1 /* 2 * Copyright (c) 2005, 2020, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "ci/bcEscapeAnalyzer.hpp" 27 #include "compiler/compileLog.hpp" 28 #include "gc/shared/barrierSet.hpp" 29 #include "gc/shared/c2/barrierSetC2.hpp" 30 #include "libadt/vectset.hpp" 31 #include "memory/allocation.hpp" 32 #include "memory/resourceArea.hpp" 33 #include "opto/c2compiler.hpp" 34 #include "opto/arraycopynode.hpp" 35 #include "opto/callnode.hpp" 36 #include "opto/cfgnode.hpp" 37 #include "opto/compile.hpp" 38 #include "opto/escape.hpp" 39 #include "opto/phaseX.hpp" 40 #include "opto/movenode.hpp" 41 #include "opto/rootnode.hpp" 42 #include "utilities/macros.hpp" 43 44 ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn) : 45 _nodes(C->comp_arena(), C->unique(), C->unique(), NULL), 46 _in_worklist(C->comp_arena()), 47 _next_pidx(0), 48 _collecting(true), 49 _verify(false), 50 _compile(C), 51 _igvn(igvn), 52 _node_map(C->comp_arena()) { 53 // Add unknown java object. 54 add_java_object(C->top(), PointsToNode::GlobalEscape); 55 phantom_obj = ptnode_adr(C->top()->_idx)->as_JavaObject(); 56 // Add ConP(#NULL) and ConN(#NULL) nodes. 57 Node* oop_null = igvn->zerocon(T_OBJECT); 58 assert(oop_null->_idx < nodes_size(), "should be created already"); 59 add_java_object(oop_null, PointsToNode::NoEscape); 60 null_obj = ptnode_adr(oop_null->_idx)->as_JavaObject(); 61 if (UseCompressedOops) { 62 Node* noop_null = igvn->zerocon(T_NARROWOOP); 63 assert(noop_null->_idx < nodes_size(), "should be created already"); 64 map_ideal_node(noop_null, null_obj); 65 } 66 _pcmp_neq = NULL; // Should be initialized 67 _pcmp_eq = NULL; 68 } 69 70 bool ConnectionGraph::has_candidates(Compile *C) { 71 // EA brings benefits only when the code has allocations and/or locks which 72 // are represented by ideal Macro nodes. 73 int cnt = C->macro_count(); 74 for (int i = 0; i < cnt; i++) { 75 Node *n = C->macro_node(i); 76 if (n->is_Allocate()) 77 return true; 78 if (n->is_Lock()) { 79 Node* obj = n->as_Lock()->obj_node()->uncast(); 80 if (!(obj->is_Parm() || obj->is_Con())) 81 return true; 82 } 83 if (n->is_CallStaticJava() && 84 n->as_CallStaticJava()->is_boxing_method()) { 85 return true; 86 } 87 } 88 return false; 89 } 90 91 void ConnectionGraph::do_analysis(Compile *C, PhaseIterGVN *igvn) { 92 Compile::TracePhase tp("escapeAnalysis", &Phase::timers[Phase::_t_escapeAnalysis]); 93 ResourceMark rm; 94 95 // Add ConP#NULL and ConN#NULL nodes before ConnectionGraph construction 96 // to create space for them in ConnectionGraph::_nodes[]. 97 Node* oop_null = igvn->zerocon(T_OBJECT); 98 Node* noop_null = igvn->zerocon(T_NARROWOOP); 99 ConnectionGraph* congraph = new(C->comp_arena()) ConnectionGraph(C, igvn); 100 // Perform escape analysis 101 if (congraph->compute_escape()) { 102 // There are non escaping objects. 103 C->set_congraph(congraph); 104 } 105 // Cleanup. 106 if (oop_null->outcnt() == 0) 107 igvn->hash_delete(oop_null); 108 if (noop_null->outcnt() == 0) 109 igvn->hash_delete(noop_null); 110 } 111 112 bool ConnectionGraph::compute_escape() { 113 Compile* C = _compile; 114 PhaseGVN* igvn = _igvn; 115 116 // Worklists used by EA. 117 Unique_Node_List delayed_worklist; 118 GrowableArray<Node*> alloc_worklist; 119 GrowableArray<Node*> ptr_cmp_worklist; 120 GrowableArray<Node*> storestore_worklist; 121 GrowableArray<ArrayCopyNode*> arraycopy_worklist; 122 GrowableArray<PointsToNode*> ptnodes_worklist; 123 GrowableArray<JavaObjectNode*> java_objects_worklist; 124 GrowableArray<JavaObjectNode*> non_escaped_worklist; 125 GrowableArray<FieldNode*> oop_fields_worklist; 126 DEBUG_ONLY( GrowableArray<Node*> addp_worklist; ) 127 128 { Compile::TracePhase tp("connectionGraph", &Phase::timers[Phase::_t_connectionGraph]); 129 130 // 1. Populate Connection Graph (CG) with PointsTo nodes. 131 ideal_nodes.map(C->live_nodes(), NULL); // preallocate space 132 // Initialize worklist 133 if (C->root() != NULL) { 134 ideal_nodes.push(C->root()); 135 } 136 // Processed ideal nodes are unique on ideal_nodes list 137 // but several ideal nodes are mapped to the phantom_obj. 138 // To avoid duplicated entries on the following worklists 139 // add the phantom_obj only once to them. 140 ptnodes_worklist.append(phantom_obj); 141 java_objects_worklist.append(phantom_obj); 142 for( uint next = 0; next < ideal_nodes.size(); ++next ) { 143 Node* n = ideal_nodes.at(next); 144 // Create PointsTo nodes and add them to Connection Graph. Called 145 // only once per ideal node since ideal_nodes is Unique_Node list. 146 add_node_to_connection_graph(n, &delayed_worklist); 147 PointsToNode* ptn = ptnode_adr(n->_idx); 148 if (ptn != NULL && ptn != phantom_obj) { 149 ptnodes_worklist.append(ptn); 150 if (ptn->is_JavaObject()) { 151 java_objects_worklist.append(ptn->as_JavaObject()); 152 if ((n->is_Allocate() || n->is_CallStaticJava()) && 153 (ptn->escape_state() < PointsToNode::GlobalEscape)) { 154 // Only allocations and java static calls results are interesting. 155 non_escaped_worklist.append(ptn->as_JavaObject()); 156 } 157 } else if (ptn->is_Field() && ptn->as_Field()->is_oop()) { 158 oop_fields_worklist.append(ptn->as_Field()); 159 } 160 } 161 if (n->is_MergeMem()) { 162 // Collect all MergeMem nodes to add memory slices for 163 // scalar replaceable objects in split_unique_types(). 