1 /* 2 * Copyright (c) 1999, 2020, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/macroAssembler.hpp" 27 #include "ci/ciUtilities.inline.hpp" 28 #include "classfile/systemDictionary.hpp" 29 #include "classfile/vmSymbols.hpp" 30 #include "compiler/compileBroker.hpp" 31 #include "compiler/compileLog.hpp" 32 #include "gc/shared/barrierSet.hpp" 33 #include "jfr/support/jfrIntrinsics.hpp" 34 #include "memory/resourceArea.hpp" 35 #include "oops/klass.inline.hpp" 36 #include "oops/objArrayKlass.hpp" 37 #include "opto/addnode.hpp" 38 #include "opto/arraycopynode.hpp" 39 #include "opto/c2compiler.hpp" 40 #include "opto/callGenerator.hpp" 41 #include "opto/castnode.hpp" 42 #include "opto/cfgnode.hpp" 43 #include "opto/convertnode.hpp" 44 #include "opto/countbitsnode.hpp" 45 #include "opto/intrinsicnode.hpp" 46 #include "opto/idealKit.hpp" 47 #include "opto/mathexactnode.hpp" 48 #include "opto/movenode.hpp" 49 #include "opto/mulnode.hpp" 50 #include "opto/narrowptrnode.hpp" 51 #include "opto/opaquenode.hpp" 52 #include "opto/parse.hpp" 53 #include "opto/runtime.hpp" 54 #include "opto/rootnode.hpp" 55 #include "opto/subnode.hpp" 56 #include "prims/nativeLookup.hpp" 57 #include "prims/unsafe.hpp" 58 #include "runtime/objectMonitor.hpp" 59 #include "runtime/sharedRuntime.hpp" 60 #include "utilities/macros.hpp" 61 #include "utilities/powerOfTwo.hpp" 62 63 class LibraryIntrinsic : public InlineCallGenerator { 64 // Extend the set of intrinsics known to the runtime: 65 public: 66 private: 67 bool _is_virtual; 68 bool _does_virtual_dispatch; 69 int8_t _predicates_count; // Intrinsic is predicated by several conditions 70 int8_t _last_predicate; // Last generated predicate 71 vmIntrinsics::ID _intrinsic_id; 72 73 public: 74 LibraryIntrinsic(ciMethod* m, bool is_virtual, int predicates_count, bool does_virtual_dispatch, vmIntrinsics::ID id) 75 : InlineCallGenerator(m), 76 _is_virtual(is_virtual), 77 _does_virtual_dispatch(does_virtual_dispatch), 78 _predicates_count((int8_t)predicates_count), 79 _last_predicate((int8_t)-1), 80 _intrinsic_id(id) 81 { 82 } 83 virtual bool is_intrinsic() const { return true; } 84 virtual bool is_virtual() const { return _is_virtual; } 85 virtual bool is_predicated() const { return _predicates_count > 0; } 86 virtual int predicates_count() const { return _predicates_count; } 87 virtual bool does_virtual_dispatch() const { return _does_virtual_dispatch; } 88 virtual JVMState* generate(JVMState* jvms); 89 virtual Node* generate_predicate(JVMState* jvms, int predicate); 90 vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; } 91 }; 92 93 94 // Local helper class for LibraryIntrinsic: 95 class LibraryCallKit : public GraphKit { 96 private: 97 LibraryIntrinsic* _intrinsic; // the library intrinsic being called 98 Node* _result; // the result node, if any 99 int _reexecute_sp; // the stack pointer when bytecode needs to be reexecuted 100 101 const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type); 102 103 public: 104 LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic) 105 : GraphKit(jvms), 106 _intrinsic(intrinsic), 107 _result(NULL) 108 { 109 // Check if this is a root compile. In that case we don't have a caller. 110 if (!jvms->has_method()) { 111 _reexecute_sp = sp(); 112 } else { 113 // Find out how many arguments the interpreter needs when deoptimizing 114 // and save the stack pointer value so it can used by uncommon_trap. 115 // We find the argument count by looking at the declared signature. 116 bool ignored_will_link; 117 ciSignature* declared_signature = NULL; 118 ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature); 119 const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci())); 120 _reexecute_sp = sp() + nargs; // "push" arguments back on stack 121 } 122 } 123 124 virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; } 125 126 ciMethod* caller() const { return jvms()->method(); } 127 int bci() const { return jvms()->bci(); } 128 LibraryIntrinsic* intrinsic() const { return _intrinsic; } 129 vmIntrinsics::ID intrinsic_id() const { return _intrinsic->intrinsic_id(); } 130 ciMethod* callee() const { return _intrinsic->method(); } 131 132 bool try_to_inline(int predicate); 133 Node* try_to_predicate(int predicate); 134 135 void push_result() { 136 // Push the result onto the stack. 137 if (!stopped() && result() != NULL) { 138 BasicType bt = result()->bottom_type()->basic_type(); 139 push_node(bt, result()); 140 } 141 } 142 143 private: 144 void fatal_unexpected_iid(vmIntrinsics::ID iid) { 145 fatal("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)); 146 } 147 148 void set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; } 149 void set_result(RegionNode* region, PhiNode* value); 150 Node* result() { return _result; } 151 152 virtual int reexecute_sp() { return _reexecute_sp; } 153 154 // Helper functions to inline natives 155 Node* generate_guard(Node* test, RegionNode* region, float true_prob); 156 Node* generate_slow_guard(Node* test, RegionNode* region); 157 Node* generate_fair_guard(Node* test, RegionNode* region); 158 Node* generate_negative_guard(Node* index, RegionNode* region, 159 // resulting CastII of index: 160 Node* *pos_index = NULL); 161 Node* generate_limit_guard(Node* offset, Node* subseq_length, 162 Node* array_length, 163 RegionNode* region); 164 void generate_string_range_check(Node* array, Node* offset, 165 Node* length, bool char_count); 166 Node* generate_current_thread(Node* &tls_output); 167 Node* load_mirror_from_klass(Node* klass); 168 Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null, 169 RegionNode* region, int null_path, 170 int offset); 171 Node* load_klass_from_mirror(Node* mirror, bool never_see_null, 172 RegionNode* region, int null_path) { 173 int offset = java_lang_Class::klass_offset(); 174 return load_klass_from_mirror_common(mirror, never_see_null, 175 region, null_path, 176 offset); 177 } 178 Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null, 179 RegionNode* region, int null_path) { 180 int offset = java_lang_Class::array_klass_offset(); 181 return load_klass_from_mirror_common(mirror, never_see_null, 182 region, null_path, 183 offset); 184 } 185 Node* generate_access_flags_guard(Node* kls, 186 int modifier_mask, int modifier_bits, 187 RegionNode* region); 188 Node* generate_interface_guard(Node* kls, RegionNode* region); 189 Node* generate_hidden_class_guard(Node* kls, RegionNode* region); 190 Node* generate_array_guard(Node* kls, RegionNode* region) { 191 return generate_array_guard_common(kls, region, false, false); 192 } 193 Node* generate_non_array_guard(Node* kls, RegionNode* region) { 194 return generate_array_guard_common(kls, region, false, true); 195 } 196 Node* generate_objArray_guard(Node* kls, RegionNode* region) { 197 return generate_array_guard_common(kls, region, true, false); 198 } 199 Node* generate_non_objArray_guard(Node* kls, RegionNode* region) { 200 return generate_array_guard_common(kls, region, true, true); 201 } 202 Node* generate_array_guard_common(Node* kls, RegionNode* region, 203 bool obj_array, bool not_array); 204 Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region); 205 CallJavaNode* generate_method_call(vmIntrinsics::ID method_id, 206 bool is_virtual = false, bool is_static = false); 207 CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) { 208 return generate_method_call(method_id, false, true); 209 } 210 CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) { 211 return generate_method_call(method_id, true, false); 212 } 213 Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static, ciInstanceKlass * fromKls); 214 Node * field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static, ciInstanceKlass * fromKls); 215 216 Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae); 217 bool inline_string_compareTo(StrIntrinsicNode::ArgEnc ae); 218 bool inline_string_indexOf(StrIntrinsicNode::ArgEnc ae); 219 bool inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae); 220 Node* make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count, 221 RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae); 222 bool inline_string_indexOfChar(); 223 bool inline_string_equals(StrIntrinsicNode::ArgEnc ae); 224 bool inline_string_toBytesU(); 225 bool inline_string_getCharsU(); 226 bool inline_string_copy(bool compress); 227 bool inline_string_char_access(bool is_store); 228 Node* round_double_node(Node* n); 229 bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName); 230 bool inline_math_native(vmIntrinsics::ID id); 231 bool inline_math(vmIntrinsics::ID id); 232 bool inline_double_math(vmIntrinsics::ID id); 233 template <typename OverflowOp> 234 bool inline_math_overflow(Node* arg1, Node* arg2); 235 void inline_math_mathExact(Node* math, Node* test); 236 bool inline_math_addExactI(bool is_increment); 237 bool inline_math_addExactL(bool is_increment); 238 bool inline_math_multiplyExactI(); 239 bool inline_math_multiplyExactL(); 240 bool inline_math_multiplyHigh(); 241 bool inline_math_negateExactI(); 242 bool inline_math_negateExactL(); 243 bool inline_math_subtractExactI(bool is_decrement); 244 bool inline_math_subtractExactL(bool is_decrement); 245 bool inline_min_max(vmIntrinsics::ID id); 246 bool inline_notify(vmIntrinsics::ID id); 247 Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y); 248 // This returns Type::AnyPtr, RawPtr, or OopPtr. 249 int classify_unsafe_addr(Node* &base, Node* &offset, BasicType type); 250 Node* make_unsafe_address(Node*& base, Node* offset, DecoratorSet decorators, BasicType type = T_ILLEGAL, bool can_cast = false); 251 252 typedef enum { Relaxed, Opaque, Volatile, Acquire, Release } AccessKind; 253 DecoratorSet mo_decorator_for_access_kind(AccessKind kind); 254 bool inline_unsafe_access(bool is_store, BasicType type, AccessKind kind, bool is_unaligned); 255 static bool klass_needs_init_guard(Node* kls); 256 bool inline_unsafe_allocate(); 257 bool inline_unsafe_newArray(bool uninitialized); 258 bool inline_unsafe_writeback0(); 259 bool inline_unsafe_writebackSync0(bool is_pre); 260 bool inline_unsafe_copyMemory(); 261 bool inline_native_currentThread(); 262 263 bool inline_native_time_funcs(address method, const char* funcName); 264 #ifdef JFR_HAVE_INTRINSICS 265 bool inline_native_classID(); 266 bool inline_native_getEventWriter(); 267 #endif 268 bool inline_native_Class_query(vmIntrinsics::ID id); 269 bool inline_native_subtype_check(); 270 bool inline_native_getLength(); 271 bool inline_array_copyOf(bool is_copyOfRange); 272 bool inline_array_equals(StrIntrinsicNode::ArgEnc ae); 273 bool inline_preconditions_checkIndex(); 274 void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array); 275 bool inline_native_clone(bool is_virtual); 276 bool inline_native_Reflection_getCallerClass(); 277 // Helper function for inlining native object hash method 278 bool inline_native_hashcode(bool is_virtual, bool is_static); 279 bool inline_native_getClass(); 280 281 // Helper functions for inlining arraycopy 282 bool inline_arraycopy(); 283 AllocateArrayNode* tightly_coupled_allocation(Node* ptr, 284 RegionNode* slow_region); 285 JVMState* arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp); 286 void arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms, int saved_reexecute_sp, 287 uint new_idx); 288 289 typedef enum { LS_get_add, LS_get_set, LS_cmp_swap, LS_cmp_swap_weak, LS_cmp_exchange } LoadStoreKind; 290 bool inline_unsafe_load_store(BasicType type, LoadStoreKind kind, AccessKind access_kind); 291 bool inline_unsafe_fence(vmIntrinsics::ID id); 292 bool inline_onspinwait(); 293 bool inline_fp_conversions(vmIntrinsics::ID id); 294 bool inline_number_methods(vmIntrinsics::ID id); 295 bool inline_reference_get(); 296 bool inline_Class_cast(); 297 bool inline_aescrypt_Block(vmIntrinsics::ID id); 298 bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id); 299 bool inline_electronicCodeBook_AESCrypt(vmIntrinsics::ID id); 300 bool inline_counterMode_AESCrypt(vmIntrinsics::ID id); 301 Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting); 302 Node* inline_electronicCodeBook_AESCrypt_predicate(bool decrypting); 303 Node* inline_counterMode_AESCrypt_predicate(); 304 Node* get_key_start_from_aescrypt_object(Node* aescrypt_object); 305 Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object); 306 bool inline_ghash_processBlocks(); 307 bool inline_base64_encodeBlock(); 308 bool inline_digestBase_implCompress(vmIntrinsics::ID id); 309 bool inline_digestBase_implCompressMB(int predicate); 310 bool inline_digestBase_implCompressMB(Node* digestBaseObj, ciInstanceKlass* instklass, 311 const char* state_type, address stubAddr, const char *stubName, 312 Node* src_start, Node* ofs, Node* limit); 313 Node* get_state_from_digest_object(Node *digestBase_object, const char* state_type); 314 Node* get_digest_length_from_digest_object(Node *digestBase_object); 315 Node* inline_digestBase_implCompressMB_predicate(int predicate); 316 bool inline_encodeISOArray(); 317 bool inline_updateCRC32(); 318 bool inline_updateBytesCRC32(); 319 bool inline_updateByteBufferCRC32(); 320 Node* get_table_from_crc32c_class(ciInstanceKlass *crc32c_class); 321 bool inline_updateBytesCRC32C(); 322 bool inline_updateDirectByteBufferCRC32C(); 323 bool inline_updateBytesAdler32(); 324 bool inline_updateByteBufferAdler32(); 325 bool inline_multiplyToLen(); 326 bool inline_hasNegatives(); 327 bool inline_squareToLen(); 328 bool inline_mulAdd(); 329 bool inline_montgomeryMultiply(); 330 bool inline_montgomerySquare(); 331 bool inline_bigIntegerShift(bool isRightShift); 332 bool inline_vectorizedMismatch(); 333 bool inline_fma(vmIntrinsics::ID id); 334 bool inline_character_compare(vmIntrinsics::ID id); 335 bool inline_fp_min_max(vmIntrinsics::ID id); 336 337 bool inline_profileBoolean(); 338 bool inline_isCompileConstant(); 339 void clear_upper_avx() { 340 #ifdef X86 341 if (UseAVX >= 2) { 342 C->set_clear_upper_avx(true); 343 } 344 #endif 345 } 346 }; 347 348 //---------------------------make_vm_intrinsic---------------------------- 349 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) { 350 vmIntrinsics::ID id = m->intrinsic_id(); 351 assert(id != vmIntrinsics::_none, "must be a VM intrinsic"); 352 353 if (!m->is_loaded()) { 354 // Do not attempt to inline unloaded methods. 355 return NULL; 356 } 357 358 C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization); 359 bool is_available = false; 360 361 { 362 // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag 363 // the compiler must transition to '_thread_in_vm' state because both 364 // methods access VM-internal data. 365 VM_ENTRY_MARK; 366 methodHandle mh(THREAD, m->get_Method()); 367 is_available = compiler != NULL && compiler->is_intrinsic_supported(mh, is_virtual) && 368 !C->directive()->is_intrinsic_disabled(mh) && 369 !vmIntrinsics::is_disabled_by_flags(mh); 370 371 } 372 373 if (is_available) { 374 assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility"); 375 assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?"); 376 return new LibraryIntrinsic(m, is_virtual, 377 vmIntrinsics::predicates_needed(id), 378 vmIntrinsics::does_virtual_dispatch(id), 379 (vmIntrinsics::ID) id); 380 } else { 381 return NULL; 382 } 383 } 384 385 //----------------------register_library_intrinsics----------------------- 386 // Initialize this file's data structures, for each Compile instance. 387 void Compile::register_library_intrinsics() { 388 // Nothing to do here. 389 } 390 391 JVMState* LibraryIntrinsic::generate(JVMState* jvms) { 392 LibraryCallKit kit(jvms, this); 393 Compile* C = kit.C; 394 int nodes = C->unique(); 395 #ifndef PRODUCT 396 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 397 char buf[1000]; 398 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf)); 399 tty->print_cr("Intrinsic %s", str); 400 } 401 #endif 402 ciMethod* callee = kit.callee(); 403 const int bci = kit.bci(); 404 405 // Try to inline the intrinsic. 406 if ((CheckIntrinsics ? callee->intrinsic_candidate() : true) && 407 kit.try_to_inline(_last_predicate)) { 408 const char *inline_msg = is_virtual() ? "(intrinsic, virtual)" 409 : "(intrinsic)"; 410 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, inline_msg); 411 if (C->print_intrinsics() || C->print_inlining()) { 412 C->print_inlining(callee, jvms->depth() - 1, bci, inline_msg); 413 } 414 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked); 415 if (C->log()) { 416 C->log()->elem("intrinsic id='%s'%s nodes='%d'", 417 vmIntrinsics::name_at(intrinsic_id()), 418 (is_virtual() ? " virtual='1'" : ""), 419 C->unique() - nodes); 420 } 421 // Push the result from the inlined method onto the stack. 422 kit.push_result(); 423 C->print_inlining_update(this); 424 return kit.transfer_exceptions_into_jvms(); 425 } 426 427 // The intrinsic bailed out 428 if (jvms->has_method()) { 429 // Not a root compile. 430 const char* msg; 431 if (callee->intrinsic_candidate()) { 432 msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)"; 433 } else { 434 msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated" 435 : "failed to inline (intrinsic), method not annotated"; 436 } 437 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, msg); 438 if (C->print_intrinsics() || C->print_inlining()) { 439 C->print_inlining(callee, jvms->depth() - 1, bci, msg); 440 } 441 } else { 442 // Root compile 443 ResourceMark rm; 444 stringStream msg_stream; 445 msg_stream.print("Did not generate intrinsic %s%s at bci:%d in", 446 vmIntrinsics::name_at(intrinsic_id()), 447 is_virtual() ? " (virtual)" : "", bci); 448 const char *msg = msg_stream.as_string(); 449 log_debug(jit, inlining)("%s", msg); 450 if (C->print_intrinsics() || C->print_inlining()) { 451 tty->print("%s", msg); 452 } 453 } 454 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed); 455 C->print_inlining_update(this); 456 return NULL; 457 } 458 459 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) { 460 LibraryCallKit kit(jvms, this); 461 Compile* C = kit.C; 462 int nodes = C->unique(); 463 _last_predicate = predicate; 464 #ifndef PRODUCT 465 assert(is_predicated() && predicate < predicates_count(), "sanity"); 466 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 467 char buf[1000]; 468 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf)); 469 tty->print_cr("Predicate for intrinsic %s", str); 470 } 471 #endif 472 ciMethod* callee = kit.callee(); 473 const int bci = kit.bci(); 474 475 Node* slow_ctl = kit.try_to_predicate(predicate); 476 if (!kit.failing()) { 477 const char *inline_msg = is_virtual() ? "(intrinsic, virtual, predicate)" 478 : "(intrinsic, predicate)"; 479 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, inline_msg); 480 if (C->print_intrinsics() || C->print_inlining()) { 481 C->print_inlining(callee, jvms->depth() - 1, bci, inline_msg); 482 } 483 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked); 484 if (C->log()) { 485 C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'", 486 vmIntrinsics::name_at(intrinsic_id()), 487 (is_virtual() ? " virtual='1'" : ""), 488 C->unique() - nodes); 489 } 490 return slow_ctl; // Could be NULL if the check folds. 491 } 492 493 // The intrinsic bailed out 494 if (jvms->has_method()) { 495 // Not a root compile. 496 const char* msg = "failed to generate predicate for intrinsic"; 497 CompileTask::print_inlining_ul(kit.callee(), jvms->depth() - 1, bci, msg); 498 if (C->print_intrinsics() || C->print_inlining()) { 499 C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg); 500 } 501 } else { 502 // Root compile 503 ResourceMark rm; 504 stringStream msg_stream; 505 msg_stream.print("Did not generate intrinsic %s%s at bci:%d in", 506 vmIntrinsics::name_at(intrinsic_id()), 507 is_virtual() ? " (virtual)" : "", bci); 508 const char *msg = msg_stream.as_string(); 509 log_debug(jit, inlining)("%s", msg); 510 if (C->print_intrinsics() || C->print_inlining()) { 511 C->print_inlining_stream()->print("%s", msg); 512 } 513 } 514 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed); 515 return NULL; 516 } 517 518 bool LibraryCallKit::try_to_inline(int predicate) { 519 // Handle symbolic names for otherwise undistinguished boolean switches: 520 const bool is_store = true; 521 const bool is_compress = true; 522 const bool is_static = true; 523 const bool is_volatile = true; 524 525 if (!jvms()->has_method()) { 526 // Root JVMState has a null method. 527 assert(map()->memory()->Opcode() == Op_Parm, ""); 528 // Insert the memory aliasing node 529 set_all_memory(reset_memory()); 530 } 531 assert(merged_memory(), ""); 532 533 534 switch (intrinsic_id()) { 535 case vmIntrinsics::_hashCode: return inline_native_hashcode(intrinsic()->is_virtual(), !is_static); 536 case vmIntrinsics::_identityHashCode: return inline_native_hashcode(/*!virtual*/ false, is_static); 537 case vmIntrinsics::_getClass: return inline_native_getClass(); 538 539 case vmIntrinsics::_ceil: 540 case vmIntrinsics::_floor: 541 case vmIntrinsics::_rint: 542 case vmIntrinsics::_dsin: 543 case vmIntrinsics::_dcos: 544 case vmIntrinsics::_dtan: 545 case vmIntrinsics::_dabs: 546 case vmIntrinsics::_fabs: 547 case vmIntrinsics::_iabs: 548 case vmIntrinsics::_labs: 549 case vmIntrinsics::_datan2: 550 case vmIntrinsics::_dsqrt: 551 case vmIntrinsics::_dexp: 552 case vmIntrinsics::_dlog: 553 case vmIntrinsics::_dlog10: 554 case vmIntrinsics::_dpow: return inline_math_native(intrinsic_id()); 555 556 case vmIntrinsics::_min: 557 case vmIntrinsics::_max: return inline_min_max(intrinsic_id()); 558 559 case vmIntrinsics::_notify: 560 case vmIntrinsics::_notifyAll: 561 return inline_notify(intrinsic_id()); 562 563 case vmIntrinsics::_addExactI: return inline_math_addExactI(false /* add */); 564 case vmIntrinsics::_addExactL: return inline_math_addExactL(false /* add */); 565 case vmIntrinsics::_decrementExactI: return inline_math_subtractExactI(true /* decrement */); 566 case vmIntrinsics::_decrementExactL: return inline_math_subtractExactL(true /* decrement */); 567 case vmIntrinsics::_incrementExactI: return inline_math_addExactI(true /* increment */); 568 case vmIntrinsics::_incrementExactL: return inline_math_addExactL(true /* increment */); 569 case vmIntrinsics::_multiplyExactI: return inline_math_multiplyExactI(); 570 case vmIntrinsics::_multiplyExactL: return inline_math_multiplyExactL(); 571 case vmIntrinsics::_multiplyHigh: return inline_math_multiplyHigh(); 572 case vmIntrinsics::_negateExactI: return inline_math_negateExactI(); 573 case vmIntrinsics::_negateExactL: return inline_math_negateExactL(); 574 case vmIntrinsics::_subtractExactI: return inline_math_subtractExactI(false /* subtract */); 575 case vmIntrinsics::_subtractExactL: return inline_math_subtractExactL(false /* subtract */); 576 577 case vmIntrinsics::_arraycopy: return inline_arraycopy(); 578 579 case vmIntrinsics::_compareToL: return inline_string_compareTo(StrIntrinsicNode::LL); 580 case vmIntrinsics::_compareToU: return inline_string_compareTo(StrIntrinsicNode::UU); 581 case vmIntrinsics::_compareToLU: return inline_string_compareTo(StrIntrinsicNode::LU); 582 case vmIntrinsics::_compareToUL: return inline_string_compareTo(StrIntrinsicNode::UL); 583 584 case vmIntrinsics::_indexOfL: return inline_string_indexOf(StrIntrinsicNode::LL); 585 case vmIntrinsics::_indexOfU: return inline_string_indexOf(StrIntrinsicNode::UU); 586 case vmIntrinsics::_indexOfUL: return inline_string_indexOf(StrIntrinsicNode::UL); 587 case vmIntrinsics::_indexOfIL: return inline_string_indexOfI(StrIntrinsicNode::LL); 588 case vmIntrinsics::_indexOfIU: return inline_string_indexOfI(StrIntrinsicNode::UU); 589 case vmIntrinsics::_indexOfIUL: return inline_string_indexOfI(StrIntrinsicNode::UL); 590 case vmIntrinsics::_indexOfU_char: return inline_string_indexOfChar(); 591 592 case vmIntrinsics::_equalsL: return inline_string_equals(StrIntrinsicNode::LL); 593 case vmIntrinsics::_equalsU: return inline_string_equals(StrIntrinsicNode::UU); 594 595 case vmIntrinsics::_toBytesStringU: return inline_string_toBytesU(); 596 case vmIntrinsics::_getCharsStringU: return inline_string_getCharsU(); 597 case vmIntrinsics::_getCharStringU: return inline_string_char_access(!is_store); 598 case vmIntrinsics::_putCharStringU: return inline_string_char_access( is_store); 599 600 case vmIntrinsics::_compressStringC: 601 case vmIntrinsics::_compressStringB: return inline_string_copy( is_compress); 602 case vmIntrinsics::_inflateStringC: 603 case vmIntrinsics::_inflateStringB: return inline_string_copy(!is_compress); 604 605 case vmIntrinsics::_getReference: return inline_unsafe_access(!is_store, T_OBJECT, Relaxed, false); 606 case vmIntrinsics::_getBoolean: return inline_unsafe_access(!is_store, T_BOOLEAN, Relaxed, false); 607 case vmIntrinsics::_getByte: return inline_unsafe_access(!is_store, T_BYTE, Relaxed, false); 608 case vmIntrinsics::_getShort: return inline_unsafe_access(!is_store, T_SHORT, Relaxed, false); 609 case vmIntrinsics::_getChar: return inline_unsafe_access(!is_store, T_CHAR, Relaxed, false); 610 case vmIntrinsics::_getInt: return inline_unsafe_access(!is_store, T_INT, Relaxed, false); 611 case vmIntrinsics::_getLong: return inline_unsafe_access(!is_store, T_LONG, Relaxed, false); 612 case vmIntrinsics::_getFloat: return inline_unsafe_access(!is_store, T_FLOAT, Relaxed, false); 613 case vmIntrinsics::_getDouble: return inline_unsafe_access(!is_store, T_DOUBLE, Relaxed, false); 614 615 case vmIntrinsics::_putReference: return inline_unsafe_access( is_store, T_OBJECT, Relaxed, false); 616 case vmIntrinsics::_putBoolean: return inline_unsafe_access( is_store, T_BOOLEAN, Relaxed, false); 617 case vmIntrinsics::_putByte: return inline_unsafe_access( is_store, T_BYTE, Relaxed, false); 618 case vmIntrinsics::_putShort: return inline_unsafe_access( is_store, T_SHORT, Relaxed, false); 619 case vmIntrinsics::_putChar: return inline_unsafe_access( is_store, T_CHAR, Relaxed, false); 620 case vmIntrinsics::_putInt: return inline_unsafe_access( is_store, T_INT, Relaxed, false); 621 case vmIntrinsics::_putLong: return inline_unsafe_access( is_store, T_LONG, Relaxed, false); 622 case vmIntrinsics::_putFloat: return inline_unsafe_access( is_store, T_FLOAT, Relaxed, false); 623 case vmIntrinsics::_putDouble: return inline_unsafe_access( is_store, T_DOUBLE, Relaxed, false); 624 625 case vmIntrinsics::_getReferenceVolatile: return inline_unsafe_access(!is_store, T_OBJECT, Volatile, false); 626 case vmIntrinsics::_getBooleanVolatile: return inline_unsafe_access(!is_store, T_BOOLEAN, Volatile, false); 627 case vmIntrinsics::_getByteVolatile: return inline_unsafe_access(!is_store, T_BYTE, Volatile, false); 628 case vmIntrinsics::_getShortVolatile: return inline_unsafe_access(!is_store, T_SHORT, Volatile, false); 629 case vmIntrinsics::_getCharVolatile: return inline_unsafe_access(!is_store, T_CHAR, Volatile, false); 630 case vmIntrinsics::_getIntVolatile: return inline_unsafe_access(!is_store, T_INT, Volatile, false); 631 case vmIntrinsics::_getLongVolatile: return inline_unsafe_access(!is_store, T_LONG, Volatile, false); 632 case vmIntrinsics::_getFloatVolatile: return inline_unsafe_access(!is_store, T_FLOAT, Volatile, false); 633 case vmIntrinsics::_getDoubleVolatile: return inline_unsafe_access(!is_store, T_DOUBLE, Volatile, false); 634 635 case vmIntrinsics::_putReferenceVolatile: return inline_unsafe_access( is_store, T_OBJECT, Volatile, false); 636 case vmIntrinsics::_putBooleanVolatile: return inline_unsafe_access( is_store, T_BOOLEAN, Volatile, false); 637 case vmIntrinsics::_putByteVolatile: return inline_unsafe_access( is_store, T_BYTE, Volatile, false); 638 case vmIntrinsics::_putShortVolatile: return inline_unsafe_access( is_store, T_SHORT, Volatile, false); 639 case vmIntrinsics::_putCharVolatile: return inline_unsafe_access( is_store, T_CHAR, Volatile, false); 640 case vmIntrinsics::_putIntVolatile: return inline_unsafe_access( is_store, T_INT, Volatile, false); 641 case vmIntrinsics::_putLongVolatile: return inline_unsafe_access( is_store, T_LONG, Volatile, false); 642 case vmIntrinsics::_putFloatVolatile: return inline_unsafe_access( is_store, T_FLOAT, Volatile, false); 643 case vmIntrinsics::_putDoubleVolatile: return inline_unsafe_access( is_store, T_DOUBLE, Volatile, false); 644 645 case vmIntrinsics::_getShortUnaligned: return inline_unsafe_access(!is_store, T_SHORT, Relaxed, true); 646 case vmIntrinsics::_getCharUnaligned: return inline_unsafe_access(!is_store, T_CHAR, Relaxed, true); 647 case vmIntrinsics::_getIntUnaligned: return inline_unsafe_access(!is_store, T_INT, Relaxed, true); 648 case vmIntrinsics::_getLongUnaligned: return inline_unsafe_access(!is_store, T_LONG, Relaxed, true); 649 650 case vmIntrinsics::_putShortUnaligned: return inline_unsafe_access( is_store, T_SHORT, Relaxed, true); 651 case vmIntrinsics::_putCharUnaligned: return inline_unsafe_access( is_store, T_CHAR, Relaxed, true); 652 case vmIntrinsics::_putIntUnaligned: return inline_unsafe_access( is_store, T_INT, Relaxed, true); 653 case vmIntrinsics::_putLongUnaligned: return inline_unsafe_access( is_store, T_LONG, Relaxed, true); 654 655 case vmIntrinsics::_getReferenceAcquire: return inline_unsafe_access(!is_store, T_OBJECT, Acquire, false); 656 case vmIntrinsics::_getBooleanAcquire: return inline_unsafe_access(!is_store, T_BOOLEAN, Acquire, false); 657 case vmIntrinsics::_getByteAcquire: return inline_unsafe_access(!is_store, T_BYTE, Acquire, false); 658 case vmIntrinsics::_getShortAcquire: return inline_unsafe_access(!is_store, T_SHORT, Acquire, false); 659 case vmIntrinsics::_getCharAcquire: return inline_unsafe_access(!is_store, T_CHAR, Acquire, false); 660 case vmIntrinsics::_getIntAcquire: return inline_unsafe_access(!is_store, T_INT, Acquire, false); 661 case vmIntrinsics::_getLongAcquire: return inline_unsafe_access(!is_store, T_LONG, Acquire, false); 662 case vmIntrinsics::_getFloatAcquire: return inline_unsafe_access(!is_store, T_FLOAT, Acquire, false); 663 case vmIntrinsics::_getDoubleAcquire: return inline_unsafe_access(!is_store, T_DOUBLE, Acquire, false); 664 665 case vmIntrinsics::_putReferenceRelease: return inline_unsafe_access( is_store, T_OBJECT, Release, false); 666 case vmIntrinsics::_putBooleanRelease: return inline_unsafe_access( is_store, T_BOOLEAN, Release, false); 667 case vmIntrinsics::_putByteRelease: return inline_unsafe_access( is_store, T_BYTE, Release, false); 668 case vmIntrinsics::_putShortRelease: return inline_unsafe_access( is_store, T_SHORT, Release, false); 669 case vmIntrinsics::_putCharRelease: return inline_unsafe_access( is_store, T_CHAR, Release, false); 670 case vmIntrinsics::_putIntRelease: return inline_unsafe_access( is_store, T_INT, Release, false); 671 case vmIntrinsics::_putLongRelease: return inline_unsafe_access( is_store, T_LONG, Release, false); 672 case vmIntrinsics::_putFloatRelease: return inline_unsafe_access( is_store, T_FLOAT, Release, false); 673 case vmIntrinsics::_putDoubleRelease: return inline_unsafe_access( is_store, T_DOUBLE, Release, false); 674 675 case vmIntrinsics::_getReferenceOpaque: return inline_unsafe_access(!is_store, T_OBJECT, Opaque, false); 676 case vmIntrinsics::_getBooleanOpaque: return inline_unsafe_access(!is_store, T_BOOLEAN, Opaque, false); 677 case vmIntrinsics::_getByteOpaque: return inline_unsafe_access(!is_store, T_BYTE, Opaque, false); 678 case vmIntrinsics::_getShortOpaque: return inline_unsafe_access(!is_store, T_SHORT, Opaque, false); 679 case vmIntrinsics::_getCharOpaque: return inline_unsafe_access(!is_store, T_CHAR, Opaque, false); 680 case vmIntrinsics::_getIntOpaque: return inline_unsafe_access(!is_store, T_INT, Opaque, false); 681 case vmIntrinsics::_getLongOpaque: return inline_unsafe_access(!is_store, T_LONG, Opaque, false); 682 case vmIntrinsics::_getFloatOpaque: return inline_unsafe_access(!is_store, T_FLOAT, Opaque, false); 683 case vmIntrinsics::_getDoubleOpaque: return inline_unsafe_access(!is_store, T_DOUBLE, Opaque, false); 684 685 case vmIntrinsics::_putReferenceOpaque: return inline_unsafe_access( is_store, T_OBJECT, Opaque, false); 686 case vmIntrinsics::_putBooleanOpaque: return inline_unsafe_access( is_store, T_BOOLEAN, Opaque, false); 687 case vmIntrinsics::_putByteOpaque: return inline_unsafe_access( is_store, T_BYTE, Opaque, false); 688 case vmIntrinsics::_putShortOpaque: return inline_unsafe_access( is_store, T_SHORT, Opaque, false); 689 case vmIntrinsics::_putCharOpaque: return inline_unsafe_access( is_store, T_CHAR, Opaque, false); 690 case vmIntrinsics::_putIntOpaque: return inline_unsafe_access( is_store, T_INT, Opaque, false); 691 case vmIntrinsics::_putLongOpaque: return inline_unsafe_access( is_store, T_LONG, Opaque, false); 692 case vmIntrinsics::_putFloatOpaque: return inline_unsafe_access( is_store, T_FLOAT, Opaque, false); 693 case vmIntrinsics::_putDoubleOpaque: return inline_unsafe_access( is_store, T_DOUBLE, Opaque, false); 694 695 case vmIntrinsics::_compareAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap, Volatile); 696 case vmIntrinsics::_compareAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap, Volatile); 697 case vmIntrinsics::_compareAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap, Volatile); 698 case vmIntrinsics::_compareAndSetInt: return inline_unsafe_load_store(T_INT, LS_cmp_swap, Volatile); 699 case vmIntrinsics::_compareAndSetLong: return inline_unsafe_load_store(T_LONG, LS_cmp_swap, Volatile); 700 701 case vmIntrinsics::_weakCompareAndSetReferencePlain: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed); 702 case vmIntrinsics::_weakCompareAndSetReferenceAcquire: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire); 703 case vmIntrinsics::_weakCompareAndSetReferenceRelease: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release); 704 case vmIntrinsics::_weakCompareAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Volatile); 705 case vmIntrinsics::_weakCompareAndSetBytePlain: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Relaxed); 706 case vmIntrinsics::_weakCompareAndSetByteAcquire: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Acquire); 707 case vmIntrinsics::_weakCompareAndSetByteRelease: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Release); 708 case vmIntrinsics::_weakCompareAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Volatile); 709 case vmIntrinsics::_weakCompareAndSetShortPlain: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Relaxed); 710 case vmIntrinsics::_weakCompareAndSetShortAcquire: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Acquire); 711 case vmIntrinsics::_weakCompareAndSetShortRelease: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Release); 712 case vmIntrinsics::_weakCompareAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Volatile); 713 case vmIntrinsics::_weakCompareAndSetIntPlain: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Relaxed); 714 case vmIntrinsics::_weakCompareAndSetIntAcquire: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Acquire); 715 case vmIntrinsics::_weakCompareAndSetIntRelease: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Release); 716 case vmIntrinsics::_weakCompareAndSetInt: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Volatile); 717 case vmIntrinsics::_weakCompareAndSetLongPlain: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Relaxed); 718 case vmIntrinsics::_weakCompareAndSetLongAcquire: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Acquire); 