1 /*
   2  * Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "code/compiledIC.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/nmethod.hpp"
  31 #include "code/pcDesc.hpp"
  32 #include "code/scopeDesc.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/compilerOracle.hpp"
  36 #include "compiler/oopMap.hpp"
  37 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
  38 #include "gc_implementation/g1/heapRegion.hpp"
  39 #include "gc_interface/collectedHeap.hpp"
  40 #include "interpreter/bytecode.hpp"
  41 #include "interpreter/interpreter.hpp"
  42 #include "interpreter/linkResolver.hpp"
  43 #include "memory/barrierSet.hpp"
  44 #include "memory/gcLocker.inline.hpp"
  45 #include "memory/oopFactory.hpp"
  46 #include "oops/objArrayKlass.hpp"
  47 #include "oops/oop.inline.hpp"
  48 #include "opto/addnode.hpp"
  49 #include "opto/callnode.hpp"
  50 #include "opto/cfgnode.hpp"
  51 #include "opto/connode.hpp"
  52 #include "opto/graphKit.hpp"
  53 #include "opto/machnode.hpp"
  54 #include "opto/matcher.hpp"
  55 #include "opto/memnode.hpp"
  56 #include "opto/mulnode.hpp"
  57 #include "opto/runtime.hpp"
  58 #include "opto/subnode.hpp"
  59 #include "runtime/fprofiler.hpp"
  60 #include "runtime/handles.inline.hpp"
  61 #include "runtime/interfaceSupport.hpp"
  62 #include "runtime/javaCalls.hpp"
  63 #include "runtime/sharedRuntime.hpp"
  64 #include "runtime/signature.hpp"
  65 #include "runtime/threadCritical.hpp"
  66 #include "runtime/vframe.hpp"
  67 #include "runtime/vframeArray.hpp"
  68 #include "runtime/vframe_hp.hpp"
  69 #include "utilities/copy.hpp"
  70 #include "utilities/preserveException.hpp"
  71 #ifdef TARGET_ARCH_MODEL_x86_32
  72 # include "adfiles/ad_x86_32.hpp"
  73 #endif
  74 #ifdef TARGET_ARCH_MODEL_x86_64
  75 # include "adfiles/ad_x86_64.hpp"
  76 #endif
  77 #ifdef TARGET_ARCH_MODEL_sparc
  78 # include "adfiles/ad_sparc.hpp"
  79 #endif
  80 #ifdef TARGET_ARCH_MODEL_zero
  81 # include "adfiles/ad_zero.hpp"
  82 #endif
  83 #ifdef TARGET_ARCH_MODEL_arm
  84 # include "adfiles/ad_arm.hpp"
  85 #endif
  86 #ifdef TARGET_ARCH_MODEL_ppc_32
  87 # include "adfiles/ad_ppc_32.hpp"
  88 #endif
  89 #ifdef TARGET_ARCH_MODEL_ppc_64
  90 # include "adfiles/ad_ppc_64.hpp"
  91 #endif
  92 
  93 
  94 // For debugging purposes:
  95 //  To force FullGCALot inside a runtime function, add the following two lines
  96 //
  97 //  Universe::release_fullgc_alot_dummy();
  98 //  MarkSweep::invoke(0, "Debugging");
  99 //
 100 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
 101 
 102 
 103 
 104 
 105 // Compiled code entry points
 106 address OptoRuntime::_new_instance_Java                           = NULL;
 107 address OptoRuntime::_new_array_Java                              = NULL;
 108 address OptoRuntime::_new_array_nozero_Java                       = NULL;
 109 address OptoRuntime::_multianewarray2_Java                        = NULL;
 110 address OptoRuntime::_multianewarray3_Java                        = NULL;
 111 address OptoRuntime::_multianewarray4_Java                        = NULL;
 112 address OptoRuntime::_multianewarray5_Java                        = NULL;
 113 address OptoRuntime::_multianewarrayN_Java                        = NULL;
 114 address OptoRuntime::_g1_wb_pre_Java                              = NULL;
 115 address OptoRuntime::_g1_wb_post_Java                             = NULL;
 116 address OptoRuntime::_vtable_must_compile_Java                    = NULL;
 117 address OptoRuntime::_complete_monitor_locking_Java               = NULL;
 118 address OptoRuntime::_rethrow_Java                                = NULL;
 119 
 120 address OptoRuntime::_slow_arraycopy_Java                         = NULL;
 121 address OptoRuntime::_register_finalizer_Java                     = NULL;
 122 
 123 # ifdef ENABLE_ZAP_DEAD_LOCALS
 124 address OptoRuntime::_zap_dead_Java_locals_Java                   = NULL;
 125 address OptoRuntime::_zap_dead_native_locals_Java                 = NULL;
 126 # endif
 127 
 128 ExceptionBlob* OptoRuntime::_exception_blob;
 129 
 130 // This should be called in an assertion at the start of OptoRuntime routines
 131 // which are entered from compiled code (all of them)
 132 #ifdef ASSERT
 133 static bool check_compiled_frame(JavaThread* thread) {
 134   assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
 135   RegisterMap map(thread, false);
 136   frame caller = thread->last_frame().sender(&map);
 137   assert(caller.is_compiled_frame(), "not being called from compiled like code");
 138   return true;
 139 }
 140 #endif // ASSERT
 141 
 142 
 143 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \
 144   var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc)
 145 
 146 void OptoRuntime::generate(ciEnv* env) {
 147 
 148   generate_exception_blob();
 149 
 150   // Note: tls: Means fetching the return oop out of the thread-local storage
 151   //
 152   //   variable/name                       type-function-gen              , runtime method                  ,fncy_jp, tls,save_args,retpc
 153   // -------------------------------------------------------------------------------------------------------------------------------
 154   gen(env, _new_instance_Java              , new_instance_Type            , new_instance_C                  ,    0 , true , false, false);
 155   gen(env, _new_array_Java                 , new_array_Type               , new_array_C                     ,    0 , true , false, false);
 156   gen(env, _new_array_nozero_Java          , new_array_Type               , new_array_nozero_C              ,    0 , true , false, false);
 157   gen(env, _multianewarray2_Java           , multianewarray2_Type         , multianewarray2_C               ,    0 , true , false, false);
 158   gen(env, _multianewarray3_Java           , multianewarray3_Type         , multianewarray3_C               ,    0 , true , false, false);
 159   gen(env, _multianewarray4_Java           , multianewarray4_Type         , multianewarray4_C               ,    0 , true , false, false);
 160   gen(env, _multianewarray5_Java           , multianewarray5_Type         , multianewarray5_C               ,    0 , true , false, false);
 161   gen(env, _multianewarrayN_Java           , multianewarrayN_Type         , multianewarrayN_C               ,    0 , true , false, false);
 162   gen(env, _g1_wb_pre_Java                 , g1_wb_pre_Type               , SharedRuntime::g1_wb_pre        ,    0 , false, false, false);
 163   gen(env, _g1_wb_post_Java                , g1_wb_post_Type              , SharedRuntime::g1_wb_post       ,    0 , false, false, false);