164 _mergemem_worklist.append(n->as_MergeMem()); 165 } else if (OptimizePtrCompare && n->is_Cmp() && 166 (n->Opcode() == Op_CmpP || n->Opcode() == Op_CmpN)) { 167 // Collect compare pointers nodes. 168 ptr_cmp_worklist.append(n); 169 } else if (n->is_MemBarStoreStore()) { 170 // Collect all MemBarStoreStore nodes so that depending on the 171 // escape status of the associated Allocate node some of them 172 // may be eliminated. 173 storestore_worklist.append(n); 174 } else if (n->is_MemBar() && (n->Opcode() == Op_MemBarRelease) && 175 (n->req() > MemBarNode::Precedent)) { 176 record_for_optimizer(n); 177 #ifdef ASSERT 178 } else if (n->is_AddP()) { 179 // Collect address nodes for graph verification. 180 addp_worklist.append(n); 181 #endif 182 } else if (n->is_ArrayCopy()) { 183 // Keep a list of ArrayCopy nodes so if one of its input is non 184 // escaping, we can record a unique type 185 arraycopy_worklist.append(n->as_ArrayCopy()); 186 } 187 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 188 Node* m = n->fast_out(i); // Get user 189 ideal_nodes.push(m); 190 } 191 } 192 if (non_escaped_worklist.length() == 0) { 193 _collecting = false; 194 return false; // Nothing to do. 195 } 196 // Add final simple edges to graph. 197 while(delayed_worklist.size() > 0) { 198 Node* n = delayed_worklist.pop(); 199 add_final_edges(n); 200 } 201 int ptnodes_length = ptnodes_worklist.length(); 202 203 #ifdef ASSERT 204 if (VerifyConnectionGraph) { 205 // Verify that no new simple edges could be created and all 206 // local vars has edges. 207 _verify = true; 208 for (int next = 0; next < ptnodes_length; ++next) { 209 PointsToNode* ptn = ptnodes_worklist.at(next); 210 add_final_edges(ptn->ideal_node()); 211 if (ptn->is_LocalVar() && ptn->edge_count() == 0) { 212 ptn->dump(); 213 assert(ptn->as_LocalVar()->edge_count() > 0, "sanity"); 214 } 215 } 216 _verify = false; 217 } 218 #endif 219 // Bytecode analyzer BCEscapeAnalyzer, used for Call nodes 220 // processing, calls to CI to resolve symbols (types, fields, methods) 221 // referenced in bytecode. During symbol resolution VM may throw 222 // an exception which CI cleans and converts to compilation failure. 223 if (C->failing()) return false; 224 225 // 2. Finish Graph construction by propagating references to all 226 // java objects through graph. 227 if (!complete_connection_graph(ptnodes_worklist, non_escaped_worklist, 228 java_objects_worklist, oop_fields_worklist)) { 229 // All objects escaped or hit time or iterations limits. 230 _collecting = false; 231 return false; 232 } 233 234 // 3. Adjust scalar_replaceable state of nonescaping objects and push 235 // scalar replaceable allocations on alloc_worklist for processing 236 // in split_unique_types(). 237 int non_escaped_length = non_escaped_worklist.length(); 238 for (int next = 0; next < non_escaped_length; next++) { 239 JavaObjectNode* ptn = non_escaped_worklist.at(next); 240 bool noescape = (ptn->escape_state() == PointsToNode::NoEscape); 241 Node* n = ptn->ideal_node(); 242 if (n->is_Allocate()) { 243 n->as_Allocate()->_is_non_escaping = noescape; 244 } 245 if (n->is_CallStaticJava()) { 246 n->as_CallStaticJava()->_is_non_escaping = noescape; 247 } 248 if (noescape && ptn->scalar_replaceable()) { 249 adjust_scalar_replaceable_state(ptn); 250 if (ptn->scalar_replaceable()) { 251 alloc_worklist.append(ptn->ideal_node()); 252 } 253 } 254 } 255 256 #ifdef ASSERT 257 if (VerifyConnectionGraph) { 258 // Verify that graph is complete - no new edges could be added or needed. 259 verify_connection_graph(ptnodes_worklist, non_escaped_worklist, 260 java_objects_worklist, addp_worklist); 261 } 262 assert(C->unique() == nodes_size(), "no new ideal nodes should be added during ConnectionGraph build"); 263 assert(null_obj->escape_state() == PointsToNode::NoEscape && 264 null_obj->edge_count() == 0 && 265 !null_obj->arraycopy_src() && 266 !null_obj->arraycopy_dst(), "sanity"); 267 #endif 268 269 _collecting = false; 270 271 } // TracePhase t3("connectionGraph") 272 273 // 4. Optimize ideal graph based on EA information. 274 bool has_non_escaping_obj = (non_escaped_worklist.length() > 0); 275 if (has_non_escaping_obj) { 276 optimize_ideal_graph(ptr_cmp_worklist, storestore_worklist); 277 } 278 279 #ifndef PRODUCT 280 if (PrintEscapeAnalysis) { 281 dump(ptnodes_worklist); // Dump ConnectionGraph 282 } 283 #endif 284 285 bool has_scalar_replaceable_candidates = (alloc_worklist.length() > 0); 286 #ifdef ASSERT 287 if (VerifyConnectionGraph) { 288 int alloc_length = alloc_worklist.length(); 289 for (int next = 0; next < alloc_length; ++next) { 290 Node* n = alloc_worklist.at(next); 291 PointsToNode* ptn = ptnode_adr(n->_idx); 292 assert(ptn->escape_state() == PointsToNode::NoEscape && ptn->scalar_replaceable(), "sanity"); 293 } 294 } 295 #endif 296 297 // 5. Separate memory graph for scalar replaceable allcations. 298 if (has_scalar_replaceable_candidates && 299 C->AliasLevel() >= 3 && EliminateAllocations) { 300 // Now use the escape information to create unique types for 301 // scalar replaceable objects. 