719 case vmIntrinsics::_weakCompareAndSetLongRelease: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Release); 720 case vmIntrinsics::_weakCompareAndSetLong: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Volatile); 721 722 case vmIntrinsics::_compareAndExchangeReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Volatile); 723 case vmIntrinsics::_compareAndExchangeReferenceAcquire: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Acquire); 724 case vmIntrinsics::_compareAndExchangeReferenceRelease: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Release); 725 case vmIntrinsics::_compareAndExchangeByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Volatile); 726 case vmIntrinsics::_compareAndExchangeByteAcquire: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Acquire); 727 case vmIntrinsics::_compareAndExchangeByteRelease: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Release); 728 case vmIntrinsics::_compareAndExchangeShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Volatile); 729 case vmIntrinsics::_compareAndExchangeShortAcquire: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Acquire); 730 case vmIntrinsics::_compareAndExchangeShortRelease: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Release); 731 case vmIntrinsics::_compareAndExchangeInt: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Volatile); 732 case vmIntrinsics::_compareAndExchangeIntAcquire: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Acquire); 733 case vmIntrinsics::_compareAndExchangeIntRelease: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Release); 734 case vmIntrinsics::_compareAndExchangeLong: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Volatile); 735 case vmIntrinsics::_compareAndExchangeLongAcquire: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Acquire); 736 case vmIntrinsics::_compareAndExchangeLongRelease: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Release); 737 738 case vmIntrinsics::_getAndAddByte: return inline_unsafe_load_store(T_BYTE, LS_get_add, Volatile); 739 case vmIntrinsics::_getAndAddShort: return inline_unsafe_load_store(T_SHORT, LS_get_add, Volatile); 740 case vmIntrinsics::_getAndAddInt: return inline_unsafe_load_store(T_INT, LS_get_add, Volatile); 741 case vmIntrinsics::_getAndAddLong: return inline_unsafe_load_store(T_LONG, LS_get_add, Volatile); 742 743 case vmIntrinsics::_getAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_get_set, Volatile); 744 case vmIntrinsics::_getAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_get_set, Volatile); 745 case vmIntrinsics::_getAndSetInt: return inline_unsafe_load_store(T_INT, LS_get_set, Volatile); 746 case vmIntrinsics::_getAndSetLong: return inline_unsafe_load_store(T_LONG, LS_get_set, Volatile); 747 case vmIntrinsics::_getAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_get_set, Volatile); 748 749 case vmIntrinsics::_loadFence: 750 case vmIntrinsics::_storeFence: 751 case vmIntrinsics::_fullFence: return inline_unsafe_fence(intrinsic_id()); 752 753 case vmIntrinsics::_onSpinWait: return inline_onspinwait(); 754 755 case vmIntrinsics::_currentThread: return inline_native_currentThread(); 756 757 #ifdef JFR_HAVE_INTRINSICS 758 case vmIntrinsics::_counterTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, JFR_TIME_FUNCTION), "counterTime"); 759 case vmIntrinsics::_getClassId: return inline_native_classID(); 760 case vmIntrinsics::_getEventWriter: return inline_native_getEventWriter(); 761 #endif 762 case vmIntrinsics::_currentTimeMillis: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis"); 763 case vmIntrinsics::_nanoTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime"); 764 case vmIntrinsics::_writeback0: return inline_unsafe_writeback0(); 765 case vmIntrinsics::_writebackPreSync0: return inline_unsafe_writebackSync0(true); 766 case vmIntrinsics::_writebackPostSync0: return inline_unsafe_writebackSync0(false); 767 case vmIntrinsics::_allocateInstance: return inline_unsafe_allocate(); 768 case vmIntrinsics::_copyMemory: return inline_unsafe_copyMemory(); 769 case vmIntrinsics::_getLength: return inline_native_getLength(); 770 case vmIntrinsics::_copyOf: return inline_array_copyOf(false); 771 case vmIntrinsics::_copyOfRange: return inline_array_copyOf(true); 772 case vmIntrinsics::_equalsB: return inline_array_equals(StrIntrinsicNode::LL); 773 case vmIntrinsics::_equalsC: return inline_array_equals(StrIntrinsicNode::UU); 774 case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex(); 775 case vmIntrinsics::_clone: return inline_native_clone(intrinsic()->is_virtual()); 776 777 case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true); 778 case vmIntrinsics::_newArray: return inline_unsafe_newArray(false); 779 780 case vmIntrinsics::_isAssignableFrom: return inline_native_subtype_check(); 781 782 case vmIntrinsics::_isInstance: 783 case vmIntrinsics::_getModifiers: 784 case vmIntrinsics::_isInterface: 785 case vmIntrinsics::_isArray: 786 case vmIntrinsics::_isPrimitive: 787 case vmIntrinsics::_isHidden: 788 case vmIntrinsics::_getSuperclass: 789 case vmIntrinsics::_getClassAccessFlags: return inline_native_Class_query(intrinsic_id()); 790 791 case vmIntrinsics::_floatToRawIntBits: 792 case vmIntrinsics::_floatToIntBits: 793 case vmIntrinsics::_intBitsToFloat: 794 case vmIntrinsics::_doubleToRawLongBits: 795 case vmIntrinsics::_doubleToLongBits: 796 case vmIntrinsics::_longBitsToDouble: return inline_fp_conversions(intrinsic_id()); 797 798 case vmIntrinsics::_numberOfLeadingZeros_i: 799 case vmIntrinsics::_numberOfLeadingZeros_l: 800 case vmIntrinsics::_numberOfTrailingZeros_i: 801 case vmIntrinsics::_numberOfTrailingZeros_l: 802 case vmIntrinsics::_bitCount_i: 803 case vmIntrinsics::_bitCount_l: 804 case vmIntrinsics::_reverseBytes_i: 805 case vmIntrinsics::_reverseBytes_l: 806 case vmIntrinsics::_reverseBytes_s: 807 case vmIntrinsics::_reverseBytes_c: return inline_number_methods(intrinsic_id()); 808 809 case vmIntrinsics::_getCallerClass: return inline_native_Reflection_getCallerClass(); 810 811 case vmIntrinsics::_Reference_get: return inline_reference_get(); 812 813 case vmIntrinsics::_Class_cast: return inline_Class_cast(); 814 815 case vmIntrinsics::_aescrypt_encryptBlock: 816 case vmIntrinsics::_aescrypt_decryptBlock: return inline_aescrypt_Block(intrinsic_id()); 817 818 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 819 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 820 return inline_cipherBlockChaining_AESCrypt(intrinsic_id()); 821 822 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 823 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 824 return inline_electronicCodeBook_AESCrypt(intrinsic_id()); 825 826 case vmIntrinsics::_counterMode_AESCrypt: 827 return inline_counterMode_AESCrypt(intrinsic_id()); 828 829 case vmIntrinsics::_md5_implCompress: 830 case vmIntrinsics::_sha_implCompress: 831 case vmIntrinsics::_sha2_implCompress: 832 case vmIntrinsics::_sha5_implCompress: 833 case vmIntrinsics::_sha3_implCompress: 834 return inline_digestBase_implCompress(intrinsic_id()); 835 836 case vmIntrinsics::_digestBase_implCompressMB: 837 return inline_digestBase_implCompressMB(predicate); 838 839 case vmIntrinsics::_multiplyToLen: 840 return inline_multiplyToLen(); 841 842 case vmIntrinsics::_squareToLen: 843 return inline_squareToLen(); 844 845 case vmIntrinsics::_mulAdd: 846 return inline_mulAdd(); 847 848 case vmIntrinsics::_montgomeryMultiply: 849 return inline_montgomeryMultiply(); 850 case vmIntrinsics::_montgomerySquare: 851 return inline_montgomerySquare(); 852 853 case vmIntrinsics::_bigIntegerRightShiftWorker: 854 return inline_bigIntegerShift(true); 855 case vmIntrinsics::_bigIntegerLeftShiftWorker: 856 return inline_bigIntegerShift(false); 857 858 case vmIntrinsics::_vectorizedMismatch: 859 return inline_vectorizedMismatch(); 860 861 case vmIntrinsics::_ghash_processBlocks: 862 return inline_ghash_processBlocks(); 863 case vmIntrinsics::_base64_encodeBlock: 864 return inline_base64_encodeBlock(); 865 866 case vmIntrinsics::_encodeISOArray: 867 case vmIntrinsics::_encodeByteISOArray: 868 return inline_encodeISOArray(); 869 870 case vmIntrinsics::_updateCRC32: 871 return inline_updateCRC32(); 872 case vmIntrinsics::_updateBytesCRC32: 873 return inline_updateBytesCRC32(); 874 case vmIntrinsics::_updateByteBufferCRC32: 875 return inline_updateByteBufferCRC32(); 876 877 case vmIntrinsics::_updateBytesCRC32C: 878 return inline_updateBytesCRC32C(); 879 case vmIntrinsics::_updateDirectByteBufferCRC32C: 880 return inline_updateDirectByteBufferCRC32C(); 881 882 case vmIntrinsics::_updateBytesAdler32: 883 return inline_updateBytesAdler32(); 884 case vmIntrinsics::_updateByteBufferAdler32: 885 return inline_updateByteBufferAdler32(); 886 887 case vmIntrinsics::_profileBoolean: 888 return inline_profileBoolean(); 889 case vmIntrinsics::_isCompileConstant: 890 return inline_isCompileConstant(); 891 892 case vmIntrinsics::_hasNegatives: 893 return inline_hasNegatives(); 894 895 case vmIntrinsics::_fmaD: 896 case vmIntrinsics::_fmaF: 897 return inline_fma(intrinsic_id()); 898 899 case vmIntrinsics::_isDigit: 900 case vmIntrinsics::_isLowerCase: 901 case vmIntrinsics::_isUpperCase: 902 case vmIntrinsics::_isWhitespace: 903 return inline_character_compare(intrinsic_id()); 904 905 case vmIntrinsics::_maxF: 906 case vmIntrinsics::_minF: 907 case vmIntrinsics::_maxD: 908 case vmIntrinsics::_minD: 909 return inline_fp_min_max(intrinsic_id()); 910 911 default: 912 // If you get here, it may be that someone has added a new intrinsic 913 // to the list in vmSymbols.hpp without implementing it here. 914 #ifndef PRODUCT 915 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) { 916 tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)", 917 vmIntrinsics::name_at(intrinsic_id()), intrinsic_id()); 918 } 919 #endif 920 return false; 921 } 922 } 923 924 Node* LibraryCallKit::try_to_predicate(int predicate) { 925 if (!jvms()->has_method()) { 926 // Root JVMState has a null method. 927 assert(map()->memory()->Opcode() == Op_Parm, ""); 928 // Insert the memory aliasing node 929 set_all_memory(reset_memory()); 930 } 931 assert(merged_memory(), ""); 932 933 switch (intrinsic_id()) { 934 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 935 return inline_cipherBlockChaining_AESCrypt_predicate(false); 936 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 937 return inline_cipherBlockChaining_AESCrypt_predicate(true); 938 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 939 return inline_electronicCodeBook_AESCrypt_predicate(false); 940 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 941 return inline_electronicCodeBook_AESCrypt_predicate(true); 942 case vmIntrinsics::_counterMode_AESCrypt: 943 return inline_counterMode_AESCrypt_predicate(); 944 case vmIntrinsics::_digestBase_implCompressMB: 945 return inline_digestBase_implCompressMB_predicate(predicate); 946 947 default: 948 // If you get here, it may be that someone has added a new intrinsic 949 // to the list in vmSymbols.hpp without implementing it here. 950 #ifndef PRODUCT 951 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) { 952 tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)", 953 vmIntrinsics::name_at(intrinsic_id()), intrinsic_id()); 954 } 955 #endif 956 Node* slow_ctl = control(); 957 set_control(top()); // No fast path instrinsic 958 return slow_ctl; 959 } 960 } 961 962 //------------------------------set_result------------------------------- 963 // Helper function for finishing intrinsics. 964 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) { 965 record_for_igvn(region); 966 set_control(_gvn.transform(region)); 967 set_result( _gvn.transform(value)); 968 assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity"); 969 } 970 971 //------------------------------generate_guard--------------------------- 972 // Helper function for generating guarded fast-slow graph structures. 973 // The given 'test', if true, guards a slow path. If the test fails 974 // then a fast path can be taken. (We generally hope it fails.) 975 // In all cases, GraphKit::control() is updated to the fast path. 976 // The returned value represents the control for the slow path. 977 // The return value is never 'top'; it is either a valid control 978 // or NULL if it is obvious that the slow path can never be taken. 979 // Also, if region and the slow control are not NULL, the slow edge 980 // is appended to the region. 981 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) { 982 if (stopped()) { 983 // Already short circuited. 984 return NULL; 985 } 986 987 // Build an if node and its projections. 988 // If test is true we take the slow path, which we assume is uncommon. 989 if (_gvn.type(test) == TypeInt::ZERO) { 990 // The slow branch is never taken. No need to build this guard. 991 return NULL; 992 } 993 994 IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN); 995 996 Node* if_slow = _gvn.transform(new IfTrueNode(iff)); 997 if (if_slow == top()) { 998 // The slow branch is never taken. No need to build this guard. 999 return NULL; 1000 } 1001 1002 if (region != NULL) 1003 region->add_req(if_slow); 1004 1005 Node* if_fast = _gvn.transform(new IfFalseNode(iff)); 1006 set_control(if_fast); 1007 1008 return if_slow; 1009 } 1010 1011 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) { 1012 return generate_guard(test, region, PROB_UNLIKELY_MAG(3)); 1013 } 1014 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) { 1015 return generate_guard(test, region, PROB_FAIR); 1016 } 1017 1018 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region, 1019 Node* *pos_index) { 1020 if (stopped()) 1021 return NULL; // already stopped 1022 if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint] 1023 return NULL; // index is already adequately typed 1024 Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0))); 1025 Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt)); 1026 Node* is_neg = generate_guard(bol_lt, region, PROB_MIN); 1027 if (is_neg != NULL && pos_index != NULL) { 1028 // Emulate effect of Parse::adjust_map_after_if. 1029 Node* ccast = new CastIINode(index, TypeInt::POS); 1030 ccast->set_req(0, control()); 1031 (*pos_index) = _gvn.transform(ccast); 1032 } 1033 return is_neg; 1034 } 1035 1036 // Make sure that 'position' is a valid limit index, in [0..length]. 1037 // There are two equivalent plans for checking this: 1038 // A. (offset + copyLength) unsigned<= arrayLength 1039 // B. offset <= (arrayLength - copyLength) 1040 // We require that all of the values above, except for the sum and 1041 // difference, are already known to be non-negative. 1042 // Plan A is robust in the face of overflow, if offset and copyLength 1043 // are both hugely positive. 1044 // 1045 // Plan B is less direct and intuitive, but it does not overflow at 1046 // all, since the difference of two non-negatives is always 1047 // representable. Whenever Java methods must perform the equivalent 1048 // check they generally use Plan B instead of Plan A. 1049 // For the moment we use Plan A. 1050 inline Node* LibraryCallKit::generate_limit_guard(Node* offset, 1051 Node* subseq_length, 1052 Node* array_length, 1053 RegionNode* region) { 1054 if (stopped()) 1055 return NULL; // already stopped 1056 bool zero_offset = _gvn.type(offset) == TypeInt::ZERO; 1057 if (zero_offset && subseq_length->eqv_uncast(array_length)) 1058 return NULL; // common case of whole-array copy 1059 Node* last = subseq_length; 1060 if (!zero_offset) // last += offset 1061 last = _gvn.transform(new AddINode(last, offset)); 1062 Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last)); 1063 Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt)); 1064 Node* is_over = generate_guard(bol_lt, region, PROB_MIN); 1065 return is_over; 1066 } 1067 1068 // Emit range checks for the given String.value byte array 1069 void LibraryCallKit::generate_string_range_check(Node* array, Node* offset, Node* count, bool char_count) { 1070 if (stopped()) { 1071 return; // already stopped 1072 } 1073 RegionNode* bailout = new RegionNode(1); 1074 record_for_igvn(bailout); 1075 if (char_count) { 1076 // Convert char count to byte count 1077 count = _gvn.transform(new LShiftINode(count, intcon(1))); 1078 } 1079 1080 // Offset and count must not be negative 1081 generate_negative_guard(offset, bailout); 1082 generate_negative_guard(count, bailout); 1083 // Offset + count must not exceed length of array 1084 generate_limit_guard(offset, count, load_array_length(array), bailout); 1085 1086 if (bailout->req() > 1) { 1087 PreserveJVMState pjvms(this); 1088 set_control(_gvn.transform(bailout)); 1089 uncommon_trap(Deoptimization::Reason_intrinsic, 1090 Deoptimization::Action_maybe_recompile); 1091 } 1092 } 1093 1094 //--------------------------generate_current_thread-------------------- 1095 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) { 1096 ciKlass* thread_klass = env()->Thread_klass(); 1097 const Type* thread_type = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull); 1098 Node* thread = _gvn.transform(new ThreadLocalNode()); 1099 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset())); 1100 tls_output = thread; 1101 Node* thread_obj_handle = LoadNode::make(_gvn, NULL, immutable_memory(), p, p->bottom_type()->is_ptr(), TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered); 1102 thread_obj_handle = _gvn.transform(thread_obj_handle); 1103 return access_load(thread_obj_handle, thread_type, T_OBJECT, IN_NATIVE | C2_IMMUTABLE_MEMORY); 1104 } 1105 1106 1107 //------------------------------make_string_method_node------------------------ 1108 // Helper method for String intrinsic functions. This version is called with 1109 // str1 and str2 pointing to byte[] nodes containing Latin1 or UTF16 encoded 1110 // characters (depending on 'is_byte'). cnt1 and cnt2 are pointing to Int nodes 1111 // containing the lengths of str1 and str2. 1112 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae) { 1113 Node* result = NULL; 1114 switch (opcode) { 1115 case Op_StrIndexOf: 1116 result = new StrIndexOfNode(control(), memory(TypeAryPtr::BYTES), 1117 str1_start, cnt1, str2_start, cnt2, ae); 1118 break; 1119 case Op_StrComp: 1120 result = new StrCompNode(control(), memory(TypeAryPtr::BYTES), 1121 str1_start, cnt1, str2_start, cnt2, ae); 1122 break; 1123 case Op_StrEquals: 1124 // We already know that cnt1 == cnt2 here (checked in 'inline_string_equals'). 1125 // Use the constant length if there is one because optimized match rule may exist. 1126 result = new StrEqualsNode(control(), memory(TypeAryPtr::BYTES), 1127 str1_start, str2_start, cnt2->is_Con() ? cnt2 : cnt1, ae); 1128 break; 1129 default: 1130 ShouldNotReachHere(); 1131 return NULL; 1132 } 1133 1134 // All these intrinsics have checks. 1135 C->set_has_split_ifs(true); // Has chance for split-if optimization 1136 clear_upper_avx(); 1137 1138 return _gvn.transform(result); 1139 } 1140 1141 //------------------------------inline_string_compareTo------------------------ 1142 bool LibraryCallKit::inline_string_compareTo(StrIntrinsicNode::ArgEnc ae) { 1143 Node* arg1 = argument(0); 1144 Node* arg2 = argument(1); 1145 1146 arg1 = must_be_not_null(arg1, true); 1147 arg2 = must_be_not_null(arg2, true); 1148 1149 // Get start addr and length of first argument 1150 Node* arg1_start = array_element_address(arg1, intcon(0), T_BYTE); 1151 Node* arg1_cnt = load_array_length(arg1); 1152 1153 // Get start addr and length of second argument 1154 Node* arg2_start = array_element_address(arg2, intcon(0), T_BYTE); 1155 Node* arg2_cnt = load_array_length(arg2); 1156 1157 Node* result = make_string_method_node(Op_StrComp, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae); 1158 set_result(result); 1159 return true; 1160 } 1161 1162 //------------------------------inline_string_equals------------------------ 1163 bool LibraryCallKit::inline_string_equals(StrIntrinsicNode::ArgEnc ae) { 1164 Node* arg1 = argument(0); 1165 Node* arg2 = argument(1); 1166 1167 // paths (plus control) merge 1168 RegionNode* region = new RegionNode(3); 1169 Node* phi = new PhiNode(region, TypeInt::BOOL); 1170 1171 if (!stopped()) { 1172 1173 arg1 = must_be_not_null(arg1, true); 1174 arg2 = must_be_not_null(arg2, true); 1175 1176 // Get start addr and length of first argument 1177 Node* arg1_start = array_element_address(arg1, intcon(0), T_BYTE); 1178 Node* arg1_cnt = load_array_length(arg1); 1179 1180 // Get start addr and length of second argument 1181 Node* arg2_start = array_element_address(arg2, intcon(0), T_BYTE); 1182 Node* arg2_cnt = load_array_length(arg2); 1183 1184 // Check for arg1_cnt != arg2_cnt 1185 Node* cmp = _gvn.transform(new CmpINode(arg1_cnt, arg2_cnt)); 1186 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne)); 1187 Node* if_ne = generate_slow_guard(bol, NULL); 1188 if (if_ne != NULL) { 1189 phi->init_req(2, intcon(0)); 1190 region->init_req(2, if_ne); 1191 } 1192 1193 // Check for count == 0 is done by assembler code for StrEquals. 1194 1195 if (!stopped()) { 1196 Node* equals = make_string_method_node(Op_StrEquals, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae); 1197 phi->init_req(1, equals); 1198 region->init_req(1, control()); 1199 } 1200 } 1201 1202 // post merge 1203 set_control(_gvn.transform(region)); 1204 record_for_igvn(region); 1205 1206 set_result(_gvn.transform(phi)); 1207 return true; 1208 } 1209 1210 //------------------------------inline_array_equals---------------------------- 1211 bool LibraryCallKit::inline_array_equals(StrIntrinsicNode::ArgEnc ae) { 1212 assert(ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::LL, "unsupported array types"); 1213 Node* arg1 = argument(0); 1214 Node* arg2 = argument(1); 1215 1216 const TypeAryPtr* mtype = (ae == StrIntrinsicNode::UU) ? TypeAryPtr::CHARS : TypeAryPtr::BYTES; 1217 set_result(_gvn.transform(new AryEqNode(control(), memory(mtype), arg1, arg2, ae))); 1218 clear_upper_avx(); 1219 1220 return true; 1221 } 1222 1223 //------------------------------inline_hasNegatives------------------------------ 1224 bool LibraryCallKit::inline_hasNegatives() { 1225 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1226 return false; 1227 } 1228 1229 assert(callee()->signature()->size() == 3, "hasNegatives has 3 parameters"); 1230 // no receiver since it is static method 1231 Node* ba = argument(0); 1232 Node* offset = argument(1); 1233 Node* len = argument(2); 1234 1235 ba = must_be_not_null(ba, true); 1236 1237 // Range checks 1238 generate_string_range_check(ba, offset, len, false); 1239 if (stopped()) { 1240 return true; 1241 } 1242 Node* ba_start = array_element_address(ba, offset, T_BYTE); 1243 Node* result = new HasNegativesNode(control(), memory(TypeAryPtr::BYTES), ba_start, len); 1244 set_result(_gvn.transform(result)); 1245 return true; 1246 } 1247 1248 bool LibraryCallKit::inline_preconditions_checkIndex() { 1249 Node* index = argument(0); 1250 Node* length = argument(1); 1251 if (too_many_traps(Deoptimization::Reason_intrinsic) || too_many_traps(Deoptimization::Reason_range_check)) { 1252 return false; 1253 } 1254 1255 Node* len_pos_cmp = _gvn.transform(new CmpINode(length, intcon(0))); 1256 Node* len_pos_bol = _gvn.transform(new BoolNode(len_pos_cmp, BoolTest::ge)); 1257 1258 { 1259 BuildCutout unless(this, len_pos_bol, PROB_MAX); 1260 uncommon_trap(Deoptimization::Reason_intrinsic, 1261 Deoptimization::Action_make_not_entrant); 1262 } 1263 1264 if (stopped()) { 1265 return false; 1266 } 1267 1268 Node* rc_cmp = _gvn.transform(new CmpUNode(index, length)); 1269 BoolTest::mask btest = BoolTest::lt; 1270 Node* rc_bool = _gvn.transform(new BoolNode(rc_cmp, btest)); 1271 RangeCheckNode* rc = new RangeCheckNode(control(), rc_bool, PROB_MAX, COUNT_UNKNOWN); 1272 _gvn.set_type(rc, rc->Value(&_gvn)); 1273 if (!rc_bool->is_Con()) { 1274 record_for_igvn(rc); 1275 } 1276 set_control(_gvn.transform(new IfTrueNode(rc))); 1277 { 1278 PreserveJVMState pjvms(this); 1279 set_control(_gvn.transform(new IfFalseNode(rc))); 1280 uncommon_trap(Deoptimization::Reason_range_check, 1281 Deoptimization::Action_make_not_entrant); 1282 } 1283 1284 if (stopped()) { 1285 return false; 1286 } 1287 1288 Node* result = new CastIINode(index, TypeInt::make(0, _gvn.type(length)->is_int()->_hi, Type::WidenMax)); 1289 result->set_req(0, control()); 1290 result = _gvn.transform(result); 1291 set_result(result); 1292 replace_in_map(index, result); 1293 clear_upper_avx(); 1294 return true; 1295 } 1296 1297 //------------------------------inline_string_indexOf------------------------ 1298 bool LibraryCallKit::inline_string_indexOf(StrIntrinsicNode::ArgEnc ae) { 1299 if (!Matcher::match_rule_supported(Op_StrIndexOf)) { 1300 return false; 1301 } 1302 Node* src = argument(0); 1303 Node* tgt = argument(1); 1304 1305 // Make the merge point 1306 RegionNode* result_rgn = new RegionNode(4); 1307 Node* result_phi = new PhiNode(result_rgn, TypeInt::INT); 1308 1309 src = must_be_not_null(src, true); 1310 tgt = must_be_not_null(tgt, true); 1311 1312 // Get start addr and length of source string 1313 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 1314 Node* src_count = load_array_length(src); 1315 1316 // Get start addr and length of substring 1317 Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE); 1318 Node* tgt_count = load_array_length(tgt); 1319 1320 if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) { 1321 // Divide src size by 2 if String is UTF16 encoded 1322 src_count = _gvn.transform(new RShiftINode(src_count, intcon(1))); 1323 } 1324 if (ae == StrIntrinsicNode::UU) { 1325 // Divide substring size by 2 if String is UTF16 encoded 1326 tgt_count = _gvn.transform(new RShiftINode(tgt_count, intcon(1))); 1327 } 1328 1329 Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, result_rgn, result_phi, ae); 1330 if (result != NULL) { 1331 result_phi->init_req(3, result); 1332 result_rgn->init_req(3, control()); 1333 } 1334 set_control(_gvn.transform(result_rgn)); 1335 record_for_igvn(result_rgn); 1336 set_result(_gvn.transform(result_phi)); 1337 1338 return true; 1339 } 1340 1341 //-----------------------------inline_string_indexOf----------------------- 1342 bool LibraryCallKit::inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae) { 1343 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1344 return false; 1345 } 1346 if (!Matcher::match_rule_supported(Op_StrIndexOf)) { 1347 return false; 1348 } 1349 assert(callee()->signature()->size() == 5, "String.indexOf() has 5 arguments"); 1350 Node* src = argument(0); // byte[] 1351 Node* src_count = argument(1); // char count 1352 Node* tgt = argument(2); // byte[] 1353 Node* tgt_count = argument(3); // char count 1354 Node* from_index = argument(4); // char index 1355 1356 src = must_be_not_null(src, true); 1357 tgt = must_be_not_null(tgt, true); 1358 1359 // Multiply byte array index by 2 if String is UTF16 encoded 1360 Node* src_offset = (ae == StrIntrinsicNode::LL) ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1))); 1361 src_count = _gvn.transform(new SubINode(src_count, from_index)); 1362 Node* src_start = array_element_address(src, src_offset, T_BYTE); 1363 Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE); 1364 1365 // Range checks 1366 generate_string_range_check(src, src_offset, src_count, ae != StrIntrinsicNode::LL); 1367 generate_string_range_check(tgt, intcon(0), tgt_count, ae == StrIntrinsicNode::UU); 1368 if (stopped()) { 1369 return true; 1370 } 1371 1372 RegionNode* region = new RegionNode(5); 1373 Node* phi = new PhiNode(region, TypeInt::INT); 1374 1375 Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, region, phi, ae); 1376 if (result != NULL) { 1377 // The result is index relative to from_index if substring was found, -1 otherwise. 1378 // Generate code which will fold into cmove. 1379 Node* cmp = _gvn.transform(new CmpINode(result, intcon(0))); 1380 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt)); 1381 1382 Node* if_lt = generate_slow_guard(bol, NULL); 1383 if (if_lt != NULL) { 1384 // result == -1 1385 phi->init_req(3, result); 1386 region->init_req(3, if_lt); 1387 } 1388 if (!stopped()) { 1389 result = _gvn.transform(new AddINode(result, from_index)); 1390 phi->init_req(4, result); 1391 region->init_req(4, control()); 1392 } 1393 } 1394 1395 set_control(_gvn.transform(region)); 1396 record_for_igvn(region); 1397 set_result(_gvn.transform(phi)); 1398 clear_upper_avx(); 1399 1400 return true; 1401 } 1402 1403 // Create StrIndexOfNode with fast path checks 1404 Node* LibraryCallKit::make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count, 1405 RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae) { 1406 // Check for substr count > string count 1407 Node* cmp = _gvn.transform(new CmpINode(tgt_count, src_count)); 1408 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt)); 1409 Node* if_gt = generate_slow_guard(bol, NULL); 1410 if (if_gt != NULL) { 1411 phi->init_req(1, intcon(-1)); 1412 region->init_req(1, if_gt); 1413 } 1414 if (!stopped()) { 1415 // Check for substr count == 0 1416 cmp = _gvn.transform(new CmpINode(tgt_count, intcon(0))); 1417 bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 1418 Node* if_zero = generate_slow_guard(bol, NULL); 1419 if (if_zero != NULL) { 1420 phi->init_req(2, intcon(0)); 1421 region->init_req(2, if_zero); 1422 } 1423 } 1424 if (!stopped()) { 1425 return make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae); 1426 } 1427 return NULL; 1428 } 1429 1430 //-----------------------------inline_string_indexOfChar----------------------- 1431 bool LibraryCallKit::inline_string_indexOfChar() { 1432 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1433 return false; 1434 } 1435 if (!Matcher::match_rule_supported(Op_StrIndexOfChar)) { 1436 return false; 1437 } 1438 assert(callee()->signature()->size() == 4, "String.indexOfChar() has 4 arguments"); 1439 Node* src = argument(0); // byte[] 1440 Node* tgt = argument(1); // tgt is int ch 1441 Node* from_index = argument(2); 1442 Node* max = argument(3); 1443 1444 src = must_be_not_null(src, true); 1445 1446 Node* src_offset = _gvn.transform(new LShiftINode(from_index, intcon(1))); 1447 Node* src_start = array_element_address(src, src_offset, T_BYTE); 1448 Node* src_count = _gvn.transform(new SubINode(max, from_index)); 1449 1450 // Range checks 1451 generate_string_range_check(src, src_offset, src_count, true); 1452 if (stopped()) { 1453 return true; 1454 } 1455 1456 RegionNode* region = new RegionNode(3); 1457 Node* phi = new PhiNode(region, TypeInt::INT); 1458 1459 Node* result = new StrIndexOfCharNode(control(), memory(TypeAryPtr::BYTES), src_start, src_count, tgt, StrIntrinsicNode::none); 1460 C->set_has_split_ifs(true); // Has chance for split-if optimization 1461 _gvn.transform(result); 1462 1463 Node* cmp = _gvn.transform(new CmpINode(result, intcon(0))); 1464 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt)); 1465 1466 Node* if_lt = generate_slow_guard(bol, NULL); 1467 if (if_lt != NULL) { 1468 // result == -1 1469 phi->init_req(2, result); 1470 region->init_req(2, if_lt); 1471 } 1472 if (!stopped()) { 1473 result = _gvn.transform(new AddINode(result, from_index)); 1474 phi->init_req(1, result); 1475 region->init_req(1, control()); 1476 } 1477 set_control(_gvn.transform(region)); 1478 record_for_igvn(region); 1479 set_result(_gvn.transform(phi)); 1480 1481 return true; 1482 } 1483 //---------------------------inline_string_copy--------------------- 1484 // compressIt == true --> generate a compressed copy operation (compress char[]/byte[] to byte[]) 1485 // int StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) 1486 // int StringUTF16.compress(byte[] src, int srcOff, byte[] dst, int dstOff, int len) 1487 // compressIt == false --> generate an inflated copy operation (inflate byte[] to char[]/byte[]) 1488 // void StringLatin1.inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) 1489 // void StringLatin1.inflate(byte[] src, int srcOff, byte[] dst, int dstOff, int len) 1490 bool LibraryCallKit::inline_string_copy(bool compress) { 1491 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1492 return false; 1493 } 1494 int nargs = 5; // 2 oops, 3 ints 1495 assert(callee()->signature()->size() == nargs, "string copy has 5 arguments"); 1496 1497 Node* src = argument(0); 1498 Node* src_offset = argument(1); 1499 Node* dst = argument(2); 1500 Node* dst_offset = argument(3); 1501 Node* length = argument(4); 1502 1503 // Check for allocation before we add nodes that would confuse 1504 // tightly_coupled_allocation() 1505 AllocateArrayNode* alloc = tightly_coupled_allocation(dst, NULL); 1506 1507 // Figure out the size and type of the elements we will be copying. 1508 const Type* src_type = src->Value(&_gvn); 1509 const Type* dst_type = dst->Value(&_gvn); 1510 BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 1511 BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 1512 assert((compress && dst_elem == T_BYTE && (src_elem == T_BYTE || src_elem == T_CHAR)) || 1513 (!compress && src_elem == T_BYTE && (dst_elem == T_BYTE || dst_elem == T_CHAR)), 1514 "Unsupported array types for inline_string_copy"); 1515 1516 src = must_be_not_null(src, true); 1517 dst = must_be_not_null(dst, true); 1518 1519 // Convert char[] offsets to byte[] offsets 1520 bool convert_src = (compress && src_elem == T_BYTE); 1521 bool convert_dst = (!compress && dst_elem == T_BYTE); 1522 if (convert_src) { 1523 src_offset = _gvn.transform(new LShiftINode(src_offset, intcon(1))); 1524 } else if (convert_dst) { 1525 dst_offset = _gvn.transform(new LShiftINode(dst_offset, intcon(1))); 1526 } 1527 1528 // Range checks 1529 generate_string_range_check(src, src_offset, length, convert_src); 1530 generate_string_range_check(dst, dst_offset, length, convert_dst); 1531 if (stopped()) { 1532 return true; 1533 } 1534 1535 Node* src_start = array_element_address(src, src_offset, src_elem); 1536 Node* dst_start = array_element_address(dst, dst_offset, dst_elem); 1537 // 'src_start' points to src array + scaled offset 1538 // 'dst_start' points to dst array + scaled offset 1539 Node* count = NULL; 1540 if (compress) { 1541 count = compress_string(src_start, TypeAryPtr::get_array_body_type(src_elem), dst_start, length); 1542 } else { 1543 inflate_string(src_start, dst_start, TypeAryPtr::get_array_body_type(dst_elem), length); 1544 } 1545 1546 if (alloc != NULL) { 1547 if (alloc->maybe_set_complete(&_gvn)) { 1548 // "You break it, you buy it." 1549 InitializeNode* init = alloc->initialization(); 1550 assert(init->is_complete(), "we just did this"); 1551 init->set_complete_with_arraycopy(); 1552 assert(dst->is_CheckCastPP(), "sanity"); 1553 assert(dst->in(0)->in(0) == init, "dest pinned"); 1554 } 1555 // Do not let stores that initialize this object be reordered with 1556 // a subsequent store that would make this object accessible by 1557 // other threads. 1558 // Record what AllocateNode this StoreStore protects so that 1559 // escape analysis can go from the MemBarStoreStoreNode to the 1560 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1561 // based on the escape status of the AllocateNode. 