob; 129 130 // This should be called in an assertion at the start of OptoRuntime routines 131 // which are entered from compiled code (all of them) 132 #ifdef ASSERT 133 static bool check_compiled_frame(JavaThread* thread) { 134 assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code"); 135 RegisterMap map(thread, false); 136 frame caller = thread->last_frame().sender(&map); 137 assert(caller.is_compiled_frame(), "not being called from compiled like code"); 138 return true; 139 } 140 #endif // ASSERT 141 142 143 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \ 144 var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc) 145 146 void OptoRuntime::generate(ciEnv* env) { 147 148 generate_exception_blob(); 149 150 // Note: tls: Means fetching the return oop out of the thread-local storage 151 // 152 // variable/name type-function-gen , runtime method ,fncy_jp, tls,save_args,retpc 153 // ------------------------------------------------------------------------------------------------------------------------------- 154 gen(env, _new_instance_Java , new_instance_Type , new_instance_C , 0 , true , false, false); 155 gen(env, _new_array_Java , new_array_Type , new_array_C , 0 , true , false, false); 156 gen(env, _new_array_nozero_Java , new_array_Type , new_array_nozero_C , 0 , true , false, false); 157 gen(env, _multianewarray2_Java , multianewarray2_Type , multianewarray2_C , 0 , true , false, false); 158 gen(env, _multianewarray3_Java , multianewarray3_Type , multianewarray3_C , 0 , true , false, false); 159 gen(env, _multianewarray4_Java , multianewarray4_Type , multianewarray4_C , 0 , true , false, false); 160 gen(env, _multianewarray5_Java , multianewarray5_Type , multianewarray5_C , 0 , true , false, false); 161 gen(env, _multianewarrayN_Java , multianewarrayN_Type , multianewarrayN_C , 0 , true , false, false); 162 gen(env, _g1_wb_pre_Java , g1_wb_pre_Type , SharedRuntime::g1_wb_pre , 0 , false, false, false); 163 gen(env, _g1_wb_post_Java , g1_wb_post_Type , SharedRuntime::g1_wb_post , 0 , false, false, false); 164 gen(env, _complete_monitor_locking_Java , complete_monitor_enter_Type , SharedRuntime::complete_monitor_locking_C , 0 , false, false, false); 165 gen(env, _rethrow_Java , rethrow_Type , rethrow_C , 2 , true , false, true ); 166 167 gen(env, _slow_arraycopy_Java , slow_arraycopy_Type , SharedRuntime::slow_arraycopy_C , 0 , false, false, false); 168 gen(env, _register_finalizer_Java , register_finalizer_Type , register_finalizer , 0 , false, false, false); 169 170 # ifdef ENABLE_ZAP_DEAD_LOCALS 171 gen(env, _zap_dead_Java_locals_Java , zap_dead_locals_Type , zap_dead_Java_locals_C , 0 , false, true , false ); 172 gen(env, _zap_dead_native_locals_Java , zap_dead_locals_Type , zap_dead_native_locals_C , 0 , false, true , false ); 173 # endif 174 175 } 176 177 #undef gen 178 179 180 // Helper method to do generation of RunTimeStub's 181 address OptoRuntime::generate_stub( ciEnv* env, 182 TypeFunc_generator gen, address C_function, 183 const char *name, int is_fancy_jump, 184 bool pass_tls, 185 bool save_argument_registers, 186 bool return_pc ) { 187 ResourceMark rm; 188 Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc ); 189 return C.stub_entry_point(); 190 } 191 192 const char* OptoRuntime::stub_name(address entry) { 193 #ifndef PRODUCT 194 CodeBlob* cb = CodeCache::find_blob(entry); 195 RuntimeStub* rs =(RuntimeStub *)cb; 196 assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub"); 197 return rs->name(); 198 #else 199 // Fast implementation for product mode (maybe it should be inlined too) 200 return "runtime stub"; 201 #endif 202 } 203 204 205 //============================================================================= 206 // Opto compiler runtime routines 207 //============================================================================= 208 209 210 //=============================allocation====================================== 211 // We failed the fast-path allocation. Now we need to do a scavenge or GC 212 // and try allocation again. 213 214 void OptoRuntime::new_store_pre_barrier(JavaThread* thread) { 215 // After any safepoint, just before going back to compiled code, 216 // we inform the GC that we will be doing initializing writes to 217 // this object in the future without emitting card-marks, so 218 // GC may take any compensating steps. 219 // NOTE: Keep this code consistent with GraphKit::store_barrier. 220 221 oop new_obj = thread->vm_result(); 222 if (new_obj == NULL) return; 223 224 assert(Universe::heap()->can_elide_tlab_store_barriers(), 225 "compiler must check this first"); 226 // GC may decide to give back a safer copy of new_obj. 227 new_obj = Universe::heap()->new_store_pre_barrier(thread, new_obj); 228 thread->set_vm_result(new_obj); 229 } 230 231 // object allocation 232 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* thread)) 233 JRT_BLOCK; 234 #ifndef PRODUCT 235 SharedRuntime::_new_instance_ctr++; // new instance requires GC 236 #endif 237 assert(check_compiled_frame(thread), "incorrect caller"); 238 239 // These checks are cheap to make and support reflective allocation. 240 int lh = klass->layout_helper(); 241 if (Klass::layout_helper_needs_slow_path(lh) 242 || !InstanceKlass::cast(klass)->is_initialized()) { 243 KlassHandle kh(THREAD, klass); 244 kh->check_valid_for_instantiation(false, THREAD); 245 if (!HAS_PENDING_EXCEPTION) { 246 InstanceKlass::cast(kh())->initialize(THREAD); 247 } 248 if (!HAS_PENDING_EXCEPTION) { 249 klass = kh(); 250 } else { 251 klass = NULL; 252 } 253 } 254 255 if (klass != NULL) { 256 // Scavenge and allocate an instance. 257 oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD); 258 thread->set_vm_result(result); 259 260 // Pass oops back through thread local storage. Our apparent type to Java 261 // is that we return an oop, but we can block on exit from this routine and 262 // a GC can trash the oop in C's return register. The generated stub will 263 // fetch the oop from TLS after any possible GC. 264 } 265 266 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION); 267 JRT_BLOCK_END; 268 269 if (GraphKit::use_ReduceInitialCardMarks()) { 270 // inform GC that we won't do card marks for initializing writes. 