302 split_unique_types(alloc_worklist, arraycopy_worklist); 303 if (C->failing()) return false; 304 C->print_method(PHASE_AFTER_EA, 2); 305 306 #ifdef ASSERT 307 } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) { 308 tty->print("=== No allocations eliminated for "); 309 C->method()->print_short_name(); 310 if(!EliminateAllocations) { 311 tty->print(" since EliminateAllocations is off ==="); 312 } else if(!has_scalar_replaceable_candidates) { 313 tty->print(" since there are no scalar replaceable candidates ==="); 314 } else if(C->AliasLevel() < 3) { 315 tty->print(" since AliasLevel < 3 ==="); 316 } 317 tty->cr(); 318 #endif 319 } 320 return has_non_escaping_obj; 321 } 322 323 // Utility function for nodes that load an object 324 void ConnectionGraph::add_objload_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) { 325 // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because 326 // ThreadLocal has RawPtr type. 327 const Type* t = _igvn->type(n); 328 if (t->make_ptr() != NULL) { 329 Node* adr = n->in(MemNode::Address); 330 #ifdef ASSERT 331 if (!adr->is_AddP()) { 332 assert(_igvn->type(adr)->isa_rawptr(), "sanity"); 333 } else { 334 assert((ptnode_adr(adr->_idx) == NULL || 335 ptnode_adr(adr->_idx)->as_Field()->is_oop()), "sanity"); 336 } 337 #endif 338 add_local_var_and_edge(n, PointsToNode::NoEscape, 339 adr, delayed_worklist); 340 } 341 } 342 343 // Populate Connection Graph with PointsTo nodes and create simple 344 // connection graph edges. 345 void ConnectionGraph::add_node_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) { 346 assert(!_verify, "this method should not be called for verification"); 347 PhaseGVN* igvn = _igvn; 348 uint n_idx = n->_idx; 349 PointsToNode* n_ptn = ptnode_adr(n_idx); 350 if (n_ptn != NULL) 351 return; // No need to redefine PointsTo node during first iteration. 352 353 int opcode = n->Opcode(); 354 bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->escape_add_to_con_graph(this, igvn, delayed_worklist, n, opcode); 355 if (gc_handled) { 356 return; // Ignore node if already handled by GC. 357 } 358 359 if (n->is_Call()) { 360 // Arguments to allocation and locking don't escape. 361 if (n->is_AbstractLock()) { 362 // Put Lock and Unlock nodes on IGVN worklist to process them during 363 // first IGVN optimization when escape information is still available. 364 record_for_optimizer(n); 365 } else if (n->is_Allocate()) { 366 add_call_node(n->as_Call()); 367 record_for_optimizer(n); 368 } else { 369 if (n->is_CallStaticJava()) { 370 const char* name = n->as_CallStaticJava()->_name; 371 if (name != NULL && strcmp(name, "uncommon_trap") == 0) 372 return; // Skip uncommon traps 373 } 374 // Don't mark as processed since call's arguments have to be processed. 375 delayed_worklist->push(n); 376 // Check if a call returns an object. 377 if ((n->as_Call()->returns_pointer() && 378 n->as_Call()->proj_out_or_null(TypeFunc::Parms) != NULL) || 379 (n->is_CallStaticJava() && 380 n->as_CallStaticJava()->is_boxing_method())) { 381 add_call_node(n->as_Call()); 382 } 383 } 384 return; 385 } 386 // Put this check here to process call arguments since some call nodes 387 // point to phantom_obj. 388 if (n_ptn == phantom_obj || n_ptn == null_obj) 389 return; // Skip predefined nodes. 390 391 switch (opcode) { 392 case Op_AddP: { 393 Node* base = get_addp_base(n); 394 PointsToNode* ptn_base = ptnode_adr(base->_idx); 395 // Field nodes are created for all field types. They are used in 396 // adjust_scalar_replaceable_state() and split_unique_types(). 397 // Note, non-oop fields will have only base edges in Connection 398 // Graph because such fields are not used for oop loads and stores. 399 int offset = address_offset(n, igvn); 400 add_field(n, PointsToNode::NoEscape, offset); 401 if (ptn_base == NULL) { 402 delayed_worklist->push(n); // Process it later. 403 } else { 404 n_ptn = ptnode_adr(n_idx); 405 add_base(n_ptn->as_Field(), ptn_base); 406 } 407 break; 408 } 409 case Op_CastX2P: { 410 map_ideal_node(n, phantom_obj); 411 break; 412 } 413 case Op_CastPP: 414 case Op_CheckCastPP: 415 case Op_EncodeP: 416 case Op_DecodeN: 417 case Op_EncodePKlass: 418 case Op_DecodeNKlass: { 419 add_local_var_and_edge(n, PointsToNode::NoEscape, 420 n->in(1), delayed_worklist); 421 break; 422 } 423 case Op_CMoveP: { 424 add_local_var(n, PointsToNode::NoEscape); 425 // Do not add edges during first iteration because some could be 426 // not defined yet. 427 delayed_worklist->push(n); 428 break; 429 } 430 case Op_ConP: 431 case Op_ConN: 432 case Op_ConNKlass: { 433 // assume all oop constants globally escape except for null 434 PointsToNode::EscapeState es; 435 const Type* t = igvn->type(n); 436 if (t == TypePtr::NULL_PTR || t == TypeNarrowOop::NULL_PTR) { 437 es = PointsToNode::NoEscape; 438 } else { 439 es = PointsToNode::GlobalEscape; 440 } 441 add_java_object(n, es); 442 break; 443 } 444 case Op_CreateEx: { 445 // assume that all exception objects globally escape 446 map_ideal_node(n, phantom_obj); 447 break; 448 } 449 case Op_LoadKlass: 450 case Op_LoadNKlass: { 451 // Unknown class is loaded 452 map_ideal_node(n, phantom_obj); 453 break; 454 } 455 case Op_LoadP: 456 case Op_LoadN: 457 case Op_LoadPLocked: { 458 add_objload_to_connection_graph(n, delayed_worklist); 459 break; 460 } 461 case Op_Parm: { 462 map_ideal_node(n, phantom_obj); 463 break; 464 } 465 case Op_PartialSubtypeCheck: { 466 // Produces Null or notNull and is used in only in CmpP so 467 // phantom_obj could be used. 468 map_ideal_node(n, phantom_obj); // Result is unknown 469 break; 470 } 471 case Op_Phi: { 472 // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because 473 // ThreadLocal has RawPtr type. 474 const Type* t = n->as_Phi()->type(); 475 if (t->make_ptr() != NULL) { 476 add_local_var(n, PointsToNode::NoEscape); 477 // Do not add edges during first iteration because some could be 478 // not defined yet. 479 delayed_worklist->push(n); 480 } 481 break; 482 } 483 case Op_Proj: { 484 // we are only interested in the oop result projection from a call 485 if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() && 486 n->in(0)->as_Call()->returns_pointer()) { 487 add_local_var_and_edge(n, PointsToNode::NoEscape, 488 n->in(0), delayed_worklist); 489 } 490 break; 491 } 492 case Op_Rethrow: // Exception object escapes 493 case Op_Return: { 494 if (n->req() > TypeFunc::Parms && 495 igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) { 496 // Treat Return value as LocalVar with GlobalEscape escape state. 