1 /* 2 * Copyright (c) 1999, 2020, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/macroAssembler.hpp" 27 #include "ci/ciUtilities.inline.hpp" 28 #include "classfile/systemDictionary.hpp" 29 #include "classfile/vmSymbols.hpp" 30 #include "compiler/compileBroker.hpp" 31 #include "compiler/compileLog.hpp" 32 #include "gc/shared/barrierSet.hpp" 33 #include "jfr/support/jfrIntrinsics.hpp" 34 #include "memory/resourceArea.hpp" 35 #include "oops/klass.inline.hpp" 36 #include "oops/objArrayKlass.hpp" 37 #include "opto/addnode.hpp" 38 #include "opto/arraycopynode.hpp" 39 #include "opto/c2compiler.hpp" 40 #include "opto/callGenerator.hpp" 41 #include "opto/castnode.hpp" 42 #include "opto/cfgnode.hpp" 43 #include "opto/convertnode.hpp" 44 #include "opto/countbitsnode.hpp" 45 #include "opto/intrinsicnode.hpp" 46 #include "opto/idealKit.hpp" 47 #include "opto/mathexactnode.hpp" 48 #include "opto/movenode.hpp" 49 #include "opto/mulnode.hpp" 50 #include "opto/narrowptrnode.hpp" 51 #include "opto/opaquenode.hpp" 52 #include "opto/parse.hpp" 53 #include "opto/runtime.hpp" 54 #include "opto/rootnode.hpp" 55 #include "opto/subnode.hpp" 56 #include "prims/nativeLookup.hpp" 57 #include "prims/unsafe.hpp" 58 #include "runtime/objectMonitor.hpp" 59 #include "runtime/sharedRuntime.hpp" 60 #include "utilities/macros.hpp" 61 #include "utilities/powerOfTwo.hpp" 62 63 class LibraryIntrinsic : public InlineCallGenerator { 64 // Extend the set of intrinsics known to the runtime: 65 public: 66 private: 67 bool _is_virtual; 68 bool _does_virtual_dispatch; 69 int8_t _predicates_count; // Intrinsic is predicated by several conditions 70 int8_t _last_predicate; // Last generated predicate 71 vmIntrinsics::ID _intrinsic_id; 72 73 public: 74 LibraryIntrinsic(ciMethod* m, bool is_virtual, int predicates_count, bool does_virtual_dispatch, vmIntrinsics::ID id) 75 : InlineCallGenerator(m), 76 _is_virtual(is_virtual), 77 _does_virtual_dispatch(does_virtual_dispatch), 78 _predicates_count((int8_t)predicates_count), 79 _last_predicate((int8_t)-1), 80 _intrinsic_id(id) 81 { 82 } 83 virtual bool is_intrinsic() const { return true; } 84 virtual bool is_virtual() const { return _is_virtual; } 85 virtual bool is_predicated() const { return _predicates_count > 0; } 86 virtual int predicates_count() const { return _predicates_count; } 87 virtual bool does_virtual_dispatch() const { return _does_virtual_dispatch; } 88 virtual JVMState* generate(JVMState* jvms); 89 virtual Node* generate_predicate(JVMState* jvms, int predicate); 90 vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; } 91 }; 92 93 94 // Local helper class for LibraryIntrinsic: 95 class LibraryCallKit : public GraphKit { 96 private: 97 LibraryIntrinsic* _intrinsic; // the library intrinsic being called 98 Node* _result; // the result node, if any 99 int _reexecute_sp; // the stack pointer when bytecode needs to be reexecuted 100 101 const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type); 102 103 public: 104 LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic) 105 : GraphKit(jvms), 106 _intrinsic(intrinsic), 107 _result(NULL) 108 { 109 // Check if this is a root compile. In that case we don't have a caller. 110 if (!jvms->has_method()) { 111 _reexecute_sp = sp(); 112 } else { 113 // Find out how many arguments the interpreter needs when deoptimizing 114 // and save the stack pointer value so it can used by uncommon_trap. 115 // We find the argument count by looking at the declared signature. 116 bool ignored_will_link; 117 ciSignature* declared_signature = NULL; 118 ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature); 119 const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci())); 120 _reexecute_sp = sp() + nargs; // "push" arguments back on stack 121 } 122 } 123 124 virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; } 125 126 ciMethod* caller() const { return jvms()->method(); } 127 int bci() const { return jvms()->bci(); } 128 LibraryIntrinsic* intrinsic() const { return _intrinsic; } 129 vmIntrinsics::ID intrinsic_id() const { return _intrinsic->intrinsic_id(); } 130 ciMethod* callee() const { return _intrinsic->method(); } 131 132 bool try_to_inline(int predicate); 133 Node* try_to_predicate(int predicate); 134 135 void push_result() { 136 // Push the result onto the stack. 137 if (!stopped() && result() != NULL) { 138 BasicType bt = result()->bottom_type()->basic_type(); 139 push_node(bt, result()); 140 } 141 } 142 143 private: 144 void fatal_unexpected_iid(vmIntrinsics::ID iid) { 145 fatal("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)); 146 } 147 148 void set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; } 149 void set_result(RegionNode* region, PhiNode* value); 150 Node* result() { return _result; } 151 152 virtual int reexecute_sp() { return _reexecute_sp; } 153 154 // Helper functions to inline natives 155 Node* generate_guard(Node* test, RegionNode* region, float true_prob); 156 Node* generate_slow_guard(Node* test, RegionNode* region); 157 Node* generate_fair_guard(Node* test, RegionNode* region); 158 Node* generate_negative_guard(Node* index, RegionNode* region, 159 // resulting CastII of index: 160 Node* *pos_index = NULL); 161 Node* generate_limit_guard(Node* offset, Node* subseq_length, 162 Node* array_length, 163 RegionNode* region); 164 void generate_string_range_check(Node* array, Node* offset, 165 Node* length, bool char_count); 166 Node* generate_current_thread(Node* &tls_output); 167 Node* load_mirror_from_klass(Node* klass); 168 Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null, 169 RegionNode* region, int null_path, 170 int offset); 171 Node* load_klass_from_mirror(Node* mirror, bool never_see_null, 172 RegionNode* region, int null_path) { 173 int offset = java_lang_Class::klass_offset(); 174 return load_klass_from_mirror_common(mirror, never_see_null, 175 region, null_path, 176 offset); 177 } 178 Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null, 179 RegionNode* region, int null_path) { 180 int offset = java_lang_Class::array_klass_offset(); 181 return load_klass_from_mirror_common(mirror, never_see_null, 182 region, null_path, 183 offset); 184 } 185 Node* generate_access_flags_guard(Node* kls, 186 int modifier_mask, int modifier_bits, 187 RegionNode* region); 188 Node* generate_interface_guard(Node* kls, RegionNode* region); 189 Node* generate_hidden_class_guard(Node* kls, RegionNode* region); 190 Node* generate_array_guard(Node* kls, RegionNode* region) { 191 return generate_array_guard_common(kls, region, false, false); 192 } 193 Node* generate_non_array_guard(Node* kls, RegionNode* region) { 194 return generate_array_guard_common(kls, region, false, true); 195 } 196 Node* generate_objArray_guard(Node* kls, RegionNode* region) { 197 return generate_array_guard_common(kls, region, true, false); 198 } 199 Node* generate_non_objArray_guard(Node* kls, RegionNode* region) { 200 return generate_array_guard_common(kls, region, true, true); 201 } 202 Node* generate_array_guard_common(Node* kls, RegionNode* region, 203 bool obj_array, bool not_array); 204 Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region); 205 CallJavaNode* generate_method_call(vmIntrinsics::ID method_id, 206 bool is_virtual = false, bool is_static = false); 207 CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) { 208 return generate_method_call(method_id, false, true); 209 } 210 CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) { 211 return generate_method_call(method_id, true, false); 212 } 213 Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static, ciInstanceKlass * fromKls); 214 Node * field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static, ciInstanceKlass * fromKls); 215 216 Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae); 217 bool inline_string_compareTo(StrIntrinsicNode::ArgEnc ae); 218 bool inline_string_indexOf(StrIntrinsicNode::ArgEnc ae); 219 bool inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae); 220 Node* make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count, 221 RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae); 222 bool inline_string_indexOfChar(); 223 bool inline_string_equals(StrIntrinsicNode::ArgEnc ae); 224 bool inline_string_toBytesU(); 225 bool inline_string_getCharsU(); 226 bool inline_string_copy(bool compress); 227 bool inline_string_char_access(bool is_store); 228 Node* round_double_node(Node* n); 229 bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName); 230 bool inline_math_native(vmIntrinsics::ID id); 231 bool inline_math(vmIntrinsics::ID id); 232 bool inline_double_math(vmIntrinsics::ID id); 233 template <typename OverflowOp> 234 bool inline_math_overflow(Node* arg1, Node* arg2); 235 void inline_math_mathExact(Node* math, Node* test); 236 bool inline_math_addExactI(bool is_increment); 237 bool inline_math_addExactL(bool is_increment); 238 bool inline_math_multiplyExactI(); 239 bool inline_math_multiplyExactL(); 240 bool inline_math_multiplyHigh(); 241 bool inline_math_negateExactI(); 242 bool inline_math_negateExactL(); 243 bool inline_math_subtractExactI(bool is_decrement); 244 bool inline_math_subtractExactL(bool is_decrement); 245 bool inline_min_max(vmIntrinsics::ID id); 246 bool inline_notify(vmIntrinsics::ID id); 247 Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y); 248 // This returns Type::AnyPtr, RawPtr, or OopPtr. 249 int classify_unsafe_addr(Node* &base, Node* &offset, BasicType type); 250 Node* make_unsafe_address(Node*& base, Node* offset, DecoratorSet decorators, BasicType type = T_ILLEGAL, bool can_cast = false); 251 252 typedef enum { Relaxed, Opaque, Volatile, Acquire, Release } AccessKind; 253 DecoratorSet mo_decorator_for_access_kind(AccessKind kind); 254 bool inline_unsafe_access(bool is_store, BasicType type, AccessKind kind, bool is_unaligned); 255 static bool klass_needs_init_guard(Node* kls); 256 bool inline_unsafe_allocate(); 257 bool inline_unsafe_newArray(bool uninitialized); 258 bool inline_unsafe_writeback0(); 259 bool inline_unsafe_writebackSync0(bool is_pre); 260 bool inline_unsafe_copyMemory(); 261 bool inline_native_currentThread(); 262 263 bool inline_native_time_funcs(address method, const char* funcName); 264 #ifdef JFR_HAVE_INTRINSICS 265 bool inline_native_classID(); 266 bool inline_native_getEventWriter(); 267 #endif 268 bool inline_native_Class_query(vmIntrinsics::ID id); 269 bool inline_native_subtype_check(); 270 bool inline_native_getLength(); 271 bool inline_array_copyOf(bool is_copyOfRange); 272 bool inline_array_equals(StrIntrinsicNode::ArgEnc ae); 273 bool inline_preconditions_checkIndex(); 274 void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array); 275 bool inline_native_clone(bool is_virtual); 276 bool inline_native_Reflection_getCallerClass(); 277 // Helper function for inlining native object hash method 278 bool inline_native_hashcode(bool is_virtual, bool is_static); 279 bool inline_native_getClass(); 280 281 // Helper functions for inlining arraycopy 282 bool inline_arraycopy(); 283 AllocateArrayNode* tightly_coupled_allocation(Node* ptr, 284 RegionNode* slow_region); 285 JVMState* arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp); 286 void arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms, int saved_reexecute_sp, 287 uint new_idx); 288 289 typedef enum { LS_get_add, LS_get_set, LS_cmp_swap, LS_cmp_swap_weak, LS_cmp_exchange } LoadStoreKind; 290 bool inline_unsafe_load_store(BasicType type, LoadStoreKind kind, AccessKind access_kind); 291 bool inline_unsafe_fence(vmIntrinsics::ID id); 292 bool inline_onspinwait(); 293 bool inline_fp_conversions(vmIntrinsics::ID id); 294 bool inline_number_methods(vmIntrinsics::ID id); 295 bool inline_reference_get(); 296 bool inline_Class_cast(); 297 bool inline_aescrypt_Block(vmIntrinsics::ID id); 298 bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id); 299 bool inline_electronicCodeBook_AESCrypt(vmIntrinsics::ID id); 300 bool inline_counterMode_AESCrypt(vmIntrinsics::ID id); 301 Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting); 302 Node* inline_electronicCodeBook_AESCrypt_predicate(bool decrypting); 303 Node* inline_counterMode_AESCrypt_predicate(); 304 Node* get_key_start_from_aescrypt_object(Node* aescrypt_object); 305 Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object); 306 bool inline_ghash_processBlocks(); 307 bool inline_base64_encodeBlock(); 308 bool inline_digestBase_implCompress(vmIntrinsics::ID id); 309 bool inline_digestBase_implCompressMB(int predicate); 310 bool inline_digestBase_implCompressMB(Node* digestBaseObj, ciInstanceKlass* instklass, 311 bool long_state, address stubAddr, const char *stubName, 312 Node* src_start, Node* ofs, Node* limit); 313 Node* get_state_from_digest_object(Node *digestBase_object); 314 Node* get_long_state_from_digest_object(Node *digestBase_object); 315 Node* inline_digestBase_implCompressMB_predicate(int predicate); 316 bool inline_encodeISOArray(); 317 bool inline_updateCRC32(); 318 bool inline_updateBytesCRC32(); 319 bool inline_updateByteBufferCRC32(); 320 Node* get_table_from_crc32c_class(ciInstanceKlass *crc32c_class); 321 bool inline_updateBytesCRC32C(); 322 bool inline_updateDirectByteBufferCRC32C(); 323 bool inline_updateBytesAdler32(); 324 bool inline_updateByteBufferAdler32(); 325 bool inline_multiplyToLen(); 326 bool inline_hasNegatives(); 327 bool inline_squareToLen(); 328 bool inline_mulAdd(); 329 bool inline_montgomeryMultiply(); 330 bool inline_montgomerySquare(); 331 bool inline_bigIntegerShift(bool isRightShift); 332 bool inline_vectorizedMismatch(); 333 bool inline_fma(vmIntrinsics::ID id); 334 bool inline_character_compare(vmIntrinsics::ID id); 335 bool inline_fp_min_max(vmIntrinsics::ID id); 336 337 bool inline_profileBoolean(); 338 bool inline_isCompileConstant(); 339 void clear_upper_avx() { 340 #ifdef X86 341 if (UseAVX >= 2) { 342 C->set_clear_upper_avx(true); 343 } 344 #endif 345 } 346 }; 347 348 //---------------------------make_vm_intrinsic---------------------------- 349 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) { 350 vmIntrinsics::ID id = m->intrinsic_id(); 351 assert(id != vmIntrinsics::_none, "must be a VM intrinsic"); 352 353 if (!m->is_loaded()) { 354 // Do not attempt to inline unloaded methods. 355 return NULL; 356 } 357 358 C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization); 359 bool is_available = false; 360 361 { 362 // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag 363 // the compiler must transition to '_thread_in_vm' state because both 364 // methods access VM-internal data. 365 VM_ENTRY_MARK; 366 methodHandle mh(THREAD, m->get_Method()); 367 is_available = compiler != NULL && compiler->is_intrinsic_supported(mh, is_virtual) && 368 !C->directive()->is_intrinsic_disabled(mh) && 369 !vmIntrinsics::is_disabled_by_flags(mh); 370 371 } 372 373 if (is_available) { 374 assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility"); 375 assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?"); 376 return new LibraryIntrinsic(m, is_virtual, 377 vmIntrinsics::predicates_needed(id), 378 vmIntrinsics::does_virtual_dispatch(id), 379 (vmIntrinsics::ID) id); 380 } else { 381 return NULL; 382 } 383 } 384 385 //----------------------register_library_intrinsics----------------------- 386 // Initialize this file's data structures, for each Compile instance. 387 void Compile::register_library_intrinsics() { 388 // Nothing to do here. 389 } 390 391 JVMState* LibraryIntrinsic::generate(JVMState* jvms) { 392 LibraryCallKit kit(jvms, this); 393 Compile* C = kit.C; 394 int nodes = C->unique(); 395 #ifndef PRODUCT 396 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 397 char buf[1000]; 398 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf)); 399 tty->print_cr("Intrinsic %s", str); 400 } 401 #endif 402 ciMethod* callee = kit.callee(); 403 const int bci = kit.bci(); 404 405 // Try to inline the intrinsic. 406 if ((CheckIntrinsics ? callee->intrinsic_candidate() : true) && 407 kit.try_to_inline(_last_predicate)) { 408 const char *inline_msg = is_virtual() ? "(intrinsic, virtual)" 409 : "(intrinsic)"; 410 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, inline_msg); 411 if (C->print_intrinsics() || C->print_inlining()) { 412 C->print_inlining(callee, jvms->depth() - 1, bci, inline_msg); 413 } 414 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked); 415 if (C->log()) { 416 C->log()->elem("intrinsic id='%s'%s nodes='%d'", 417 vmIntrinsics::name_at(intrinsic_id()), 418 (is_virtual() ? " virtual='1'" : ""), 419 C->unique() - nodes); 420 } 421 // Push the result from the inlined method onto the stack. 422 kit.push_result(); 423 C->print_inlining_update(this); 424 return kit.transfer_exceptions_into_jvms(); 425 } 426 427 // The intrinsic bailed out 428 if (jvms->has_method()) { 429 // Not a root compile. 430 const char* msg; 431 if (callee->intrinsic_candidate()) { 432 msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)"; 433 } else { 434 msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated" 435 : "failed to inline (intrinsic), method not annotated"; 436 } 437 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, msg); 438 if (C->print_intrinsics() || C->print_inlining()) { 439 C->print_inlining(callee, jvms->depth() - 1, bci, msg); 440 } 441 } else { 442 // Root compile 443 ResourceMark rm; 444 stringStream msg_stream; 445 msg_stream.print("Did not generate intrinsic %s%s at bci:%d in", 446 vmIntrinsics::name_at(intrinsic_id()), 447 is_virtual() ? " (virtual)" : "", bci); 448 const char *msg = msg_stream.as_string(); 449 log_debug(jit, inlining)("%s", msg); 450 if (C->print_intrinsics() || C->print_inlining()) { 451 tty->print("%s", msg); 452 } 453 } 454 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed); 455 C->print_inlining_update(this); 456 return NULL; 457 } 458 459 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) { 460 LibraryCallKit kit(jvms, this); 461 Compile* C = kit.C; 462 int nodes = C->unique(); 463 _last_predicate = predicate; 464 #ifndef PRODUCT 465 assert(is_predicated() && predicate < predicates_count(), "sanity"); 466 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 467 char buf[1000]; 468 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf)); 469 tty->print_cr("Predicate for intrinsic %s", str); 470 } 471 #endif 472 ciMethod* callee = kit.callee(); 473 const int bci = kit.bci(); 474 475 Node* slow_ctl = kit.try_to_predicate(predicate); 476 if (!kit.failing()) { 477 const char *inline_msg = is_virtual() ? "(intrinsic, virtual, predicate)" 478 : "(intrinsic, predicate)"; 479 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, inline_msg); 480 if (C->print_intrinsics() || C->print_inlining()) { 481 C->print_inlining(callee, jvms->depth() - 1, bci, inline_msg); 482 } 483 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked); 484 if (C->log()) { 485 C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'", 486 vmIntrinsics::name_at(intrinsic_id()), 487 (is_virtual() ? " virtual='1'" : ""), 488 C->unique() - nodes); 489 } 490 return slow_ctl; // Could be NULL if the check folds. 491 } 492 493 // The intrinsic bailed out 494 if (jvms->has_method()) { 495 // Not a root compile. 496 const char* msg = "failed to generate predicate for intrinsic"; 497 CompileTask::print_inlining_ul(kit.callee(), jvms->depth() - 1, bci, msg); 498 if (C->print_intrinsics() || C->print_inlining()) { 499 C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg); 500 } 501 } else { 502 // Root compile 503 ResourceMark rm; 504 stringStream msg_stream; 505 msg_stream.print("Did not generate intrinsic %s%s at bci:%d in", 506 vmIntrinsics::name_at(intrinsic_id()), 507 is_virtual() ? " (virtual)" : "", bci); 508 const char *msg = msg_stream.as_string(); 509 log_debug(jit, inlining)("%s", msg); 510 if (C->print_intrinsics() || C->print_inlining()) { 511 C->print_inlining_stream()->print("%s", msg); 512 } 513 } 514 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed); 515 return NULL; 516 } 517 518 bool LibraryCallKit::try_to_inline(int predicate) { 519 // Handle symbolic names for otherwise undistinguished boolean switches: 520 const bool is_store = true; 521 const bool is_compress = true; 522 const bool is_static = true; 523 const bool is_volatile = true; 524 525 if (!jvms()->has_method()) { 526 // Root JVMState has a null method. 527 assert(map()->memory()->Opcode() == Op_Parm, ""); 528 // Insert the memory aliasing node 529 set_all_memory(reset_memory()); 530 } 531 assert(merged_memory(), ""); 532 533 534 switch (intrinsic_id()) { 535 case vmIntrinsics::_hashCode: return inline_native_hashcode(intrinsic()->is_virtual(), !is_static); 536 case vmIntrinsics::_identityHashCode: return inline_native_hashcode(/*!virtual*/ false, is_static); 537 case vmIntrinsics::_getClass: return inline_native_getClass(); 538 539 case vmIntrinsics::_ceil: 540 case vmIntrinsics::_floor: 541 case vmIntrinsics::_rint: 542 case vmIntrinsics::_dsin: 543 case vmIntrinsics::_dcos: 544 case vmIntrinsics::_dtan: 545 case vmIntrinsics::_dabs: 546 case vmIntrinsics::_fabs: 547 case vmIntrinsics::_iabs: 548 case vmIntrinsics::_labs: 549 case vmIntrinsics::_datan2: 550 case vmIntrinsics::_dsqrt: 551 case vmIntrinsics::_dexp: 552 case vmIntrinsics::_dlog: 553 case vmIntrinsics::_dlog10: 554 case vmIntrinsics::_dpow: return inline_math_native(intrinsic_id()); 555 556 case vmIntrinsics::_min: 557 case vmIntrinsics::_max: return inline_min_max(intrinsic_id()); 558 559 case vmIntrinsics::_notify: 560 case vmIntrinsics::_notifyAll: 561 return inline_notify(intrinsic_id()); 562 563 case vmIntrinsics::_addExactI: return inline_math_addExactI(false /* add */); 564 case vmIntrinsics::_addExactL: return inline_math_addExactL(false /* add */); 565 case vmIntrinsics::_decrementExactI: return inline_math_subtractExactI(true /* decrement */); 566 case vmIntrinsics::_decrementExactL: return inline_math_subtractExactL(true /* decrement */); 567 case vmIntrinsics::_incrementExactI: return inline_math_addExactI(true /* increment */); 568 case vmIntrinsics::_incrementExactL: return inline_math_addExactL(true /* increment */); 569 case vmIntrinsics::_multiplyExactI: return inline_math_multiplyExactI(); 570 case vmIntrinsics::_multiplyExactL: return inline_math_multiplyExactL(); 571 case vmIntrinsics::_multiplyHigh: return inline_math_multiplyHigh(); 572 case vmIntrinsics::_negateExactI: return inline_math_negateExactI(); 573 case vmIntrinsics::_negateExactL: return inline_math_negateExactL(); 574 case vmIntrinsics::_subtractExactI: return inline_math_subtractExactI(false /* subtract */); 575 case vmIntrinsics::_subtractExactL: return inline_math_subtractExactL(false /* subtract */); 576 577 case vmIntrinsics::_arraycopy: return inline_arraycopy(); 578 579 case vmIntrinsics::_compareToL: return inline_string_compareTo(StrIntrinsicNode::LL); 580 case vmIntrinsics::_compareToU: return inline_string_compareTo(StrIntrinsicNode::UU); 581 case vmIntrinsics::_compareToLU: return inline_string_compareTo(StrIntrinsicNode::LU); 582 case vmIntrinsics::_compareToUL: return inline_string_compareTo(StrIntrinsicNode::UL); 583 584 case vmIntrinsics::_indexOfL: return inline_string_indexOf(StrIntrinsicNode::LL); 585 case vmIntrinsics::_indexOfU: return inline_string_indexOf(StrIntrinsicNode::UU); 586 case vmIntrinsics::_indexOfUL: return inline_string_indexOf(StrIntrinsicNode::UL); 587 case vmIntrinsics::_indexOfIL: return inline_string_indexOfI(StrIntrinsicNode::LL); 588 case vmIntrinsics::_indexOfIU: return inline_string_indexOfI(StrIntrinsicNode::UU); 589 case vmIntrinsics::_indexOfIUL: return inline_string_indexOfI(StrIntrinsicNode::UL); 590 case vmIntrinsics::_indexOfU_char: return inline_string_indexOfChar(); 591 592 case vmIntrinsics::_equalsL: return inline_string_equals(StrIntrinsicNode::LL); 593 case vmIntrinsics::_equalsU: return inline_string_equals(StrIntrinsicNode::UU); 594 595 case vmIntrinsics::_toBytesStringU: return inline_string_toBytesU(); 596 case vmIntrinsics::_getCharsStringU: return inline_string_getCharsU(); 597 case vmIntrinsics::_getCharStringU: return inline_string_char_access(!is_store); 598 case vmIntrinsics::_putCharStringU: return inline_string_char_access( is_store); 599 600 case vmIntrinsics::_compressStringC: 601 case vmIntrinsics::_compressStringB: return inline_string_copy( is_compress); 602 case vmIntrinsics::_inflateStringC: 603 case vmIntrinsics::_inflateStringB: return inline_string_copy(!is_compress); 604 605 case vmIntrinsics::_getReference: return inline_unsafe_access(!is_store, T_OBJECT, Relaxed, false); 606 case vmIntrinsics::_getBoolean: return inline_unsafe_access(!is_store, T_BOOLEAN, Relaxed, false); 607 case vmIntrinsics::_getByte: return inline_unsafe_access(!is_store, T_BYTE, Relaxed, false); 608 case vmIntrinsics::_getShort: return inline_unsafe_access(!is_store, T_SHORT, Relaxed, false); 609 case vmIntrinsics::_getChar: return inline_unsafe_access(!is_store, T_CHAR, Relaxed, false); 610 case vmIntrinsics::_getInt: return inline_unsafe_access(!is_store, T_INT, Relaxed, false); 611 case vmIntrinsics::_getLong: return inline_unsafe_access(!is_store, T_LONG, Relaxed, false); 612 case vmIntrinsics::_getFloat: return inline_unsafe_access(!is_store, T_FLOAT, Relaxed, false); 613 case vmIntrinsics::_getDouble: return inline_unsafe_access(!is_store, T_DOUBLE, Relaxed, false); 614 615 case vmIntrinsics::_putReference: return inline_unsafe_access( is_store, T_OBJECT, Relaxed, false); 616 case vmIntrinsics::_putBoolean: return inline_unsafe_access( is_store, T_BOOLEAN, Relaxed, false); 617 case vmIntrinsics::_putByte: return inline_unsafe_access( is_store, T_BYTE, Relaxed, false); 618 case vmIntrinsics::_putShort: return inline_unsafe_access( is_store, T_SHORT, Relaxed, false); 619 case vmIntrinsics::_putChar: return inline_unsafe_access( is_store, T_CHAR, Relaxed, false); 620 case vmIntrinsics::_putInt: return inline_unsafe_access( is_store, T_INT, Relaxed, false); 621 case vmIntrinsics::_putLong: return inline_unsafe_access( is_store, T_LONG, Relaxed, false); 622 case vmIntrinsics::_putFloat: return inline_unsafe_access( is_store, T_FLOAT, Relaxed, false); 623 case vmIntrinsics::_putDouble: return inline_unsafe_access( is_store, T_DOUBLE, Relaxed, false); 624 625 case vmIntrinsics::_getReferenceVolatile: return inline_unsafe_access(!is_store, T_OBJECT, Volatile, false); 626 case vmIntrinsics::_getBooleanVolatile: return inline_unsafe_access(!is_store, T_BOOLEAN, Volatile, false); 627 case vmIntrinsics::_getByteVolatile: return inline_unsafe_access(!is_store, T_BYTE, Volatile, false); 628 case vmIntrinsics::_getShortVolatile: return inline_unsafe_access(!is_store, T_SHORT, Volatile, false); 629 case vmIntrinsics::_getCharVolatile: return inline_unsafe_access(!is_store, T_CHAR, Volatile, false); 630 case vmIntrinsics::_getIntVolatile: return inline_unsafe_access(!is_store, T_INT, Volatile, false); 631 case vmIntrinsics::_getLongVolatile: return inline_unsafe_access(!is_store, T_LONG, Volatile, false); 632 case vmIntrinsics::_getFloatVolatile: return inline_unsafe_access(!is_store, T_FLOAT, Volatile, false); 633 case vmIntrinsics::_getDoubleVolatile: return inline_unsafe_access(!is_store, T_DOUBLE, Volatile, false); 634 635 case vmIntrinsics::_putReferenceVolatile: return inline_unsafe_access( is_store, T_OBJECT, Volatile, false); 636 case vmIntrinsics::_putBooleanVolatile: return inline_unsafe_access( is_store, T_BOOLEAN, Volatile, false); 637 case vmIntrinsics::_putByteVolatile: return inline_unsafe_access( is_store, T_BYTE, Volatile, false); 638 case vmIntrinsics::_putShortVolatile: return inline_unsafe_access( is_store, T_SHORT, Volatile, false); 639 case vmIntrinsics::_putCharVolatile: return inline_unsafe_access( is_store, T_CHAR, Volatile, false); 640 case vmIntrinsics::_putIntVolatile: return inline_unsafe_access( is_store, T_INT, Volatile, false); 641 case vmIntrinsics::_putLongVolatile: return inline_unsafe_access( is_store, T_LONG, Volatile, false); 642 case vmIntrinsics::_putFloatVolatile: return inline_unsafe_access( is_store, T_FLOAT, Volatile, false); 643 case vmIntrinsics::_putDoubleVolatile: return inline_unsafe_access( is_store, T_DOUBLE, Volatile, false); 644 645 case vmIntrinsics::_getShortUnaligned: return inline_unsafe_access(!is_store, T_SHORT, Relaxed, true); 646 case vmIntrinsics::_getCharUnaligned: return inline_unsafe_access(!is_store, T_CHAR, Relaxed, true); 647 case vmIntrinsics::_getIntUnaligned: return inline_unsafe_access(!is_store, T_INT, Relaxed, true); 648 case vmIntrinsics::_getLongUnaligned: return inline_unsafe_access(!is_store, T_LONG, Relaxed, true); 649 650 case vmIntrinsics::_putShortUnaligned: return inline_unsafe_access( is_store, T_SHORT, Relaxed, true); 651 case vmIntrinsics::_putCharUnaligned: return inline_unsafe_access( is_store, T_CHAR, Relaxed, true); 652 case vmIntrinsics::_putIntUnaligned: return inline_unsafe_access( is_store, T_INT, Relaxed, true); 653 case vmIntrinsics::_putLongUnaligned: return inline_unsafe_access( is_store, T_LONG, Relaxed, true); 654 655 case vmIntrinsics::_getReferenceAcquire: return inline_unsafe_access(!is_store, T_OBJECT, Acquire, false); 656 case vmIntrinsics::_getBooleanAcquire: return inline_unsafe_access(!is_store, T_BOOLEAN, Acquire, false); 657 case vmIntrinsics::_getByteAcquire: return inline_unsafe_access(!is_store, T_BYTE, Acquire, false); 658 case vmIntrinsics::_getShortAcquire: return inline_unsafe_access(!is_store, T_SHORT, Acquire, false); 659 case vmIntrinsics::_getCharAcquire: return inline_unsafe_access(!is_store, T_CHAR, Acquire, false); 660 case vmIntrinsics::_getIntAcquire: return inline_unsafe_access(!is_store, T_INT, Acquire, false); 661 case vmIntrinsics::_getLongAcquire: return inline_unsafe_access(!is_store, T_LONG, Acquire, false); 662 case vmIntrinsics::_getFloatAcquire: return inline_unsafe_access(!is_store, T_FLOAT, Acquire, false); 663 case vmIntrinsics::_getDoubleAcquire: return inline_unsafe_access(!is_store, T_DOUBLE, Acquire, false); 664 665 case vmIntrinsics::_putReferenceRelease: return inline_unsafe_access( is_store, T_OBJECT, Release, false); 666 case vmIntrinsics::_putBooleanRelease: return inline_unsafe_access( is_store, T_BOOLEAN, Release, false); 667 case vmIntrinsics::_putByteRelease: return inline_unsafe_access( is_store, T_BYTE, Release, false); 668 case vmIntrinsics::_putShortRelease: return inline_unsafe_access( is_store, T_SHORT, Release, false); 669 case vmIntrinsics::_putCharRelease: return inline_unsafe_access( is_store, T_CHAR, Release, false); 670 case vmIntrinsics::_putIntRelease: return inline_unsafe_access( is_store, T_INT, Release, false); 671 case vmIntrinsics::_putLongRelease: return inline_unsafe_access( is_store, T_LONG, Release, false); 672 case vmIntrinsics::_putFloatRelease: return inline_unsafe_access( is_store, T_FLOAT, Release, false); 673 case vmIntrinsics::_putDoubleRelease: return inline_unsafe_access( is_store, T_DOUBLE, Release, false); 674 675 case vmIntrinsics::_getReferenceOpaque: return inline_unsafe_access(!is_store, T_OBJECT, Opaque, false); 676 case vmIntrinsics::_getBooleanOpaque: return inline_unsafe_access(!is_store, T_BOOLEAN, Opaque, false); 677 case vmIntrinsics::_getByteOpaque: return inline_unsafe_access(!is_store, T_BYTE, Opaque, false); 678 case vmIntrinsics::_getShortOpaque: return inline_unsafe_access(!is_store, T_SHORT, Opaque, false); 679 case vmIntrinsics::_getCharOpaque: return inline_unsafe_access(!is_store, T_CHAR, Opaque, false); 680 case vmIntrinsics::_getIntOpaque: return inline_unsafe_access(!is_store, T_INT, Opaque, false); 681 case vmIntrinsics::_getLongOpaque: return inline_unsafe_access(!is_store, T_LONG, Opaque, false); 682 case vmIntrinsics::_getFloatOpaque: return inline_unsafe_access(!is_store, T_FLOAT, Opaque, false); 683 case vmIntrinsics::_getDoubleOpaque: return inline_unsafe_access(!is_store, T_DOUBLE, Opaque, false); 684 685 case vmIntrinsics::_putReferenceOpaque: return inline_unsafe_access( is_store, T_OBJECT, Opaque, false); 686 case vmIntrinsics::_putBooleanOpaque: return inline_unsafe_access( is_store, T_BOOLEAN, Opaque, false); 687 case vmIntrinsics::_putByteOpaque: return inline_unsafe_access( is_store, T_BYTE, Opaque, false); 688 case vmIntrinsics::_putShortOpaque: return inline_unsafe_access( is_store, T_SHORT, Opaque, false); 689 case vmIntrinsics::_putCharOpaque: return inline_unsafe_access( is_store, T_CHAR, Opaque, false); 690 case vmIntrinsics::_putIntOpaque: return inline_unsafe_access( is_store, T_INT, Opaque, false); 691 case vmIntrinsics::_putLongOpaque: return inline_unsafe_access( is_store, T_LONG, Opaque, false); 692 case vmIntrinsics::_putFloatOpaque: return inline_unsafe_access( is_store, T_FLOAT, Opaque, false); 693 case vmIntrinsics::_putDoubleOpaque: return inline_unsafe_access( is_store, T_DOUBLE, Opaque, false); 694 695 case vmIntrinsics::_compareAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap, Volatile); 696 case vmIntrinsics::_compareAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap, Volatile); 697 case vmIntrinsics::_compareAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap, Volatile); 698 case vmIntrinsics::_compareAndSetInt: return inline_unsafe_load_store(T_INT, LS_cmp_swap, Volatile); 699 case vmIntrinsics::_compareAndSetLong: return inline_unsafe_load_store(T_LONG, LS_cmp_swap, Volatile); 700 701 case vmIntrinsics::_weakCompareAndSetReferencePlain: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed); 702 case vmIntrinsics::_weakCompareAndSetReferenceAcquire: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire); 703 case vmIntrinsics::_weakCompareAndSetReferenceRelease: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release); 704 case vmIntrinsics::_weakCompareAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Volatile); 705 case vmIntrinsics::_weakCompareAndSetBytePlain: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Relaxed); 706 case vmIntrinsics::_weakCompareAndSetByteAcquire: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Acquire); 707 case vmIntrinsics::_weakCompareAndSetByteRelease: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Release); 708 case vmIntrinsics::_weakCompareAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Volatile); 709 case vmIntrinsics::_weakCompareAndSetShortPlain: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Relaxed); 710 case vmIntrinsics::_weakCompareAndSetShortAcquire: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Acquire); 711 case vmIntrinsics::_weakCompareAndSetShortRelease: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Release); 712 case vmIntrinsics::_weakCompareAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Volatile); 713 case vmIntrinsics::_weakCompareAndSetIntPlain: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Relaxed); 714 case vmIntrinsics::_weakCompareAndSetIntAcquire: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Acquire); 715 case vmIntrinsics::_weakCompareAndSetIntRelease: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Release); 716 case vmIntrinsics::_weakCompareAndSetInt: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Volatile); 717 case