1 /* 2 * Copyright (c) 2016, 2020, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. Oracle designates this 8 * particular file as subject to the "Classpath" exception as provided 9 * by Oracle in the LICENSE file that accompanied this code. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 */ 25 26 package sun.security.provider; 27 28 import static sun.security.provider.ByteArrayAccess.*; 29 import java.nio.*; 30 import java.util.*; 31 import java.security.*; 32 33 /** 34 * This class implements the Secure Hash Algorithm SHA-3 developed by 35 * the National Institute of Standards and Technology along with the 36 * National Security Agency as defined in FIPS PUB 202. 37 * 38 * <p>It implements java.security.MessageDigestSpi, and can be used 39 * through Java Cryptography Architecture (JCA), as a pluggable 40 * MessageDigest implementation. 41 * 42 * @since 9 43 * @author Valerie Peng 44 */ 45 abstract class SHA3 extends DigestBase { 46 47 private static final int WIDTH = 200; // in bytes, e.g. 1600 bits 48 private static final int DM = 5; // dimension of lanes 49 50 private static final int NR = 24; // number of rounds 51 52 // precomputed round constants needed by the step mapping Iota 53 private static final long[] RC_CONSTANTS = { 54 0x01L, 0x8082L, 0x800000000000808aL, 55 0x8000000080008000L, 0x808bL, 0x80000001L, 56 0x8000000080008081L, 0x8000000000008009L, 0x8aL, 57 0x88L, 0x80008009L, 0x8000000aL, 58 0x8000808bL, 0x800000000000008bL, 0x8000000000008089L, 59 0x8000000000008003L, 0x8000000000008002L, 0x8000000000000080L, 60 0x800aL, 0x800000008000000aL, 0x8000000080008081L, 61 0x8000000000008080L, 0x80000001L, 0x8000000080008008L, 62 }; 63 64 private final byte suffix; 65 private byte[] state = new byte[WIDTH]; 66 private long[] lanes = new long[DM*DM]; 67 68 /** 69 * Creates a new SHA-3 object. 70 */ 71 SHA3(String name, int digestLength, byte suffix, int c) { 72 super(name, digestLength, (WIDTH - c)); 73 this.suffix = suffix; 74 } 75 76 /** 77 * Core compression function. Processes blockSize bytes at a time 78 * and updates the state of this object. 79 */ 80 void implCompress(byte[] b, int ofs) { 81 for (int i = 0; i < buffer.length; i++) { 82 state[i] ^= b[ofs++]; 83 } 84 keccak(); 85 } 86 87 /** 88 * Return the digest. Subclasses do not need to reset() themselves, 89 * DigestBase calls implReset() when necessary. 90 */ 91 void implDigest(byte[] out, int ofs) { 92 int numOfPadding = 93 setPaddingBytes(suffix, buffer, (int)(bytesProcessed % buffer.length)); 94 if (numOfPadding < 1) { 95 throw new ProviderException("Incorrect pad size: " + numOfPadding); 96 } 97 for (int i = 0; i < buffer.length; i++) { 98 state[i] ^= buffer[i]; 99 } 100 keccak(); 101 System.arraycopy(state, 0, out, ofs, engineGetDigestLength()); 102 } 103 104 /** 105 * Resets the internal state to start a new hash. 106 */ 107 void implReset() { 108 Arrays.fill(state, (byte)0); 109 Arrays.fill(lanes, 0L); 110 } 111 112 /** 113 * Utility function for padding the specified data based on the 114 * pad10*1 algorithm (section 5.1) and the 2-bit suffix "01" required 115 * for SHA-3 hash (section 6.1). 116 */ 117 private static int setPaddingBytes(byte suffix, byte[] in, int len) { 118 if (len != in.length) { 119 // erase leftover values 120 Arrays.fill(in, len, in.length, (byte)0); 121 // directly store the padding bytes into the input 122 // as the specified buffer is allocated w/ size = rateR 123 in[len] |= suffix; 124 in[in.length - 1] |= (byte) 0x80; 125 } 126 return (in.length - len); 127 } 128 129 /** 130 * Utility function for transforming the specified byte array 's' 131 * into array of lanes 'm' as defined in section 3.1.2. 132 */ 133 private static void bytes2Lanes(byte[] s, long[] m) { 134 int sOfs = 0; 135 // Conversion traverses along x-axis before y-axis 136 for (int y = 0; y < DM; y++, sOfs += 40) { 137 b2lLittle(s, sOfs, m, DM*y, 40); 138 } 139 } 140 141 /** 142 * Utility function for transforming the specified array of 143 * lanes 'm' into a byte array 's' as defined in section 3.1.3. 144 */ 145 private static void lanes2Bytes(long[] m, byte[] s) { 146 int sOfs = 0; 147 // Conversion traverses along x-axis before y-axis 148 for (int y = 0; y < DM; y++, sOfs += 40) { 149 l2bLittle(m, DM*y, s, sOfs, 40); 150 } 151 } 152 153 /** 154 * Step mapping Theta as defined in section 3.2.1 . 