 164   gen(env, _complete_monitor_locking_Java  , complete_monitor_enter_Type  , SharedRuntime::complete_monitor_locking_C      ,    0 , false, false, false);
 165   gen(env, _rethrow_Java                   , rethrow_Type                 , rethrow_C                       ,    2 , true , false, true );
 166 
 167   gen(env, _slow_arraycopy_Java            , slow_arraycopy_Type          , SharedRuntime::slow_arraycopy_C ,    0 , false, false, false);
 168   gen(env, _register_finalizer_Java        , register_finalizer_Type      , register_finalizer              ,    0 , false, false, false);
 169 
 170 # ifdef ENABLE_ZAP_DEAD_LOCALS
 171   gen(env, _zap_dead_Java_locals_Java      , zap_dead_locals_Type         , zap_dead_Java_locals_C          ,    0 , false, true , false );
 172   gen(env, _zap_dead_native_locals_Java    , zap_dead_locals_Type         , zap_dead_native_locals_C        ,    0 , false, true , false );
 173 # endif
 174 
 175 }
 176 
 177 #undef gen
 178 
 179 
 180 // Helper method to do generation of RunTimeStub's
 181 address OptoRuntime::generate_stub( ciEnv* env,
 182                                     TypeFunc_generator gen, address C_function,
 183                                     const char *name, int is_fancy_jump,
 184                                     bool pass_tls,
 185                                     bool save_argument_registers,
 186                                     bool return_pc ) {
 187   ResourceMark rm;
 188   Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc );
 189   return  C.stub_entry_point();
 190 }
 191 
 192 const char* OptoRuntime::stub_name(address entry) {
 193 #ifndef PRODUCT
 194   CodeBlob* cb = CodeCache::find_blob(entry);
 195   RuntimeStub* rs =(RuntimeStub *)cb;
 196   assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub");
 197   return rs->name();
 198 #else
 199   // Fast implementation for product mode (maybe it should be inlined too)
 200   return "runtime stub";
 201 #endif
 202 }
 203 
 204 
 205 //=============================================================================
 206 // Opto compiler runtime routines
 207 //=============================================================================
 208 
 209 
 210 //=============================allocation======================================
 211 // We failed the fast-path allocation.  Now we need to do a scavenge or GC
 212 // and try allocation again.
 213 
 214 void OptoRuntime::new_store_pre_barrier(JavaThread* thread) {
 215   // After any safepoint, just before going back to compiled code,
 216   // we inform the GC that we will be doing initializing writes to
 217   // this object in the future without emitting card-marks, so
 218   // GC may take any compensating steps.
 219   // NOTE: Keep this code consistent with GraphKit::store_barrier.
 220 
 221   oop new_obj = thread->vm_result();
 222   if (new_obj == NULL)  return;
 223 
 224   assert(Universe::heap()->can_elide_tlab_store_barriers(),
 225          "compiler must check this first");
 226   // GC may decide to give back a safer copy of new_obj.
 227   new_obj = Universe::heap()->new_store_pre_barrier(thread, new_obj);
 228   thread->set_vm_result(new_obj);
 229 }
 230 
 231 // object allocation
 232 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* thread))
 233   JRT_BLOCK;
 234 #ifndef PRODUCT
 235   SharedRuntime::_new_instance_ctr++;         // new instance requires GC
 236 #endif
 237   assert(check_compiled_frame(thread), "incorrect caller");
 238 
 239   // These checks are cheap to make and support reflective allocation.
 240   int lh = klass->layout_helper();
 241   if (Klass::layout_helper_needs_slow_path(lh)
 242       || !InstanceKlass::cast(klass)->is_initialized()) {
 243     KlassHandle kh(THREAD, klass);
 244     kh->check_valid_for_instantiation(false, THREAD);
 245     if (!HAS_PENDING_EXCEPTION) {
 246       InstanceKlass::cast(kh())->initialize(THREAD);
 247     }
 248     if (!HAS_PENDING_EXCEPTION) {
 249       klass = kh();
 250     } else {
 251       klass = NULL;
 252     }
 253   }
 254 
 255   if (klass != NULL) {
 256     // Scavenge and allocate an instance.
 257     oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
 258     thread->set_vm_result(result);
 259 
 260     // Pass oops back through thread local storage.  Our apparent type to Java
 261     // is that we return an oop, but we can block on exit from this routine and
 262     // a GC can trash the oop in C's return register.  The generated stub will
 263     // fetch the oop from TLS after any possible GC.
 264   }
 265 
 266   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 267   JRT_BLOCK_END;
 268 
 269   if (GraphKit::use_ReduceInitialCardMarks()) {
 270     // inform GC that we won't do card marks for initializing writes.
 271     new_store_pre_barrier(thread);
 272   }
 273 JRT_END
 274 
 275 
 276 // array allocation
 277 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread *thread))
 278   JRT_BLOCK;
 279 #ifndef PRODUCT
 280   SharedRuntime::_new_array_ctr++;            // new array requires GC
 281 #endif
 282   assert(check_compiled_frame(thread), "incorrect caller");
 283 
 284   // Scavenge and allocate an instance.
 285   oop result;
 286 
 287   if (array_type->oop_is_typeArray()) {
 288     // The oopFactory likes to work with the element type.
 289     // (We could bypass the oopFactory, since it doesn't add much value.)
 290     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 291     result = oopFactory::new_typeArray(elem_type, len, THREAD);
 292   } else {
 293     // Although the oopFactory likes to work with the elem_type,
 294     // the compiler prefers the array_type, since it must already have
 295     // that latter value in hand for the fast path.
 296     Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass();
 297     result = oopFactory::new_objArray(elem_type, len, THREAD);
 298   }
 299 
 300   // Pass oops back through thread local storage.  Our apparent type to Java
 301   // is that we return an oop, but we can block on exit from this routine and
 302   // a GC can trash the oop in C's return register.  The generated stub will
 303   // fetch the oop from TLS after any possible GC.
 304   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 305   thread->set_vm_result(result);
 306   JRT_BLOCK_END;
 307 
 308   if (GraphKit::use_ReduceInitialCardMarks()) {
 309     // inform GC that we won't do card marks for initializing writes.