vmIntrinsics::_weakCompareAndSetLongPlain: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Relaxed); 718 case vmIntrinsics::_weakCompareAndSetLongAcquire: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Acquire); 719 case vmIntrinsics::_weakCompareAndSetLongRelease: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Release); 720 case vmIntrinsics::_weakCompareAndSetLong: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Volatile); 721 722 case vmIntrinsics::_compareAndExchangeReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Volatile); 723 case vmIntrinsics::_compareAndExchangeReferenceAcquire: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Acquire); 724 case vmIntrinsics::_compareAndExchangeReferenceRelease: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Release); 725 case vmIntrinsics::_compareAndExchangeByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Volatile); 726 case vmIntrinsics::_compareAndExchangeByteAcquire: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Acquire); 727 case vmIntrinsics::_compareAndExchangeByteRelease: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Release); 728 case vmIntrinsics::_compareAndExchangeShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Volatile); 729 case vmIntrinsics::_compareAndExchangeShortAcquire: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Acquire); 730 case vmIntrinsics::_compareAndExchangeShortRelease: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Release); 731 case vmIntrinsics::_compareAndExchangeInt: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Volatile); 732 case vmIntrinsics::_compareAndExchangeIntAcquire: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Acquire); 733 case vmIntrinsics::_compareAndExchangeIntRelease: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Release); 734 case vmIntrinsics::_compareAndExchangeLong: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Volatile); 735 case vmIntrinsics::_compareAndExchangeLongAcquire: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Acquire); 736 case vmIntrinsics::_compareAndExchangeLongRelease: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Release); 737 738 case vmIntrinsics::_getAndAddByte: return inline_unsafe_load_store(T_BYTE, LS_get_add, Volatile); 739 case vmIntrinsics::_getAndAddShort: return inline_unsafe_load_store(T_SHORT, LS_get_add, Volatile); 740 case vmIntrinsics::_getAndAddInt: return inline_unsafe_load_store(T_INT, LS_get_add, Volatile); 741 case vmIntrinsics::_getAndAddLong: return inline_unsafe_load_store(T_LONG, LS_get_add, Volatile); 742 743 case vmIntrinsics::_getAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_get_set, Volatile); 744 case vmIntrinsics::_getAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_get_set, Volatile); 745 case vmIntrinsics::_getAndSetInt: return inline_unsafe_load_store(T_INT, LS_get_set, Volatile); 746 case vmIntrinsics::_getAndSetLong: return inline_unsafe_load_store(T_LONG, LS_get_set, Volatile); 747 case vmIntrinsics::_getAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_get_set, Volatile); 748 749 case vmIntrinsics::_loadFence: 750 case vmIntrinsics::_storeFence: 751 case vmIntrinsics::_fullFence: return inline_unsafe_fence(intrinsic_id()); 752 753 case vmIntrinsics::_onSpinWait: return inline_onspinwait(); 754 755 case vmIntrinsics::_currentThread: return inline_native_currentThread(); 756 757 #ifdef JFR_HAVE_INTRINSICS 758 case vmIntrinsics::_counterTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, JFR_TIME_FUNCTION), "counterTime"); 759 case vmIntrinsics::_getClassId: return inline_native_classID(); 760 case vmIntrinsics::_getEventWriter: return inline_native_getEventWriter(); 761 #endif 762 case vmIntrinsics::_currentTimeMillis: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis"); 763 case vmIntrinsics::_nanoTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime"); 764 case vmIntrinsics::_writeback0: return inline_unsafe_writeback0(); 765 case vmIntrinsics::_writebackPreSync0: return inline_unsafe_writebackSync0(true); 766 case vmIntrinsics::_writebackPostSync0: return inline_unsafe_writebackSync0(false); 767 case vmIntrinsics::_allocateInstance: return inline_unsafe_allocate(); 768 case vmIntrinsics::_copyMemory: return inline_unsafe_copyMemory(); 769 case vmIntrinsics::_getLength: return inline_native_getLength(); 770 case vmIntrinsics::_copyOf: return inline_array_copyOf(false); 771 case vmIntrinsics::_copyOfRange: return inline_array_copyOf(true); 772 case vmIntrinsics::_equalsB: return inline_array_equals(StrIntrinsicNode::LL); 773 case vmIntrinsics::_equalsC: return inline_array_equals(StrIntrinsicNode::UU); 774 case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex(); 775 case vmIntrinsics::_clone: return inline_native_clone(intrinsic()->is_virtual()); 776 777 case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true); 778 case vmIntrinsics::_newArray: return inline_unsafe_newArray(false); 779 780 case vmIntrinsics::_isAssignableFrom: return inline_native_subtype_check(); 781 782 case vmIntrinsics::_isInstance: 783 case vmIntrinsics::_getModifiers: 784 case vmIntrinsics::_isInterface: 785 case vmIntrinsics::_isArray: 786 case vmIntrinsics::_isPrimitive: 787 case vmIntrinsics::_isHidden: 788 case vmIntrinsics::_getSuperclass: 789 case vmIntrinsics::_getClassAccessFlags: return inline_native_Class_query(intrinsic_id()); 790 791 case vmIntrinsics::_floatToRawIntBits: 792 case vmIntrinsics::_floatToIntBits: 793 case vmIntrinsics::_intBitsToFloat: 794 case vmIntrinsics::_doubleToRawLongBits: 795 case vmIntrinsics::_doubleToLongBits: 796 case vmIntrinsics::_longBitsToDouble: return inline_fp_conversions(intrinsic_id()); 797 798 case vmIntrinsics::_numberOfLeadingZeros_i: 799 case vmIntrinsics::_numberOfLeadingZeros_l: 800 case vmIntrinsics::_numberOfTrailingZeros_i: 801 case vmIntrinsics::_numberOfTrailingZeros_l: 802 case vmIntrinsics::_bitCount_i: 803 case vmIntrinsics::_bitCount_l: 804 case vmIntrinsics::_reverseBytes_i: 805 case vmIntrinsics::_reverseBytes_l: 806 case vmIntrinsics::_reverseBytes_s: 807 case vmIntrinsics::_reverseBytes_c: return inline_number_methods(intrinsic_id()); 808 809 case vmIntrinsics::_getCallerClass: return inline_native_Reflection_getCallerClass(); 810 811 case vmIntrinsics::_Reference_get: return inline_reference_get(); 812 813 case vmIntrinsics::_Class_cast: return inline_Class_cast(); 814 815 case vmIntrinsics::_aescrypt_encryptBlock: 816 case vmIntrinsics::_aescrypt_decryptBlock: return inline_aescrypt_Block(intrinsic_id()); 817 818 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 819 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 820 return inline_cipherBlockChaining_AESCrypt(intrinsic_id()); 821 822 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 823 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 824 return inline_electronicCodeBook_AESCrypt(intrinsic_id()); 825 826 case vmIntrinsics::_counterMode_AESCrypt: 827 return inline_counterMode_AESCrypt(intrinsic_id()); 828 829 case vmIntrinsics::_md5_implCompress: 830 case vmIntrinsics::_sha_implCompress: 831 case vmIntrinsics::_sha2_implCompress: 832 case vmIntrinsics::_sha5_implCompress: 833 return inline_digestBase_implCompress(intrinsic_id()); 834 835 case vmIntrinsics::_digestBase_implCompressMB: 836 return inline_digestBase_implCompressMB(predicate); 837 838 case vmIntrinsics::_multiplyToLen: 839 return inline_multiplyToLen(); 840 841 case vmIntrinsics::_squareToLen: 842 return inline_squareToLen(); 843 844 case vmIntrinsics::_mulAdd: 845 return inline_mulAdd(); 846 847 case vmIntrinsics::_montgomeryMultiply: 848 return inline_montgomeryMultiply(); 849 case vmIntrinsics::_montgomerySquare: 850 return inline_montgomerySquare(); 851 852 case vmIntrinsics::_bigIntegerRightShiftWorker: 853 return inline_bigIntegerShift(true); 854 case vmIntrinsics::_bigIntegerLeftShiftWorker: 855 return inline_bigIntegerShift(false); 856 857 case vmIntrinsics::_vectorizedMismatch: 858 return inline_vectorizedMismatch(); 859 860 case vmIntrinsics::_ghash_processBlocks: 861 return inline_ghash_processBlocks(); 862 case vmIntrinsics::_base64_encodeBlock: 863 return inline_base64_encodeBlock(); 864 865 case vmIntrinsics::_encodeISOArray: 866 case vmIntrinsics::_encodeByteISOArray: 867 return inline_encodeISOArray(); 868 869 case vmIntrinsics::_updateCRC32: 870 return inline_updateCRC32(); 871 case vmIntrinsics::_updateBytesCRC32: 872 return inline_updateBytesCRC32(); 873 case vmIntrinsics::_updateByteBufferCRC32: 874 return inline_updateByteBufferCRC32(); 875 876 case vmIntrinsics::_updateBytesCRC32C: 877 return inline_updateBytesCRC32C(); 878 case vmIntrinsics::_updateDirectByteBufferCRC32C: 879 return inline_updateDirectByteBufferCRC32C(); 880 881 case vmIntrinsics::_updateBytesAdler32: 882 return inline_updateBytesAdler32(); 883 case vmIntrinsics::_updateByteBufferAdler32: 884 return inline_updateByteBufferAdler32(); 885 886 case vmIntrinsics::_profileBoolean: 887 return inline_profileBoolean(); 888 case vmIntrinsics::_isCompileConstant: 889 return inline_isCompileConstant(); 890 891 case vmIntrinsics::_hasNegatives: 892 return inline_hasNegatives(); 893 894 case vmIntrinsics::_fmaD: 895 case vmIntrinsics::_fmaF: 896 return inline_fma(intrinsic_id()); 897 898 case vmIntrinsics::_isDigit: 899 case vmIntrinsics::_isLowerCase: 900 case vmIntrinsics::_isUpperCase: 901 case vmIntrinsics::_isWhitespace: 902 return inline_character_compare(intrinsic_id()); 903 904 case vmIntrinsics::_maxF: 905 case vmIntrinsics::_minF: 906 case vmIntrinsics::_maxD: 907 case vmIntrinsics::_minD: 908 return inline_fp_min_max(intrinsic_id()); 909 910 default: 911 // If you get here, it may be that someone has added a new intrinsic 912 // to the list in vmSymbols.hpp without implementing it here. 913 #ifndef PRODUCT 914 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) { 915 tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)", 916 vmIntrinsics::name_at(intrinsic_id()), intrinsic_id()); 917 } 918 #endif 919 return false; 920 } 921 } 922 923 Node* LibraryCallKit::try_to_predicate(int predicate) { 924 if (!jvms()->has_method()) { 925 // Root JVMState has a null method. 926 assert(map()->memory()->Opcode() == Op_Parm, ""); 927 // Insert the memory aliasing node 928 set_all_memory(reset_memory()); 929 } 930 assert(merged_memory(), ""); 931 932 switch (intrinsic_id()) { 933 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 934 return inline_cipherBlockChaining_AESCrypt_predicate(false); 935 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 936 return inline_cipherBlockChaining_AESCrypt_predicate(true); 937 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 938 return inline_electronicCodeBook_AESCrypt_predicate(false); 939 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 940 return inline_electronicCodeBook_AESCrypt_predicate(true); 941 case vmIntrinsics::_counterMode_AESCrypt: 942 return inline_counterMode_AESCrypt_predicate(); 943 case vmIntrinsics::_digestBase_implCompressMB: 944 return inline_digestBase_implCompressMB_predicate(predicate); 945 946 default: 947 // If you get here, it may be that someone has added a new intrinsic 948 // to the list in vmSymbols.hpp without implementing it here. 949 #ifndef PRODUCT 950 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) { 951 tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)", 952 vmIntrinsics::name_at(intrinsic_id()), intrinsic_id()); 953 } 954 #endif 955 Node* slow_ctl = control(); 956 set_control(top()); // No fast path instrinsic 957 return slow_ctl; 958 } 959 } 960 961 //------------------------------set_result------------------------------- 962 // Helper function for finishing intrinsics. 963 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) { 964 record_for_igvn(region); 965 set_control(_gvn.transform(region)); 966 set_result( _gvn.transform(value)); 967 assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity"); 968 } 969 970 //------------------------------generate_guard--------------------------- 971 // Helper function for generating guarded fast-slow graph structures. 972 // The given 'test', if true, guards a slow path. If the test fails 973 // then a fast path can be taken. (We generally hope it fails.) 974 // In all cases, GraphKit::control() is updated to the fast path. 975 // The returned value represents the control for the slow path. 976 // The return value is never 'top'; it is either a valid control 977 // or NULL if it is obvious that the slow path can never be taken. 978 // Also, if region and the slow control are not NULL, the slow edge 979 // is appended to the region. 980 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) { 981 if (stopped()) { 982 // Already short circuited. 983 return NULL; 984 } 985 986 // Build an if node and its projections. 987 // If test is true we take the slow path, which we assume is uncommon. 988 if (_gvn.type(test) == TypeInt::ZERO) { 989 // The slow branch is never taken. No need to build this guard. 990 return NULL; 991 } 992 993 IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN); 994 995 Node* if_slow = _gvn.transform(new IfTrueNode(iff)); 996 if (if_slow == top()) { 997 // The slow branch is never taken. No need to build this guard. 998 return NULL; 999 } 1000 1001 if (region != NULL) 1002 region->add_req(if_slow); 1003 1004 Node* if_fast = _gvn.transform(new IfFalseNode(iff)); 1005 set_control(if_fast); 1006 1007 return if_slow; 1008 } 1009 1010 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) { 1011 return generate_guard(test, region, PROB_UNLIKELY_MAG(3)); 1012 } 1013 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) { 1014 return generate_guard(test, region, PROB_FAIR); 1015 } 1016 1017 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region, 1018 Node* *pos_index) { 1019 if (stopped()) 1020 return NULL; // already stopped 1021 if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint] 1022 return NULL; // index is already adequately typed 1023 Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0))); 1024 Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt)); 1025 Node* is_neg = generate_guard(bol_lt, region, PROB_MIN); 1026 if (is_neg != NULL && pos_index != NULL) { 1027 // Emulate effect of Parse::adjust_map_after_if. 1028 Node* ccast = new CastIINode(index, TypeInt::POS); 1029 ccast->set_req(0, control()); 1030 (*pos_index) = _gvn.transform(ccast); 1031 } 1032 return is_neg; 1033 } 1034 1035 // Make sure that 'position' is a valid limit index, in [0..length]. 1036 // There are two equivalent plans for checking this: 1037 // A. (offset + copyLength) unsigned<= arrayLength 1038 // B. offset <= (arrayLength - copyLength) 1039 // We require that all of the values above, except for the sum and 1040 // difference, are already known to be non-negative. 1041 // Plan A is robust in the face of overflow, if offset and copyLength 1042 // are both hugely positive. 1043 // 1044 // Plan B is less direct and intuitive, but it does not overflow at 1045 // all, since the difference of two non-negatives is always 1046 // representable. Whenever Java methods must perform the equivalent 1047 // check they generally use Plan B instead of Plan A. 1048 // For the moment we use Plan A. 1049 inline Node* LibraryCallKit::generate_limit_guard(Node* offset, 1050 Node* subseq_length, 1051 Node* array_length, 1052 RegionNode* region) { 1053 if (stopped()) 1054 return NULL; // already stopped 1055 bool zero_offset = _gvn.type(offset) == TypeInt::ZERO; 1056 if (zero_offset && subseq_length->eqv_uncast(array_length)) 1057 return NULL; // common case of whole-array copy 1058 Node* last = subseq_length; 1059 if (!zero_offset) // last += offset 1060 last = _gvn.transform(new AddINode(last, offset)); 1061 Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last)); 1062 Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt)); 1063 Node* is_over = generate_guard(bol_lt, region, PROB_MIN); 1064 return is_over; 1065 } 1066 1067 // Emit range checks for the given String.value byte array 1068 void LibraryCallKit::generate_string_range_check(Node* array, Node* offset, Node* count, bool char_count) { 1069 if (stopped()) { 1070 return; // already stopped 1071 } 1072 RegionNode* bailout = new RegionNode(1); 1073 record_for_igvn(bailout); 1074 if (char_count) { 1075 // Convert char count to byte count 1076 count = _gvn.transform(new LShiftINode(count, intcon(1))); 1077 } 1078 1079 // Offset and count must not be negative 1080 generate_negative_guard(offset, bailout); 1081 generate_negative_guard(count, bailout); 1082 // Offset + count must not exceed length of array 1083 generate_limit_guard(offset, count, load_array_length(array), bailout); 1084 1085 if (bailout->req() > 1) { 1086 PreserveJVMState pjvms(this); 1087 set_control(_gvn.transform(bailout)); 1088 uncommon_trap(Deoptimization::Reason_intrinsic, 1089 Deoptimization::Action_maybe_recompile); 1090 } 1091 } 1092 1093 //--------------------------generate_current_thread-------------------- 1094 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) { 1095 ciKlass* thread_klass = env()->Thread_klass(); 1096 const Type* thread_type = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull); 1097 Node* thread = _gvn.transform(new ThreadLocalNode()); 1098 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset())); 1099 tls_output = thread; 1100 Node* thread_obj_handle = LoadNode::make(_gvn, NULL, immutable_memory(), p, p->bottom_type()->is_ptr(), TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered); 1101 thread_obj_handle = _gvn.transform(thread_obj_handle); 1102 return access_load(thread_obj_handle, thread_type, T_OBJECT, IN_NATIVE | C2_IMMUTABLE_MEMORY); 1103 } 1104 1105 1106 //------------------------------make_string_method_node------------------------ 1107 // Helper method for String intrinsic functions. This version is called with 1108 // str1 and str2 pointing to byte[] nodes containing Latin1 or UTF16 encoded 1109 // characters (depending on 'is_byte'). cnt1 and cnt2 are pointing to Int nodes 1110 // containing the lengths of str1 and str2. 1111 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae) { 1112 Node* result = NULL; 1113 switch (opcode) { 1114 case Op_StrIndexOf: 1115 result = new StrIndexOfNode(control(), memory(TypeAryPtr::BYTES), 1116 str1_start, cnt1, str2_start, cnt2, ae); 1117 break; 1118 case Op_StrComp: 1119 result = new StrCompNode(control(), memory(TypeAryPtr::BYTES), 1120 str1_start, cnt1, str2_start, cnt2, ae); 1121 break; 1122 case Op_StrEquals: 1123 // We already know that cnt1 == cnt2 here (checked in 'inline_string_equals'). 1124 // Use the constant length if there is one because optimized match rule may exist. 1125 result = new StrEqualsNode(control(), memory(TypeAryPtr::BYTES), 1126 str1_start, str2_start, cnt2->is_Con() ? cnt2 : cnt1, ae); 1127 break; 1128 default: 1129 ShouldNotReachHere(); 1130 return NULL; 1131 } 1132 1133 // All these intrinsics have checks. 1134 C->set_has_split_ifs(true); // Has chance for split-if optimization 1135 clear_upper_avx(); 1136 1137 return _gvn.transform(result); 1138 } 1139 1140 //------------------------------inline_string_compareTo------------------------ 1141 bool LibraryCallKit::inline_string_compareTo(StrIntrinsicNode::ArgEnc ae) { 1142 Node* arg1 = argument(0); 1143 Node* arg2 = argument(1); 1144 1145 arg1 = must_be_not_null(arg1, true); 1146 arg2 = must_be_not_null(arg2, true); 1147 1148 // Get start addr and length of first argument 1149 Node* arg1_start = array_element_address(arg1, intcon(0), T_BYTE); 1150 Node* arg1_cnt = load_array_length(arg1); 1151 1152 // Get start addr and length of second argument 1153 Node* arg2_start = array_element_address(arg2, intcon(0), T_BYTE); 1154 Node* arg2_cnt = load_array_length(arg2); 1155 1156 Node* result = make_string_method_node(Op_StrComp, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae); 1157 set_result(result); 1158 return true; 1159 } 1160 1161 //------------------------------inline_string_equals------------------------ 1162 bool LibraryCallKit::inline_string_equals(StrIntrinsicNode::ArgEnc ae) { 1163 Node* arg1 = argument(0); 1164 Node* arg2 = argument(1); 1165 1166 // paths (plus control) merge 1167 RegionNode* region = new RegionNode(3); 1168 Node* phi = new PhiNode(region, TypeInt::BOOL); 1169 1170 if (!stopped()) { 1171 1172 arg1 = must_be_not_null(arg1, true); 1173 arg2 = must_be_not_null(arg2, true); 1174 1175 // Get start addr and length of first argument 1176 Node* arg1_start = array_element_address(arg1, intcon(0), T_BYTE); 1177 Node* arg1_cnt = load_array_length(arg1); 1178 1179 // Get start addr and length of second argument 1180 Node* arg2_start = array_element_address(arg2, intcon(0), T_BYTE); 1181 Node* arg2_cnt = load_array_length(arg2); 1182 1183 // Check for arg1_cnt != arg2_cnt 1184 Node* cmp = _gvn.transform(new CmpINode(arg1_cnt, arg2_cnt)); 1185 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne)); 1186 Node* if_ne = generate_slow_guard(bol, NULL); 1187 if (if_ne != NULL) { 1188 phi->init_req(2, intcon(0)); 1189 region->init_req(2, if_ne); 1190 } 1191 1192 // Check for count == 0 is done by assembler code for StrEquals. 1193 1194 if (!stopped()) { 1195 Node* equals = make_string_method_node(Op_StrEquals, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae); 1196 phi->init_req(1, equals); 1197 region->init_req(1, control()); 1198 } 1199 } 1200 1201 // post merge 1202 set_control(_gvn.transform(region)); 1203 record_for_igvn(region); 1204 1205 set_result(_gvn.transform(phi)); 1206 return true; 1207 } 1208 1209 //------------------------------inline_array_equals---------------------------- 1210 bool LibraryCallKit::inline_array_equals(StrIntrinsicNode::ArgEnc ae) { 1211 assert(ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::LL, "unsupported array types"); 1212 Node* arg1 = argument(0); 1213 Node* arg2 = argument(1); 1214 1215 const TypeAryPtr* mtype = (ae == StrIntrinsicNode::UU) ? TypeAryPtr::CHARS : TypeAryPtr::BYTES; 1216 set_result(_gvn.transform(new AryEqNode(control(), memory(mtype), arg1, arg2, ae))); 1217 clear_upper_avx(); 1218 1219 return true; 1220 } 1221 1222 //------------------------------inline_hasNegatives------------------------------ 1223 bool LibraryCallKit::inline_hasNegatives() { 1224 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1225 return false; 1226 } 1227 1228 assert(callee()->signature()->size() == 3, "hasNegatives has 3 parameters"); 1229 // no receiver since it is static method 1230 Node* ba = argument(0); 1231 Node* offset = argument(1); 1232 Node* len = argument(2); 1233 1234 ba = must_be_not_null(ba, true); 1235 1236 // Range checks 1237 generate_string_range_check(ba, offset, len, false); 1238 if (stopped()) { 1239 return true; 1240 } 1241 Node* ba_start = array_element_address(ba, offset, T_BYTE); 1242 Node* result = new HasNegativesNode(control(), memory(TypeAryPtr::BYTES), ba_start, len); 1243 set_result(_gvn.transform(result)); 1244 return true; 1245 } 1246 1247 bool LibraryCallKit::inline_preconditions_checkIndex() { 1248 Node* index = argument(0); 1249 Node* length = argument(1); 1250 if (too_many_traps(Deoptimization::Reason_intrinsic) || too_many_traps(Deoptimization::Reason_range_check)) { 1251 return false; 1252 } 1253 1254 Node* len_pos_cmp = _gvn.transform(new CmpINode(length, intcon(0))); 1255 Node* len_pos_bol = _gvn.transform(new BoolNode(len_pos_cmp, BoolTest::ge)); 1256 1257 { 1258 BuildCutout unless(this, len_pos_bol, PROB_MAX); 1259 uncommon_trap(Deoptimization::Reason_intrinsic, 1260 Deoptimization::Action_make_not_entrant); 1261 } 1262 1263 if (stopped()) { 1264 return false; 1265 } 1266 1267 Node* rc_cmp = _gvn.transform(new CmpUNode(index, length)); 1268 BoolTest::mask btest = BoolTest::lt; 1269 Node* rc_bool = _gvn.transform(new BoolNode(rc_cmp, btest)); 1270 RangeCheckNode* rc = new RangeCheckNode(control(), rc_bool, PROB_MAX, COUNT_UNKNOWN); 1271 _gvn.set_type(rc, rc->Value(&_gvn)); 1272 if (!rc_bool->is_Con()) { 1273 record_for_igvn(rc); 1274 } 1275 set_control(_gvn.transform(new IfTrueNode(rc))); 1276 { 1277 PreserveJVMState pjvms(this); 1278 set_control(_gvn.transform(new IfFalseNode(rc))); 1279 uncommon_trap(Deoptimization::Reason_range_check, 1280 Deoptimization::Action_make_not_entrant); 1281 } 1282 1283 if (stopped()) { 1284 return false; 1285 } 1286 1287 Node* result = new CastIINode(index, TypeInt::make(0, _gvn.type(length)->is_int()->_hi, Type::WidenMax)); 1288 result->set_req(0, control()); 1289 result = _gvn.transform(result); 1290 set_result(result); 1291 replace_in_map(index, result); 1292 clear_upper_avx(); 1293 return true; 1294 } 1295 1296 //------------------------------inline_string_indexOf------------------------ 1297 bool LibraryCallKit::inline_string_indexOf(StrIntrinsicNode::ArgEnc ae) { 1298 if (!Matcher::match_rule_supported(Op_StrIndexOf)) { 1299 return false; 1300 } 1301 Node* src = argument(0); 1302 Node* tgt = argument(1); 1303 1304 // Make the merge point 1305 RegionNode* result_rgn = new RegionNode(4); 1306 Node* result_phi = new PhiNode(result_rgn, TypeInt::INT); 1307 1308 src = must_be_not_null(src, true); 1309 tgt = must_be_not_null(tgt, true); 1310 1311 // Get start addr and length of source string 1312 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 1313 Node* src_count = load_array_length(src); 1314 1315 // Get start addr and length of substring 1316 Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE); 1317 Node* tgt_count = load_array_length(tgt); 1318 1319 if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) { 1320 // Divide src size by 2 if String is UTF16 encoded 1321 src_count = _gvn.transform(new RShiftINode(src_count, intcon(1))); 1322 } 1323 if (ae == StrIntrinsicNode::UU) { 1324 // Divide substring size by 2 if String is UTF16 encoded 1325 tgt_count = _gvn.transform(new RShiftINode(tgt_count, intcon(1))); 1326 } 1327 1328 Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, result_rgn, result_phi, ae); 1329 if (result != NULL) { 1330 result_phi->init_req(3, result); 1331 result_rgn->init_req(3, control()); 1332 } 1333 set_control(_gvn.transform(result_rgn)); 1334 record_for_igvn(result_rgn); 1335 set_result(_gvn.transform(result_phi)); 1336 1337 return true; 1338 } 1339 1340 //-----------------------------inline_string_indexOf----------------------- 1341 bool LibraryCallKit::inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae) { 1342 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1343 return false; 1344 } 1345 if (!Matcher::match_rule_supported(Op_StrIndexOf)) { 1346 return false; 1347 } 1348 assert(callee()->signature()->size() == 5, "String.indexOf() has 5 arguments"); 1349 Node* src = argument(0); // byte[] 1350 Node* src_count = argument(1); // char count 1351 Node* tgt = argument(2); // byte[] 1352 Node* tgt_count = argument(3); // char count 1353 Node* from_index = argument(4); // char index 1354 1355 src = must_be_not_null(src, true); 1356 tgt = must_be_not_null(tgt, true); 1357 1358 // Multiply byte array index by 2 if String is UTF16 encoded 1359 Node* src_offset = (ae == StrIntrinsicNode::LL) ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1))); 1360 src_count = _gvn.transform(new SubINode(src_count, from_index)); 1361 Node* src_start = array_element_address(src, src_offset, T_BYTE); 1362 Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE); 1363 1364 // Range checks 1365 generate_string_range_check(src, src_offset, src_count, ae != StrIntrinsicNode::LL); 1366 generate_string_range_check(tgt, intcon(0), tgt_count, ae == StrIntrinsicNode::UU); 1367 if (stopped()) { 1368 return true; 1369 } 1370 1371 RegionNode* region = new RegionNode(5); 1372 Node* phi = new PhiNode(region, TypeInt::INT); 1373 1374 Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, region, phi, ae); 1375 if (result != NULL) { 1376 // The result is index relative to from_index if substring was found, -1 otherwise. 1377 // Generate code which will fold into cmove. 1378 Node* cmp = _gvn.transform(new CmpINode(result, intcon(0))); 1379 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt)); 1380 1381 Node* if_lt = generate_slow_guard(bol, NULL); 1382 if (if_lt != NULL) { 1383 // result == -1 1384 phi->init_req(3, result); 1385 region->init_req(3, if_lt); 1386 } 1387 if (!stopped()) { 1388 result = _gvn.transform(new AddINode(result, from_index)); 1389 phi->init_req(4, result); 1390 region->init_req(4, control()); 1391 } 1392 } 1393 1394 set_control(_gvn.transform(region)); 1395 record_for_igvn(region); 1396 set_result(_gvn.transform(phi)); 1397 clear_upper_avx(); 1398 1399 return true; 1400 } 1401 1402 // Create StrIndexOfNode with fast path checks 1403 Node* LibraryCallKit::make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count, 1404 RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae) { 1405 // Check for substr count > string count 1406 Node* cmp = _gvn.transform(new CmpINode(tgt_count, src_count)); 1407 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt)); 1408 Node* if_gt = generate_slow_guard(bol, NULL); 1409 if (if_gt != NULL) { 1410 phi->init_req(1, intcon(-1)); 1411 region->init_req(1, if_gt); 1412 } 1413 if (!stopped()) { 1414 // Check for substr count == 0 1415 cmp = _gvn.transform(new CmpINode(tgt_count, intcon(0))); 1416 bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 1417 Node* if_zero = generate_slow_guard(bol, NULL); 1418 if (if_zero != NULL) { 1419 phi->init_req(2, intcon(0)); 1420 region->init_req(2, if_zero); 1421 } 1422 } 1423 if (!stopped()) { 1424 return make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae); 1425 } 1426 return NULL; 1427 } 1428 1429 //-----------------------------inline_string_indexOfChar----------------------- 1430 bool LibraryCallKit::inline_string_indexOfChar() { 1431 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1432 return false; 1433 } 1434 if (!Matcher::match_rule_supported(Op_StrIndexOfChar)) { 1435 return false; 1436 } 1437 assert(callee()->signature()->size() == 4, "String.indexOfChar() has 4 arguments"); 1438 Node* src = argument(0); // byte[] 1439 Node* tgt = argument(1); // tgt is int ch 1440 Node* from_index = argument(2); 1441 Node* max = argument(3); 1442 1443 src = must_be_not_null(src, true); 1444 1445 Node* src_offset = _gvn.transform(new LShiftINode(from_index, intcon(1))); 1446 Node* src_start = array_element_address(src, src_offset, T_BYTE); 1447 Node* src_count = _gvn.transform(new SubINode(max, from_index)); 1448 1449 // Range checks 1450 generate_string_range_check(src, src_offset, src_count, true); 1451 if (stopped()) { 1452 return true; 1453 } 1454 1455 RegionNode* region = new RegionNode(3); 1456 Node* phi = new PhiNode(region, TypeInt::INT); 1457 1458 Node* result = new StrIndexOfCharNode(control(), memory(TypeAryPtr::BYTES), src_start, src_count, tgt, StrIntrinsicNode::none); 1459 C->set_has_split_ifs(true); // Has chance for split-if optimization 1460 _gvn.transform(result); 1461 1462 Node* cmp = _gvn.transform(new CmpINode(result, intcon(0))); 1463 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt)); 1464 1465 Node* if_lt = generate_slow_guard(bol, NULL); 1466 if (if_lt != NULL) { 1467 // result == -1 1468 phi->init_req(2, result); 1469 region->init_req(2, if_lt); 1470 } 1471 if (!stopped()) { 1472 result = _gvn.transform(new AddINode(result, from_index)); 1473 phi->init_req(1, result); 1474 region->init_req(1, control()); 1475 } 1476 set_control(_gvn.transform(region)); 1477 record_for_igvn(region); 1478 set_result(_gvn.transform(phi)); 1479 1480 return true; 1481 } 1482 //---------------------------inline_string_copy--------------------- 1483 // compressIt == true --> generate a compressed copy operation (compress char[]/byte[] to byte[]) 1484 // int StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) 1485 // int StringUTF16.compress(byte[] src, int srcOff, byte[] dst, int dstOff, int len) 1486 // compressIt == false --> generate an inflated copy operation (inflate byte[] to char[]/byte[]) 1487 // void StringLatin1.inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) 1488 // void StringLatin1.inflate(byte[] src, int srcOff, byte[] dst, int dstOff, int len) 1489 bool LibraryCallKit::inline_string_copy(bool compress) { 1490 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1491 return false; 1492 } 1493 int nargs = 5; // 2 oops, 3 ints 1494 assert(callee()->signature()->size() == nargs, "string copy has 5 arguments"); 1495 1496 Node* src = argument(0); 1497 Node* src_offset = argument(1); 1498 Node* dst = argument(2); 1499 Node* dst_offset = argument(3); 1500 Node* length = argument(4); 1501 1502 // Check for allocation before we add nodes that would confuse 1503 // tightly_coupled_allocation() 1504 AllocateArrayNode* alloc = tightly_coupled_allocation(dst, NULL); 1505 1506 // Figure out the size and type of the elements we will be copying. 1507 const Type* src_type = src->Value(&_gvn); 1508 const Type* dst_type = dst->Value(&_gvn); 1509 BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 1510 BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 1511 assert((compress && dst_elem == T_BYTE && (src_elem == T_BYTE || src_elem == T_CHAR)) || 1512 (!compress && src_elem == T_BYTE && (dst_elem == T_BYTE || dst_elem == T_CHAR)), 1513 "Unsupported array types for inline_string_copy"); 1514 1515 src = must_be_not_null(src, true); 1516 dst = must_be_not_null(dst, true); 1517 1518 // Convert char[] offsets to byte[] offsets 1519 bool convert_src = (compress && src_elem == T_BYTE); 1520 bool convert_dst = (!compress && dst_elem == T_BYTE); 1521 if (convert_src) { 1522 src_offset = _gvn.transform(new LShiftINode(src_offset, intcon(1))); 1523 } else if (convert_dst) { 1524 dst_offset = _gvn.transform(new LShiftINode(dst_offset, intcon(1))); 1525 } 1526 1527 // Range checks 1528 generate_string_range_check(src, src_offset, length, convert_src); 1529 generate_string_range_check(dst, dst_offset, length, convert_dst); 1530 if (stopped()) { 1531 return true; 1532 } 1533 1534 Node* src_start = array_element_address(src, src_offset, src_elem); 1535 Node* dst_start = array_element_address(dst, dst_offset, dst_elem); 1536 // 'src_start' points to src array + scaled offset 1537 // 'dst_start' points to dst array + scaled offset 1538 Node* count = NULL; 1539 if (compress) { 1540 count = compress_string(src_start, TypeAryPtr::get_array_body_type(src_elem), dst_start, length); 1541 } else { 1542 inflate_string(src_start, dst_start, TypeAryPtr::get_array_body_type(dst_elem), length); 1543 } 1544 1545 if (alloc != NULL) { 1546 if (alloc->maybe_set_complete(&_gvn)) { 1547 // "You break it, you buy it." 1548 InitializeNode* init = alloc->initialization(); 1549 assert(init->is_complete(), "we just did this"); 1550 init->set_complete_with_arraycopy(); 1551 assert(dst->is_CheckCastPP(), "sanity"); 1552 assert(dst->in(0)->in(0) == init, "dest pinned"); 1553 } 1554 // Do not let stores that initialize this object be reordered with 1555 // a subsequent store that would make this object accessible by 1556 // other threads. 1557 // Record what AllocateNode this StoreStore protects so that 1558 // escape analysis can go from the MemBarStoreStoreNode to the 1559 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1560 // based on the escape status of the AllocateNode. 