271 new_store_pre_barrier(thread); 272 } 273 JRT_END 274 275 276 // array allocation 277 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread *thread)) 278 JRT_BLOCK; 279 #ifndef PRODUCT 280 SharedRuntime::_new_array_ctr++; // new array requires GC 281 #endif 282 assert(check_compiled_frame(thread), "incorrect caller"); 283 284 // Scavenge and allocate an instance. 285 oop result; 286 287 if (array_type->oop_is_typeArray()) { 288 // The oopFactory likes to work with the element type. 289 // (We could bypass the oopFactory, since it doesn't add much value.) 290 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type(); 291 result = oopFactory::new_typeArray(elem_type, len, THREAD); 292 } else { 293 // Although the oopFactory likes to work with the elem_type, 294 // the compiler prefers the array_type, since it must already have 295 // that latter value in hand for the fast path. 296 Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass(); 297 result = oopFactory::new_objArray(elem_type, len, THREAD); 298 } 299 300 // Pass oops back through thread local storage. Our apparent type to Java 301 // is that we return an oop, but we can block on exit from this routine and 302 // a GC can trash the oop in C's return register. The generated stub will 303 // fetch the oop from TLS after any possible GC. 304 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION); 305 thread->set_vm_result(result); 306 JRT_BLOCK_END; 307 308 if (GraphKit::use_ReduceInitialCardMarks()) { 309 // inform GC that we won't do card marks for initializing writes. 310 new_store_pre_barrier(thread); 311 } 312 JRT_END 313 314 // array allocation without zeroing 315 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread *thread)) 316 JRT_BLOCK; 317 #ifndef PRODUCT 318 SharedRuntime::_new_array_ctr++; // new array requires GC 319 #endif 320 assert(check_compiled_frame(thread), "incorrect caller"); 321 322 // Scavenge and allocate an instance. 323 oop result; 324 325 assert(array_type->oop_is_typeArray(), "should be called only for type array"); 326 // The oopFactory likes to work with the element type. 327 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type(); 328 result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD); 329 330 // Pass oops back through thread local storage. Our apparent type to Java 331 // is that we return an oop, but we can block on exit from this routine and 332 // a GC can trash the oop in C's return register. The generated stub will 333 // fetch the oop from TLS after any possible GC. 334 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION); 335 thread->set_vm_result(result); 336 JRT_BLOCK_END; 337 338 if (GraphKit::use_ReduceInitialCardMarks()) { 339 // inform GC that we won't do card marks for initializing writes. 340 new_store_pre_barrier(thread); 341 } 342 343 oop result = thread->vm_result(); 344 if ((len > 0) && (result != NULL) && 345 is_deoptimized_caller_frame(thread)) { 346 // Zero array here if the caller is deoptimized. 347 int size = ((typeArrayOop)result)->object_size(); 348 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type(); 349 const size_t hs = arrayOopDesc::header_size(elem_type); 350 // Align to next 8 bytes to avoid trashing arrays's length. 351 const size_t aligned_hs = align_object_offset(hs); 352 HeapWord* obj = (HeapWord*)result; 353 if (aligned_hs > hs) { 354 Copy::zero_to_words(obj+hs, aligned_hs-hs); 355 } 356 // Optimized zeroing. 357 Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs); 358 } 359 360 JRT_END 361 362 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array. 363 364 // multianewarray for 2 dimensions 365 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread *thread)) 366 #ifndef PRODUCT 367 SharedRuntime::_multi2_ctr++; // multianewarray for 1 dimension 368 #endif 369 assert(check_compiled_frame(thread), "incorrect caller"); 370 assert(elem_type->is_klass(), "not a class"); 371 jint dims[2]; 372 dims[0] = len1; 373 dims[1] = len2; 374 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD); 375 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION); 376 thread->set_vm_result(obj); 377 JRT_END 378 379 // multianewarray for 3 dimensions 380 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread *thread)) 381 #ifndef PRODUCT 382 SharedRuntime::_multi3_ctr++; // multianewarray for 1 dimension 383 #endif 384 assert(check_compiled_frame(thread), "incorrect caller"); 385 assert(elem_type->is_klass(), "not a class"); 386 jint dims[3]; 387 dims[0] = len1; 388 dims[1] = len2; 389 dims[2] = len3; 390 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD); 391 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION); 392 thread->set_vm_result(obj); 393 JRT_END 394 395 // multianewarray for 4 dimensions 396 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread)) 397 #ifndef PRODUCT 398 SharedRuntime::_multi4_ctr++; // multianewarray for 1 dimension 399 #endif 400 assert(check_compiled_frame(thread), "incorrect caller"); 401 assert(elem_type->is_klass(), "not a class"); 402 jint dims[4]; 403 dims[0] = len1; 404 dims[1] = len2; 405 dims[2] = len3; 406 dims[3] = len4; 407 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD); 408 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION); 409 thread->set_vm_result(obj); 410 JRT_END 411 412 // multianewarray for 5 dimensions 413 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread)) 414 #ifndef PRODUCT 415 SharedRuntime::_multi5_ctr++; // multianewarray for 1 dimension 416 #endif 417 assert(check_compiled_frame(thread), "incorrect caller"); 418 assert(elem_type->is_klass(), "not a class"); 419 jint dims[5]; 420 dims[0] = len1; 421 dims[1] = len2; 422 dims[2] = len3; 423 dims[3] = len4; 424 dims[4] = len5; 425 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD); 426 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION); 427 thread->set_vm_result(obj); 428 JRT_END 429 430 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread *thread)) 431 assert(check_compiled_frame(thread), "incorrect caller"); 432 assert(elem_type->is_klass(), "not a class"); 433 assert(oop(dims)->is_typeArray(), "not