497 add_local_var_and_edge(n, PointsToNode::GlobalEscape, 498 n->in(TypeFunc::Parms), delayed_worklist); 499 } 500 break; 501 } 502 case Op_CompareAndExchangeP: 503 case Op_CompareAndExchangeN: 504 case Op_GetAndSetP: 505 case Op_GetAndSetN: { 506 add_objload_to_connection_graph(n, delayed_worklist); 507 // fallthrough 508 } 509 case Op_StoreP: 510 case Op_StoreN: 511 case Op_StoreNKlass: 512 case Op_StorePConditional: 513 case Op_WeakCompareAndSwapP: 514 case Op_WeakCompareAndSwapN: 515 case Op_CompareAndSwapP: 516 case Op_CompareAndSwapN: { 517 add_to_congraph_unsafe_access(n, opcode, delayed_worklist); 518 break; 519 } 520 case Op_AryEq: 521 case Op_HasNegatives: 522 case Op_StrComp: 523 case Op_StrEquals: 524 case Op_StrIndexOf: 525 case Op_StrIndexOfChar: 526 case Op_StrInflatedCopy: 527 case Op_StrCompressedCopy: 528 case Op_EncodeISOArray: { 529 add_local_var(n, PointsToNode::ArgEscape); 530 delayed_worklist->push(n); // Process it later. 531 break; 532 } 533 case Op_ThreadLocal: { 534 add_java_object(n, PointsToNode::ArgEscape); 535 break; 536 } 537 default: 538 ; // Do nothing for nodes not related to EA. 539 } 540 return; 541 } 542 543 #ifdef ASSERT 544 #define ELSE_FAIL(name) \ 545 /* Should not be called for not pointer type. */ \ 546 n->dump(1); \ 547 assert(false, name); \ 548 break; 549 #else 550 #define ELSE_FAIL(name) \ 551 break; 552 #endif 553 554 // Add final simple edges to graph. 555 void ConnectionGraph::add_final_edges(Node *n) { 556 PointsToNode* n_ptn = ptnode_adr(n->_idx); 557 #ifdef ASSERT 558 if (_verify && n_ptn->is_JavaObject()) 559 return; // This method does not change graph for JavaObject. 560 #endif 561 562 if (n->is_Call()) { 563 process_call_arguments(n->as_Call()); 564 return; 565 } 566 assert(n->is_Store() || n->is_LoadStore() || 567 (n_ptn != NULL) && (n_ptn->ideal_node() != NULL), 568 "node should be registered already"); 569 int opcode = n->Opcode(); 570 bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->escape_add_final_edges(this, _igvn, n, opcode); 571 if (gc_handled) { 572 return; // Ignore node if already handled by GC. 573 } 574 switch (opcode) { 575 case Op_AddP: { 576 Node* base = get_addp_base(n); 577 PointsToNode* ptn_base = ptnode_adr(base->_idx); 578 assert(ptn_base != NULL, "field's base should be registered"); 579 add_base(n_ptn->as_Field(), ptn_base); 580 break; 581 } 582 case Op_CastPP: 583 case Op_CheckCastPP: 584 case Op_EncodeP: 585 case Op_DecodeN: 586 case Op_EncodePKlass: 587 case Op_DecodeNKlass: { 588 add_local_var_and_edge(n, PointsToNode::NoEscape, 589 n->in(1), NULL); 590 break; 591 } 592 case Op_CMoveP: { 593 for (uint i = CMoveNode::IfFalse; i < n->req(); i++) { 594 Node* in = n->in(i); 595 if (in == NULL) 596 continue; // ignore NULL 597 Node* uncast_in = in->uncast(); 598 if (uncast_in->is_top() || uncast_in == n) 599 continue; // ignore top or inputs which go back this node 600 PointsToNode* ptn = ptnode_adr(in->_idx); 601 assert(ptn != NULL, "node should be registered"); 602 add_edge(n_ptn, ptn); 603 } 604 break; 605 } 606 case Op_LoadP: 607 case Op_LoadN: 608 case Op_LoadPLocked: { 609 // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because 610 // ThreadLocal has RawPtr type. 611 const Type* t = _igvn->type(n); 612 if (t->make_ptr() != NULL) { 613 Node* adr = n->in(MemNode::Address); 614 add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL); 615 break; 616 } 617 ELSE_FAIL("Op_LoadP"); 618 } 619 case Op_Phi: { 620 // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because 621 // ThreadLocal has RawPtr type. 622 const Type* t = n->as_Phi()->type(); 623 if (t->make_ptr() != NULL) { 624 for (uint i = 1; i < n->req(); i++) { 625 Node* in = n->in(i); 626 if (in == NULL) 627 continue; // ignore NULL 628 Node* uncast_in = in->uncast(); 629 if (uncast_in->is_top() || uncast_in == n) 630 continue; // ignore top or inputs which go back this node 631 PointsToNode* ptn = ptnode_adr(in->_idx); 632 assert(ptn != NULL, "node should be registered"); 633 add_edge(n_ptn, ptn); 634 } 635 break; 636 } 637 ELSE_FAIL("Op_Phi"); 638 } 639 case Op_Proj: { 640 // we are only interested in the oop result projection from a call 641 if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() && 642 n->in(0)->as_Call()->returns_pointer()) { 643 add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), NULL); 644 break; 645 } 646 ELSE_FAIL("Op_Proj"); 647 } 648 case Op_Rethrow: // Exception object escapes 649 case Op_Return: { 650 if (n->req() > TypeFunc::Parms && 651 _igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) { 652 // Treat Return value as LocalVar with GlobalEscape escape state. 