 310     new_store_pre_barrier(thread);
 311   }
 312 JRT_END
 313 
 314 // array allocation without zeroing
 315 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread *thread))
 316   JRT_BLOCK;
 317 #ifndef PRODUCT
 318   SharedRuntime::_new_array_ctr++;            // new array requires GC
 319 #endif
 320   assert(check_compiled_frame(thread), "incorrect caller");
 321 
 322   // Scavenge and allocate an instance.
 323   oop result;
 324 
 325   assert(array_type->oop_is_typeArray(), "should be called only for type array");
 326   // The oopFactory likes to work with the element type.
 327   BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 328   result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
 329 
 330   // Pass oops back through thread local storage.  Our apparent type to Java
 331   // is that we return an oop, but we can block on exit from this routine and
 332   // a GC can trash the oop in C's return register.  The generated stub will
 333   // fetch the oop from TLS after any possible GC.
 334   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 335   thread->set_vm_result(result);
 336   JRT_BLOCK_END;
 337 
 338   if (GraphKit::use_ReduceInitialCardMarks()) {
 339     // inform GC that we won't do card marks for initializing writes.
 340     new_store_pre_barrier(thread);
 341   }
 342 
 343   oop result = thread->vm_result();
 344   if ((len > 0) && (result != NULL) &&
 345       is_deoptimized_caller_frame(thread)) {
 346     // Zero array here if the caller is deoptimized.
 347     int size = ((typeArrayOop)result)->object_size();
 348     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 349     const size_t hs = arrayOopDesc::header_size(elem_type);
 350     // Align to next 8 bytes to avoid trashing arrays's length.
 351     const size_t aligned_hs = align_object_offset(hs);
 352     HeapWord* obj = (HeapWord*)result;
 353     if (aligned_hs > hs) {
 354       Copy::zero_to_words(obj+hs, aligned_hs-hs);
 355     }
 356     // Optimized zeroing.
 357     Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
 358   }
 359 
 360 JRT_END
 361 
 362 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
 363 
 364 // multianewarray for 2 dimensions
 365 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread *thread))
 366 #ifndef PRODUCT
 367   SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
 368 #endif
 369   assert(check_compiled_frame(thread), "incorrect caller");
 370   assert(elem_type->is_klass(), "not a class");
 371   jint dims[2];
 372   dims[0] = len1;
 373   dims[1] = len2;
 374   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
 375   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 376   thread->set_vm_result(obj);
 377 JRT_END
 378 
 379 // multianewarray for 3 dimensions
 380 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread *thread))
 381 #ifndef PRODUCT
 382   SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
 383 #endif
 384   assert(check_compiled_frame(thread), "incorrect caller");
 385   assert(elem_type->is_klass(), "not a class");
 386   jint dims[3];
 387   dims[0] = len1;
 388   dims[1] = len2;
 389   dims[2] = len3;
 390   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
 391   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 392   thread->set_vm_result(obj);
 393 JRT_END
 394 
 395 // multianewarray for 4 dimensions
 396 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread))
 397 #ifndef PRODUCT
 398   SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
 399 #endif
 400   assert(check_compiled_frame(thread), "incorrect caller");
 401   assert(elem_type->is_klass(), "not a class");
 402   jint dims[4];
 403   dims[0] = len1;
 404   dims[1] = len2;
 405   dims[2] = len3;
 406   dims[3] = len4;
 407   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
 408   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 409   thread->set_vm_result(obj);
 410 JRT_END
 411 
 412 // multianewarray for 5 dimensions
 413 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread))
 414 #ifndef PRODUCT
 415   SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
 416 #endif
 417   assert(check_compiled_frame(thread), "incorrect caller");
 418   assert(elem_type->is_klass(), "not a class");
 419   jint dims[5];
 420   dims[0] = len1;
 421   dims[1] = len2;
 422   dims[2] = len3;
 423   dims[3] = len4;
 424   dims[4] = len5;
 425   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
 426   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 427   thread->set_vm_result(obj);
 428 JRT_END
 429 
 430 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread *thread))
 431   assert(check_compiled_frame(thread), "incorrect caller");
 432   assert(elem_type->is_klass(), "not a class");
 433   assert(oop(dims)->is_typeArray(), "not an array");
 434 
 435   ResourceMark rm;
 436   jint len = dims->length();
 437   assert(len > 0, "Dimensions array should contain data");
 438   jint *j_dims = typeArrayOop(dims)->int_at_addr(0);
 439   jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
 440   Copy::conjoint_jints_atomic(j_dims, c_dims, len);
 441 
 442   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
 443   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 444   thread->set_vm_result(obj);
 445 JRT_END
 446 
 447 
 448 const TypeFunc *OptoRuntime::new_instance_Type() {
 449   // create input type (domain)
 450   const Type **fields = TypeTuple::fields(1);
 451   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 452   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 453 
 454   // create result type (range)
 455   fields = TypeTuple::fields(1);
 456   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 457 
 458   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 459 
 460   return TypeFunc::make(domain, range);
 461 }
 462 
 463 
 464 const TypeFunc *OptoRuntime::athrow_Type() {
 465   // create input type (domain)
 466   const Type **fields = TypeTuple::fields(1);
 467   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 468   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 469 
 470   // create result type (range)
 471   fields = TypeTuple::fields(0);
 472 
 473   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 474 
 475   return TypeFunc::make(domain, range);
 476 }
 477 
 478 
 479 const TypeFunc *OptoRuntime::new_array_Type() {
 480   // create input type (domain)
 481   const Type **fields = TypeTuple::fields(2);
 482   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 483   fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
 484   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 485 
 486   // create result type (range)
 487   fields = TypeTuple::fields(1);
 488   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 489 
 490   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 491 
 492   return TypeFunc::make(domain, range);
 493 }
 494 
 495 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
 496   // create input type (domain)
 497   const int nargs = ndim + 1;
 498   const Type **fields = TypeTuple::fields(nargs);
 499   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 500   for( int i = 1; i < nargs; i++ )
 501     fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
 502   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
 503 
 504   // create result type (range)
 505   fields = TypeTuple::fields(1);
 506   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 507   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 508 
 509   return TypeFunc::make(domain, range);
 510 }
 511 
 512 const TypeFunc *OptoRuntime::multianewarray2_Type() {
 513   return multianewarray_Type(2);
 514 }
 515 
 516 const TypeFunc *OptoRuntime::multianewarray3_Type() {
 517   return multianewarray_Type(3);
 518 }
 519 
 520 const TypeFunc *OptoRuntime::multianewarray4_Type() {
 521   return multianewarray_Type(4);
 522 }
 523 
 524 const TypeFunc *OptoRuntime::multianewarray5_Type() {
 525   return multianewarray_Type(5);
 526 }
 527 
 528 const TypeFunc *OptoRuntime::multianewarrayN_Type() {
 529   // create input type (domain)
 530   const Type **fields = TypeTuple::fields(2);
 531   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 532   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;   // array of dim sizes
 533   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 534 
 535   // create result type (range)
 536   fields = TypeTuple::fields(1);
 537   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 538   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 539 
 540   return TypeFunc::make(domain, range);
 541 }
 542 
 543 const TypeFunc *OptoRuntime::g1_wb_pre_Type() {
 544   const Type **fields = TypeTuple::fields(2);