an array"); 434 435 ResourceMark rm; 436 jint len = dims->length(); 437 assert(len > 0, "Dimensions array should contain data"); 438 jint *j_dims = typeArrayOop(dims)->int_at_addr(0); 439 jint *c_dims = NEW_RESOURCE_ARRAY(jint, len); 440 Copy::conjoint_jints_atomic(j_dims, c_dims, len); 441 442 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD); 443 deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION); 444 thread->set_vm_result(obj); 445 JRT_END 446 447 448 const TypeFunc *OptoRuntime::new_instance_Type() { 449 // create input type (domain) 450 const Type **fields = TypeTuple::fields(1); 451 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated 452 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 453 454 // create result type (range) 455 fields = TypeTuple::fields(1); 456 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 457 458 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 459 460 return TypeFunc::make(domain, range); 461 } 462 463 464 const TypeFunc *OptoRuntime::athrow_Type() { 465 // create input type (domain) 466 const Type **fields = TypeTuple::fields(1); 467 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated 468 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 469 470 // create result type (range) 471 fields = TypeTuple::fields(0); 472 473 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 474 475 return TypeFunc::make(domain, range); 476 } 477 478 479 const TypeFunc *OptoRuntime::new_array_Type() { 480 // create input type (domain) 481 const Type **fields = TypeTuple::fields(2); 482 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass 483 fields[TypeFunc::Parms+1] = TypeInt::INT; // array size 484 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 485 486 // create result type (range) 487 fields = TypeTuple::fields(1); 488 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 489 490 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 491 492 return TypeFunc::make(domain, range); 493 } 494 495 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) { 496 // create input type (domain) 497 const int nargs = ndim + 1; 498 const Type **fields = TypeTuple::fields(nargs); 499 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass 500 for( int i = 1; i < nargs; i++ ) 501 fields[TypeFunc::Parms + i] = TypeInt::INT; // array size 502 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields); 503 504 // create result type (range) 505 fields = TypeTuple::fields(1); 506 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 507 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 508 509 return TypeFunc::make(domain, range); 510 } 511 512 const TypeFunc *OptoRuntime::multianewarray2_Type() { 513 return multianewarray_Type(2); 514 } 515 516 const TypeFunc *OptoRuntime::multianewarray3_Type() { 517 return multianewarray_Type(3); 518 } 519 520 const TypeFunc *OptoRuntime::multianewarray4_Type() { 521 return multianewarray_Type(4); 522 } 523 524 const TypeFunc *OptoRuntime::multianewarray5_Type() { 525 return multianewarray_Type(5); 526 } 527 528 const TypeFunc *OptoRuntime::multianewarrayN_Type() { 529 // create input type (domain) 530 const Type **fields = TypeTuple::fields(2); 531 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass 532 fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL; // array of dim sizes 533 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 534 535 // create result type (range) 536 fields = TypeTuple::fields(1); 537 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 538 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 539 540 return TypeFunc::make(domain, range); 541 } 542 543 const TypeFunc *OptoRuntime::g1_wb_pre_Type() { 544 const Type **fields = TypeTuple::fields(2); 545 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value 546 fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread 547 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 548 549 // create result type (range) 550 fields = TypeTuple::fields(0); 551 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 552 553 return TypeFunc::make(domain, range); 554 } 555 556 const TypeFunc *OptoRuntime::g1_wb_post_Type() { 557 558 const Type **fields = TypeTuple::fields(2); 559 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Card addr 560 fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread 561 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 562 563 // create result type (range) 564 fields = TypeTuple::fields(0); 565 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 566 567 return TypeFunc::make(domain, range); 568 } 569 570 const TypeFunc *OptoRuntime::uncommon_trap_Type() { 571 // create input type (domain) 572 const Type **fields = TypeTuple::fields(1); 573 // Symbol* name of class to be loaded 574 fields[TypeFunc::Parms+0] = TypeInt::INT; 575 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 576 577 // create result type (range) 578 fields = TypeTuple::fields(0); 579 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 580 581 return TypeFunc::make(domain, range); 582 } 583 584 # ifdef ENABLE_ZAP_DEAD_LOCALS 585 // Type used for stub generation for zap_dead_locals. 586 // No inputs or outputs 587 const TypeFunc *OptoRuntime::zap_dead_locals_Type() { 588 // create input type (domain) 589 const Type **fields = TypeTuple::fields(0); 590 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms,fields); 591 592 // create result type (range) 593 fields = TypeTuple::fields(0); 594 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms,fields); 595 596 return TypeFunc::make(domain,range); 597 } 598 # endif 599 600 601 //----------------------------------------------------------------------------- 602 // Monitor Handling 603 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() { 604 // create input type (domain) 605 const Type **fields = TypeTuple::fields(2); 606 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked 607 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock 608 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); 609 610 // create result type (range) 611 fields = TypeTuple::fields(0); 612 613 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 614 