155 */ 156 private static long[] smTheta(long[] a) { 157 long c0 = a[0]^a[5]^a[10]^a[15]^a[20]; 158 long c1 = a[1]^a[6]^a[11]^a[16]^a[21]; 159 long c2 = a[2]^a[7]^a[12]^a[17]^a[22]; 160 long c3 = a[3]^a[8]^a[13]^a[18]^a[23]; 161 long c4 = a[4]^a[9]^a[14]^a[19]^a[24]; 162 long d0 = c4 ^ Long.rotateLeft(c1, 1); 163 long d1 = c0 ^ Long.rotateLeft(c2, 1); 164 long d2 = c1 ^ Long.rotateLeft(c3, 1); 165 long d3 = c2 ^ Long.rotateLeft(c4, 1); 166 long d4 = c3 ^ Long.rotateLeft(c0, 1); 167 for (int y = 0; y < a.length; y += DM) { 168 a[y] ^= d0; 169 a[y+1] ^= d1; 170 a[y+2] ^= d2; 171 a[y+3] ^= d3; 172 a[y+4] ^= d4; 173 } 174 return a; 175 } 176 177 /** 178 * Merged Step mapping Rho (section 3.2.2) and Pi (section 3.2.3). 179 * for performance. Optimization is achieved by precalculating 180 * shift constants for the following loop 181 * int xNext, yNext; 182 * for (int t = 0, x = 1, y = 0; t <= 23; t++, x = xNext, y = yNext) { 183 * int numberOfShift = ((t + 1)*(t + 2)/2) % 64; 184 * a[y][x] = Long.rotateLeft(a[y][x], numberOfShift); 185 * xNext = y; 186 * yNext = (2 * x + 3 * y) % DM; 187 * } 188 * and with inplace permutation. 189 */ 190 private static long[] smPiRho(long[] a) { 191 long tmp = Long.rotateLeft(a[10], 3); 192 a[10] = Long.rotateLeft(a[1], 1); 193 a[1] = Long.rotateLeft(a[6], 44); 194 a[6] = Long.rotateLeft(a[9], 20); 195 a[9] = Long.rotateLeft(a[22], 61); 196 a[22] = Long.rotateLeft(a[14], 39); 197 a[14] = Long.rotateLeft(a[20], 18); 198 a[20] = Long.rotateLeft(a[2], 62); 199 a[2] = Long.rotateLeft(a[12], 43); 200 a[12] = Long.rotateLeft(a[13], 25); 201 a[13] = Long.rotateLeft(a[19], 8); 202 a[19] = Long.rotateLeft(a[23], 56); 203 a[23] = Long.rotateLeft(a[15], 41); 204 a[15] = Long.rotateLeft(a[4], 27); 205 a[4] = Long.rotateLeft(a[24], 14); 206 a[24] = Long.rotateLeft(a[21], 2); 207 a[21] = Long.rotateLeft(a[8], 55); 208 a[8] = Long.rotateLeft(a[16], 45); 209 a[16] = Long.rotateLeft(a[5], 36); 210 a[5] = Long.rotateLeft(a[3], 28); 211 a[3] = Long.rotateLeft(a[18], 21); 212 a[18] = Long.rotateLeft(a[17], 15); 213 a[17] = Long.rotateLeft(a[11], 10); 214 a[11] = Long.rotateLeft(a[7], 6); 215 a[7] = tmp; 216 return a; 217 } 218 219 /** 220 * Step mapping Chi as defined in section 3.2.4. 221 */ 222 private static long[] smChi(long[] a) { 223 for (int y = 0; y < a.length; y+=DM) { 224 long ay0 = a[y]; 225 long ay1 = a[y+1]; 226 long ay2 = a[y+2]; 227 long ay3 = a[y+3]; 228 long ay4 = a[y+4]; 229 a[y] = ay0 ^ ((~ay1) & ay2); 230 a[y+1] = ay1 ^ ((~ay2) & ay3); 231 a[y+2] = ay2 ^ ((~ay3) & ay4); 232 a[y+3] = ay3 ^ ((~ay4) & ay0); 233 a[y+4] = ay4 ^ ((~ay0) & ay1); 234 } 235 return a; 236 } 237 238 /** 239 * Step mapping Iota as defined in section 3.2.5. 240 */ 241 private static long[] smIota(long[] a, int rndIndex) { 242 a[0] ^= RC_CONSTANTS[rndIndex]; 243 return a; 244 } 245 246 /** 247 * The function Keccak as defined in section 5.2 with 248 * rate r = 1600 and capacity c = (digest length x 2). 249 */ 250 private void keccak() { 251 // convert the 200-byte state into 25 lanes 252 bytes2Lanes(state, lanes); 253 // process the lanes through step mappings 254 for (int ir = 0; ir < NR; ir++) { 255 smIota(smChi(smPiRho(smTheta(lanes))), ir); 256 } 257 // convert the resulting 25 lanes back into 200-byte state 258 lanes2Bytes(lanes, state); 259 } 260 261 public Object clone() throws CloneNotSupportedException { 262 SHA3 copy = (SHA3) super.clone(); 263 copy.state = copy.state.clone(); 264 copy.lanes = new long[DM*DM]; 265 return copy; 266 } 267 268 /** 269 * SHA3-224 implementation class. 270 */ 271 public static final class SHA224 extends SHA3 { 272 public SHA224() { 273 super("SHA3-224", 28, (byte)0x06, 56); 274 } 275 } 276 277 /** 278 * SHA3-256 implementation class. 279 */ 280 public static final class SHA256 extends SHA3 { 281 public SHA256() { 282 super("SHA3-256", 32, (byte)0x06, 64); 283 } 284 } 285 286 /** 287 * SHAs-384 implementation class. 288 */ 289 public static final class SHA384 extends SHA3 { 290 public SHA384() { 291 super("SHA3-384", 48, (byte)0x06, 96); 292 } 293 } 294 295 /** 296 * SHA3-512 implementation class. 297 */ 298 public static final class SHA512 extends SHA3 { 299 public SHA512() { 300 super("SHA3-512", 64, (byte)0x06, 128); 301 } 302 } 303 }