 545   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
 546   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
 547   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 548 
 549   // create result type (range)
 550   fields = TypeTuple::fields(0);
 551   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 552 
 553   return TypeFunc::make(domain, range);
 554 }
 555 
 556 const TypeFunc *OptoRuntime::g1_wb_post_Type() {
 557 
 558   const Type **fields = TypeTuple::fields(2);
 559   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL;  // Card addr
 560   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // thread
 561   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 562 
 563   // create result type (range)
 564   fields = TypeTuple::fields(0);
 565   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 566 
 567   return TypeFunc::make(domain, range);
 568 }
 569 
 570 const TypeFunc *OptoRuntime::uncommon_trap_Type() {
 571   // create input type (domain)
 572   const Type **fields = TypeTuple::fields(1);
 573   // Symbol* name of class to be loaded
 574   fields[TypeFunc::Parms+0] = TypeInt::INT;
 575   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 576 
 577   // create result type (range)
 578   fields = TypeTuple::fields(0);
 579   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 580 
 581   return TypeFunc::make(domain, range);
 582 }
 583 
 584 # ifdef ENABLE_ZAP_DEAD_LOCALS
 585 // Type used for stub generation for zap_dead_locals.
 586 // No inputs or outputs
 587 const TypeFunc *OptoRuntime::zap_dead_locals_Type() {
 588   // create input type (domain)
 589   const Type **fields = TypeTuple::fields(0);
 590   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms,fields);
 591 
 592   // create result type (range)
 593   fields = TypeTuple::fields(0);
 594   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms,fields);
 595 
 596   return TypeFunc::make(domain,range);
 597 }
 598 # endif
 599 
 600 
 601 //-----------------------------------------------------------------------------
 602 // Monitor Handling
 603 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
 604   // create input type (domain)
 605   const Type **fields = TypeTuple::fields(2);
 606   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 607   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
 608   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 609 
 610   // create result type (range)
 611   fields = TypeTuple::fields(0);
 612 
 613   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 614 
 615   return TypeFunc::make(domain,range);
 616 }
 617 
 618 
 619 //-----------------------------------------------------------------------------
 620 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
 621   // create input type (domain)
 622   const Type **fields = TypeTuple::fields(2);
 623   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 624   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
 625   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 626 
 627   // create result type (range)
 628   fields = TypeTuple::fields(0);
 629 
 630   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 631 
 632   return TypeFunc::make(domain,range);
 633 }
 634 
 635 const TypeFunc* OptoRuntime::flush_windows_Type() {
 636   // create input type (domain)
 637   const Type** fields = TypeTuple::fields(1);
 638   fields[TypeFunc::Parms+0] = NULL; // void
 639   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
 640 
 641   // create result type
 642   fields = TypeTuple::fields(1);
 643   fields[TypeFunc::Parms+0] = NULL; // void
 644   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 645 
 646   return TypeFunc::make(domain, range);
 647 }
 648 
 649 const TypeFunc* OptoRuntime::l2f_Type() {
 650   // create input type (domain)
 651   const Type **fields = TypeTuple::fields(2);
 652   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 653   fields[TypeFunc::Parms+1] = Type::HALF;
 654   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 655 
 656   // create result type (range)
 657   fields = TypeTuple::fields(1);
 658   fields[TypeFunc::Parms+0] = Type::FLOAT;
 659   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 660 
 661   return TypeFunc::make(domain, range);
 662 }
 663 
 664 const TypeFunc* OptoRuntime::modf_Type() {
 665   const Type **fields = TypeTuple::fields(2);
 666   fields[TypeFunc::Parms+0] = Type::FLOAT;
 667   fields[TypeFunc::Parms+1] = Type::FLOAT;
 668   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 669 
 670   // create result type (range)
 671   fields = TypeTuple::fields(1);
 672   fields[TypeFunc::Parms+0] = Type::FLOAT;
 673 
 674   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 675 
 676   return TypeFunc::make(domain, range);
 677 }
 678 
 679 const TypeFunc *OptoRuntime::Math_D_D_Type() {
 680   // create input type (domain)
 681   const Type **fields = TypeTuple::fields(2);
 682   // Symbol* name of class to be loaded
 683   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 684   fields[TypeFunc::Parms+1] = Type::HALF;
 685   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 686 
 687   // create result type (range)
 688   fields = TypeTuple::fields(2);
 689   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 690   fields[TypeFunc::Parms+1] = Type::HALF;
 691   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 692 
 693   return TypeFunc::make(domain, range);
 694 }
 695 
 696 const TypeFunc* OptoRuntime::Math_DD_D_Type() {
 697   const Type **fields = TypeTuple::fields(4);
 698   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 699   fields[TypeFunc::Parms+1] = Type::HALF;
 700   fields[TypeFunc::Parms+2] = Type::DOUBLE;
 701   fields[TypeFunc::Parms+3] = Type::HALF;
 702   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
 703 
 704   // create result type (range)
 705   fields = TypeTuple::fields(2);
 706   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 707   fields[TypeFunc::Parms+1] = Type::HALF;
 708   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 709 
 710   return TypeFunc::make(domain, range);
 711 }
 712 
 713 //-------------- currentTimeMillis, currentTimeNanos, etc
 714 
 715 const TypeFunc* OptoRuntime::void_long_Type() {
 716   // create input type (domain)
 717   const Type **fields = TypeTuple::fields(0);
 718   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
 719 
 720   // create result type (range)
 721   fields = TypeTuple::fields(2);
 722   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 723   fields[TypeFunc::Parms+1] = Type::HALF;
 724   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 725 
 726   return TypeFunc::make(domain, range);
 727 }
 728 
 729 // arraycopy stub variations:
 730 enum ArrayCopyType {
 731   ac_fast,                      // void(ptr, ptr, size_t)
 732   ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
 733   ac_slow,                      // void(ptr, int, ptr, int, int)
 734   ac_generic                    //  int(ptr, int, ptr, int, int)
 735 };
 736 
 737 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
 738   // create input type (domain)
 739   int num_args      = (act == ac_fast ? 3 : 5);
 740   int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
 741   int argcnt = num_args;
 742   LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
 743   const Type** fields = TypeTuple::fields(argcnt);
 744   int argp = TypeFunc::Parms;
 745   fields[argp++] = TypePtr::NOTNULL;    // src
 746   if (num_size_args == 0) {
 747     fields[argp++] = TypeInt::INT;      // src_pos
 748   }
 749   fields[argp++] = TypePtr::NOTNULL;    // dest
 750   if (num_size_args == 0) {
 751     fields[argp++] = TypeInt::INT;      // dest_pos
 752     fields[argp++] = TypeInt::INT;      // length
 753   }
 754   while (num_size_args-- > 0) {
 755     fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 756     LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 757   }
 758   if (act == ac_checkcast) {
 759     fields[argp++] = TypePtr::NOTNULL;  // super_klass
 760   }
 761   assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
 762   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 763 
 764   // create result type if needed
 765   int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
 766   fields = TypeTuple::fields(1);
 767   if (retcnt == 0)
 768     fields[TypeFunc::Parms+0] = NULL; // void
 769   else
 770     fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
 771   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
 772   return TypeFunc::make(domain, range);
 773 }
 774 
 775 const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
 776   // This signature is simple:  Two base pointers and a size_t.