615 return TypeFunc::make(domain,range); 616 } 617 618 619 //----------------------------------------------------------------------------- 620 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() { 621 // create input type (domain) 622 const Type **fields = TypeTuple::fields(2); 623 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked 624 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock 625 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); 626 627 // create result type (range) 628 fields = TypeTuple::fields(0); 629 630 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 631 632 return TypeFunc::make(domain,range); 633 } 634 635 const TypeFunc* OptoRuntime::flush_windows_Type() { 636 // create input type (domain) 637 const Type** fields = TypeTuple::fields(1); 638 fields[TypeFunc::Parms+0] = NULL; // void 639 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields); 640 641 // create result type 642 fields = TypeTuple::fields(1); 643 fields[TypeFunc::Parms+0] = NULL; // void 644 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 645 646 return TypeFunc::make(domain, range); 647 } 648 649 const TypeFunc* OptoRuntime::l2f_Type() { 650 // create input type (domain) 651 const Type **fields = TypeTuple::fields(2); 652 fields[TypeFunc::Parms+0] = TypeLong::LONG; 653 fields[TypeFunc::Parms+1] = Type::HALF; 654 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 655 656 // create result type (range) 657 fields = TypeTuple::fields(1); 658 fields[TypeFunc::Parms+0] = Type::FLOAT; 659 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 660 661 return TypeFunc::make(domain, range); 662 } 663 664 const TypeFunc* OptoRuntime::modf_Type() { 665 const Type **fields = TypeTuple::fields(2); 666 fields[TypeFunc::Parms+0] = Type::FLOAT; 667 fields[TypeFunc::Parms+1] = Type::FLOAT; 668 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 669 670 // create result type (range) 671 fields = TypeTuple::fields(1); 672 fields[TypeFunc::Parms+0] = Type::FLOAT; 673 674 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 675 676 return TypeFunc::make(domain, range); 677 } 678 679 const TypeFunc *OptoRuntime::Math_D_D_Type() { 680 // create input type (domain) 681 const Type **fields = TypeTuple::fields(2); 682 // Symbol* name of class to be loaded 683 fields[TypeFunc::Parms+0] = Type::DOUBLE; 684 fields[TypeFunc::Parms+1] = Type::HALF; 685 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 686 687 // create result type (range) 688 fields = TypeTuple::fields(2); 689 fields[TypeFunc::Parms+0] = Type::DOUBLE; 690 fields[TypeFunc::Parms+1] = Type::HALF; 691 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields); 692 693 return TypeFunc::make(domain, range); 694 } 695 696 const TypeFunc* OptoRuntime::Math_DD_D_Type() { 697 const Type **fields = TypeTuple::fields(4); 698 fields[TypeFunc::Parms+0] = Type::DOUBLE; 699 fields[TypeFunc::Parms+1] = Type::HALF; 700 fields[TypeFunc::Parms+2] = Type::DOUBLE; 701 fields[TypeFunc::Parms+3] = Type::HALF; 702 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields); 703 704 // create result type (range) 705 fields = TypeTuple::fields(2); 706 fields[TypeFunc::Parms+0] = Type::DOUBLE; 707 fields[TypeFunc::Parms+1] = Type::HALF; 708 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields); 709 710 return TypeFunc::make(domain, range); 711 } 712 713 //-------------- currentTimeMillis, currentTimeNanos, etc 714 715 const TypeFunc* OptoRuntime::void_long_Type() { 716 // create input type (domain) 717 const Type **fields = TypeTuple::fields(0); 718 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields); 719 720 // create result type (range) 721 fields = TypeTuple::fields(2); 722 fields[TypeFunc::Parms+0] = TypeLong::LONG; 723 fields[TypeFunc::Parms+1] = Type::HALF; 724 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields); 725 726 return TypeFunc::make(domain, range); 727 } 728 729 // arraycopy stub variations: 730 enum ArrayCopyType { 731 ac_fast, // void(ptr, ptr, size_t) 732 ac_checkcast, // int(ptr, ptr, size_t, size_t, ptr) 733 ac_slow, // void(ptr, int, ptr, int, int) 734 ac_generic // int(ptr, int, ptr, int, int) 735 }; 736 737 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) { 738 // create input type (domain) 739 int num_args = (act == ac_fast ? 3 : 5); 740 int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0); 741 int argcnt = num_args; 742 LP64_ONLY(argcnt += num_size_args); // halfwords for lengths 743 const Type** fields = TypeTuple::fields(argcnt); 744 int argp = TypeFunc::Parms; 745 fields[argp++] = TypePtr::NOTNULL; // src 746 if (num_size_args == 0) { 747 fields[argp++] = TypeInt::INT; // src_pos 748 } 749 fields[argp++] = TypePtr::NOTNULL; // dest 750 if (num_size_args == 0) { 751 fields[argp++] = TypeInt::INT; // dest_pos 752 fields[argp++] = TypeInt::INT; // length 753 } 754 while (num_size_args-- > 0) { 755 fields[argp++] = TypeX_X; // size in whatevers (size_t) 756 LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length 757 } 758 if (act == ac_checkcast) { 759 fields[argp++] = TypePtr::NOTNULL; // super_klass 760 } 761 assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act"); 762 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 763 764 // create result type if needed 765 int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0); 766 fields = TypeTuple::fields(1); 767 if (retcnt == 0) 768 fields[TypeFunc::Parms+0] = NULL; // void 769 else 770 fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed 771 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields); 772 return TypeFunc::make(domain, range); 773 } 774 775 const TypeFunc* OptoRuntime::fast_arraycopy_Type() { 776 // This signature is simple: Two base pointers and a size_t. 777 return make_arraycopy_Type(ac_fast); 778 } 779 780 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() { 781 // An extension of fast_arraycopy_Type which adds type checking. 782 return make_arraycopy_Type(ac_checkcast); 783 } 784 785 const TypeFunc* OptoRuntime::slow_arraycopy_Type() { 786 // This signature is exactly the same as System.arraycopy. 787 // There are no intptr_t (int/long) arguments. 