1561 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1562 } 1563 if (compress) { 1564 set_result(_gvn.transform(count)); 1565 } 1566 clear_upper_avx(); 1567 1568 return true; 1569 } 1570 1571 #ifdef _LP64 1572 #define XTOP ,top() /*additional argument*/ 1573 #else //_LP64 1574 #define XTOP /*no additional argument*/ 1575 #endif //_LP64 1576 1577 //------------------------inline_string_toBytesU-------------------------- 1578 // public static byte[] StringUTF16.toBytes(char[] value, int off, int len) 1579 bool LibraryCallKit::inline_string_toBytesU() { 1580 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1581 return false; 1582 } 1583 // Get the arguments. 1584 Node* value = argument(0); 1585 Node* offset = argument(1); 1586 Node* length = argument(2); 1587 1588 Node* newcopy = NULL; 1589 1590 // Set the original stack and the reexecute bit for the interpreter to reexecute 1591 // the bytecode that invokes StringUTF16.toBytes() if deoptimization happens. 1592 { PreserveReexecuteState preexecs(this); 1593 jvms()->set_should_reexecute(true); 1594 1595 // Check if a null path was taken unconditionally. 1596 value = null_check(value); 1597 1598 RegionNode* bailout = new RegionNode(1); 1599 record_for_igvn(bailout); 1600 1601 // Range checks 1602 generate_negative_guard(offset, bailout); 1603 generate_negative_guard(length, bailout); 1604 generate_limit_guard(offset, length, load_array_length(value), bailout); 1605 // Make sure that resulting byte[] length does not overflow Integer.MAX_VALUE 1606 generate_limit_guard(length, intcon(0), intcon(max_jint/2), bailout); 1607 1608 if (bailout->req() > 1) { 1609 PreserveJVMState pjvms(this); 1610 set_control(_gvn.transform(bailout)); 1611 uncommon_trap(Deoptimization::Reason_intrinsic, 1612 Deoptimization::Action_maybe_recompile); 1613 } 1614 if (stopped()) { 1615 return true; 1616 } 1617 1618 Node* size = _gvn.transform(new LShiftINode(length, intcon(1))); 1619 Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_BYTE))); 1620 newcopy = new_array(klass_node, size, 0); // no arguments to push 1621 AllocateArrayNode* alloc = tightly_coupled_allocation(newcopy, NULL); 1622 1623 // Calculate starting addresses. 1624 Node* src_start = array_element_address(value, offset, T_CHAR); 1625 Node* dst_start = basic_plus_adr(newcopy, arrayOopDesc::base_offset_in_bytes(T_BYTE)); 1626 1627 // Check if src array address is aligned to HeapWordSize (dst is always aligned) 1628 const TypeInt* toffset = gvn().type(offset)->is_int(); 1629 bool aligned = toffset->is_con() && ((toffset->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0); 1630 1631 // Figure out which arraycopy runtime method to call (disjoint, uninitialized). 1632 const char* copyfunc_name = "arraycopy"; 1633 address copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true); 1634 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 1635 OptoRuntime::fast_arraycopy_Type(), 1636 copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM, 1637 src_start, dst_start, ConvI2X(length) XTOP); 1638 // Do not let reads from the cloned object float above the arraycopy. 1639 if (alloc != NULL) { 1640 if (alloc->maybe_set_complete(&_gvn)) { 1641 // "You break it, you buy it." 1642 InitializeNode* init = alloc->initialization(); 1643 assert(init->is_complete(), "we just did this"); 1644 init->set_complete_with_arraycopy(); 1645 assert(newcopy->is_CheckCastPP(), "sanity"); 1646 assert(newcopy->in(0)->in(0) == init, "dest pinned"); 1647 } 1648 // Do not let stores that initialize this object be reordered with 1649 // a subsequent store that would make this object accessible by 1650 // other threads. 1651 // Record what AllocateNode this StoreStore protects so that 1652 // escape analysis can go from the MemBarStoreStoreNode to the 1653 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1654 // based on the escape status of the AllocateNode. 1655 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1656 } else { 1657 insert_mem_bar(Op_MemBarCPUOrder); 1658 } 1659 } // original reexecute is set back here 1660 1661 C->set_has_split_ifs(true); // Has chance for split-if optimization 1662 if (!stopped()) { 1663 set_result(newcopy); 1664 } 1665 clear_upper_avx(); 1666 1667 return true; 1668 } 1669 1670 //------------------------inline_string_getCharsU-------------------------- 1671 // public void StringUTF16.getChars(byte[] src, int srcBegin, int srcEnd, char dst[], int dstBegin) 1672 bool LibraryCallKit::inline_string_getCharsU() { 1673 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1674 return false; 1675 } 1676 1677 // Get the arguments. 1678 Node* src = argument(0); 1679 Node* src_begin = argument(1); 1680 Node* src_end = argument(2); // exclusive offset (i < src_end) 1681 Node* dst = argument(3); 1682 Node* dst_begin = argument(4); 1683 1684 // Check for allocation before we add nodes that would confuse 1685 // tightly_coupled_allocation() 1686 AllocateArrayNode* alloc = tightly_coupled_allocation(dst, NULL); 1687 1688 // Check if a null path was taken unconditionally. 1689 src = null_check(src); 1690 dst = null_check(dst); 1691 if (stopped()) { 1692 return true; 1693 } 1694 1695 // Get length and convert char[] offset to byte[] offset 1696 Node* length = _gvn.transform(new SubINode(src_end, src_begin)); 1697 src_begin = _gvn.transform(new LShiftINode(src_begin, intcon(1))); 1698 1699 // Range checks 1700 generate_string_range_check(src, src_begin, length, true); 1701 generate_string_range_check(dst, dst_begin, length, false); 1702 if (stopped()) { 1703 return true; 1704 } 1705 1706 if (!stopped()) { 1707 // Calculate starting addresses. 1708 Node* src_start = array_element_address(src, src_begin, T_BYTE); 1709 Node* dst_start = array_element_address(dst, dst_begin, T_CHAR); 1710 1711 // Check if array addresses are aligned to HeapWordSize 1712 const TypeInt* tsrc = gvn().type(src_begin)->is_int(); 1713 const TypeInt* tdst = gvn().type(dst_begin)->is_int(); 1714 bool aligned = tsrc->is_con() && ((tsrc->get_con() * type2aelembytes(T_BYTE)) % HeapWordSize == 0) && 1715 tdst->is_con() && ((tdst->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0); 1716 1717 // Figure out which arraycopy runtime method to call (disjoint, uninitialized). 1718 const char* copyfunc_name = "arraycopy"; 1719 address copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true); 1720 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 1721 OptoRuntime::fast_arraycopy_Type(), 1722 copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM, 1723 src_start, dst_start, ConvI2X(length) XTOP); 1724 // Do not let reads from the cloned object float above the arraycopy. 1725 if (alloc != NULL) { 1726 if (alloc->maybe_set_complete(&_gvn)) { 1727 // "You break it, you buy it." 1728 InitializeNode* init = alloc->initialization(); 1729 assert(init->is_complete(), "we just did this"); 1730 init->set_complete_with_arraycopy(); 1731 assert(dst->is_CheckCastPP(), "sanity"); 1732 assert(dst->in(0)->in(0) == init, "dest pinned"); 1733 } 1734 // Do not let stores that initialize this object be reordered with 1735 // a subsequent store that would make this object accessible by 1736 // other threads. 1737 // Record what AllocateNode this StoreStore protects so that 1738 // escape analysis can go from the MemBarStoreStoreNode to the 1739 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1740 // based on the escape status of the AllocateNode. 1741 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1742 } else { 1743 insert_mem_bar(Op_MemBarCPUOrder); 1744 } 1745 } 1746 1747 C->set_has_split_ifs(true); // Has chance for split-if optimization 1748 return true; 1749 } 1750 1751 //----------------------inline_string_char_access---------------------------- 1752 // Store/Load char to/from byte[] array. 1753 // static void StringUTF16.putChar(byte[] val, int index, int c) 1754 // static char StringUTF16.getChar(byte[] val, int index) 1755 bool LibraryCallKit::inline_string_char_access(bool is_store) { 1756 Node* value = argument(0); 1757 Node* index = argument(1); 1758 Node* ch = is_store ? argument(2) : NULL; 1759 1760 // This intrinsic accesses byte[] array as char[] array. Computing the offsets 1761 // correctly requires matched array shapes. 1762 assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE), 1763 "sanity: byte[] and char[] bases agree"); 1764 assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2, 1765 "sanity: byte[] and char[] scales agree"); 1766 1767 // Bail when getChar over constants is requested: constant folding would 1768 // reject folding mismatched char access over byte[]. A normal inlining for getChar 1769 // Java method would constant fold nicely instead. 1770 if (!is_store && value->is_Con() && index->is_Con()) { 1771 return false; 1772 } 1773 1774 value = must_be_not_null(value, true); 1775 1776 Node* adr = array_element_address(value, index, T_CHAR); 1777 if (adr->is_top()) { 1778 return false; 1779 } 1780 if (is_store) { 1781 access_store_at(value, adr, TypeAryPtr::BYTES, ch, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED); 1782 } else { 1783 ch = access_load_at(value, adr, TypeAryPtr::BYTES, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 1784 set_result(ch); 1785 } 1786 return true; 1787 } 1788 1789 //--------------------------round_double_node-------------------------------- 1790 // Round a double node if necessary. 1791 Node* LibraryCallKit::round_double_node(Node* n) { 1792 if (Matcher::strict_fp_requires_explicit_rounding) { 1793 #ifdef IA32 1794 if (UseSSE < 2) { 1795 n = _gvn.transform(new RoundDoubleNode(NULL, n)); 1796 } 1797 #else 1798 Unimplemented(); 1799 #endif // IA32 1800 } 1801 return n; 1802 } 1803 1804 //------------------------------inline_math----------------------------------- 1805 // public static double Math.abs(double) 1806 // public static double Math.sqrt(double) 1807 // public static double Math.log(double) 1808 // public static double Math.log10(double) 1809 bool LibraryCallKit::inline_double_math(vmIntrinsics::ID id) { 1810 Node* arg = round_double_node(argument(0)); 1811 Node* n = NULL; 1812 switch (id) { 1813 case vmIntrinsics::_dabs: n = new AbsDNode( arg); break; 1814 case vmIntrinsics::_dsqrt: n = new SqrtDNode(C, control(), arg); break; 1815 case vmIntrinsics::_ceil: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_ceil); break; 1816 case vmIntrinsics::_floor: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_floor); break; 1817 case vmIntrinsics::_rint: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_rint); break; 1818 default: fatal_unexpected_iid(id); break; 1819 } 1820 set_result(_gvn.transform(n)); 1821 return true; 1822 } 1823 1824 //------------------------------inline_math----------------------------------- 1825 // public static float Math.abs(float) 1826 // public static int Math.abs(int) 1827 // public static long Math.abs(long) 1828 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) { 1829 Node* arg = argument(0); 1830 Node* n = NULL; 1831 switch (id) { 1832 case vmIntrinsics::_fabs: n = new AbsFNode( arg); break; 1833 case vmIntrinsics::_iabs: n = new AbsINode( arg); break; 1834 case vmIntrinsics::_labs: n = new AbsLNode( arg); break; 1835 default: fatal_unexpected_iid(id); break; 1836 } 1837 set_result(_gvn.transform(n)); 1838 return true; 1839 } 1840 1841 //------------------------------runtime_math----------------------------- 1842 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) { 1843 assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(), 1844 "must be (DD)D or (D)D type"); 1845 1846 // Inputs 1847 Node* a = round_double_node(argument(0)); 1848 Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL; 1849 1850 const TypePtr* no_memory_effects = NULL; 1851 Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName, 1852 no_memory_effects, 1853 a, top(), b, b ? top() : NULL); 1854 Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0)); 1855 #ifdef ASSERT 1856 Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1)); 1857 assert(value_top == top(), "second value must be top"); 1858 #endif 1859 1860 set_result(value); 1861 return true; 1862 } 1863 1864 //------------------------------inline_math_native----------------------------- 1865 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) { 1866 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f) 1867 switch (id) { 1868 // These intrinsics are not properly supported on all hardware 1869 case vmIntrinsics::_dsin: 1870 return StubRoutines::dsin() != NULL ? 1871 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dsin(), "dsin") : 1872 runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin), "SIN"); 1873 case vmIntrinsics::_dcos: 1874 return StubRoutines::dcos() != NULL ? 1875 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dcos(), "dcos") : 1876 runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos), "COS"); 1877 case vmIntrinsics::_dtan: 1878 return StubRoutines::dtan() != NULL ? 1879 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtan(), "dtan") : 1880 runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan), "TAN"); 1881 case vmIntrinsics::_dlog: 1882 return StubRoutines::dlog() != NULL ? 1883 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog(), "dlog") : 1884 runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog), "LOG"); 1885 case vmIntrinsics::_dlog10: 1886 return StubRoutines::dlog10() != NULL ? 1887 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog10(), "dlog10") : 1888 runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10"); 1889 1890 // These intrinsics are supported on all hardware 1891 case vmIntrinsics::_ceil: 1892 case vmIntrinsics::_floor: 1893 case vmIntrinsics::_rint: return Matcher::match_rule_supported(Op_RoundDoubleMode) ? inline_double_math(id) : false; 1894 case vmIntrinsics::_dsqrt: return Matcher::match_rule_supported(Op_SqrtD) ? inline_double_math(id) : false; 1895 case vmIntrinsics::_dabs: return Matcher::has_match_rule(Op_AbsD) ? inline_double_math(id) : false; 1896 case vmIntrinsics::_fabs: return Matcher::match_rule_supported(Op_AbsF) ? inline_math(id) : false; 1897 case vmIntrinsics::_iabs: return Matcher::match_rule_supported(Op_AbsI) ? inline_math(id) : false; 1898 case vmIntrinsics::_labs: return Matcher::match_rule_supported(Op_AbsL) ? inline_math(id) : false; 1899 1900 case vmIntrinsics::_dexp: 1901 return StubRoutines::dexp() != NULL ? 1902 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dexp(), "dexp") : 1903 runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dexp), "EXP"); 1904 case vmIntrinsics::_dpow: { 1905 Node* exp = round_double_node(argument(2)); 1906 const TypeD* d = _gvn.type(exp)->isa_double_constant(); 1907 if (d != NULL && d->getd() == 2.0) { 1908 // Special case: pow(x, 2.0) => x * x 1909 Node* base = round_double_node(argument(0)); 1910 set_result(_gvn.transform(new MulDNode(base, base))); 1911 return true; 1912 } 1913 return StubRoutines::dpow() != NULL ? 1914 runtime_math(OptoRuntime::Math_DD_D_Type(), StubRoutines::dpow(), "dpow") : 1915 runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow), "POW"); 1916 } 1917 #undef FN_PTR 1918 1919 // These intrinsics are not yet correctly implemented 1920 case vmIntrinsics::_datan2: 1921 return false; 1922 1923 default: 1924 fatal_unexpected_iid(id); 1925 return false; 1926 } 1927 } 1928 1929 static bool is_simple_name(Node* n) { 1930 return (n->req() == 1 // constant 1931 || (n->is_Type() && n->as_Type()->type()->singleton()) 1932 || n->is_Proj() // parameter or return value 1933 || n->is_Phi() // local of some sort 1934 ); 1935 } 1936 1937 //----------------------------inline_notify-----------------------------------* 1938 bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) { 1939 const TypeFunc* ftype = OptoRuntime::monitor_notify_Type(); 1940 address func; 1941 if (id == vmIntrinsics::_notify) { 1942 func = OptoRuntime::monitor_notify_Java(); 1943 } else { 1944 func = OptoRuntime::monitor_notifyAll_Java(); 1945 } 1946 Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, NULL, TypeRawPtr::BOTTOM, argument(0)); 1947 make_slow_call_ex(call, env()->Throwable_klass(), false); 1948 return true; 1949 } 1950 1951 1952 //----------------------------inline_min_max----------------------------------- 1953 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) { 1954 set_result(generate_min_max(id, argument(0), argument(1))); 1955 return true; 1956 } 1957 1958 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) { 1959 Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) ); 1960 IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN); 1961 Node* fast_path = _gvn.transform( new IfFalseNode(check)); 1962 Node* slow_path = _gvn.transform( new IfTrueNode(check) ); 1963 1964 { 1965 PreserveJVMState pjvms(this); 1966 PreserveReexecuteState preexecs(this); 1967 jvms()->set_should_reexecute(true); 1968 1969 set_control(slow_path); 1970 set_i_o(i_o()); 1971 1972 uncommon_trap(Deoptimization::Reason_intrinsic, 1973 Deoptimization::Action_none); 1974 } 1975 1976 set_control(fast_path); 1977 set_result(math); 1978 } 1979 1980 template <typename OverflowOp> 1981 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) { 1982 typedef typename OverflowOp::MathOp MathOp; 1983 1984 MathOp* mathOp = new MathOp(arg1, arg2); 1985 Node* operation = _gvn.transform( mathOp ); 1986 Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) ); 1987 inline_math_mathExact(operation, ofcheck); 1988 return true; 1989 } 1990 1991 bool LibraryCallKit::inline_math_addExactI(bool is_increment) { 1992 return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1)); 1993 } 1994 1995 bool LibraryCallKit::inline_math_addExactL(bool is_increment) { 1996 return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2)); 1997 } 1998 1999 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) { 2000 return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1)); 2001 } 2002 2003 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) { 2004 return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2)); 2005 } 2006 2007 bool LibraryCallKit::inline_math_negateExactI() { 2008 return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0)); 2009 } 2010 2011 bool LibraryCallKit::inline_math_negateExactL() { 2012 return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0)); 2013 } 2014 2015 bool LibraryCallKit::inline_math_multiplyExactI() { 2016 return inline_math_overflow<OverflowMulINode>(argument(0), argument(1)); 2017 } 2018 2019 bool LibraryCallKit::inline_math_multiplyExactL() { 2020 return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2)); 2021 } 2022 2023 bool LibraryCallKit::inline_math_multiplyHigh() { 2024 set_result(_gvn.transform(new MulHiLNode(argument(0), argument(2)))); 2025 return true; 2026 } 2027 2028 Node* 2029 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) { 2030 // These are the candidate return value: 2031 Node* xvalue = x0; 2032 Node* yvalue = y0; 2033 2034 if (xvalue == yvalue) { 2035 return xvalue; 2036 } 2037 2038 bool want_max = (id == vmIntrinsics::_max); 2039 2040 const TypeInt* txvalue = _gvn.type(xvalue)->isa_int(); 2041 const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int(); 2042 if (txvalue == NULL || tyvalue == NULL) return top(); 2043 // This is not really necessary, but it is consistent with a 2044 // hypothetical MaxINode::Value method: 2045 int widen = MAX2(txvalue->_widen, tyvalue->_widen); 2046 2047 // %%% This folding logic should (ideally) be in a different place. 2048 // Some should be inside IfNode, and there to be a more reliable 2049 // transformation of ?: style patterns into cmoves. We also want 2050 // more powerful optimizations around cmove and min/max. 2051 2052 // Try to find a dominating comparison of these guys. 2053 // It can simplify the index computation for Arrays.copyOf 2054 // and similar uses of System.arraycopy. 2055 // First, compute the normalized version of CmpI(x, y). 2056 int cmp_op = Op_CmpI; 2057 Node* xkey = xvalue; 2058 Node* ykey = yvalue; 2059 Node* ideal_cmpxy = _gvn.transform(new CmpINode(xkey, ykey)); 2060 if (ideal_cmpxy->is_Cmp()) { 2061 // E.g., if we have CmpI(length - offset, count), 2062 // it might idealize to CmpI(length, count + offset) 2063 cmp_op = ideal_cmpxy->Opcode(); 2064 xkey = ideal_cmpxy->in(1); 2065 ykey = ideal_cmpxy->in(2); 2066 } 2067 2068 // Start by locating any relevant comparisons. 2069 Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey; 2070 Node* cmpxy = NULL; 2071 Node* cmpyx = NULL; 2072 for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) { 2073 Node* cmp = start_from->fast_out(k); 2074 if (cmp->outcnt() > 0 && // must have prior uses 2075 cmp->in(0) == NULL && // must be context-independent 2076 cmp->Opcode() == cmp_op) { // right kind of compare 2077 if (cmp->in(1) == xkey && cmp->in(2) == ykey) cmpxy = cmp; 2078 if (cmp->in(1) == ykey && cmp->in(2) == xkey) cmpyx = cmp; 2079 } 2080 } 2081 2082 const int NCMPS = 2; 2083 Node* cmps[NCMPS] = { cmpxy, cmpyx }; 2084 int cmpn; 2085 for (cmpn = 0; cmpn < NCMPS; cmpn++) { 2086 if (cmps[cmpn] != NULL) break; // find a result 2087 } 2088 if (cmpn < NCMPS) { 2089 // Look for a dominating test that tells us the min and max. 2090 int depth = 0; // Limit search depth for speed 2091 Node* dom = control(); 2092 for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) { 2093 if (++depth >= 100) break; 2094 Node* ifproj = dom; 2095 if (!ifproj->is_Proj()) continue; 2096 Node* iff = ifproj->in(0); 2097 if (!iff->is_If()) continue; 2098 Node* bol = iff->in(1); 2099 if (!bol->is_Bool()) continue; 2100 Node* cmp = bol->in(1); 2101 if (cmp == NULL) continue; 2102 for (cmpn = 0; cmpn < NCMPS; cmpn++) 2103 if (cmps[cmpn] == cmp) break; 2104 if (cmpn == NCMPS) continue; 2105 BoolTest::mask btest = bol->as_Bool()->_test._test; 2106 if (ifproj->is_IfFalse()) btest = BoolTest(btest).negate(); 2107 if (cmp->in(1) == ykey) btest = BoolTest(btest).commute(); 2108 // At this point, we know that 'x btest y' is true. 2109 switch (btest) { 2110 case BoolTest::eq: 2111 // They are proven equal, so we can collapse the min/max. 2112 // Either value is the answer. Choose the simpler. 2113 if (is_simple_name(yvalue) && !is_simple_name(xvalue)) 2114 return yvalue; 2115 return xvalue; 2116 case BoolTest::lt: // x < y 2117 case BoolTest::le: // x <= y 2118 return (want_max ? yvalue : xvalue); 2119 case BoolTest::gt: // x > y 2120 case BoolTest::ge: // x >= y 2121 return (want_max ? xvalue : yvalue); 2122 default: 2123 break; 2124 } 2125 } 2126 } 2127 2128 // We failed to find a dominating test. 2129 // Let's pick a test that might GVN with prior tests. 2130 Node* best_bol = NULL; 2131 BoolTest::mask best_btest = BoolTest::illegal; 2132 for (cmpn = 0; cmpn < NCMPS; cmpn++) { 2133 Node* cmp = cmps[cmpn]; 2134 if (cmp == NULL) continue; 2135 for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) { 2136 Node* bol = cmp->fast_out(j); 2137 if (!bol->is_Bool()) continue; 2138 BoolTest::mask btest = bol->as_Bool()->_test._test; 2139 if (btest == BoolTest::eq || btest == BoolTest::ne) continue; 2140 if (cmp->in(1) == ykey) btest = BoolTest(btest).commute(); 2141 if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) { 2142 best_bol = bol->as_Bool(); 2143 best_btest = btest; 2144 } 2145 } 2146 } 2147 2148 Node* answer_if_true = NULL; 2149 Node* answer_if_false = NULL; 2150 switch (best_btest) { 2151 default: 2152 if (cmpxy == NULL) 2153 cmpxy = ideal_cmpxy; 2154 best_bol = _gvn.transform(new BoolNode(cmpxy, BoolTest::lt)); 2155 // and fall through: 2156 case BoolTest::lt: // x < y 2157 case BoolTest::le: // x <= y 2158 answer_if_true = (want_max ? yvalue : xvalue); 2159 answer_if_false = (want_max ? xvalue : yvalue); 2160 break; 2161 case BoolTest::gt: // x > y 2162 case BoolTest::ge: // x >= y 2163 answer_if_true = (want_max ? xvalue : yvalue); 2164 answer_if_false = (want_max ? yvalue : xvalue); 2165 break; 2166 } 2167 2168 jint hi, lo; 2169 if (want_max) { 2170 // We can sharpen the minimum. 2171 hi = MAX2(txvalue->_hi, tyvalue->_hi); 2172 lo = MAX2(txvalue->_lo, tyvalue->_lo); 2173 } else { 2174 // We can sharpen the maximum. 2175 hi = MIN2(txvalue->_hi, tyvalue->_hi); 2176 lo = MIN2(txvalue->_lo, tyvalue->_lo); 2177 } 2178 2179 // Use a flow-free graph structure, to avoid creating excess control edges 2180 // which could hinder other optimizations. 2181 // Since Math.min/max is often used with arraycopy, we want 2182 // tightly_coupled_allocation to be able to see beyond min/max expressions. 2183 Node* cmov = CMoveNode::make(NULL, best_bol, 2184 answer_if_false, answer_if_true, 2185 TypeInt::make(lo, hi, widen)); 2186 2187 return _gvn.transform(cmov); 2188 2189 /* 2190 // This is not as desirable as it may seem, since Min and Max 2191 // nodes do not have a full set of optimizations. 2192 // And they would interfere, anyway, with 'if' optimizations 2193 // and with CMoveI canonical forms. 2194 switch (id) { 2195 case vmIntrinsics::_min: 2196 result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break; 2197 case vmIntrinsics::_max: 2198 result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break; 2199 default: 2200 ShouldNotReachHere(); 2201 } 2202 */ 2203 } 2204 2205 inline int 2206 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset, BasicType type) { 2207 const TypePtr* base_type = TypePtr::NULL_PTR; 2208 if (base != NULL) base_type = _gvn.type(base)->isa_ptr(); 2209 if (base_type == NULL) { 2210 // Unknown type. 2211 return Type::AnyPtr; 2212 } else if (base_type == TypePtr::NULL_PTR) { 2213 // Since this is a NULL+long form, we have to switch to a rawptr. 2214 base = _gvn.transform(new CastX2PNode(offset)); 2215 offset = MakeConX(0); 2216 return Type::RawPtr; 2217 } else if (base_type->base() == Type::RawPtr) { 2218 return Type::RawPtr; 2219 } else if (base_type->isa_oopptr()) { 2220 // Base is never null => always a heap address. 2221 if (!TypePtr::NULL_PTR->higher_equal(base_type)) { 2222 return Type::OopPtr; 2223 } 2224 // Offset is small => always a heap address. 2225 const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t(); 2226 if (offset_type != NULL && 2227 base_type->offset() == 0 && // (should always be?) 2228 offset_type->_lo >= 0 && 2229 !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) { 2230 return Type::OopPtr; 2231 } else if (type == T_OBJECT) { 2232 // off heap access to an oop doesn't make any sense. Has to be on 2233 // heap. 2234 return Type::OopPtr; 2235 } 2236 // Otherwise, it might either be oop+off or NULL+addr. 2237 return Type::AnyPtr; 2238 } else { 2239 // No information: 2240 return Type::AnyPtr; 2241 } 2242 } 2243 2244 inline Node* LibraryCallKit::make_unsafe_address(Node*& base, Node* offset, DecoratorSet decorators, BasicType type, bool can_cast) { 2245 Node* uncasted_base = base; 2246 int kind = classify_unsafe_addr(uncasted_base, offset, type); 2247 if (kind == Type::RawPtr) { 2248 return basic_plus_adr(top(), uncasted_base, offset); 2249 } else if (kind == Type::AnyPtr) { 2250 assert(base == uncasted_base, "unexpected base change"); 2251 if (can_cast) { 2252 if (!_gvn.type(base)->speculative_maybe_null() && 2253 !too_many_traps(Deoptimization::Reason_speculate_null_check)) { 2254 // According to profiling, this access is always on 2255 // heap. Casting the base to not null and thus avoiding membars 2256 // around the access should allow better optimizations 2257 Node* null_ctl = top(); 2258 base = null_check_oop(base, &null_ctl, true, true, true); 2259 assert(null_ctl->is_top(), "no null control here"); 2260 return basic_plus_adr(base, offset); 2261 } else if (_gvn.type(base)->speculative_always_null() && 2262 !too_many_traps(Deoptimization::Reason_speculate_null_assert)) { 2263 // According to profiling, this access is always off 2264 // heap. 2265 base = null_assert(base); 2266 Node* raw_base = _gvn.transform(new CastX2PNode(offset)); 2267 offset = MakeConX(0); 2268 return basic_plus_adr(top(), raw_base, offset); 2269 } 2270 } 2271 // We don't know if it's an on heap or off heap access. Fall back 2272 // to raw memory access. 2273 Node* raw = _gvn.transform(new CheckCastPPNode(control(), base, TypeRawPtr::BOTTOM)); 2274 return basic_plus_adr(top(), raw, offset); 2275 } else { 2276 assert(base == uncasted_base, "unexpected base change"); 2277 // We know it's an on heap access so base can't be null 2278 if (TypePtr::NULL_PTR->higher_equal(_gvn.type(base))) { 2279 base = must_be_not_null(base, true); 2280 } 2281 return basic_plus_adr(base, offset); 2282 } 2283 } 2284 2285 //--------------------------inline_number_methods----------------------------- 2286 // inline int Integer.numberOfLeadingZeros(int) 2287 // inline int Long.numberOfLeadingZeros(long) 2288 // 2289 // inline int Integer.numberOfTrailingZeros(int) 2290 // inline int Long.numberOfTrailingZeros(long) 2291 // 2292 // inline int Integer.bitCount(int) 2293 // inline int Long.bitCount(long) 2294 // 2295 // inline char Character.reverseBytes(char) 2296 // inline short Short.reverseBytes(short) 2297 // inline int Integer.reverseBytes(int) 2298 // inline long Long.reverseBytes(long) 2299 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) { 2300 Node* arg = argument(0); 2301 Node* n = NULL; 2302 switch (id) { 2303 case vmIntrinsics::_numberOfLeadingZeros_i: n = new CountLeadingZerosINode( arg); break; 2304 case vmIntrinsics::_numberOfLeadingZeros_l: n = new CountLeadingZerosLNode( arg); break; 2305 case vmIntrinsics::_numberOfTrailingZeros_i: n = new CountTrailingZerosINode(arg); break; 2306 case vmIntrinsics::_numberOfTrailingZeros_l: n = new CountTrailingZerosLNode(arg); break; 2307 case vmIntrinsics::_bitCount_i: n = new PopCountINode( arg); break; 2308 case vmIntrinsics::_bitCount_l: n = new PopCountLNode( arg); break; 2309 case vmIntrinsics::_reverseBytes_c: n = new ReverseBytesUSNode(0, arg); break; 2310 case vmIntrinsics::_reverseBytes_s: n = new ReverseBytesSNode( 0, arg); break; 2311 case vmIntrinsics::_reverseBytes_i: n = new ReverseBytesINode( 0, arg); break; 2312 case vmIntrinsics::_reverseBytes_l: n = new ReverseBytesLNode( 0, arg); break; 2313 default: fatal_unexpected_iid(id); break; 2314 } 2315 set_result(_gvn.transform(n)); 2316 return true; 2317 } 2318 2319 //----------------------------inline_unsafe_access---------------------------- 2320 2321 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) { 2322 // Attempt to infer a sharper value type from the offset and base type. 2323 ciKlass* sharpened_klass = NULL; 2324 2325 // See if it is an instance field, with an object type. 2326 if (alias_type->field() != NULL) { 2327 if (alias_type->field()->type()->is_klass()) { 2328 sharpened_klass = alias_type->field()->type()->as_klass(); 2329 } 2330 } 2331 2332 // See if it is a narrow oop array. 2333 if (adr_type->isa_aryptr()) { 2334 if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) { 2335 const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr(); 2336 if (elem_type != NULL) { 2337 sharpened_klass = elem_type->klass(); 2338 } 2339 } 2340 } 2341 2342 // The sharpened class might be unloaded if there is no class loader 2343 // contraint in place. 2344 if (sharpened_klass != NULL && sharpened_klass->is_loaded()) { 2345 const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass); 2346 2347 #ifndef PRODUCT 2348 if (C->print_intrinsics() || C->print_inlining()) { 2349 tty->print(" from base type: "); adr_type->dump(); tty->cr(); 2350 tty->print(" sharpened value: "); tjp->dump(); tty->cr(); 2351 } 2352 #endif 2353 // Sharpen the value type. 2354 return tjp; 2355 } 2356 return NULL; 2357 } 2358 2359 DecoratorSet LibraryCallKit::mo_decorator_for_access_kind(AccessKind kind) { 2360 switch (kind) { 2361 case Relaxed: 2362 return MO_UNORDERED; 2363 case Opaque: 2364 return MO_RELAXED; 2365 case Acquire: 2366 return MO_ACQUIRE; 2367 case Release: 2368 return MO_RELEASE; 2369 case Volatile: 2370 return MO_SEQ_CST; 2371 default: 2372 ShouldNotReachHere(); 2373 return 0; 2374 } 2375 } 2376 2377 bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned) { 2378 if (callee()->is_static()) return false; // caller must have the capability! 2379 DecoratorSet decorators = C2_UNSAFE_ACCESS; 2380 guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads"); 2381 guarantee( is_store || kind != Release, "Release accesses can be produced only for stores"); 2382 assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type"); 2383 2384 if (is_reference_type(type)) { 2385 decorators |= ON_UNKNOWN_OOP_REF; 2386 } 2387 2388 if (unaligned) { 2389 decorators |= C2_UNALIGNED; 2390 } 2391 2392 #ifndef PRODUCT 2393 { 2394 ResourceMark rm; 2395 // Check the signatures. 2396 ciSignature* sig = callee()->signature(); 2397 #ifdef ASSERT 2398 if (!is_store) { 2399 // Object getReference(Object base, int/long offset), etc. 2400 BasicType rtype = sig->return_type()->basic_type(); 2401 assert(rtype == type, "getter must return the expected value"); 2402 assert(sig->count() == 2, "oop getter has 2 arguments"); 2403 assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object"); 2404 assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct"); 2405 } else { 2406 // void putReference(Object base, int/long offset, Object x), etc. 2407 assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value"); 2408 assert(sig->count() == 3, "oop putter has 3 arguments"); 2409 assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object"); 2410 assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct"); 2411 BasicType vtype = sig->type_at(sig->count()-1)->basic_type(); 2412 assert(vtype == type, "putter must accept the expected value"); 2413 } 2414 #endif // ASSERT 2415 } 2416 #endif //PRODUCT 2417 2418 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 2419 2420 Node* receiver = argument(0); // type: oop 2421 2422 // Build address expression. 2423 Node* adr; 2424 Node* heap_base_oop = top(); 2425 Node* offset = top(); 2426 Node* val; 2427 2428 // The base is either a Java object or a value produced by Unsafe.staticFieldBase 2429 Node* base = argument(1); // type: oop 2430 // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset 2431 offset = argument(2); // type: long 2432 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset 2433 // to be plain byte offsets, which are also the same as those accepted 2434 // by oopDesc::field_addr. 2435 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 2436 "fieldOffset must be byte-scaled"); 2437 // 32-bit machines ignore the high half! 2438 offset = ConvL2X(offset); 2439 adr = make_unsafe_address(base, offset, is_store ? ACCESS_WRITE : ACCESS_READ, type, kind == Relaxed); 2440 2441 if (_gvn.type(base)->isa_ptr() == TypePtr::NULL_PTR) { 2442 if (type != T_OBJECT) { 2443 decorators |= IN_NATIVE; // off-heap primitive access 2444 } else { 2445 return false; // off-heap oop accesses are not supported 2446 } 2447 } else { 2448 heap_base_oop = base; // on-heap or mixed access 2449 } 2450 2451 // Can base be NULL? Otherwise, always on-heap access. 