 777   return make_arraycopy_Type(ac_fast);
 778 }
 779 
 780 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
 781   // An extension of fast_arraycopy_Type which adds type checking.
 782   return make_arraycopy_Type(ac_checkcast);
 783 }
 784 
 785 const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
 786   // This signature is exactly the same as System.arraycopy.
 787   // There are no intptr_t (int/long) arguments.
 788   return make_arraycopy_Type(ac_slow);
 789 }
 790 
 791 const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
 792   // This signature is like System.arraycopy, except that it returns status.
 793   return make_arraycopy_Type(ac_generic);
 794 }
 795 
 796 
 797 const TypeFunc* OptoRuntime::array_fill_Type() {
 798   const Type** fields;
 799   int argp = TypeFunc::Parms;
 800   if (CCallingConventionRequiresIntsAsLongs) {
 801   // create input type (domain): pointer, int, size_t
 802     fields = TypeTuple::fields(3 LP64_ONLY( + 2));
 803     fields[argp++] = TypePtr::NOTNULL;
 804     fields[argp++] = TypeLong::LONG;
 805     fields[argp++] = Type::HALF;
 806   } else {
 807     // create input type (domain): pointer, int, size_t
 808     fields = TypeTuple::fields(3 LP64_ONLY( + 1));
 809     fields[argp++] = TypePtr::NOTNULL;
 810     fields[argp++] = TypeInt::INT;
 811   }
 812   fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 813   LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 814   const TypeTuple *domain = TypeTuple::make(argp, fields);
 815 
 816   // create result type
 817   fields = TypeTuple::fields(1);
 818   fields[TypeFunc::Parms+0] = NULL; // void
 819   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 820 
 821   return TypeFunc::make(domain, range);
 822 }
 823 
 824 // for aescrypt encrypt/decrypt operations, just three pointers returning void (length is constant)
 825 const TypeFunc* OptoRuntime::aescrypt_block_Type() {
 826   // create input type (domain)
 827   int num_args      = 3;
 828   int argcnt = num_args;
 829   const Type** fields = TypeTuple::fields(argcnt);
 830   int argp = TypeFunc::Parms;
 831   fields[argp++] = TypePtr::NOTNULL;    // src
 832   fields[argp++] = TypePtr::NOTNULL;    // dest
 833   fields[argp++] = TypePtr::NOTNULL;    // k array
 834   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 835   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 836 
 837   // no result type needed
 838   fields = TypeTuple::fields(1);
 839   fields[TypeFunc::Parms+0] = NULL; // void
 840   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 841   return TypeFunc::make(domain, range);
 842 }
 843 
 844 /**
 845  * int updateBytesCRC32(int crc, byte* b, int len)
 846  */
 847 const TypeFunc* OptoRuntime::updateBytesCRC32_Type() {
 848   // create input type (domain)
 849   int num_args      = 3;
 850   int argcnt = num_args;
 851   const Type** fields = TypeTuple::fields(argcnt);
 852   int argp = TypeFunc::Parms;
 853   fields[argp++] = TypeInt::INT;        // crc
 854   fields[argp++] = TypePtr::NOTNULL;    // src
 855   fields[argp++] = TypeInt::INT;        // len
 856   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 857   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 858 
 859   // result type needed
 860   fields = TypeTuple::fields(1);
 861   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 862   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 863   return TypeFunc::make(domain, range);
 864 }
 865 
 866 // for cipherBlockChaining calls of aescrypt encrypt/decrypt, four pointers and a length, returning void
 867 const TypeFunc* OptoRuntime::cipherBlockChaining_aescrypt_Type() {
 868   // create input type (domain)
 869   int num_args      = 5;
 870   int argcnt = num_args;
 871   const Type** fields = TypeTuple::fields(argcnt);
 872   int argp = TypeFunc::Parms;
 873   fields[argp++] = TypePtr::NOTNULL;    // src
 874   fields[argp++] = TypePtr::NOTNULL;    // dest
 875   fields[argp++] = TypePtr::NOTNULL;    // k array
 876   fields[argp++] = TypePtr::NOTNULL;    // r array
 877   fields[argp++] = TypeInt::INT;        // src len
 878   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 879   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 880 
 881   // no result type needed
 882   fields = TypeTuple::fields(1);
 883   fields[TypeFunc::Parms+0] = NULL; // void
 884   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 885   return TypeFunc::make(domain, range);
 886 }
 887 
 888 //------------- Interpreter state access for on stack replacement
 889 const TypeFunc* OptoRuntime::osr_end_Type() {
 890   // create input type (domain)
 891   const Type **fields = TypeTuple::fields(1);
 892   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
 893   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 894 
 895   // create result type
 896   fields = TypeTuple::fields(1);
 897   // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
 898   fields[TypeFunc::Parms+0] = NULL; // void
 899   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 900   return TypeFunc::make(domain, range);
 901 }
 902 
 903 //-------------- methodData update helpers
 904 
 905 const TypeFunc* OptoRuntime::profile_receiver_type_Type() {
 906   // create input type (domain)
 907   const Type **fields = TypeTuple::fields(2);
 908   fields[TypeFunc::Parms+0] = TypeAryPtr::NOTNULL;    // methodData pointer
 909   fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM;    // receiver oop
 910   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 911 
 912   // create result type
 913   fields = TypeTuple::fields(1);
 914   fields[TypeFunc::Parms+0] = NULL; // void
 915   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 916   return TypeFunc::make(domain,range);
 917 }
 918 
 919 JRT_LEAF(void, OptoRuntime::profile_receiver_type_C(DataLayout* data, oopDesc* receiver))
 920   if (receiver == NULL) return;
 921   Klass* receiver_klass = receiver->klass();
 922 
 923   intptr_t* mdp = ((intptr_t*)(data)) + DataLayout::header_size_in_cells();
 924   int empty_row = -1;           // free row, if any is encountered
 925 
 926   // ReceiverTypeData* vc = new ReceiverTypeData(mdp);
 927   for (uint row = 0; row < ReceiverTypeData::row_limit(); row++) {