1562 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1563 } 1564 if (compress) { 1565 set_result(_gvn.transform(count)); 1566 } 1567 clear_upper_avx(); 1568 1569 return true; 1570 } 1571 1572 #ifdef _LP64 1573 #define XTOP ,top() /*additional argument*/ 1574 #else //_LP64 1575 #define XTOP /*no additional argument*/ 1576 #endif //_LP64 1577 1578 //------------------------inline_string_toBytesU-------------------------- 1579 // public static byte[] StringUTF16.toBytes(char[] value, int off, int len) 1580 bool LibraryCallKit::inline_string_toBytesU() { 1581 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1582 return false; 1583 } 1584 // Get the arguments. 1585 Node* value = argument(0); 1586 Node* offset = argument(1); 1587 Node* length = argument(2); 1588 1589 Node* newcopy = NULL; 1590 1591 // Set the original stack and the reexecute bit for the interpreter to reexecute 1592 // the bytecode that invokes StringUTF16.toBytes() if deoptimization happens. 1593 { PreserveReexecuteState preexecs(this); 1594 jvms()->set_should_reexecute(true); 1595 1596 // Check if a null path was taken unconditionally. 1597 value = null_check(value); 1598 1599 RegionNode* bailout = new RegionNode(1); 1600 record_for_igvn(bailout); 1601 1602 // Range checks 1603 generate_negative_guard(offset, bailout); 1604 generate_negative_guard(length, bailout); 1605 generate_limit_guard(offset, length, load_array_length(value), bailout); 1606 // Make sure that resulting byte[] length does not overflow Integer.MAX_VALUE 1607 generate_limit_guard(length, intcon(0), intcon(max_jint/2), bailout); 1608 1609 if (bailout->req() > 1) { 1610 PreserveJVMState pjvms(this); 1611 set_control(_gvn.transform(bailout)); 1612 uncommon_trap(Deoptimization::Reason_intrinsic, 1613 Deoptimization::Action_maybe_recompile); 1614 } 1615 if (stopped()) { 1616 return true; 1617 } 1618 1619 Node* size = _gvn.transform(new LShiftINode(length, intcon(1))); 1620 Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_BYTE))); 1621 newcopy = new_array(klass_node, size, 0); // no arguments to push 1622 AllocateArrayNode* alloc = tightly_coupled_allocation(newcopy, NULL); 1623 1624 // Calculate starting addresses. 1625 Node* src_start = array_element_address(value, offset, T_CHAR); 1626 Node* dst_start = basic_plus_adr(newcopy, arrayOopDesc::base_offset_in_bytes(T_BYTE)); 1627 1628 // Check if src array address is aligned to HeapWordSize (dst is always aligned) 1629 const TypeInt* toffset = gvn().type(offset)->is_int(); 1630 bool aligned = toffset->is_con() && ((toffset->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0); 1631 1632 // Figure out which arraycopy runtime method to call (disjoint, uninitialized). 1633 const char* copyfunc_name = "arraycopy"; 1634 address copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true); 1635 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 1636 OptoRuntime::fast_arraycopy_Type(), 1637 copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM, 1638 src_start, dst_start, ConvI2X(length) XTOP); 1639 // Do not let reads from the cloned object float above the arraycopy. 1640 if (alloc != NULL) { 1641 if (alloc->maybe_set_complete(&_gvn)) { 1642 // "You break it, you buy it." 1643 InitializeNode* init = alloc->initialization(); 1644 assert(init->is_complete(), "we just did this"); 1645 init->set_complete_with_arraycopy(); 1646 assert(newcopy->is_CheckCastPP(), "sanity"); 1647 assert(newcopy->in(0)->in(0) == init, "dest pinned"); 1648 } 1649 // Do not let stores that initialize this object be reordered with 1650 // a subsequent store that would make this object accessible by 1651 // other threads. 1652 // Record what AllocateNode this StoreStore protects so that 1653 // escape analysis can go from the MemBarStoreStoreNode to the 1654 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1655 // based on the escape status of the AllocateNode. 1656 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1657 } else { 1658 insert_mem_bar(Op_MemBarCPUOrder); 1659 } 1660 } // original reexecute is set back here 1661 1662 C->set_has_split_ifs(true); // Has chance for split-if optimization 1663 if (!stopped()) { 1664 set_result(newcopy); 1665 } 1666 clear_upper_avx(); 1667 1668 return true; 1669 } 1670 1671 //------------------------inline_string_getCharsU-------------------------- 1672 // public void StringUTF16.getChars(byte[] src, int srcBegin, int srcEnd, char dst[], int dstBegin) 1673 bool LibraryCallKit::inline_string_getCharsU() { 1674 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1675 return false; 1676 } 1677 1678 // Get the arguments. 1679 Node* src = argument(0); 1680 Node* src_begin = argument(1); 1681 Node* src_end = argument(2); // exclusive offset (i < src_end) 1682 Node* dst = argument(3); 1683 Node* dst_begin = argument(4); 1684 1685 // Check for allocation before we add nodes that would confuse 1686 // tightly_coupled_allocation() 1687 AllocateArrayNode* alloc = tightly_coupled_allocation(dst, NULL); 1688 1689 // Check if a null path was taken unconditionally. 1690 src = null_check(src); 1691 dst = null_check(dst); 1692 if (stopped()) { 1693 return true; 1694 } 1695 1696 // Get length and convert char[] offset to byte[] offset 1697 Node* length = _gvn.transform(new SubINode(src_end, src_begin)); 1698 src_begin = _gvn.transform(new LShiftINode(src_begin, intcon(1))); 1699 1700 // Range checks 1701 generate_string_range_check(src, src_begin, length, true); 1702 generate_string_range_check(dst, dst_begin, length, false); 1703 if (stopped()) { 1704 return true; 1705 } 1706 1707 if (!stopped()) { 1708 // Calculate starting addresses. 1709 Node* src_start = array_element_address(src, src_begin, T_BYTE); 1710 Node* dst_start = array_element_address(dst, dst_begin, T_CHAR); 1711 1712 // Check if array addresses are aligned to HeapWordSize 1713 const TypeInt* tsrc = gvn().type(src_begin)->is_int(); 1714 const TypeInt* tdst = gvn().type(dst_begin)->is_int(); 1715 bool aligned = tsrc->is_con() && ((tsrc->get_con() * type2aelembytes(T_BYTE)) % HeapWordSize == 0) && 1716 tdst->is_con() && ((tdst->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0); 1717 1718 // Figure out which arraycopy runtime method to call (disjoint, uninitialized). 1719 const char* copyfunc_name = "arraycopy"; 1720 address copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true); 1721 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 1722 OptoRuntime::fast_arraycopy_Type(), 1723 copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM, 1724 src_start, dst_start, ConvI2X(length) XTOP); 1725 // Do not let reads from the cloned object float above the arraycopy. 1726 if (alloc != NULL) { 1727 if (alloc->maybe_set_complete(&_gvn)) { 1728 // "You break it, you buy it." 1729 InitializeNode* init = alloc->initialization(); 1730 assert(init->is_complete(), "we just did this"); 1731 init->set_complete_with_arraycopy(); 1732 assert(dst->is_CheckCastPP(), "sanity"); 1733 assert(dst->in(0)->in(0) == init, "dest pinned"); 1734 } 1735 // Do not let stores that initialize this object be reordered with 1736 // a subsequent store that would make this object accessible by 1737 // other threads. 1738 // Record what AllocateNode this StoreStore protects so that 1739 // escape analysis can go from the MemBarStoreStoreNode to the 1740 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1741 // based on the escape status of the AllocateNode. 1742 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1743 } else { 1744 insert_mem_bar(Op_MemBarCPUOrder); 1745 } 1746 } 1747 1748 C->set_has_split_ifs(true); // Has chance for split-if optimization 1749 return true; 1750 } 1751 1752 //----------------------inline_string_char_access---------------------------- 1753 // Store/Load char to/from byte[] array. 1754 // static void StringUTF16.putChar(byte[] val, int index, int c) 1755 // static char StringUTF16.getChar(byte[] val, int index) 1756 bool LibraryCallKit::inline_string_char_access(bool is_store) { 1757 Node* value = argument(0); 1758 Node* index = argument(1); 1759 Node* ch = is_store ? argument(2) : NULL; 1760 1761 // This intrinsic accesses byte[] array as char[] array. Computing the offsets 1762 // correctly requires matched array shapes. 1763 assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE), 1764 "sanity: byte[] and char[] bases agree"); 1765 assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2, 1766 "sanity: byte[] and char[] scales agree"); 1767 1768 // Bail when getChar over constants is requested: constant folding would 1769 // reject folding mismatched char access over byte[]. A normal inlining for getChar 1770 // Java method would constant fold nicely instead. 1771 if (!is_store && value->is_Con() && index->is_Con()) { 1772 return false; 1773 } 1774 1775 value = must_be_not_null(value, true); 1776 1777 Node* adr = array_element_address(value, index, T_CHAR); 1778 if (adr->is_top()) { 1779 return false; 1780 } 1781 if (is_store) { 1782 access_store_at(value, adr, TypeAryPtr::BYTES, ch, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED); 1783 } else { 1784 ch = access_load_at(value, adr, TypeAryPtr::BYTES, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 1785 set_result(ch); 1786 } 1787 return true; 1788 } 1789 1790 //--------------------------round_double_node-------------------------------- 1791 // Round a double node if necessary. 1792 Node* LibraryCallKit::round_double_node(Node* n) { 1793 if (Matcher::strict_fp_requires_explicit_rounding) { 1794 #ifdef IA32 1795 if (UseSSE < 2) { 1796 n = _gvn.transform(new RoundDoubleNode(NULL, n)); 1797 } 1798 #else 1799 Unimplemented(); 1800 #endif // IA32 1801 } 1802 return n; 1803 } 1804 1805 //------------------------------inline_math----------------------------------- 1806 // public static double Math.abs(double) 1807 // public static double Math.sqrt(double) 1808 // public static double Math.log(double) 1809 // public static double Math.log10(double) 1810 bool LibraryCallKit::inline_double_math(vmIntrinsics::ID id) { 1811 Node* arg = round_double_node(argument(0)); 1812 Node* n = NULL; 1813 switch (id) { 1814 case vmIntrinsics::_dabs: n = new AbsDNode( arg); break; 1815 case vmIntrinsics::_dsqrt: n = new SqrtDNode(C, control(), arg); break; 1816 case vmIntrinsics::_ceil: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_ceil); break; 1817 case vmIntrinsics::_floor: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_floor); break; 1818 case vmIntrinsics::_rint: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_rint); break; 1819 default: fatal_unexpected_iid(id); break; 1820 } 1821 set_result(_gvn.transform(n)); 1822 return true; 1823 } 1824 1825 //------------------------------inline_math----------------------------------- 1826 // public static float Math.abs(float) 1827 // public static int Math.abs(int) 1828 // public static long Math.abs(long) 1829 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) { 1830 Node* arg = argument(0); 1831 Node* n = NULL; 1832 switch (id) { 1833 case vmIntrinsics::_fabs: n = new AbsFNode( arg); break; 1834 case vmIntrinsics::_iabs: n = new AbsINode( arg); break; 1835 case vmIntrinsics::_labs: n = new AbsLNode( arg); break; 1836 default: fatal_unexpected_iid(id); break; 1837 } 1838 set_result(_gvn.transform(n)); 1839 return true; 1840 } 1841 1842 //------------------------------runtime_math----------------------------- 1843 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) { 1844 assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(), 1845 "must be (DD)D or (D)D type"); 1846 1847 // Inputs 1848 Node* a = round_double_node(argument(0)); 1849 Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL; 1850 1851 const TypePtr* no_memory_effects = NULL; 1852 Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName, 1853 no_memory_effects, 1854 a, top(), b, b ? top() : NULL); 1855 Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0)); 1856 #ifdef ASSERT 1857 Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1)); 1858 assert(value_top == top(), "second value must be top"); 1859 #endif 1860 1861 set_result(value); 1862 return true; 1863 } 1864 1865 //------------------------------inline_math_native----------------------------- 1866 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) { 1867 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f) 1868 switch (id) { 1869 // These intrinsics are not properly supported on all hardware 1870 case vmIntrinsics::_dsin: 1871 return StubRoutines::dsin() != NULL ? 1872 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dsin(), "dsin") : 1873 runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin), "SIN"); 1874 case vmIntrinsics::_dcos: 1875 return StubRoutines::dcos() != NULL ? 1876 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dcos(), "dcos") : 1877 runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos), "COS"); 1878 case vmIntrinsics::_dtan: 1879 return StubRoutines::dtan() != NULL ? 1880 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtan(), "dtan") : 1881 runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan), "TAN"); 1882 case vmIntrinsics::_dlog: 1883 return StubRoutines::dlog() != NULL ? 1884 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog(), "dlog") : 1885 runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog), "LOG"); 1886 case vmIntrinsics::_dlog10: 1887 return StubRoutines::dlog10() != NULL ? 1888 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog10(), "dlog10") : 1889 runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10"); 1890 1891 // These intrinsics are supported on all hardware 1892 case vmIntrinsics::_ceil: 1893 case vmIntrinsics::_floor: 1894 case vmIntrinsics::_rint: return Matcher::match_rule_supported(Op_RoundDoubleMode) ? inline_double_math(id) : false; 1895 case vmIntrinsics::_dsqrt: return Matcher::match_rule_supported(Op_SqrtD) ? inline_double_math(id) : false; 1896 case vmIntrinsics::_dabs: return Matcher::has_match_rule(Op_AbsD) ? inline_double_math(id) : false; 1897 case vmIntrinsics::_fabs: return Matcher::match_rule_supported(Op_AbsF) ? inline_math(id) : false; 1898 case vmIntrinsics::_iabs: return Matcher::match_rule_supported(Op_AbsI) ? inline_math(id) : false; 1899 case vmIntrinsics::_labs: return Matcher::match_rule_supported(Op_AbsL) ? inline_math(id) : false; 1900 1901 case vmIntrinsics::_dexp: 1902 return StubRoutines::dexp() != NULL ? 1903 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dexp(), "dexp") : 1904 runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dexp), "EXP"); 1905 case vmIntrinsics::_dpow: { 1906 Node* exp = round_double_node(argument(2)); 1907 const TypeD* d = _gvn.type(exp)->isa_double_constant(); 1908 if (d != NULL && d->getd() == 2.0) { 1909 // Special case: pow(x, 2.0) => x * x 1910 Node* base = round_double_node(argument(0)); 1911 set_result(_gvn.transform(new MulDNode(base, base))); 1912 return true; 1913 } 1914 return StubRoutines::dpow() != NULL ? 1915 runtime_math(OptoRuntime::Math_DD_D_Type(), StubRoutines::dpow(), "dpow") : 1916 runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow), "POW"); 1917 } 1918 #undef FN_PTR 1919 1920 // These intrinsics are not yet correctly implemented 1921 case vmIntrinsics::_datan2: 1922 return false; 1923 1924 default: 1925 fatal_unexpected_iid(id); 1926 return false; 1927 } 1928 } 1929 1930 static bool is_simple_name(Node* n) { 1931 return (n->req() == 1 // constant 1932 || (n->is_Type() && n->as_Type()->type()->singleton()) 1933 || n->is_Proj() // parameter or return value 1934 || n->is_Phi() // local of some sort 1935 ); 1936 } 1937 1938 //----------------------------inline_notify-----------------------------------* 1939 bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) { 1940 const TypeFunc* ftype = OptoRuntime::monitor_notify_Type(); 1941 address func; 1942 if (id == vmIntrinsics::_notify) { 1943 func = OptoRuntime::monitor_notify_Java(); 1944 } else { 1945 func = OptoRuntime::monitor_notifyAll_Java(); 1946 } 1947 Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, NULL, TypeRawPtr::BOTTOM, argument(0)); 1948 make_slow_call_ex(call, env()->Throwable_klass(), false); 1949 return true; 1950 } 1951 1952 1953 //----------------------------inline_min_max----------------------------------- 1954 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) { 1955 set_result(generate_min_max(id, argument(0), argument(1))); 1956 return true; 1957 } 1958 1959 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) { 1960 Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) ); 1961 IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN); 1962 Node* fast_path = _gvn.transform( new IfFalseNode(check)); 1963 Node* slow_path = _gvn.transform( new IfTrueNode(check) ); 1964 1965 { 1966 PreserveJVMState pjvms(this); 1967 PreserveReexecuteState preexecs(this); 1968 jvms()->set_should_reexecute(true); 1969 1970 set_control(slow_path); 1971 set_i_o(i_o()); 1972 1973 uncommon_trap(Deoptimization::Reason_intrinsic, 1974 Deoptimization::Action_none); 1975 } 1976 1977 set_control(fast_path); 1978 set_result(math); 1979 } 1980 1981 template <typename OverflowOp> 1982 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) { 1983 typedef typename OverflowOp::MathOp MathOp; 1984 1985 MathOp* mathOp = new MathOp(arg1, arg2); 1986 Node* operation = _gvn.transform( mathOp ); 1987 Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) ); 1988 inline_math_mathExact(operation, ofcheck); 1989 return true; 1990 } 1991 1992 bool LibraryCallKit::inline_math_addExactI(bool is_increment) { 1993 return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1)); 1994 } 1995 1996 bool LibraryCallKit::inline_math_addExactL(bool is_increment) { 1997 return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2)); 1998 } 1999 2000 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) { 2001 return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1)); 2002 } 2003 2004 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) { 2005 return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2)); 2006 } 2007 2008 bool LibraryCallKit::inline_math_negateExactI() { 2009 return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0)); 2010 } 2011 2012 bool LibraryCallKit::inline_math_negateExactL() { 2013 return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0)); 2014 } 2015 2016 bool LibraryCallKit::inline_math_multiplyExactI() { 2017 return inline_math_overflow<OverflowMulINode>(argument(0), argument(1)); 2018 } 2019 2020 bool LibraryCallKit::inline_math_multiplyExactL() { 2021 return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2)); 2022 } 2023 2024 bool LibraryCallKit::inline_math_multiplyHigh() { 2025 set_result(_gvn.transform(new MulHiLNode(argument(0), argument(2)))); 2026 return true; 2027 } 2028 2029 Node* 2030 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) { 2031 // These are the candidate return value: 2032 Node* xvalue = x0; 2033 Node* yvalue = y0; 2034 2035 if (xvalue == yvalue) { 2036 return xvalue; 2037 } 2038 2039 bool want_max = (id == vmIntrinsics::_max); 2040 2041 const TypeInt* txvalue = _gvn.type(xvalue)->isa_int(); 2042 const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int(); 2043 if (txvalue == NULL || tyvalue == NULL) return top(); 2044 // This is not really necessary, but it is consistent with a 2045 // hypothetical MaxINode::Value method: 2046 int widen = MAX2(txvalue->_widen, tyvalue->_widen); 2047 2048 // %%% This folding logic should (ideally) be in a different place. 2049 // Some should be inside IfNode, and there to be a more reliable 2050 // transformation of ?: style patterns into cmoves. We also want 2051 // more powerful optimizations around cmove and min/max. 2052 2053 // Try to find a dominating comparison of these guys. 2054 // It can simplify the index computation for Arrays.copyOf 2055 // and similar uses of System.arraycopy. 2056 // First, compute the normalized version of CmpI(x, y). 2057 int cmp_op = Op_CmpI; 2058 Node* xkey = xvalue; 2059 Node* ykey = yvalue; 2060 Node* ideal_cmpxy = _gvn.transform(new CmpINode(xkey, ykey)); 2061 if (ideal_cmpxy->is_Cmp()) { 2062 // E.g., if we have CmpI(length - offset, count), 2063 // it might idealize to CmpI(length, count + offset) 2064 cmp_op = ideal_cmpxy->Opcode(); 2065 xkey = ideal_cmpxy->in(1); 2066 ykey = ideal_cmpxy->in(2); 2067 } 2068 2069 // Start by locating any relevant comparisons. 2070 Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey; 2071 Node* cmpxy = NULL; 2072 Node* cmpyx = NULL; 2073 for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) { 2074 Node* cmp = start_from->fast_out(k); 2075 if (cmp->outcnt() > 0 && // must have prior uses 2076 cmp->in(0) == NULL && // must be context-independent 2077 cmp->Opcode() == cmp_op) { // right kind of compare 2078 if (cmp->in(1) == xkey && cmp->in(2) == ykey) cmpxy = cmp; 2079 if (cmp->in(1) == ykey && cmp->in(2) == xkey) cmpyx = cmp; 2080 } 2081 } 2082 2083 const int NCMPS = 2; 2084 Node* cmps[NCMPS] = { cmpxy, cmpyx }; 2085 int cmpn; 2086 for (cmpn = 0; cmpn < NCMPS; cmpn++) { 2087 if (cmps[cmpn] != NULL) break; // find a result 2088 } 2089 if (cmpn < NCMPS) { 2090 // Look for a dominating test that tells us the min and max. 2091 int depth = 0; // Limit search depth for speed 2092 Node* dom = control(); 2093 for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) { 2094 if (++depth >= 100) break; 2095 Node* ifproj = dom; 2096 if (!ifproj->is_Proj()) continue; 2097 Node* iff = ifproj->in(0); 2098 if (!iff->is_If()) continue; 2099 Node* bol = iff->in(1); 2100 if (!bol->is_Bool()) continue; 2101 Node* cmp = bol->in(1); 2102 if (cmp == NULL) continue; 2103 for (cmpn = 0; cmpn < NCMPS; cmpn++) 2104 if (cmps[cmpn] == cmp) break; 2105 if (cmpn == NCMPS) continue; 2106 BoolTest::mask btest = bol->as_Bool()->_test._test; 2107 if (ifproj->is_IfFalse()) btest = BoolTest(btest).negate(); 2108 if (cmp->in(1) == ykey) btest = BoolTest(btest).commute(); 2109 // At this point, we know that 'x btest y' is true. 2110 switch (btest) { 2111 case BoolTest::eq: 2112 // They are proven equal, so we can collapse the min/max. 2113 // Either value is the answer. Choose the simpler. 2114 if (is_simple_name(yvalue) && !is_simple_name(xvalue)) 2115 return yvalue; 2116 return xvalue; 2117 case BoolTest::lt: // x < y 2118 case BoolTest::le: // x <= y 2119 return (want_max ? yvalue : xvalue); 2120 case BoolTest::gt: // x > y 2121 case BoolTest::ge: // x >= y 2122 return (want_max ? xvalue : yvalue); 2123 default: 2124 break; 2125 } 2126 } 2127 } 2128 2129 // We failed to find a dominating test. 2130 // Let's pick a test that might GVN with prior tests. 2131 Node* best_bol = NULL; 2132 BoolTest::mask best_btest = BoolTest::illegal; 2133 for (cmpn = 0; cmpn < NCMPS; cmpn++) { 2134 Node* cmp = cmps[cmpn]; 2135 if (cmp == NULL) continue; 2136 for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) { 2137 Node* bol = cmp->fast_out(j); 2138 if (!bol->is_Bool()) continue; 2139 BoolTest::mask btest = bol->as_Bool()->_test._test; 2140 if (btest == BoolTest::eq || btest == BoolTest::ne) continue; 2141 if (cmp->in(1) == ykey) btest = BoolTest(btest).commute(); 2142 if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) { 2143 best_bol = bol->as_Bool(); 2144 best_btest = btest; 2145 } 2146 } 2147 } 2148 2149 Node* answer_if_true = NULL; 2150 Node* answer_if_false = NULL; 2151 switch (best_btest) { 2152 default: 2153 if (cmpxy == NULL) 2154 cmpxy = ideal_cmpxy; 2155 best_bol = _gvn.transform(new BoolNode(cmpxy, BoolTest::lt)); 2156 // and fall through: 2157 case BoolTest::lt: // x < y 2158 case BoolTest::le: // x <= y 2159 answer_if_true = (want_max ? yvalue : xvalue); 2160 answer_if_false = (want_max ? xvalue : yvalue); 2161 break; 2162 case BoolTest::gt: // x > y 2163 case BoolTest::ge: // x >= y 2164 answer_if_true = (want_max ? xvalue : yvalue); 2165 answer_if_false = (want_max ? yvalue : xvalue); 2166 break; 2167 } 2168 2169 jint hi, lo; 2170 if (want_max) { 2171 // We can sharpen the minimum. 2172 hi = MAX2(txvalue->_hi, tyvalue->_hi); 2173 lo = MAX2(txvalue->_lo, tyvalue->_lo); 2174 } else { 2175 // We can sharpen the maximum. 2176 hi = MIN2(txvalue->_hi, tyvalue->_hi); 2177 lo = MIN2(txvalue->_lo, tyvalue->_lo); 2178 } 2179 2180 // Use a flow-free graph structure, to avoid creating excess control edges 2181 // which could hinder other optimizations. 2182 // Since Math.min/max is often used with arraycopy, we want 2183 // tightly_coupled_allocation to be able to see beyond min/max expressions. 2184 Node* cmov = CMoveNode::make(NULL, best_bol, 2185 answer_if_false, answer_if_true, 2186 TypeInt::make(lo, hi, widen)); 2187 2188 return _gvn.transform(cmov); 2189 2190 /* 2191 // This is not as desirable as it may seem, since Min and Max 2192 // nodes do not have a full set of optimizations. 2193 // And they would interfere, anyway, with 'if' optimizations 2194 // and with CMoveI canonical forms. 2195 switch (id) { 2196 case vmIntrinsics::_min: 2197 result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break; 2198 case vmIntrinsics::_max: 2199 result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break; 2200 default: 2201 ShouldNotReachHere(); 2202 } 2203 */ 2204 } 2205 2206 inline int 2207 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset, BasicType type) { 2208 const TypePtr* base_type = TypePtr::NULL_PTR; 2209 if (base != NULL) base_type = _gvn.type(base)->isa_ptr(); 2210 if (base_type == NULL) { 2211 // Unknown type. 2212 return Type::AnyPtr; 2213 } else if (base_type == TypePtr::NULL_PTR) { 2214 // Since this is a NULL+long form, we have to switch to a rawptr. 2215 base = _gvn.transform(new CastX2PNode(offset)); 2216 offset = MakeConX(0); 2217 return Type::RawPtr; 2218 } else if (base_type->base() == Type::RawPtr) { 2219 return Type::RawPtr; 2220 } else if (base_type->isa_oopptr()) { 2221 // Base is never null => always a heap address. 2222 if (!TypePtr::NULL_PTR->higher_equal(base_type)) { 2223 return Type::OopPtr; 2224 } 2225 // Offset is small => always a heap address. 2226 const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t(); 2227 if (offset_type != NULL && 2228 base_type->offset() == 0 && // (should always be?) 2229 offset_type->_lo >= 0 && 2230 !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) { 2231 return Type::OopPtr; 2232 } else if (type == T_OBJECT) { 2233 // off heap access to an oop doesn't make any sense. Has to be on 2234 // heap. 2235 return Type::OopPtr; 2236 } 2237 // Otherwise, it might either be oop+off or NULL+addr. 2238 return Type::AnyPtr; 2239 } else { 2240 // No information: 2241 return Type::AnyPtr; 2242 } 2243 } 2244 2245 inline Node* LibraryCallKit::make_unsafe_address(Node*& base, Node* offset, DecoratorSet decorators, BasicType type, bool can_cast) { 2246 Node* uncasted_base = base; 2247 int kind = classify_unsafe_addr(uncasted_base, offset, type); 2248 if (kind == Type::RawPtr) { 2249 return basic_plus_adr(top(), uncasted_base, offset); 2250 } else if (kind == Type::AnyPtr) { 2251 assert(base == uncasted_base, "unexpected base change"); 2252 if (can_cast) { 2253 if (!_gvn.type(base)->speculative_maybe_null() && 2254 !too_many_traps(Deoptimization::Reason_speculate_null_check)) { 2255 // According to profiling, this access is always on 2256 // heap. Casting the base to not null and thus avoiding membars 2257 // around the access should allow better optimizations 2258 Node* null_ctl = top(); 2259 base = null_check_oop(base, &null_ctl, true, true, true); 2260 assert(null_ctl->is_top(), "no null control here"); 2261 return basic_plus_adr(base, offset); 2262 } else if (_gvn.type(base)->speculative_always_null() && 2263 !too_many_traps(Deoptimization::Reason_speculate_null_assert)) { 2264 // According to profiling, this access is always off 2265 // heap. 2266 base = null_assert(base); 2267 Node* raw_base = _gvn.transform(new CastX2PNode(offset)); 2268 offset = MakeConX(0); 2269 return basic_plus_adr(top(), raw_base, offset); 2270 } 2271 } 2272 // We don't know if it's an on heap or off heap access. Fall back 2273 // to raw memory access. 2274 Node* raw = _gvn.transform(new CheckCastPPNode(control(), base, TypeRawPtr::BOTTOM)); 2275 return basic_plus_adr(top(), raw, offset); 2276 } else { 2277 assert(base == uncasted_base, "unexpected base change"); 2278 // We know it's an on heap access so base can't be null 2279 if (TypePtr::NULL_PTR->higher_equal(_gvn.type(base))) { 2280 base = must_be_not_null(base, true); 2281 } 2282 return basic_plus_adr(base, offset); 2283 } 2284 } 2285 2286 //--------------------------inline_number_methods----------------------------- 2287 // inline int Integer.numberOfLeadingZeros(int) 2288 // inline int Long.numberOfLeadingZeros(long) 2289 // 2290 // inline int Integer.numberOfTrailingZeros(int) 2291 // inline int Long.numberOfTrailingZeros(long) 2292 // 2293 // inline int Integer.bitCount(int) 2294 // inline int Long.bitCount(long) 2295 // 2296 // inline char Character.reverseBytes(char) 2297 // inline short Short.reverseBytes(short) 2298 // inline int Integer.reverseBytes(int) 2299 // inline long Long.reverseBytes(long) 2300 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) { 2301 Node* arg = argument(0); 2302 Node* n = NULL; 2303 switch (id) { 2304 case vmIntrinsics::_numberOfLeadingZeros_i: n = new CountLeadingZerosINode( arg); break; 2305 case vmIntrinsics::_numberOfLeadingZeros_l: n = new CountLeadingZerosLNode( arg); break; 2306 case vmIntrinsics::_numberOfTrailingZeros_i: n = new CountTrailingZerosINode(arg); break; 2307 case vmIntrinsics::_numberOfTrailingZeros_l: n = new CountTrailingZerosLNode(arg); break; 2308 case vmIntrinsics::_bitCount_i: n = new PopCountINode( arg); break; 2309 case vmIntrinsics::_bitCount_l: n = new PopCountLNode( arg); break; 2310 case vmIntrinsics::_reverseBytes_c: n = new ReverseBytesUSNode(0, arg); break; 2311 case vmIntrinsics::_reverseBytes_s: n = new ReverseBytesSNode( 0, arg); break; 2312 case vmIntrinsics::_reverseBytes_i: n = new ReverseBytesINode( 0, arg); break; 2313 case vmIntrinsics::_reverseBytes_l: n = new ReverseBytesLNode( 0, arg); break; 2314 default: fatal_unexpected_iid(id); break; 2315 } 2316 set_result(_gvn.transform(n)); 2317 return true; 2318 } 2319 2320 //----------------------------inline_unsafe_access---------------------------- 2321 2322 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) { 2323 // Attempt to infer a sharper value type from the offset and base type. 2324 ciKlass* sharpened_klass = NULL; 2325 2326 // See if it is an instance field, with an object type. 2327 if (alias_type->field() != NULL) { 2328 if (alias_type->field()->type()->is_klass()) { 2329 sharpened_klass = alias_type->field()->type()->as_klass(); 2330 } 2331 } 2332 2333 // See if it is a narrow oop array. 2334 if (adr_type->isa_aryptr()) { 2335 if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) { 2336 const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr(); 2337 if (elem_type != NULL) { 2338 sharpened_klass = elem_type->klass(); 2339 } 2340 } 2341 } 2342 2343 // The sharpened class might be unloaded if there is no class loader 2344 // contraint in place. 2345 if (sharpened_klass != NULL && sharpened_klass->is_loaded()) { 2346 const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass); 2347 2348 #ifndef PRODUCT 2349 if (C->print_intrinsics() || C->print_inlining()) { 2350 tty->print(" from base type: "); adr_type->dump(); tty->cr(); 2351 tty->print(" sharpened value: "); tjp->dump(); tty->cr(); 2352 } 2353 #endif 2354 // Sharpen the value type. 2355 return tjp; 2356 } 2357 return NULL; 2358 } 2359 2360 DecoratorSet LibraryCallKit::mo_decorator_for_access_kind(AccessKind kind) { 2361 switch (kind) { 2362 case Relaxed: 2363 return MO_UNORDERED; 2364 case Opaque: 2365 return MO_RELAXED; 2366 case Acquire: 2367 return MO_ACQUIRE; 2368 case Release: 2369 return MO_RELEASE; 2370 case Volatile: 2371 return MO_SEQ_CST; 2372 default: 2373 ShouldNotReachHere(); 2374 return 0; 2375 } 2376 } 2377 2378 bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned) { 2379 if (callee()->is_static()) return false; // caller must have the capability! 2380 DecoratorSet decorators = C2_UNSAFE_ACCESS; 2381 guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads"); 2382 guarantee( is_store || kind != Release, "Release accesses can be produced only for stores"); 2383 assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type"); 2384 2385 if (is_reference_type(type)) { 2386 decorators |= ON_UNKNOWN_OOP_REF; 2387 } 2388 2389 if (unaligned) { 2390 decorators |= C2_UNALIGNED; 2391 } 2392 2393 #ifndef PRODUCT 2394 { 2395 ResourceMark rm; 2396 // Check the signatures. 2397 ciSignature* sig = callee()->signature(); 2398 #ifdef ASSERT 2399 if (!is_store) { 2400 // Object getReference(Object base, int/long offset), etc. 2401 BasicType rtype = sig->return_type()->basic_type(); 2402 assert(rtype == type, "getter must return the expected value"); 2403 assert(sig->count() == 2, "oop getter has 2 arguments"); 2404 assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object"); 2405 assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct"); 2406 } else { 2407 // void putReference(Object base, int/long offset, Object x), etc. 2408 assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value"); 2409 assert(sig->count() == 3, "oop putter has 3 arguments"); 2410 assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object"); 2411 assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct"); 2412 BasicType vtype = sig->type_at(sig->count()-1)->basic_type(); 2413 assert(vtype == type, "putter must accept the expected value"); 2414 } 2415 #endif // ASSERT 2416 } 2417 #endif //PRODUCT 2418 2419 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 2420 2421 Node* receiver = argument(0); // type: oop 2422 2423 // Build address expression. 2424 Node* adr; 2425 Node* heap_base_oop = top(); 2426 Node* offset = top(); 2427 Node* val; 2428 2429 // The base is either a Java object or a value produced by Unsafe.staticFieldBase 2430 Node* base = argument(1); // type: oop 2431 // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset 2432 offset = argument(2); // type: long 2433 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset 2434 // to be plain byte offsets, which are also the same as those accepted 2435 // by oopDesc::field_addr. 2436 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 2437 "fieldOffset must be byte-scaled"); 2438 // 32-bit machines ignore the high half! 2439 offset = ConvL2X(offset); 2440 adr = make_unsafe_address(base, offset, is_store ? ACCESS_WRITE : ACCESS_READ, type, kind == Relaxed); 2441 2442 if (_gvn.type(base)->isa_ptr() == TypePtr::NULL_PTR) { 2443 if (type != T_OBJECT) { 2444 decorators |= IN_NATIVE; // off-heap primitive access 2445 } else { 2446 return false; // off-heap oop accesses are not supported 2447 } 2448 } else { 2449 heap_base_oop = base; // on-heap or mixed access 2450 } 2451 2452 // Can base be NULL? Otherwise, always on-heap access. 2453 bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(base)); 2454 2455 if (!can_access_non_heap) { 2456 decorators |= IN_HEAP; 2457 } 2458 2459 val = is_store ? argument(4) : NULL; 2460 2461 const TypePtr* adr_type = _gvn.type(adr)->isa_ptr(); 2462 if (adr_type == TypePtr::NULL_PTR) { 2463 return false; // off-heap access with zero address 2464 } 2465 2466 // Try to categorize the address. 