653 add_local_var_and_edge(n, PointsToNode::GlobalEscape, 654 n->in(TypeFunc::Parms), NULL); 655 break; 656 } 657 ELSE_FAIL("Op_Return"); 658 } 659 case Op_StoreP: 660 case Op_StoreN: 661 case Op_StoreNKlass: 662 case Op_StorePConditional: 663 case Op_CompareAndExchangeP: 664 case Op_CompareAndExchangeN: 665 case Op_CompareAndSwapP: 666 case Op_CompareAndSwapN: 667 case Op_WeakCompareAndSwapP: 668 case Op_WeakCompareAndSwapN: 669 case Op_GetAndSetP: 670 case Op_GetAndSetN: { 671 if (add_final_edges_unsafe_access(n, opcode)) { 672 break; 673 } 674 ELSE_FAIL("Op_StoreP"); 675 } 676 case Op_AryEq: 677 case Op_HasNegatives: 678 case Op_StrComp: 679 case Op_StrEquals: 680 case Op_StrIndexOf: 681 case Op_StrIndexOfChar: 682 case Op_StrInflatedCopy: 683 case Op_StrCompressedCopy: 684 case Op_EncodeISOArray: { 685 // char[]/byte[] arrays passed to string intrinsic do not escape but 686 // they are not scalar replaceable. Adjust escape state for them. 687 // Start from in(2) edge since in(1) is memory edge. 688 for (uint i = 2; i < n->req(); i++) { 689 Node* adr = n->in(i); 690 const Type* at = _igvn->type(adr); 691 if (!adr->is_top() && at->isa_ptr()) { 692 assert(at == Type::TOP || at == TypePtr::NULL_PTR || 693 at->isa_ptr() != NULL, "expecting a pointer"); 694 if (adr->is_AddP()) { 695 adr = get_addp_base(adr); 696 } 697 PointsToNode* ptn = ptnode_adr(adr->_idx); 698 assert(ptn != NULL, "node should be registered"); 699 add_edge(n_ptn, ptn); 700 } 701 } 702 break; 703 } 704 default: { 705 // This method should be called only for EA specific nodes which may 706 // miss some edges when they were created. 707 #ifdef ASSERT 708 n->dump(1); 709 #endif 710 guarantee(false, "unknown node"); 711 } 712 } 713 return; 714 } 715 716 void ConnectionGraph::add_to_congraph_unsafe_access(Node* n, uint opcode, Unique_Node_List* delayed_worklist) { 717 Node* adr = n->in(MemNode::Address); 718 const Type* adr_type = _igvn->type(adr); 719 adr_type = adr_type->make_ptr(); 720 if (adr_type == NULL) { 721 return; // skip dead nodes 722 } 723 if (adr_type->isa_oopptr() 724 || ((opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass) 725 && adr_type == TypeRawPtr::NOTNULL 726 && is_captured_store_address(adr))) { 727 delayed_worklist->push(n); // Process it later. 728 #ifdef ASSERT 729 assert (adr->is_AddP(), "expecting an AddP"); 730 if (adr_type == TypeRawPtr::NOTNULL) { 731 // Verify a raw address for a store captured by Initialize node. 732 int offs = (int) _igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot); 733 assert(offs != Type::OffsetBot, "offset must be a constant"); 734 } 735 #endif 736 } else { 737 // Ignore copy the displaced header to the BoxNode (OSR compilation). 738 if (adr->is_BoxLock()) { 739 return; 740 } 741 // Stored value escapes in unsafe access. 742 if ((opcode == Op_StoreP) && adr_type->isa_rawptr()) { 743 delayed_worklist->push(n); // Process unsafe access later. 744 return; 745 } 746 #ifdef ASSERT 747 n->dump(1); 748 assert(false, "not unsafe"); 749 #endif 750 } 751 } 752 753 bool ConnectionGraph::add_final_edges_unsafe_access(Node* n, uint opcode) { 754 Node* adr = n->in(MemNode::Address); 755 const Type *adr_type = _igvn->type(adr); 756 adr_type = adr_type->make_ptr(); 757 #ifdef ASSERT 758 if (adr_type == NULL) { 759 n->dump(1); 760 assert(adr_type != NULL, "dead node should not be on list"); 761 return true; 762 } 763 #endif 764 765 if (opcode == Op_GetAndSetP || opcode == Op_GetAndSetN || 766 opcode == Op_CompareAndExchangeN || opcode == Op_CompareAndExchangeP) { 767 add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL); 768 } 769 770 if (adr_type->isa_oopptr() 771 || ((opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass) 772 && adr_type == TypeRawPtr::NOTNULL 773 && is_captured_store_address(adr))) { 774 // Point Address to Value 775 PointsToNode* adr_ptn = ptnode_adr(adr->_idx); 776 assert(adr_ptn != NULL && 777 adr_ptn->as_Field()->is_oop(), "node should be registered"); 778 Node* val = n->in(MemNode::ValueIn); 779 PointsToNode* ptn = ptnode_adr(val->_idx); 780 assert(ptn != NULL, "node should be registered"); 781 add_edge(adr_ptn, ptn); 782 return true; 783 } else if ((opcode == Op_StoreP) && adr_type->isa_rawptr()) { 784 // Stored value escapes in unsafe access. 785 Node* val = n->in(MemNode::ValueIn); 786 PointsToNode* ptn = ptnode_adr(val->_idx); 787 assert(ptn != NULL, "node should be registered"); 788 set_escape_state(ptn, PointsToNode::GlobalEscape); 789 // Add edge to object for unsafe access with offset. 790 PointsToNode* adr_ptn = ptnode_adr(adr->_idx); 791 assert(adr_ptn != NULL, "node should be registered"); 792 if (adr_ptn->is_Field()) { 793 assert(adr_ptn->as_Field()->is_oop(), "should be oop field"); 794 add_edge(adr_ptn, ptn); 795 } 796 return true; 797 } 798 return false; 799 } 800 801 void ConnectionGraph::add_call_node(CallNode* call) { 802 assert(call->returns_pointer(), "only for call which returns pointer"); 803 uint call_idx = call->_idx; 804 if (call->is_Allocate()) { 805 Node* k = call->in(AllocateNode::KlassNode); 806 const TypeKlassPtr* kt = k->bottom_type()->isa_klassptr(); 807 assert(kt != NULL, "TypeKlassPtr required."); 808 ciKlass* cik = kt->klass(); 809 PointsToNode::EscapeState es = PointsToNode::NoEscape; 810 bool scalar_replaceable = true; 811 if (call->is_AllocateArray()) { 812 if (!cik->is_array_klass()) { // StressReflectiveCode 813 es = PointsToNode::GlobalEscape; 814 } else { 815 int length = call->in(AllocateNode::ALength)->find_int_con(-1); 816 if (length < 0 || length > EliminateAllocationArraySizeLimit) { 817 // Not scalar replaceable if the length is not constant or too big. 818 scalar_replaceable = false; 819 } 820 } 821 } else { // Allocate instance 822 if (cik->is_subclass_of(_compile->env()->Thread_klass()) || 823 cik->is_subclass_of(_compile->env()->Reference_klass()) || 824 !cik->is_instance_klass() || // StressReflectiveCode 825 !cik->as_instance_klass()->can_be_instantiated() || 826 cik->as_instance_klass()->has_finalizer()) { 827 es = PointsToNode::GlobalEscape; 828 } 829 } 830 add_java_object(call, es); 831 PointsToNode* ptn = ptnode_adr(call_idx); 832 if (!scalar_replaceable && ptn->scalar_replaceable()) { 833 ptn->set_scalar_replaceable(false); 834 } 835 } else if (call->is_CallStaticJava()) { 836 // Call nodes could be different types: 837 // 838 // 1. CallDynamicJavaNode (what happened during call is unknown): 839 // 840 // - mapped to GlobalEscape JavaObject node if oop is returned; 841 // 842 // - all oop arguments are escaping globally; 843 // 844 // 2. CallStaticJavaNode (execute bytecode analysis if possible): 845 // 846 // - the same as CallDynamicJavaNode if can't do bytecode analysis; 847 // 848 // - mapped to GlobalEscape JavaObject node if unknown oop is returned; 849 // - mapped to NoEscape JavaObject node if non-escaping object allocated 850 // during call is returned; 851 // - mapped to ArgEscape LocalVar node pointed to object arguments 852 // which are returned and does not escape during call; 853 // 854 // - oop arguments escaping status is defined by bytecode analysis; 855 // 856 // For a static call, we know exactly what method is being called. 857 // Use bytecode estimator to record whether the call's return value escapes. 858 ciMethod* meth = call->as_CallJava()->method(); 859 if (meth == NULL) { 860 const char* name = call->as_CallStaticJava()->_name; 861 assert(strncmp(name, "_multianewarray", 15) == 0, "TODO: add failed case check"); 862 // Returns a newly allocated unescaped object. 863 add_java_object(call, PointsToNode::NoEscape); 864 ptnode_adr(call_idx)->set_scalar_replaceable(false); 865 } else if (meth->is_boxing_method()) { 866 // Returns boxing object 867 PointsToNode::EscapeState es; 868 vmIntrinsics::ID intr = meth->intrinsic_id(); 869 if (intr == vmIntrinsics::_floatValue || intr == vmIntrinsics::_doubleValue) { 870 // It does not escape if object is always allocated. 871 es = PointsToNode::NoEscape; 872 } else { 873 // It escapes globally if object could be loaded from cache. 874 es = PointsToNode::GlobalEscape; 875 } 876 add_java_object(call, es); 877 } else { 878 BCEscapeAnalyzer* call_analyzer = meth->get_bcea(); 879 call_analyzer->copy_dependencies(_compile->dependencies()); 880 if (call_analyzer->is_return_allocated()) { 881 // Returns a newly allocated unescaped object, simply 882 // update dependency information. 883 // Mark it as NoEscape so that objects referenced by 884 // it's fields will be marked as NoEscape at least. 885 add_java_object(call, PointsToNode::NoEscape); 886 ptnode_adr(call_idx)->set_scalar_replaceable(false); 887 } else { 888 // Determine whether any arguments are returned. 889 const TypeTuple* d = call->tf()->domain(); 890 bool ret_arg = false; 891 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) { 892 if (d->field_at(i)->isa_ptr() != NULL && 893 call_analyzer->is_arg_returned(i - TypeFunc::Parms)) { 894 ret_arg = true; 895 break; 896 } 897 } 898 if (ret_arg) { 899 add_local_var(call, PointsToNode::ArgEscape); 900 } else { 901 // Returns unknown object. 902 map_ideal_node(call, phantom_obj); 903 } 904 } 905 } 906 } else { 907 // An other type of call, assume the worst case: 908 // returned value is unknown and globally escapes. 909 assert(call->Opcode() == Op_CallDynamicJava, "add failed case check"); 910 map_ideal_node(call, phantom_obj); 911 } 912 } 913 914 void ConnectionGraph::process_call_arguments(CallNode *call) { 915 bool is_arraycopy = false; 916 switch (call->Opcode()) { 917 #ifdef ASSERT 918 case Op_Allocate: 919 case Op_AllocateArray: 920 case Op_Lock: 921 case Op_Unlock: 922 assert(false, "should be done already"); 923 break; 924 #endif 925 case Op_ArrayCopy: 926 case Op_CallLeafNoFP: 927 // Most array copies are ArrayCopy nodes at this point but there 928 // are still a few direct calls to the copy subroutines (See 929 // PhaseStringOpts::copy_string()) 930 is_arraycopy = (call->Opcode() == Op_ArrayCopy) || 931 call->as_CallLeaf()->is_call_to_arraycopystub(); 932 // fall through 933 case Op_CallLeaf: { 934 // Stub calls, objects do not escape but they are not scale replaceable. 935 // Adjust escape state for outgoing arguments. 936 const TypeTuple * d = call->tf()->domain(); 937 bool src_has_oops = false; 938 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) { 939 const Type* at = d->field_at(i); 940 Node *arg = call->in(i); 941 if (arg == NULL) { 942 continue; 943 } 944 const Type *aat = _igvn->type(arg); 945 if (arg->is_top() || !at->isa_ptr() || !aat->isa_ptr()) 946 continue; 947 if (arg->is_AddP()) { 948 // 949 // The inline_native_clone() case when the arraycopy stub is called 950 // after the allocation before Initialize and CheckCastPP nodes. 951 // Or normal arraycopy for object arrays case. 952 // 953 // Set AddP's base (Allocate) as not scalar replaceable since 954 // pointer to the base (with offset) is passed as argument. 