 928     // if (vc->receiver(row) == receiver_klass)
 929     int receiver_off = ReceiverTypeData::receiver_cell_index(row);
 930     intptr_t row_recv = *(mdp + receiver_off);
 931     if (row_recv == (intptr_t) receiver_klass) {
 932       // vc->set_receiver_count(row, vc->receiver_count(row) + DataLayout::counter_increment);
 933       int count_off = ReceiverTypeData::receiver_count_cell_index(row);
 934       *(mdp + count_off) += DataLayout::counter_increment;
 935       return;
 936     } else if (row_recv == 0) {
 937       // else if (vc->receiver(row) == NULL)
 938       empty_row = (int) row;
 939     }
 940   }
 941 
 942   if (empty_row != -1) {
 943     int receiver_off = ReceiverTypeData::receiver_cell_index(empty_row);
 944     // vc->set_receiver(empty_row, receiver_klass);
 945     *(mdp + receiver_off) = (intptr_t) receiver_klass;
 946     // vc->set_receiver_count(empty_row, DataLayout::counter_increment);
 947     int count_off = ReceiverTypeData::receiver_count_cell_index(empty_row);
 948     *(mdp + count_off) = DataLayout::counter_increment;
 949   } else {
 950     // Receiver did not match any saved receiver and there is no empty row for it.
 951     // Increment total counter to indicate polymorphic case.
 952     intptr_t* count_p = (intptr_t*)(((byte*)(data)) + in_bytes(CounterData::count_offset()));
 953     *count_p += DataLayout::counter_increment;
 954   }
 955 JRT_END
 956 
 957 //-------------------------------------------------------------------------------------
 958 // register policy
 959 
 960 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
 961   assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
 962   switch (register_save_policy[reg]) {
 963     case 'C': return false; //SOC
 964     case 'E': return true ; //SOE
 965     case 'N': return false; //NS
 966     case 'A': return false; //AS
 967   }
 968   ShouldNotReachHere();
 969   return false;
 970 }
 971 
 972 //-----------------------------------------------------------------------
 973 // Exceptions
 974 //
 975 
 976 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) PRODUCT_RETURN;
 977 
 978 // The method is an entry that is always called by a C++ method not
 979 // directly from compiled code. Compiled code will call the C++ method following.
 980 // We can't allow async exception to be installed during  exception processing.
 981 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm))
 982 
 983   // Do not confuse exception_oop with pending_exception. The exception_oop
 984   // is only used to pass arguments into the method. Not for general
 985   // exception handling.  DO NOT CHANGE IT to use pending_exception, since
 986   // the runtime stubs checks this on exit.
 987   assert(thread->exception_oop() != NULL, "exception oop is found");
 988   address handler_address = NULL;
 989 
 990   Handle exception(thread, thread->exception_oop());
 991 
 992   if (TraceExceptions) {
 993     trace_exception(exception(), thread->exception_pc(), "");
 994   }
 995   // for AbortVMOnException flag
 996   NOT_PRODUCT(Exceptions::debug_check_abort(exception));
 997 
 998   #ifdef ASSERT
 999     if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1000       // should throw an exception here
1001       ShouldNotReachHere();
1002     }
1003   #endif
1004 
1005 
1006   // new exception handling: this method is entered only from adapters
1007   // exceptions from compiled java methods are handled in compiled code
1008   // using rethrow node
1009 
1010   address pc = thread->exception_pc();
1011   nm = CodeCache::find_nmethod(pc);
1012   assert(nm != NULL, "No NMethod found");
1013   if (nm->is_native_method()) {
1014     fatal("Native method should not have path to exception handling");
1015   } else {
1016     // we are switching to old paradigm: search for exception handler in caller_frame
1017     // instead in exception handler of caller_frame.sender()
1018 
1019     if (JvmtiExport::can_post_on_exceptions()) {
1020       // "Full-speed catching" is not necessary here,
1021       // since we're notifying the VM on every catch.
1022       // Force deoptimization and the rest of the lookup
1023       // will be fine.
1024       deoptimize_caller_frame(thread);
1025     }
1026 
1027     // Check the stack guard pages.  If enabled, look for handler in this frame;
1028     // otherwise, forcibly unwind the frame.
1029     //
1030     // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
1031     bool force_unwind = !thread->reguard_stack();
1032     bool deopting = false;
1033     if (nm->is_deopt_pc(pc)) {
1034       deopting = true;
1035       RegisterMap map(thread, false);
1036       frame deoptee = thread->last_frame().sender(&map);
1037       assert(deoptee.is_deoptimized_frame(), "must be deopted");
1038       // Adjust the pc back to the original throwing pc
1039       pc = deoptee.pc();
1040     }
1041 
1042     // If we are forcing an unwind because of stack overflow then deopt is
1043     // irrelevant since we are throwing the frame away anyway.
1044 
1045     if (deopting && !force_unwind) {
1046       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1047     } else {
1048 
1049       handler_address =
1050         force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc);
1051 
1052       if (handler_address == NULL) {
1053         Handle original_exception(thread, exception());
1054         handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true);
1055         assert (handler_address != NULL, "must have compiled handler");
1056         // Update the exception cache only when the unwind was not forced
1057         // and there didn't happen another exception during the computation of the
1058         // compiled exception handler.
1059         if (!force_unwind && original_exception() == exception()) {
1060           nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
1061         }
1062       } else {
1063         assert(handler_address == SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true), "Must be the same");
1064       }
1065     }
1066 
1067     thread->set_exception_pc(pc);
1068     thread->set_exception_handler_pc(handler_address);
1069 
1070     // Check if the exception PC is a MethodHandle call site.