2467 Compile::AliasType* alias_type = C->alias_type(adr_type); 2468 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here"); 2469 2470 if (alias_type->adr_type() == TypeInstPtr::KLASS || 2471 alias_type->adr_type() == TypeAryPtr::RANGE) { 2472 return false; // not supported 2473 } 2474 2475 bool mismatched = false; 2476 BasicType bt = alias_type->basic_type(); 2477 if (bt != T_ILLEGAL) { 2478 assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access"); 2479 if (bt == T_BYTE && adr_type->isa_aryptr()) { 2480 // Alias type doesn't differentiate between byte[] and boolean[]). 2481 // Use address type to get the element type. 2482 bt = adr_type->is_aryptr()->elem()->array_element_basic_type(); 2483 } 2484 if (bt == T_ARRAY || bt == T_NARROWOOP) { 2485 // accessing an array field with getReference is not a mismatch 2486 bt = T_OBJECT; 2487 } 2488 if ((bt == T_OBJECT) != (type == T_OBJECT)) { 2489 // Don't intrinsify mismatched object accesses 2490 return false; 2491 } 2492 mismatched = (bt != type); 2493 } else if (alias_type->adr_type()->isa_oopptr()) { 2494 mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched 2495 } 2496 2497 assert(!mismatched || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched"); 2498 2499 if (mismatched) { 2500 decorators |= C2_MISMATCHED; 2501 } 2502 2503 // First guess at the value type. 2504 const Type *value_type = Type::get_const_basic_type(type); 2505 2506 // Figure out the memory ordering. 2507 decorators |= mo_decorator_for_access_kind(kind); 2508 2509 if (!is_store && type == T_OBJECT) { 2510 const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type); 2511 if (tjp != NULL) { 2512 value_type = tjp; 2513 } 2514 } 2515 2516 receiver = null_check(receiver); 2517 if (stopped()) { 2518 return true; 2519 } 2520 // Heap pointers get a null-check from the interpreter, 2521 // as a courtesy. However, this is not guaranteed by Unsafe, 2522 // and it is not possible to fully distinguish unintended nulls 2523 // from intended ones in this API. 2524 2525 if (!is_store) { 2526 Node* p = NULL; 2527 // Try to constant fold a load from a constant field 2528 ciField* field = alias_type->field(); 2529 if (heap_base_oop != top() && field != NULL && field->is_constant() && !mismatched) { 2530 // final or stable field 2531 p = make_constant_from_field(field, heap_base_oop); 2532 } 2533 2534 if (p == NULL) { // Could not constant fold the load 2535 p = access_load_at(heap_base_oop, adr, adr_type, value_type, type, decorators); 2536 // Normalize the value returned by getBoolean in the following cases 2537 if (type == T_BOOLEAN && 2538 (mismatched || 2539 heap_base_oop == top() || // - heap_base_oop is NULL or 2540 (can_access_non_heap && field == NULL)) // - heap_base_oop is potentially NULL 2541 // and the unsafe access is made to large offset 2542 // (i.e., larger than the maximum offset necessary for any 2543 // field access) 2544 ) { 2545 IdealKit ideal = IdealKit(this); 2546 #define __ ideal. 2547 IdealVariable normalized_result(ideal); 2548 __ declarations_done(); 2549 __ set(normalized_result, p); 2550 __ if_then(p, BoolTest::ne, ideal.ConI(0)); 2551 __ set(normalized_result, ideal.ConI(1)); 2552 ideal.end_if(); 2553 final_sync(ideal); 2554 p = __ value(normalized_result); 2555 #undef __ 2556 } 2557 } 2558 if (type == T_ADDRESS) { 2559 p = gvn().transform(new CastP2XNode(NULL, p)); 2560 p = ConvX2UL(p); 2561 } 2562 // The load node has the control of the preceding MemBarCPUOrder. All 2563 // following nodes will have the control of the MemBarCPUOrder inserted at 2564 // the end of this method. So, pushing the load onto the stack at a later 2565 // point is fine. 2566 set_result(p); 2567 } else { 2568 if (bt == T_ADDRESS) { 2569 // Repackage the long as a pointer. 2570 val = ConvL2X(val); 2571 val = gvn().transform(new CastX2PNode(val)); 2572 } 2573 access_store_at(heap_base_oop, adr, adr_type, val, value_type, type, decorators); 2574 } 2575 2576 return true; 2577 } 2578 2579 //----------------------------inline_unsafe_load_store---------------------------- 2580 // This method serves a couple of different customers (depending on LoadStoreKind): 2581 // 2582 // LS_cmp_swap: 2583 // 2584 // boolean compareAndSetReference(Object o, long offset, Object expected, Object x); 2585 // boolean compareAndSetInt( Object o, long offset, int expected, int x); 2586 // boolean compareAndSetLong( Object o, long offset, long expected, long x); 2587 // 2588 // LS_cmp_swap_weak: 2589 // 2590 // boolean weakCompareAndSetReference( Object o, long offset, Object expected, Object x); 2591 // boolean weakCompareAndSetReferencePlain( Object o, long offset, Object expected, Object x); 2592 // boolean weakCompareAndSetReferenceAcquire(Object o, long offset, Object expected, Object x); 2593 // boolean weakCompareAndSetReferenceRelease(Object o, long offset, Object expected, Object x); 2594 // 2595 // boolean weakCompareAndSetInt( Object o, long offset, int expected, int x); 2596 // boolean weakCompareAndSetIntPlain( Object o, long offset, int expected, int x); 2597 // boolean weakCompareAndSetIntAcquire( Object o, long offset, int expected, int x); 2598 // boolean weakCompareAndSetIntRelease( Object o, long offset, int expected, int x); 2599 // 2600 // boolean weakCompareAndSetLong( Object o, long offset, long expected, long x); 2601 // boolean weakCompareAndSetLongPlain( Object o, long offset, long expected, long x); 2602 // boolean weakCompareAndSetLongAcquire( Object o, long offset, long expected, long x); 2603 // boolean weakCompareAndSetLongRelease( Object o, long offset, long expected, long x); 2604 // 2605 // LS_cmp_exchange: 2606 // 2607 // Object compareAndExchangeReferenceVolatile(Object o, long offset, Object expected, Object x); 2608 // Object compareAndExchangeReferenceAcquire( Object o, long offset, Object expected, Object x); 2609 // Object compareAndExchangeReferenceRelease( Object o, long offset, Object expected, Object x); 2610 // 2611 // Object compareAndExchangeIntVolatile( Object o, long offset, Object expected, Object x); 2612 // Object compareAndExchangeIntAcquire( Object o, long offset, Object expected, Object x); 2613 // Object compareAndExchangeIntRelease( Object o, long offset, Object expected, Object x); 2614 // 2615 // Object compareAndExchangeLongVolatile( Object o, long offset, Object expected, Object x); 2616 // Object compareAndExchangeLongAcquire( Object o, long offset, Object expected, Object x); 2617 // Object compareAndExchangeLongRelease( Object o, long offset, Object expected, Object x); 2618 // 2619 // LS_get_add: 2620 // 2621 // int getAndAddInt( Object o, long offset, int delta) 2622 // long getAndAddLong(Object o, long offset, long delta) 2623 // 2624 // LS_get_set: 2625 // 2626 // int getAndSet(Object o, long offset, int newValue) 2627 // long getAndSet(Object o, long offset, long newValue) 2628 // Object getAndSet(Object o, long offset, Object newValue) 2629 // 2630 bool LibraryCallKit::inline_unsafe_load_store(const BasicType type, const LoadStoreKind kind, const AccessKind access_kind) { 2631 // This basic scheme here is the same as inline_unsafe_access, but 2632 // differs in enough details that combining them would make the code 2633 // overly confusing. (This is a true fact! I originally combined 2634 // them, but even I was confused by it!) As much code/comments as 2635 // possible are retained from inline_unsafe_access though to make 2636 // the correspondences clearer. - dl 2637 2638 if (callee()->is_static()) return false; // caller must have the capability! 2639 2640 DecoratorSet decorators = C2_UNSAFE_ACCESS; 2641 decorators |= mo_decorator_for_access_kind(access_kind); 2642 2643 #ifndef PRODUCT 2644 BasicType rtype; 2645 { 2646 ResourceMark rm; 2647 // Check the signatures. 2648 ciSignature* sig = callee()->signature(); 2649 rtype = sig->return_type()->basic_type(); 2650 switch(kind) { 2651 case LS_get_add: 2652 case LS_get_set: { 2653 // Check the signatures. 2654 #ifdef ASSERT 2655 assert(rtype == type, "get and set must return the expected type"); 2656 assert(sig->count() == 3, "get and set has 3 arguments"); 2657 assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object"); 2658 assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long"); 2659 assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta"); 2660 assert(access_kind == Volatile, "mo is not passed to intrinsic nodes in current implementation"); 2661 #endif // ASSERT 2662 break; 2663 } 2664 case LS_cmp_swap: 2665 case LS_cmp_swap_weak: { 2666 // Check the signatures. 2667 #ifdef ASSERT 2668 assert(rtype == T_BOOLEAN, "CAS must return boolean"); 2669 assert(sig->count() == 4, "CAS has 4 arguments"); 2670 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object"); 2671 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long"); 2672 #endif // ASSERT 2673 break; 2674 } 2675 case LS_cmp_exchange: { 2676 // Check the signatures. 2677 #ifdef ASSERT 2678 assert(rtype == type, "CAS must return the expected type"); 2679 assert(sig->count() == 4, "CAS has 4 arguments"); 2680 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object"); 2681 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long"); 2682 #endif // ASSERT 2683 break; 2684 } 2685 default: 2686 ShouldNotReachHere(); 2687 } 2688 } 2689 #endif //PRODUCT 2690 2691 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 2692 2693 // Get arguments: 2694 Node* receiver = NULL; 2695 Node* base = NULL; 2696 Node* offset = NULL; 2697 Node* oldval = NULL; 2698 Node* newval = NULL; 2699 switch(kind) { 2700 case LS_cmp_swap: 2701 case LS_cmp_swap_weak: 2702 case LS_cmp_exchange: { 2703 const bool two_slot_type = type2size[type] == 2; 2704 receiver = argument(0); // type: oop 2705 base = argument(1); // type: oop 2706 offset = argument(2); // type: long 2707 oldval = argument(4); // type: oop, int, or long 2708 newval = argument(two_slot_type ? 6 : 5); // type: oop, int, or long 2709 break; 2710 } 2711 case LS_get_add: 2712 case LS_get_set: { 2713 receiver = argument(0); // type: oop 2714 base = argument(1); // type: oop 2715 offset = argument(2); // type: long 2716 oldval = NULL; 2717 newval = argument(4); // type: oop, int, or long 2718 break; 2719 } 2720 default: 2721 ShouldNotReachHere(); 2722 } 2723 2724 // Build field offset expression. 2725 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset 2726 // to be plain byte offsets, which are also the same as those accepted 2727 // by oopDesc::field_addr. 2728 assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled"); 2729 // 32-bit machines ignore the high half of long offsets 2730 offset = ConvL2X(offset); 2731 Node* adr = make_unsafe_address(base, offset, ACCESS_WRITE | ACCESS_READ, type, false); 2732 const TypePtr *adr_type = _gvn.type(adr)->isa_ptr(); 2733 2734 Compile::AliasType* alias_type = C->alias_type(adr_type); 2735 BasicType bt = alias_type->basic_type(); 2736 if (bt != T_ILLEGAL && 2737 (is_reference_type(bt) != (type == T_OBJECT))) { 2738 // Don't intrinsify mismatched object accesses. 2739 return false; 2740 } 2741 2742 // For CAS, unlike inline_unsafe_access, there seems no point in 2743 // trying to refine types. Just use the coarse types here. 2744 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here"); 2745 const Type *value_type = Type::get_const_basic_type(type); 2746 2747 switch (kind) { 2748 case LS_get_set: 2749 case LS_cmp_exchange: { 2750 if (type == T_OBJECT) { 2751 const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type); 2752 if (tjp != NULL) { 2753 value_type = tjp; 2754 } 2755 } 2756 break; 2757 } 2758 case LS_cmp_swap: 2759 case LS_cmp_swap_weak: 2760 case LS_get_add: 2761 break; 2762 default: 2763 ShouldNotReachHere(); 2764 } 2765 2766 // Null check receiver. 2767 receiver = null_check(receiver); 2768 if (stopped()) { 2769 return true; 2770 } 2771 2772 int alias_idx = C->get_alias_index(adr_type); 2773 2774 if (is_reference_type(type)) { 2775 decorators |= IN_HEAP | ON_UNKNOWN_OOP_REF; 2776 2777 // Transformation of a value which could be NULL pointer (CastPP #NULL) 2778 // could be delayed during Parse (for example, in adjust_map_after_if()). 2779 // Execute transformation here to avoid barrier generation in such case. 2780 if (_gvn.type(newval) == TypePtr::NULL_PTR) 2781 newval = _gvn.makecon(TypePtr::NULL_PTR); 2782 2783 if (oldval != NULL && _gvn.type(oldval) == TypePtr::NULL_PTR) { 2784 // Refine the value to a null constant, when it is known to be null 2785 oldval = _gvn.makecon(TypePtr::NULL_PTR); 2786 } 2787 } 2788 2789 Node* result = NULL; 2790 switch (kind) { 2791 case LS_cmp_exchange: { 2792 result = access_atomic_cmpxchg_val_at(base, adr, adr_type, alias_idx, 2793 oldval, newval, value_type, type, decorators); 2794 break; 2795 } 2796 case LS_cmp_swap_weak: 2797 decorators |= C2_WEAK_CMPXCHG; 2798 case LS_cmp_swap: { 2799 result = access_atomic_cmpxchg_bool_at(base, adr, adr_type, alias_idx, 2800 oldval, newval, value_type, type, decorators); 2801 break; 2802 } 2803 case LS_get_set: { 2804 result = access_atomic_xchg_at(base, adr, adr_type, alias_idx, 2805 newval, value_type, type, decorators); 2806 break; 2807 } 2808 case LS_get_add: { 2809 result = access_atomic_add_at(base, adr, adr_type, alias_idx, 2810 newval, value_type, type, decorators); 2811 break; 2812 } 2813 default: 2814 ShouldNotReachHere(); 2815 } 2816 2817 assert(type2size[result->bottom_type()->basic_type()] == type2size[rtype], "result type should match"); 2818 set_result(result); 2819 return true; 2820 } 2821 2822 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) { 2823 // Regardless of form, don't allow previous ld/st to move down, 2824 // then issue acquire, release, or volatile mem_bar. 2825 insert_mem_bar(Op_MemBarCPUOrder); 2826 switch(id) { 2827 case vmIntrinsics::_loadFence: 2828 insert_mem_bar(Op_LoadFence); 2829 return true; 2830 case vmIntrinsics::_storeFence: 2831 insert_mem_bar(Op_StoreFence); 2832 return true; 2833 case vmIntrinsics::_fullFence: 2834 insert_mem_bar(Op_MemBarVolatile); 2835 return true; 2836 default: 2837 fatal_unexpected_iid(id); 2838 return false; 2839 } 2840 } 2841 2842 bool LibraryCallKit::inline_onspinwait() { 2843 insert_mem_bar(Op_OnSpinWait); 2844 return true; 2845 } 2846 2847 bool LibraryCallKit::klass_needs_init_guard(Node* kls) { 2848 if (!kls->is_Con()) { 2849 return true; 2850 } 2851 const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr(); 2852 if (klsptr == NULL) { 2853 return true; 2854 } 2855 ciInstanceKlass* ik = klsptr->klass()->as_instance_klass(); 2856 // don't need a guard for a klass that is already initialized 2857 return !ik->is_initialized(); 2858 } 2859 2860 //----------------------------inline_unsafe_writeback0------------------------- 2861 // public native void Unsafe.writeback0(long address) 2862 bool LibraryCallKit::inline_unsafe_writeback0() { 2863 if (!Matcher::has_match_rule(Op_CacheWB)) { 2864 return false; 2865 } 2866 #ifndef PRODUCT 2867 assert(Matcher::has_match_rule(Op_CacheWBPreSync), "found match rule for CacheWB but not CacheWBPreSync"); 2868 assert(Matcher::has_match_rule(Op_CacheWBPostSync), "found match rule for CacheWB but not CacheWBPostSync"); 2869 ciSignature* sig = callee()->signature(); 2870 assert(sig->type_at(0)->basic_type() == T_LONG, "Unsafe_writeback0 address is long!"); 2871 #endif 2872 null_check_receiver(); // null-check, then ignore 2873 Node *addr = argument(1); 2874 addr = new CastX2PNode(addr); 2875 addr = _gvn.transform(addr); 2876 Node *flush = new CacheWBNode(control(), memory(TypeRawPtr::BOTTOM), addr); 2877 flush = _gvn.transform(flush); 2878 set_memory(flush, TypeRawPtr::BOTTOM); 2879 return true; 2880 } 2881 2882 //----------------------------inline_unsafe_writeback0------------------------- 2883 // public native void Unsafe.writeback0(long address) 2884 bool LibraryCallKit::inline_unsafe_writebackSync0(bool is_pre) { 2885 if (is_pre && !Matcher::has_match_rule(Op_CacheWBPreSync)) { 2886 return false; 2887 } 2888 if (!is_pre && !Matcher::has_match_rule(Op_CacheWBPostSync)) { 2889 return false; 2890 } 2891 #ifndef PRODUCT 2892 assert(Matcher::has_match_rule(Op_CacheWB), 2893 (is_pre ? "found match rule for CacheWBPreSync but not CacheWB" 2894 : "found match rule for CacheWBPostSync but not CacheWB")); 2895 2896 #endif 2897 null_check_receiver(); // null-check, then ignore 2898 Node *sync; 2899 if (is_pre) { 2900 sync = new CacheWBPreSyncNode(control(), memory(TypeRawPtr::BOTTOM)); 2901 } else { 2902 sync = new CacheWBPostSyncNode(control(), memory(TypeRawPtr::BOTTOM)); 2903 } 2904 sync = _gvn.transform(sync); 2905 set_memory(sync, TypeRawPtr::BOTTOM); 2906 return true; 2907 } 2908 2909 //----------------------------inline_unsafe_allocate--------------------------- 2910 // public native Object Unsafe.allocateInstance(Class<?> cls); 2911 bool LibraryCallKit::inline_unsafe_allocate() { 2912 if (callee()->is_static()) return false; // caller must have the capability! 2913 2914 null_check_receiver(); // null-check, then ignore 2915 Node* cls = null_check(argument(1)); 2916 if (stopped()) return true; 2917 2918 Node* kls = load_klass_from_mirror(cls, false, NULL, 0); 2919 kls = null_check(kls); 2920 if (stopped()) return true; // argument was like int.class 2921 2922 Node* test = NULL; 2923 if (LibraryCallKit::klass_needs_init_guard(kls)) { 2924 // Note: The argument might still be an illegal value like 2925 // Serializable.class or Object[].class. The runtime will handle it. 2926 // But we must make an explicit check for initialization. 2927 Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset())); 2928 // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler 2929 // can generate code to load it as unsigned byte. 2930 Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered); 2931 Node* bits = intcon(InstanceKlass::fully_initialized); 2932 test = _gvn.transform(new SubINode(inst, bits)); 2933 // The 'test' is non-zero if we need to take a slow path. 2934 } 2935 2936 Node* obj = new_instance(kls, test); 2937 set_result(obj); 2938 return true; 2939 } 2940 2941 //------------------------inline_native_time_funcs-------------- 2942 // inline code for System.currentTimeMillis() and System.nanoTime() 2943 // these have the same type and signature 2944 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) { 2945 const TypeFunc* tf = OptoRuntime::void_long_Type(); 2946 const TypePtr* no_memory_effects = NULL; 2947 Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects); 2948 Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0)); 2949 #ifdef ASSERT 2950 Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1)); 2951 assert(value_top == top(), "second value must be top"); 2952 #endif 2953 set_result(value); 2954 return true; 2955 } 2956 2957 #ifdef JFR_HAVE_INTRINSICS 2958 2959 /* 2960 * oop -> myklass 2961 * myklass->trace_id |= USED 2962 * return myklass->trace_id & ~0x3 2963 */ 2964 bool LibraryCallKit::inline_native_classID() { 2965 Node* cls = null_check(argument(0), T_OBJECT); 2966 Node* kls = load_klass_from_mirror(cls, false, NULL, 0); 2967 kls = null_check(kls, T_OBJECT); 2968 2969 ByteSize offset = KLASS_TRACE_ID_OFFSET; 2970 Node* insp = basic_plus_adr(kls, in_bytes(offset)); 2971 Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG, MemNode::unordered); 2972 2973 Node* clsused = longcon(0x01l); // set the class bit 2974 Node* orl = _gvn.transform(new OrLNode(tvalue, clsused)); 2975 const TypePtr *adr_type = _gvn.type(insp)->isa_ptr(); 2976 store_to_memory(control(), insp, orl, T_LONG, adr_type, MemNode::unordered); 2977 2978 #ifdef TRACE_ID_META_BITS 2979 Node* mbits = longcon(~TRACE_ID_META_BITS); 2980 tvalue = _gvn.transform(new AndLNode(tvalue, mbits)); 2981 #endif 2982 #ifdef TRACE_ID_SHIFT 2983 Node* cbits = intcon(TRACE_ID_SHIFT); 2984 tvalue = _gvn.transform(new URShiftLNode(tvalue, cbits)); 2985 #endif 2986 2987 set_result(tvalue); 2988 return true; 2989 2990 } 2991 2992 bool LibraryCallKit::inline_native_getEventWriter() { 2993 Node* tls_ptr = _gvn.transform(new ThreadLocalNode()); 2994 2995 Node* jobj_ptr = basic_plus_adr(top(), tls_ptr, 2996 in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR)); 2997 2998 Node* jobj = make_load(control(), jobj_ptr, TypeRawPtr::BOTTOM, T_ADDRESS, MemNode::unordered); 2999 3000 Node* jobj_cmp_null = _gvn.transform( new CmpPNode(jobj, null()) ); 3001 Node* test_jobj_eq_null = _gvn.transform( new BoolNode(jobj_cmp_null, BoolTest::eq) ); 3002 3003 IfNode* iff_jobj_null = 3004 create_and_map_if(control(), test_jobj_eq_null, PROB_MIN, COUNT_UNKNOWN); 3005 3006 enum { _normal_path = 1, 3007 _null_path = 2, 3008 PATH_LIMIT }; 3009 3010 RegionNode* result_rgn = new RegionNode(PATH_LIMIT); 3011 PhiNode* result_val = new PhiNode(result_rgn, TypeInstPtr::BOTTOM); 3012 3013 Node* jobj_is_null = _gvn.transform(new IfTrueNode(iff_jobj_null)); 3014 result_rgn->init_req(_null_path, jobj_is_null); 3015 result_val->init_req(_null_path, null()); 3016 3017 Node* jobj_is_not_null = _gvn.transform(new IfFalseNode(iff_jobj_null)); 3018 set_control(jobj_is_not_null); 3019 Node* res = access_load(jobj, TypeInstPtr::NOTNULL, T_OBJECT, 3020 IN_NATIVE | C2_CONTROL_DEPENDENT_LOAD); 3021 result_rgn->init_req(_normal_path, control()); 3022 result_val->init_req(_normal_path, res); 3023 3024 set_result(result_rgn, result_val); 3025 3026 return true; 3027 } 3028 3029 #endif // JFR_HAVE_INTRINSICS 3030 3031 //------------------------inline_native_currentThread------------------ 3032 bool LibraryCallKit::inline_native_currentThread() { 3033 Node* junk = NULL; 3034 set_result(generate_current_thread(junk)); 3035 return true; 3036 } 3037 3038 //---------------------------load_mirror_from_klass---------------------------- 3039 // Given a klass oop, load its java mirror (a java.lang.Class oop). 3040 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) { 3041 Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset())); 3042 Node* load = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered); 3043 // mirror = ((OopHandle)mirror)->resolve(); 3044 return access_load(load, TypeInstPtr::MIRROR, T_OBJECT, IN_NATIVE); 3045 } 3046 3047 //-----------------------load_klass_from_mirror_common------------------------- 3048 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop. 3049 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE), 3050 // and branch to the given path on the region. 3051 // If never_see_null, take an uncommon trap on null, so we can optimistically 3052 // compile for the non-null case. 3053 // If the region is NULL, force never_see_null = true. 3054 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror, 3055 bool never_see_null, 3056 RegionNode* region, 3057 int null_path, 3058 int offset) { 3059 if (region == NULL) never_see_null = true; 3060 Node* p = basic_plus_adr(mirror, offset); 3061 const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL; 3062 Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type)); 3063 Node* null_ctl = top(); 3064 kls = null_check_oop(kls, &null_ctl, never_see_null); 3065 if (region != NULL) { 3066 // Set region->in(null_path) if the mirror is a primitive (e.g, int.class). 3067 region->init_req(null_path, null_ctl); 3068 } else { 3069 assert(null_ctl == top(), "no loose ends"); 3070 } 3071 return kls; 3072 } 3073 3074 //--------------------(inline_native_Class_query helpers)--------------------- 3075 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE_FAST, JVM_ACC_HAS_FINALIZER. 3076 // Fall through if (mods & mask) == bits, take the guard otherwise. 3077 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) { 3078 // Branch around if the given klass has the given modifier bit set. 3079 // Like generate_guard, adds a new path onto the region. 3080 Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset())); 3081 Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered); 3082 Node* mask = intcon(modifier_mask); 3083 Node* bits = intcon(modifier_bits); 3084 Node* mbit = _gvn.transform(new AndINode(mods, mask)); 3085 Node* cmp = _gvn.transform(new CmpINode(mbit, bits)); 3086 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne)); 3087 return generate_fair_guard(bol, region); 3088 } 3089 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) { 3090 return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region); 3091 } 3092 Node* LibraryCallKit::generate_hidden_class_guard(Node* kls, RegionNode* region) { 3093 return generate_access_flags_guard(kls, JVM_ACC_IS_HIDDEN_CLASS, 0, region); 3094 } 3095 3096 //-------------------------inline_native_Class_query------------------- 3097 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) { 3098 const Type* return_type = TypeInt::BOOL; 3099 Node* prim_return_value = top(); // what happens if it's a primitive class? 3100 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 3101 bool expect_prim = false; // most of these guys expect to work on refs 3102 3103 enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT }; 3104 3105 Node* mirror = argument(0); 3106 Node* obj = top(); 3107 3108 switch (id) { 3109 case vmIntrinsics::_isInstance: 3110 // nothing is an instance of a primitive type 3111 prim_return_value = intcon(0); 3112 obj = argument(1); 3113 break; 3114 case vmIntrinsics::_getModifiers: 3115 prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC); 3116 assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line"); 3117 return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin); 3118 break; 3119 case vmIntrinsics::_isInterface: 3120 prim_return_value = intcon(0); 3121 break; 3122 case vmIntrinsics::_isArray: 3123 prim_return_value = intcon(0); 3124 expect_prim = true; // cf. ObjectStreamClass.getClassSignature 3125 break; 3126 case vmIntrinsics::_isPrimitive: 3127 prim_return_value = intcon(1); 3128 expect_prim = true; // obviously 3129 break; 3130 case vmIntrinsics::_isHidden: 3131 prim_return_value = intcon(0); 3132 break; 3133 case vmIntrinsics::_getSuperclass: 3134 prim_return_value = null(); 3135 return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR); 3136 break; 3137 case vmIntrinsics::_getClassAccessFlags: 3138 prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC); 3139 return_type = TypeInt::INT; // not bool! 6297094 3140 break; 3141 default: 3142 fatal_unexpected_iid(id); 3143 break; 3144 } 3145 3146 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr(); 3147 if (mirror_con == NULL) return false; // cannot happen? 3148 3149 #ifndef PRODUCT 3150 if (C->print_intrinsics() || C->print_inlining()) { 3151 ciType* k = mirror_con->java_mirror_type(); 3152 if (k) { 3153 tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id())); 3154 k->print_name(); 3155 tty->cr(); 3156 } 3157 } 3158 #endif 3159 3160 // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive). 3161 RegionNode* region = new RegionNode(PATH_LIMIT); 3162 record_for_igvn(region); 3163 PhiNode* phi = new PhiNode(region, return_type); 3164 3165 // The mirror will never be null of Reflection.getClassAccessFlags, however 3166 // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE 3167 // if it is. See bug 4774291. 3168 3169 // For Reflection.getClassAccessFlags(), the null check occurs in 3170 // the wrong place; see inline_unsafe_access(), above, for a similar 3171 // situation. 3172 mirror = null_check(mirror); 3173 // If mirror or obj is dead, only null-path is taken. 3174 if (stopped()) return true; 3175 3176 if (expect_prim) never_see_null = false; // expect nulls (meaning prims) 3177 3178 // Now load the mirror's klass metaobject, and null-check it. 3179 // Side-effects region with the control path if the klass is null. 3180 Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path); 3181 // If kls is null, we have a primitive mirror. 3182 phi->init_req(_prim_path, prim_return_value); 3183 if (stopped()) { set_result(region, phi); return true; } 3184 bool safe_for_replace = (region->in(_prim_path) == top()); 3185 3186 Node* p; // handy temp 3187 Node* null_ctl; 3188 3189 // Now that we have the non-null klass, we can perform the real query. 3190 // For constant classes, the query will constant-fold in LoadNode::Value. 3191 Node* query_value = top(); 3192 switch (id) { 3193 case vmIntrinsics::_isInstance: 3194 // nothing is an instance of a primitive type 3195 query_value = gen_instanceof(obj, kls, safe_for_replace); 3196 break; 3197 3198 case vmIntrinsics::_getModifiers: 3199 p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset())); 3200 query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered); 3201 break; 3202 3203 case vmIntrinsics::_isInterface: 3204 // (To verify this code sequence, check the asserts in JVM_IsInterface.) 3205 if (generate_interface_guard(kls, region) != NULL) 3206 // A guard was added. If the guard is taken, it was an interface. 3207 phi->add_req(intcon(1)); 3208 // If we fall through, it's a plain class. 3209 query_value = intcon(0); 3210 break; 3211 3212 case vmIntrinsics::_isArray: 3213 // (To verify this code sequence, check the asserts in JVM_IsArrayClass.) 3214 if (generate_array_guard(kls, region) != NULL) 3215 // A guard was added. If the guard is taken, it was an array. 3216 phi->add_req(intcon(1)); 3217 // If we fall through, it's a plain class. 3218 query_value = intcon(0); 3219 break; 3220 3221 case vmIntrinsics::_isPrimitive: 3222 query_value = intcon(0); // "normal" path produces false 3223 break; 3224 3225 case vmIntrinsics::_isHidden: 3226 // (To verify this code sequence, check the asserts in JVM_IsHiddenClass.) 3227 if (generate_hidden_class_guard(kls, region) != NULL) 3228 // A guard was added. If the guard is taken, it was an hidden class. 3229 phi->add_req(intcon(1)); 3230 // If we fall through, it's a plain class. 3231 query_value = intcon(0); 3232 break; 3233 3234 3235 case vmIntrinsics::_getSuperclass: 3236 // The rules here are somewhat unfortunate, but we can still do better 3237 // with random logic than with a JNI call. 3238 // Interfaces store null or Object as _super, but must report null. 3239 // Arrays store an intermediate super as _super, but must report Object. 3240 // Other types can report the actual _super. 3241 // (To verify this code sequence, check the asserts in JVM_IsInterface.) 3242 if (generate_interface_guard(kls, region) != NULL) 3243 // A guard was added. If the guard is taken, it was an interface. 3244 phi->add_req(null()); 3245 if (generate_array_guard(kls, region) != NULL) 3246 // A guard was added. If the guard is taken, it was an array. 3247 phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror()))); 3248 // If we fall through, it's a plain class. Get its _super. 3249 p = basic_plus_adr(kls, in_bytes(Klass::super_offset())); 3250 kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL)); 3251 null_ctl = top(); 3252 kls = null_check_oop(kls, &null_ctl); 3253 if (null_ctl != top()) { 3254 // If the guard is taken, Object.superClass is null (both klass and mirror). 3255 region->add_req(null_ctl); 3256 phi ->add_req(null()); 3257 } 3258 if (!stopped()) { 3259 query_value = load_mirror_from_klass(kls); 3260 } 3261 break; 3262 3263 case vmIntrinsics::_getClassAccessFlags: 3264 p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset())); 3265 query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered); 3266 break; 3267 3268 default: 3269 fatal_unexpected_iid(id); 3270 break; 3271 } 3272 3273 // Fall-through is the normal case of a query to a real class. 3274 phi->init_req(1, query_value); 3275 region->init_req(1, control()); 3276 3277 C->set_has_split_ifs(true); // Has chance for split-if optimization 3278 set_result(region, phi); 3279 return true; 3280 } 3281 3282 //-------------------------inline_Class_cast------------------- 3283 bool LibraryCallKit::inline_Class_cast() { 3284 Node* mirror = argument(0); // Class 3285 Node* obj = argument(1); 3286 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr(); 3287 if (mirror_con == NULL) { 3288 return false; // dead path (mirror->is_top()). 3289 } 3290 if (obj == NULL || obj->is_top()) { 3291 return false; // dead path 3292 } 3293 const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr(); 3294 3295 // First, see if Class.cast() can be folded statically. 3296 // java_mirror_type() returns non-null for compile-time Class constants. 3297 ciType* tm = mirror_con->java_mirror_type(); 3298 if (tm != NULL && tm->is_klass() && 3299 tp != NULL && tp->klass() != NULL) { 3300 if (!tp->klass()->is_loaded()) { 3301 // Don't use intrinsic when class is not loaded. 3302 return false; 3303 } else { 3304 int static_res = C->static_subtype_check(tm->as_klass(), tp->klass()); 3305 if (static_res == Compile::SSC_always_true) { 3306 // isInstance() is true - fold the code. 3307 set_result(obj); 3308 return true; 3309 } else if (static_res == Compile::SSC_always_false) { 3310 // Don't use intrinsic, have to throw ClassCastException. 3311 // If the reference is null, the non-intrinsic bytecode will 3312 // be optimized appropriately. 3313 return false; 3314 } 3315 } 3316 } 3317 3318 // Bailout intrinsic and do normal inlining if exception path is frequent. 3319 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 3320 return false; 3321 } 3322 3323 // Generate dynamic checks. 3324 // Class.cast() is java implementation of _checkcast bytecode. 3325 // Do checkcast (Parse::do_checkcast()) optimizations here. 3326 3327 mirror = null_check(mirror); 3328 // If mirror is dead, only null-path is taken. 3329 if (stopped()) { 3330 return true; 3331 } 3332 3333 // Not-subtype or the mirror's klass ptr is NULL (in case it is a primitive). 3334 enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT }; 3335 RegionNode* region = new RegionNode(PATH_LIMIT); 3336 record_for_igvn(region); 3337 3338 // Now load the mirror's klass metaobject, and null-check it. 3339 // If kls is null, we have a primitive mirror and 3340 // nothing is an instance of a primitive type. 3341 Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path); 3342 3343 Node* res = top(); 3344 if (!stopped()) { 3345 Node* bad_type_ctrl = top(); 3346 // Do checkcast optimizations. 3347 res = gen_checkcast(obj, kls, &bad_type_ctrl); 3348 region->init_req(_bad_type_path, bad_type_ctrl); 3349 } 3350 if (region->in(_prim_path) != top() || 3351 region->in(_bad_type_path) != top()) { 3352 // Let Interpreter throw ClassCastException. 3353 PreserveJVMState pjvms(this); 3354 set_control(_gvn.transform(region)); 3355 uncommon_trap(Deoptimization::Reason_intrinsic, 3356 Deoptimization::Action_maybe_recompile); 3357 } 3358 if (!stopped()) { 3359 set_result(res); 3360 } 3361 return true; 3362 } 3363 3364 3365 //--------------------------inline_native_subtype_check------------------------ 3366 // This intrinsic takes the JNI calls out of the heart of 3367 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc. 3368 bool LibraryCallKit::inline_native_subtype_check() { 3369 // Pull both arguments off the stack. 3370 Node* args[2]; // two java.lang.Class mirrors: superc, subc 3371 args[0] = argument(0); 3372 args[1] = argument(1); 3373 Node* klasses[2]; // corresponding Klasses: superk, subk 3374 klasses[0] = klasses[1] = top(); 3375 3376 enum { 3377 // A full decision tree on {superc is prim, subc is prim}: 3378 _prim_0_path = 1, // {P,N} => false 3379 // {P,P} & superc!=subc => false 3380 _prim_same_path, // {P,P} & superc==subc => true 3381 _prim_1_path, // {N,P} => false 3382 _ref_subtype_path, // {N,N} & subtype check wins => true 3383 _both_ref_path, // {N,N} & subtype check loses => false 3384 PATH_LIMIT 3385 }; 3386 3387 RegionNode* region = new RegionNode(PATH_LIMIT); 3388 Node* phi = new PhiNode(region, TypeInt::BOOL); 3389 record_for_igvn(region); 3390 3391 const TypePtr* adr_type = TypeRawPtr::BOTTOM; // memory type of loads 3392 const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL; 3393 int class_klass_offset = java_lang_Class::klass_offset(); 3394 3395 // First null-check both mirrors and load each mirror's klass metaobject. 