955 // 956 arg = get_addp_base(arg); 957 } 958 PointsToNode* arg_ptn = ptnode_adr(arg->_idx); 959 assert(arg_ptn != NULL, "should be registered"); 960 PointsToNode::EscapeState arg_esc = arg_ptn->escape_state(); 961 if (is_arraycopy || arg_esc < PointsToNode::ArgEscape) { 962 assert(aat == Type::TOP || aat == TypePtr::NULL_PTR || 963 aat->isa_ptr() != NULL, "expecting an Ptr"); 964 bool arg_has_oops = aat->isa_oopptr() && 965 (aat->isa_oopptr()->klass() == NULL || aat->isa_instptr() || 966 (aat->isa_aryptr() && aat->isa_aryptr()->klass()->is_obj_array_klass())); 967 if (i == TypeFunc::Parms) { 968 src_has_oops = arg_has_oops; 969 } 970 // 971 // src or dst could be j.l.Object when other is basic type array: 972 // 973 // arraycopy(char[],0,Object*,0,size); 974 // arraycopy(Object*,0,char[],0,size); 975 // 976 // Don't add edges in such cases. 977 // 978 bool arg_is_arraycopy_dest = src_has_oops && is_arraycopy && 979 arg_has_oops && (i > TypeFunc::Parms); 980 #ifdef ASSERT 981 if (!(is_arraycopy || 982 BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(call) || 983 (call->as_CallLeaf()->_name != NULL && 984 (strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32") == 0 || 985 strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32C") == 0 || 986 strcmp(call->as_CallLeaf()->_name, "updateBytesAdler32") == 0 || 987 strcmp(call->as_CallLeaf()->_name, "aescrypt_encryptBlock") == 0 || 988 strcmp(call->as_CallLeaf()->_name, "aescrypt_decryptBlock") == 0 || 989 strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_encryptAESCrypt") == 0 || 990 strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_decryptAESCrypt") == 0 || 991 strcmp(call->as_CallLeaf()->_name, "electronicCodeBook_encryptAESCrypt") == 0 || 992 strcmp(call->as_CallLeaf()->_name, "electronicCodeBook_decryptAESCrypt") == 0 || 993 strcmp(call->as_CallLeaf()->_name, "counterMode_AESCrypt") == 0 || 994 strcmp(call->as_CallLeaf()->_name, "ghash_processBlocks") == 0 || 995 strcmp(call->as_CallLeaf()->_name, "encodeBlock") == 0 || 996 strcmp(call->as_CallLeaf()->_name, "md5_implCompress") == 0 || 997 strcmp(call->as_CallLeaf()->_name, "md5_implCompressMB") == 0 || 998 strcmp(call->as_CallLeaf()->_name, "sha1_implCompress") == 0 || 999 strcmp(call->as_CallLeaf()->_name, "sha1_implCompressMB") == 0 || 1000 strcmp(call->as_CallLeaf()->_name, "sha256_implCompress") == 0 || 1001 strcmp(call->as_CallLeaf()->_name, "sha256_implCompressMB") == 0 || 1002 strcmp(call->as_CallLeaf()->_name, "sha512_implCompress") == 0 || 1003 strcmp(call->as_CallLeaf()->_name, "sha512_implCompressMB") == 0 || 1004 strcmp(call->as_CallLeaf()->_name, "sha3_implCompress") == 0 || 1005 strcmp(call->as_CallLeaf()->_name, "sha3_implCompressMB") == 0 || 1006 strcmp(call->as_CallLeaf()->_name, "multiplyToLen") == 0 || 1007 strcmp(call->as_CallLeaf()->_name, "squareToLen") == 0 || 1008 strcmp(call->as_CallLeaf()->_name, "mulAdd") == 0 || 1009 strcmp(call->as_CallLeaf()->_name, "montgomery_multiply") == 0 || 1010 strcmp(call->as_CallLeaf()->_name, "montgomery_square") == 0 || 1011 strcmp(call->as_CallLeaf()->_name, "bigIntegerRightShiftWorker") == 0 || 1012 strcmp(call->as_CallLeaf()->_name, "bigIntegerLeftShiftWorker") == 0 || 1013 strcmp(call->as_CallLeaf()->_name, "vectorizedMismatch") == 0) 1014 ))) { 1015 call->dump(); 1016 fatal("EA unexpected CallLeaf %s", call->as_CallLeaf()->_name); 1017 } 1018 #endif 1019 // Always process arraycopy's destination object since 1020 // we need to add all possible edges to references in 1021 // source object. 1022 if (arg_esc >= PointsToNode::ArgEscape && 1023 !arg_is_arraycopy_dest) { 1024 continue; 1025 } 1026 PointsToNode::EscapeState es = PointsToNode::ArgEscape; 1027 if (call->is_ArrayCopy()) { 1028 ArrayCopyNode* ac = call->as_ArrayCopy(); 1029 if (ac->is_clonebasic() || 1030 ac->is_arraycopy_validated() || 1031 ac->is_copyof_validated() || 1032 ac->is_copyofrange_validated()) { 1033 es = PointsToNode::NoEscape; 1034 } 1035 } 1036 set_escape_state(arg_ptn, es); 1037 if (arg_is_arraycopy_dest) { 1038 Node* src = call->in(TypeFunc::Parms); 1039 if (src->is_AddP()) { 1040 src = get_addp_base(src); 1041 } 1042 PointsToNode* src_ptn = ptnode_adr(src->_idx); 1043 assert(src_ptn != NULL, "should be registered"); 1044 if (arg_ptn != src_ptn) { 1045 // Special arraycopy edge: 1046 // A destination object's field can't have the source object 1047 // as base since objects escape states are not related. 1048 // Only escape state of destination object's fields affects 1049 // escape state of fields in source object. 1050 add_arraycopy(call, es, src_ptn, arg_ptn); 1051 } 1052 } 1053 } 1054 } 1055 break; 1056 } 1057 case Op_CallStaticJava: { 1058 // For a static call, we know exactly what method is being called. 1059 // Use bytecode estimator to record the call's escape affects 1060 #ifdef ASSERT 1061 const char* name = call->as_CallStaticJava()->_name; 1062 assert((name == NULL || strcmp(name, "uncommon_trap") != 0), "normal calls only"); 1063 #endif 1064 ciMethod* meth = call->as_CallJava()->method(); 1065 if ((meth != NULL) && meth->is_boxing_method()) { 1066 break; // Boxing methods do not modify any oops. 1067 } 1068 BCEscapeAnalyzer* call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL; 1069 // fall-through if not a Java method or no analyzer information 1070 if (call_analyzer != NULL) { 1071 PointsToNode* call_ptn = ptnode_adr(call->_idx); 1072 const TypeTuple* d = call->tf()->domain(); 1073 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) { 1074 const Type* at = d->field_at(i); 1075 int k = i - TypeFunc::Parms; 1076 Node* arg = call->in(i); 1077 PointsToNode* arg_ptn = ptnode_adr(arg->_idx); 1078 if (at->isa_ptr() != NULL && 1079 call_analyzer->is_arg_returned(k)) { 1080 // The call returns arguments. 