1071     thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
1072   }
1073 
1074   // Restore correct return pc.  Was saved above.
1075   thread->set_exception_oop(exception());
1076   return handler_address;
1077 
1078 JRT_END
1079 
1080 // We are entering here from exception_blob
1081 // If there is a compiled exception handler in this method, we will continue there;
1082 // otherwise we will unwind the stack and continue at the caller of top frame method
1083 // Note we enter without the usual JRT wrapper. We will call a helper routine that
1084 // will do the normal VM entry. We do it this way so that we can see if the nmethod
1085 // we looked up the handler for has been deoptimized in the meantime. If it has been
1086 // we must not use the handler and instead return the deopt blob.
1087 address OptoRuntime::handle_exception_C(JavaThread* thread) {
1088 //
1089 // We are in Java not VM and in debug mode we have a NoHandleMark
1090 //
1091 #ifndef PRODUCT
1092   SharedRuntime::_find_handler_ctr++;          // find exception handler
1093 #endif
1094   debug_only(NoHandleMark __hm;)
1095   nmethod* nm = NULL;
1096   address handler_address = NULL;
1097   {
1098     // Enter the VM
1099 
1100     ResetNoHandleMark rnhm;
1101     handler_address = handle_exception_C_helper(thread, nm);
1102   }
1103 
1104   // Back in java: Use no oops, DON'T safepoint
1105 
1106   // Now check to see if the handler we are returning is in a now
1107   // deoptimized frame
1108 
1109   if (nm != NULL) {
1110     RegisterMap map(thread, false);
1111     frame caller = thread->last_frame().sender(&map);
1112 #ifdef ASSERT
1113     assert(caller.is_compiled_frame(), "must be");
1114 #endif // ASSERT
1115     if (caller.is_deoptimized_frame()) {
1116       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1117     }
1118   }
1119   return handler_address;
1120 }
1121 
1122 //------------------------------rethrow----------------------------------------
1123 // We get here after compiled code has executed a 'RethrowNode'.  The callee
1124 // is either throwing or rethrowing an exception.  The callee-save registers
1125 // have been restored, synchronized objects have been unlocked and the callee
1126 // stack frame has been removed.  The return address was passed in.
1127 // Exception oop is passed as the 1st argument.  This routine is then called
1128 // from the stub.  On exit, we know where to jump in the caller's code.
1129 // After this C code exits, the stub will pop his frame and end in a jump
1130 // (instead of a return).  We enter the caller's default handler.
1131 //
1132 // This must be JRT_LEAF:
1133 //     - caller will not change its state as we cannot block on exit,
1134 //       therefore raw_exception_handler_for_return_address is all it takes
1135 //       to handle deoptimized blobs
1136 //
1137 // However, there needs to be a safepoint check in the middle!  So compiled
1138 // safepoints are completely watertight.
1139 //
1140 // Thus, it cannot be a leaf since it contains the No_GC_Verifier.
1141 //
1142 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
1143 //
1144 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
1145 #ifndef PRODUCT
1146   SharedRuntime::_rethrow_ctr++;               // count rethrows
1147 #endif
1148   assert (exception != NULL, "should have thrown a NULLPointerException");
1149 #ifdef ASSERT
1150   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1151     // should throw an exception here
1152     ShouldNotReachHere();
1153   }
1154 #endif
1155 
1156   thread->set_vm_result(exception);
1157   // Frame not compiled (handles deoptimization blob)
1158   return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
1159 }
1160 
1161 
1162 const TypeFunc *OptoRuntime::rethrow_Type() {
1163   // create input type (domain)
1164   const Type **fields = TypeTuple::fields(1);
1165   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1166   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1167 
1168   // create result type (range)
1169   fields = TypeTuple::fields(1);
1170   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1171   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
1172 
1173   return TypeFunc::make(domain, range);
1174 }
1175 
1176 
1177 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
1178   // Deoptimize the caller before continuing, as the compiled
1179   // exception handler table may not be valid.
1180   if (!StressCompiledExceptionHandlers && doit) {
1181     deoptimize_caller_frame(thread);
1182   }
1183 }
1184 
1185 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) {
1186   // Called from within the owner thread, so no need for safepoint
1187   RegisterMap reg_map(thread);
1188   frame stub_frame = thread->last_frame();
1189   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1190   frame caller_frame = stub_frame.sender(&reg_map);
1191 
1192   // Deoptimize the caller frame.
1193   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1194 }
1195 
1196 
1197 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
1198   // Called from within the owner thread, so no need for safepoint
1199   RegisterMap reg_map(thread);
1200   frame stub_frame = thread->last_frame();
1201   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1202   frame caller_frame = stub_frame.sender(&reg_map);
1203   return caller_frame.is_deoptimized_frame();
1204 }
1205 
1206 
1207 const TypeFunc *OptoRuntime::register_finalizer_Type() {
1208   // create input type (domain)
1209   const Type **fields = TypeTuple::fields(1);
1210   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
1211   // // The JavaThread* is passed to each routine as the last argument
1212   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
1213   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1214 
1215   // create result type (range)
1216   fields = TypeTuple::fields(0);
1217 
1218   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1219 
1220   return TypeFunc::make(domain,range);
1221 }
1222 
1223 
1224 //-----------------------------------------------------------------------------
1225 // Dtrace support.  entry and exit probes have the same signature
1226 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
1227   // create input type (domain)
1228   const Type **fields = TypeTuple::fields(2);
1229   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1230   fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM;  // Method*;    Method we are entering
1231   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1232 
1233   // create result type (range)
1234   fields = TypeTuple::fields(0);
1235 
1236   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1237 
1238   return TypeFunc::make(domain,range);
1239 }
1240 
1241 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
1242   // create input type (domain)
1243   const Type **fields = TypeTuple::fields(2);
1244   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1245   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
1246 
1247   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1248 
1249   // create result type (range)
1250   fields = TypeTuple::fields(0);
1251 
1252   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1253 
1254   return TypeFunc::make(domain,range);
1255 }
1256 
1257 
1258 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread))
1259   assert(obj->is_oop(), "must be a valid oop");
1260   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1261   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1262 JRT_END
1263 
1264 //-----------------------------------------------------------------------------
1265 
1266 NamedCounter * volatile OptoRuntime::_named_counters = NULL;
1267 
1268 //
1269 // dump the collected NamedCounters.