3396 int which_arg; 3397 for (which_arg = 0; which_arg <= 1; which_arg++) { 3398 Node* arg = args[which_arg]; 3399 arg = null_check(arg); 3400 if (stopped()) break; 3401 args[which_arg] = arg; 3402 3403 Node* p = basic_plus_adr(arg, class_klass_offset); 3404 Node* kls = LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, adr_type, kls_type); 3405 klasses[which_arg] = _gvn.transform(kls); 3406 } 3407 3408 // Having loaded both klasses, test each for null. 3409 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 3410 for (which_arg = 0; which_arg <= 1; which_arg++) { 3411 Node* kls = klasses[which_arg]; 3412 Node* null_ctl = top(); 3413 kls = null_check_oop(kls, &null_ctl, never_see_null); 3414 int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path); 3415 region->init_req(prim_path, null_ctl); 3416 if (stopped()) break; 3417 klasses[which_arg] = kls; 3418 } 3419 3420 if (!stopped()) { 3421 // now we have two reference types, in klasses[0..1] 3422 Node* subk = klasses[1]; // the argument to isAssignableFrom 3423 Node* superk = klasses[0]; // the receiver 3424 region->set_req(_both_ref_path, gen_subtype_check(subk, superk)); 3425 // now we have a successful reference subtype check 3426 region->set_req(_ref_subtype_path, control()); 3427 } 3428 3429 // If both operands are primitive (both klasses null), then 3430 // we must return true when they are identical primitives. 3431 // It is convenient to test this after the first null klass check. 3432 set_control(region->in(_prim_0_path)); // go back to first null check 3433 if (!stopped()) { 3434 // Since superc is primitive, make a guard for the superc==subc case. 3435 Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1])); 3436 Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq)); 3437 generate_guard(bol_eq, region, PROB_FAIR); 3438 if (region->req() == PATH_LIMIT+1) { 3439 // A guard was added. If the added guard is taken, superc==subc. 3440 region->swap_edges(PATH_LIMIT, _prim_same_path); 3441 region->del_req(PATH_LIMIT); 3442 } 3443 region->set_req(_prim_0_path, control()); // Not equal after all. 3444 } 3445 3446 // these are the only paths that produce 'true': 3447 phi->set_req(_prim_same_path, intcon(1)); 3448 phi->set_req(_ref_subtype_path, intcon(1)); 3449 3450 // pull together the cases: 3451 assert(region->req() == PATH_LIMIT, "sane region"); 3452 for (uint i = 1; i < region->req(); i++) { 3453 Node* ctl = region->in(i); 3454 if (ctl == NULL || ctl == top()) { 3455 region->set_req(i, top()); 3456 phi ->set_req(i, top()); 3457 } else if (phi->in(i) == NULL) { 3458 phi->set_req(i, intcon(0)); // all other paths produce 'false' 3459 } 3460 } 3461 3462 set_control(_gvn.transform(region)); 3463 set_result(_gvn.transform(phi)); 3464 return true; 3465 } 3466 3467 //---------------------generate_array_guard_common------------------------ 3468 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region, 3469 bool obj_array, bool not_array) { 3470 3471 if (stopped()) { 3472 return NULL; 3473 } 3474 3475 // If obj_array/non_array==false/false: 3476 // Branch around if the given klass is in fact an array (either obj or prim). 3477 // If obj_array/non_array==false/true: 3478 // Branch around if the given klass is not an array klass of any kind. 3479 // If obj_array/non_array==true/true: 3480 // Branch around if the kls is not an oop array (kls is int[], String, etc.) 3481 // If obj_array/non_array==true/false: 3482 // Branch around if the kls is an oop array (Object[] or subtype) 3483 // 3484 // Like generate_guard, adds a new path onto the region. 3485 jint layout_con = 0; 3486 Node* layout_val = get_layout_helper(kls, layout_con); 3487 if (layout_val == NULL) { 3488 bool query = (obj_array 3489 ? Klass::layout_helper_is_objArray(layout_con) 3490 : Klass::layout_helper_is_array(layout_con)); 3491 if (query == not_array) { 3492 return NULL; // never a branch 3493 } else { // always a branch 3494 Node* always_branch = control(); 3495 if (region != NULL) 3496 region->add_req(always_branch); 3497 set_control(top()); 3498 return always_branch; 3499 } 3500 } 3501 // Now test the correct condition. 3502 jint nval = (obj_array 3503 ? (jint)(Klass::_lh_array_tag_type_value 3504 << Klass::_lh_array_tag_shift) 3505 : Klass::_lh_neutral_value); 3506 Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval))); 3507 BoolTest::mask btest = BoolTest::lt; // correct for testing is_[obj]array 3508 // invert the test if we are looking for a non-array 3509 if (not_array) btest = BoolTest(btest).negate(); 3510 Node* bol = _gvn.transform(new BoolNode(cmp, btest)); 3511 return generate_fair_guard(bol, region); 3512 } 3513 3514 3515 //-----------------------inline_native_newArray-------------------------- 3516 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length); 3517 // private native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size); 3518 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) { 3519 Node* mirror; 3520 Node* count_val; 3521 if (uninitialized) { 3522 mirror = argument(1); 3523 count_val = argument(2); 3524 } else { 3525 mirror = argument(0); 3526 count_val = argument(1); 3527 } 3528 3529 mirror = null_check(mirror); 3530 // If mirror or obj is dead, only null-path is taken. 3531 if (stopped()) return true; 3532 3533 enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT }; 3534 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 3535 PhiNode* result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL); 3536 PhiNode* result_io = new PhiNode(result_reg, Type::ABIO); 3537 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 3538 3539 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 3540 Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null, 3541 result_reg, _slow_path); 3542 Node* normal_ctl = control(); 3543 Node* no_array_ctl = result_reg->in(_slow_path); 3544 3545 // Generate code for the slow case. We make a call to newArray(). 3546 set_control(no_array_ctl); 3547 if (!stopped()) { 3548 // Either the input type is void.class, or else the 3549 // array klass has not yet been cached. Either the 3550 // ensuing call will throw an exception, or else it 3551 // will cache the array klass for next time. 3552 PreserveJVMState pjvms(this); 3553 CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray); 3554 Node* slow_result = set_results_for_java_call(slow_call); 3555 // this->control() comes from set_results_for_java_call 3556 result_reg->set_req(_slow_path, control()); 3557 result_val->set_req(_slow_path, slow_result); 3558 result_io ->set_req(_slow_path, i_o()); 3559 result_mem->set_req(_slow_path, reset_memory()); 3560 } 3561 3562 set_control(normal_ctl); 3563 if (!stopped()) { 3564 // Normal case: The array type has been cached in the java.lang.Class. 3565 // The following call works fine even if the array type is polymorphic. 3566 // It could be a dynamic mix of int[], boolean[], Object[], etc. 3567 Node* obj = new_array(klass_node, count_val, 0); // no arguments to push 3568 result_reg->init_req(_normal_path, control()); 3569 result_val->init_req(_normal_path, obj); 3570 result_io ->init_req(_normal_path, i_o()); 3571 result_mem->init_req(_normal_path, reset_memory()); 3572 3573 if (uninitialized) { 3574 // Mark the allocation so that zeroing is skipped 3575 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj, &_gvn); 3576 alloc->maybe_set_complete(&_gvn); 3577 } 3578 } 3579 3580 // Return the combined state. 3581 set_i_o( _gvn.transform(result_io) ); 3582 set_all_memory( _gvn.transform(result_mem)); 3583 3584 C->set_has_split_ifs(true); // Has chance for split-if optimization 3585 set_result(result_reg, result_val); 3586 return true; 3587 } 3588 3589 //----------------------inline_native_getLength-------------------------- 3590 // public static native int java.lang.reflect.Array.getLength(Object array); 3591 bool LibraryCallKit::inline_native_getLength() { 3592 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false; 3593 3594 Node* array = null_check(argument(0)); 3595 // If array is dead, only null-path is taken. 3596 if (stopped()) return true; 3597 3598 // Deoptimize if it is a non-array. 3599 Node* non_array = generate_non_array_guard(load_object_klass(array), NULL); 3600 3601 if (non_array != NULL) { 3602 PreserveJVMState pjvms(this); 3603 set_control(non_array); 3604 uncommon_trap(Deoptimization::Reason_intrinsic, 3605 Deoptimization::Action_maybe_recompile); 3606 } 3607 3608 // If control is dead, only non-array-path is taken. 3609 if (stopped()) return true; 3610 3611 // The works fine even if the array type is polymorphic. 3612 // It could be a dynamic mix of int[], boolean[], Object[], etc. 3613 Node* result = load_array_length(array); 3614 3615 C->set_has_split_ifs(true); // Has chance for split-if optimization 3616 set_result(result); 3617 return true; 3618 } 3619 3620 //------------------------inline_array_copyOf---------------------------- 3621 // public static <T,U> T[] java.util.Arrays.copyOf( U[] original, int newLength, Class<? extends T[]> newType); 3622 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from, int to, Class<? extends T[]> newType); 3623 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) { 3624 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false; 3625 3626 // Get the arguments. 3627 Node* original = argument(0); 3628 Node* start = is_copyOfRange? argument(1): intcon(0); 3629 Node* end = is_copyOfRange? argument(2): argument(1); 3630 Node* array_type_mirror = is_copyOfRange? argument(3): argument(2); 3631 3632 Node* newcopy = NULL; 3633 3634 // Set the original stack and the reexecute bit for the interpreter to reexecute 3635 // the bytecode that invokes Arrays.copyOf if deoptimization happens. 3636 { PreserveReexecuteState preexecs(this); 3637 jvms()->set_should_reexecute(true); 3638 3639 array_type_mirror = null_check(array_type_mirror); 3640 original = null_check(original); 3641 3642 // Check if a null path was taken unconditionally. 3643 if (stopped()) return true; 3644 3645 Node* orig_length = load_array_length(original); 3646 3647 Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0); 3648 klass_node = null_check(klass_node); 3649 3650 RegionNode* bailout = new RegionNode(1); 3651 record_for_igvn(bailout); 3652 3653 // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc. 3654 // Bail out if that is so. 3655 Node* not_objArray = generate_non_objArray_guard(klass_node, bailout); 3656 if (not_objArray != NULL) { 3657 // Improve the klass node's type from the new optimistic assumption: 3658 ciKlass* ak = ciArrayKlass::make(env()->Object_klass()); 3659 const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/); 3660 Node* cast = new CastPPNode(klass_node, akls); 3661 cast->init_req(0, control()); 3662 klass_node = _gvn.transform(cast); 3663 } 3664 3665 // Bail out if either start or end is negative. 3666 generate_negative_guard(start, bailout, &start); 3667 generate_negative_guard(end, bailout, &end); 3668 3669 Node* length = end; 3670 if (_gvn.type(start) != TypeInt::ZERO) { 3671 length = _gvn.transform(new SubINode(end, start)); 3672 } 3673 3674 // Bail out if length is negative. 3675 // Without this the new_array would throw 3676 // NegativeArraySizeException but IllegalArgumentException is what 3677 // should be thrown 3678 generate_negative_guard(length, bailout, &length); 3679 3680 if (bailout->req() > 1) { 3681 PreserveJVMState pjvms(this); 3682 set_control(_gvn.transform(bailout)); 3683 uncommon_trap(Deoptimization::Reason_intrinsic, 3684 Deoptimization::Action_maybe_recompile); 3685 } 3686 3687 if (!stopped()) { 3688 // How many elements will we copy from the original? 3689 // The answer is MinI(orig_length - start, length). 3690 Node* orig_tail = _gvn.transform(new SubINode(orig_length, start)); 3691 Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length); 3692 3693 // Generate a direct call to the right arraycopy function(s). 3694 // We know the copy is disjoint but we might not know if the 3695 // oop stores need checking. 3696 // Extreme case: Arrays.copyOf((Integer[])x, 10, String[].class). 3697 // This will fail a store-check if x contains any non-nulls. 3698 3699 // ArrayCopyNode:Ideal may transform the ArrayCopyNode to 3700 // loads/stores but it is legal only if we're sure the 3701 // Arrays.copyOf would succeed. So we need all input arguments 3702 // to the copyOf to be validated, including that the copy to the 3703 // new array won't trigger an ArrayStoreException. That subtype 3704 // check can be optimized if we know something on the type of 3705 // the input array from type speculation. 3706 if (_gvn.type(klass_node)->singleton()) { 3707 ciKlass* subk = _gvn.type(load_object_klass(original))->is_klassptr()->klass(); 3708 ciKlass* superk = _gvn.type(klass_node)->is_klassptr()->klass(); 3709 3710 int test = C->static_subtype_check(superk, subk); 3711 if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) { 3712 const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr(); 3713 if (t_original->speculative_type() != NULL) { 3714 original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true); 3715 } 3716 } 3717 } 3718 3719 bool validated = false; 3720 // Reason_class_check rather than Reason_intrinsic because we 3721 // want to intrinsify even if this traps. 3722 if (!too_many_traps(Deoptimization::Reason_class_check)) { 3723 Node* not_subtype_ctrl = gen_subtype_check(original, klass_node); 3724 3725 if (not_subtype_ctrl != top()) { 3726 PreserveJVMState pjvms(this); 3727 set_control(not_subtype_ctrl); 3728 uncommon_trap(Deoptimization::Reason_class_check, 3729 Deoptimization::Action_make_not_entrant); 3730 assert(stopped(), "Should be stopped"); 3731 } 3732 validated = true; 3733 } 3734 3735 if (!stopped()) { 3736 newcopy = new_array(klass_node, length, 0); // no arguments to push 3737 3738 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, false, 3739 load_object_klass(original), klass_node); 3740 if (!is_copyOfRange) { 3741 ac->set_copyof(validated); 3742 } else { 3743 ac->set_copyofrange(validated); 3744 } 3745 Node* n = _gvn.transform(ac); 3746 if (n == ac) { 3747 ac->connect_outputs(this); 3748 } else { 3749 assert(validated, "shouldn't transform if all arguments not validated"); 3750 set_all_memory(n); 3751 } 3752 } 3753 } 3754 } // original reexecute is set back here 3755 3756 C->set_has_split_ifs(true); // Has chance for split-if optimization 3757 if (!stopped()) { 3758 set_result(newcopy); 3759 } 3760 return true; 3761 } 3762 3763 3764 //----------------------generate_virtual_guard--------------------------- 3765 // Helper for hashCode and clone. Peeks inside the vtable to avoid a call. 3766 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass, 3767 RegionNode* slow_region) { 3768 ciMethod* method = callee(); 3769 int vtable_index = method->vtable_index(); 3770 assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index, 3771 "bad index %d", vtable_index); 3772 // Get the Method* out of the appropriate vtable entry. 3773 int entry_offset = in_bytes(Klass::vtable_start_offset()) + 3774 vtable_index*vtableEntry::size_in_bytes() + 3775 vtableEntry::method_offset_in_bytes(); 3776 Node* entry_addr = basic_plus_adr(obj_klass, entry_offset); 3777 Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered); 3778 3779 // Compare the target method with the expected method (e.g., Object.hashCode). 3780 const TypePtr* native_call_addr = TypeMetadataPtr::make(method); 3781 3782 Node* native_call = makecon(native_call_addr); 3783 Node* chk_native = _gvn.transform(new CmpPNode(target_call, native_call)); 3784 Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne)); 3785 3786 return generate_slow_guard(test_native, slow_region); 3787 } 3788 3789 //-----------------------generate_method_call---------------------------- 3790 // Use generate_method_call to make a slow-call to the real 3791 // method if the fast path fails. An alternative would be to 3792 // use a stub like OptoRuntime::slow_arraycopy_Java. 3793 // This only works for expanding the current library call, 3794 // not another intrinsic. (E.g., don't use this for making an 3795 // arraycopy call inside of the copyOf intrinsic.) 3796 CallJavaNode* 3797 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) { 3798 // When compiling the intrinsic method itself, do not use this technique. 3799 guarantee(callee() != C->method(), "cannot make slow-call to self"); 3800 3801 ciMethod* method = callee(); 3802 // ensure the JVMS we have will be correct for this call 3803 guarantee(method_id == method->intrinsic_id(), "must match"); 3804 3805 const TypeFunc* tf = TypeFunc::make(method); 3806 CallJavaNode* slow_call; 3807 if (is_static) { 3808 assert(!is_virtual, ""); 3809 slow_call = new CallStaticJavaNode(C, tf, 3810 SharedRuntime::get_resolve_static_call_stub(), 3811 method, bci()); 3812 } else if (is_virtual) { 3813 null_check_receiver(); 3814 int vtable_index = Method::invalid_vtable_index; 3815 if (UseInlineCaches) { 3816 // Suppress the vtable call 3817 } else { 3818 // hashCode and clone are not a miranda methods, 3819 // so the vtable index is fixed. 3820 // No need to use the linkResolver to get it. 3821 vtable_index = method->vtable_index(); 3822 assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index, 3823 "bad index %d", vtable_index); 3824 } 3825 slow_call = new CallDynamicJavaNode(tf, 3826 SharedRuntime::get_resolve_virtual_call_stub(), 3827 method, vtable_index, bci()); 3828 } else { // neither virtual nor static: opt_virtual 3829 null_check_receiver(); 3830 slow_call = new CallStaticJavaNode(C, tf, 3831 SharedRuntime::get_resolve_opt_virtual_call_stub(), 3832 method, bci()); 3833 slow_call->set_optimized_virtual(true); 3834 } 3835 if (CallGenerator::is_inlined_method_handle_intrinsic(this->method(), bci(), callee())) { 3836 // To be able to issue a direct call (optimized virtual or virtual) 3837 // and skip a call to MH.linkTo*/invokeBasic adapter, additional information 3838 // about the method being invoked should be attached to the call site to 3839 // make resolution logic work (see SharedRuntime::resolve_{virtual,opt_virtual}_call_C). 3840 slow_call->set_override_symbolic_info(true); 3841 } 3842 set_arguments_for_java_call(slow_call); 3843 set_edges_for_java_call(slow_call); 3844 return slow_call; 3845 } 3846 3847 3848 /** 3849 * Build special case code for calls to hashCode on an object. This call may 3850 * be virtual (invokevirtual) or bound (invokespecial). For each case we generate 3851 * slightly different code. 3852 */ 3853 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) { 3854 assert(is_static == callee()->is_static(), "correct intrinsic selection"); 3855 assert(!(is_virtual && is_static), "either virtual, special, or static"); 3856 3857 enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT }; 3858 3859 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 3860 PhiNode* result_val = new PhiNode(result_reg, TypeInt::INT); 3861 PhiNode* result_io = new PhiNode(result_reg, Type::ABIO); 3862 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 3863 Node* obj = NULL; 3864 if (!is_static) { 3865 // Check for hashing null object 3866 obj = null_check_receiver(); 3867 if (stopped()) return true; // unconditionally null 3868 result_reg->init_req(_null_path, top()); 3869 result_val->init_req(_null_path, top()); 3870 } else { 3871 // Do a null check, and return zero if null. 3872 // System.identityHashCode(null) == 0 3873 obj = argument(0); 3874 Node* null_ctl = top(); 3875 obj = null_check_oop(obj, &null_ctl); 3876 result_reg->init_req(_null_path, null_ctl); 3877 result_val->init_req(_null_path, _gvn.intcon(0)); 3878 } 3879 3880 // Unconditionally null? Then return right away. 3881 if (stopped()) { 3882 set_control( result_reg->in(_null_path)); 3883 if (!stopped()) 3884 set_result(result_val->in(_null_path)); 3885 return true; 3886 } 3887 3888 // We only go to the fast case code if we pass a number of guards. The 3889 // paths which do not pass are accumulated in the slow_region. 3890 RegionNode* slow_region = new RegionNode(1); 3891 record_for_igvn(slow_region); 3892 3893 // If this is a virtual call, we generate a funny guard. We pull out 3894 // the vtable entry corresponding to hashCode() from the target object. 3895 // If the target method which we are calling happens to be the native 3896 // Object hashCode() method, we pass the guard. We do not need this 3897 // guard for non-virtual calls -- the caller is known to be the native 3898 // Object hashCode(). 3899 if (is_virtual) { 3900 // After null check, get the object's klass. 3901 Node* obj_klass = load_object_klass(obj); 3902 generate_virtual_guard(obj_klass, slow_region); 3903 } 3904 3905 // Get the header out of the object, use LoadMarkNode when available 3906 Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes()); 3907 // The control of the load must be NULL. Otherwise, the load can move before 3908 // the null check after castPP removal. 3909 Node* no_ctrl = NULL; 3910 Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered); 3911 3912 // Test the header to see if it is unlocked. 3913 Node *lock_mask = _gvn.MakeConX(markWord::biased_lock_mask_in_place); 3914 Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask)); 3915 Node *unlocked_val = _gvn.MakeConX(markWord::unlocked_value); 3916 Node *chk_unlocked = _gvn.transform(new CmpXNode( lmasked_header, unlocked_val)); 3917 Node *test_unlocked = _gvn.transform(new BoolNode( chk_unlocked, BoolTest::ne)); 3918 3919 generate_slow_guard(test_unlocked, slow_region); 3920 3921 // Get the hash value and check to see that it has been properly assigned. 3922 // We depend on hash_mask being at most 32 bits and avoid the use of 3923 // hash_mask_in_place because it could be larger than 32 bits in a 64-bit 3924 // vm: see markWord.hpp. 3925 Node *hash_mask = _gvn.intcon(markWord::hash_mask); 3926 Node *hash_shift = _gvn.intcon(markWord::hash_shift); 3927 Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift)); 3928 // This hack lets the hash bits live anywhere in the mark object now, as long 3929 // as the shift drops the relevant bits into the low 32 bits. Note that 3930 // Java spec says that HashCode is an int so there's no point in capturing 3931 // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build). 3932 hshifted_header = ConvX2I(hshifted_header); 3933 Node *hash_val = _gvn.transform(new AndINode(hshifted_header, hash_mask)); 3934 3935 Node *no_hash_val = _gvn.intcon(markWord::no_hash); 3936 Node *chk_assigned = _gvn.transform(new CmpINode( hash_val, no_hash_val)); 3937 Node *test_assigned = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq)); 3938 3939 generate_slow_guard(test_assigned, slow_region); 3940 3941 Node* init_mem = reset_memory(); 3942 // fill in the rest of the null path: 3943 result_io ->init_req(_null_path, i_o()); 3944 result_mem->init_req(_null_path, init_mem); 3945 3946 result_val->init_req(_fast_path, hash_val); 3947 result_reg->init_req(_fast_path, control()); 3948 result_io ->init_req(_fast_path, i_o()); 3949 result_mem->init_req(_fast_path, init_mem); 3950 3951 // Generate code for the slow case. We make a call to hashCode(). 3952 set_control(_gvn.transform(slow_region)); 3953 if (!stopped()) { 3954 // No need for PreserveJVMState, because we're using up the present state. 3955 set_all_memory(init_mem); 3956 vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode; 3957 CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static); 3958 Node* slow_result = set_results_for_java_call(slow_call); 3959 // this->control() comes from set_results_for_java_call 3960 result_reg->init_req(_slow_path, control()); 3961 result_val->init_req(_slow_path, slow_result); 3962 result_io ->set_req(_slow_path, i_o()); 3963 result_mem ->set_req(_slow_path, reset_memory()); 3964 } 3965 3966 // Return the combined state. 3967 set_i_o( _gvn.transform(result_io) ); 3968 set_all_memory( _gvn.transform(result_mem)); 3969 3970 set_result(result_reg, result_val); 3971 return true; 3972 } 3973 3974 //---------------------------inline_native_getClass---------------------------- 3975 // public final native Class<?> java.lang.Object.getClass(); 3976 // 3977 // Build special case code for calls to getClass on an object. 3978 bool LibraryCallKit::inline_native_getClass() { 3979 Node* obj = null_check_receiver(); 3980 if (stopped()) return true; 3981 set_result(load_mirror_from_klass(load_object_klass(obj))); 3982 return true; 3983 } 3984 3985 //-----------------inline_native_Reflection_getCallerClass--------------------- 3986 // public static native Class<?> sun.reflect.Reflection.getCallerClass(); 3987 // 3988 // In the presence of deep enough inlining, getCallerClass() becomes a no-op. 3989 // 3990 // NOTE: This code must perform the same logic as JVM_GetCallerClass 3991 // in that it must skip particular security frames and checks for 3992 // caller sensitive methods. 3993 bool LibraryCallKit::inline_native_Reflection_getCallerClass() { 3994 #ifndef PRODUCT 3995 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 3996 tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass"); 3997 } 3998 #endif 3999 4000 if (!jvms()->has_method()) { 4001 #ifndef PRODUCT 4002 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4003 tty->print_cr(" Bailing out because intrinsic was inlined at top level"); 4004 } 4005 #endif 4006 return false; 4007 } 4008 4009 // Walk back up the JVM state to find the caller at the required 4010 // depth. 4011 JVMState* caller_jvms = jvms(); 4012 4013 // Cf. JVM_GetCallerClass 4014 // NOTE: Start the loop at depth 1 because the current JVM state does 4015 // not include the Reflection.getCallerClass() frame. 4016 for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) { 4017 ciMethod* m = caller_jvms->method(); 4018 switch (n) { 4019 case 0: 4020 fatal("current JVM state does not include the Reflection.getCallerClass frame"); 4021 break; 4022 case 1: 4023 // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass). 4024 if (!m->caller_sensitive()) { 4025 #ifndef PRODUCT 4026 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4027 tty->print_cr(" Bailing out: CallerSensitive annotation expected at frame %d", n); 4028 } 4029 #endif 4030 return false; // bail-out; let JVM_GetCallerClass do the work 4031 } 4032 break; 4033 default: 4034 if (!m->is_ignored_by_security_stack_walk()) { 4035 // We have reached the desired frame; return the holder class. 4036 // Acquire method holder as java.lang.Class and push as constant. 4037 ciInstanceKlass* caller_klass = caller_jvms->method()->holder(); 4038 ciInstance* caller_mirror = caller_klass->java_mirror(); 4039 set_result(makecon(TypeInstPtr::make(caller_mirror))); 4040 4041 #ifndef PRODUCT 4042 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4043 tty->print_cr(" Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth()); 4044 tty->print_cr(" JVM state at this point:"); 4045 for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) { 4046 ciMethod* m = jvms()->of_depth(i)->method(); 4047 tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8()); 4048 } 4049 } 4050 #endif 4051 return true; 4052 } 4053 break; 4054 } 4055 } 4056 4057 #ifndef PRODUCT 4058 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4059 tty->print_cr(" Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth()); 4060 tty->print_cr(" JVM state at this point:"); 4061 for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) { 4062 ciMethod* m = jvms()->of_depth(i)->method(); 4063 tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8()); 4064 } 4065 } 4066 #endif 4067 4068 return false; // bail-out; let JVM_GetCallerClass do the work 4069 } 4070 4071 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) { 4072 Node* arg = argument(0); 4073 Node* result = NULL; 4074 4075 switch (id) { 4076 case vmIntrinsics::_floatToRawIntBits: result = new MoveF2INode(arg); break; 4077 case vmIntrinsics::_intBitsToFloat: result = new MoveI2FNode(arg); break; 4078 case vmIntrinsics::_doubleToRawLongBits: result = new MoveD2LNode(arg); break; 4079 case vmIntrinsics::_longBitsToDouble: result = new MoveL2DNode(arg); break; 4080 4081 case vmIntrinsics::_doubleToLongBits: { 4082 // two paths (plus control) merge in a wood 4083 RegionNode *r = new RegionNode(3); 4084 Node *phi = new PhiNode(r, TypeLong::LONG); 4085 4086 Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg)); 4087 // Build the boolean node 4088 Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne)); 4089 4090 // Branch either way. 4091 // NaN case is less traveled, which makes all the difference. 4092 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); 4093 Node *opt_isnan = _gvn.transform(ifisnan); 4094 assert( opt_isnan->is_If(), "Expect an IfNode"); 4095 IfNode *opt_ifisnan = (IfNode*)opt_isnan; 4096 Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan)); 4097 4098 set_control(iftrue); 4099 4100 static const jlong nan_bits = CONST64(0x7ff8000000000000); 4101 Node *slow_result = longcon(nan_bits); // return NaN 4102 phi->init_req(1, _gvn.transform( slow_result )); 4103 r->init_req(1, iftrue); 4104 4105 // Else fall through 4106 Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan)); 4107 set_control(iffalse); 4108 4109 phi->init_req(2, _gvn.transform(new MoveD2LNode(arg))); 4110 r->init_req(2, iffalse); 4111 4112 // Post merge 4113 set_control(_gvn.transform(r)); 4114 record_for_igvn(r); 4115 4116 C->set_has_split_ifs(true); // Has chance for split-if optimization 4117 result = phi; 4118 assert(result->bottom_type()->isa_long(), "must be"); 4119 break; 4120 } 4121 4122 case vmIntrinsics::_floatToIntBits: { 4123 // two paths (plus control) merge in a wood 4124 RegionNode *r = new RegionNode(3); 4125 Node *phi = new PhiNode(r, TypeInt::INT); 4126 4127 Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg)); 4128 // Build the boolean node 4129 Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne)); 4130 4131 // Branch either way. 4132 // NaN case is less traveled, which makes all the difference. 4133 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); 4134 Node *opt_isnan = _gvn.transform(ifisnan); 4135 assert( opt_isnan->is_If(), "Expect an IfNode"); 4136 IfNode *opt_ifisnan = (IfNode*)opt_isnan; 4137 Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan)); 4138 4139 set_control(iftrue); 4140 4141 static const jint nan_bits = 0x7fc00000; 4142 Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN 4143 phi->init_req(1, _gvn.transform( slow_result )); 4144 r->init_req(1, iftrue); 4145 4146 // Else fall through 4147 Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan)); 4148 set_control(iffalse); 4149 4150 phi->init_req(2, _gvn.transform(new MoveF2INode(arg))); 4151 r->init_req(2, iffalse); 4152 4153 // Post merge 4154 set_control(_gvn.transform(r)); 4155 record_for_igvn(r); 4156 4157 C->set_has_split_ifs(true); // Has chance for split-if optimization 4158 result = phi; 4159 assert(result->bottom_type()->isa_int(), "must be"); 4160 break; 4161 } 4162 4163 default: 4164 fatal_unexpected_iid(id); 4165 break; 4166 } 4167 set_result(_gvn.transform(result)); 4168 return true; 4169 } 4170 4171 //----------------------inline_unsafe_copyMemory------------------------- 4172 // public native void Unsafe.copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes); 4173 bool LibraryCallKit::inline_unsafe_copyMemory() { 4174 if (callee()->is_static()) return false; // caller must have the capability! 4175 null_check_receiver(); // null-check receiver 4176 if (stopped()) return true; 4177 4178 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 4179 4180 Node* src_ptr = argument(1); // type: oop 4181 Node* src_off = ConvL2X(argument(2)); // type: long 4182 Node* dst_ptr = argument(4); // type: oop 4183 Node* dst_off = ConvL2X(argument(5)); // type: long 4184 Node* size = ConvL2X(argument(7)); // type: long 4185 4186 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 4187 "fieldOffset must be byte-scaled"); 4188 4189 Node* src = make_unsafe_address(src_ptr, src_off, ACCESS_READ); 4190 Node* dst = make_unsafe_address(dst_ptr, dst_off, ACCESS_WRITE); 4191 4192 // Conservatively insert a memory barrier on all memory slices. 4193 // Do not let writes of the copy source or destination float below the copy. 4194 insert_mem_bar(Op_MemBarCPUOrder); 4195 4196 Node* thread = _gvn.transform(new ThreadLocalNode()); 4197 Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset())); 4198 BasicType doing_unsafe_access_bt = T_BYTE; 4199 assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented"); 4200 4201 // update volatile field 4202 store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered); 4203 4204 // Call it. Note that the length argument is not scaled. 4205 make_runtime_call(RC_LEAF|RC_NO_FP, 4206 OptoRuntime::fast_arraycopy_Type(), 4207 StubRoutines::unsafe_arraycopy(), 4208 "unsafe_arraycopy", 4209 TypeRawPtr::BOTTOM, 4210 src, dst, size XTOP); 4211 4212 store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered); 4213 4214 // Do not let reads of the copy destination float above the copy. 4215 insert_mem_bar(Op_MemBarCPUOrder); 4216 4217 return true; 4218 } 4219 4220 //------------------------clone_coping----------------------------------- 4221 // Helper function for inline_native_clone. 4222 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array) { 4223 assert(obj_size != NULL, ""); 4224 Node* raw_obj = alloc_obj->in(1); 4225 assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), ""); 4226 4227 AllocateNode* alloc = NULL; 4228 if (ReduceBulkZeroing) { 4229 // We will be completely responsible for initializing this object - 4230 // mark Initialize node as complete. 4231 alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn); 4232 // The object was just allocated - there should be no any stores! 4233 guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), ""); 4234 // Mark as complete_with_arraycopy so that on AllocateNode 4235 // expansion, we know this AllocateNode is initialized by an array 4236 // copy and a StoreStore barrier exists after the array copy. 4237 alloc->initialization()->set_complete_with_arraycopy(); 4238 } 4239 4240 Node* size = _gvn.transform(obj_size); 4241 access_clone(obj, alloc_obj, size, is_array); 4242 4243 // Do not let reads from the cloned object float above the arraycopy. 4244 if (alloc != NULL) { 4245 // Do not let stores that initialize this object be reordered with 4246 // a subsequent store that would make this object accessible by 4247 // other threads. 4248 // Record what AllocateNode this StoreStore protects so that 4249 // escape analysis can go from the MemBarStoreStoreNode to the 4250 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 4251 // based on the escape status of the AllocateNode. 4252 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 4253 } else { 4254 insert_mem_bar(Op_MemBarCPUOrder); 4255 } 4256 } 4257 4258 //------------------------inline_native_clone---------------------------- 4259 // protected native Object java.lang.Object.clone(); 4260 // 4261 // Here are the simple edge cases: 4262 // null receiver => normal trap 4263 // virtual and clone was overridden => slow path to out-of-line clone 4264 // not cloneable or finalizer => slow path to out-of-line Object.clone 4265 // 4266 // The general case has two steps, allocation and copying. 