2452 bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(base)); 2453 2454 if (!can_access_non_heap) { 2455 decorators |= IN_HEAP; 2456 } 2457 2458 val = is_store ? argument(4) : NULL; 2459 2460 const TypePtr* adr_type = _gvn.type(adr)->isa_ptr(); 2461 if (adr_type == TypePtr::NULL_PTR) { 2462 return false; // off-heap access with zero address 2463 } 2464 2465 // Try to categorize the address. 2466 Compile::AliasType* alias_type = C->alias_type(adr_type); 2467 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here"); 2468 2469 if (alias_type->adr_type() == TypeInstPtr::KLASS || 2470 alias_type->adr_type() == TypeAryPtr::RANGE) { 2471 return false; // not supported 2472 } 2473 2474 bool mismatched = false; 2475 BasicType bt = alias_type->basic_type(); 2476 if (bt != T_ILLEGAL) { 2477 assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access"); 2478 if (bt == T_BYTE && adr_type->isa_aryptr()) { 2479 // Alias type doesn't differentiate between byte[] and boolean[]). 2480 // Use address type to get the element type. 2481 bt = adr_type->is_aryptr()->elem()->array_element_basic_type(); 2482 } 2483 if (bt == T_ARRAY || bt == T_NARROWOOP) { 2484 // accessing an array field with getReference is not a mismatch 2485 bt = T_OBJECT; 2486 } 2487 if ((bt == T_OBJECT) != (type == T_OBJECT)) { 2488 // Don't intrinsify mismatched object accesses 2489 return false; 2490 } 2491 mismatched = (bt != type); 2492 } else if (alias_type->adr_type()->isa_oopptr()) { 2493 mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched 2494 } 2495 2496 assert(!mismatched || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched"); 2497 2498 if (mismatched) { 2499 decorators |= C2_MISMATCHED; 2500 } 2501 2502 // First guess at the value type. 2503 const Type *value_type = Type::get_const_basic_type(type); 2504 2505 // Figure out the memory ordering. 2506 decorators |= mo_decorator_for_access_kind(kind); 2507 2508 if (!is_store && type == T_OBJECT) { 2509 const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type); 2510 if (tjp != NULL) { 2511 value_type = tjp; 2512 } 2513 } 2514 2515 receiver = null_check(receiver); 2516 if (stopped()) { 2517 return true; 2518 } 2519 // Heap pointers get a null-check from the interpreter, 2520 // as a courtesy. However, this is not guaranteed by Unsafe, 2521 // and it is not possible to fully distinguish unintended nulls 2522 // from intended ones in this API. 2523 2524 if (!is_store) { 2525 Node* p = NULL; 2526 // Try to constant fold a load from a constant field 2527 ciField* field = alias_type->field(); 2528 if (heap_base_oop != top() && field != NULL && field->is_constant() && !mismatched) { 2529 // final or stable field 2530 p = make_constant_from_field(field, heap_base_oop); 2531 } 2532 2533 if (p == NULL) { // Could not constant fold the load 2534 p = access_load_at(heap_base_oop, adr, adr_type, value_type, type, decorators); 2535 // Normalize the value returned by getBoolean in the following cases 2536 if (type == T_BOOLEAN && 2537 (mismatched || 2538 heap_base_oop == top() || // - heap_base_oop is NULL or 2539 (can_access_non_heap && field == NULL)) // - heap_base_oop is potentially NULL 2540 // and the unsafe access is made to large offset 2541 // (i.e., larger than the maximum offset necessary for any 2542 // field access) 2543 ) { 2544 IdealKit ideal = IdealKit(this); 2545 #define __ ideal. 2546 IdealVariable normalized_result(ideal); 2547 __ declarations_done(); 2548 __ set(normalized_result, p); 2549 __ if_then(p, BoolTest::ne, ideal.ConI(0)); 2550 __ set(normalized_result, ideal.ConI(1)); 2551 ideal.end_if(); 2552 final_sync(ideal); 2553 p = __ value(normalized_result); 2554 #undef __ 2555 } 2556 } 2557 if (type == T_ADDRESS) { 2558 p = gvn().transform(new CastP2XNode(NULL, p)); 2559 p = ConvX2UL(p); 2560 } 2561 // The load node has the control of the preceding MemBarCPUOrder. All 2562 // following nodes will have the control of the MemBarCPUOrder inserted at 2563 // the end of this method. So, pushing the load onto the stack at a later 2564 // point is fine. 2565 set_result(p); 2566 } else { 2567 if (bt == T_ADDRESS) { 2568 // Repackage the long as a pointer. 2569 val = ConvL2X(val); 2570 val = gvn().transform(new CastX2PNode(val)); 2571 } 2572 access_store_at(heap_base_oop, adr, adr_type, val, value_type, type, decorators); 2573 } 2574 2575 return true; 2576 } 2577 2578 //----------------------------inline_unsafe_load_store---------------------------- 2579 // This method serves a couple of different customers (depending on LoadStoreKind): 2580 // 2581 // LS_cmp_swap: 2582 // 2583 // boolean compareAndSetReference(Object o, long offset, Object expected, Object x); 2584 // boolean compareAndSetInt( Object o, long offset, int expected, int x); 2585 // boolean compareAndSetLong( Object o, long offset, long expected, long x); 2586 // 2587 // LS_cmp_swap_weak: 2588 // 2589 // boolean weakCompareAndSetReference( Object o, long offset, Object expected, Object x); 2590 // boolean weakCompareAndSetReferencePlain( Object o, long offset, Object expected, Object x); 2591 // boolean weakCompareAndSetReferenceAcquire(Object o, long offset, Object expected, Object x); 2592 // boolean weakCompareAndSetReferenceRelease(Object o, long offset, Object expected, Object x); 2593 // 2594 // boolean weakCompareAndSetInt( Object o, long offset, int expected, int x); 2595 // boolean weakCompareAndSetIntPlain( Object o, long offset, int expected, int x); 2596 // boolean weakCompareAndSetIntAcquire( Object o, long offset, int expected, int x); 2597 // boolean weakCompareAndSetIntRelease( Object o, long offset, int expected, int x); 2598 // 2599 // boolean weakCompareAndSetLong( Object o, long offset, long expected, long x); 2600 // boolean weakCompareAndSetLongPlain( Object o, long offset, long expected, long x); 2601 // boolean weakCompareAndSetLongAcquire( Object o, long offset, long expected, long x); 2602 // boolean weakCompareAndSetLongRelease( Object o, long offset, long expected, long x); 2603 // 2604 // LS_cmp_exchange: 2605 // 2606 // Object compareAndExchangeReferenceVolatile(Object o, long offset, Object expected, Object x); 2607 // Object compareAndExchangeReferenceAcquire( Object o, long offset, Object expected, Object x); 2608 // Object compareAndExchangeReferenceRelease( Object o, long offset, Object expected, Object x); 2609 // 2610 // Object compareAndExchangeIntVolatile( Object o, long offset, Object expected, Object x); 2611 // Object compareAndExchangeIntAcquire( Object o, long offset, Object expected, Object x); 2612 // Object compareAndExchangeIntRelease( Object o, long offset, Object expected, Object x); 2613 // 2614 // Object compareAndExchangeLongVolatile( Object o, long offset, Object expected, Object x); 2615 // Object compareAndExchangeLongAcquire( Object o, long offset, Object expected, Object x); 2616 // Object compareAndExchangeLongRelease( Object o, long offset, Object expected, Object x); 2617 // 2618 // LS_get_add: 2619 // 2620 // int getAndAddInt( Object o, long offset, int delta) 2621 // long getAndAddLong(Object o, long offset, long delta) 2622 // 2623 // LS_get_set: 2624 // 2625 // int getAndSet(Object o, long offset, int newValue) 2626 // long getAndSet(Object o, long offset, long newValue) 2627 // Object getAndSet(Object o, long offset, Object newValue) 2628 // 2629 bool LibraryCallKit::inline_unsafe_load_store(const BasicType type, const LoadStoreKind kind, const AccessKind access_kind) { 2630 // This basic scheme here is the same as inline_unsafe_access, but 2631 // differs in enough details that combining them would make the code 2632 // overly confusing. (This is a true fact! I originally combined 2633 // them, but even I was confused by it!) As much code/comments as 2634 // possible are retained from inline_unsafe_access though to make 2635 // the correspondences clearer. - dl 2636 2637 if (callee()->is_static()) return false; // caller must have the capability! 2638 2639 DecoratorSet decorators = C2_UNSAFE_ACCESS; 2640 decorators |= mo_decorator_for_access_kind(access_kind); 2641 2642 #ifndef PRODUCT 2643 BasicType rtype; 2644 { 2645 ResourceMark rm; 2646 // Check the signatures. 2647 ciSignature* sig = callee()->signature(); 2648 rtype = sig->return_type()->basic_type(); 2649 switch(kind) { 2650 case LS_get_add: 2651 case LS_get_set: { 2652 // Check the signatures. 2653 #ifdef ASSERT 2654 assert(rtype == type, "get and set must return the expected type"); 2655 assert(sig->count() == 3, "get and set has 3 arguments"); 2656 assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object"); 2657 assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long"); 2658 assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta"); 2659 assert(access_kind == Volatile, "mo is not passed to intrinsic nodes in current implementation"); 2660 #endif // ASSERT 2661 break; 2662 } 2663 case LS_cmp_swap: 2664 case LS_cmp_swap_weak: { 2665 // Check the signatures. 2666 #ifdef ASSERT 2667 assert(rtype == T_BOOLEAN, "CAS must return boolean"); 2668 assert(sig->count() == 4, "CAS has 4 arguments"); 2669 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object"); 2670 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long"); 2671 #endif // ASSERT 2672 break; 2673 } 2674 case LS_cmp_exchange: { 2675 // Check the signatures. 2676 #ifdef ASSERT 2677 assert(rtype == type, "CAS must return the expected type"); 2678 assert(sig->count() == 4, "CAS has 4 arguments"); 2679 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object"); 2680 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long"); 2681 #endif // ASSERT 2682 break; 2683 } 2684 default: 2685 ShouldNotReachHere(); 2686 } 2687 } 2688 #endif //PRODUCT 2689 2690 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 2691 2692 // Get arguments: 2693 Node* receiver = NULL; 2694 Node* base = NULL; 2695 Node* offset = NULL; 2696 Node* oldval = NULL; 2697 Node* newval = NULL; 2698 switch(kind) { 2699 case LS_cmp_swap: 2700 case LS_cmp_swap_weak: 2701 case LS_cmp_exchange: { 2702 const bool two_slot_type = type2size[type] == 2; 2703 receiver = argument(0); // type: oop 2704 base = argument(1); // type: oop 2705 offset = argument(2); // type: long 2706 oldval = argument(4); // type: oop, int, or long 2707 newval = argument(two_slot_type ? 6 : 5); // type: oop, int, or long 2708 break; 2709 } 2710 case LS_get_add: 2711 case LS_get_set: { 2712 receiver = argument(0); // type: oop 2713 base = argument(1); // type: oop 2714 offset = argument(2); // type: long 2715 oldval = NULL; 2716 newval = argument(4); // type: oop, int, or long 2717 break; 2718 } 2719 default: 2720 ShouldNotReachHere(); 2721 } 2722 2723 // Build field offset expression. 2724 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset 2725 // to be plain byte offsets, which are also the same as those accepted 2726 // by oopDesc::field_addr. 2727 assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled"); 2728 // 32-bit machines ignore the high half of long offsets 2729 offset = ConvL2X(offset); 2730 Node* adr = make_unsafe_address(base, offset, ACCESS_WRITE | ACCESS_READ, type, false); 2731 const TypePtr *adr_type = _gvn.type(adr)->isa_ptr(); 2732 2733 Compile::AliasType* alias_type = C->alias_type(adr_type); 2734 BasicType bt = alias_type->basic_type(); 2735 if (bt != T_ILLEGAL && 2736 (is_reference_type(bt) != (type == T_OBJECT))) { 2737 // Don't intrinsify mismatched object accesses. 2738 return false; 2739 } 2740 2741 // For CAS, unlike inline_unsafe_access, there seems no point in 2742 // trying to refine types. Just use the coarse types here. 2743 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here"); 2744 const Type *value_type = Type::get_const_basic_type(type); 2745 2746 switch (kind) { 2747 case LS_get_set: 2748 case LS_cmp_exchange: { 2749 if (type == T_OBJECT) { 2750 const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type); 2751 if (tjp != NULL) { 2752 value_type = tjp; 2753 } 2754 } 2755 break; 2756 } 2757 case LS_cmp_swap: 2758 case LS_cmp_swap_weak: 2759 case LS_get_add: 2760 break; 2761 default: 2762 ShouldNotReachHere(); 2763 } 2764 2765 // Null check receiver. 2766 receiver = null_check(receiver); 2767 if (stopped()) { 2768 return true; 2769 } 2770 2771 int alias_idx = C->get_alias_index(adr_type); 2772 2773 if (is_reference_type(type)) { 2774 decorators |= IN_HEAP | ON_UNKNOWN_OOP_REF; 2775 2776 // Transformation of a value which could be NULL pointer (CastPP #NULL) 2777 // could be delayed during Parse (for example, in adjust_map_after_if()). 2778 // Execute transformation here to avoid barrier generation in such case. 2779 if (_gvn.type(newval) == TypePtr::NULL_PTR) 2780 newval = _gvn.makecon(TypePtr::NULL_PTR); 2781 2782 if (oldval != NULL && _gvn.type(oldval) == TypePtr::NULL_PTR) { 2783 // Refine the value to a null constant, when it is known to be null 2784 oldval = _gvn.makecon(TypePtr::NULL_PTR); 2785 } 2786 } 2787 2788 Node* result = NULL; 2789 switch (kind) { 2790 case LS_cmp_exchange: { 2791 result = access_atomic_cmpxchg_val_at(base, adr, adr_type, alias_idx, 2792 oldval, newval, value_type, type, decorators); 2793 break; 2794 } 2795 case LS_cmp_swap_weak: 2796 decorators |= C2_WEAK_CMPXCHG; 2797 case LS_cmp_swap: { 2798 result = access_atomic_cmpxchg_bool_at(base, adr, adr_type, alias_idx, 2799 oldval, newval, value_type, type, decorators); 2800 break; 2801 } 2802 case LS_get_set: { 2803 result = access_atomic_xchg_at(base, adr, adr_type, alias_idx, 2804 newval, value_type, type, decorators); 2805 break; 2806 } 2807 case LS_get_add: { 2808 result = access_atomic_add_at(base, adr, adr_type, alias_idx, 2809 newval, value_type, type, decorators); 2810 break; 2811 } 2812 default: 2813 ShouldNotReachHere(); 2814 } 2815 2816 assert(type2size[result->bottom_type()->basic_type()] == type2size[rtype], "result type should match"); 2817 set_result(result); 2818 return true; 2819 } 2820 2821 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) { 2822 // Regardless of form, don't allow previous ld/st to move down, 2823 // then issue acquire, release, or volatile mem_bar. 2824 insert_mem_bar(Op_MemBarCPUOrder); 2825 switch(id) { 2826 case vmIntrinsics::_loadFence: 2827 insert_mem_bar(Op_LoadFence); 2828 return true; 2829 case vmIntrinsics::_storeFence: 2830 insert_mem_bar(Op_StoreFence); 2831 return true; 2832 case vmIntrinsics::_fullFence: 2833 insert_mem_bar(Op_MemBarVolatile); 2834 return true; 2835 default: 2836 fatal_unexpected_iid(id); 2837 return false; 2838 } 2839 } 2840 2841 bool LibraryCallKit::inline_onspinwait() { 2842 insert_mem_bar(Op_OnSpinWait); 2843 return true; 2844 } 2845 2846 bool LibraryCallKit::klass_needs_init_guard(Node* kls) { 2847 if (!kls->is_Con()) { 2848 return true; 2849 } 2850 const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr(); 2851 if (klsptr == NULL) { 2852 return true; 2853 } 2854 ciInstanceKlass* ik = klsptr->klass()->as_instance_klass(); 2855 // don't need a guard for a klass that is already initialized 2856 return !ik->is_initialized(); 2857 } 2858 2859 //----------------------------inline_unsafe_writeback0------------------------- 2860 // public native void Unsafe.writeback0(long address) 2861 bool LibraryCallKit::inline_unsafe_writeback0() { 2862 if (!Matcher::has_match_rule(Op_CacheWB)) { 2863 return false; 2864 } 2865 #ifndef PRODUCT 2866 assert(Matcher::has_match_rule(Op_CacheWBPreSync), "found match rule for CacheWB but not CacheWBPreSync"); 2867 assert(Matcher::has_match_rule(Op_CacheWBPostSync), "found match rule for CacheWB but not CacheWBPostSync"); 2868 ciSignature* sig = callee()->signature(); 2869 assert(sig->type_at(0)->basic_type() == T_LONG, "Unsafe_writeback0 address is long!"); 2870 #endif 2871 null_check_receiver(); // null-check, then ignore 2872 Node *addr = argument(1); 2873 addr = new CastX2PNode(addr); 2874 addr = _gvn.transform(addr); 2875 Node *flush = new CacheWBNode(control(), memory(TypeRawPtr::BOTTOM), addr); 2876 flush = _gvn.transform(flush); 2877 set_memory(flush, TypeRawPtr::BOTTOM); 2878 return true; 2879 } 2880 2881 //----------------------------inline_unsafe_writeback0------------------------- 2882 // public native void Unsafe.writeback0(long address) 2883 bool LibraryCallKit::inline_unsafe_writebackSync0(bool is_pre) { 2884 if (is_pre && !Matcher::has_match_rule(Op_CacheWBPreSync)) { 2885 return false; 2886 } 2887 if (!is_pre && !Matcher::has_match_rule(Op_CacheWBPostSync)) { 2888 return false; 2889 } 2890 #ifndef PRODUCT 2891 assert(Matcher::has_match_rule(Op_CacheWB), 2892 (is_pre ? "found match rule for CacheWBPreSync but not CacheWB" 2893 : "found match rule for CacheWBPostSync but not CacheWB")); 2894 2895 #endif 2896 null_check_receiver(); // null-check, then ignore 2897 Node *sync; 2898 if (is_pre) { 2899 sync = new CacheWBPreSyncNode(control(), memory(TypeRawPtr::BOTTOM)); 2900 } else { 2901 sync = new CacheWBPostSyncNode(control(), memory(TypeRawPtr::BOTTOM)); 2902 } 2903 sync = _gvn.transform(sync); 2904 set_memory(sync, TypeRawPtr::BOTTOM); 2905 return true; 2906 } 2907 2908 //----------------------------inline_unsafe_allocate--------------------------- 2909 // public native Object Unsafe.allocateInstance(Class<?> cls); 2910 bool LibraryCallKit::inline_unsafe_allocate() { 2911 if (callee()->is_static()) return false; // caller must have the capability! 2912 2913 null_check_receiver(); // null-check, then ignore 2914 Node* cls = null_check(argument(1)); 2915 if (stopped()) return true; 2916 2917 Node* kls = load_klass_from_mirror(cls, false, NULL, 0); 2918 kls = null_check(kls); 2919 if (stopped()) return true; // argument was like int.class 2920 2921 Node* test = NULL; 2922 if (LibraryCallKit::klass_needs_init_guard(kls)) { 2923 // Note: The argument might still be an illegal value like 2924 // Serializable.class or Object[].class. The runtime will handle it. 2925 // But we must make an explicit check for initialization. 2926 Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset())); 2927 // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler 2928 // can generate code to load it as unsigned byte. 2929 Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered); 2930 Node* bits = intcon(InstanceKlass::fully_initialized); 2931 test = _gvn.transform(new SubINode(inst, bits)); 2932 // The 'test' is non-zero if we need to take a slow path. 2933 } 2934 2935 Node* obj = new_instance(kls, test); 2936 set_result(obj); 2937 return true; 2938 } 2939 2940 //------------------------inline_native_time_funcs-------------- 2941 // inline code for System.currentTimeMillis() and System.nanoTime() 2942 // these have the same type and signature 2943 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) { 2944 const TypeFunc* tf = OptoRuntime::void_long_Type(); 2945 const TypePtr* no_memory_effects = NULL; 2946 Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects); 2947 Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0)); 2948 #ifdef ASSERT 2949 Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1)); 2950 assert(value_top == top(), "second value must be top"); 2951 #endif 2952 set_result(value); 2953 return true; 2954 } 2955 2956 #ifdef JFR_HAVE_INTRINSICS 2957 2958 /* 2959 * oop -> myklass 2960 * myklass->trace_id |= USED 2961 * return myklass->trace_id & ~0x3 2962 */ 2963 bool LibraryCallKit::inline_native_classID() { 2964 Node* cls = null_check(argument(0), T_OBJECT); 2965 Node* kls = load_klass_from_mirror(cls, false, NULL, 0); 2966 kls = null_check(kls, T_OBJECT); 2967 2968 ByteSize offset = KLASS_TRACE_ID_OFFSET; 2969 Node* insp = basic_plus_adr(kls, in_bytes(offset)); 2970 Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG, MemNode::unordered); 2971 2972 Node* clsused = longcon(0x01l); // set the class bit 2973 Node* orl = _gvn.transform(new OrLNode(tvalue, clsused)); 2974 const TypePtr *adr_type = _gvn.type(insp)->isa_ptr(); 2975 store_to_memory(control(), insp, orl, T_LONG, adr_type, MemNode::unordered); 2976 2977 #ifdef TRACE_ID_META_BITS 2978 Node* mbits = longcon(~TRACE_ID_META_BITS); 2979 tvalue = _gvn.transform(new AndLNode(tvalue, mbits)); 2980 #endif 2981 #ifdef TRACE_ID_SHIFT 2982 Node* cbits = intcon(TRACE_ID_SHIFT); 2983 tvalue = _gvn.transform(new URShiftLNode(tvalue, cbits)); 2984 #endif 2985 2986 set_result(tvalue); 2987 return true; 2988 2989 } 2990 2991 bool LibraryCallKit::inline_native_getEventWriter() { 2992 Node* tls_ptr = _gvn.transform(new ThreadLocalNode()); 2993 2994 Node* jobj_ptr = basic_plus_adr(top(), tls_ptr, 2995 in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR)); 2996 2997 Node* jobj = make_load(control(), jobj_ptr, TypeRawPtr::BOTTOM, T_ADDRESS, MemNode::unordered); 2998 2999 Node* jobj_cmp_null = _gvn.transform( new CmpPNode(jobj, null()) ); 3000 Node* test_jobj_eq_null = _gvn.transform( new BoolNode(jobj_cmp_null, BoolTest::eq) ); 3001 3002 IfNode* iff_jobj_null = 3003 create_and_map_if(control(), test_jobj_eq_null, PROB_MIN, COUNT_UNKNOWN); 3004 3005 enum { _normal_path = 1, 3006 _null_path = 2, 3007 PATH_LIMIT }; 3008 3009 RegionNode* result_rgn = new RegionNode(PATH_LIMIT); 3010 PhiNode* result_val = new PhiNode(result_rgn, TypeInstPtr::BOTTOM); 3011 3012 Node* jobj_is_null = _gvn.transform(new IfTrueNode(iff_jobj_null)); 3013 result_rgn->init_req(_null_path, jobj_is_null); 3014 result_val->init_req(_null_path, null()); 3015 3016 Node* jobj_is_not_null = _gvn.transform(new IfFalseNode(iff_jobj_null)); 3017 set_control(jobj_is_not_null); 3018 Node* res = access_load(jobj, TypeInstPtr::NOTNULL, T_OBJECT, 3019 IN_NATIVE | C2_CONTROL_DEPENDENT_LOAD); 3020 result_rgn->init_req(_normal_path, control()); 3021 result_val->init_req(_normal_path, res); 3022 3023 set_result(result_rgn, result_val); 3024 3025 return true; 3026 } 3027 3028 #endif // JFR_HAVE_INTRINSICS 3029 3030 //------------------------inline_native_currentThread------------------ 3031 bool LibraryCallKit::inline_native_currentThread() { 3032 Node* junk = NULL; 3033 set_result(generate_current_thread(junk)); 3034 return true; 3035 } 3036 3037 //---------------------------load_mirror_from_klass---------------------------- 3038 // Given a klass oop, load its java mirror (a java.lang.Class oop). 3039 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) { 3040 Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset())); 3041 Node* load = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered); 3042 // mirror = ((OopHandle)mirror)->resolve(); 3043 return access_load(load, TypeInstPtr::MIRROR, T_OBJECT, IN_NATIVE); 3044 } 3045 3046 //-----------------------load_klass_from_mirror_common------------------------- 3047 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop. 3048 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE), 3049 // and branch to the given path on the region. 3050 // If never_see_null, take an uncommon trap on null, so we can optimistically 3051 // compile for the non-null case. 3052 // If the region is NULL, force never_see_null = true. 3053 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror, 3054 bool never_see_null, 3055 RegionNode* region, 3056 int null_path, 3057 int offset) { 3058 if (region == NULL) never_see_null = true; 3059 Node* p = basic_plus_adr(mirror, offset); 3060 const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL; 3061 Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type)); 3062 Node* null_ctl = top(); 3063 kls = null_check_oop(kls, &null_ctl, never_see_null); 3064 if (region != NULL) { 3065 // Set region->in(null_path) if the mirror is a primitive (e.g, int.class). 3066 region->init_req(null_path, null_ctl); 3067 } else { 3068 assert(null_ctl == top(), "no loose ends"); 3069 } 3070 return kls; 3071 } 3072 3073 //--------------------(inline_native_Class_query helpers)--------------------- 3074 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE_FAST, JVM_ACC_HAS_FINALIZER. 3075 // Fall through if (mods & mask) == bits, take the guard otherwise. 3076 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) { 3077 // Branch around if the given klass has the given modifier bit set. 3078 // Like generate_guard, adds a new path onto the region. 3079 Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset())); 3080 Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered); 3081 Node* mask = intcon(modifier_mask); 3082 Node* bits = intcon(modifier_bits); 3083 Node* mbit = _gvn.transform(new AndINode(mods, mask)); 3084 Node* cmp = _gvn.transform(new CmpINode(mbit, bits)); 3085 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne)); 3086 return generate_fair_guard(bol, region); 3087 } 3088 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) { 3089 return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region); 3090 } 3091 Node* LibraryCallKit::generate_hidden_class_guard(Node* kls, RegionNode* region) { 3092 return generate_access_flags_guard(kls, JVM_ACC_IS_HIDDEN_CLASS, 0, region); 3093 } 3094 3095 //-------------------------inline_native_Class_query------------------- 3096 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) { 3097 const Type* return_type = TypeInt::BOOL; 3098 Node* prim_return_value = top(); // what happens if it's a primitive class? 3099 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 3100 bool expect_prim = false; // most of these guys expect to work on refs 3101 3102 enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT }; 3103 3104 Node* mirror = argument(0); 3105 Node* obj = top(); 3106 3107 switch (id) { 3108 case vmIntrinsics::_isInstance: 3109 // nothing is an instance of a primitive type 3110 prim_return_value = intcon(0); 3111 obj = argument(1); 3112 break; 3113 case vmIntrinsics::_getModifiers: 3114 prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC); 3115 assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line"); 3116 return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin); 3117 break; 3118 case vmIntrinsics::_isInterface: 3119 prim_return_value = intcon(0); 3120 break; 3121 case vmIntrinsics::_isArray: 3122 prim_return_value = intcon(0); 3123 expect_prim = true; // cf. ObjectStreamClass.getClassSignature 3124 break; 3125 case vmIntrinsics::_isPrimitive: 3126 prim_return_value = intcon(1); 3127 expect_prim = true; // obviously 3128 break; 3129 case vmIntrinsics::_isHidden: 3130 prim_return_value = intcon(0); 3131 break; 3132 case vmIntrinsics::_getSuperclass: 3133 prim_return_value = null(); 3134 return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR); 3135 break; 3136 case vmIntrinsics::_getClassAccessFlags: 3137 prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC); 3138 return_type = TypeInt::INT; // not bool! 6297094 3139 break; 3140 default: 3141 fatal_unexpected_iid(id); 3142 break; 3143 } 3144 3145 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr(); 3146 if (mirror_con == NULL) return false; // cannot happen? 3147 3148 #ifndef PRODUCT 3149 if (C->print_intrinsics() || C->print_inlining()) { 3150 ciType* k = mirror_con->java_mirror_type(); 3151 if (k) { 3152 tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id())); 3153 k->print_name(); 3154 tty->cr(); 3155 } 3156 } 3157 #endif 3158 3159 // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive). 3160 RegionNode* region = new RegionNode(PATH_LIMIT); 3161 record_for_igvn(region); 3162 PhiNode* phi = new PhiNode(region, return_type); 3163 3164 // The mirror will never be null of Reflection.getClassAccessFlags, however 3165 // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE 3166 // if it is. See bug 4774291. 3167 3168 // For Reflection.getClassAccessFlags(), the null check occurs in 3169 // the wrong place; see inline_unsafe_access(), above, for a similar 3170 // situation. 3171 mirror = null_check(mirror); 3172 // If mirror or obj is dead, only null-path is taken. 3173 if (stopped()) return true; 3174 3175 if (expect_prim) never_see_null = false; // expect nulls (meaning prims) 3176 3177 // Now load the mirror's klass metaobject, and null-check it. 3178 // Side-effects region with the control path if the klass is null. 3179 Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path); 3180 // If kls is null, we have a primitive mirror. 3181 phi->init_req(_prim_path, prim_return_value); 3182 if (stopped()) { set_result(region, phi); return true; } 3183 bool safe_for_replace = (region->in(_prim_path) == top()); 3184 3185 Node* p; // handy temp 3186 Node* null_ctl; 3187 3188 // Now that we have the non-null klass, we can perform the real query. 3189 // For constant classes, the query will constant-fold in LoadNode::Value. 3190 Node* query_value = top(); 3191 switch (id) { 3192 case vmIntrinsics::_isInstance: 3193 // nothing is an instance of a primitive type 3194 query_value = gen_instanceof(obj, kls, safe_for_replace); 3195 break; 3196 3197 case vmIntrinsics::_getModifiers: 3198 p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset())); 3199 query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered); 3200 break; 3201 3202 case vmIntrinsics::_isInterface: 3203 // (To verify this code sequence, check the asserts in JVM_IsInterface.) 3204 if (generate_interface_guard(kls, region) != NULL) 3205 // A guard was added. If the guard is taken, it was an interface. 3206 phi->add_req(intcon(1)); 3207 // If we fall through, it's a plain class. 3208 query_value = intcon(0); 3209 break; 3210 3211 case vmIntrinsics::_isArray: 3212 // (To verify this code sequence, check the asserts in JVM_IsArrayClass.) 3213 if (generate_array_guard(kls, region) != NULL) 3214 // A guard was added. If the guard is taken, it was an array. 3215 phi->add_req(intcon(1)); 3216 // If we fall through, it's a plain class. 3217 query_value = intcon(0); 3218 break; 3219 3220 case vmIntrinsics::_isPrimitive: 3221 query_value = intcon(0); // "normal" path produces false 3222 break; 3223 3224 case vmIntrinsics::_isHidden: 3225 // (To verify this code sequence, check the asserts in JVM_IsHiddenClass.) 3226 if (generate_hidden_class_guard(kls, region) != NULL) 3227 // A guard was added. If the guard is taken, it was an hidden class. 3228 phi->add_req(intcon(1)); 3229 // If we fall through, it's a plain class. 3230 query_value = intcon(0); 3231 break; 3232 3233 3234 case vmIntrinsics::_getSuperclass: 3235 // The rules here are somewhat unfortunate, but we can still do better 3236 // with random logic than with a JNI call. 3237 // Interfaces store null or Object as _super, but must report null. 3238 // Arrays store an intermediate super as _super, but must report Object. 3239 // Other types can report the actual _super. 3240 // (To verify this code sequence, check the asserts in JVM_IsInterface.) 3241 if (generate_interface_guard(kls, region) != NULL) 3242 // A guard was added. If the guard is taken, it was an interface. 3243 phi->add_req(null()); 3244 if (generate_array_guard(kls, region) != NULL) 3245 // A guard was added. If the guard is taken, it was an array. 3246 phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror()))); 3247 // If we fall through, it's a plain class. Get its _super. 3248 p = basic_plus_adr(kls, in_bytes(Klass::super_offset())); 3249 kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL)); 3250 null_ctl = top(); 3251 kls = null_check_oop(kls, &null_ctl); 3252 if (null_ctl != top()) { 3253 // If the guard is taken, Object.superClass is null (both klass and mirror). 3254 region->add_req(null_ctl); 3255 phi ->add_req(null()); 3256 } 3257 if (!stopped()) { 3258 query_value = load_mirror_from_klass(kls); 3259 } 3260 break; 3261 3262 case vmIntrinsics::_getClassAccessFlags: 3263 p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset())); 3264 query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered); 3265 break; 3266 3267 default: 3268 fatal_unexpected_iid(id); 3269 break; 3270 } 3271 3272 // Fall-through is the normal case of a query to a real class. 3273 phi->init_req(1, query_value); 3274 region->init_req(1, control()); 3275 3276 C->set_has_split_ifs(true); // Has chance for split-if optimization 3277 set_result(region, phi); 3278 return true; 3279 } 3280 3281 //-------------------------inline_Class_cast------------------- 3282 bool LibraryCallKit::inline_Class_cast() { 3283 Node* mirror = argument(0); // Class 3284 Node* obj = argument(1); 3285 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr(); 3286 if (mirror_con == NULL) { 3287 return false; // dead path (mirror->is_top()). 3288 } 3289 if (obj == NULL || obj->is_top()) { 3290 return false; // dead path 3291 } 3292 const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr(); 3293 3294 // First, see if Class.cast() can be folded statically. 3295 // java_mirror_type() returns non-null for compile-time Class constants. 3296 ciType* tm = mirror_con->java_mirror_type(); 3297 if (tm != NULL && tm->is_klass() && 3298 tp != NULL && tp->klass() != NULL) { 3299 if (!tp->klass()->is_loaded()) { 3300 // Don't use intrinsic when class is not loaded. 3301 return false; 3302 } else { 3303 int static_res = C->static_subtype_check(tm->as_klass(), tp->klass()); 3304 if (static_res == Compile::SSC_always_true) { 3305 // isInstance() is true - fold the code. 3306 set_result(obj); 3307 return true; 3308 } else if (static_res == Compile::SSC_always_false) { 3309 // Don't use intrinsic, have to throw ClassCastException. 3310 // If the reference is null, the non-intrinsic bytecode will 3311 // be optimized appropriately. 3312 return false; 3313 } 3314 } 3315 } 3316 3317 // Bailout intrinsic and do normal inlining if exception path is frequent. 3318 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 3319 return false; 3320 } 3321 3322 // Generate dynamic checks. 3323 // Class.cast() is java implementation of _checkcast bytecode. 3324 // Do checkcast (Parse::do_checkcast()) optimizations here. 3325 3326 mirror = null_check(mirror); 3327 // If mirror is dead, only null-path is taken. 3328 if (stopped()) { 3329 return true; 3330 } 3331 3332 // Not-subtype or the mirror's klass ptr is NULL (in case it is a primitive). 3333 enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT }; 3334 RegionNode* region = new RegionNode(PATH_LIMIT); 3335 record_for_igvn(region); 3336 3337 // Now load the mirror's klass metaobject, and null-check it. 3338 // If kls is null, we have a primitive mirror and 3339 // nothing is an instance of a primitive type. 3340 Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path); 3341 3342 Node* res = top(); 3343 if (!stopped()) { 3344 Node* bad_type_ctrl = top(); 3345 // Do checkcast optimizations. 3346 res = gen_checkcast(obj, kls, &bad_type_ctrl); 3347 region->init_req(_bad_type_path, bad_type_ctrl); 3348 } 3349 if (region->in(_prim_path) != top() || 3350 region->in(_bad_type_path) != top()) { 3351 // Let Interpreter throw ClassCastException. 3352 PreserveJVMState pjvms(this); 3353 set_control(_gvn.transform(region)); 3354 uncommon_trap(Deoptimization::Reason_intrinsic, 3355 Deoptimization::Action_maybe_recompile); 3356 } 3357 if (!stopped()) { 3358 set_result(res); 3359 } 3360 return true; 3361 } 3362 3363 3364 //--------------------------inline_native_subtype_check------------------------ 3365 // This intrinsic takes the JNI calls out of the heart of 3366 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc. 3367 bool LibraryCallKit::inline_native_subtype_check() { 3368 // Pull both arguments off the stack. 