1270 //
1271 void OptoRuntime::print_named_counters() {
1272   int total_lock_count = 0;
1273   int eliminated_lock_count = 0;
1274 
1275   NamedCounter* c = _named_counters;
1276   while (c) {
1277     if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
1278       int count = c->count();
1279       if (count > 0) {
1280         bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
1281         if (Verbose) {
1282           tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
1283         }
1284         total_lock_count += count;
1285         if (eliminated) {
1286           eliminated_lock_count += count;
1287         }
1288       }
1289     } else if (c->tag() == NamedCounter::BiasedLockingCounter) {
1290       BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters();
1291       if (blc->nonzero()) {
1292         tty->print_cr("%s", c->name());
1293         blc->print_on(tty);
1294       }
1295     }
1296     c = c->next();
1297   }
1298   if (total_lock_count > 0) {
1299     tty->print_cr("dynamic locks: %d", total_lock_count);
1300     if (eliminated_lock_count) {
1301       tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
1302                     (int)(eliminated_lock_count * 100.0 / total_lock_count));
1303     }
1304   }
1305 }
1306 
1307 //
1308 //  Allocate a new NamedCounter.  The JVMState is used to generate the
1309 //  name which consists of method@line for the inlining tree.
1310 //
1311 
1312 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
1313   int max_depth = youngest_jvms->depth();
1314 
1315   // Visit scopes from youngest to oldest.
1316   bool first = true;
1317   stringStream st;
1318   for (int depth = max_depth; depth >= 1; depth--) {
1319     JVMState* jvms = youngest_jvms->of_depth(depth);
1320     ciMethod* m = jvms->has_method() ? jvms->method() : NULL;
1321     if (!first) {
1322       st.print(" ");
1323     } else {
1324       first = false;
1325     }
1326     int bci = jvms->bci();
1327     if (bci < 0) bci = 0;
1328     st.print("%s.%s@%d", m->holder()->name()->as_utf8(), m->name()->as_utf8(), bci);
1329     // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
1330   }
1331   NamedCounter* c;
1332   if (tag == NamedCounter::BiasedLockingCounter) {
1333     c = new BiasedLockingNamedCounter(strdup(st.as_string()));
1334   } else {
1335     c = new NamedCounter(strdup(st.as_string()), tag);
1336   }
1337 
1338   // atomically add the new counter to the head of the list.  We only
1339   // add counters so this is safe.
1340   NamedCounter* head;
1341   do {
1342     head = _named_counters;
1343     c->set_next(head);
1344   } while (Atomic::cmpxchg_ptr(c, &_named_counters, head) != head);
1345   return c;
1346 }
1347 
1348 //-----------------------------------------------------------------------------
1349 // Non-product code
1350 #ifndef PRODUCT
1351 
1352 int trace_exception_counter = 0;
1353 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) {
1354   ttyLocker ttyl;
1355   trace_exception_counter++;
1356   tty->print("%d [Exception (%s): ", trace_exception_counter, msg);
1357   exception_oop->print_value();
1358   tty->print(" in ");
1359   CodeBlob* blob = CodeCache::find_blob(exception_pc);
1360   if (blob->is_nmethod()) {
1361     ((nmethod*)blob)->method()->print_value();
1362   } else if (blob->is_runtime_stub()) {
1363     tty->print("<runtime-stub>");
1364   } else {
1365     tty->print("<unknown>");
1366   }
1367   tty->print(" at " INTPTR_FORMAT,  exception_pc);
1368   tty->print_cr("]");
1369 }
1370 
1371 #endif  // PRODUCT
1372 
1373 
1374 # ifdef ENABLE_ZAP_DEAD_LOCALS
1375 // Called from call sites in compiled code with oop maps (actually safepoints)
1376 // Zaps dead locals in first java frame.
1377 // Is entry because may need to lock to generate oop maps
1378 // Currently, only used for compiler frames, but someday may be used
1379 // for interpreter frames, too.
1380 
1381 int OptoRuntime::ZapDeadCompiledLocals_count = 0;
1382 
1383 // avoid pointers to member funcs with these helpers
1384 static bool is_java_frame(  frame* f) { return f->is_java_frame();   }
1385 static bool is_native_frame(frame* f) { return f->is_native_frame(); }
1386 
1387 
1388 void OptoRuntime::zap_dead_java_or_native_locals(JavaThread* thread,
1389                                                 bool (*is_this_the_right_frame_to_zap)(frame*)) {
1390   assert(JavaThread::current() == thread, "is this needed?");
1391 
1392   if ( !ZapDeadCompiledLocals )  return;
1393 
1394   bool skip = false;
1395 
1396        if ( ZapDeadCompiledLocalsFirst  ==  0  ) ; // nothing special
1397   else if ( ZapDeadCompiledLocalsFirst  >  ZapDeadCompiledLocals_count )  skip = true;
1398   else if ( ZapDeadCompiledLocalsFirst  == ZapDeadCompiledLocals_count )
1399     warning("starting zapping after skipping");
1400 
1401        if ( ZapDeadCompiledLocalsLast  ==  -1  ) ; // nothing special
1402   else if ( ZapDeadCompiledLocalsLast  <   ZapDeadCompiledLocals_count )  skip = true;
1403   else if ( ZapDeadCompiledLocalsLast  ==  ZapDeadCompiledLocals_count )
1404     warning("about to zap last zap");
1405 
1406   ++ZapDeadCompiledLocals_count; // counts skipped zaps, too
1407 
1408   if ( skip )  return;
1409 
1410   // find java frame and zap it
1411 
1412   for (StackFrameStream sfs(thread);  !sfs.is_done();  sfs.next()) {
1413     if (is_this_the_right_frame_to_zap(sfs.current()) ) {
1414       sfs.current()->zap_dead_locals(thread, sfs.register_map());
1415       return;
1416     }
1417   }
1418   warning("no frame found to zap in zap_dead_Java_locals_C");
1419 }
1420 
1421 JRT_LEAF(void, OptoRuntime::zap_dead_Java_locals_C(JavaThread* thread))
1422   zap_dead_java_or_native_locals(thread, is_java_frame);
1423 JRT_END
1424 
1425 // The following does not work because for one thing, the
1426 // thread state is wrong; it expects java, but it is native.
1427 // Also, the invariants in a native stub are different and
1428 // I'm not sure it is safe to have a MachCalRuntimeDirectNode
1429 // in there.
1430 // So for now, we do not zap in native stubs.
1431 
1432 JRT_LEAF(void, OptoRuntime::zap_dead_native_locals_C(JavaThread* thread))
1433   zap_dead_java_or_native_locals(thread, is_native_frame);
1434 JRT_END
1435 
1436 # endif