4267 // Allocation has two cases, and uses GraphKit::new_instance or new_array. 4268 // 4269 // Copying also has two cases, oop arrays and everything else. 4270 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy). 4271 // Everything else uses the tight inline loop supplied by CopyArrayNode. 4272 // 4273 // These steps fold up nicely if and when the cloned object's klass 4274 // can be sharply typed as an object array, a type array, or an instance. 4275 // 4276 bool LibraryCallKit::inline_native_clone(bool is_virtual) { 4277 PhiNode* result_val; 4278 4279 // Set the reexecute bit for the interpreter to reexecute 4280 // the bytecode that invokes Object.clone if deoptimization happens. 4281 { PreserveReexecuteState preexecs(this); 4282 jvms()->set_should_reexecute(true); 4283 4284 Node* obj = null_check_receiver(); 4285 if (stopped()) return true; 4286 4287 const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr(); 4288 4289 // If we are going to clone an instance, we need its exact type to 4290 // know the number and types of fields to convert the clone to 4291 // loads/stores. Maybe a speculative type can help us. 4292 if (!obj_type->klass_is_exact() && 4293 obj_type->speculative_type() != NULL && 4294 obj_type->speculative_type()->is_instance_klass()) { 4295 ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass(); 4296 if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem && 4297 !spec_ik->has_injected_fields()) { 4298 ciKlass* k = obj_type->klass(); 4299 if (!k->is_instance_klass() || 4300 k->as_instance_klass()->is_interface() || 4301 k->as_instance_klass()->has_subklass()) { 4302 obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false); 4303 } 4304 } 4305 } 4306 4307 // Conservatively insert a memory barrier on all memory slices. 4308 // Do not let writes into the original float below the clone. 4309 insert_mem_bar(Op_MemBarCPUOrder); 4310 4311 // paths into result_reg: 4312 enum { 4313 _slow_path = 1, // out-of-line call to clone method (virtual or not) 4314 _objArray_path, // plain array allocation, plus arrayof_oop_arraycopy 4315 _array_path, // plain array allocation, plus arrayof_long_arraycopy 4316 _instance_path, // plain instance allocation, plus arrayof_long_arraycopy 4317 PATH_LIMIT 4318 }; 4319 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 4320 result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL); 4321 PhiNode* result_i_o = new PhiNode(result_reg, Type::ABIO); 4322 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 4323 record_for_igvn(result_reg); 4324 4325 Node* obj_klass = load_object_klass(obj); 4326 Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL); 4327 if (array_ctl != NULL) { 4328 // It's an array. 4329 PreserveJVMState pjvms(this); 4330 set_control(array_ctl); 4331 Node* obj_length = load_array_length(obj); 4332 Node* obj_size = NULL; 4333 Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size, /*deoptimize_on_exception=*/true); 4334 4335 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 4336 if (bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, BarrierSetC2::Parsing)) { 4337 // If it is an oop array, it requires very special treatment, 4338 // because gc barriers are required when accessing the array. 4339 Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL); 4340 if (is_obja != NULL) { 4341 PreserveJVMState pjvms2(this); 4342 set_control(is_obja); 4343 // Generate a direct call to the right arraycopy function(s). 4344 Node* alloc = tightly_coupled_allocation(alloc_obj, NULL); 4345 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, obj, intcon(0), alloc_obj, intcon(0), obj_length, alloc != NULL, false); 4346 ac->set_clone_oop_array(); 4347 Node* n = _gvn.transform(ac); 4348 assert(n == ac, "cannot disappear"); 4349 ac->connect_outputs(this, /*deoptimize_on_exception=*/true); 4350 4351 result_reg->init_req(_objArray_path, control()); 4352 result_val->init_req(_objArray_path, alloc_obj); 4353 result_i_o ->set_req(_objArray_path, i_o()); 4354 result_mem ->set_req(_objArray_path, reset_memory()); 4355 } 4356 } 4357 // Otherwise, there are no barriers to worry about. 4358 // (We can dispense with card marks if we know the allocation 4359 // comes out of eden (TLAB)... In fact, ReduceInitialCardMarks 4360 // causes the non-eden paths to take compensating steps to 4361 // simulate a fresh allocation, so that no further 4362 // card marks are required in compiled code to initialize 4363 // the object.) 4364 4365 if (!stopped()) { 4366 copy_to_clone(obj, alloc_obj, obj_size, true); 4367 4368 // Present the results of the copy. 4369 result_reg->init_req(_array_path, control()); 4370 result_val->init_req(_array_path, alloc_obj); 4371 result_i_o ->set_req(_array_path, i_o()); 4372 result_mem ->set_req(_array_path, reset_memory()); 4373 } 4374 } 4375 4376 // We only go to the instance fast case code if we pass a number of guards. 4377 // The paths which do not pass are accumulated in the slow_region. 4378 RegionNode* slow_region = new RegionNode(1); 4379 record_for_igvn(slow_region); 4380 if (!stopped()) { 4381 // It's an instance (we did array above). Make the slow-path tests. 4382 // If this is a virtual call, we generate a funny guard. We grab 4383 // the vtable entry corresponding to clone() from the target object. 4384 // If the target method which we are calling happens to be the 4385 // Object clone() method, we pass the guard. We do not need this 4386 // guard for non-virtual calls; the caller is known to be the native 4387 // Object clone(). 4388 if (is_virtual) { 4389 generate_virtual_guard(obj_klass, slow_region); 4390 } 4391 4392 // The object must be easily cloneable and must not have a finalizer. 4393 // Both of these conditions may be checked in a single test. 4394 // We could optimize the test further, but we don't care. 4395 generate_access_flags_guard(obj_klass, 4396 // Test both conditions: 4397 JVM_ACC_IS_CLONEABLE_FAST | JVM_ACC_HAS_FINALIZER, 4398 // Must be cloneable but not finalizer: 4399 JVM_ACC_IS_CLONEABLE_FAST, 4400 slow_region); 4401 } 4402 4403 if (!stopped()) { 4404 // It's an instance, and it passed the slow-path tests. 4405 PreserveJVMState pjvms(this); 4406 Node* obj_size = NULL; 4407 // Need to deoptimize on exception from allocation since Object.clone intrinsic 4408 // is reexecuted if deoptimization occurs and there could be problems when merging 4409 // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false). 4410 Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size, /*deoptimize_on_exception=*/true); 4411 4412 copy_to_clone(obj, alloc_obj, obj_size, false); 4413 4414 // Present the results of the slow call. 4415 result_reg->init_req(_instance_path, control()); 4416 result_val->init_req(_instance_path, alloc_obj); 4417 result_i_o ->set_req(_instance_path, i_o()); 4418 result_mem ->set_req(_instance_path, reset_memory()); 4419 } 4420 4421 // Generate code for the slow case. We make a call to clone(). 4422 set_control(_gvn.transform(slow_region)); 4423 if (!stopped()) { 4424 PreserveJVMState pjvms(this); 4425 CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual); 4426 // We need to deoptimize on exception (see comment above) 4427 Node* slow_result = set_results_for_java_call(slow_call, false, /* deoptimize */ true); 4428 // this->control() comes from set_results_for_java_call 4429 result_reg->init_req(_slow_path, control()); 4430 result_val->init_req(_slow_path, slow_result); 4431 result_i_o ->set_req(_slow_path, i_o()); 4432 result_mem ->set_req(_slow_path, reset_memory()); 4433 } 4434 4435 // Return the combined state. 4436 set_control( _gvn.transform(result_reg)); 4437 set_i_o( _gvn.transform(result_i_o)); 4438 set_all_memory( _gvn.transform(result_mem)); 4439 } // original reexecute is set back here 4440 4441 set_result(_gvn.transform(result_val)); 4442 return true; 4443 } 4444 4445 // If we have a tightly coupled allocation, the arraycopy may take care 4446 // of the array initialization. If one of the guards we insert between 4447 // the allocation and the arraycopy causes a deoptimization, an 4448 // unitialized array will escape the compiled method. To prevent that 4449 // we set the JVM state for uncommon traps between the allocation and 4450 // the arraycopy to the state before the allocation so, in case of 4451 // deoptimization, we'll reexecute the allocation and the 4452 // initialization. 4453 JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) { 4454 if (alloc != NULL) { 4455 ciMethod* trap_method = alloc->jvms()->method(); 4456 int trap_bci = alloc->jvms()->bci(); 4457 4458 if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) && 4459 !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) { 4460 // Make sure there's no store between the allocation and the 4461 // arraycopy otherwise visible side effects could be rexecuted 4462 // in case of deoptimization and cause incorrect execution. 4463 bool no_interfering_store = true; 4464 Node* mem = alloc->in(TypeFunc::Memory); 4465 if (mem->is_MergeMem()) { 4466 for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) { 4467 Node* n = mms.memory(); 4468 if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) { 4469 assert(n->is_Store(), "what else?"); 4470 no_interfering_store = false; 4471 break; 4472 } 4473 } 4474 } else { 4475 for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) { 4476 Node* n = mms.memory(); 4477 if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) { 4478 assert(n->is_Store(), "what else?"); 4479 no_interfering_store = false; 4480 break; 4481 } 4482 } 4483 } 4484 4485 if (no_interfering_store) { 4486 JVMState* old_jvms = alloc->jvms()->clone_shallow(C); 4487 uint size = alloc->req(); 4488 SafePointNode* sfpt = new SafePointNode(size, old_jvms); 4489 old_jvms->set_map(sfpt); 4490 for (uint i = 0; i < size; i++) { 4491 sfpt->init_req(i, alloc->in(i)); 4492 } 4493 // re-push array length for deoptimization 4494 sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength)); 4495 old_jvms->set_sp(old_jvms->sp()+1); 4496 old_jvms->set_monoff(old_jvms->monoff()+1); 4497 old_jvms->set_scloff(old_jvms->scloff()+1); 4498 old_jvms->set_endoff(old_jvms->endoff()+1); 4499 old_jvms->set_should_reexecute(true); 4500 4501 sfpt->set_i_o(map()->i_o()); 4502 sfpt->set_memory(map()->memory()); 4503 sfpt->set_control(map()->control()); 4504 4505 JVMState* saved_jvms = jvms(); 4506 saved_reexecute_sp = _reexecute_sp; 4507 4508 set_jvms(sfpt->jvms()); 4509 _reexecute_sp = jvms()->sp(); 4510 4511 return saved_jvms; 4512 } 4513 } 4514 } 4515 return NULL; 4516 } 4517 4518 // In case of a deoptimization, we restart execution at the 4519 // allocation, allocating a new array. We would leave an uninitialized 4520 // array in the heap that GCs wouldn't expect. Move the allocation 4521 // after the traps so we don't allocate the array if we 4522 // deoptimize. This is possible because tightly_coupled_allocation() 4523 // guarantees there's no observer of the allocated array at this point 4524 // and the control flow is simple enough. 4525 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms, 4526 int saved_reexecute_sp, uint new_idx) { 4527 if (saved_jvms != NULL && !stopped()) { 4528 assert(alloc != NULL, "only with a tightly coupled allocation"); 4529 // restore JVM state to the state at the arraycopy 4530 saved_jvms->map()->set_control(map()->control()); 4531 assert(saved_jvms->map()->memory() == map()->memory(), "memory state changed?"); 4532 assert(saved_jvms->map()->i_o() == map()->i_o(), "IO state changed?"); 4533 // If we've improved the types of some nodes (null check) while 4534 // emitting the guards, propagate them to the current state 4535 map()->replaced_nodes().apply(saved_jvms->map(), new_idx); 4536 set_jvms(saved_jvms); 4537 _reexecute_sp = saved_reexecute_sp; 4538 4539 // Remove the allocation from above the guards 4540 CallProjections callprojs; 4541 alloc->extract_projections(&callprojs, true); 4542 InitializeNode* init = alloc->initialization(); 4543 Node* alloc_mem = alloc->in(TypeFunc::Memory); 4544 C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O)); 4545 C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem); 4546 C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0)); 4547 4548 // move the allocation here (after the guards) 4549 _gvn.hash_delete(alloc); 4550 alloc->set_req(TypeFunc::Control, control()); 4551 alloc->set_req(TypeFunc::I_O, i_o()); 4552 Node *mem = reset_memory(); 4553 set_all_memory(mem); 4554 alloc->set_req(TypeFunc::Memory, mem); 4555 set_control(init->proj_out_or_null(TypeFunc::Control)); 4556 set_i_o(callprojs.fallthrough_ioproj); 4557 4558 // Update memory as done in GraphKit::set_output_for_allocation() 4559 const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength)); 4560 const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type(); 4561 if (ary_type->isa_aryptr() && length_type != NULL) { 4562 ary_type = ary_type->is_aryptr()->cast_to_size(length_type); 4563 } 4564 const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot); 4565 int elemidx = C->get_alias_index(telemref); 4566 set_memory(init->proj_out_or_null(TypeFunc::Memory), Compile::AliasIdxRaw); 4567 set_memory(init->proj_out_or_null(TypeFunc::Memory), elemidx); 4568 4569 Node* allocx = _gvn.transform(alloc); 4570 assert(allocx == alloc, "where has the allocation gone?"); 4571 assert(dest->is_CheckCastPP(), "not an allocation result?"); 4572 4573 _gvn.hash_delete(dest); 4574 dest->set_req(0, control()); 4575 Node* destx = _gvn.transform(dest); 4576 assert(destx == dest, "where has the allocation result gone?"); 4577 } 4578 } 4579 4580 4581 //------------------------------inline_arraycopy----------------------- 4582 // public static native void java.lang.System.arraycopy(Object src, int srcPos, 4583 // Object dest, int destPos, 4584 // int length); 4585 bool LibraryCallKit::inline_arraycopy() { 4586 // Get the arguments. 4587 Node* src = argument(0); // type: oop 4588 Node* src_offset = argument(1); // type: int 4589 Node* dest = argument(2); // type: oop 4590 Node* dest_offset = argument(3); // type: int 4591 Node* length = argument(4); // type: int 4592 4593 uint new_idx = C->unique(); 4594 4595 // Check for allocation before we add nodes that would confuse 4596 // tightly_coupled_allocation() 4597 AllocateArrayNode* alloc = tightly_coupled_allocation(dest, NULL); 4598 4599 int saved_reexecute_sp = -1; 4600 JVMState* saved_jvms = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp); 4601 // See arraycopy_restore_alloc_state() comment 4602 // if alloc == NULL we don't have to worry about a tightly coupled allocation so we can emit all needed guards 4603 // if saved_jvms != NULL (then alloc != NULL) then we can handle guards and a tightly coupled allocation 4604 // if saved_jvms == NULL and alloc != NULL, we can't emit any guards 4605 bool can_emit_guards = (alloc == NULL || saved_jvms != NULL); 4606 4607 // The following tests must be performed 4608 // (1) src and dest are arrays. 4609 // (2) src and dest arrays must have elements of the same BasicType 4610 // (3) src and dest must not be null. 4611 // (4) src_offset must not be negative. 4612 // (5) dest_offset must not be negative. 4613 // (6) length must not be negative. 4614 // (7) src_offset + length must not exceed length of src. 4615 // (8) dest_offset + length must not exceed length of dest. 4616 // (9) each element of an oop array must be assignable 4617 4618 // (3) src and dest must not be null. 4619 // always do this here because we need the JVM state for uncommon traps 4620 Node* null_ctl = top(); 4621 src = saved_jvms != NULL ? null_check_oop(src, &null_ctl, true, true) : null_check(src, T_ARRAY); 4622 assert(null_ctl->is_top(), "no null control here"); 4623 dest = null_check(dest, T_ARRAY); 4624 4625 if (!can_emit_guards) { 4626 // if saved_jvms == NULL and alloc != NULL, we don't emit any 4627 // guards but the arraycopy node could still take advantage of a 4628 // tightly allocated allocation. tightly_coupled_allocation() is 4629 // called again to make sure it takes the null check above into 4630 // account: the null check is mandatory and if it caused an 4631 // uncommon trap to be emitted then the allocation can't be 4632 // considered tightly coupled in this context. 4633 alloc = tightly_coupled_allocation(dest, NULL); 4634 } 4635 4636 bool validated = false; 4637 4638 const Type* src_type = _gvn.type(src); 4639 const Type* dest_type = _gvn.type(dest); 4640 const TypeAryPtr* top_src = src_type->isa_aryptr(); 4641 const TypeAryPtr* top_dest = dest_type->isa_aryptr(); 4642 4643 // Do we have the type of src? 4644 bool has_src = (top_src != NULL && top_src->klass() != NULL); 4645 // Do we have the type of dest? 4646 bool has_dest = (top_dest != NULL && top_dest->klass() != NULL); 4647 // Is the type for src from speculation? 4648 bool src_spec = false; 4649 // Is the type for dest from speculation? 4650 bool dest_spec = false; 4651 4652 if ((!has_src || !has_dest) && can_emit_guards) { 4653 // We don't have sufficient type information, let's see if 4654 // speculative types can help. We need to have types for both src 4655 // and dest so that it pays off. 4656 4657 // Do we already have or could we have type information for src 4658 bool could_have_src = has_src; 4659 // Do we already have or could we have type information for dest 4660 bool could_have_dest = has_dest; 4661 4662 ciKlass* src_k = NULL; 4663 if (!has_src) { 4664 src_k = src_type->speculative_type_not_null(); 4665 if (src_k != NULL && src_k->is_array_klass()) { 4666 could_have_src = true; 4667 } 4668 } 4669 4670 ciKlass* dest_k = NULL; 4671 if (!has_dest) { 4672 dest_k = dest_type->speculative_type_not_null(); 4673 if (dest_k != NULL && dest_k->is_array_klass()) { 4674 could_have_dest = true; 4675 } 4676 } 4677 4678 if (could_have_src && could_have_dest) { 4679 // This is going to pay off so emit the required guards 4680 if (!has_src) { 4681 src = maybe_cast_profiled_obj(src, src_k, true); 4682 src_type = _gvn.type(src); 4683 top_src = src_type->isa_aryptr(); 4684 has_src = (top_src != NULL && top_src->klass() != NULL); 4685 src_spec = true; 4686 } 4687 if (!has_dest) { 4688 dest = maybe_cast_profiled_obj(dest, dest_k, true); 4689 dest_type = _gvn.type(dest); 4690 top_dest = dest_type->isa_aryptr(); 4691 has_dest = (top_dest != NULL && top_dest->klass() != NULL); 4692 dest_spec = true; 4693 } 4694 } 4695 } 4696 4697 if (has_src && has_dest && can_emit_guards) { 4698 BasicType src_elem = top_src->klass()->as_array_klass()->element_type()->basic_type(); 4699 BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type(); 4700 if (is_reference_type(src_elem)) src_elem = T_OBJECT; 4701 if (is_reference_type(dest_elem)) dest_elem = T_OBJECT; 4702 4703 if (src_elem == dest_elem && src_elem == T_OBJECT) { 4704 // If both arrays are object arrays then having the exact types 4705 // for both will remove the need for a subtype check at runtime 4706 // before the call and may make it possible to pick a faster copy 4707 // routine (without a subtype check on every element) 4708 // Do we have the exact type of src? 4709 bool could_have_src = src_spec; 4710 // Do we have the exact type of dest? 4711 bool could_have_dest = dest_spec; 4712 ciKlass* src_k = top_src->klass(); 4713 ciKlass* dest_k = top_dest->klass(); 4714 if (!src_spec) { 4715 src_k = src_type->speculative_type_not_null(); 4716 if (src_k != NULL && src_k->is_array_klass()) { 4717 could_have_src = true; 4718 } 4719 } 4720 if (!dest_spec) { 4721 dest_k = dest_type->speculative_type_not_null(); 4722 if (dest_k != NULL && dest_k->is_array_klass()) { 4723 could_have_dest = true; 4724 } 4725 } 4726 if (could_have_src && could_have_dest) { 4727 // If we can have both exact types, emit the missing guards 4728 if (could_have_src && !src_spec) { 4729 src = maybe_cast_profiled_obj(src, src_k, true); 4730 } 4731 if (could_have_dest && !dest_spec) { 4732 dest = maybe_cast_profiled_obj(dest, dest_k, true); 4733 } 4734 } 4735 } 4736 } 4737 4738 ciMethod* trap_method = method(); 4739 int trap_bci = bci(); 4740 if (saved_jvms != NULL) { 4741 trap_method = alloc->jvms()->method(); 4742 trap_bci = alloc->jvms()->bci(); 4743 } 4744 4745 bool negative_length_guard_generated = false; 4746 4747 if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) && 4748 can_emit_guards && 4749 !src->is_top() && !dest->is_top()) { 4750 // validate arguments: enables transformation the ArrayCopyNode 4751 validated = true; 4752 4753 RegionNode* slow_region = new RegionNode(1); 4754 record_for_igvn(slow_region); 4755 4756 // (1) src and dest are arrays. 4757 generate_non_array_guard(load_object_klass(src), slow_region); 4758 generate_non_array_guard(load_object_klass(dest), slow_region); 4759 4760 // (2) src and dest arrays must have elements of the same BasicType 4761 // done at macro expansion or at Ideal transformation time 4762 4763 // (4) src_offset must not be negative. 4764 generate_negative_guard(src_offset, slow_region); 4765 4766 // (5) dest_offset must not be negative. 4767 generate_negative_guard(dest_offset, slow_region); 4768 4769 // (7) src_offset + length must not exceed length of src. 4770 generate_limit_guard(src_offset, length, 4771 load_array_length(src), 4772 slow_region); 4773 4774 // (8) dest_offset + length must not exceed length of dest. 4775 generate_limit_guard(dest_offset, length, 4776 load_array_length(dest), 4777 slow_region); 4778 4779 // (6) length must not be negative. 4780 // This is also checked in generate_arraycopy() during macro expansion, but 4781 // we also have to check it here for the case where the ArrayCopyNode will 4782 // be eliminated by Escape Analysis. 4783 if (EliminateAllocations) { 4784 generate_negative_guard(length, slow_region); 4785 negative_length_guard_generated = true; 4786 } 4787 4788 // (9) each element of an oop array must be assignable 4789 Node* dest_klass = load_object_klass(dest); 4790 if (src != dest) { 4791 Node* not_subtype_ctrl = gen_subtype_check(src, dest_klass); 4792 4793 if (not_subtype_ctrl != top()) { 4794 PreserveJVMState pjvms(this); 4795 set_control(not_subtype_ctrl); 4796 uncommon_trap(Deoptimization::Reason_intrinsic, 4797 Deoptimization::Action_make_not_entrant); 4798 assert(stopped(), "Should be stopped"); 4799 } 4800 } 4801 { 4802 PreserveJVMState pjvms(this); 4803 set_control(_gvn.transform(slow_region)); 4804 uncommon_trap(Deoptimization::Reason_intrinsic, 4805 Deoptimization::Action_make_not_entrant); 4806 assert(stopped(), "Should be stopped"); 4807 } 4808 4809 const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->is_klassptr(); 4810 const Type *toop = TypeOopPtr::make_from_klass(dest_klass_t->klass()); 4811 src = _gvn.transform(new CheckCastPPNode(control(), src, toop)); 4812 } 4813 4814 arraycopy_move_allocation_here(alloc, dest, saved_jvms, saved_reexecute_sp, new_idx); 4815 4816 if (stopped()) { 4817 return true; 4818 } 4819 4820 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != NULL, negative_length_guard_generated, 4821 // Create LoadRange and LoadKlass nodes for use during macro expansion here 4822 // so the compiler has a chance to eliminate them: during macro expansion, 4823 // we have to set their control (CastPP nodes are eliminated). 4824 load_object_klass(src), load_object_klass(dest), 4825 load_array_length(src), load_array_length(dest)); 4826 4827 ac->set_arraycopy(validated); 4828 4829 Node* n = _gvn.transform(ac); 4830 if (n == ac) { 4831 ac->connect_outputs(this); 4832 } else { 4833 assert(validated, "shouldn't transform if all arguments not validated"); 4834 set_all_memory(n); 4835 } 4836 clear_upper_avx(); 4837 4838 4839 return true; 4840 } 4841 4842 4843 // Helper function which determines if an arraycopy immediately follows 4844 // an allocation, with no intervening tests or other escapes for the object. 4845 AllocateArrayNode* 4846 LibraryCallKit::tightly_coupled_allocation(Node* ptr, 4847 RegionNode* slow_region) { 4848 if (stopped()) return NULL; // no fast path 4849 if (C->AliasLevel() == 0) return NULL; // no MergeMems around 4850 4851 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn); 4852 if (alloc == NULL) return NULL; 4853 4854 Node* rawmem = memory(Compile::AliasIdxRaw); 4855 // Is the allocation's memory state untouched? 4856 if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) { 4857 // Bail out if there have been raw-memory effects since the allocation. 4858 // (Example: There might have been a call or safepoint.) 4859 return NULL; 4860 } 4861 rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw); 4862 if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) { 4863 return NULL; 4864 } 4865 4866 // There must be no unexpected observers of this allocation. 4867 for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) { 4868 Node* obs = ptr->fast_out(i); 4869 if (obs != this->map()) { 4870 return NULL; 4871 } 4872 } 4873 4874 // This arraycopy must unconditionally follow the allocation of the ptr. 4875 Node* alloc_ctl = ptr->in(0); 4876 Node* ctl = control(); 4877 while (ctl != alloc_ctl) { 4878 // There may be guards which feed into the slow_region. 4879 // Any other control flow means that we might not get a chance 4880 // to finish initializing the allocated object. 4881 if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) { 4882 IfNode* iff = ctl->in(0)->as_If(); 4883 Node* not_ctl = iff->proj_out_or_null(1 - ctl->as_Proj()->_con); 4884 assert(not_ctl != NULL && not_ctl != ctl, "found alternate"); 4885 if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) { 4886 ctl = iff->in(0); // This test feeds the known slow_region. 4887 continue; 4888 } 4889 // One more try: Various low-level checks bottom out in 4890 // uncommon traps. If the debug-info of the trap omits 4891 // any reference to the allocation, as we've already 4892 // observed, then there can be no objection to the trap. 4893 bool found_trap = false; 4894 for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) { 4895 Node* obs = not_ctl->fast_out(j); 4896 if (obs->in(0) == not_ctl && obs->is_Call() && 4897 (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) { 4898 found_trap = true; break; 4899 } 4900 } 4901 if (found_trap) { 4902 ctl = iff->in(0); // This test feeds a harmless uncommon trap. 4903 continue; 4904 } 4905 } 4906 return NULL; 4907 } 4908 4909 // If we get this far, we have an allocation which immediately 4910 // precedes the arraycopy, and we can take over zeroing the new object. 4911 // The arraycopy will finish the initialization, and provide 4912 // a new control state to which we will anchor the destination pointer. 4913 4914 return alloc; 4915 } 4916 4917 //-------------inline_encodeISOArray----------------------------------- 4918 // encode char[] to byte[] in ISO_8859_1 4919 bool LibraryCallKit::inline_encodeISOArray() { 4920 assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters"); 4921 // no receiver since it is static method 4922 Node *src = argument(0); 4923 Node *src_offset = argument(1); 4924 Node *dst = argument(2); 4925 Node *dst_offset = argument(3); 4926 Node *length = argument(4); 4927 4928 src = must_be_not_null(src, true); 4929 dst = must_be_not_null(dst, true); 4930 4931 const Type* src_type = src->Value(&_gvn); 4932 const Type* dst_type = dst->Value(&_gvn); 4933 const TypeAryPtr* top_src = src_type->isa_aryptr(); 4934 const TypeAryPtr* top_dest = dst_type->isa_aryptr(); 4935 if (top_src == NULL || top_src->klass() == NULL || 4936 top_dest == NULL || top_dest->klass() == NULL) { 4937 // failed array check 4938 return false; 4939 } 4940 4941 // Figure out the size and type of the elements we will be copying. 4942 BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 4943 BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 4944 if (!((src_elem == T_CHAR) || (src_elem== T_BYTE)) || dst_elem != T_BYTE) { 4945 return false; 4946 } 4947 4948 Node* src_start = array_element_address(src, src_offset, T_CHAR); 4949 Node* dst_start = array_element_address(dst, dst_offset, dst_elem); 4950 // 'src_start' points to src array + scaled offset 4951 // 'dst_start' points to dst array + scaled offset 4952 4953 const TypeAryPtr* mtype = TypeAryPtr::BYTES; 4954 Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length); 4955 enc = _gvn.transform(enc); 4956 Node* res_mem = _gvn.transform(new SCMemProjNode(enc)); 4957 set_memory(res_mem, mtype); 4958 set_result(enc); 4959 clear_upper_avx(); 4960 4961 return true; 4962 } 4963 4964 //-------------inline_multiplyToLen----------------------------------- 4965 bool LibraryCallKit::inline_multiplyToLen() { 4966 assert(UseMultiplyToLenIntrinsic, "not implemented on this platform"); 4967 4968 address stubAddr = StubRoutines::multiplyToLen(); 4969 if (stubAddr == NULL) { 4970 return false; // Intrinsic's stub is not implemented on this platform 4971 } 4972 const char* stubName = "multiplyToLen"; 4973 4974 assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters"); 4975 4976 // no receiver because it is a static method 4977 Node* x = argument(0); 4978 Node* xlen = argument(1); 4979 Node* y = argument(2); 4980 Node* ylen = argument(3); 4981 Node* z = argument(4); 4982 4983 x = must_be_not_null(x, true); 4984 y = must_be_not_null(y, true); 4985 4986 const Type* x_type = x->Value(&_gvn); 4987 const Type* y_type = y->Value(&_gvn); 4988 const TypeAryPtr* top_x = x_type->isa_aryptr(); 4989 const TypeAryPtr* top_y = y_type->isa_aryptr(); 4990 if (top_x == NULL || top_x->klass() == NULL || 4991 top_y == NULL || top_y->klass() == NULL) { 4992 // failed array check 4993 return false; 4994 } 4995 4996 BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 4997 BasicType y_elem = y_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 4998 if (x_elem != T_INT || y_elem != T_INT) { 4999 return false; 5000 } 5001 5002 // Set the original stack and the reexecute bit for the interpreter to reexecute 5003 // the bytecode that invokes BigInteger.multiplyToLen() if deoptimization happens 5004 // on the return from z array allocation in runtime. 5005 { PreserveReexecuteState preexecs(this); 5006 jvms()->set_should_reexecute(true); 5007 5008 Node* x_start = array_element_address(x, intcon(0), x_elem); 5009 Node* y_start = array_element_address(y, intcon(0), y_elem); 5010 // 'x_start' points to x array + scaled xlen 5011 // 'y_start' points to y array + scaled ylen 5012 5013 // Allocate the result array 5014 Node* zlen = _gvn.transform(new AddINode(xlen, ylen)); 5015 ciKlass* klass = ciTypeArrayKlass::make(T_INT); 5016 Node* klass_node = makecon(TypeKlassPtr::make(klass)); 5017 5018 IdealKit ideal(this); 5019 5020 #define __ ideal. 5021 Node* one = __ ConI(1); 5022 Node* zero = __ ConI(0); 5023 IdealVariable need_alloc(ideal), z_alloc(ideal); __ declarations_done(); 5024 __ set(need_alloc, zero); 5025 __ set(z_alloc, z); 5026 __ if_then(z, BoolTest::eq, null()); { 5027 __ increment (need_alloc, one); 5028 } __ else_(); { 5029 // Update graphKit memory and control from IdealKit. 5030 sync_kit(ideal); 5031 Node *cast = new CastPPNode(z, TypePtr::NOTNULL); 5032 cast->init_req(0, control()); 5033 _gvn.set_type(cast, cast->bottom_type()); 5034 C->record_for_igvn(cast); 5035 5036 Node* zlen_arg = load_array_length(cast); 5037 // Update IdealKit memory and control from graphKit. 5038 __ sync_kit(this); 5039 __ if_then(zlen_arg, BoolTest::lt, zlen); { 5040 __ increment (need_alloc, one); 5041 } __ end_if(); 5042 } __ end_if(); 5043 5044 __ if_then(__ value(need_alloc), BoolTest::ne, zero); { 5045 // Update graphKit memory and control from IdealKit. 5046 sync_kit(ideal); 5047 Node * narr = new_array(klass_node, zlen, 1); 5048 // Update IdealKit memory and control from graphKit. 5049 __ sync_kit(this); 5050 __ set(z_alloc, narr); 5051 } __ end_if(); 5052 5053 sync_kit(ideal); 5054 z = __ value(z_alloc); 5055 // Can't use TypeAryPtr::INTS which uses Bottom offset. 5056 _gvn.set_type(z, TypeOopPtr::make_from_klass(klass)); 5057 // Final sync IdealKit and GraphKit. 