3369 Node* args[2]; // two java.lang.Class mirrors: superc, subc 3370 args[0] = argument(0); 3371 args[1] = argument(1); 3372 Node* klasses[2]; // corresponding Klasses: superk, subk 3373 klasses[0] = klasses[1] = top(); 3374 3375 enum { 3376 // A full decision tree on {superc is prim, subc is prim}: 3377 _prim_0_path = 1, // {P,N} => false 3378 // {P,P} & superc!=subc => false 3379 _prim_same_path, // {P,P} & superc==subc => true 3380 _prim_1_path, // {N,P} => false 3381 _ref_subtype_path, // {N,N} & subtype check wins => true 3382 _both_ref_path, // {N,N} & subtype check loses => false 3383 PATH_LIMIT 3384 }; 3385 3386 RegionNode* region = new RegionNode(PATH_LIMIT); 3387 Node* phi = new PhiNode(region, TypeInt::BOOL); 3388 record_for_igvn(region); 3389 3390 const TypePtr* adr_type = TypeRawPtr::BOTTOM; // memory type of loads 3391 const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL; 3392 int class_klass_offset = java_lang_Class::klass_offset(); 3393 3394 // First null-check both mirrors and load each mirror's klass metaobject. 3395 int which_arg; 3396 for (which_arg = 0; which_arg <= 1; which_arg++) { 3397 Node* arg = args[which_arg]; 3398 arg = null_check(arg); 3399 if (stopped()) break; 3400 args[which_arg] = arg; 3401 3402 Node* p = basic_plus_adr(arg, class_klass_offset); 3403 Node* kls = LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, adr_type, kls_type); 3404 klasses[which_arg] = _gvn.transform(kls); 3405 } 3406 3407 // Having loaded both klasses, test each for null. 3408 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 3409 for (which_arg = 0; which_arg <= 1; which_arg++) { 3410 Node* kls = klasses[which_arg]; 3411 Node* null_ctl = top(); 3412 kls = null_check_oop(kls, &null_ctl, never_see_null); 3413 int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path); 3414 region->init_req(prim_path, null_ctl); 3415 if (stopped()) break; 3416 klasses[which_arg] = kls; 3417 } 3418 3419 if (!stopped()) { 3420 // now we have two reference types, in klasses[0..1] 3421 Node* subk = klasses[1]; // the argument to isAssignableFrom 3422 Node* superk = klasses[0]; // the receiver 3423 region->set_req(_both_ref_path, gen_subtype_check(subk, superk)); 3424 // now we have a successful reference subtype check 3425 region->set_req(_ref_subtype_path, control()); 3426 } 3427 3428 // If both operands are primitive (both klasses null), then 3429 // we must return true when they are identical primitives. 3430 // It is convenient to test this after the first null klass check. 3431 set_control(region->in(_prim_0_path)); // go back to first null check 3432 if (!stopped()) { 3433 // Since superc is primitive, make a guard for the superc==subc case. 3434 Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1])); 3435 Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq)); 3436 generate_guard(bol_eq, region, PROB_FAIR); 3437 if (region->req() == PATH_LIMIT+1) { 3438 // A guard was added. If the added guard is taken, superc==subc. 3439 region->swap_edges(PATH_LIMIT, _prim_same_path); 3440 region->del_req(PATH_LIMIT); 3441 } 3442 region->set_req(_prim_0_path, control()); // Not equal after all. 3443 } 3444 3445 // these are the only paths that produce 'true': 3446 phi->set_req(_prim_same_path, intcon(1)); 3447 phi->set_req(_ref_subtype_path, intcon(1)); 3448 3449 // pull together the cases: 3450 assert(region->req() == PATH_LIMIT, "sane region"); 3451 for (uint i = 1; i < region->req(); i++) { 3452 Node* ctl = region->in(i); 3453 if (ctl == NULL || ctl == top()) { 3454 region->set_req(i, top()); 3455 phi ->set_req(i, top()); 3456 } else if (phi->in(i) == NULL) { 3457 phi->set_req(i, intcon(0)); // all other paths produce 'false' 3458 } 3459 } 3460 3461 set_control(_gvn.transform(region)); 3462 set_result(_gvn.transform(phi)); 3463 return true; 3464 } 3465 3466 //---------------------generate_array_guard_common------------------------ 3467 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region, 3468 bool obj_array, bool not_array) { 3469 3470 if (stopped()) { 3471 return NULL; 3472 } 3473 3474 // If obj_array/non_array==false/false: 3475 // Branch around if the given klass is in fact an array (either obj or prim). 3476 // If obj_array/non_array==false/true: 3477 // Branch around if the given klass is not an array klass of any kind. 3478 // If obj_array/non_array==true/true: 3479 // Branch around if the kls is not an oop array (kls is int[], String, etc.) 3480 // If obj_array/non_array==true/false: 3481 // Branch around if the kls is an oop array (Object[] or subtype) 3482 // 3483 // Like generate_guard, adds a new path onto the region. 3484 jint layout_con = 0; 3485 Node* layout_val = get_layout_helper(kls, layout_con); 3486 if (layout_val == NULL) { 3487 bool query = (obj_array 3488 ? Klass::layout_helper_is_objArray(layout_con) 3489 : Klass::layout_helper_is_array(layout_con)); 3490 if (query == not_array) { 3491 return NULL; // never a branch 3492 } else { // always a branch 3493 Node* always_branch = control(); 3494 if (region != NULL) 3495 region->add_req(always_branch); 3496 set_control(top()); 3497 return always_branch; 3498 } 3499 } 3500 // Now test the correct condition. 3501 jint nval = (obj_array 3502 ? (jint)(Klass::_lh_array_tag_type_value 3503 << Klass::_lh_array_tag_shift) 3504 : Klass::_lh_neutral_value); 3505 Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval))); 3506 BoolTest::mask btest = BoolTest::lt; // correct for testing is_[obj]array 3507 // invert the test if we are looking for a non-array 3508 if (not_array) btest = BoolTest(btest).negate(); 3509 Node* bol = _gvn.transform(new BoolNode(cmp, btest)); 3510 return generate_fair_guard(bol, region); 3511 } 3512 3513 3514 //-----------------------inline_native_newArray-------------------------- 3515 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length); 3516 // private native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size); 3517 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) { 3518 Node* mirror; 3519 Node* count_val; 3520 if (uninitialized) { 3521 mirror = argument(1); 3522 count_val = argument(2); 3523 } else { 3524 mirror = argument(0); 3525 count_val = argument(1); 3526 } 3527 3528 mirror = null_check(mirror); 3529 // If mirror or obj is dead, only null-path is taken. 3530 if (stopped()) return true; 3531 3532 enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT }; 3533 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 3534 PhiNode* result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL); 3535 PhiNode* result_io = new PhiNode(result_reg, Type::ABIO); 3536 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 3537 3538 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 3539 Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null, 3540 result_reg, _slow_path); 3541 Node* normal_ctl = control(); 3542 Node* no_array_ctl = result_reg->in(_slow_path); 3543 3544 // Generate code for the slow case. We make a call to newArray(). 3545 set_control(no_array_ctl); 3546 if (!stopped()) { 3547 // Either the input type is void.class, or else the 3548 // array klass has not yet been cached. Either the 3549 // ensuing call will throw an exception, or else it 3550 // will cache the array klass for next time. 3551 PreserveJVMState pjvms(this); 3552 CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray); 3553 Node* slow_result = set_results_for_java_call(slow_call); 3554 // this->control() comes from set_results_for_java_call 3555 result_reg->set_req(_slow_path, control()); 3556 result_val->set_req(_slow_path, slow_result); 3557 result_io ->set_req(_slow_path, i_o()); 3558 result_mem->set_req(_slow_path, reset_memory()); 3559 } 3560 3561 set_control(normal_ctl); 3562 if (!stopped()) { 3563 // Normal case: The array type has been cached in the java.lang.Class. 3564 // The following call works fine even if the array type is polymorphic. 3565 // It could be a dynamic mix of int[], boolean[], Object[], etc. 3566 Node* obj = new_array(klass_node, count_val, 0); // no arguments to push 3567 result_reg->init_req(_normal_path, control()); 3568 result_val->init_req(_normal_path, obj); 3569 result_io ->init_req(_normal_path, i_o()); 3570 result_mem->init_req(_normal_path, reset_memory()); 3571 3572 if (uninitialized) { 3573 // Mark the allocation so that zeroing is skipped 3574 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj, &_gvn); 3575 alloc->maybe_set_complete(&_gvn); 3576 } 3577 } 3578 3579 // Return the combined state. 3580 set_i_o( _gvn.transform(result_io) ); 3581 set_all_memory( _gvn.transform(result_mem)); 3582 3583 C->set_has_split_ifs(true); // Has chance for split-if optimization 3584 set_result(result_reg, result_val); 3585 return true; 3586 } 3587 3588 //----------------------inline_native_getLength-------------------------- 3589 // public static native int java.lang.reflect.Array.getLength(Object array); 3590 bool LibraryCallKit::inline_native_getLength() { 3591 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false; 3592 3593 Node* array = null_check(argument(0)); 3594 // If array is dead, only null-path is taken. 3595 if (stopped()) return true; 3596 3597 // Deoptimize if it is a non-array. 3598 Node* non_array = generate_non_array_guard(load_object_klass(array), NULL); 3599 3600 if (non_array != NULL) { 3601 PreserveJVMState pjvms(this); 3602 set_control(non_array); 3603 uncommon_trap(Deoptimization::Reason_intrinsic, 3604 Deoptimization::Action_maybe_recompile); 3605 } 3606 3607 // If control is dead, only non-array-path is taken. 3608 if (stopped()) return true; 3609 3610 // The works fine even if the array type is polymorphic. 3611 // It could be a dynamic mix of int[], boolean[], Object[], etc. 3612 Node* result = load_array_length(array); 3613 3614 C->set_has_split_ifs(true); // Has chance for split-if optimization 3615 set_result(result); 3616 return true; 3617 } 3618 3619 //------------------------inline_array_copyOf---------------------------- 3620 // public static <T,U> T[] java.util.Arrays.copyOf( U[] original, int newLength, Class<? extends T[]> newType); 3621 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from, int to, Class<? extends T[]> newType); 3622 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) { 3623 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false; 3624 3625 // Get the arguments. 3626 Node* original = argument(0); 3627 Node* start = is_copyOfRange? argument(1): intcon(0); 3628 Node* end = is_copyOfRange? argument(2): argument(1); 3629 Node* array_type_mirror = is_copyOfRange? argument(3): argument(2); 3630 3631 Node* newcopy = NULL; 3632 3633 // Set the original stack and the reexecute bit for the interpreter to reexecute 3634 // the bytecode that invokes Arrays.copyOf if deoptimization happens. 3635 { PreserveReexecuteState preexecs(this); 3636 jvms()->set_should_reexecute(true); 3637 3638 array_type_mirror = null_check(array_type_mirror); 3639 original = null_check(original); 3640 3641 // Check if a null path was taken unconditionally. 3642 if (stopped()) return true; 3643 3644 Node* orig_length = load_array_length(original); 3645 3646 Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0); 3647 klass_node = null_check(klass_node); 3648 3649 RegionNode* bailout = new RegionNode(1); 3650 record_for_igvn(bailout); 3651 3652 // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc. 3653 // Bail out if that is so. 3654 Node* not_objArray = generate_non_objArray_guard(klass_node, bailout); 3655 if (not_objArray != NULL) { 3656 // Improve the klass node's type from the new optimistic assumption: 3657 ciKlass* ak = ciArrayKlass::make(env()->Object_klass()); 3658 const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/); 3659 Node* cast = new CastPPNode(klass_node, akls); 3660 cast->init_req(0, control()); 3661 klass_node = _gvn.transform(cast); 3662 } 3663 3664 // Bail out if either start or end is negative. 3665 generate_negative_guard(start, bailout, &start); 3666 generate_negative_guard(end, bailout, &end); 3667 3668 Node* length = end; 3669 if (_gvn.type(start) != TypeInt::ZERO) { 3670 length = _gvn.transform(new SubINode(end, start)); 3671 } 3672 3673 // Bail out if length is negative. 3674 // Without this the new_array would throw 3675 // NegativeArraySizeException but IllegalArgumentException is what 3676 // should be thrown 3677 generate_negative_guard(length, bailout, &length); 3678 3679 if (bailout->req() > 1) { 3680 PreserveJVMState pjvms(this); 3681 set_control(_gvn.transform(bailout)); 3682 uncommon_trap(Deoptimization::Reason_intrinsic, 3683 Deoptimization::Action_maybe_recompile); 3684 } 3685 3686 if (!stopped()) { 3687 // How many elements will we copy from the original? 3688 // The answer is MinI(orig_length - start, length). 3689 Node* orig_tail = _gvn.transform(new SubINode(orig_length, start)); 3690 Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length); 3691 3692 // Generate a direct call to the right arraycopy function(s). 3693 // We know the copy is disjoint but we might not know if the 3694 // oop stores need checking. 3695 // Extreme case: Arrays.copyOf((Integer[])x, 10, String[].class). 3696 // This will fail a store-check if x contains any non-nulls. 3697 3698 // ArrayCopyNode:Ideal may transform the ArrayCopyNode to 3699 // loads/stores but it is legal only if we're sure the 3700 // Arrays.copyOf would succeed. So we need all input arguments 3701 // to the copyOf to be validated, including that the copy to the 3702 // new array won't trigger an ArrayStoreException. That subtype 3703 // check can be optimized if we know something on the type of 3704 // the input array from type speculation. 3705 if (_gvn.type(klass_node)->singleton()) { 3706 ciKlass* subk = _gvn.type(load_object_klass(original))->is_klassptr()->klass(); 3707 ciKlass* superk = _gvn.type(klass_node)->is_klassptr()->klass(); 3708 3709 int test = C->static_subtype_check(superk, subk); 3710 if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) { 3711 const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr(); 3712 if (t_original->speculative_type() != NULL) { 3713 original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true); 3714 } 3715 } 3716 } 3717 3718 bool validated = false; 3719 // Reason_class_check rather than Reason_intrinsic because we 3720 // want to intrinsify even if this traps. 3721 if (!too_many_traps(Deoptimization::Reason_class_check)) { 3722 Node* not_subtype_ctrl = gen_subtype_check(original, klass_node); 3723 3724 if (not_subtype_ctrl != top()) { 3725 PreserveJVMState pjvms(this); 3726 set_control(not_subtype_ctrl); 3727 uncommon_trap(Deoptimization::Reason_class_check, 3728 Deoptimization::Action_make_not_entrant); 3729 assert(stopped(), "Should be stopped"); 3730 } 3731 validated = true; 3732 } 3733 3734 if (!stopped()) { 3735 newcopy = new_array(klass_node, length, 0); // no arguments to push 3736 3737 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, false, 3738 load_object_klass(original), klass_node); 3739 if (!is_copyOfRange) { 3740 ac->set_copyof(validated); 3741 } else { 3742 ac->set_copyofrange(validated); 3743 } 3744 Node* n = _gvn.transform(ac); 3745 if (n == ac) { 3746 ac->connect_outputs(this); 3747 } else { 3748 assert(validated, "shouldn't transform if all arguments not validated"); 3749 set_all_memory(n); 3750 } 3751 } 3752 } 3753 } // original reexecute is set back here 3754 3755 C->set_has_split_ifs(true); // Has chance for split-if optimization 3756 if (!stopped()) { 3757 set_result(newcopy); 3758 } 3759 return true; 3760 } 3761 3762 3763 //----------------------generate_virtual_guard--------------------------- 3764 // Helper for hashCode and clone. Peeks inside the vtable to avoid a call. 3765 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass, 3766 RegionNode* slow_region) { 3767 ciMethod* method = callee(); 3768 int vtable_index = method->vtable_index(); 3769 assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index, 3770 "bad index %d", vtable_index); 3771 // Get the Method* out of the appropriate vtable entry. 3772 int entry_offset = in_bytes(Klass::vtable_start_offset()) + 3773 vtable_index*vtableEntry::size_in_bytes() + 3774 vtableEntry::method_offset_in_bytes(); 3775 Node* entry_addr = basic_plus_adr(obj_klass, entry_offset); 3776 Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered); 3777 3778 // Compare the target method with the expected method (e.g., Object.hashCode). 3779 const TypePtr* native_call_addr = TypeMetadataPtr::make(method); 3780 3781 Node* native_call = makecon(native_call_addr); 3782 Node* chk_native = _gvn.transform(new CmpPNode(target_call, native_call)); 3783 Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne)); 3784 3785 return generate_slow_guard(test_native, slow_region); 3786 } 3787 3788 //-----------------------generate_method_call---------------------------- 3789 // Use generate_method_call to make a slow-call to the real 3790 // method if the fast path fails. An alternative would be to 3791 // use a stub like OptoRuntime::slow_arraycopy_Java. 3792 // This only works for expanding the current library call, 3793 // not another intrinsic. (E.g., don't use this for making an 3794 // arraycopy call inside of the copyOf intrinsic.) 3795 CallJavaNode* 3796 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) { 3797 // When compiling the intrinsic method itself, do not use this technique. 3798 guarantee(callee() != C->method(), "cannot make slow-call to self"); 3799 3800 ciMethod* method = callee(); 3801 // ensure the JVMS we have will be correct for this call 3802 guarantee(method_id == method->intrinsic_id(), "must match"); 3803 3804 const TypeFunc* tf = TypeFunc::make(method); 3805 CallJavaNode* slow_call; 3806 if (is_static) { 3807 assert(!is_virtual, ""); 3808 slow_call = new CallStaticJavaNode(C, tf, 3809 SharedRuntime::get_resolve_static_call_stub(), 3810 method, bci()); 3811 } else if (is_virtual) { 3812 null_check_receiver(); 3813 int vtable_index = Method::invalid_vtable_index; 3814 if (UseInlineCaches) { 3815 // Suppress the vtable call 3816 } else { 3817 // hashCode and clone are not a miranda methods, 3818 // so the vtable index is fixed. 3819 // No need to use the linkResolver to get it. 3820 vtable_index = method->vtable_index(); 3821 assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index, 3822 "bad index %d", vtable_index); 3823 } 3824 slow_call = new CallDynamicJavaNode(tf, 3825 SharedRuntime::get_resolve_virtual_call_stub(), 3826 method, vtable_index, bci()); 3827 } else { // neither virtual nor static: opt_virtual 3828 null_check_receiver(); 3829 slow_call = new CallStaticJavaNode(C, tf, 3830 SharedRuntime::get_resolve_opt_virtual_call_stub(), 3831 method, bci()); 3832 slow_call->set_optimized_virtual(true); 3833 } 3834 if (CallGenerator::is_inlined_method_handle_intrinsic(this->method(), bci(), callee())) { 3835 // To be able to issue a direct call (optimized virtual or virtual) 3836 // and skip a call to MH.linkTo*/invokeBasic adapter, additional information 3837 // about the method being invoked should be attached to the call site to 3838 // make resolution logic work (see SharedRuntime::resolve_{virtual,opt_virtual}_call_C). 3839 slow_call->set_override_symbolic_info(true); 3840 } 3841 set_arguments_for_java_call(slow_call); 3842 set_edges_for_java_call(slow_call); 3843 return slow_call; 3844 } 3845 3846 3847 /** 3848 * Build special case code for calls to hashCode on an object. This call may 3849 * be virtual (invokevirtual) or bound (invokespecial). For each case we generate 3850 * slightly different code. 3851 */ 3852 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) { 3853 assert(is_static == callee()->is_static(), "correct intrinsic selection"); 3854 assert(!(is_virtual && is_static), "either virtual, special, or static"); 3855 3856 enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT }; 3857 3858 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 3859 PhiNode* result_val = new PhiNode(result_reg, TypeInt::INT); 3860 PhiNode* result_io = new PhiNode(result_reg, Type::ABIO); 3861 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 3862 Node* obj = NULL; 3863 if (!is_static) { 3864 // Check for hashing null object 3865 obj = null_check_receiver(); 3866 if (stopped()) return true; // unconditionally null 3867 result_reg->init_req(_null_path, top()); 3868 result_val->init_req(_null_path, top()); 3869 } else { 3870 // Do a null check, and return zero if null. 3871 // System.identityHashCode(null) == 0 3872 obj = argument(0); 3873 Node* null_ctl = top(); 3874 obj = null_check_oop(obj, &null_ctl); 3875 result_reg->init_req(_null_path, null_ctl); 3876 result_val->init_req(_null_path, _gvn.intcon(0)); 3877 } 3878 3879 // Unconditionally null? Then return right away. 3880 if (stopped()) { 3881 set_control( result_reg->in(_null_path)); 3882 if (!stopped()) 3883 set_result(result_val->in(_null_path)); 3884 return true; 3885 } 3886 3887 // We only go to the fast case code if we pass a number of guards. The 3888 // paths which do not pass are accumulated in the slow_region. 3889 RegionNode* slow_region = new RegionNode(1); 3890 record_for_igvn(slow_region); 3891 3892 // If this is a virtual call, we generate a funny guard. We pull out 3893 // the vtable entry corresponding to hashCode() from the target object. 3894 // If the target method which we are calling happens to be the native 3895 // Object hashCode() method, we pass the guard. We do not need this 3896 // guard for non-virtual calls -- the caller is known to be the native 3897 // Object hashCode(). 3898 if (is_virtual) { 3899 // After null check, get the object's klass. 3900 Node* obj_klass = load_object_klass(obj); 3901 generate_virtual_guard(obj_klass, slow_region); 3902 } 3903 3904 // Get the header out of the object, use LoadMarkNode when available 3905 Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes()); 3906 // The control of the load must be NULL. Otherwise, the load can move before 3907 // the null check after castPP removal. 3908 Node* no_ctrl = NULL; 3909 Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered); 3910 3911 // Test the header to see if it is unlocked. 3912 Node *lock_mask = _gvn.MakeConX(markWord::biased_lock_mask_in_place); 3913 Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask)); 3914 Node *unlocked_val = _gvn.MakeConX(markWord::unlocked_value); 3915 Node *chk_unlocked = _gvn.transform(new CmpXNode( lmasked_header, unlocked_val)); 3916 Node *test_unlocked = _gvn.transform(new BoolNode( chk_unlocked, BoolTest::ne)); 3917 3918 generate_slow_guard(test_unlocked, slow_region); 3919 3920 // Get the hash value and check to see that it has been properly assigned. 3921 // We depend on hash_mask being at most 32 bits and avoid the use of 3922 // hash_mask_in_place because it could be larger than 32 bits in a 64-bit 3923 // vm: see markWord.hpp. 3924 Node *hash_mask = _gvn.intcon(markWord::hash_mask); 3925 Node *hash_shift = _gvn.intcon(markWord::hash_shift); 3926 Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift)); 3927 // This hack lets the hash bits live anywhere in the mark object now, as long 3928 // as the shift drops the relevant bits into the low 32 bits. Note that 3929 // Java spec says that HashCode is an int so there's no point in capturing 3930 // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build). 3931 hshifted_header = ConvX2I(hshifted_header); 3932 Node *hash_val = _gvn.transform(new AndINode(hshifted_header, hash_mask)); 3933 3934 Node *no_hash_val = _gvn.intcon(markWord::no_hash); 3935 Node *chk_assigned = _gvn.transform(new CmpINode( hash_val, no_hash_val)); 3936 Node *test_assigned = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq)); 3937 3938 generate_slow_guard(test_assigned, slow_region); 3939 3940 Node* init_mem = reset_memory(); 3941 // fill in the rest of the null path: 3942 result_io ->init_req(_null_path, i_o()); 3943 result_mem->init_req(_null_path, init_mem); 3944 3945 result_val->init_req(_fast_path, hash_val); 3946 result_reg->init_req(_fast_path, control()); 3947 result_io ->init_req(_fast_path, i_o()); 3948 result_mem->init_req(_fast_path, init_mem); 3949 3950 // Generate code for the slow case. We make a call to hashCode(). 3951 set_control(_gvn.transform(slow_region)); 3952 if (!stopped()) { 3953 // No need for PreserveJVMState, because we're using up the present state. 3954 set_all_memory(init_mem); 3955 vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode; 3956 CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static); 3957 Node* slow_result = set_results_for_java_call(slow_call); 3958 // this->control() comes from set_results_for_java_call 3959 result_reg->init_req(_slow_path, control()); 3960 result_val->init_req(_slow_path, slow_result); 3961 result_io ->set_req(_slow_path, i_o()); 3962 result_mem ->set_req(_slow_path, reset_memory()); 3963 } 3964 3965 // Return the combined state. 3966 set_i_o( _gvn.transform(result_io) ); 3967 set_all_memory( _gvn.transform(result_mem)); 3968 3969 set_result(result_reg, result_val); 3970 return true; 3971 } 3972 3973 //---------------------------inline_native_getClass---------------------------- 3974 // public final native Class<?> java.lang.Object.getClass(); 3975 // 3976 // Build special case code for calls to getClass on an object. 3977 bool LibraryCallKit::inline_native_getClass() { 3978 Node* obj = null_check_receiver(); 3979 if (stopped()) return true; 3980 set_result(load_mirror_from_klass(load_object_klass(obj))); 3981 return true; 3982 } 3983 3984 //-----------------inline_native_Reflection_getCallerClass--------------------- 3985 // public static native Class<?> sun.reflect.Reflection.getCallerClass(); 3986 // 3987 // In the presence of deep enough inlining, getCallerClass() becomes a no-op. 3988 // 3989 // NOTE: This code must perform the same logic as JVM_GetCallerClass 3990 // in that it must skip particular security frames and checks for 3991 // caller sensitive methods. 3992 bool LibraryCallKit::inline_native_Reflection_getCallerClass() { 3993 #ifndef PRODUCT 3994 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 3995 tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass"); 3996 } 3997 #endif 3998 3999 if (!jvms()->has_method()) { 4000 #ifndef PRODUCT 4001 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4002 tty->print_cr(" Bailing out because intrinsic was inlined at top level"); 4003 } 4004 #endif 4005 return false; 4006 } 4007 4008 // Walk back up the JVM state to find the caller at the required 4009 // depth. 4010 JVMState* caller_jvms = jvms(); 4011 4012 // Cf. JVM_GetCallerClass 4013 // NOTE: Start the loop at depth 1 because the current JVM state does 4014 // not include the Reflection.getCallerClass() frame. 4015 for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) { 4016 ciMethod* m = caller_jvms->method(); 4017 switch (n) { 4018 case 0: 4019 fatal("current JVM state does not include the Reflection.getCallerClass frame"); 4020 break; 4021 case 1: 4022 // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass). 4023 if (!m->caller_sensitive()) { 4024 #ifndef PRODUCT 4025 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4026 tty->print_cr(" Bailing out: CallerSensitive annotation expected at frame %d", n); 4027 } 4028 #endif 4029 return false; // bail-out; let JVM_GetCallerClass do the work 4030 } 4031 break; 4032 default: 4033 if (!m->is_ignored_by_security_stack_walk()) { 4034 // We have reached the desired frame; return the holder class. 4035 // Acquire method holder as java.lang.Class and push as constant. 4036 ciInstanceKlass* caller_klass = caller_jvms->method()->holder(); 4037 ciInstance* caller_mirror = caller_klass->java_mirror(); 4038 set_result(makecon(TypeInstPtr::make(caller_mirror))); 4039 4040 #ifndef PRODUCT 4041 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4042 tty->print_cr(" Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth()); 4043 tty->print_cr(" JVM state at this point:"); 4044 for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) { 4045 ciMethod* m = jvms()->of_depth(i)->method(); 4046 tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8()); 4047 } 4048 } 4049 #endif 4050 return true; 4051 } 4052 break; 4053 } 4054 } 4055 4056 #ifndef PRODUCT 4057 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4058 tty->print_cr(" Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth()); 4059 tty->print_cr(" JVM state at this point:"); 4060 for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) { 4061 ciMethod* m = jvms()->of_depth(i)->method(); 4062 tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8()); 4063 } 4064 } 4065 #endif 4066 4067 return false; // bail-out; let JVM_GetCallerClass do the work 4068 } 4069 4070 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) { 4071 Node* arg = argument(0); 4072 Node* result = NULL; 4073 4074 switch (id) { 4075 case vmIntrinsics::_floatToRawIntBits: result = new MoveF2INode(arg); break; 4076 case vmIntrinsics::_intBitsToFloat: result = new MoveI2FNode(arg); break; 4077 case vmIntrinsics::_doubleToRawLongBits: result = new MoveD2LNode(arg); break; 4078 case vmIntrinsics::_longBitsToDouble: result = new MoveL2DNode(arg); break; 4079 4080 case vmIntrinsics::_doubleToLongBits: { 4081 // two paths (plus control) merge in a wood 4082 RegionNode *r = new RegionNode(3); 4083 Node *phi = new PhiNode(r, TypeLong::LONG); 4084 4085 Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg)); 4086 // Build the boolean node 4087 Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne)); 4088 4089 // Branch either way. 4090 // NaN case is less traveled, which makes all the difference. 4091 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); 4092 Node *opt_isnan = _gvn.transform(ifisnan); 4093 assert( opt_isnan->is_If(), "Expect an IfNode"); 4094 IfNode *opt_ifisnan = (IfNode*)opt_isnan; 4095 Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan)); 4096 4097 set_control(iftrue); 4098 4099 static const jlong nan_bits = CONST64(0x7ff8000000000000); 4100 Node *slow_result = longcon(nan_bits); // return NaN 4101 phi->init_req(1, _gvn.transform( slow_result )); 4102 r->init_req(1, iftrue); 4103 4104 // Else fall through 4105 Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan)); 4106 set_control(iffalse); 4107 4108 phi->init_req(2, _gvn.transform(new MoveD2LNode(arg))); 4109 r->init_req(2, iffalse); 4110 4111 // Post merge 4112 set_control(_gvn.transform(r)); 4113 record_for_igvn(r); 4114 4115 C->set_has_split_ifs(true); // Has chance for split-if optimization 4116 result = phi; 4117 assert(result->bottom_type()->isa_long(), "must be"); 4118 break; 4119 } 4120 4121 case vmIntrinsics::_floatToIntBits: { 4122 // two paths (plus control) merge in a wood 4123 RegionNode *r = new RegionNode(3); 4124 Node *phi = new PhiNode(r, TypeInt::INT); 4125 4126 Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg)); 4127 // Build the boolean node 4128 Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne)); 4129 4130 // Branch either way. 4131 // NaN case is less traveled, which makes all the difference. 4132 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); 4133 Node *opt_isnan = _gvn.transform(ifisnan); 4134 assert( opt_isnan->is_If(), "Expect an IfNode"); 4135 IfNode *opt_ifisnan = (IfNode*)opt_isnan; 4136 Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan)); 4137 4138 set_control(iftrue); 4139 4140 static const jint nan_bits = 0x7fc00000; 4141 Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN 4142 phi->init_req(1, _gvn.transform( slow_result )); 4143 r->init_req(1, iftrue); 4144 4145 // Else fall through 4146 Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan)); 4147 set_control(iffalse); 4148 4149 phi->init_req(2, _gvn.transform(new MoveF2INode(arg))); 4150 r->init_req(2, iffalse); 4151 4152 // Post merge 4153 set_control(_gvn.transform(r)); 4154 record_for_igvn(r); 4155 4156 C->set_has_split_ifs(true); // Has chance for split-if optimization 4157 result = phi; 4158 assert(result->bottom_type()->isa_int(), "must be"); 4159 break; 4160 } 4161 4162 default: 4163 fatal_unexpected_iid(id); 4164 break; 4165 } 4166 set_result(_gvn.transform(result)); 4167 return true; 4168 } 4169 4170 //----------------------inline_unsafe_copyMemory------------------------- 4171 // public native void Unsafe.copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes); 4172 bool LibraryCallKit::inline_unsafe_copyMemory() { 4173 if (callee()->is_static()) return false; // caller must have the capability! 4174 null_check_receiver(); // null-check receiver 4175 if (stopped()) return true; 4176 4177 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 4178 4179 Node* src_ptr = argument(1); // type: oop 4180 Node* src_off = ConvL2X(argument(2)); // type: long 4181 Node* dst_ptr = argument(4); // type: oop 4182 Node* dst_off = ConvL2X(argument(5)); // type: long 4183 Node* size = ConvL2X(argument(7)); // type: long 4184 4185 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 4186 "fieldOffset must be byte-scaled"); 4187 4188 Node* src = make_unsafe_address(src_ptr, src_off, ACCESS_READ); 4189 Node* dst = make_unsafe_address(dst_ptr, dst_off, ACCESS_WRITE); 4190 4191 // Conservatively insert a memory barrier on all memory slices. 4192 // Do not let writes of the copy source or destination float below the copy. 4193 insert_mem_bar(Op_MemBarCPUOrder); 4194 4195 Node* thread = _gvn.transform(new ThreadLocalNode()); 4196 Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset())); 4197 BasicType doing_unsafe_access_bt = T_BYTE; 4198 assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented"); 4199 4200 // update volatile field 4201 store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered); 4202 4203 // Call it. Note that the length argument is not scaled. 4204 make_runtime_call(RC_LEAF|RC_NO_FP, 4205 OptoRuntime::fast_arraycopy_Type(), 4206 StubRoutines::unsafe_arraycopy(), 4207 "unsafe_arraycopy", 4208 TypeRawPtr::BOTTOM, 4209 src, dst, size XTOP); 4210 4211 store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered); 4212 4213 // Do not let reads of the copy destination float above the copy. 4214 insert_mem_bar(Op_MemBarCPUOrder); 4215 4216 return true; 4217 } 4218 4219 //------------------------clone_coping----------------------------------- 4220 // Helper function for inline_native_clone. 4221 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array) { 4222 assert(obj_size != NULL, ""); 4223 Node* raw_obj = alloc_obj->in(1); 4224 assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), ""); 4225 4226 AllocateNode* alloc = NULL; 4227 if (ReduceBulkZeroing) { 4228 // We will be completely responsible for initializing this object - 4229 // mark Initialize node as complete. 4230 alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn); 4231 // The object was just allocated - there should be no any stores! 4232 guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), ""); 4233 // Mark as complete_with_arraycopy so that on AllocateNode 4234 // expansion, we know this AllocateNode is initialized by an array 4235 // copy and a StoreStore barrier exists after the array copy. 4236 alloc->initialization()->set_complete_with_arraycopy(); 4237 } 4238 4239 Node* size = _gvn.transform(obj_size); 4240 access_clone(obj, alloc_obj, size, is_array); 4241 4242 // Do not let reads from the cloned object float above the arraycopy. 