788 return make_arraycopy_Type(ac_slow); 789 } 790 791 const TypeFunc* OptoRuntime::generic_arraycopy_Type() { 792 // This signature is like System.arraycopy, except that it returns status. 793 return make_arraycopy_Type(ac_generic); 794 } 795 796 797 const TypeFunc* OptoRuntime::array_fill_Type() { 798 const Type** fields; 799 int argp = TypeFunc::Parms; 800 if (CCallingConventionRequiresIntsAsLongs) { 801 // create input type (domain): pointer, int, size_t 802 fields = TypeTuple::fields(3 LP64_ONLY( + 2)); 803 fields[argp++] = TypePtr::NOTNULL; 804 fields[argp++] = TypeLong::LONG; 805 fields[argp++] = Type::HALF; 806 } else { 807 // create input type (domain): pointer, int, size_t 808 fields = TypeTuple::fields(3 LP64_ONLY( + 1)); 809 fields[argp++] = TypePtr::NOTNULL; 810 fields[argp++] = TypeInt::INT; 811 } 812 fields[argp++] = TypeX_X; // size in whatevers (size_t) 813 LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length 814 const TypeTuple *domain = TypeTuple::make(argp, fields); 815 816 // create result type 817 fields = TypeTuple::fields(1); 818 fields[TypeFunc::Parms+0] = NULL; // void 819 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 820 821 return TypeFunc::make(domain, range); 822 } 823 824 // for aescrypt encrypt/decrypt operations, just three pointers returning void (length is constant) 825 const TypeFunc* OptoRuntime::aescrypt_block_Type() { 826 // create input type (domain) 827 int num_args = 3; 828 int argcnt = num_args; 829 const Type** fields = TypeTuple::fields(argcnt); 830 int argp = TypeFunc::Parms; 831 fields[argp++] = TypePtr::NOTNULL; // src 832 fields[argp++] = TypePtr::NOTNULL; // dest 833 fields[argp++] = TypePtr::NOTNULL; // k array 834 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 835 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 836 837 // no result type needed 838 fields = TypeTuple::fields(1); 839 fields[TypeFunc::Parms+0] = NULL; // void 840 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 841 return TypeFunc::make(domain, range); 842 } 843 844 /** 845 * int updateBytesCRC32(int crc, byte* b, int len) 846 */ 847 const TypeFunc* OptoRuntime::updateBytesCRC32_Type() { 848 // create input type (domain) 849 int num_args = 3; 850 int argcnt = num_args; 851 const Type** fields = TypeTuple::fields(argcnt); 852 int argp = TypeFunc::Parms; 853 fields[argp++] = TypeInt::INT; // crc 854 fields[argp++] = TypePtr::NOTNULL; // src 855 fields[argp++] = TypeInt::INT; // len 856 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 857 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 858 859 // result type needed 860 fields = TypeTuple::fields(1); 861 fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result 862 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 863 return TypeFunc::make(domain, range); 864 } 865 866 // for cipherBlockChaining calls of aescrypt encrypt/decrypt, four pointers and a length, returning void 867 const TypeFunc* OptoRuntime::cipherBlockChaining_aescrypt_Type() { 868 // create input type (domain) 869 int num_args = 5; 870 int argcnt = num_args; 871 const Type** fields = TypeTuple::fields(argcnt); 872 int argp = TypeFunc::Parms; 873 fields[argp++] = TypePtr::NOTNULL; // src 874 fields[argp++] = TypePtr::NOTNULL; // dest 875 fields[argp++] = TypePtr::NOTNULL; // k array 876 fields[argp++] = TypePtr::NOTNULL; // r array 877 fields[argp++] = TypeInt::INT; // src len 878 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 879 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 880 881 // no result type needed 882 fields = TypeTuple::fields(1); 883 fields[TypeFunc::Parms+0] = NULL; // void 884 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 885 return TypeFunc::make(domain, range); 886 } 887 888 //------------- Interpreter state access for on stack replacement 889 const TypeFunc* OptoRuntime::osr_end_Type() { 890 // create input type (domain) 891 const Type **fields = TypeTuple::fields(1); 892 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf 893 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 894 895 // create result type 896 fields = TypeTuple::fields(1); 897 // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop 898 fields[TypeFunc::Parms+0] = NULL; // void 899 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 900 return TypeFunc::make(domain, range); 901 } 902 903 //-------------- methodData update helpers 904 905 const TypeFunc* OptoRuntime::profile_receiver_type_Type() { 906 // create input type (domain) 907 const Type **fields = TypeTuple::fields(2); 908 fields[TypeFunc::Parms+0] = TypeAryPtr::NOTNULL; // methodData pointer 909 fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM; // receiver oop 910 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 911 912 // create result type 913 fields = TypeTuple::fields(1); 914 fields[TypeFunc::Parms+0] = NULL; // void 915 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 916 return TypeFunc::make(domain,range); 917 } 918 919 JRT_LEAF(void, OptoRuntime::profile_receiver_type_C(DataLayout* data, oopDesc* receiver)) 920 if (receiver == NULL) return; 921 Klass* receiver_klass = receiver->klass(); 922 923 intptr_t* mdp = ((intptr_t*)(data)) + DataLayout::header_size_in_cells(); 924 int empty_row = -1; // free row, if any is encountered 925 926 // ReceiverTypeData* vc = new ReceiverTypeData(mdp); 927 for (uint row = 0; row < ReceiverTypeData::row_limit(); row++) { 928 // if (vc->receiver(row) == receiver_klass) 929 int receiver_off = ReceiverTypeData::receiver_cell_index(row); 930 intptr_t row_recv = *(mdp + receiver_off); 931 if (row_recv == (intptr_t) receiver_klass) { 932 // vc->set_receiver_count(row, vc->receiver_count(row) + DataLayout::counter_increment); 933 int count_off = ReceiverTypeData::receiver_count_cell_index(row); 934 *(mdp + count_off) += DataLayout::counter_increment; 935 return; 936 } else if (row_recv == 0) { 937 // else if (vc->receiver(row) == NULL) 938 empty_row = (int) row; 939 } 940 } 941 942 if (empty_row != -1) { 943 int receiver_off = ReceiverTypeData::receiver_cell_index(empty_row); 944 // vc->set_receiver(empty_row, receiver_klass); 945 *(mdp + receiver_off) = (intptr_t) receiver_klass; 946 // vc->set_receiver_count(empty_row, DataLayout::counter_increment); 947 int count_off = ReceiverTypeData::receiver_count_cell_index(empty_row); 948 *(mdp + count_off) = DataLayout::counter_increment; 949 } else { 950 // Receiver did not match any saved receiver and there is no empty row for it. 951 // Increment total counter to indicate polymorphic case. 952 intptr_t* count_p = (intptr_t*)(((byte*)(data)) + in_bytes(CounterData::count_offset())); 953 *count_p += DataLayout::counter_increment; 954 } 955 JRT_END 956 957 //------------------------------------------------------------------------------------- 958 // register policy 959 960 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) { 961 assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register"); 962 switch (register_save_policy[reg]) { 963 case 'C': return false; //SOC 964 case 'E': return true ; //SOE 965 case 'N': return false; //NS 966 case 'A': return false; //AS 967 } 968 ShouldNotReachHere(); 969 return false; 970 } 971 972 //----------------------------------------------------------------------- 973 // Exceptions 974 // 975 976 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) PRODUCT_RETURN; 977 978 // The method is an entry that is always called by a C++ method not 979 // directly from compiled code. Compiled code will call the C++ method following. 980 // We can't allow async exception to be installed during exception processing. 981 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm)) 982 983 // Do not confuse exception_oop with pending_exception. The exception_oop 984 // is only used to pass arguments into the method. Not for general 985 // exception handling. DO NOT CHANGE IT to use pending_exception, since 986 // the runtime stubs checks this on exit. 987 assert(thread->exception_oop() != NULL, "exception oop is found"); 988 address handler_address = NULL; 989 990 Handle exception(thread, thread->exception_oop()); 991 992 if (TraceExceptions) { 993 trace_exception(exception(), thread->exception_pc(), ""); 994 } 995 // for AbortVMOnException flag 996 NOT_PRODUCT(Exceptions::debug_check_abort(exception)); 997 998 #ifdef ASSERT 999 if (!(exception->is_a(SystemDictionary::Throwable_klass()))) { 1000 // should throw an exception here 1001 ShouldNotReachHere(); 1002 } 1003 #endif 1004 1005 1006 // new exception handling: this method is entered only from adapters 1007 // exceptions from compiled java methods are handled in compiled code 1008 // using rethrow node 1009 1010 address pc = thread->exception_pc(); 1011 nm = CodeCache::find_nmethod(pc); 1012 assert(nm != NULL, "No NMethod found"); 1013 if (nm->is_native_method()) { 1014 fatal("Native method should not have path to exception handling"); 1015 } else { 1016 // we are switching to old paradigm: search for exception handler in caller_frame 1017 // instead in exception handler of caller_frame.sender() 1018 1019 if (JvmtiExport::can_post_on_exceptions()) { 1020 // "Full-speed catching" is not necessary here, 1021 // since we're notifying the VM on every catch. 1022 // Force deoptimization and the rest of the lookup 1023 // will be fine. 1024 deoptimize_caller_frame(thread); 1025 } 1026 1027 // Check the stack guard pages. If enabled, look for handler in this frame; 1028 // otherwise, forcibly unwind the frame. 1029 // 1030 // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate. 1031 bool force_unwind = !thread->reguard_stack(); 1032 bool deopting = false; 1033 if (nm->is_deopt_pc(pc)) { 1034 deopting = true; 1035 RegisterMap map(thread, false); 1036 frame deoptee = thread->last_frame().sender(&map); 1037 assert(deoptee.is_deoptimized_frame(), "must be deopted"); 1038 // Adjust the pc back to the original throwing pc 1039 pc = deoptee.pc(); 1040 } 1041 1042 // If we are forcing an unwind because of stack overflow then deopt is 1043 // irrelevant since we are throwing the frame away anyway. 1044 1045 if (deopting && !force_unwind) { 1046 handler_address = SharedRuntime::deopt_blob()->unpack_with_exception(); 1047 } else { 1048 1049 handler_address = 1050 force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc); 1051 1052 if (handler_address == NULL) { 1053 Handle original_exception(thread, exception()); 1054 handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true); 1055 assert (handler_address != NULL, "must have compiled handler"); 1056 // Update the exception cache only when the unwind was not forced 1057 // and there didn't happen another exception during the computation of the 1058 // compiled exception handler. 1059 if (!force_unwind && original_exception() == exception()) { 1060 nm->add_handler_for_exception_and_pc(exception,pc,handler_address); 1061 } 1062 } else { 1063 assert(handler_address == SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true), "Must be the same"); 1064 } 1065 } 1066 1067 thread->set_exception_pc(pc); 1068 thread->set_exception_handler_pc(handler_address); 1069 1070 // Check if the exception PC is a MethodHandle call site. 1071 thread->set_is_method_handle_return(nm->is_method_handle_return(pc)); 1072 } 1073 1074 // Restore correct return pc. Was saved above. 1075 thread->set_exception_oop(exception()); 1076 return handler_address; 1077 1078 JRT_END 1079 1080 // We are entering here from exception_blob 1081 // If there is a compiled exception handler in this method, we will continue there; 1082 // otherwise we will unwind the stack and continue at the caller of top frame method 1083 // Note we enter without the usual JRT wrapper. We will call a helper routine that 1084 // will do the normal VM entry. We do it this way so that we can see if the nmethod 1085 // we looked up the handler for has been deoptimized in the meantime. If it has been 1086 // we must not use the handler and instead return the deopt blob. 1087 address OptoRuntime::handle_exception_C(JavaThread* thread) { 1088 // 1089 // We are in Java not VM and in debug mode we have a NoHandleMark 1090 // 1091 #ifndef PRODUCT 1092 SharedRuntime::_find_handler_ctr++; // find exception handler 1093 #endif 1094 debug_only(NoHandleMark __hm;) 1095 nmethod* nm = NULL; 1096 address handler_address = NULL; 1097 { 1098 // Enter the VM 1099 1100 