5058 final_sync(ideal); 5059 #undef __ 5060 5061 Node* z_start = array_element_address(z, intcon(0), T_INT); 5062 5063 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 5064 OptoRuntime::multiplyToLen_Type(), 5065 stubAddr, stubName, TypePtr::BOTTOM, 5066 x_start, xlen, y_start, ylen, z_start, zlen); 5067 } // original reexecute is set back here 5068 5069 C->set_has_split_ifs(true); // Has chance for split-if optimization 5070 set_result(z); 5071 return true; 5072 } 5073 5074 //-------------inline_squareToLen------------------------------------ 5075 bool LibraryCallKit::inline_squareToLen() { 5076 assert(UseSquareToLenIntrinsic, "not implemented on this platform"); 5077 5078 address stubAddr = StubRoutines::squareToLen(); 5079 if (stubAddr == NULL) { 5080 return false; // Intrinsic's stub is not implemented on this platform 5081 } 5082 const char* stubName = "squareToLen"; 5083 5084 assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters"); 5085 5086 Node* x = argument(0); 5087 Node* len = argument(1); 5088 Node* z = argument(2); 5089 Node* zlen = argument(3); 5090 5091 x = must_be_not_null(x, true); 5092 z = must_be_not_null(z, true); 5093 5094 const Type* x_type = x->Value(&_gvn); 5095 const Type* z_type = z->Value(&_gvn); 5096 const TypeAryPtr* top_x = x_type->isa_aryptr(); 5097 const TypeAryPtr* top_z = z_type->isa_aryptr(); 5098 if (top_x == NULL || top_x->klass() == NULL || 5099 top_z == NULL || top_z->klass() == NULL) { 5100 // failed array check 5101 return false; 5102 } 5103 5104 BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5105 BasicType z_elem = z_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5106 if (x_elem != T_INT || z_elem != T_INT) { 5107 return false; 5108 } 5109 5110 5111 Node* x_start = array_element_address(x, intcon(0), x_elem); 5112 Node* z_start = array_element_address(z, intcon(0), z_elem); 5113 5114 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 5115 OptoRuntime::squareToLen_Type(), 5116 stubAddr, stubName, TypePtr::BOTTOM, 5117 x_start, len, z_start, zlen); 5118 5119 set_result(z); 5120 return true; 5121 } 5122 5123 //-------------inline_mulAdd------------------------------------------ 5124 bool LibraryCallKit::inline_mulAdd() { 5125 assert(UseMulAddIntrinsic, "not implemented on this platform"); 5126 5127 address stubAddr = StubRoutines::mulAdd(); 5128 if (stubAddr == NULL) { 5129 return false; // Intrinsic's stub is not implemented on this platform 5130 } 5131 const char* stubName = "mulAdd"; 5132 5133 assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters"); 5134 5135 Node* out = argument(0); 5136 Node* in = argument(1); 5137 Node* offset = argument(2); 5138 Node* len = argument(3); 5139 Node* k = argument(4); 5140 5141 out = must_be_not_null(out, true); 5142 5143 const Type* out_type = out->Value(&_gvn); 5144 const Type* in_type = in->Value(&_gvn); 5145 const TypeAryPtr* top_out = out_type->isa_aryptr(); 5146 const TypeAryPtr* top_in = in_type->isa_aryptr(); 5147 if (top_out == NULL || top_out->klass() == NULL || 5148 top_in == NULL || top_in->klass() == NULL) { 5149 // failed array check 5150 return false; 5151 } 5152 5153 BasicType out_elem = out_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5154 BasicType in_elem = in_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5155 if (out_elem != T_INT || in_elem != T_INT) { 5156 return false; 5157 } 5158 5159 Node* outlen = load_array_length(out); 5160 Node* new_offset = _gvn.transform(new SubINode(outlen, offset)); 5161 Node* out_start = array_element_address(out, intcon(0), out_elem); 5162 Node* in_start = array_element_address(in, intcon(0), in_elem); 5163 5164 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 5165 OptoRuntime::mulAdd_Type(), 5166 stubAddr, stubName, TypePtr::BOTTOM, 5167 out_start,in_start, new_offset, len, k); 5168 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 5169 set_result(result); 5170 return true; 5171 } 5172 5173 //-------------inline_montgomeryMultiply----------------------------------- 5174 bool LibraryCallKit::inline_montgomeryMultiply() { 5175 address stubAddr = StubRoutines::montgomeryMultiply(); 5176 if (stubAddr == NULL) { 5177 return false; // Intrinsic's stub is not implemented on this platform 5178 } 5179 5180 assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform"); 5181 const char* stubName = "montgomery_multiply"; 5182 5183 assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters"); 5184 5185 Node* a = argument(0); 5186 Node* b = argument(1); 5187 Node* n = argument(2); 5188 Node* len = argument(3); 5189 Node* inv = argument(4); 5190 Node* m = argument(6); 5191 5192 const Type* a_type = a->Value(&_gvn); 5193 const TypeAryPtr* top_a = a_type->isa_aryptr(); 5194 const Type* b_type = b->Value(&_gvn); 5195 const TypeAryPtr* top_b = b_type->isa_aryptr(); 5196 const Type* n_type = a->Value(&_gvn); 5197 const TypeAryPtr* top_n = n_type->isa_aryptr(); 5198 const Type* m_type = a->Value(&_gvn); 5199 const TypeAryPtr* top_m = m_type->isa_aryptr(); 5200 if (top_a == NULL || top_a->klass() == NULL || 5201 top_b == NULL || top_b->klass() == NULL || 5202 top_n == NULL || top_n->klass() == NULL || 5203 top_m == NULL || top_m->klass() == NULL) { 5204 // failed array check 5205 return false; 5206 } 5207 5208 BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5209 BasicType b_elem = b_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5210 BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5211 BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5212 if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) { 5213 return false; 5214 } 5215 5216 // Make the call 5217 { 5218 Node* a_start = array_element_address(a, intcon(0), a_elem); 5219 Node* b_start = array_element_address(b, intcon(0), b_elem); 5220 Node* n_start = array_element_address(n, intcon(0), n_elem); 5221 Node* m_start = array_element_address(m, intcon(0), m_elem); 5222 5223 Node* call = make_runtime_call(RC_LEAF, 5224 OptoRuntime::montgomeryMultiply_Type(), 5225 stubAddr, stubName, TypePtr::BOTTOM, 5226 a_start, b_start, n_start, len, inv, top(), 5227 m_start); 5228 set_result(m); 5229 } 5230 5231 return true; 5232 } 5233 5234 bool LibraryCallKit::inline_montgomerySquare() { 5235 address stubAddr = StubRoutines::montgomerySquare(); 5236 if (stubAddr == NULL) { 5237 return false; // Intrinsic's stub is not implemented on this platform 5238 } 5239 5240 assert(UseMontgomerySquareIntrinsic, "not implemented on this platform"); 5241 const char* stubName = "montgomery_square"; 5242 5243 assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters"); 5244 5245 Node* a = argument(0); 5246 Node* n = argument(1); 5247 Node* len = argument(2); 5248 Node* inv = argument(3); 5249 Node* m = argument(5); 5250 5251 const Type* a_type = a->Value(&_gvn); 5252 const TypeAryPtr* top_a = a_type->isa_aryptr(); 5253 const Type* n_type = a->Value(&_gvn); 5254 const TypeAryPtr* top_n = n_type->isa_aryptr(); 5255 const Type* m_type = a->Value(&_gvn); 5256 const TypeAryPtr* top_m = m_type->isa_aryptr(); 5257 if (top_a == NULL || top_a->klass() == NULL || 5258 top_n == NULL || top_n->klass() == NULL || 5259 top_m == NULL || top_m->klass() == NULL) { 5260 // failed array check 5261 return false; 5262 } 5263 5264 BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5265 BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5266 BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5267 if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) { 5268 return false; 5269 } 5270 5271 // Make the call 5272 { 5273 Node* a_start = array_element_address(a, intcon(0), a_elem); 5274 Node* n_start = array_element_address(n, intcon(0), n_elem); 5275 Node* m_start = array_element_address(m, intcon(0), m_elem); 5276 5277 Node* call = make_runtime_call(RC_LEAF, 5278 OptoRuntime::montgomerySquare_Type(), 5279 stubAddr, stubName, TypePtr::BOTTOM, 5280 a_start, n_start, len, inv, top(), 5281 m_start); 5282 set_result(m); 5283 } 5284 5285 return true; 5286 } 5287 5288 bool LibraryCallKit::inline_bigIntegerShift(bool isRightShift) { 5289 address stubAddr = NULL; 5290 const char* stubName = NULL; 5291 5292 stubAddr = isRightShift? StubRoutines::bigIntegerRightShift(): StubRoutines::bigIntegerLeftShift(); 5293 if (stubAddr == NULL) { 5294 return false; // Intrinsic's stub is not implemented on this platform 5295 } 5296 5297 stubName = isRightShift? "bigIntegerRightShiftWorker" : "bigIntegerLeftShiftWorker"; 5298 5299 assert(callee()->signature()->size() == 5, "expected 5 arguments"); 5300 5301 Node* newArr = argument(0); 5302 Node* oldArr = argument(1); 5303 Node* newIdx = argument(2); 5304 Node* shiftCount = argument(3); 5305 Node* numIter = argument(4); 5306 5307 const Type* newArr_type = newArr->Value(&_gvn); 5308 const TypeAryPtr* top_newArr = newArr_type->isa_aryptr(); 5309 const Type* oldArr_type = oldArr->Value(&_gvn); 5310 const TypeAryPtr* top_oldArr = oldArr_type->isa_aryptr(); 5311 if (top_newArr == NULL || top_newArr->klass() == NULL || top_oldArr == NULL 5312 || top_oldArr->klass() == NULL) { 5313 return false; 5314 } 5315 5316 BasicType newArr_elem = newArr_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5317 BasicType oldArr_elem = oldArr_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5318 if (newArr_elem != T_INT || oldArr_elem != T_INT) { 5319 return false; 5320 } 5321 5322 // Make the call 5323 { 5324 Node* newArr_start = array_element_address(newArr, intcon(0), newArr_elem); 5325 Node* oldArr_start = array_element_address(oldArr, intcon(0), oldArr_elem); 5326 5327 Node* call = make_runtime_call(RC_LEAF, 5328 OptoRuntime::bigIntegerShift_Type(), 5329 stubAddr, 5330 stubName, 5331 TypePtr::BOTTOM, 5332 newArr_start, 5333 oldArr_start, 5334 newIdx, 5335 shiftCount, 5336 numIter); 5337 } 5338 5339 return true; 5340 } 5341 5342 //-------------inline_vectorizedMismatch------------------------------ 5343 bool LibraryCallKit::inline_vectorizedMismatch() { 5344 assert(UseVectorizedMismatchIntrinsic, "not implementated on this platform"); 5345 5346 address stubAddr = StubRoutines::vectorizedMismatch(); 5347 if (stubAddr == NULL) { 5348 return false; // Intrinsic's stub is not implemented on this platform 5349 } 5350 const char* stubName = "vectorizedMismatch"; 5351 int size_l = callee()->signature()->size(); 5352 assert(callee()->signature()->size() == 8, "vectorizedMismatch has 6 parameters"); 5353 5354 Node* obja = argument(0); 5355 Node* aoffset = argument(1); 5356 Node* objb = argument(3); 5357 Node* boffset = argument(4); 5358 Node* length = argument(6); 5359 Node* scale = argument(7); 5360 5361 const Type* a_type = obja->Value(&_gvn); 5362 const Type* b_type = objb->Value(&_gvn); 5363 const TypeAryPtr* top_a = a_type->isa_aryptr(); 5364 const TypeAryPtr* top_b = b_type->isa_aryptr(); 5365 if (top_a == NULL || top_a->klass() == NULL || 5366 top_b == NULL || top_b->klass() == NULL) { 5367 // failed array check 5368 return false; 5369 } 5370 5371 Node* call; 5372 jvms()->set_should_reexecute(true); 5373 5374 Node* obja_adr = make_unsafe_address(obja, aoffset, ACCESS_READ); 5375 Node* objb_adr = make_unsafe_address(objb, boffset, ACCESS_READ); 5376 5377 call = make_runtime_call(RC_LEAF, 5378 OptoRuntime::vectorizedMismatch_Type(), 5379 stubAddr, stubName, TypePtr::BOTTOM, 5380 obja_adr, objb_adr, length, scale); 5381 5382 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 5383 set_result(result); 5384 return true; 5385 } 5386 5387 /** 5388 * Calculate CRC32 for byte. 5389 * int java.util.zip.CRC32.update(int crc, int b) 5390 */ 5391 bool LibraryCallKit::inline_updateCRC32() { 5392 assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support"); 5393 assert(callee()->signature()->size() == 2, "update has 2 parameters"); 5394 // no receiver since it is static method 5395 Node* crc = argument(0); // type: int 5396 Node* b = argument(1); // type: int 5397 5398 /* 5399 * int c = ~ crc; 5400 * b = timesXtoThe32[(b ^ c) & 0xFF]; 5401 * b = b ^ (c >>> 8); 5402 * crc = ~b; 5403 */ 5404 5405 Node* M1 = intcon(-1); 5406 crc = _gvn.transform(new XorINode(crc, M1)); 5407 Node* result = _gvn.transform(new XorINode(crc, b)); 5408 result = _gvn.transform(new AndINode(result, intcon(0xFF))); 5409 5410 Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr())); 5411 Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2))); 5412 Node* adr = basic_plus_adr(top(), base, ConvI2X(offset)); 5413 result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered); 5414 5415 crc = _gvn.transform(new URShiftINode(crc, intcon(8))); 5416 result = _gvn.transform(new XorINode(crc, result)); 5417 result = _gvn.transform(new XorINode(result, M1)); 5418 set_result(result); 5419 return true; 5420 } 5421 5422 /** 5423 * Calculate CRC32 for byte[] array. 5424 * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len) 5425 */ 5426 bool LibraryCallKit::inline_updateBytesCRC32() { 5427 assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support"); 5428 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 5429 // no receiver since it is static method 5430 Node* crc = argument(0); // type: int 5431 Node* src = argument(1); // type: oop 5432 Node* offset = argument(2); // type: int 5433 Node* length = argument(3); // type: int 5434 5435 const Type* src_type = src->Value(&_gvn); 5436 const TypeAryPtr* top_src = src_type->isa_aryptr(); 5437 if (top_src == NULL || top_src->klass() == NULL) { 5438 // failed array check 5439 return false; 5440 } 5441 5442 // Figure out the size and type of the elements we will be copying. 5443 BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5444 if (src_elem != T_BYTE) { 5445 return false; 5446 } 5447 5448 // 'src_start' points to src array + scaled offset 5449 src = must_be_not_null(src, true); 5450 Node* src_start = array_element_address(src, offset, src_elem); 5451 5452 // We assume that range check is done by caller. 5453 // TODO: generate range check (offset+length < src.length) in debug VM. 5454 5455 // Call the stub. 5456 address stubAddr = StubRoutines::updateBytesCRC32(); 5457 const char *stubName = "updateBytesCRC32"; 5458 5459 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(), 5460 stubAddr, stubName, TypePtr::BOTTOM, 5461 crc, src_start, length); 5462 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 5463 set_result(result); 5464 return true; 5465 } 5466 5467 /** 5468 * Calculate CRC32 for ByteBuffer. 5469 * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len) 5470 */ 5471 bool LibraryCallKit::inline_updateByteBufferCRC32() { 5472 assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support"); 5473 assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long"); 5474 // no receiver since it is static method 5475 Node* crc = argument(0); // type: int 5476 Node* src = argument(1); // type: long 5477 Node* offset = argument(3); // type: int 5478 Node* length = argument(4); // type: int 5479 5480 src = ConvL2X(src); // adjust Java long to machine word 5481 Node* base = _gvn.transform(new CastX2PNode(src)); 5482 offset = ConvI2X(offset); 5483 5484 // 'src_start' points to src array + scaled offset 5485 Node* src_start = basic_plus_adr(top(), base, offset); 5486 5487 // Call the stub. 5488 address stubAddr = StubRoutines::updateBytesCRC32(); 5489 const char *stubName = "updateBytesCRC32"; 5490 5491 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(), 5492 stubAddr, stubName, TypePtr::BOTTOM, 5493 crc, src_start, length); 5494 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 5495 set_result(result); 5496 return true; 5497 } 5498 5499 //------------------------------get_table_from_crc32c_class----------------------- 5500 Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) { 5501 Node* table = load_field_from_object(NULL, "byteTable", "[I", /*is_exact*/ false, /*is_static*/ true, crc32c_class); 5502 assert (table != NULL, "wrong version of java.util.zip.CRC32C"); 5503 5504 return table; 5505 } 5506 5507 //------------------------------inline_updateBytesCRC32C----------------------- 5508 // 5509 // Calculate CRC32C for byte[] array. 5510 // int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end) 5511 // 5512 bool LibraryCallKit::inline_updateBytesCRC32C() { 5513 assert(UseCRC32CIntrinsics, "need CRC32C instruction support"); 5514 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 5515 assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded"); 5516 // no receiver since it is a static method 5517 Node* crc = argument(0); // type: int 5518 Node* src = argument(1); // type: oop 5519 Node* offset = argument(2); // type: int 5520 Node* end = argument(3); // type: int 5521 5522 Node* length = _gvn.transform(new SubINode(end, offset)); 5523 5524 const Type* src_type = src->Value(&_gvn); 5525 const TypeAryPtr* top_src = src_type->isa_aryptr(); 5526 if (top_src == NULL || top_src->klass() == NULL) { 5527 // failed array check 5528 return false; 5529 } 5530 5531 // Figure out the size and type of the elements we will be copying. 5532 BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5533 if (src_elem != T_BYTE) { 5534 return false; 5535 } 5536 5537 // 'src_start' points to src array + scaled offset 5538 src = must_be_not_null(src, true); 5539 Node* src_start = array_element_address(src, offset, src_elem); 5540 5541 // static final int[] byteTable in class CRC32C 5542 Node* table = get_table_from_crc32c_class(callee()->holder()); 5543 table = must_be_not_null(table, true); 5544 Node* table_start = array_element_address(table, intcon(0), T_INT); 5545 5546 // We assume that range check is done by caller. 5547 // TODO: generate range check (offset+length < src.length) in debug VM. 5548 5549 // Call the stub. 5550 address stubAddr = StubRoutines::updateBytesCRC32C(); 5551 const char *stubName = "updateBytesCRC32C"; 5552 5553 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(), 5554 stubAddr, stubName, TypePtr::BOTTOM, 5555 crc, src_start, length, table_start); 5556 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 5557 set_result(result); 5558 return true; 5559 } 5560 5561 //------------------------------inline_updateDirectByteBufferCRC32C----------------------- 5562 // 5563 // Calculate CRC32C for DirectByteBuffer. 5564 // int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end) 5565 // 5566 bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() { 5567 assert(UseCRC32CIntrinsics, "need CRC32C instruction support"); 5568 assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long"); 5569 assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded"); 5570 // no receiver since it is a static method 5571 Node* crc = argument(0); // type: int 5572 Node* src = argument(1); // type: long 5573 Node* offset = argument(3); // type: int 5574 Node* end = argument(4); // type: int 5575 5576 Node* length = _gvn.transform(new SubINode(end, offset)); 5577 5578 src = ConvL2X(src); // adjust Java long to machine word 5579 Node* base = _gvn.transform(new CastX2PNode(src)); 5580 offset = ConvI2X(offset); 5581 5582 // 'src_start' points to src array + scaled offset 5583 Node* src_start = basic_plus_adr(top(), base, offset); 5584 5585 // static final int[] byteTable in class CRC32C 5586 Node* table = get_table_from_crc32c_class(callee()->holder()); 5587 table = must_be_not_null(table, true); 5588 Node* table_start = array_element_address(table, intcon(0), T_INT); 5589 5590 // Call the stub. 5591 address stubAddr = StubRoutines::updateBytesCRC32C(); 5592 const char *stubName = "updateBytesCRC32C"; 5593 5594 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(), 5595 stubAddr, stubName, TypePtr::BOTTOM, 5596 crc, src_start, length, table_start); 5597 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 5598 set_result(result); 5599 return true; 5600 } 5601 5602 //------------------------------inline_updateBytesAdler32---------------------- 5603 // 5604 // Calculate Adler32 checksum for byte[] array. 5605 // int java.util.zip.Adler32.updateBytes(int crc, byte[] buf, int off, int len) 5606 // 5607 bool LibraryCallKit::inline_updateBytesAdler32() { 5608 assert(UseAdler32Intrinsics, "Adler32 Instrinsic support need"); // check if we actually need to check this flag or check a different one 5609 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 5610 assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded"); 5611 // no receiver since it is static method 5612 Node* crc = argument(0); // type: int 5613 Node* src = argument(1); // type: oop 5614 Node* offset = argument(2); // type: int 5615 Node* length = argument(3); // type: int 5616 5617 const Type* src_type = src->Value(&_gvn); 5618 const TypeAryPtr* top_src = src_type->isa_aryptr(); 5619 if (top_src == NULL || top_src->klass() == NULL) { 5620 // failed array check 5621 return false; 5622 } 5623 5624 // Figure out the size and type of the elements we will be copying. 5625 BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5626 if (src_elem != T_BYTE) { 5627 return false; 5628 } 5629 5630 // 'src_start' points to src array + scaled offset 5631 Node* src_start = array_element_address(src, offset, src_elem); 5632 5633 // We assume that range check is done by caller. 5634 // TODO: generate range check (offset+length < src.length) in debug VM. 5635 5636 // Call the stub. 5637 address stubAddr = StubRoutines::updateBytesAdler32(); 5638 const char *stubName = "updateBytesAdler32"; 5639 5640 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(), 5641 stubAddr, stubName, TypePtr::BOTTOM, 5642 crc, src_start, length); 5643 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 5644 set_result(result); 5645 return true; 5646 } 5647 5648 //------------------------------inline_updateByteBufferAdler32--------------- 5649 // 5650 // Calculate Adler32 checksum for DirectByteBuffer. 5651 // int java.util.zip.Adler32.updateByteBuffer(int crc, long buf, int off, int len) 5652 // 5653 bool LibraryCallKit::inline_updateByteBufferAdler32() { 5654 assert(UseAdler32Intrinsics, "Adler32 Instrinsic support need"); // check if we actually need to check this flag or check a different one 5655 assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long"); 5656 assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded"); 5657 // no receiver since it is static method 5658 Node* crc = argument(0); // type: int 5659 Node* src = argument(1); // type: long 5660 Node* offset = argument(3); // type: int 5661 Node* length = argument(4); // type: int 5662 5663 src = ConvL2X(src); // adjust Java long to machine word 5664 Node* base = _gvn.transform(new CastX2PNode(src)); 5665 offset = ConvI2X(offset); 5666 5667 // 'src_start' points to src array + scaled offset 5668 Node* src_start = basic_plus_adr(top(), base, offset); 5669 5670 // Call the stub. 5671 address stubAddr = StubRoutines::updateBytesAdler32(); 5672 const char *stubName = "updateBytesAdler32"; 5673 5674 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(), 5675 stubAddr, stubName, TypePtr::BOTTOM, 5676 crc, src_start, length); 5677 5678 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 5679 set_result(result); 5680 return true; 5681 } 5682 5683 //----------------------------inline_reference_get---------------------------- 5684 // public T java.lang.ref.Reference.get(); 5685 bool LibraryCallKit::inline_reference_get() { 5686 const int referent_offset = java_lang_ref_Reference::referent_offset(); 5687 5688 // Get the argument: 5689 Node* reference_obj = null_check_receiver(); 5690 if (stopped()) return true; 5691 5692 const TypeInstPtr* tinst = _gvn.type(reference_obj)->isa_instptr(); 5693 assert(tinst != NULL, "obj is null"); 5694 assert(tinst->klass()->is_loaded(), "obj is not loaded"); 5695 ciInstanceKlass* referenceKlass = tinst->klass()->as_instance_klass(); 5696 ciField* field = referenceKlass->get_field_by_name(ciSymbol::make("referent"), 5697 ciSymbol::make("Ljava/lang/Object;"), 5698 false); 5699 assert (field != NULL, "undefined field"); 5700 5701 Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset); 5702 const TypePtr* adr_type = C->alias_type(field)->adr_type(); 5703 5704 ciInstanceKlass* klass = env()->Object_klass(); 5705 const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass); 5706 5707 DecoratorSet decorators = IN_HEAP | ON_WEAK_OOP_REF; 5708 Node* result = access_load_at(reference_obj, adr, adr_type, object_type, T_OBJECT, decorators); 5709 // Add memory barrier to prevent commoning reads from this field 5710 // across safepoint since GC can change its value. 5711 insert_mem_bar(Op_MemBarCPUOrder); 5712 5713 set_result(result); 5714 return true; 5715 } 5716 5717 5718 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, 5719 bool is_exact=true, bool is_static=false, 5720 ciInstanceKlass * fromKls=NULL) { 5721 if (fromKls == NULL) { 5722 const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr(); 5723 assert(tinst != NULL, "obj is null"); 5724 assert(tinst->klass()->is_loaded(), "obj is not loaded"); 5725 assert(!is_exact || tinst->klass_is_exact(), "klass not exact"); 5726 fromKls = tinst->klass()->as_instance_klass(); 5727 } else { 5728 assert(is_static, "only for static field access"); 5729 } 5730 ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName), 5731 ciSymbol::make(fieldTypeString), 5732 is_static); 5733 5734 assert (field != NULL, "undefined field"); 5735 if (field == NULL) return (Node *) NULL; 5736 5737 if (is_static) { 5738 const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror()); 5739 fromObj = makecon(tip); 5740 } 5741 5742 // Next code copied from Parse::do_get_xxx(): 5743 5744 // Compute address and memory type. 5745 int offset = field->offset_in_bytes(); 5746 bool is_vol = field->is_volatile(); 5747 ciType* field_klass = field->type(); 5748 assert(field_klass->is_loaded(), "should be loaded"); 5749 const TypePtr* adr_type = C->alias_type(field)->adr_type(); 5750 Node *adr = basic_plus_adr(fromObj, fromObj, offset); 5751 BasicType bt = field->layout_type(); 5752 5753 // Build the resultant type of the load 5754 const Type *type; 5755 if (bt == T_OBJECT) { 5756 type = TypeOopPtr::make_from_klass(field_klass->as_klass()); 5757 } else { 5758 type = Type::get_const_basic_type(bt); 5759 } 5760 5761 DecoratorSet decorators = IN_HEAP; 5762 5763 if (is_vol) { 5764 decorators |= MO_SEQ_CST; 5765 } 5766 5767 return access_load_at(fromObj, adr, adr_type, type, bt, decorators); 5768 } 5769 5770 Node * LibraryCallKit::field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, 5771 bool is_exact = true, bool is_static = false, 5772 ciInstanceKlass * fromKls = NULL) { 5773 if (fromKls == NULL) { 5774 const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr(); 5775 assert(tinst != NULL, "obj is null"); 5776 assert(tinst->klass()->is_loaded(), "obj is not loaded"); 5777 assert(!is_exact || tinst->klass_is_exact(), "klass not exact"); 5778 fromKls = tinst->klass()->as_instance_klass(); 5779 } 5780 else { 5781 assert(is_static, "only for static field access"); 5782 } 5783 ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName), 5784 ciSymbol::make(fieldTypeString), 5785 is_static); 5786 5787 assert(field != NULL, "undefined field"); 5788 assert(!field->is_volatile(), "not defined for volatile fields"); 5789 5790 if (is_static) { 5791 const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror()); 5792 fromObj = makecon(tip); 5793 } 5794 5795 // Next code copied from Parse::do_get_xxx(): 5796 5797 // Compute address and memory type. 5798 int offset = field->offset_in_bytes(); 5799 Node *adr = basic_plus_adr(fromObj, fromObj, offset); 5800 5801 return adr; 5802 } 5803 5804 //------------------------------inline_aescrypt_Block----------------------- 5805 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) { 5806 address stubAddr = NULL; 5807 const char *stubName; 5808 assert(UseAES, "need AES instruction support"); 5809 5810 switch(id) { 5811 case vmIntrinsics::_aescrypt_encryptBlock: 5812 stubAddr = StubRoutines::aescrypt_encryptBlock(); 5813 stubName = "aescrypt_encryptBlock"; 5814 break; 5815 case vmIntrinsics::_aescrypt_decryptBlock: 5816 stubAddr = StubRoutines::aescrypt_decryptBlock(); 5817 stubName = "aescrypt_decryptBlock"; 5818 break; 5819 default: 5820 break; 5821 } 5822 if (stubAddr == NULL) return false; 5823 5824 Node* aescrypt_object = argument(0); 5825 Node* src = argument(1); 5826 Node* src_offset = argument(2); 5827 Node* dest = argument(3); 5828 Node* dest_offset = argument(4); 5829 5830 src = must_be_not_null(src, true); 5831 dest = must_be_not_null(dest, true); 5832 5833 // (1) src and dest are arrays. 5834 const Type* src_type = src->Value(&_gvn); 5835 const Type* dest_type = dest->Value(&_gvn); 5836 const TypeAryPtr* top_src = src_type->isa_aryptr(); 5837 const TypeAryPtr* top_dest = dest_type->isa_aryptr(); 5838 assert (top_src != NULL && top_src->klass() != NULL && top_dest != NULL && top_dest->klass() != NULL, "args are strange"); 5839 5840 // for the quick and dirty code we will skip all the checks. 5841 // we are just trying to get the call to be generated. 5842 Node* src_start = src; 5843 Node* dest_start = dest; 5844 if (src_offset != NULL || dest_offset != NULL) { 5845 assert(src_offset != NULL && dest_offset != NULL, ""); 5846 src_start = array_element_address(src, src_offset, T_BYTE); 5847 dest_start = array_element_address(dest, dest_offset, T_BYTE); 5848 } 5849 5850 // now need to get the start of its expanded key array 5851 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 5852 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 5853 if (k_start == NULL) return false; 5854 5855 if (Matcher::pass_original_key_for_aes()) { 5856 // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to 5857 // compatibility issues between Java key expansion and SPARC crypto instructions 5858 Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object); 5859 if (original_k_start == NULL) return false; 5860 5861 // Call the stub. 5862 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(), 5863 stubAddr, stubName, TypePtr::BOTTOM, 5864 src_start, dest_start, k_start, original_k_start); 5865 } else { 5866 // Call the stub. 5867 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(), 5868 stubAddr, stubName, TypePtr::BOTTOM, 5869 src_start, dest_start, k_start); 5870 } 5871 5872 return true; 5873 } 5874 5875 //------------------------------inline_cipherBlockChaining_AESCrypt----------------------- 5876 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) { 5877 address stubAddr = NULL; 5878 const char *stubName = NULL; 5879 5880 assert(UseAES, "need AES instruction support"); 5881 5882 switch(id) { 5883 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 5884 stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt(); 5885 stubName = "cipherBlockChaining_encryptAESCrypt"; 5886 break; 5887 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 5888 stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt(); 5889 stubName = "cipherBlockChaining_decryptAESCrypt"; 5890 break; 5891 default: 5892 break; 5893 } 5894 if (stubAddr == NULL) return false; 5895 5896 Node* cipherBlockChaining_object = argument(0); 5897 Node* src = argument(1); 5898 Node* src_offset = argument(2); 5899 Node* len = argument(3); 5900 Node* dest = argument(4); 5901 Node* dest_offset = argument(5); 5902 5903 src = must_be_not_null(src, false); 5904 dest = must_be_not_null(dest, false); 5905 5906 // (1) src and dest are arrays. 5907 const Type* src_type = src->Value(&_gvn); 5908 const Type* dest_type = dest->Value(&_gvn); 5909 const TypeAryPtr* top_src = src_type->isa_aryptr(); 5910 const TypeAryPtr* top_dest = dest_type->isa_aryptr(); 5911 assert (top_src != NULL && top_src->klass() != NULL 5912 && top_dest != NULL && top_dest->klass() != NULL, "args are strange"); 5913 5914 // checks are the responsibility of the caller 5915 Node* src_start = src; 5916 Node* dest_start = dest; 5917 if (src_offset != NULL || dest_offset != NULL) { 5918 assert(src_offset != NULL && dest_offset != NULL, ""); 5919 src_start = array_element_address(src, src_offset, T_BYTE); 5920 dest_start = array_element_address(dest, dest_offset, T_BYTE); 5921 } 5922 5923 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 5924 // (because of the predicated logic executed earlier). 5925 // so we cast it here safely. 5926 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 5927 5928 Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false); 5929 if (embeddedCipherObj == NULL) return false; 5930 5931 // cast it to what we know it will be at runtime 5932 const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr(); 5933 assert(tinst != NULL, "CBC obj is null"); 5934 assert(tinst->klass()->is_loaded(), "CBC obj is not loaded"); 5935 ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 5936 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 5937 5938 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 5939 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 5940 const TypeOopPtr* xtype = aklass->as_instance_type(); 5941 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 5942 aescrypt_object = _gvn.transform(aescrypt_object); 5943 5944 // we need to get the start of the aescrypt_object's expanded key array 5945 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 5946 if (k_start == NULL) return false; 5947 5948 // similarly, get the start address of the r vector 5949 Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false); 5950 if (objRvec == NULL) return false; 5951 Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE); 5952 5953 Node* cbcCrypt; 5954 if (Matcher::pass_original_key_for_aes()) { 5955 // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to 5956 // compatibility issues between Java key expansion and SPARC crypto instructions 5957 Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object); 5958 if (original_k_start == NULL) return false; 5959 5960 // Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start 5961 cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 5962 OptoRuntime::cipherBlockChaining_aescrypt_Type(), 5963 stubAddr, stubName, TypePtr::BOTTOM, 5964 src_start, dest_start, k_start, r_start, len, original_k_start); 5965 } else { 5966 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 5967 cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 5968 OptoRuntime::cipherBlockChaining_aescrypt_Type(), 5969 stubAddr, stubName, TypePtr::BOTTOM, 5970 src_start, dest_start, k_start, r_start, len); 5971 } 5972 5973 // return cipher length (int) 5974 Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms)); 5975 set_result(retvalue); 5976 return true; 5977 } 5978 5979 //------------------------------inline_electronicCodeBook_AESCrypt----------------------- 5980 bool LibraryCallKit::inline_electronicCodeBook_AESCrypt(vmIntrinsics::ID id) { 5981 address stubAddr = NULL; 5982 const char *stubName = NULL; 5983 5984 assert(UseAES, "need AES instruction support"); 5985 5986 switch (id) { 5987 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 5988 stubAddr = StubRoutines::electronicCodeBook_encryptAESCrypt(); 5989 stubName = "electronicCodeBook_encryptAESCrypt"; 5990 break; 5991 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 5992 stubAddr = StubRoutines::electronicCodeBook_decryptAESCrypt(); 5993 stubName = "electronicCodeBook_decryptAESCrypt"; 5994 break; 5995 default: 5996 break; 5997 } 5998 5999 if (stubAddr == NULL) return false; 6000 6001 Node* electronicCodeBook_object = argument(0); 6002 Node* src = argument(1); 6003 Node* src_offset = argument(2); 6004 Node* len = argument(3); 6005 Node* dest = argument(4); 6006 Node* dest_offset = argument(5); 6007 6008 // (1) src and dest are arrays. 6009 const Type* src_type = src->Value(&_gvn); 6010 const Type* dest_type = dest->Value(&_gvn); 6011 const TypeAryPtr* top_src = src_type->isa_aryptr(); 6012 const TypeAryPtr* top_dest = dest_type->isa_aryptr(); 6013 assert(top_src != NULL && top_src->klass() != NULL 6014 && top_dest != NULL && top_dest->klass() != NULL, "args are strange"); 6015 6016 // checks are the responsibility of the caller 6017 Node* src_start = src; 6018 Node* dest_start = dest; 6019 if (src_offset != NULL || dest_offset != NULL) { 6020 assert(src_offset != NULL && dest_offset != NULL, ""); 6021 src_start = array_element_address(src, src_offset, T_BYTE); 6022 dest_start = array_element_address(dest, dest_offset, T_BYTE); 6023 } 6024 6025 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 6026 // (because of the predicated logic executed earlier). 6027 // so we cast it here safely. 6028 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 6029 6030 Node* embeddedCipherObj = load_field_from_object(electronicCodeBook_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false); 6031 if (embeddedCipherObj == NULL) return false; 6032 6033 // cast it to what we know it will be at runtime 6034 const TypeInstPtr* tinst = _gvn.type(electronicCodeBook_object)->isa_instptr(); 6035 assert(tinst != NULL, "ECB obj is null"); 6036 assert(tinst->klass()->is_loaded(), "ECB obj is not loaded"); 6037 ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 6038 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 6039 6040 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 6041 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 6042 const TypeOopPtr* xtype = aklass->as_instance_type(); 6043 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 6044 aescrypt_object = _gvn.transform(aescrypt_object); 6045 6046 // we need to get the start of the aescrypt_object's expanded key array 6047 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 6048 if (k_start == NULL) return false; 6049 6050 Node* ecbCrypt; 6051 if (Matcher::pass_original_key_for_aes()) { 6052 // no SPARC version for AES/ECB intrinsics now. 6053 return false; 6054 } 6055 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 6056 ecbCrypt = make_runtime_call(RC_LEAF | RC_NO_FP, 6057 OptoRuntime::electronicCodeBook_aescrypt_Type(), 6058 stubAddr, stubName, TypePtr::BOTTOM, 6059 src_start, dest_start, k_start, len); 6060 6061 // return cipher length (int) 6062 Node* retvalue = _gvn.transform(new ProjNode(ecbCrypt, TypeFunc::Parms)); 6063 set_result(retvalue); 6064 return true; 6065 } 6066 6067 //------------------------------inline_counterMode_AESCrypt----------------------- 6068 bool LibraryCallKit::inline_counterMode_AESCrypt(vmIntrinsics::ID id) { 6069 assert(UseAES, "need AES instruction support"); 6070 if (!UseAESCTRIntrinsics) return false; 6071 6072 address stubAddr = NULL; 6073 const char *stubName = NULL; 6074 if (id == vmIntrinsics::_counterMode_AESCrypt) { 6075 stubAddr = StubRoutines::counterMode_AESCrypt(); 6076 stubName = "counterMode_AESCrypt"; 6077 } 6078 if (stubAddr == NULL) return false; 6079 6080 Node* counterMode_object = argument(0); 6081 Node* src = argument(1); 6082 Node* src_offset = argument(2); 6083 Node* len = argument(3); 6084 Node* dest = argument(4); 6085 Node* dest_offset = argument(5); 6086 6087 // (1) src and dest are arrays. 