4243 if (alloc != NULL) { 4244 // Do not let stores that initialize this object be reordered with 4245 // a subsequent store that would make this object accessible by 4246 // other threads. 4247 // Record what AllocateNode this StoreStore protects so that 4248 // escape analysis can go from the MemBarStoreStoreNode to the 4249 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 4250 // based on the escape status of the AllocateNode. 4251 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 4252 } else { 4253 insert_mem_bar(Op_MemBarCPUOrder); 4254 } 4255 } 4256 4257 //------------------------inline_native_clone---------------------------- 4258 // protected native Object java.lang.Object.clone(); 4259 // 4260 // Here are the simple edge cases: 4261 // null receiver => normal trap 4262 // virtual and clone was overridden => slow path to out-of-line clone 4263 // not cloneable or finalizer => slow path to out-of-line Object.clone 4264 // 4265 // The general case has two steps, allocation and copying. 4266 // Allocation has two cases, and uses GraphKit::new_instance or new_array. 4267 // 4268 // Copying also has two cases, oop arrays and everything else. 4269 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy). 4270 // Everything else uses the tight inline loop supplied by CopyArrayNode. 4271 // 4272 // These steps fold up nicely if and when the cloned object's klass 4273 // can be sharply typed as an object array, a type array, or an instance. 4274 // 4275 bool LibraryCallKit::inline_native_clone(bool is_virtual) { 4276 PhiNode* result_val; 4277 4278 // Set the reexecute bit for the interpreter to reexecute 4279 // the bytecode that invokes Object.clone if deoptimization happens. 4280 { PreserveReexecuteState preexecs(this); 4281 jvms()->set_should_reexecute(true); 4282 4283 Node* obj = null_check_receiver(); 4284 if (stopped()) return true; 4285 4286 const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr(); 4287 4288 // If we are going to clone an instance, we need its exact type to 4289 // know the number and types of fields to convert the clone to 4290 // loads/stores. Maybe a speculative type can help us. 4291 if (!obj_type->klass_is_exact() && 4292 obj_type->speculative_type() != NULL && 4293 obj_type->speculative_type()->is_instance_klass()) { 4294 ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass(); 4295 if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem && 4296 !spec_ik->has_injected_fields()) { 4297 ciKlass* k = obj_type->klass(); 4298 if (!k->is_instance_klass() || 4299 k->as_instance_klass()->is_interface() || 4300 k->as_instance_klass()->has_subklass()) { 4301 obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false); 4302 } 4303 } 4304 } 4305 4306 // Conservatively insert a memory barrier on all memory slices. 4307 // Do not let writes into the original float below the clone. 4308 insert_mem_bar(Op_MemBarCPUOrder); 4309 4310 // paths into result_reg: 4311 enum { 4312 _slow_path = 1, // out-of-line call to clone method (virtual or not) 4313 _objArray_path, // plain array allocation, plus arrayof_oop_arraycopy 4314 _array_path, // plain array allocation, plus arrayof_long_arraycopy 4315 _instance_path, // plain instance allocation, plus arrayof_long_arraycopy 4316 PATH_LIMIT 4317 }; 4318 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 4319 result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL); 4320 PhiNode* result_i_o = new PhiNode(result_reg, Type::ABIO); 4321 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 4322 record_for_igvn(result_reg); 4323 4324 Node* obj_klass = load_object_klass(obj); 4325 Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL); 4326 if (array_ctl != NULL) { 4327 // It's an array. 4328 PreserveJVMState pjvms(this); 4329 set_control(array_ctl); 4330 Node* obj_length = load_array_length(obj); 4331 Node* obj_size = NULL; 4332 Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size, /*deoptimize_on_exception=*/true); 4333 4334 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 4335 if (bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, BarrierSetC2::Parsing)) { 4336 // If it is an oop array, it requires very special treatment, 4337 // because gc barriers are required when accessing the array. 4338 Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL); 4339 if (is_obja != NULL) { 4340 PreserveJVMState pjvms2(this); 4341 set_control(is_obja); 4342 // Generate a direct call to the right arraycopy function(s). 4343 Node* alloc = tightly_coupled_allocation(alloc_obj, NULL); 4344 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, obj, intcon(0), alloc_obj, intcon(0), obj_length, alloc != NULL, false); 4345 ac->set_clone_oop_array(); 4346 Node* n = _gvn.transform(ac); 4347 assert(n == ac, "cannot disappear"); 4348 ac->connect_outputs(this, /*deoptimize_on_exception=*/true); 4349 4350 result_reg->init_req(_objArray_path, control()); 4351 result_val->init_req(_objArray_path, alloc_obj); 4352 result_i_o ->set_req(_objArray_path, i_o()); 4353 result_mem ->set_req(_objArray_path, reset_memory()); 4354 } 4355 } 4356 // Otherwise, there are no barriers to worry about. 4357 // (We can dispense with card marks if we know the allocation 4358 // comes out of eden (TLAB)... In fact, ReduceInitialCardMarks 4359 // causes the non-eden paths to take compensating steps to 4360 // simulate a fresh allocation, so that no further 4361 // card marks are required in compiled code to initialize 4362 // the object.) 4363 4364 if (!stopped()) { 4365 copy_to_clone(obj, alloc_obj, obj_size, true); 4366 4367 // Present the results of the copy. 4368 result_reg->init_req(_array_path, control()); 4369 result_val->init_req(_array_path, alloc_obj); 4370 result_i_o ->set_req(_array_path, i_o()); 4371 result_mem ->set_req(_array_path, reset_memory()); 4372 } 4373 } 4374 4375 // We only go to the instance fast case code if we pass a number of guards. 4376 // The paths which do not pass are accumulated in the slow_region. 4377 RegionNode* slow_region = new RegionNode(1); 4378 record_for_igvn(slow_region); 4379 if (!stopped()) { 4380 // It's an instance (we did array above). Make the slow-path tests. 4381 // If this is a virtual call, we generate a funny guard. We grab 4382 // the vtable entry corresponding to clone() from the target object. 4383 // If the target method which we are calling happens to be the 4384 // Object clone() method, we pass the guard. We do not need this 4385 // guard for non-virtual calls; the caller is known to be the native 4386 // Object clone(). 4387 if (is_virtual) { 4388 generate_virtual_guard(obj_klass, slow_region); 4389 } 4390 4391 // The object must be easily cloneable and must not have a finalizer. 4392 // Both of these conditions may be checked in a single test. 4393 // We could optimize the test further, but we don't care. 4394 generate_access_flags_guard(obj_klass, 4395 // Test both conditions: 4396 JVM_ACC_IS_CLONEABLE_FAST | JVM_ACC_HAS_FINALIZER, 4397 // Must be cloneable but not finalizer: 4398 JVM_ACC_IS_CLONEABLE_FAST, 4399 slow_region); 4400 } 4401 4402 if (!stopped()) { 4403 // It's an instance, and it passed the slow-path tests. 4404 PreserveJVMState pjvms(this); 4405 Node* obj_size = NULL; 4406 // Need to deoptimize on exception from allocation since Object.clone intrinsic 4407 // is reexecuted if deoptimization occurs and there could be problems when merging 4408 // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false). 4409 Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size, /*deoptimize_on_exception=*/true); 4410 4411 copy_to_clone(obj, alloc_obj, obj_size, false); 4412 4413 // Present the results of the slow call. 4414 result_reg->init_req(_instance_path, control()); 4415 result_val->init_req(_instance_path, alloc_obj); 4416 result_i_o ->set_req(_instance_path, i_o()); 4417 result_mem ->set_req(_instance_path, reset_memory()); 4418 } 4419 4420 // Generate code for the slow case. We make a call to clone(). 4421 set_control(_gvn.transform(slow_region)); 4422 if (!stopped()) { 4423 PreserveJVMState pjvms(this); 4424 CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual); 4425 // We need to deoptimize on exception (see comment above) 4426 Node* slow_result = set_results_for_java_call(slow_call, false, /* deoptimize */ true); 4427 // this->control() comes from set_results_for_java_call 4428 result_reg->init_req(_slow_path, control()); 4429 result_val->init_req(_slow_path, slow_result); 4430 result_i_o ->set_req(_slow_path, i_o()); 4431 result_mem ->set_req(_slow_path, reset_memory()); 4432 } 4433 4434 // Return the combined state. 4435 set_control( _gvn.transform(result_reg)); 4436 set_i_o( _gvn.transform(result_i_o)); 4437 set_all_memory( _gvn.transform(result_mem)); 4438 } // original reexecute is set back here 4439 4440 set_result(_gvn.transform(result_val)); 4441 return true; 4442 } 4443 4444 // If we have a tightly coupled allocation, the arraycopy may take care 4445 // of the array initialization. If one of the guards we insert between 4446 // the allocation and the arraycopy causes a deoptimization, an 4447 // unitialized array will escape the compiled method. To prevent that 4448 // we set the JVM state for uncommon traps between the allocation and 4449 // the arraycopy to the state before the allocation so, in case of 4450 // deoptimization, we'll reexecute the allocation and the 4451 // initialization. 4452 JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) { 4453 if (alloc != NULL) { 4454 ciMethod* trap_method = alloc->jvms()->method(); 4455 int trap_bci = alloc->jvms()->bci(); 4456 4457 if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) && 4458 !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) { 4459 // Make sure there's no store between the allocation and the 4460 // arraycopy otherwise visible side effects could be rexecuted 4461 // in case of deoptimization and cause incorrect execution. 4462 bool no_interfering_store = true; 4463 Node* mem = alloc->in(TypeFunc::Memory); 4464 if (mem->is_MergeMem()) { 4465 for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) { 4466 Node* n = mms.memory(); 4467 if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) { 4468 assert(n->is_Store(), "what else?"); 4469 no_interfering_store = false; 4470 break; 4471 } 4472 } 4473 } else { 4474 for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) { 4475 Node* n = mms.memory(); 4476 if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) { 4477 assert(n->is_Store(), "what else?"); 4478 no_interfering_store = false; 4479 break; 4480 } 4481 } 4482 } 4483 4484 if (no_interfering_store) { 4485 JVMState* old_jvms = alloc->jvms()->clone_shallow(C); 4486 uint size = alloc->req(); 4487 SafePointNode* sfpt = new SafePointNode(size, old_jvms); 4488 old_jvms->set_map(sfpt); 4489 for (uint i = 0; i < size; i++) { 4490 sfpt->init_req(i, alloc->in(i)); 4491 } 4492 // re-push array length for deoptimization 4493 sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength)); 4494 old_jvms->set_sp(old_jvms->sp()+1); 4495 old_jvms->set_monoff(old_jvms->monoff()+1); 4496 old_jvms->set_scloff(old_jvms->scloff()+1); 4497 old_jvms->set_endoff(old_jvms->endoff()+1); 4498 old_jvms->set_should_reexecute(true); 4499 4500 sfpt->set_i_o(map()->i_o()); 4501 sfpt->set_memory(map()->memory()); 4502 sfpt->set_control(map()->control()); 4503 4504 JVMState* saved_jvms = jvms(); 4505 saved_reexecute_sp = _reexecute_sp; 4506 4507 set_jvms(sfpt->jvms()); 4508 _reexecute_sp = jvms()->sp(); 4509 4510 return saved_jvms; 4511 } 4512 } 4513 } 4514 return NULL; 4515 } 4516 4517 // In case of a deoptimization, we restart execution at the 4518 // allocation, allocating a new array. We would leave an uninitialized 4519 // array in the heap that GCs wouldn't expect. Move the allocation 4520 // after the traps so we don't allocate the array if we 4521 // deoptimize. This is possible because tightly_coupled_allocation() 4522 // guarantees there's no observer of the allocated array at this point 4523 // and the control flow is simple enough. 4524 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms, 4525 int saved_reexecute_sp, uint new_idx) { 4526 if (saved_jvms != NULL && !stopped()) { 4527 assert(alloc != NULL, "only with a tightly coupled allocation"); 4528 // restore JVM state to the state at the arraycopy 4529 saved_jvms->map()->set_control(map()->control()); 4530 assert(saved_jvms->map()->memory() == map()->memory(), "memory state changed?"); 4531 assert(saved_jvms->map()->i_o() == map()->i_o(), "IO state changed?"); 4532 // If we've improved the types of some nodes (null check) while 4533 // emitting the guards, propagate them to the current state 4534 map()->replaced_nodes().apply(saved_jvms->map(), new_idx); 4535 set_jvms(saved_jvms); 4536 _reexecute_sp = saved_reexecute_sp; 4537 4538 // Remove the allocation from above the guards 4539 CallProjections callprojs; 4540 alloc->extract_projections(&callprojs, true); 4541 InitializeNode* init = alloc->initialization(); 4542 Node* alloc_mem = alloc->in(TypeFunc::Memory); 4543 C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O)); 4544 C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem); 4545 C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0)); 4546 4547 // move the allocation here (after the guards) 4548 _gvn.hash_delete(alloc); 4549 alloc->set_req(TypeFunc::Control, control()); 4550 alloc->set_req(TypeFunc::I_O, i_o()); 4551 Node *mem = reset_memory(); 4552 set_all_memory(mem); 4553 alloc->set_req(TypeFunc::Memory, mem); 4554 set_control(init->proj_out_or_null(TypeFunc::Control)); 4555 set_i_o(callprojs.fallthrough_ioproj); 4556 4557 // Update memory as done in GraphKit::set_output_for_allocation() 4558 const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength)); 4559 const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type(); 4560 if (ary_type->isa_aryptr() && length_type != NULL) { 4561 ary_type = ary_type->is_aryptr()->cast_to_size(length_type); 4562 } 4563 const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot); 4564 int elemidx = C->get_alias_index(telemref); 4565 set_memory(init->proj_out_or_null(TypeFunc::Memory), Compile::AliasIdxRaw); 4566 set_memory(init->proj_out_or_null(TypeFunc::Memory), elemidx); 4567 4568 Node* allocx = _gvn.transform(alloc); 4569 assert(allocx == alloc, "where has the allocation gone?"); 4570 assert(dest->is_CheckCastPP(), "not an allocation result?"); 4571 4572 _gvn.hash_delete(dest); 4573 dest->set_req(0, control()); 4574 Node* destx = _gvn.transform(dest); 4575 assert(destx == dest, "where has the allocation result gone?"); 4576 } 4577 } 4578 4579 4580 //------------------------------inline_arraycopy----------------------- 4581 // public static native void java.lang.System.arraycopy(Object src, int srcPos, 4582 // Object dest, int destPos, 4583 // int length); 4584 bool LibraryCallKit::inline_arraycopy() { 4585 // Get the arguments. 4586 Node* src = argument(0); // type: oop 4587 Node* src_offset = argument(1); // type: int 4588 Node* dest = argument(2); // type: oop 4589 Node* dest_offset = argument(3); // type: int 4590 Node* length = argument(4); // type: int 4591 4592 uint new_idx = C->unique(); 4593 4594 // Check for allocation before we add nodes that would confuse 4595 // tightly_coupled_allocation() 4596 AllocateArrayNode* alloc = tightly_coupled_allocation(dest, NULL); 4597 4598 int saved_reexecute_sp = -1; 4599 JVMState* saved_jvms = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp); 4600 // See arraycopy_restore_alloc_state() comment 4601 // if alloc == NULL we don't have to worry about a tightly coupled allocation so we can emit all needed guards 4602 // if saved_jvms != NULL (then alloc != NULL) then we can handle guards and a tightly coupled allocation 4603 // if saved_jvms == NULL and alloc != NULL, we can't emit any guards 4604 bool can_emit_guards = (alloc == NULL || saved_jvms != NULL); 4605 4606 // The following tests must be performed 4607 // (1) src and dest are arrays. 4608 // (2) src and dest arrays must have elements of the same BasicType 4609 // (3) src and dest must not be null. 4610 // (4) src_offset must not be negative. 4611 // (5) dest_offset must not be negative. 4612 // (6) length must not be negative. 4613 // (7) src_offset + length must not exceed length of src. 4614 // (8) dest_offset + length must not exceed length of dest. 4615 // (9) each element of an oop array must be assignable 4616 4617 // (3) src and dest must not be null. 4618 // always do this here because we need the JVM state for uncommon traps 4619 Node* null_ctl = top(); 4620 src = saved_jvms != NULL ? null_check_oop(src, &null_ctl, true, true) : null_check(src, T_ARRAY); 4621 assert(null_ctl->is_top(), "no null control here"); 4622 dest = null_check(dest, T_ARRAY); 4623 4624 if (!can_emit_guards) { 4625 // if saved_jvms == NULL and alloc != NULL, we don't emit any 4626 // guards but the arraycopy node could still take advantage of a 4627 // tightly allocated allocation. tightly_coupled_allocation() is 4628 // called again to make sure it takes the null check above into 4629 // account: the null check is mandatory and if it caused an 4630 // uncommon trap to be emitted then the allocation can't be 4631 // considered tightly coupled in this context. 4632 alloc = tightly_coupled_allocation(dest, NULL); 4633 } 4634 4635 bool validated = false; 4636 4637 const Type* src_type = _gvn.type(src); 4638 const Type* dest_type = _gvn.type(dest); 4639 const TypeAryPtr* top_src = src_type->isa_aryptr(); 4640 const TypeAryPtr* top_dest = dest_type->isa_aryptr(); 4641 4642 // Do we have the type of src? 4643 bool has_src = (top_src != NULL && top_src->klass() != NULL); 4644 // Do we have the type of dest? 4645 bool has_dest = (top_dest != NULL && top_dest->klass() != NULL); 4646 // Is the type for src from speculation? 4647 bool src_spec = false; 4648 // Is the type for dest from speculation? 4649 bool dest_spec = false; 4650 4651 if ((!has_src || !has_dest) && can_emit_guards) { 4652 // We don't have sufficient type information, let's see if 4653 // speculative types can help. We need to have types for both src 4654 // and dest so that it pays off. 4655 4656 // Do we already have or could we have type information for src 4657 bool could_have_src = has_src; 4658 // Do we already have or could we have type information for dest 4659 bool could_have_dest = has_dest; 4660 4661 ciKlass* src_k = NULL; 4662 if (!has_src) { 4663 src_k = src_type->speculative_type_not_null(); 4664 if (src_k != NULL && src_k->is_array_klass()) { 4665 could_have_src = true; 4666 } 4667 } 4668 4669 ciKlass* dest_k = NULL; 4670 if (!has_dest) { 4671 dest_k = dest_type->speculative_type_not_null(); 4672 if (dest_k != NULL && dest_k->is_array_klass()) { 4673 could_have_dest = true; 4674 } 4675 } 4676 4677 if (could_have_src && could_have_dest) { 4678 // This is going to pay off so emit the required guards 4679 if (!has_src) { 4680 src = maybe_cast_profiled_obj(src, src_k, true); 4681 src_type = _gvn.type(src); 4682 top_src = src_type->isa_aryptr(); 4683 has_src = (top_src != NULL && top_src->klass() != NULL); 4684 src_spec = true; 4685 } 4686 if (!has_dest) { 4687 dest = maybe_cast_profiled_obj(dest, dest_k, true); 4688 dest_type = _gvn.type(dest); 4689 top_dest = dest_type->isa_aryptr(); 4690 has_dest = (top_dest != NULL && top_dest->klass() != NULL); 4691 dest_spec = true; 4692 } 4693 } 4694 } 4695 4696 if (has_src && has_dest && can_emit_guards) { 4697 BasicType src_elem = top_src->klass()->as_array_klass()->element_type()->basic_type(); 4698 BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type(); 4699 if (is_reference_type(src_elem)) src_elem = T_OBJECT; 4700 if (is_reference_type(dest_elem)) dest_elem = T_OBJECT; 4701 4702 if (src_elem == dest_elem && src_elem == T_OBJECT) { 4703 // If both arrays are object arrays then having the exact types 4704 // for both will remove the need for a subtype check at runtime 4705 // before the call and may make it possible to pick a faster copy 4706 // routine (without a subtype check on every element) 4707 // Do we have the exact type of src? 4708 bool could_have_src = src_spec; 4709 // Do we have the exact type of dest? 4710 bool could_have_dest = dest_spec; 4711 ciKlass* src_k = top_src->klass(); 4712 ciKlass* dest_k = top_dest->klass(); 4713 if (!src_spec) { 4714 src_k = src_type->speculative_type_not_null(); 4715 if (src_k != NULL && src_k->is_array_klass()) { 4716 could_have_src = true; 4717 } 4718 } 4719 if (!dest_spec) { 4720 dest_k = dest_type->speculative_type_not_null(); 4721 if (dest_k != NULL && dest_k->is_array_klass()) { 4722 could_have_dest = true; 4723 } 4724 } 4725 if (could_have_src && could_have_dest) { 4726 // If we can have both exact types, emit the missing guards 4727 if (could_have_src && !src_spec) { 4728 src = maybe_cast_profiled_obj(src, src_k, true); 4729 } 4730 if (could_have_dest && !dest_spec) { 4731 dest = maybe_cast_profiled_obj(dest, dest_k, true); 4732 } 4733 } 4734 } 4735 } 4736 4737 ciMethod* trap_method = method(); 4738 int trap_bci = bci(); 4739 if (saved_jvms != NULL) { 4740 trap_method = alloc->jvms()->method(); 4741 trap_bci = alloc->jvms()->bci(); 4742 } 4743 4744 bool negative_length_guard_generated = false; 4745 4746 if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) && 4747 can_emit_guards && 4748 !src->is_top() && !dest->is_top()) { 4749 // validate arguments: enables transformation the ArrayCopyNode 4750 validated = true; 4751 4752 RegionNode* slow_region = new RegionNode(1); 4753 record_for_igvn(slow_region); 4754 4755 // (1) src and dest are arrays. 4756 generate_non_array_guard(load_object_klass(src), slow_region); 4757 generate_non_array_guard(load_object_klass(dest), slow_region); 4758 4759 // (2) src and dest arrays must have elements of the same BasicType 4760 // done at macro expansion or at Ideal transformation time 4761 4762 // (4) src_offset must not be negative. 4763 generate_negative_guard(src_offset, slow_region); 4764 4765 // (5) dest_offset must not be negative. 4766 generate_negative_guard(dest_offset, slow_region); 4767 4768 // (7) src_offset + length must not exceed length of src. 4769 generate_limit_guard(src_offset, length, 4770 load_array_length(src), 4771 slow_region); 4772 4773 // (8) dest_offset + length must not exceed length of dest. 4774 generate_limit_guard(dest_offset, length, 4775 load_array_length(dest), 4776 slow_region); 4777 4778 // (6) length must not be negative. 4779 // This is also checked in generate_arraycopy() during macro expansion, but 4780 // we also have to check it here for the case where the ArrayCopyNode will 4781 // be eliminated by Escape Analysis. 4782 if (EliminateAllocations) { 4783 generate_negative_guard(length, slow_region); 4784 negative_length_guard_generated = true; 4785 } 4786 4787 // (9) each element of an oop array must be assignable 4788 Node* dest_klass = load_object_klass(dest); 4789 if (src != dest) { 4790 Node* not_subtype_ctrl = gen_subtype_check(src, dest_klass); 4791 4792 if (not_subtype_ctrl != top()) { 4793 PreserveJVMState pjvms(this); 4794 set_control(not_subtype_ctrl); 4795 uncommon_trap(Deoptimization::Reason_intrinsic, 4796 Deoptimization::Action_make_not_entrant); 4797 assert(stopped(), "Should be stopped"); 4798 } 4799 } 4800 { 4801 PreserveJVMState pjvms(this); 4802 set_control(_gvn.transform(slow_region)); 4803 uncommon_trap(Deoptimization::Reason_intrinsic, 4804 Deoptimization::Action_make_not_entrant); 4805 assert(stopped(), "Should be stopped"); 4806 } 4807 4808 const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->is_klassptr(); 4809 const Type *toop = TypeOopPtr::make_from_klass(dest_klass_t->klass()); 4810 src = _gvn.transform(new CheckCastPPNode(control(), src, toop)); 4811 } 4812 4813 arraycopy_move_allocation_here(alloc, dest, saved_jvms, saved_reexecute_sp, new_idx); 4814 4815 if (stopped()) { 4816 return true; 4817 } 4818 4819 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != NULL, negative_length_guard_generated, 4820 // Create LoadRange and LoadKlass nodes for use during macro expansion here 4821 // so the compiler has a chance to eliminate them: during macro expansion, 4822 // we have to set their control (CastPP nodes are eliminated). 4823 load_object_klass(src), load_object_klass(dest), 4824 load_array_length(src), load_array_length(dest)); 4825 4826 ac->set_arraycopy(validated); 4827 4828 Node* n = _gvn.transform(ac); 4829 if (n == ac) { 4830 ac->connect_outputs(this); 4831 } else { 4832 assert(validated, "shouldn't transform if all arguments not validated"); 4833 set_all_memory(n); 4834 } 4835 clear_upper_avx(); 4836 4837 4838 return true; 4839 } 4840 4841 4842 // Helper function which determines if an arraycopy immediately follows 4843 // an allocation, with no intervening tests or other escapes for the object. 4844 AllocateArrayNode* 4845 LibraryCallKit::tightly_coupled_allocation(Node* ptr, 4846 RegionNode* slow_region) { 4847 if (stopped()) return NULL; // no fast path 4848 if (C->AliasLevel() == 0) return NULL; // no MergeMems around 4849 4850 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn); 4851 if (alloc == NULL) return NULL; 4852 4853 Node* rawmem = memory(Compile::AliasIdxRaw); 4854 // Is the allocation's memory state untouched? 4855 if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) { 4856 // Bail out if there have been raw-memory effects since the allocation. 4857 // (Example: There might have been a call or safepoint.) 4858 return NULL; 4859 } 4860 rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw); 4861 if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) { 4862 return NULL; 4863 } 4864 4865 // There must be no unexpected observers of this allocation. 4866 for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) { 4867 Node* obs = ptr->fast_out(i); 4868 if (obs != this->map()) { 4869 return NULL; 4870 } 4871 } 4872 4873 // This arraycopy must unconditionally follow the allocation of the ptr. 4874 Node* alloc_ctl = ptr->in(0); 4875 Node* ctl = control(); 4876 while (ctl != alloc_ctl) { 4877 // There may be guards which feed into the slow_region. 4878 // Any other control flow means that we might not get a chance 4879 // to finish initializing the allocated object. 4880 if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) { 4881 IfNode* iff = ctl->in(0)->as_If(); 4882 Node* not_ctl = iff->proj_out_or_null(1 - ctl->as_Proj()->_con); 4883 assert(not_ctl != NULL && not_ctl != ctl, "found alternate"); 4884 if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) { 4885 ctl = iff->in(0); // This test feeds the known slow_region. 4886 continue; 4887 } 4888 // One more try: Various low-level checks bottom out in 4889 // uncommon traps. If the debug-info of the trap omits 4890 // any reference to the allocation, as we've already 4891 // observed, then there can be no objection to the trap. 4892 bool found_trap = false; 4893 for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) { 4894 Node* obs = not_ctl->fast_out(j); 4895 if (obs->in(0) == not_ctl && obs->is_Call() && 4896 (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) { 4897 found_trap = true; break; 4898 } 4899 } 4900 if (found_trap) { 4901 ctl = iff->in(0); // This test feeds a harmless uncommon trap. 4902 continue; 4903 } 4904 } 4905 return NULL; 4906 } 4907 4908 // If we get this far, we have an allocation which immediately 4909 // precedes the arraycopy, and we can take over zeroing the new object. 4910 // The arraycopy will finish the initialization, and provide 4911 // a new control state to which we will anchor the destination pointer. 4912 4913 return alloc; 4914 } 4915 4916 //-------------inline_encodeISOArray----------------------------------- 4917 // encode char[] to byte[] in ISO_8859_1 4918 bool LibraryCallKit::inline_encodeISOArray() { 4919 assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters"); 4920 // no receiver since it is static method 4921 Node *src = argument(0); 4922 Node *src_offset = argument(1); 4923 Node *dst = argument(2); 4924 Node *dst_offset = argument(3); 4925 Node *length = argument(4); 4926 4927 src = must_be_not_null(src, true); 4928 dst = must_be_not_null(dst, true); 4929 4930 const Type* src_type = src->Value(&_gvn); 4931 const Type* dst_type = dst->Value(&_gvn); 4932 const TypeAryPtr* top_src = src_type->isa_aryptr(); 4933 const TypeAryPtr* top_dest = dst_type->isa_aryptr(); 4934 if (top_src == NULL || top_src->klass() == NULL || 4935 top_dest == NULL || top_dest->klass() == NULL) { 4936 // failed array check 4937 return false; 4938 } 4939 4940 // Figure out the size and type of the elements we will be copying. 4941 BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 4942 BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 4943 if (!((src_elem == T_CHAR) || (src_elem== T_BYTE)) || dst_elem != T_BYTE) { 4944 return false; 4945 } 4946 4947 Node* src_start = array_element_address(src, src_offset, T_CHAR); 4948 Node* dst_start = array_element_address(dst, dst_offset, dst_elem); 4949 // 'src_start' points to src array + scaled offset 4950 // 'dst_start' points to dst array + scaled offset 4951 4952 const TypeAryPtr* mtype = TypeAryPtr::BYTES; 4953 Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length); 4954 enc = _gvn.transform(enc); 4955 Node* res_mem = _gvn.transform(new SCMemProjNode(enc)); 4956 set_memory(res_mem, mtype); 4957 set_result(enc); 4958 clear_upper_avx(); 4959 4960 return true; 4961 } 4962 4963 //-------------inline_multiplyToLen----------------------------------- 4964 bool LibraryCallKit::inline_multiplyToLen() { 4965 assert(UseMultiplyToLenIntrinsic, "not implemented on this platform"); 4966 4967 address stubAddr = StubRoutines::multiplyToLen(); 4968 if (stubAddr == NULL) { 4969 return false; // Intrinsic's stub is not implemented on this platform 4970 } 4971 const char* stubName = "multiplyToLen"; 4972 4973 assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters"); 4974 4975 // no receiver because it is a static method 4976 Node* x = argument(0); 4977 Node* xlen = argument(1); 4978 Node* y = argument(2); 4979 Node* ylen = argument(3); 4980 Node* z = argument(4); 4981 4982 x = must_be_not_null(x, true); 4983 y = must_be_not_null(y, true); 4984 4985 const Type* x_type = x->Value(&_gvn); 4986 const Type* y_type = y->Value(&_gvn); 4987 const TypeAryPtr* top_x = x_type->isa_aryptr(); 4988 const TypeAryPtr* top_y = y_type->isa_aryptr(); 4989 if (top_x == NULL || top_x->klass() == NULL || 4990 top_y == NULL || top_y->klass() == NULL) { 4991 // failed array check 4992 return false; 4993 } 4994 4995 BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 4996 BasicType y_elem = y_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 4997 if (x_elem != T_INT || y_elem != T_INT) { 4998 return false; 4999 } 5000 5001 // Set the original stack and the reexecute bit for the interpreter to reexecute 5002 // the bytecode that invokes BigInteger.multiplyToLen() if deoptimization happens 5003 // on the return from z array allocation in runtime. 5004 { PreserveReexecuteState preexecs(this); 5005 jvms()->set_should_reexecute(true); 5006 5007 Node* x_start = array_element_address(x, intcon(0), x_elem); 5008 Node* y_start = array_element_address(y, intcon(0), y_elem); 5009 // 'x_start' points to x array + scaled xlen 5010 // 'y_start' points to y array + scaled ylen 5011 5012 // Allocate the result array 5013 Node* zlen = _gvn.transform(new AddINode(xlen, ylen)); 5014 ciKlass* klass = ciTypeArrayKlass::make(T_INT); 5015 Node* klass_node = makecon(TypeKlassPtr::make(klass)); 5016 5017 IdealKit ideal(this); 5018 5019 #define __ ideal. 5020 Node* one = __ ConI(1); 5021 Node* zero = __ ConI(0); 5022 IdealVariable need_alloc(ideal), z_alloc(ideal); __ declarations_done(); 5023 __ set(need_alloc, zero); 5024 __ set(z_alloc, z); 5025 __ if_then(z, BoolTest::eq, null()); { 5026 __ increment (need_alloc, one); 5027 } __ else_(); { 5028 // Update graphKit memory and control from IdealKit. 5029 sync_kit(ideal); 5030 Node *cast = new CastPPNode(z, TypePtr::NOTNULL); 5031 cast->init_req(0, control()); 5032 _gvn.set_type(cast, cast->bottom_type()); 5033 C->record_for_igvn(cast); 5034 5035 Node* zlen_arg = load_array_length(cast); 5036 // Update IdealKit memory and control from graphKit. 5037 __ sync_kit(this); 5038 __ if_then(zlen_arg, BoolTest::lt, zlen); { 5039 __ increment (need_alloc, one); 5040 } __ end_if(); 5041 } __ end_if(); 5042 5043 __ if_then(__ value(need_alloc), BoolTest::ne, zero); { 5044 // Update graphKit memory and control from IdealKit. 5045 sync_kit(ideal); 5046 Node * narr = new_array(klass_node, zlen, 1); 5047 // Update IdealKit memory and control from graphKit. 5048 __ sync_kit(this); 5049 __ set(z_alloc, narr); 5050 } __ end_if(); 5051 5052 sync_kit(ideal); 5053 z = __ value(z_alloc); 5054 // Can't use TypeAryPtr::INTS which uses Bottom offset. 5055 _gvn.set_type(z, TypeOopPtr::make_from_klass(klass)); 5056 // Final sync IdealKit and GraphKit. 