ResetNoHandleMark rnhm; 1101 handler_address = handle_exception_C_helper(thread, nm); 1102 } 1103 1104 // Back in java: Use no oops, DON'T safepoint 1105 1106 // Now check to see if the handler we are returning is in a now 1107 // deoptimized frame 1108 1109 if (nm != NULL) { 1110 RegisterMap map(thread, false); 1111 frame caller = thread->last_frame().sender(&map); 1112 #ifdef ASSERT 1113 assert(caller.is_compiled_frame(), "must be"); 1114 #endif // ASSERT 1115 if (caller.is_deoptimized_frame()) { 1116 handler_address = SharedRuntime::deopt_blob()->unpack_with_exception(); 1117 } 1118 } 1119 return handler_address; 1120 } 1121 1122 //------------------------------rethrow---------------------------------------- 1123 // We get here after compiled code has executed a 'RethrowNode'. The callee 1124 // is either throwing or rethrowing an exception. The callee-save registers 1125 // have been restored, synchronized objects have been unlocked and the callee 1126 // stack frame has been removed. The return address was passed in. 1127 // Exception oop is passed as the 1st argument. This routine is then called 1128 // from the stub. On exit, we know where to jump in the caller's code. 1129 // After this C code exits, the stub will pop his frame and end in a jump 1130 // (instead of a return). We enter the caller's default handler. 1131 // 1132 // This must be JRT_LEAF: 1133 // - caller will not change its state as we cannot block on exit, 1134 // therefore raw_exception_handler_for_return_address is all it takes 1135 // to handle deoptimized blobs 1136 // 1137 // However, there needs to be a safepoint check in the middle! So compiled 1138 // safepoints are completely watertight. 1139 // 1140 // Thus, it cannot be a leaf since it contains the No_GC_Verifier. 1141 // 1142 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE* 1143 // 1144 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) { 1145 #ifndef PRODUCT 1146 SharedRuntime::_rethrow_ctr++; // count rethrows 1147 #endif 1148 assert (exception != NULL, "should have thrown a NULLPointerException"); 1149 #ifdef ASSERT 1150 if (!(exception->is_a(SystemDictionary::Throwable_klass()))) { 1151 // should throw an exception here 1152 ShouldNotReachHere(); 1153 } 1154 #endif 1155 1156 thread->set_vm_result(exception); 1157 // Frame not compiled (handles deoptimization blob) 1158 return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc); 1159 } 1160 1161 1162 const TypeFunc *OptoRuntime::rethrow_Type() { 1163 // create input type (domain) 1164 const Type **fields = TypeTuple::fields(1); 1165 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop 1166 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields); 1167 1168 // create result type (range) 1169 fields = TypeTuple::fields(1); 1170 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop 1171 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 1172 1173 return TypeFunc::make(domain, range); 1174 } 1175 1176 1177 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) { 1178 // Deoptimize the caller before continuing, as the compiled 1179 // exception handler table may not be valid. 1180 if (!StressCompiledExceptionHandlers && doit) { 1181 deoptimize_caller_frame(thread); 1182 } 1183 } 1184 1185 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) { 1186 // Called from within the owner thread, so no need for safepoint 1187 RegisterMap reg_map(thread); 1188 frame stub_frame = thread->last_frame(); 1189 assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check"); 1190 frame caller_frame = stub_frame.sender(®_map); 1191 1192 // Deoptimize the caller frame. 1193 Deoptimization::deoptimize_frame(thread, caller_frame.id()); 1194 } 1195 1196 1197 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) { 1198 // Called from within the owner thread, so no need for safepoint 1199 RegisterMap reg_map(thread); 1200 frame stub_frame = thread->last_frame(); 1201 assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check"); 1202 frame caller_frame = stub_frame.sender(®_map); 1203 return caller_frame.is_deoptimized_frame(); 1204 } 1205 1206 1207 const TypeFunc *OptoRuntime::register_finalizer_Type() { 1208 // create input type (domain) 1209 const Type **fields = TypeTuple::fields(1); 1210 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // oop; Receiver 1211 // // The JavaThread* is passed to each routine as the last argument 1212 // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // JavaThread *; Executing thread 1213 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields); 1214 1215 // create result type (range) 1216 fields = TypeTuple::fields(0); 1217 1218 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 1219 1220 return TypeFunc::make(domain,range); 1221 } 1222 1223 1224 //----------------------------------------------------------------------------- 1225 // Dtrace support. entry and exit probes have the same signature 1226 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() { 1227 // create input type (domain) 1228 const Type **fields = TypeTuple::fields(2); 1229 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage 1230 fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM; // Method*; Method we are entering 1231 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); 1232 1233 // create result type (range) 1234 fields = TypeTuple::fields(0); 1235 1236 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 1237 1238 return TypeFunc::make(domain,range); 1239 } 1240 1241 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() { 1242 // create input type (domain) 1243 const Type **fields = TypeTuple::fields(2); 1244 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage 1245 fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL; // oop; newly allocated object 1246 1247 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); 1248 1249 // create result type (range) 1250 fields = TypeTuple::fields(0); 1251 1252 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 1253 1254 return TypeFunc::make(domain,range); 1255 } 1256 1257 1258 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread)) 1259 assert(obj->is_oop(), "must be a valid oop"); 1260 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise"); 1261 InstanceKlass::register_finalizer(instanceOop(obj), CHECK); 1262 JRT_END 1263 1264 //----------------------------------------------------------------------------- 1265 1266 NamedCounter * volatile OptoRuntime::_named_counters = NULL; 1267 1268 // 1269 // dump the collected NamedCounters. 