6088 const Type* src_type = src->Value(&_gvn); 6089 const Type* dest_type = dest->Value(&_gvn); 6090 const TypeAryPtr* top_src = src_type->isa_aryptr(); 6091 const TypeAryPtr* top_dest = dest_type->isa_aryptr(); 6092 assert(top_src != NULL && top_src->klass() != NULL && 6093 top_dest != NULL && top_dest->klass() != NULL, "args are strange"); 6094 6095 // checks are the responsibility of the caller 6096 Node* src_start = src; 6097 Node* dest_start = dest; 6098 if (src_offset != NULL || dest_offset != NULL) { 6099 assert(src_offset != NULL && dest_offset != NULL, ""); 6100 src_start = array_element_address(src, src_offset, T_BYTE); 6101 dest_start = array_element_address(dest, dest_offset, T_BYTE); 6102 } 6103 6104 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 6105 // (because of the predicated logic executed earlier). 6106 // so we cast it here safely. 6107 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 6108 Node* embeddedCipherObj = load_field_from_object(counterMode_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false); 6109 if (embeddedCipherObj == NULL) return false; 6110 // cast it to what we know it will be at runtime 6111 const TypeInstPtr* tinst = _gvn.type(counterMode_object)->isa_instptr(); 6112 assert(tinst != NULL, "CTR obj is null"); 6113 assert(tinst->klass()->is_loaded(), "CTR obj is not loaded"); 6114 ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 6115 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 6116 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 6117 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 6118 const TypeOopPtr* xtype = aklass->as_instance_type(); 6119 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 6120 aescrypt_object = _gvn.transform(aescrypt_object); 6121 // we need to get the start of the aescrypt_object's expanded key array 6122 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 6123 if (k_start == NULL) return false; 6124 // similarly, get the start address of the r vector 6125 Node* obj_counter = load_field_from_object(counterMode_object, "counter", "[B", /*is_exact*/ false); 6126 if (obj_counter == NULL) return false; 6127 Node* cnt_start = array_element_address(obj_counter, intcon(0), T_BYTE); 6128 6129 Node* saved_encCounter = load_field_from_object(counterMode_object, "encryptedCounter", "[B", /*is_exact*/ false); 6130 if (saved_encCounter == NULL) return false; 6131 Node* saved_encCounter_start = array_element_address(saved_encCounter, intcon(0), T_BYTE); 6132 Node* used = field_address_from_object(counterMode_object, "used", "I", /*is_exact*/ false); 6133 6134 Node* ctrCrypt; 6135 if (Matcher::pass_original_key_for_aes()) { 6136 // no SPARC version for AES/CTR intrinsics now. 6137 return false; 6138 } 6139 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 6140 ctrCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 6141 OptoRuntime::counterMode_aescrypt_Type(), 6142 stubAddr, stubName, TypePtr::BOTTOM, 6143 src_start, dest_start, k_start, cnt_start, len, saved_encCounter_start, used); 6144 6145 // return cipher length (int) 6146 Node* retvalue = _gvn.transform(new ProjNode(ctrCrypt, TypeFunc::Parms)); 6147 set_result(retvalue); 6148 return true; 6149 } 6150 6151 //------------------------------get_key_start_from_aescrypt_object----------------------- 6152 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) { 6153 #if defined(PPC64) || defined(S390) 6154 // MixColumns for decryption can be reduced by preprocessing MixColumns with round keys. 6155 // Intel's extention is based on this optimization and AESCrypt generates round keys by preprocessing MixColumns. 6156 // However, ppc64 vncipher processes MixColumns and requires the same round keys with encryption. 6157 // The ppc64 stubs of encryption and decryption use the same round keys (sessionK[0]). 6158 Node* objSessionK = load_field_from_object(aescrypt_object, "sessionK", "[[I", /*is_exact*/ false); 6159 assert (objSessionK != NULL, "wrong version of com.sun.crypto.provider.AESCrypt"); 6160 if (objSessionK == NULL) { 6161 return (Node *) NULL; 6162 } 6163 Node* objAESCryptKey = load_array_element(control(), objSessionK, intcon(0), TypeAryPtr::OOPS); 6164 #else 6165 Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false); 6166 #endif // PPC64 6167 assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt"); 6168 if (objAESCryptKey == NULL) return (Node *) NULL; 6169 6170 // now have the array, need to get the start address of the K array 6171 Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT); 6172 return k_start; 6173 } 6174 6175 //------------------------------get_original_key_start_from_aescrypt_object----------------------- 6176 Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) { 6177 Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false); 6178 assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt"); 6179 if (objAESCryptKey == NULL) return (Node *) NULL; 6180 6181 // now have the array, need to get the start address of the lastKey array 6182 Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE); 6183 return original_k_start; 6184 } 6185 6186 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate---------------------------- 6187 // Return node representing slow path of predicate check. 6188 // the pseudo code we want to emulate with this predicate is: 6189 // for encryption: 6190 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 6191 // for decryption: 6192 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 6193 // note cipher==plain is more conservative than the original java code but that's OK 6194 // 6195 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) { 6196 // The receiver was checked for NULL already. 6197 Node* objCBC = argument(0); 6198 6199 Node* src = argument(1); 6200 Node* dest = argument(4); 6201 6202 // Load embeddedCipher field of CipherBlockChaining object. 6203 Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false); 6204 6205 // get AESCrypt klass for instanceOf check 6206 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 6207 // will have same classloader as CipherBlockChaining object 6208 const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr(); 6209 assert(tinst != NULL, "CBCobj is null"); 6210 assert(tinst->klass()->is_loaded(), "CBCobj is not loaded"); 6211 6212 // we want to do an instanceof comparison against the AESCrypt class 6213 ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 6214 if (!klass_AESCrypt->is_loaded()) { 6215 // if AESCrypt is not even loaded, we never take the intrinsic fast path 6216 Node* ctrl = control(); 6217 set_control(top()); // no regular fast path 6218 return ctrl; 6219 } 6220 6221 src = must_be_not_null(src, true); 6222 dest = must_be_not_null(dest, true); 6223 6224 // Resolve oops to stable for CmpP below. 6225 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 6226 6227 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 6228 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 6229 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 6230 6231 Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN); 6232 6233 // for encryption, we are done 6234 if (!decrypting) 6235 return instof_false; // even if it is NULL 6236 6237 // for decryption, we need to add a further check to avoid 6238 // taking the intrinsic path when cipher and plain are the same 6239 // see the original java code for why. 6240 RegionNode* region = new RegionNode(3); 6241 region->init_req(1, instof_false); 6242 6243 Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest)); 6244 Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq)); 6245 Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN); 6246 region->init_req(2, src_dest_conjoint); 6247 6248 record_for_igvn(region); 6249 return _gvn.transform(region); 6250 } 6251 6252 //----------------------------inline_electronicCodeBook_AESCrypt_predicate---------------------------- 6253 // Return node representing slow path of predicate check. 6254 // the pseudo code we want to emulate with this predicate is: 6255 // for encryption: 6256 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 6257 // for decryption: 6258 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 6259 // note cipher==plain is more conservative than the original java code but that's OK 6260 // 6261 Node* LibraryCallKit::inline_electronicCodeBook_AESCrypt_predicate(bool decrypting) { 6262 // The receiver was checked for NULL already. 6263 Node* objECB = argument(0); 6264 6265 // Load embeddedCipher field of ElectronicCodeBook object. 6266 Node* embeddedCipherObj = load_field_from_object(objECB, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false); 6267 6268 // get AESCrypt klass for instanceOf check 6269 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 6270 // will have same classloader as ElectronicCodeBook object 6271 const TypeInstPtr* tinst = _gvn.type(objECB)->isa_instptr(); 6272 assert(tinst != NULL, "ECBobj is null"); 6273 assert(tinst->klass()->is_loaded(), "ECBobj is not loaded"); 6274 6275 // we want to do an instanceof comparison against the AESCrypt class 6276 ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 6277 if (!klass_AESCrypt->is_loaded()) { 6278 // if AESCrypt is not even loaded, we never take the intrinsic fast path 6279 Node* ctrl = control(); 6280 set_control(top()); // no regular fast path 6281 return ctrl; 6282 } 6283 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 6284 6285 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 6286 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 6287 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 6288 6289 Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN); 6290 6291 // for encryption, we are done 6292 if (!decrypting) 6293 return instof_false; // even if it is NULL 6294 6295 // for decryption, we need to add a further check to avoid 6296 // taking the intrinsic path when cipher and plain are the same 6297 // see the original java code for why. 6298 RegionNode* region = new RegionNode(3); 6299 region->init_req(1, instof_false); 6300 Node* src = argument(1); 6301 Node* dest = argument(4); 6302 Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest)); 6303 Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq)); 6304 Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN); 6305 region->init_req(2, src_dest_conjoint); 6306 6307 record_for_igvn(region); 6308 return _gvn.transform(region); 6309 } 6310 6311 //----------------------------inline_counterMode_AESCrypt_predicate---------------------------- 6312 // Return node representing slow path of predicate check. 6313 // the pseudo code we want to emulate with this predicate is: 6314 // for encryption: 6315 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 6316 // for decryption: 6317 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 6318 // note cipher==plain is more conservative than the original java code but that's OK 6319 // 6320 6321 Node* LibraryCallKit::inline_counterMode_AESCrypt_predicate() { 6322 // The receiver was checked for NULL already. 6323 Node* objCTR = argument(0); 6324 6325 // Load embeddedCipher field of CipherBlockChaining object. 6326 Node* embeddedCipherObj = load_field_from_object(objCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false); 6327 6328 // get AESCrypt klass for instanceOf check 6329 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 6330 // will have same classloader as CipherBlockChaining object 6331 const TypeInstPtr* tinst = _gvn.type(objCTR)->isa_instptr(); 6332 assert(tinst != NULL, "CTRobj is null"); 6333 assert(tinst->klass()->is_loaded(), "CTRobj is not loaded"); 6334 6335 // we want to do an instanceof comparison against the AESCrypt class 6336 ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 6337 if (!klass_AESCrypt->is_loaded()) { 6338 // if AESCrypt is not even loaded, we never take the intrinsic fast path 6339 Node* ctrl = control(); 6340 set_control(top()); // no regular fast path 6341 return ctrl; 6342 } 6343 6344 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 6345 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 6346 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 6347 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 6348 Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN); 6349 6350 return instof_false; // even if it is NULL 6351 } 6352 6353 //------------------------------inline_ghash_processBlocks 6354 bool LibraryCallKit::inline_ghash_processBlocks() { 6355 address stubAddr; 6356 const char *stubName; 6357 assert(UseGHASHIntrinsics, "need GHASH intrinsics support"); 6358 6359 stubAddr = StubRoutines::ghash_processBlocks(); 6360 stubName = "ghash_processBlocks"; 6361 6362 Node* data = argument(0); 6363 Node* offset = argument(1); 6364 Node* len = argument(2); 6365 Node* state = argument(3); 6366 Node* subkeyH = argument(4); 6367 6368 state = must_be_not_null(state, true); 6369 subkeyH = must_be_not_null(subkeyH, true); 6370 data = must_be_not_null(data, true); 6371 6372 Node* state_start = array_element_address(state, intcon(0), T_LONG); 6373 assert(state_start, "state is NULL"); 6374 Node* subkeyH_start = array_element_address(subkeyH, intcon(0), T_LONG); 6375 assert(subkeyH_start, "subkeyH is NULL"); 6376 Node* data_start = array_element_address(data, offset, T_BYTE); 6377 assert(data_start, "data is NULL"); 6378 6379 Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP, 6380 OptoRuntime::ghash_processBlocks_Type(), 6381 stubAddr, stubName, TypePtr::BOTTOM, 6382 state_start, subkeyH_start, data_start, len); 6383 return true; 6384 } 6385 6386 bool LibraryCallKit::inline_base64_encodeBlock() { 6387 address stubAddr; 6388 const char *stubName; 6389 assert(UseBASE64Intrinsics, "need Base64 intrinsics support"); 6390 assert(callee()->signature()->size() == 6, "base64_encodeBlock has 6 parameters"); 6391 stubAddr = StubRoutines::base64_encodeBlock(); 6392 stubName = "encodeBlock"; 6393 6394 if (!stubAddr) return false; 6395 Node* base64obj = argument(0); 6396 Node* src = argument(1); 6397 Node* offset = argument(2); 6398 Node* len = argument(3); 6399 Node* dest = argument(4); 6400 Node* dp = argument(5); 6401 Node* isURL = argument(6); 6402 6403 src = must_be_not_null(src, true); 6404 dest = must_be_not_null(dest, true); 6405 6406 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 6407 assert(src_start, "source array is NULL"); 6408 Node* dest_start = array_element_address(dest, intcon(0), T_BYTE); 6409 assert(dest_start, "destination array is NULL"); 6410 6411 Node* base64 = make_runtime_call(RC_LEAF, 6412 OptoRuntime::base64_encodeBlock_Type(), 6413 stubAddr, stubName, TypePtr::BOTTOM, 6414 src_start, offset, len, dest_start, dp, isURL); 6415 return true; 6416 } 6417 6418 //------------------------------inline_digestBase_implCompress----------------------- 6419 // 6420 // Calculate MD5 for single-block byte[] array. 6421 // void com.sun.security.provider.MD5.implCompress(byte[] buf, int ofs) 6422 // 6423 // Calculate SHA (i.e., SHA-1) for single-block byte[] array. 6424 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs) 6425 // 6426 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array. 6427 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs) 6428 // 6429 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array. 6430 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs) 6431 // 6432 // Calculate SHA3 (i.e., SHA3-224 or SHA3-256 or SHA3-384 or SHA3-512) for single-block byte[] array. 6433 // void com.sun.security.provider.SHA3.implCompress(byte[] buf, int ofs) 6434 // 6435 bool LibraryCallKit::inline_digestBase_implCompress(vmIntrinsics::ID id) { 6436 assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters"); 6437 6438 Node* digestBase_obj = argument(0); 6439 Node* src = argument(1); // type oop 6440 Node* ofs = argument(2); // type int 6441 6442 const Type* src_type = src->Value(&_gvn); 6443 const TypeAryPtr* top_src = src_type->isa_aryptr(); 6444 if (top_src == NULL || top_src->klass() == NULL) { 6445 // failed array check 6446 return false; 6447 } 6448 // Figure out the size and type of the elements we will be copying. 6449 BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 6450 if (src_elem != T_BYTE) { 6451 return false; 6452 } 6453 // 'src_start' points to src array + offset 6454 src = must_be_not_null(src, true); 6455 Node* src_start = array_element_address(src, ofs, src_elem); 6456 Node* state = NULL; 6457 Node* digest_length = NULL; 6458 address stubAddr; 6459 const char *stubName; 6460 6461 switch(id) { 6462 case vmIntrinsics::_md5_implCompress: 6463 assert(UseMD5Intrinsics, "need MD5 instruction support"); 6464 state = get_state_from_digest_object(digestBase_obj, "[I"); 6465 stubAddr = StubRoutines::md5_implCompress(); 6466 stubName = "md5_implCompress"; 6467 break; 6468 case vmIntrinsics::_sha_implCompress: 6469 assert(UseSHA1Intrinsics, "need SHA1 instruction support"); 6470 state = get_state_from_digest_object(digestBase_obj, "[I"); 6471 stubAddr = StubRoutines::sha1_implCompress(); 6472 stubName = "sha1_implCompress"; 6473 break; 6474 case vmIntrinsics::_sha2_implCompress: 6475 assert(UseSHA256Intrinsics, "need SHA256 instruction support"); 6476 state = get_state_from_digest_object(digestBase_obj, "[I"); 6477 stubAddr = StubRoutines::sha256_implCompress(); 6478 stubName = "sha256_implCompress"; 6479 break; 6480 case vmIntrinsics::_sha5_implCompress: 6481 assert(UseSHA512Intrinsics, "need SHA512 instruction support"); 6482 state = get_state_from_digest_object(digestBase_obj, "[J"); 6483 stubAddr = StubRoutines::sha512_implCompress(); 6484 stubName = "sha512_implCompress"; 6485 break; 6486 case vmIntrinsics::_sha3_implCompress: 6487 assert(UseSHA3Intrinsics, "need SHA3 instruction support"); 6488 state = get_state_from_digest_object(digestBase_obj, "[B"); 6489 stubAddr = StubRoutines::sha3_implCompress(); 6490 stubName = "sha3_implCompress"; 6491 digest_length = get_digest_length_from_digest_object(digestBase_obj); 6492 if (digest_length == NULL) return false; 6493 break; 6494 default: 6495 fatal_unexpected_iid(id); 6496 return false; 6497 } 6498 if (state == NULL) return false; 6499 6500 assert(stubAddr != NULL, "Stub is generated"); 6501 if (stubAddr == NULL) return false; 6502 6503 // Call the stub. 6504 Node* call; 6505 if (digest_length == NULL) { 6506 call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(false), 6507 stubAddr, stubName, TypePtr::BOTTOM, 6508 src_start, state); 6509 } else { 6510 call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(true), 6511 stubAddr, stubName, TypePtr::BOTTOM, 6512 src_start, state, digest_length); 6513 } 6514 6515 return true; 6516 } 6517 6518 //------------------------------inline_digestBase_implCompressMB----------------------- 6519 // 6520 // Calculate MD5/SHA/SHA2/SHA5/SHA3 for multi-block byte[] array. 6521 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit) 6522 // 6523 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) { 6524 assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics, 6525 "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support"); 6526 assert((uint)predicate < 5, "sanity"); 6527 assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters"); 6528 6529 Node* digestBase_obj = argument(0); // The receiver was checked for NULL already. 6530 Node* src = argument(1); // byte[] array 6531 Node* ofs = argument(2); // type int 6532 Node* limit = argument(3); // type int 6533 6534 const Type* src_type = src->Value(&_gvn); 6535 const TypeAryPtr* top_src = src_type->isa_aryptr(); 6536 if (top_src == NULL || top_src->klass() == NULL) { 6537 // failed array check 6538 return false; 6539 } 6540 // Figure out the size and type of the elements we will be copying. 6541 BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 6542 if (src_elem != T_BYTE) { 6543 return false; 6544 } 6545 // 'src_start' points to src array + offset 6546 src = must_be_not_null(src, false); 6547 Node* src_start = array_element_address(src, ofs, src_elem); 6548 6549 const char* klass_digestBase_name = NULL; 6550 const char* stub_name = NULL; 6551 address stub_addr = NULL; 6552 const char* state_type = "[I"; 6553 6554 switch (predicate) { 6555 case 0: 6556 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_md5_implCompress)) { 6557 klass_digestBase_name = "sun/security/provider/MD5"; 6558 stub_name = "md5_implCompressMB"; 6559 stub_addr = StubRoutines::md5_implCompressMB(); 6560 } 6561 break; 6562 case 1: 6563 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha_implCompress)) { 6564 klass_digestBase_name = "sun/security/provider/SHA"; 6565 stub_name = "sha1_implCompressMB"; 6566 stub_addr = StubRoutines::sha1_implCompressMB(); 6567 } 6568 break; 6569 case 2: 6570 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha2_implCompress)) { 6571 klass_digestBase_name = "sun/security/provider/SHA2"; 6572 stub_name = "sha256_implCompressMB"; 6573 stub_addr = StubRoutines::sha256_implCompressMB(); 6574 } 6575 break; 6576 case 3: 6577 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha5_implCompress)) { 6578 klass_digestBase_name = "sun/security/provider/SHA5"; 6579 stub_name = "sha512_implCompressMB"; 6580 stub_addr = StubRoutines::sha512_implCompressMB(); 6581 state_type = "[J"; 6582 } 6583 break; 6584 case 4: 6585 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha3_implCompress)) { 6586 klass_digestBase_name = "sun/security/provider/SHA3"; 6587 stub_name = "sha3_implCompressMB"; 6588 stub_addr = StubRoutines::sha3_implCompressMB(); 6589 state_type = "[B"; 6590 } 6591 break; 6592 default: 6593 fatal("unknown DigestBase intrinsic predicate: %d", predicate); 6594 } 6595 if (klass_digestBase_name != NULL) { 6596 assert(stub_addr != NULL, "Stub is generated"); 6597 if (stub_addr == NULL) return false; 6598 6599 // get DigestBase klass to lookup for SHA klass 6600 const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr(); 6601 assert(tinst != NULL, "digestBase_obj is not instance???"); 6602 assert(tinst->klass()->is_loaded(), "DigestBase is not loaded"); 6603 6604 ciKlass* klass_digestBase = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_digestBase_name)); 6605 assert(klass_digestBase->is_loaded(), "predicate checks that this class is loaded"); 6606 ciInstanceKlass* instklass_digestBase = klass_digestBase->as_instance_klass(); 6607 return inline_digestBase_implCompressMB(digestBase_obj, instklass_digestBase, state_type, stub_addr, stub_name, src_start, ofs, limit); 6608 } 6609 return false; 6610 } 6611 6612 //------------------------------inline_digestBase_implCompressMB----------------------- 6613 bool LibraryCallKit::inline_digestBase_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_digestBase, 6614 const char* state_type, address stubAddr, const char *stubName, 6615 Node* src_start, Node* ofs, Node* limit) { 6616 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_digestBase); 6617 const TypeOopPtr* xtype = aklass->as_instance_type(); 6618 Node* digest_obj = new CheckCastPPNode(control(), digestBase_obj, xtype); 6619 digest_obj = _gvn.transform(digest_obj); 6620 6621 Node* state = get_state_from_digest_object(digest_obj, state_type); 6622 if (state == NULL) return false; 6623 6624 Node* digest_length = NULL; 6625 if (strcmp("sha3_implCompressMB", stubName) == 0) { 6626 digest_length = get_digest_length_from_digest_object(digest_obj); 6627 if (digest_length == NULL) return false; 6628 } 6629 6630 // Call the stub. 6631 Node* call; 6632 if (digest_length == NULL) { 6633 call = make_runtime_call(RC_LEAF|RC_NO_FP, 6634 OptoRuntime::digestBase_implCompressMB_Type(false), 6635 stubAddr, stubName, TypePtr::BOTTOM, 6636 src_start, state, ofs, limit); 6637 } else { 6638 call = make_runtime_call(RC_LEAF|RC_NO_FP, 6639 OptoRuntime::digestBase_implCompressMB_Type(true), 6640 stubAddr, stubName, TypePtr::BOTTOM, 6641 src_start, state, digest_length, ofs, limit); 6642 } 6643 6644 // return ofs (int) 6645 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6646 set_result(result); 6647 6648 return true; 6649 } 6650 6651 //------------------------------get_state_from_digest_object----------------------- 6652 Node * LibraryCallKit::get_state_from_digest_object(Node *digest_object, const char *state_type) { 6653 Node* digest_state = load_field_from_object(digest_object, "state", state_type, /*is_exact*/ false); 6654 assert (digest_state != NULL, "wrong version of sun.security.provider.MD5/SHA/SHA2/SHA5/SHA3"); 6655 if (digest_state == NULL) return (Node *) NULL; 6656 6657 // now have the array, need to get the start address of the state array 6658 Node* state = array_element_address(digest_state, intcon(0), T_INT); 6659 return state; 6660 } 6661 6662 //------------------------------get_digest_length_from_sha3_object---------------------------------- 6663 Node * LibraryCallKit::get_digest_length_from_digest_object(Node *digest_object) { 6664 Node* digest_length = load_field_from_object(digest_object, "digestLength", "I", /*is_exact*/ false); 6665 assert (digest_length != NULL, "sanity"); 6666 return digest_length; 6667 } 6668 6669 //----------------------------inline_digestBase_implCompressMB_predicate---------------------------- 6670 // Return node representing slow path of predicate check. 6671 // the pseudo code we want to emulate with this predicate is: 6672 // if (digestBaseObj instanceof MD5/SHA/SHA2/SHA5/SHA3) do_intrinsic, else do_javapath 6673 // 6674 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) { 6675 assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics, 6676 "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support"); 6677 assert((uint)predicate < 5, "sanity"); 6678 6679 // The receiver was checked for NULL already. 6680 Node* digestBaseObj = argument(0); 6681 6682 // get DigestBase klass for instanceOf check 6683 const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr(); 6684 assert(tinst != NULL, "digestBaseObj is null"); 6685 assert(tinst->klass()->is_loaded(), "DigestBase is not loaded"); 6686 6687 const char* klass_name = NULL; 6688 switch (predicate) { 6689 case 0: 6690 if (UseMD5Intrinsics) { 6691 // we want to do an instanceof comparison against the MD5 class 6692 klass_name = "sun/security/provider/MD5"; 6693 } 6694 break; 6695 case 1: 6696 if (UseSHA1Intrinsics) { 6697 // we want to do an instanceof comparison against the SHA class 6698 klass_name = "sun/security/provider/SHA"; 6699 } 6700 break; 6701 case 2: 6702 if (UseSHA256Intrinsics) { 6703 // we want to do an instanceof comparison against the SHA2 class 6704 klass_name = "sun/security/provider/SHA2"; 6705 } 6706 break; 6707 case 3: 6708 if (UseSHA512Intrinsics) { 6709 // we want to do an instanceof comparison against the SHA5 class 6710 klass_name = "sun/security/provider/SHA5"; 6711 } 6712 break; 6713 case 4: 6714 if (UseSHA3Intrinsics) { 6715 // we want to do an instanceof comparison against the SHA3 class 6716 klass_name = "sun/security/provider/SHA3"; 6717 } 6718 break; 6719 default: 6720 fatal("unknown SHA intrinsic predicate: %d", predicate); 6721 } 6722 6723 ciKlass* klass = NULL; 6724 if (klass_name != NULL) { 6725 klass = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_name)); 6726 } 6727 if ((klass == NULL) || !klass->is_loaded()) { 6728 // if none of MD5/SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path 6729 Node* ctrl = control(); 6730 set_control(top()); // no intrinsic path 6731 return ctrl; 6732 } 6733 ciInstanceKlass* instklass = klass->as_instance_klass(); 6734 6735 Node* instof = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass))); 6736 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 6737 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 6738 Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN); 6739 6740 return instof_false; // even if it is NULL 6741 } 6742 6743 //-------------inline_fma----------------------------------- 6744 bool LibraryCallKit::inline_fma(vmIntrinsics::ID id) { 6745 Node *a = NULL; 6746 Node *b = NULL; 6747 Node *c = NULL; 6748 Node* result = NULL; 6749 switch (id) { 6750 case vmIntrinsics::_fmaD: 6751 assert(callee()->signature()->size() == 6, "fma has 3 parameters of size 2 each."); 6752 // no receiver since it is static method 6753 a = round_double_node(argument(0)); 6754 b = round_double_node(argument(2)); 6755 c = round_double_node(argument(4)); 6756 result = _gvn.transform(new FmaDNode(control(), a, b, c)); 6757 break; 6758 case vmIntrinsics::_fmaF: 6759 assert(callee()->signature()->size() == 3, "fma has 3 parameters of size 1 each."); 6760 a = argument(0); 6761 b = argument(1); 6762 c = argument(2); 6763 result = _gvn.transform(new FmaFNode(control(), a, b, c)); 6764 break; 6765 default: 6766 fatal_unexpected_iid(id); break; 6767 } 6768 set_result(result); 6769 return true; 6770 } 6771 6772 bool LibraryCallKit::inline_character_compare(vmIntrinsics::ID id) { 6773 // argument(0) is receiver 6774 Node* codePoint = argument(1); 6775 Node* n = NULL; 6776 6777 switch (id) { 6778 case vmIntrinsics::_isDigit : 6779 n = new DigitNode(control(), codePoint); 6780 break; 6781 case vmIntrinsics::_isLowerCase : 6782 n = new LowerCaseNode(control(), codePoint); 6783 break; 6784 case vmIntrinsics::_isUpperCase : 6785 n = new UpperCaseNode(control(), codePoint); 6786 break; 6787 case vmIntrinsics::_isWhitespace : 6788 n = new WhitespaceNode(control(), codePoint); 6789 break; 6790 default: 6791 fatal_unexpected_iid(id); 6792 } 6793 6794 set_result(_gvn.transform(n)); 6795 return true; 6796 } 6797 6798 //------------------------------inline_fp_min_max------------------------------ 6799 bool LibraryCallKit::inline_fp_min_max(vmIntrinsics::ID id) { 6800 /* DISABLED BECAUSE METHOD DATA ISN'T COLLECTED PER CALL-SITE, SEE JDK-8015416. 6801 6802 // The intrinsic should be used only when the API branches aren't predictable, 6803 // the last one performing the most important comparison. The following heuristic 6804 // uses the branch statistics to eventually bail out if necessary. 6805 6806 ciMethodData *md = callee()->method_data(); 6807 6808 if ( md != NULL && md->is_mature() && md->invocation_count() > 0 ) { 6809 ciCallProfile cp = caller()->call_profile_at_bci(bci()); 6810 6811 if ( ((double)cp.count()) / ((double)md->invocation_count()) < 0.8 ) { 6812 // Bail out if the call-site didn't contribute enough to the statistics. 6813 return false; 6814 } 6815 6816 uint taken = 0, not_taken = 0; 6817 6818 for (ciProfileData *p = md->first_data(); md->is_valid(p); p = md->next_data(p)) { 6819 if (p->is_BranchData()) { 6820 taken = ((ciBranchData*)p)->taken(); 6821 not_taken = ((ciBranchData*)p)->not_taken(); 6822 } 6823 } 6824 6825 double balance = (((double)taken) - ((double)not_taken)) / ((double)md->invocation_count()); 6826 balance = balance < 0 ? -balance : balance; 6827 if ( balance > 0.2 ) { 6828 // Bail out if the most important branch is predictable enough. 6829 return false; 6830 } 6831 } 6832 */ 6833 6834 Node *a = NULL; 6835 Node *b = NULL; 6836 Node *n = NULL; 6837 switch (id) { 6838 case vmIntrinsics::_maxF: 6839 case vmIntrinsics::_minF: 6840 assert(callee()->signature()->size() == 2, "minF/maxF has 2 parameters of size 1 each."); 6841 a = argument(0); 6842 b = argument(1); 6843 break; 6844 case vmIntrinsics::_maxD: 6845 case vmIntrinsics::_minD: 6846 assert(callee()->signature()->size() == 4, "minD/maxD has 2 parameters of size 2 each."); 6847 a = round_double_node(argument(0)); 6848 b = round_double_node(argument(2)); 6849 break; 6850 default: 6851 fatal_unexpected_iid(id); 6852 break; 6853 } 6854 switch (id) { 6855 case vmIntrinsics::_maxF: n = new MaxFNode(a, b); break; 6856 case vmIntrinsics::_minF: n = new MinFNode(a, b); break; 6857 case vmIntrinsics::_maxD: n = new MaxDNode(a, b); break; 6858 case vmIntrinsics::_minD: n = new MinDNode(a, b); break; 6859 default: fatal_unexpected_iid(id); break; 6860 } 6861 set_result(_gvn.transform(n)); 6862 return true; 6863 } 6864 6865 bool LibraryCallKit::inline_profileBoolean() { 6866 Node* counts = argument(1); 6867 const TypeAryPtr* ary = NULL; 6868 ciArray* aobj = NULL; 6869 if (counts->is_Con() 6870 && (ary = counts->bottom_type()->isa_aryptr()) != NULL 6871 && (aobj = ary->const_oop()->as_array()) != NULL 6872 && (aobj->length() == 2)) { 6873 // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively. 6874 jint false_cnt = aobj->element_value(0).as_int(); 6875 jint true_cnt = aobj->element_value(1).as_int(); 6876 6877 if (C->log() != NULL) { 6878 C->log()->elem("observe source='profileBoolean' false='%d' true='%d'", 6879 false_cnt, true_cnt); 6880 } 6881 6882 if (false_cnt + true_cnt == 0) { 6883 // According to profile, never executed. 6884 uncommon_trap_exact(Deoptimization::Reason_intrinsic, 6885 Deoptimization::Action_reinterpret); 6886 return true; 6887 } 6888 6889 // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt) 6890 // is a number of each value occurrences. 6891 Node* result = argument(0); 6892 if (false_cnt == 0 || true_cnt == 0) { 6893 // According to profile, one value has been never seen. 6894 int expected_val = (false_cnt == 0) ? 1 : 0; 6895 6896 Node* cmp = _gvn.transform(new CmpINode(result, intcon(expected_val))); 6897 Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 6898 6899 IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN); 6900 Node* fast_path = _gvn.transform(new IfTrueNode(check)); 6901 Node* slow_path = _gvn.transform(new IfFalseNode(check)); 6902 6903 { // Slow path: uncommon trap for never seen value and then reexecute 6904 // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows 6905 // the value has been seen at least once. 6906 PreserveJVMState pjvms(this); 6907 PreserveReexecuteState preexecs(this); 6908 jvms()->set_should_reexecute(true); 6909 6910 set_control(slow_path); 6911 set_i_o(i_o()); 6912 6913 uncommon_trap_exact(Deoptimization::Reason_intrinsic, 6914 Deoptimization::Action_reinterpret); 6915 } 6916 // The guard for never seen value enables sharpening of the result and 6917 // returning a constant. It allows to eliminate branches on the same value 6918 // later on. 6919 set_control(fast_path); 6920 result = intcon(expected_val); 6921 } 6922 // Stop profiling. 6923 // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode. 6924 // By replacing method body with profile data (represented as ProfileBooleanNode 6925 // on IR level) we effectively disable profiling. 6926 // It enables full speed execution once optimized code is generated. 6927 Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt)); 6928 C->record_for_igvn(profile); 6929 set_result(profile); 6930 return true; 6931 } else { 6932 // Continue profiling. 6933 // Profile data isn't available at the moment. So, execute method's bytecode version. 6934 // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod 6935 // is compiled and counters aren't available since corresponding MethodHandle 6936 // isn't a compile-time constant. 6937 return false; 6938 } 6939 } 6940 6941 bool LibraryCallKit::inline_isCompileConstant() { 6942 Node* n = argument(0); 6943 set_result(n->is_Con() ? intcon(1) : intcon(0)); 6944 return true; 6945 }