5057 final_sync(ideal); 5058 #undef __ 5059 5060 Node* z_start = array_element_address(z, intcon(0), T_INT); 5061 5062 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 5063 OptoRuntime::multiplyToLen_Type(), 5064 stubAddr, stubName, TypePtr::BOTTOM, 5065 x_start, xlen, y_start, ylen, z_start, zlen); 5066 } // original reexecute is set back here 5067 5068 C->set_has_split_ifs(true); // Has chance for split-if optimization 5069 set_result(z); 5070 return true; 5071 } 5072 5073 //-------------inline_squareToLen------------------------------------ 5074 bool LibraryCallKit::inline_squareToLen() { 5075 assert(UseSquareToLenIntrinsic, "not implemented on this platform"); 5076 5077 address stubAddr = StubRoutines::squareToLen(); 5078 if (stubAddr == NULL) { 5079 return false; // Intrinsic's stub is not implemented on this platform 5080 } 5081 const char* stubName = "squareToLen"; 5082 5083 assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters"); 5084 5085 Node* x = argument(0); 5086 Node* len = argument(1); 5087 Node* z = argument(2); 5088 Node* zlen = argument(3); 5089 5090 x = must_be_not_null(x, true); 5091 z = must_be_not_null(z, true); 5092 5093 const Type* x_type = x->Value(&_gvn); 5094 const Type* z_type = z->Value(&_gvn); 5095 const TypeAryPtr* top_x = x_type->isa_aryptr(); 5096 const TypeAryPtr* top_z = z_type->isa_aryptr(); 5097 if (top_x == NULL || top_x->klass() == NULL || 5098 top_z == NULL || top_z->klass() == NULL) { 5099 // failed array check 5100 return false; 5101 } 5102 5103 BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5104 BasicType z_elem = z_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5105 if (x_elem != T_INT || z_elem != T_INT) { 5106 return false; 5107 } 5108 5109 5110 Node* x_start = array_element_address(x, intcon(0), x_elem); 5111 Node* z_start = array_element_address(z, intcon(0), z_elem); 5112 5113 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 5114 OptoRuntime::squareToLen_Type(), 5115 stubAddr, stubName, TypePtr::BOTTOM, 5116 x_start, len, z_start, zlen); 5117 5118 set_result(z); 5119 return true; 5120 } 5121 5122 //-------------inline_mulAdd------------------------------------------ 5123 bool LibraryCallKit::inline_mulAdd() { 5124 assert(UseMulAddIntrinsic, "not implemented on this platform"); 5125 5126 address stubAddr = StubRoutines::mulAdd(); 5127 if (stubAddr == NULL) { 5128 return false; // Intrinsic's stub is not implemented on this platform 5129 } 5130 const char* stubName = "mulAdd"; 5131 5132 assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters"); 5133 5134 Node* out = argument(0); 5135 Node* in = argument(1); 5136 Node* offset = argument(2); 5137 Node* len = argument(3); 5138 Node* k = argument(4); 5139 5140 out = must_be_not_null(out, true); 5141 5142 const Type* out_type = out->Value(&_gvn); 5143 const Type* in_type = in->Value(&_gvn); 5144 const TypeAryPtr* top_out = out_type->isa_aryptr(); 5145 const TypeAryPtr* top_in = in_type->isa_aryptr(); 5146 if (top_out == NULL || top_out->klass() == NULL || 5147 top_in == NULL || top_in->klass() == NULL) { 5148 // failed array check 5149 return false; 5150 } 5151 5152 BasicType out_elem = out_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5153 BasicType in_elem = in_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5154 if (out_elem != T_INT || in_elem != T_INT) { 5155 return false; 5156 } 5157 5158 Node* outlen = load_array_length(out); 5159 Node* new_offset = _gvn.transform(new SubINode(outlen, offset)); 5160 Node* out_start = array_element_address(out, intcon(0), out_elem); 5161 Node* in_start = array_element_address(in, intcon(0), in_elem); 5162 5163 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 5164 OptoRuntime::mulAdd_Type(), 5165 stubAddr, stubName, TypePtr::BOTTOM, 5166 out_start,in_start, new_offset, len, k); 5167 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 5168 set_result(result); 5169 return true; 5170 } 5171 5172 //-------------inline_montgomeryMultiply----------------------------------- 5173 bool LibraryCallKit::inline_montgomeryMultiply() { 5174 address stubAddr = StubRoutines::montgomeryMultiply(); 5175 if (stubAddr == NULL) { 5176 return false; // Intrinsic's stub is not implemented on this platform 5177 } 5178 5179 assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform"); 5180 const char* stubName = "montgomery_multiply"; 5181 5182 assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters"); 5183 5184 Node* a = argument(0); 5185 Node* b = argument(1); 5186 Node* n = argument(2); 5187 Node* len = argument(3); 5188 Node* inv = argument(4); 5189 Node* m = argument(6); 5190 5191 const Type* a_type = a->Value(&_gvn); 5192 const TypeAryPtr* top_a = a_type->isa_aryptr(); 5193 const Type* b_type = b->Value(&_gvn); 5194 const TypeAryPtr* top_b = b_type->isa_aryptr(); 5195 const Type* n_type = a->Value(&_gvn); 5196 const TypeAryPtr* top_n = n_type->isa_aryptr(); 5197 const Type* m_type = a->Value(&_gvn); 5198 const TypeAryPtr* top_m = m_type->isa_aryptr(); 5199 if (top_a == NULL || top_a->klass() == NULL || 5200 top_b == NULL || top_b->klass() == NULL || 5201 top_n == NULL || top_n->klass() == NULL || 5202 top_m == NULL || top_m->klass() == NULL) { 5203 // failed array check 5204 return false; 5205 } 5206 5207 BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5208 BasicType b_elem = b_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5209 BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5210 BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5211 if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) { 5212 return false; 5213 } 5214 5215 // Make the call 5216 { 5217 Node* a_start = array_element_address(a, intcon(0), a_elem); 5218 Node* b_start = array_element_address(b, intcon(0), b_elem); 5219 Node* n_start = array_element_address(n, intcon(0), n_elem); 5220 Node* m_start = array_element_address(m, intcon(0), m_elem); 5221 5222 Node* call = make_runtime_call(RC_LEAF, 5223 OptoRuntime::montgomeryMultiply_Type(), 5224 stubAddr, stubName, TypePtr::BOTTOM, 5225 a_start, b_start, n_start, len, inv, top(), 5226 m_start); 5227 set_result(m); 5228 } 5229 5230 return true; 5231 } 5232 5233 bool LibraryCallKit::inline_montgomerySquare() { 5234 address stubAddr = StubRoutines::montgomerySquare(); 5235 if (stubAddr == NULL) { 5236 return false; // Intrinsic's stub is not implemented on this platform 5237 } 5238 5239 assert(UseMontgomerySquareIntrinsic, "not implemented on this platform"); 5240 const char* stubName = "montgomery_square"; 5241 5242 assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters"); 5243 5244 Node* a = argument(0); 5245 Node* n = argument(1); 5246 Node* len = argument(2); 5247 Node* inv = argument(3); 5248 Node* m = argument(5); 5249 5250 const Type* a_type = a->Value(&_gvn); 5251 const TypeAryPtr* top_a = a_type->isa_aryptr(); 5252 const Type* n_type = a->Value(&_gvn); 5253 const TypeAryPtr* top_n = n_type->isa_aryptr(); 5254 const Type* m_type = a->Value(&_gvn); 5255 const TypeAryPtr* top_m = m_type->isa_aryptr(); 5256 if (top_a == NULL || top_a->klass() == NULL || 5257 top_n == NULL || top_n->klass() == NULL || 5258 top_m == NULL || top_m->klass() == NULL) { 5259 // failed array check 5260 return false; 5261 } 5262 5263 BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5264 BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5265 BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5266 if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) { 5267 return false; 5268 } 5269 5270 // Make the call 5271 { 5272 Node* a_start = array_element_address(a, intcon(0), a_elem); 5273 Node* n_start = array_element_address(n, intcon(0), n_elem); 5274 Node* m_start = array_element_address(m, intcon(0), m_elem); 5275 5276 Node* call = make_runtime_call(RC_LEAF, 5277 OptoRuntime::montgomerySquare_Type(), 5278 stubAddr, stubName, TypePtr::BOTTOM, 5279 a_start, n_start, len, inv, top(), 5280 m_start); 5281 set_result(m); 5282 } 5283 5284 return true; 5285 } 5286 5287 bool LibraryCallKit::inline_bigIntegerShift(bool isRightShift) { 5288 address stubAddr = NULL; 5289 const char* stubName = NULL; 5290 5291 stubAddr = isRightShift? StubRoutines::bigIntegerRightShift(): StubRoutines::bigIntegerLeftShift(); 5292 if (stubAddr == NULL) { 5293 return false; // Intrinsic's stub is not implemented on this platform 5294 } 5295 5296 stubName = isRightShift? "bigIntegerRightShiftWorker" : "bigIntegerLeftShiftWorker"; 5297 5298 assert(callee()->signature()->size() == 5, "expected 5 arguments"); 5299 5300 Node* newArr = argument(0); 5301 Node* oldArr = argument(1); 5302 Node* newIdx = argument(2); 5303 Node* shiftCount = argument(3); 5304 Node* numIter = argument(4); 5305 5306 const Type* newArr_type = newArr->Value(&_gvn); 5307 const TypeAryPtr* top_newArr = newArr_type->isa_aryptr(); 5308 const Type* oldArr_type = oldArr->Value(&_gvn); 5309 const TypeAryPtr* top_oldArr = oldArr_type->isa_aryptr(); 5310 if (top_newArr == NULL || top_newArr->klass() == NULL || top_oldArr == NULL 5311 || top_oldArr->klass() == NULL) { 5312 return false; 5313 } 5314 5315 BasicType newArr_elem = newArr_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5316 BasicType oldArr_elem = oldArr_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5317 if (newArr_elem != T_INT || oldArr_elem != T_INT) { 5318 return false; 5319 } 5320 5321 // Make the call 5322 { 5323 Node* newArr_start = array_element_address(newArr, intcon(0), newArr_elem); 5324 Node* oldArr_start = array_element_address(oldArr, intcon(0), oldArr_elem); 5325 5326 Node* call = make_runtime_call(RC_LEAF, 5327 OptoRuntime::bigIntegerShift_Type(), 5328 stubAddr, 5329 stubName, 5330 TypePtr::BOTTOM, 5331 newArr_start, 5332 oldArr_start, 5333 newIdx, 5334 shiftCount, 5335 numIter); 5336 } 5337 5338 return true; 5339 } 5340 5341 //-------------inline_vectorizedMismatch------------------------------ 5342 bool LibraryCallKit::inline_vectorizedMismatch() { 5343 assert(UseVectorizedMismatchIntrinsic, "not implementated on this platform"); 5344 5345 address stubAddr = StubRoutines::vectorizedMismatch(); 5346 if (stubAddr == NULL) { 5347 return false; // Intrinsic's stub is not implemented on this platform 5348 } 5349 const char* stubName = "vectorizedMismatch"; 5350 int size_l = callee()->signature()->size(); 5351 assert(callee()->signature()->size() == 8, "vectorizedMismatch has 6 parameters"); 5352 5353 Node* obja = argument(0); 5354 Node* aoffset = argument(1); 5355 Node* objb = argument(3); 5356 Node* boffset = argument(4); 5357 Node* length = argument(6); 5358 Node* scale = argument(7); 5359 5360 const Type* a_type = obja->Value(&_gvn); 5361 const Type* b_type = objb->Value(&_gvn); 5362 const TypeAryPtr* top_a = a_type->isa_aryptr(); 5363 const TypeAryPtr* top_b = b_type->isa_aryptr(); 5364 if (top_a == NULL || top_a->klass() == NULL || 5365 top_b == NULL || top_b->klass() == NULL) { 5366 // failed array check 5367 return false; 5368 } 5369 5370 Node* call; 5371 jvms()->set_should_reexecute(true); 5372 5373 Node* obja_adr = make_unsafe_address(obja, aoffset, ACCESS_READ); 5374 Node* objb_adr = make_unsafe_address(objb, boffset, ACCESS_READ); 5375 5376 call = make_runtime_call(RC_LEAF, 5377 OptoRuntime::vectorizedMismatch_Type(), 5378 stubAddr, stubName, TypePtr::BOTTOM, 5379 obja_adr, objb_adr, length, scale); 5380 5381 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 5382 set_result(result); 5383 return true; 5384 } 5385 5386 /** 5387 * Calculate CRC32 for byte. 5388 * int java.util.zip.CRC32.update(int crc, int b) 5389 */ 5390 bool LibraryCallKit::inline_updateCRC32() { 5391 assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support"); 5392 assert(callee()->signature()->size() == 2, "update has 2 parameters"); 5393 // no receiver since it is static method 5394 Node* crc = argument(0); // type: int 5395 Node* b = argument(1); // type: int 5396 5397 /* 5398 * int c = ~ crc; 5399 * b = timesXtoThe32[(b ^ c) & 0xFF]; 5400 * b = b ^ (c >>> 8); 5401 * crc = ~b; 5402 */ 5403 5404 Node* M1 = intcon(-1); 5405 crc = _gvn.transform(new XorINode(crc, M1)); 5406 Node* result = _gvn.transform(new XorINode(crc, b)); 5407 result = _gvn.transform(new AndINode(result, intcon(0xFF))); 5408 5409 Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr())); 5410 Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2))); 5411 Node* adr = basic_plus_adr(top(), base, ConvI2X(offset)); 5412 result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered); 5413 5414 crc = _gvn.transform(new URShiftINode(crc, intcon(8))); 5415 result = _gvn.transform(new XorINode(crc, result)); 5416 result = _gvn.transform(new XorINode(result, M1)); 5417 set_result(result); 5418 return true; 5419 } 5420 5421 /** 5422 * Calculate CRC32 for byte[] array. 5423 * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len) 5424 */ 5425 bool LibraryCallKit::inline_updateBytesCRC32() { 5426 assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support"); 5427 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 5428 // no receiver since it is static method 5429 Node* crc = argument(0); // type: int 5430 Node* src = argument(1); // type: oop 5431 Node* offset = argument(2); // type: int 5432 Node* length = argument(3); // type: int 5433 5434 const Type* src_type = src->Value(&_gvn); 5435 const TypeAryPtr* top_src = src_type->isa_aryptr(); 5436 if (top_src == NULL || top_src->klass() == NULL) { 5437 // failed array check 5438 return false; 5439 } 5440 5441 // Figure out the size and type of the elements we will be copying. 5442 BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5443 if (src_elem != T_BYTE) { 5444 return false; 5445 } 5446 5447 // 'src_start' points to src array + scaled offset 5448 src = must_be_not_null(src, true); 5449 Node* src_start = array_element_address(src, offset, src_elem); 5450 5451 // We assume that range check is done by caller. 5452 // TODO: generate range check (offset+length < src.length) in debug VM. 5453 5454 // Call the stub. 5455 address stubAddr = StubRoutines::updateBytesCRC32(); 5456 const char *stubName = "updateBytesCRC32"; 5457 5458 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(), 5459 stubAddr, stubName, TypePtr::BOTTOM, 5460 crc, src_start, length); 5461 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 5462 set_result(result); 5463 return true; 5464 } 5465 5466 /** 5467 * Calculate CRC32 for ByteBuffer. 5468 * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len) 5469 */ 5470 bool LibraryCallKit::inline_updateByteBufferCRC32() { 5471 assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support"); 5472 assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long"); 5473 // no receiver since it is static method 5474 Node* crc = argument(0); // type: int 5475 Node* src = argument(1); // type: long 5476 Node* offset = argument(3); // type: int 5477 Node* length = argument(4); // type: int 5478 5479 src = ConvL2X(src); // adjust Java long to machine word 5480 Node* base = _gvn.transform(new CastX2PNode(src)); 5481 offset = ConvI2X(offset); 5482 5483 // 'src_start' points to src array + scaled offset 5484 Node* src_start = basic_plus_adr(top(), base, offset); 5485 5486 // Call the stub. 5487 address stubAddr = StubRoutines::updateBytesCRC32(); 5488 const char *stubName = "updateBytesCRC32"; 5489 5490 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(), 5491 stubAddr, stubName, TypePtr::BOTTOM, 5492 crc, src_start, length); 5493 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 5494 set_result(result); 5495 return true; 5496 } 5497 5498 //------------------------------get_table_from_crc32c_class----------------------- 5499 Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) { 5500 Node* table = load_field_from_object(NULL, "byteTable", "[I", /*is_exact*/ false, /*is_static*/ true, crc32c_class); 5501 assert (table != NULL, "wrong version of java.util.zip.CRC32C"); 5502 5503 return table; 5504 } 5505 5506 //------------------------------inline_updateBytesCRC32C----------------------- 5507 // 5508 // Calculate CRC32C for byte[] array. 5509 // int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end) 5510 // 5511 bool LibraryCallKit::inline_updateBytesCRC32C() { 5512 assert(UseCRC32CIntrinsics, "need CRC32C instruction support"); 5513 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 5514 assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded"); 5515 // no receiver since it is a static method 5516 Node* crc = argument(0); // type: int 5517 Node* src = argument(1); // type: oop 5518 Node* offset = argument(2); // type: int 5519 Node* end = argument(3); // type: int 5520 5521 Node* length = _gvn.transform(new SubINode(end, offset)); 5522 5523 const Type* src_type = src->Value(&_gvn); 5524 const TypeAryPtr* top_src = src_type->isa_aryptr(); 5525 if (top_src == NULL || top_src->klass() == NULL) { 5526 // failed array check 5527 return false; 5528 } 5529 5530 // Figure out the size and type of the elements we will be copying. 5531 BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5532 if (src_elem != T_BYTE) { 5533 return false; 5534 } 5535 5536 // 'src_start' points to src array + scaled offset 5537 src = must_be_not_null(src, true); 5538 Node* src_start = array_element_address(src, offset, src_elem); 5539 5540 // static final int[] byteTable in class CRC32C 5541 Node* table = get_table_from_crc32c_class(callee()->holder()); 5542 table = must_be_not_null(table, true); 5543 Node* table_start = array_element_address(table, intcon(0), T_INT); 5544 5545 // We assume that range check is done by caller. 5546 // TODO: generate range check (offset+length < src.length) in debug VM. 5547 5548 // Call the stub. 5549 address stubAddr = StubRoutines::updateBytesCRC32C(); 5550 const char *stubName = "updateBytesCRC32C"; 5551 5552 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(), 5553 stubAddr, stubName, TypePtr::BOTTOM, 5554 crc, src_start, length, table_start); 5555 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 5556 set_result(result); 5557 return true; 5558 } 5559 5560 //------------------------------inline_updateDirectByteBufferCRC32C----------------------- 5561 // 5562 // Calculate CRC32C for DirectByteBuffer. 5563 // int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end) 5564 // 5565 bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() { 5566 assert(UseCRC32CIntrinsics, "need CRC32C instruction support"); 5567 assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long"); 5568 assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded"); 5569 // no receiver since it is a static method 5570 Node* crc = argument(0); // type: int 5571 Node* src = argument(1); // type: long 5572 Node* offset = argument(3); // type: int 5573 Node* end = argument(4); // type: int 5574 5575 Node* length = _gvn.transform(new SubINode(end, offset)); 5576 5577 src = ConvL2X(src); // adjust Java long to machine word 5578 Node* base = _gvn.transform(new CastX2PNode(src)); 5579 offset = ConvI2X(offset); 5580 5581 // 'src_start' points to src array + scaled offset 5582 Node* src_start = basic_plus_adr(top(), base, offset); 5583 5584 // static final int[] byteTable in class CRC32C 5585 Node* table = get_table_from_crc32c_class(callee()->holder()); 5586 table = must_be_not_null(table, true); 5587 Node* table_start = array_element_address(table, intcon(0), T_INT); 5588 5589 // Call the stub. 5590 address stubAddr = StubRoutines::updateBytesCRC32C(); 5591 const char *stubName = "updateBytesCRC32C"; 5592 5593 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(), 5594 stubAddr, stubName, TypePtr::BOTTOM, 5595 crc, src_start, length, table_start); 5596 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 5597 set_result(result); 5598 return true; 5599 } 5600 5601 //------------------------------inline_updateBytesAdler32---------------------- 5602 // 5603 // Calculate Adler32 checksum for byte[] array. 5604 // int java.util.zip.Adler32.updateBytes(int crc, byte[] buf, int off, int len) 5605 // 5606 bool LibraryCallKit::inline_updateBytesAdler32() { 5607 assert(UseAdler32Intrinsics, "Adler32 Instrinsic support need"); // check if we actually need to check this flag or check a different one 5608 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 5609 assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded"); 5610 // no receiver since it is static method 5611 Node* crc = argument(0); // type: int 5612 Node* src = argument(1); // type: oop 5613 Node* offset = argument(2); // type: int 5614 Node* length = argument(3); // type: int 5615 5616 const Type* src_type = src->Value(&_gvn); 5617 const TypeAryPtr* top_src = src_type->isa_aryptr(); 5618 if (top_src == NULL || top_src->klass() == NULL) { 5619 // failed array check 5620 return false; 5621 } 5622 5623 // Figure out the size and type of the elements we will be copying. 5624 BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 5625 if (src_elem != T_BYTE) { 5626 return false; 5627 } 5628 5629 // 'src_start' points to src array + scaled offset 5630 Node* src_start = array_element_address(src, offset, src_elem); 5631 5632 // We assume that range check is done by caller. 5633 // TODO: generate range check (offset+length < src.length) in debug VM. 5634 5635 // Call the stub. 5636 address stubAddr = StubRoutines::updateBytesAdler32(); 5637 const char *stubName = "updateBytesAdler32"; 5638 5639 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(), 5640 stubAddr, stubName, TypePtr::BOTTOM, 5641 crc, src_start, length); 5642 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 5643 set_result(result); 5644 return true; 5645 } 5646 5647 //------------------------------inline_updateByteBufferAdler32--------------- 5648 // 5649 // Calculate Adler32 checksum for DirectByteBuffer. 5650 // int java.util.zip.Adler32.updateByteBuffer(int crc, long buf, int off, int len) 5651 // 5652 bool LibraryCallKit::inline_updateByteBufferAdler32() { 5653 assert(UseAdler32Intrinsics, "Adler32 Instrinsic support need"); // check if we actually need to check this flag or check a different one 5654 assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long"); 5655 assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded"); 5656 // no receiver since it is static method 5657 Node* crc = argument(0); // type: int 5658 Node* src = argument(1); // type: long 5659 Node* offset = argument(3); // type: int 5660 Node* length = argument(4); // type: int 5661 5662 src = ConvL2X(src); // adjust Java long to machine word 5663 Node* base = _gvn.transform(new CastX2PNode(src)); 5664 offset = ConvI2X(offset); 5665 5666 // 'src_start' points to src array + scaled offset 5667 Node* src_start = basic_plus_adr(top(), base, offset); 5668 5669 // Call the stub. 5670 address stubAddr = StubRoutines::updateBytesAdler32(); 5671 const char *stubName = "updateBytesAdler32"; 5672 5673 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(), 5674 stubAddr, stubName, TypePtr::BOTTOM, 5675 crc, src_start, length); 5676 5677 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 5678 set_result(result); 5679 return true; 5680 } 5681 5682 //----------------------------inline_reference_get---------------------------- 5683 // public T java.lang.ref.Reference.get(); 5684 bool LibraryCallKit::inline_reference_get() { 5685 const int referent_offset = java_lang_ref_Reference::referent_offset(); 5686 5687 // Get the argument: 5688 Node* reference_obj = null_check_receiver(); 5689 if (stopped()) return true; 5690 5691 const TypeInstPtr* tinst = _gvn.type(reference_obj)->isa_instptr(); 5692 assert(tinst != NULL, "obj is null"); 5693 assert(tinst->klass()->is_loaded(), "obj is not loaded"); 5694 ciInstanceKlass* referenceKlass = tinst->klass()->as_instance_klass(); 5695 ciField* field = referenceKlass->get_field_by_name(ciSymbol::make("referent"), 5696 ciSymbol::make("Ljava/lang/Object;"), 5697 false); 5698 assert (field != NULL, "undefined field"); 5699 5700 Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset); 5701 const TypePtr* adr_type = C->alias_type(field)->adr_type(); 5702 5703 ciInstanceKlass* klass = env()->Object_klass(); 5704 const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass); 5705 5706 DecoratorSet decorators = IN_HEAP | ON_WEAK_OOP_REF; 5707 Node* result = access_load_at(reference_obj, adr, adr_type, object_type, T_OBJECT, decorators); 5708 // Add memory barrier to prevent commoning reads from this field 5709 // across safepoint since GC can change its value. 5710 insert_mem_bar(Op_MemBarCPUOrder); 5711 5712 set_result(result); 5713 return true; 5714 } 5715 5716 5717 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, 5718 bool is_exact=true, bool is_static=false, 5719 ciInstanceKlass * fromKls=NULL) { 5720 if (fromKls == NULL) { 5721 const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr(); 5722 assert(tinst != NULL, "obj is null"); 5723 assert(tinst->klass()->is_loaded(), "obj is not loaded"); 5724 assert(!is_exact || tinst->klass_is_exact(), "klass not exact"); 5725 fromKls = tinst->klass()->as_instance_klass(); 5726 } else { 5727 assert(is_static, "only for static field access"); 5728 } 5729 ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName), 5730 ciSymbol::make(fieldTypeString), 5731 is_static); 5732 5733 assert (field != NULL, "undefined field"); 5734 if (field == NULL) return (Node *) NULL; 5735 5736 if (is_static) { 5737 const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror()); 5738 fromObj = makecon(tip); 5739 } 5740 5741 // Next code copied from Parse::do_get_xxx(): 5742 5743 // Compute address and memory type. 5744 int offset = field->offset_in_bytes(); 5745 bool is_vol = field->is_volatile(); 5746 ciType* field_klass = field->type(); 5747 assert(field_klass->is_loaded(), "should be loaded"); 5748 const TypePtr* adr_type = C->alias_type(field)->adr_type(); 5749 Node *adr = basic_plus_adr(fromObj, fromObj, offset); 5750 BasicType bt = field->layout_type(); 5751 5752 // Build the resultant type of the load 5753 const Type *type; 5754 if (bt == T_OBJECT) { 5755 type = TypeOopPtr::make_from_klass(field_klass->as_klass()); 5756 } else { 5757 type = Type::get_const_basic_type(bt); 5758 } 5759 5760 DecoratorSet decorators = IN_HEAP; 5761 5762 if (is_vol) { 5763 decorators |= MO_SEQ_CST; 5764 } 5765 5766 return access_load_at(fromObj, adr, adr_type, type, bt, decorators); 5767 } 5768 5769 Node * LibraryCallKit::field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, 5770 bool is_exact = true, bool is_static = false, 5771 ciInstanceKlass * fromKls = NULL) { 5772 if (fromKls == NULL) { 5773 const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr(); 5774 assert(tinst != NULL, "obj is null"); 5775 assert(tinst->klass()->is_loaded(), "obj is not loaded"); 5776 assert(!is_exact || tinst->klass_is_exact(), "klass not exact"); 5777 fromKls = tinst->klass()->as_instance_klass(); 5778 } 5779 else { 5780 assert(is_static, "only for static field access"); 5781 } 5782 ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName), 5783 ciSymbol::make(fieldTypeString), 5784 is_static); 5785 5786 assert(field != NULL, "undefined field"); 5787 assert(!field->is_volatile(), "not defined for volatile fields"); 5788 5789 if (is_static) { 5790 const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror()); 5791 fromObj = makecon(tip); 5792 } 5793 5794 // Next code copied from Parse::do_get_xxx(): 5795 5796 // Compute address and memory type. 5797 int offset = field->offset_in_bytes(); 5798 Node *adr = basic_plus_adr(fromObj, fromObj, offset); 5799 5800 return adr; 5801 } 5802 5803 //------------------------------inline_aescrypt_Block----------------------- 5804 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) { 5805 address stubAddr = NULL; 5806 const char *stubName; 5807 assert(UseAES, "need AES instruction support"); 5808 5809 switch(id) { 5810 case vmIntrinsics::_aescrypt_encryptBlock: 5811 stubAddr = StubRoutines::aescrypt_encryptBlock(); 5812 stubName = "aescrypt_encryptBlock"; 5813 break; 5814 case vmIntrinsics::_aescrypt_decryptBlock: 5815 stubAddr = StubRoutines::aescrypt_decryptBlock(); 5816 stubName = "aescrypt_decryptBlock"; 5817 break; 5818 default: 5819 break; 5820 } 5821 if (stubAddr == NULL) return false; 5822 5823 Node* aescrypt_object = argument(0); 5824 Node* src = argument(1); 5825 Node* src_offset = argument(2); 5826 Node* dest = argument(3); 5827 Node* dest_offset = argument(4); 5828 5829 src = must_be_not_null(src, true); 5830 dest = must_be_not_null(dest, true); 5831 5832 // (1) src and dest are arrays. 5833 const Type* src_type = src->Value(&_gvn); 5834 const Type* dest_type = dest->Value(&_gvn); 5835 const TypeAryPtr* top_src = src_type->isa_aryptr(); 5836 const TypeAryPtr* top_dest = dest_type->isa_aryptr(); 5837 assert (top_src != NULL && top_src->klass() != NULL && top_dest != NULL && top_dest->klass() != NULL, "args are strange"); 5838 5839 // for the quick and dirty code we will skip all the checks. 5840 // we are just trying to get the call to be generated. 5841 Node* src_start = src; 5842 Node* dest_start = dest; 5843 if (src_offset != NULL || dest_offset != NULL) { 5844 assert(src_offset != NULL && dest_offset != NULL, ""); 5845 src_start = array_element_address(src, src_offset, T_BYTE); 5846 dest_start = array_element_address(dest, dest_offset, T_BYTE); 5847 } 5848 5849 // now need to get the start of its expanded key array 5850 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 5851 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 5852 if (k_start == NULL) return false; 5853 5854 if (Matcher::pass_original_key_for_aes()) { 5855 // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to 5856 // compatibility issues between Java key expansion and SPARC crypto instructions 5857 Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object); 5858 if (original_k_start == NULL) return false; 5859 5860 // Call the stub. 5861 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(), 5862 stubAddr, stubName, TypePtr::BOTTOM, 5863 src_start, dest_start, k_start, original_k_start); 5864 } else { 5865 // Call the stub. 5866 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(), 5867 stubAddr, stubName, TypePtr::BOTTOM, 5868 src_start, dest_start, k_start); 5869 } 5870 5871 return true; 5872 } 5873 5874 //------------------------------inline_cipherBlockChaining_AESCrypt----------------------- 5875 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) { 5876 address stubAddr = NULL; 5877 const char *stubName = NULL; 5878 5879 assert(UseAES, "need AES instruction support"); 5880 5881 switch(id) { 5882 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 5883 stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt(); 5884 stubName = "cipherBlockChaining_encryptAESCrypt"; 5885 break; 5886 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 5887 stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt(); 5888 stubName = "cipherBlockChaining_decryptAESCrypt"; 5889 break; 5890 default: 5891 break; 5892 } 5893 if (stubAddr == NULL) return false; 5894 5895 Node* cipherBlockChaining_object = argument(0); 5896 Node* src = argument(1); 5897 Node* src_offset = argument(2); 5898 Node* len = argument(3); 5899 Node* dest = argument(4); 5900 Node* dest_offset = argument(5); 5901 5902 src = must_be_not_null(src, false); 5903 dest = must_be_not_null(dest, false); 5904 5905 // (1) src and dest are arrays. 5906 const Type* src_type = src->Value(&_gvn); 5907 const Type* dest_type = dest->Value(&_gvn); 5908 const TypeAryPtr* top_src = src_type->isa_aryptr(); 5909 const TypeAryPtr* top_dest = dest_type->isa_aryptr(); 5910 assert (top_src != NULL && top_src->klass() != NULL 5911 && top_dest != NULL && top_dest->klass() != NULL, "args are strange"); 5912 5913 // checks are the responsibility of the caller 5914 Node* src_start = src; 5915 Node* dest_start = dest; 5916 if (src_offset != NULL || dest_offset != NULL) { 5917 assert(src_offset != NULL && dest_offset != NULL, ""); 5918 src_start = array_element_address(src, src_offset, T_BYTE); 5919 dest_start = array_element_address(dest, dest_offset, T_BYTE); 5920 } 5921 5922 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 5923 // (because of the predicated logic executed earlier). 5924 // so we cast it here safely. 5925 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 5926 5927 Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false); 5928 if (embeddedCipherObj == NULL) return false; 5929 5930 // cast it to what we know it will be at runtime 5931 const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr(); 5932 assert(tinst != NULL, "CBC obj is null"); 5933 assert(tinst->klass()->is_loaded(), "CBC obj is not loaded"); 5934 ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 5935 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 5936 5937 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 5938 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 5939 const TypeOopPtr* xtype = aklass->as_instance_type(); 5940 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 5941 aescrypt_object = _gvn.transform(aescrypt_object); 5942 5943 // we need to get the start of the aescrypt_object's expanded key array 5944 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 5945 if (k_start == NULL) return false; 5946 5947 // similarly, get the start address of the r vector 5948 Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false); 5949 if (objRvec == NULL) return false; 5950 Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE); 5951 5952 Node* cbcCrypt; 5953 if (Matcher::pass_original_key_for_aes()) { 5954 // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to 5955 // compatibility issues between Java key expansion and SPARC crypto instructions 5956 Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object); 5957 if (original_k_start == NULL) return false; 5958 5959 // Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start 5960 cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 5961 OptoRuntime::cipherBlockChaining_aescrypt_Type(), 5962 stubAddr, stubName, TypePtr::BOTTOM, 5963 src_start, dest_start, k_start, r_start, len, original_k_start); 5964 } else { 5965 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 5966 cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 5967 OptoRuntime::cipherBlockChaining_aescrypt_Type(), 5968 stubAddr, stubName, TypePtr::BOTTOM, 5969 src_start, dest_start, k_start, r_start, len); 5970 } 5971 5972 // return cipher length (int) 5973 Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms)); 5974 set_result(retvalue); 5975 return true; 5976 } 5977 5978 //------------------------------inline_electronicCodeBook_AESCrypt----------------------- 5979 bool LibraryCallKit::inline_electronicCodeBook_AESCrypt(vmIntrinsics::ID id) { 5980 address stubAddr = NULL; 5981 const char *stubName = NULL; 5982 5983 assert(UseAES, "need AES instruction support"); 5984 5985 switch (id) { 5986 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 5987 stubAddr = StubRoutines::electronicCodeBook_encryptAESCrypt(); 5988 stubName = "electronicCodeBook_encryptAESCrypt"; 5989 break; 5990 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 5991 stubAddr = StubRoutines::electronicCodeBook_decryptAESCrypt(); 5992 stubName = "electronicCodeBook_decryptAESCrypt"; 5993 break; 5994 default: 5995 break; 5996 } 5997 5998 if (stubAddr == NULL) return false; 5999 6000 Node* electronicCodeBook_object = argument(0); 6001 Node* src = argument(1); 6002 Node* src_offset = argument(2); 6003 Node* len = argument(3); 6004 Node* dest = argument(4); 6005 Node* dest_offset = argument(5); 6006 6007 // (1) src and dest are arrays. 6008 const Type* src_type = src->Value(&_gvn); 6009 const Type* dest_type = dest->Value(&_gvn); 6010 const TypeAryPtr* top_src = src_type->isa_aryptr(); 6011 const TypeAryPtr* top_dest = dest_type->isa_aryptr(); 6012 assert(top_src != NULL && top_src->klass() != NULL 6013 && top_dest != NULL && top_dest->klass() != NULL, "args are strange"); 6014 6015 // checks are the responsibility of the caller 6016 Node* src_start = src; 6017 Node* dest_start = dest; 6018 if (src_offset != NULL || dest_offset != NULL) { 6019 assert(src_offset != NULL && dest_offset != NULL, ""); 6020 src_start = array_element_address(src, src_offset, T_BYTE); 6021 dest_start = array_element_address(dest, dest_offset, T_BYTE); 6022 } 6023 6024 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 6025 // (because of the predicated logic executed earlier). 6026 // so we cast it here safely. 