1270 // 1271 void OptoRuntime::print_named_counters() { 1272 int total_lock_count = 0; 1273 int eliminated_lock_count = 0; 1274 1275 NamedCounter* c = _named_counters; 1276 while (c) { 1277 if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) { 1278 int count = c->count(); 1279 if (count > 0) { 1280 bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter; 1281 if (Verbose) { 1282 tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : ""); 1283 } 1284 total_lock_count += count; 1285 if (eliminated) { 1286 eliminated_lock_count += count; 1287 } 1288 } 1289 } else if (c->tag() == NamedCounter::BiasedLockingCounter) { 1290 BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters(); 1291 if (blc->nonzero()) { 1292 tty->print_cr("%s", c->name()); 1293 blc->print_on(tty); 1294 } 1295 } 1296 c = c->next(); 1297 } 1298 if (total_lock_count > 0) { 1299 tty->print_cr("dynamic locks: %d", total_lock_count); 1300 if (eliminated_lock_count) { 1301 tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count, 1302 (int)(eliminated_lock_count * 100.0 / total_lock_count)); 1303 } 1304 } 1305 } 1306 1307 // 1308 // Allocate a new NamedCounter. The JVMState is used to generate the 1309 // name which consists of method@line for the inlining tree. 1310 // 1311 1312 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) { 1313 int max_depth = youngest_jvms->depth(); 1314 1315 // Visit scopes from youngest to oldest. 1316 bool first = true; 1317 stringStream st; 1318 for (int depth = max_depth; depth >= 1; depth--) { 1319 JVMState* jvms = youngest_jvms->of_depth(depth); 1320 ciMethod* m = jvms->has_method() ? jvms->method() : NULL; 1321 if (!first) { 1322 st.print(" "); 1323 } else { 1324 first = false; 1325 } 1326 int bci = jvms->bci(); 1327 if (bci < 0) bci = 0; 1328 st.print("%s.%s@%d", m->holder()->name()->as_utf8(), m->name()->as_utf8(), bci); 1329 // To print linenumbers instead of bci use: m->line_number_from_bci(bci) 1330 } 1331 NamedCounter* c; 1332 if (tag == NamedCounter::BiasedLockingCounter) { 1333 c = new BiasedLockingNamedCounter(strdup(st.as_string())); 1334 } else { 1335 c = new NamedCounter(strdup(st.as_string()), tag); 1336 } 1337 1338 // atomically add the new counter to the head of the list. We only 1339 // add counters so this is safe. 1340 NamedCounter* head; 1341 do { 1342 head = _named_counters; 1343 c->set_next(head); 1344 } while (Atomic::cmpxchg_ptr(c, &_named_counters, head) != head); 1345 return c; 1346 } 1347 1348 //----------------------------------------------------------------------------- 1349 // Non-product code 1350 #ifndef PRODUCT 1351 1352 int trace_exception_counter = 0; 1353 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) { 1354 ttyLocker ttyl; 1355 trace_exception_counter++; 1356 tty->print("%d [Exception (%s): ", trace_exception_counter, msg); 1357 exception_oop->print_value(); 1358 tty->print(" in "); 1359 CodeBlob* blob = CodeCache::find_blob(exception_pc); 1360 if (blob->is_nmethod()) { 1361 ((nmethod*)blob)->method()->print_value(); 1362 } else if (blob->is_runtime_stub()) { 1363 tty->print("<runtime-stub>"); 1364 } else { 1365 tty->print("<unknown>"); 1366 } 1367 tty->print(" at " INTPTR_FORMAT, exception_pc); 1368 tty->print_cr("]"); 1369 } 1370 1371 #endif // PRODUCT 1372 1373 1374 # ifdef ENABLE_ZAP_DEAD_LOCALS 1375 // Called from call sites in compiled code with oop maps (actually safepoints) 1376 // Zaps dead locals in first java frame. 1377 // Is entry because may need to lock to generate oop maps 1378 // Currently, only used for compiler frames, but someday may be used 1379 // for interpreter frames, too. 1380 1381 int OptoRuntime::ZapDeadCompiledLocals_count = 0; 1382 1383 // avoid pointers to member funcs with these helpers 1384 static bool is_java_frame( frame* f) { return f->is_java_frame(); } 1385 static bool is_native_frame(frame* f) { return f->is_native_frame(); } 1386 1387 1388 void OptoRuntime::zap_dead_java_or_native_locals(JavaThread* thread, 1389 bool (*is_this_the_right_frame_to_zap)(frame*)) { 1390 assert(JavaThread::current() == thread, "is this needed?"); 1391 1392 if ( !ZapDeadCompiledLocals ) return; 1393 1394 bool skip = false; 1395 1396 if ( ZapDeadCompiledLocalsFirst == 0 ) ; // nothing special 1397 else if ( ZapDeadCompiledLocalsFirst > ZapDeadCompiledLocals_count ) skip = true; 1398 else if ( ZapDeadCompiledLocalsFirst == ZapDeadCompiledLocals_count ) 1399 warning("starting zapping after skipping"); 1400 1401 if ( ZapDeadCompiledLocalsLast == -1 ) ; // nothing special 1402 else if ( ZapDeadCompiledLocalsLast < ZapDeadCompiledLocals_count ) skip = true; 1403 else if ( ZapDeadCompiledLocalsLast == ZapDeadCompiledLocals_count ) 1404 warning("about to zap last zap"); 1405 1406 ++ZapDeadCompiledLocals_count; // counts skipped zaps, too 1407 1408 if ( skip ) return; 1409 1410 // find java frame and zap it 1411 1412 for (StackFrameStream sfs(thread); !sfs.is_done(); sfs.next()) { 1413 if (is_this_the_right_frame_to_zap(sfs.current()) ) { 1414 sfs.current()->zap_dead_locals(thread, sfs.register_map()); 1415 return; 1416 } 1417 } 1418 warning("no frame found to zap in zap_dead_Java_locals_C"); 1419 } 1420 1421 JRT_LEAF(void, OptoRuntime::zap_dead_Java_locals_C(JavaThread* thread)) 1422 zap_dead_java_or_native_locals(thread, is_java_frame); 1423 JRT_END 1424 1425 // The following does not work because for one thing, the 1426 // thread state is wrong; it expects java, but it is native. 1427 // Also, the invariants in a native stub are different and 1428 // I'm not sure it is safe to have a MachCalRuntimeDirectNode 1429 // in there. 1430 // So for now, we do not zap in native stubs. 1431 1432 JRT_LEAF(void, OptoRuntime::zap_dead_native_locals_C(JavaThread* thread)) 1433 zap_dead_java_or_native_locals(thread, is_native_frame); 1434 JRT_END 1435 1436 # endif