6027 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 6028 6029 Node* embeddedCipherObj = load_field_from_object(electronicCodeBook_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false); 6030 if (embeddedCipherObj == NULL) return false; 6031 6032 // cast it to what we know it will be at runtime 6033 const TypeInstPtr* tinst = _gvn.type(electronicCodeBook_object)->isa_instptr(); 6034 assert(tinst != NULL, "ECB obj is null"); 6035 assert(tinst->klass()->is_loaded(), "ECB obj is not loaded"); 6036 ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 6037 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 6038 6039 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 6040 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 6041 const TypeOopPtr* xtype = aklass->as_instance_type(); 6042 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 6043 aescrypt_object = _gvn.transform(aescrypt_object); 6044 6045 // we need to get the start of the aescrypt_object's expanded key array 6046 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 6047 if (k_start == NULL) return false; 6048 6049 Node* ecbCrypt; 6050 if (Matcher::pass_original_key_for_aes()) { 6051 // no SPARC version for AES/ECB intrinsics now. 6052 return false; 6053 } 6054 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 6055 ecbCrypt = make_runtime_call(RC_LEAF | RC_NO_FP, 6056 OptoRuntime::electronicCodeBook_aescrypt_Type(), 6057 stubAddr, stubName, TypePtr::BOTTOM, 6058 src_start, dest_start, k_start, len); 6059 6060 // return cipher length (int) 6061 Node* retvalue = _gvn.transform(new ProjNode(ecbCrypt, TypeFunc::Parms)); 6062 set_result(retvalue); 6063 return true; 6064 } 6065 6066 //------------------------------inline_counterMode_AESCrypt----------------------- 6067 bool LibraryCallKit::inline_counterMode_AESCrypt(vmIntrinsics::ID id) { 6068 assert(UseAES, "need AES instruction support"); 6069 if (!UseAESCTRIntrinsics) return false; 6070 6071 address stubAddr = NULL; 6072 const char *stubName = NULL; 6073 if (id == vmIntrinsics::_counterMode_AESCrypt) { 6074 stubAddr = StubRoutines::counterMode_AESCrypt(); 6075 stubName = "counterMode_AESCrypt"; 6076 } 6077 if (stubAddr == NULL) return false; 6078 6079 Node* counterMode_object = argument(0); 6080 Node* src = argument(1); 6081 Node* src_offset = argument(2); 6082 Node* len = argument(3); 6083 Node* dest = argument(4); 6084 Node* dest_offset = argument(5); 6085 6086 // (1) src and dest are arrays. 6087 const Type* src_type = src->Value(&_gvn); 6088 const Type* dest_type = dest->Value(&_gvn); 6089 const TypeAryPtr* top_src = src_type->isa_aryptr(); 6090 const TypeAryPtr* top_dest = dest_type->isa_aryptr(); 6091 assert(top_src != NULL && top_src->klass() != NULL && 6092 top_dest != NULL && top_dest->klass() != NULL, "args are strange"); 6093 6094 // checks are the responsibility of the caller 6095 Node* src_start = src; 6096 Node* dest_start = dest; 6097 if (src_offset != NULL || dest_offset != NULL) { 6098 assert(src_offset != NULL && dest_offset != NULL, ""); 6099 src_start = array_element_address(src, src_offset, T_BYTE); 6100 dest_start = array_element_address(dest, dest_offset, T_BYTE); 6101 } 6102 6103 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 6104 // (because of the predicated logic executed earlier). 6105 // so we cast it here safely. 6106 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 6107 Node* embeddedCipherObj = load_field_from_object(counterMode_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false); 6108 if (embeddedCipherObj == NULL) return false; 6109 // cast it to what we know it will be at runtime 6110 const TypeInstPtr* tinst = _gvn.type(counterMode_object)->isa_instptr(); 6111 assert(tinst != NULL, "CTR obj is null"); 6112 assert(tinst->klass()->is_loaded(), "CTR obj is not loaded"); 6113 ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 6114 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 6115 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 6116 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 6117 const TypeOopPtr* xtype = aklass->as_instance_type(); 6118 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 6119 aescrypt_object = _gvn.transform(aescrypt_object); 6120 // we need to get the start of the aescrypt_object's expanded key array 6121 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 6122 if (k_start == NULL) return false; 6123 // similarly, get the start address of the r vector 6124 Node* obj_counter = load_field_from_object(counterMode_object, "counter", "[B", /*is_exact*/ false); 6125 if (obj_counter == NULL) return false; 6126 Node* cnt_start = array_element_address(obj_counter, intcon(0), T_BYTE); 6127 6128 Node* saved_encCounter = load_field_from_object(counterMode_object, "encryptedCounter", "[B", /*is_exact*/ false); 6129 if (saved_encCounter == NULL) return false; 6130 Node* saved_encCounter_start = array_element_address(saved_encCounter, intcon(0), T_BYTE); 6131 Node* used = field_address_from_object(counterMode_object, "used", "I", /*is_exact*/ false); 6132 6133 Node* ctrCrypt; 6134 if (Matcher::pass_original_key_for_aes()) { 6135 // no SPARC version for AES/CTR intrinsics now. 6136 return false; 6137 } 6138 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 6139 ctrCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 6140 OptoRuntime::counterMode_aescrypt_Type(), 6141 stubAddr, stubName, TypePtr::BOTTOM, 6142 src_start, dest_start, k_start, cnt_start, len, saved_encCounter_start, used); 6143 6144 // return cipher length (int) 6145 Node* retvalue = _gvn.transform(new ProjNode(ctrCrypt, TypeFunc::Parms)); 6146 set_result(retvalue); 6147 return true; 6148 } 6149 6150 //------------------------------get_key_start_from_aescrypt_object----------------------- 6151 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) { 6152 #if defined(PPC64) || defined(S390) 6153 // MixColumns for decryption can be reduced by preprocessing MixColumns with round keys. 6154 // Intel's extention is based on this optimization and AESCrypt generates round keys by preprocessing MixColumns. 6155 // However, ppc64 vncipher processes MixColumns and requires the same round keys with encryption. 6156 // The ppc64 stubs of encryption and decryption use the same round keys (sessionK[0]). 6157 Node* objSessionK = load_field_from_object(aescrypt_object, "sessionK", "[[I", /*is_exact*/ false); 6158 assert (objSessionK != NULL, "wrong version of com.sun.crypto.provider.AESCrypt"); 6159 if (objSessionK == NULL) { 6160 return (Node *) NULL; 6161 } 6162 Node* objAESCryptKey = load_array_element(control(), objSessionK, intcon(0), TypeAryPtr::OOPS); 6163 #else 6164 Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false); 6165 #endif // PPC64 6166 assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt"); 6167 if (objAESCryptKey == NULL) return (Node *) NULL; 6168 6169 // now have the array, need to get the start address of the K array 6170 Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT); 6171 return k_start; 6172 } 6173 6174 //------------------------------get_original_key_start_from_aescrypt_object----------------------- 6175 Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) { 6176 Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false); 6177 assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt"); 6178 if (objAESCryptKey == NULL) return (Node *) NULL; 6179 6180 // now have the array, need to get the start address of the lastKey array 6181 Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE); 6182 return original_k_start; 6183 } 6184 6185 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate---------------------------- 6186 // Return node representing slow path of predicate check. 6187 // the pseudo code we want to emulate with this predicate is: 6188 // for encryption: 6189 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 6190 // for decryption: 6191 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 6192 // note cipher==plain is more conservative than the original java code but that's OK 6193 // 6194 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) { 6195 // The receiver was checked for NULL already. 6196 Node* objCBC = argument(0); 6197 6198 Node* src = argument(1); 6199 Node* dest = argument(4); 6200 6201 // Load embeddedCipher field of CipherBlockChaining object. 6202 Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false); 6203 6204 // get AESCrypt klass for instanceOf check 6205 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 6206 // will have same classloader as CipherBlockChaining object 6207 const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr(); 6208 assert(tinst != NULL, "CBCobj is null"); 6209 assert(tinst->klass()->is_loaded(), "CBCobj is not loaded"); 6210 6211 // we want to do an instanceof comparison against the AESCrypt class 6212 ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 6213 if (!klass_AESCrypt->is_loaded()) { 6214 // if AESCrypt is not even loaded, we never take the intrinsic fast path 6215 Node* ctrl = control(); 6216 set_control(top()); // no regular fast path 6217 return ctrl; 6218 } 6219 6220 src = must_be_not_null(src, true); 6221 dest = must_be_not_null(dest, true); 6222 6223 // Resolve oops to stable for CmpP below. 6224 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 6225 6226 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 6227 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 6228 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 6229 6230 Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN); 6231 6232 // for encryption, we are done 6233 if (!decrypting) 6234 return instof_false; // even if it is NULL 6235 6236 // for decryption, we need to add a further check to avoid 6237 // taking the intrinsic path when cipher and plain are the same 6238 // see the original java code for why. 6239 RegionNode* region = new RegionNode(3); 6240 region->init_req(1, instof_false); 6241 6242 Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest)); 6243 Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq)); 6244 Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN); 6245 region->init_req(2, src_dest_conjoint); 6246 6247 record_for_igvn(region); 6248 return _gvn.transform(region); 6249 } 6250 6251 //----------------------------inline_electronicCodeBook_AESCrypt_predicate---------------------------- 6252 // Return node representing slow path of predicate check. 6253 // the pseudo code we want to emulate with this predicate is: 6254 // for encryption: 6255 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 6256 // for decryption: 6257 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 6258 // note cipher==plain is more conservative than the original java code but that's OK 6259 // 6260 Node* LibraryCallKit::inline_electronicCodeBook_AESCrypt_predicate(bool decrypting) { 6261 // The receiver was checked for NULL already. 6262 Node* objECB = argument(0); 6263 6264 // Load embeddedCipher field of ElectronicCodeBook object. 6265 Node* embeddedCipherObj = load_field_from_object(objECB, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false); 6266 6267 // get AESCrypt klass for instanceOf check 6268 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 6269 // will have same classloader as ElectronicCodeBook object 6270 const TypeInstPtr* tinst = _gvn.type(objECB)->isa_instptr(); 6271 assert(tinst != NULL, "ECBobj is null"); 6272 assert(tinst->klass()->is_loaded(), "ECBobj is not loaded"); 6273 6274 // we want to do an instanceof comparison against the AESCrypt class 6275 ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 6276 if (!klass_AESCrypt->is_loaded()) { 6277 // if AESCrypt is not even loaded, we never take the intrinsic fast path 6278 Node* ctrl = control(); 6279 set_control(top()); // no regular fast path 6280 return ctrl; 6281 } 6282 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 6283 6284 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 6285 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 6286 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 6287 6288 Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN); 6289 6290 // for encryption, we are done 6291 if (!decrypting) 6292 return instof_false; // even if it is NULL 6293 6294 // for decryption, we need to add a further check to avoid 6295 // taking the intrinsic path when cipher and plain are the same 6296 // see the original java code for why. 6297 RegionNode* region = new RegionNode(3); 6298 region->init_req(1, instof_false); 6299 Node* src = argument(1); 6300 Node* dest = argument(4); 6301 Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest)); 6302 Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq)); 6303 Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN); 6304 region->init_req(2, src_dest_conjoint); 6305 6306 record_for_igvn(region); 6307 return _gvn.transform(region); 6308 } 6309 6310 //----------------------------inline_counterMode_AESCrypt_predicate---------------------------- 6311 // Return node representing slow path of predicate check. 6312 // the pseudo code we want to emulate with this predicate is: 6313 // for encryption: 6314 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 6315 // for decryption: 6316 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 6317 // note cipher==plain is more conservative than the original java code but that's OK 6318 // 6319 6320 Node* LibraryCallKit::inline_counterMode_AESCrypt_predicate() { 6321 // The receiver was checked for NULL already. 6322 Node* objCTR = argument(0); 6323 6324 // Load embeddedCipher field of CipherBlockChaining object. 6325 Node* embeddedCipherObj = load_field_from_object(objCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false); 6326 6327 // get AESCrypt klass for instanceOf check 6328 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 6329 // will have same classloader as CipherBlockChaining object 6330 const TypeInstPtr* tinst = _gvn.type(objCTR)->isa_instptr(); 6331 assert(tinst != NULL, "CTRobj is null"); 6332 assert(tinst->klass()->is_loaded(), "CTRobj is not loaded"); 6333 6334 // we want to do an instanceof comparison against the AESCrypt class 6335 ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 6336 if (!klass_AESCrypt->is_loaded()) { 6337 // if AESCrypt is not even loaded, we never take the intrinsic fast path 6338 Node* ctrl = control(); 6339 set_control(top()); // no regular fast path 6340 return ctrl; 6341 } 6342 6343 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 6344 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 6345 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 6346 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 6347 Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN); 6348 6349 return instof_false; // even if it is NULL 6350 } 6351 6352 //------------------------------inline_ghash_processBlocks 6353 bool LibraryCallKit::inline_ghash_processBlocks() { 6354 address stubAddr; 6355 const char *stubName; 6356 assert(UseGHASHIntrinsics, "need GHASH intrinsics support"); 6357 6358 stubAddr = StubRoutines::ghash_processBlocks(); 6359 stubName = "ghash_processBlocks"; 6360 6361 Node* data = argument(0); 6362 Node* offset = argument(1); 6363 Node* len = argument(2); 6364 Node* state = argument(3); 6365 Node* subkeyH = argument(4); 6366 6367 state = must_be_not_null(state, true); 6368 subkeyH = must_be_not_null(subkeyH, true); 6369 data = must_be_not_null(data, true); 6370 6371 Node* state_start = array_element_address(state, intcon(0), T_LONG); 6372 assert(state_start, "state is NULL"); 6373 Node* subkeyH_start = array_element_address(subkeyH, intcon(0), T_LONG); 6374 assert(subkeyH_start, "subkeyH is NULL"); 6375 Node* data_start = array_element_address(data, offset, T_BYTE); 6376 assert(data_start, "data is NULL"); 6377 6378 Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP, 6379 OptoRuntime::ghash_processBlocks_Type(), 6380 stubAddr, stubName, TypePtr::BOTTOM, 6381 state_start, subkeyH_start, data_start, len); 6382 return true; 6383 } 6384 6385 bool LibraryCallKit::inline_base64_encodeBlock() { 6386 address stubAddr; 6387 const char *stubName; 6388 assert(UseBASE64Intrinsics, "need Base64 intrinsics support"); 6389 assert(callee()->signature()->size() == 6, "base64_encodeBlock has 6 parameters"); 6390 stubAddr = StubRoutines::base64_encodeBlock(); 6391 stubName = "encodeBlock"; 6392 6393 if (!stubAddr) return false; 6394 Node* base64obj = argument(0); 6395 Node* src = argument(1); 6396 Node* offset = argument(2); 6397 Node* len = argument(3); 6398 Node* dest = argument(4); 6399 Node* dp = argument(5); 6400 Node* isURL = argument(6); 6401 6402 src = must_be_not_null(src, true); 6403 dest = must_be_not_null(dest, true); 6404 6405 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 6406 assert(src_start, "source array is NULL"); 6407 Node* dest_start = array_element_address(dest, intcon(0), T_BYTE); 6408 assert(dest_start, "destination array is NULL"); 6409 6410 Node* base64 = make_runtime_call(RC_LEAF, 6411 OptoRuntime::base64_encodeBlock_Type(), 6412 stubAddr, stubName, TypePtr::BOTTOM, 6413 src_start, offset, len, dest_start, dp, isURL); 6414 return true; 6415 } 6416 6417 //------------------------------inline_digestBase_implCompress----------------------- 6418 // 6419 // Calculate MD5 for single-block byte[] array. 6420 // void com.sun.security.provider.MD5.implCompress(byte[] buf, int ofs) 6421 // 6422 // Calculate SHA (i.e., SHA-1) for single-block byte[] array. 6423 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs) 6424 // 6425 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array. 6426 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs) 6427 // 6428 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array. 6429 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs) 6430 // 6431 bool LibraryCallKit::inline_digestBase_implCompress(vmIntrinsics::ID id) { 6432 assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters"); 6433 6434 Node* digestBase_obj = argument(0); 6435 Node* src = argument(1); // type oop 6436 Node* ofs = argument(2); // type int 6437 6438 const Type* src_type = src->Value(&_gvn); 6439 const TypeAryPtr* top_src = src_type->isa_aryptr(); 6440 if (top_src == NULL || top_src->klass() == NULL) { 6441 // failed array check 6442 return false; 6443 } 6444 // Figure out the size and type of the elements we will be copying. 6445 BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 6446 if (src_elem != T_BYTE) { 6447 return false; 6448 } 6449 // 'src_start' points to src array + offset 6450 src = must_be_not_null(src, true); 6451 Node* src_start = array_element_address(src, ofs, src_elem); 6452 Node* state = NULL; 6453 address stubAddr; 6454 const char *stubName; 6455 6456 switch(id) { 6457 case vmIntrinsics::_md5_implCompress: 6458 assert(UseMD5Intrinsics, "need MD5 instruction support"); 6459 state = get_state_from_digest_object(digestBase_obj); 6460 stubAddr = StubRoutines::md5_implCompress(); 6461 stubName = "md5_implCompress"; 6462 break; 6463 case vmIntrinsics::_sha_implCompress: 6464 assert(UseSHA1Intrinsics, "need SHA1 instruction support"); 6465 state = get_state_from_digest_object(digestBase_obj); 6466 stubAddr = StubRoutines::sha1_implCompress(); 6467 stubName = "sha1_implCompress"; 6468 break; 6469 case vmIntrinsics::_sha2_implCompress: 6470 assert(UseSHA256Intrinsics, "need SHA256 instruction support"); 6471 state = get_state_from_digest_object(digestBase_obj); 6472 stubAddr = StubRoutines::sha256_implCompress(); 6473 stubName = "sha256_implCompress"; 6474 break; 6475 case vmIntrinsics::_sha5_implCompress: 6476 assert(UseSHA512Intrinsics, "need SHA512 instruction support"); 6477 state = get_long_state_from_digest_object(digestBase_obj); 6478 stubAddr = StubRoutines::sha512_implCompress(); 6479 stubName = "sha512_implCompress"; 6480 break; 6481 default: 6482 fatal_unexpected_iid(id); 6483 return false; 6484 } 6485 if (state == NULL) return false; 6486 6487 assert(stubAddr != NULL, "Stub is generated"); 6488 if (stubAddr == NULL) return false; 6489 6490 // Call the stub. 6491 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(), 6492 stubAddr, stubName, TypePtr::BOTTOM, 6493 src_start, state); 6494 6495 return true; 6496 } 6497 6498 //------------------------------inline_digestBase_implCompressMB----------------------- 6499 // 6500 // Calculate MD5/SHA/SHA2/SHA5 for multi-block byte[] array. 6501 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit) 6502 // 6503 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) { 6504 assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics, 6505 "need MD5/SHA1/SHA256/SHA512 instruction support"); 6506 assert((uint)predicate < 4, "sanity"); 6507 assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters"); 6508 6509 Node* digestBase_obj = argument(0); // The receiver was checked for NULL already. 6510 Node* src = argument(1); // byte[] array 6511 Node* ofs = argument(2); // type int 6512 Node* limit = argument(3); // type int 6513 6514 const Type* src_type = src->Value(&_gvn); 6515 const TypeAryPtr* top_src = src_type->isa_aryptr(); 6516 if (top_src == NULL || top_src->klass() == NULL) { 6517 // failed array check 6518 return false; 6519 } 6520 // Figure out the size and type of the elements we will be copying. 6521 BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type(); 6522 if (src_elem != T_BYTE) { 6523 return false; 6524 } 6525 // 'src_start' points to src array + offset 6526 src = must_be_not_null(src, false); 6527 Node* src_start = array_element_address(src, ofs, src_elem); 6528 6529 const char* klass_digestBase_name = NULL; 6530 const char* stub_name = NULL; 6531 address stub_addr = NULL; 6532 bool long_state = false; 6533 6534 switch (predicate) { 6535 case 0: 6536 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_md5_implCompress)) { 6537 klass_digestBase_name = "sun/security/provider/MD5"; 6538 stub_name = "md5_implCompressMB"; 6539 stub_addr = StubRoutines::md5_implCompressMB(); 6540 } 6541 break; 6542 case 1: 6543 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha_implCompress)) { 6544 klass_digestBase_name = "sun/security/provider/SHA"; 6545 stub_name = "sha1_implCompressMB"; 6546 stub_addr = StubRoutines::sha1_implCompressMB(); 6547 } 6548 break; 6549 case 2: 6550 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha2_implCompress)) { 6551 klass_digestBase_name = "sun/security/provider/SHA2"; 6552 stub_name = "sha256_implCompressMB"; 6553 stub_addr = StubRoutines::sha256_implCompressMB(); 6554 } 6555 break; 6556 case 3: 6557 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha5_implCompress)) { 6558 klass_digestBase_name = "sun/security/provider/SHA5"; 6559 stub_name = "sha512_implCompressMB"; 6560 stub_addr = StubRoutines::sha512_implCompressMB(); 6561 long_state = true; 6562 } 6563 break; 6564 default: 6565 fatal("unknown DigestBase intrinsic predicate: %d", predicate); 6566 } 6567 if (klass_digestBase_name != NULL) { 6568 assert(stub_addr != NULL, "Stub is generated"); 6569 if (stub_addr == NULL) return false; 6570 6571 // get DigestBase klass to lookup for SHA klass 6572 const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr(); 6573 assert(tinst != NULL, "digestBase_obj is not instance???"); 6574 assert(tinst->klass()->is_loaded(), "DigestBase is not loaded"); 6575 6576 ciKlass* klass_digestBase = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_digestBase_name)); 6577 assert(klass_digestBase->is_loaded(), "predicate checks that this class is loaded"); 6578 ciInstanceKlass* instklass_digestBase = klass_digestBase->as_instance_klass(); 6579 return inline_digestBase_implCompressMB(digestBase_obj, instklass_digestBase, long_state, stub_addr, stub_name, src_start, ofs, limit); 6580 } 6581 return false; 6582 } 6583 6584 //------------------------------inline_digestBase_implCompressMB----------------------- 6585 bool LibraryCallKit::inline_digestBase_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_digestBase, 6586 bool long_state, address stubAddr, const char *stubName, 6587 Node* src_start, Node* ofs, Node* limit) { 6588 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_digestBase); 6589 const TypeOopPtr* xtype = aklass->as_instance_type(); 6590 Node* digest_obj = new CheckCastPPNode(control(), digestBase_obj, xtype); 6591 digest_obj = _gvn.transform(digest_obj); 6592 6593 Node* state; 6594 if (long_state) { 6595 state = get_long_state_from_digest_object(digest_obj); 6596 } else { 6597 state = get_state_from_digest_object(digest_obj); 6598 } 6599 if (state == NULL) return false; 6600 6601 // Call the stub. 6602 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 6603 OptoRuntime::digestBase_implCompressMB_Type(), 6604 stubAddr, stubName, TypePtr::BOTTOM, 6605 src_start, state, ofs, limit); 6606 // return ofs (int) 6607 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6608 set_result(result); 6609 6610 return true; 6611 } 6612 6613 //------------------------------get_state_from_digest_object----------------------- 6614 Node * LibraryCallKit::get_state_from_digest_object(Node *digest_object) { 6615 Node* digest_state = load_field_from_object(digest_object, "state", "[I", /*is_exact*/ false); 6616 assert (digest_state != NULL, "wrong version of sun.security.provider.MD5/SHA/SHA2"); 6617 if (digest_state == NULL) return (Node *) NULL; 6618 6619 // now have the array, need to get the start address of the state array 6620 Node* state = array_element_address(digest_state, intcon(0), T_INT); 6621 return state; 6622 } 6623 6624 //------------------------------get_long_state_from_digest_object----------------------- 6625 Node * LibraryCallKit::get_long_state_from_digest_object(Node *digest_object) { 6626 Node* digest_state = load_field_from_object(digest_object, "state", "[J", /*is_exact*/ false); 6627 assert (digest_state != NULL, "wrong version of sun.security.provider.SHA5"); 6628 if (digest_state == NULL) return (Node *) NULL; 6629 6630 // now have the array, need to get the start address of the state array 6631 Node* state = array_element_address(digest_state, intcon(0), T_LONG); 6632 return state; 6633 } 6634 6635 //----------------------------inline_digestBase_implCompressMB_predicate---------------------------- 6636 // Return node representing slow path of predicate check. 6637 // the pseudo code we want to emulate with this predicate is: 6638 // if (digestBaseObj instanceof MD5/SHA/SHA2/SHA5) do_intrinsic, else do_javapath 6639 // 6640 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) { 6641 assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics, 6642 "need MD5/SHA1/SHA256/SHA512 instruction support"); 6643 assert((uint)predicate < 4, "sanity"); 6644 6645 // The receiver was checked for NULL already. 6646 Node* digestBaseObj = argument(0); 6647 6648 // get DigestBase klass for instanceOf check 6649 const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr(); 6650 assert(tinst != NULL, "digestBaseObj is null"); 6651 assert(tinst->klass()->is_loaded(), "DigestBase is not loaded"); 6652 6653 const char* klass_name = NULL; 6654 switch (predicate) { 6655 case 0: 6656 if (UseMD5Intrinsics) { 6657 // we want to do an instanceof comparison against the MD5 class 6658 klass_name = "sun/security/provider/MD5"; 6659 } 6660 break; 6661 case 1: 6662 if (UseSHA1Intrinsics) { 6663 // we want to do an instanceof comparison against the SHA class 6664 klass_name = "sun/security/provider/SHA"; 6665 } 6666 break; 6667 case 2: 6668 if (UseSHA256Intrinsics) { 6669 // we want to do an instanceof comparison against the SHA2 class 6670 klass_name = "sun/security/provider/SHA2"; 6671 } 6672 break; 6673 case 3: 6674 if (UseSHA512Intrinsics) { 6675 // we want to do an instanceof comparison against the SHA5 class 6676 klass_name = "sun/security/provider/SHA5"; 6677 } 6678 break; 6679 default: 6680 fatal("unknown SHA intrinsic predicate: %d", predicate); 6681 } 6682 6683 ciKlass* klass = NULL; 6684 if (klass_name != NULL) { 6685 klass = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_name)); 6686 } 6687 if ((klass == NULL) || !klass->is_loaded()) { 6688 // if none of MD5/SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path 6689 Node* ctrl = control(); 6690 set_control(top()); // no intrinsic path 6691 return ctrl; 6692 } 6693 ciInstanceKlass* instklass = klass->as_instance_klass(); 6694 6695 Node* instof = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass))); 6696 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 6697 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 6698 Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN); 6699 6700 return instof_false; // even if it is NULL 6701 } 6702 6703 //-------------inline_fma----------------------------------- 6704 bool LibraryCallKit::inline_fma(vmIntrinsics::ID id) { 6705 Node *a = NULL; 6706 Node *b = NULL; 6707 Node *c = NULL; 6708 Node* result = NULL; 6709 switch (id) { 6710 case vmIntrinsics::_fmaD: 6711 assert(callee()->signature()->size() == 6, "fma has 3 parameters of size 2 each."); 6712 // no receiver since it is static method 6713 a = round_double_node(argument(0)); 6714 b = round_double_node(argument(2)); 6715 c = round_double_node(argument(4)); 6716 result = _gvn.transform(new FmaDNode(control(), a, b, c)); 6717 break; 6718 case vmIntrinsics::_fmaF: 6719 assert(callee()->signature()->size() == 3, "fma has 3 parameters of size 1 each."); 6720 a = argument(0); 6721 b = argument(1); 6722 c = argument(2); 6723 result = _gvn.transform(new FmaFNode(control(), a, b, c)); 6724 break; 6725 default: 6726 fatal_unexpected_iid(id); break; 6727 } 6728 set_result(result); 6729 return true; 6730 } 6731 6732 bool LibraryCallKit::inline_character_compare(vmIntrinsics::ID id) { 6733 // argument(0) is receiver 6734 Node* codePoint = argument(1); 6735 Node* n = NULL; 6736 6737 switch (id) { 6738 case vmIntrinsics::_isDigit : 6739 n = new DigitNode(control(), codePoint); 6740 break; 6741 case vmIntrinsics::_isLowerCase : 6742 n = new LowerCaseNode(control(), codePoint); 6743 break; 6744 case vmIntrinsics::_isUpperCase : 6745 n = new UpperCaseNode(control(), codePoint); 6746 break; 6747 case vmIntrinsics::_isWhitespace : 6748 n = new WhitespaceNode(control(), codePoint); 6749 break; 6750 default: 6751 fatal_unexpected_iid(id); 6752 } 6753 6754 set_result(_gvn.transform(n)); 6755 return true; 6756 } 6757 6758 //------------------------------inline_fp_min_max------------------------------ 6759 bool LibraryCallKit::inline_fp_min_max(vmIntrinsics::ID id) { 6760 /* DISABLED BECAUSE METHOD DATA ISN'T COLLECTED PER CALL-SITE, SEE JDK-8015416. 6761 6762 // The intrinsic should be used only when the API branches aren't predictable, 6763 // the last one performing the most important comparison. The following heuristic 6764 // uses the branch statistics to eventually bail out if necessary. 6765 6766 ciMethodData *md = callee()->method_data(); 6767 6768 if ( md != NULL && md->is_mature() && md->invocation_count() > 0 ) { 6769 ciCallProfile cp = caller()->call_profile_at_bci(bci()); 6770 6771 if ( ((double)cp.count()) / ((double)md->invocation_count()) < 0.8 ) { 6772 // Bail out if the call-site didn't contribute enough to the statistics. 6773 return false; 6774 } 6775 6776 uint taken = 0, not_taken = 0; 6777 6778 for (ciProfileData *p = md->first_data(); md->is_valid(p); p = md->next_data(p)) { 6779 if (p->is_BranchData()) { 6780 taken = ((ciBranchData*)p)->taken(); 6781 not_taken = ((ciBranchData*)p)->not_taken(); 6782 } 6783 } 6784 6785 double balance = (((double)taken) - ((double)not_taken)) / ((double)md->invocation_count()); 6786 balance = balance < 0 ? -balance : balance; 6787 if ( balance > 0.2 ) { 6788 // Bail out if the most important branch is predictable enough. 6789 return false; 6790 } 6791 } 6792 */ 6793 6794 Node *a = NULL; 6795 Node *b = NULL; 6796 Node *n = NULL; 6797 switch (id) { 6798 case vmIntrinsics::_maxF: 6799 case vmIntrinsics::_minF: 6800 assert(callee()->signature()->size() == 2, "minF/maxF has 2 parameters of size 1 each."); 6801 a = argument(0); 6802 b = argument(1); 6803 break; 6804 case vmIntrinsics::_maxD: 6805 case vmIntrinsics::_minD: 6806 assert(callee()->signature()->size() == 4, "minD/maxD has 2 parameters of size 2 each."); 6807 a = round_double_node(argument(0)); 6808 b = round_double_node(argument(2)); 6809 break; 6810 default: 6811 fatal_unexpected_iid(id); 6812 break; 6813 } 6814 switch (id) { 6815 case vmIntrinsics::_maxF: n = new MaxFNode(a, b); break; 6816 case vmIntrinsics::_minF: n = new MinFNode(a, b); break; 6817 case vmIntrinsics::_maxD: n = new MaxDNode(a, b); break; 6818 case vmIntrinsics::_minD: n = new MinDNode(a, b); break; 6819 default: fatal_unexpected_iid(id); break; 6820 } 6821 set_result(_gvn.transform(n)); 6822 return true; 6823 } 6824 6825 bool LibraryCallKit::inline_profileBoolean() { 6826 Node* counts = argument(1); 6827 const TypeAryPtr* ary = NULL; 6828 ciArray* aobj = NULL; 6829 if (counts->is_Con() 6830 && (ary = counts->bottom_type()->isa_aryptr()) != NULL 6831 && (aobj = ary->const_oop()->as_array()) != NULL 6832 && (aobj->length() == 2)) { 6833 // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively. 6834 jint false_cnt = aobj->element_value(0).as_int(); 6835 jint true_cnt = aobj->element_value(1).as_int(); 6836 6837 if (C->log() != NULL) { 6838 C->log()->elem("observe source='profileBoolean' false='%d' true='%d'", 6839 false_cnt, true_cnt); 6840 } 6841 6842 if (false_cnt + true_cnt == 0) { 6843 // According to profile, never executed. 6844 uncommon_trap_exact(Deoptimization::Reason_intrinsic, 6845 Deoptimization::Action_reinterpret); 6846 return true; 6847 } 6848 6849 // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt) 6850 // is a number of each value occurrences. 6851 Node* result = argument(0); 6852 if (false_cnt == 0 || true_cnt == 0) { 6853 // According to profile, one value has been never seen. 6854 int expected_val = (false_cnt == 0) ? 1 : 0; 6855 6856 Node* cmp = _gvn.transform(new CmpINode(result, intcon(expected_val))); 6857 Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 6858 6859 IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN); 6860 Node* fast_path = _gvn.transform(new IfTrueNode(check)); 6861 Node* slow_path = _gvn.transform(new IfFalseNode(check)); 6862 6863 { // Slow path: uncommon trap for never seen value and then reexecute 6864 // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows 6865 // the value has been seen at least once. 6866 PreserveJVMState pjvms(this); 6867 PreserveReexecuteState preexecs(this); 6868 jvms()->set_should_reexecute(true); 6869 6870 set_control(slow_path); 6871 set_i_o(i_o()); 6872 6873 uncommon_trap_exact(Deoptimization::Reason_intrinsic, 6874 Deoptimization::Action_reinterpret); 6875 } 6876 // The guard for never seen value enables sharpening of the result and 6877 // returning a constant. It allows to eliminate branches on the same value 6878 // later on. 6879 set_control(fast_path); 6880 result = intcon(expected_val); 6881 } 6882 // Stop profiling. 6883 // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode. 6884 // By replacing method body with profile data (represented as ProfileBooleanNode 6885 // on IR level) we effectively disable profiling. 6886 // It enables full speed execution once optimized code is generated. 6887 Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt)); 6888 C->record_for_igvn(profile); 6889 set_result(profile); 6890 return true; 6891 } else { 6892 // Continue profiling. 6893 // Profile data isn't available at the moment. So, execute method's bytecode version. 6894 // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod 6895 // is compiled and counters aren't available since corresponding MethodHandle 6896 // isn't a compile-time constant. 6897 return false; 6898 } 6899 } 6900 6901 bool LibraryCallKit::inline_isCompileConstant() { 6902 Node* n = argument(0); 6903 set_result(n->is_Con() ? intcon(1) : intcon(0)); 6904 return true; 6905 }