1081 if (call_ptn != NULL) { // Is call's result used? 1082 assert(call_ptn->is_LocalVar(), "node should be registered"); 1083 assert(arg_ptn != NULL, "node should be registered"); 1084 add_edge(call_ptn, arg_ptn); 1085 } 1086 } 1087 if (at->isa_oopptr() != NULL && 1088 arg_ptn->escape_state() < PointsToNode::GlobalEscape) { 1089 if (!call_analyzer->is_arg_stack(k)) { 1090 // The argument global escapes 1091 set_escape_state(arg_ptn, PointsToNode::GlobalEscape); 1092 } else { 1093 set_escape_state(arg_ptn, PointsToNode::ArgEscape); 1094 if (!call_analyzer->is_arg_local(k)) { 1095 // The argument itself doesn't escape, but any fields might 1096 set_fields_escape_state(arg_ptn, PointsToNode::GlobalEscape); 1097 } 1098 } 1099 } 1100 } 1101 if (call_ptn != NULL && call_ptn->is_LocalVar()) { 1102 // The call returns arguments. 1103 assert(call_ptn->edge_count() > 0, "sanity"); 1104 if (!call_analyzer->is_return_local()) { 1105 // Returns also unknown object. 1106 add_edge(call_ptn, phantom_obj); 1107 } 1108 } 1109 break; 1110 } 1111 } 1112 default: { 1113 // Fall-through here if not a Java method or no analyzer information 1114 // or some other type of call, assume the worst case: all arguments 1115 // globally escape. 1116 const TypeTuple* d = call->tf()->domain(); 1117 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) { 1118 const Type* at = d->field_at(i); 1119 if (at->isa_oopptr() != NULL) { 1120 Node* arg = call->in(i); 1121 if (arg->is_AddP()) { 1122 arg = get_addp_base(arg); 1123 } 1124 assert(ptnode_adr(arg->_idx) != NULL, "should be defined already"); 1125 set_escape_state(ptnode_adr(arg->_idx), PointsToNode::GlobalEscape); 1126 } 1127 } 1128 } 1129 } 1130 } 1131 1132 1133 // Finish Graph construction. 1134 bool ConnectionGraph::complete_connection_graph( 1135 GrowableArray<PointsToNode*>& ptnodes_worklist, 1136 GrowableArray<JavaObjectNode*>& non_escaped_worklist, 1137 GrowableArray<JavaObjectNode*>& java_objects_worklist, 1138 GrowableArray<FieldNode*>& oop_fields_worklist) { 1139 // Normally only 1-3 passes needed to build Connection Graph depending 1140 // on graph complexity. Observed 8 passes in jvm2008 compiler.compiler. 1141 // Set limit to 20 to catch situation when something did go wrong and 1142 // bailout Escape Analysis. 1143 // Also limit build time to 20 sec (60 in debug VM), EscapeAnalysisTimeout flag. 1144 #define CG_BUILD_ITER_LIMIT 20 1145 1146 // Propagate GlobalEscape and ArgEscape escape states and check that 1147 // we still have non-escaping objects. The method pushs on _worklist 1148 // Field nodes which reference phantom_object. 1149 if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) { 1150 return false; // Nothing to do. 1151 } 1152 // Now propagate references to all JavaObject nodes. 1153 int java_objects_length = java_objects_worklist.length(); 1154 elapsedTimer time; 1155 bool timeout = false; 1156 int new_edges = 1; 1157 int iterations = 0; 1158 do { 1159 while ((new_edges > 0) && 1160 (iterations++ < CG_BUILD_ITER_LIMIT)) { 1161 double start_time = time.seconds(); 1162 time.start(); 1163 new_edges = 0; 1164 // Propagate references to phantom_object for nodes pushed on _worklist 1165 // by find_non_escaped_objects() and find_field_value(). 1166 new_edges += add_java_object_edges(phantom_obj, false); 1167 for (int next = 0; next < java_objects_length; ++next) { 1168 JavaObjectNode* ptn = java_objects_worklist.at(next); 1169 new_edges += add_java_object_edges(ptn, true); 1170 1171 #define SAMPLE_SIZE 4 1172 if ((next % SAMPLE_SIZE) == 0) { 1173 // Each 4 iterations calculate how much time it will take 1174 // to complete graph construction. 1175 time.stop(); 1176 // Poll for requests from shutdown mechanism to quiesce compiler 1177 // because Connection graph construction may take long time. 1178 CompileBroker::maybe_block(); 1179 double stop_time = time.seconds(); 1180 double time_per_iter = (stop_time - start_time) / (double)SAMPLE_SIZE; 1181 double time_until_end = time_per_iter * (double)(java_objects_length - next); 1182 if ((start_time + time_until_end) >= EscapeAnalysisTimeout) { 1183 timeout = true; 1184 break; // Timeout 1185 } 1186 start_time = stop_time; 1187 time.start(); 1188 } 1189 #undef SAMPLE_SIZE 1190 1191 } 1192 if (timeout) break; 1193 if (new_edges > 0) { 1194 // Update escape states on each iteration if graph was updated. 1195 if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) { 1196 return false; // Nothing to do. 1197 } 1198 } 1199 time.stop(); 1200 if (time.seconds() >= EscapeAnalysisTimeout) { 1201 timeout = true; 1202 break; 1203 } 1204 } 1205 if ((iterations < CG_BUILD_ITER_LIMIT) && !timeout) { 1206 time.start(); 1207 // Find fields which have unknown value. 1208 int fields_length = oop_fields_worklist.length(); 1209 for (int next = 0; next < fields_length; next++) { 1210 FieldNode* field = oop_fields_worklist.at(next); 1211 if (field->edge_count() == 0) { 1212 new_edges += find_field_value(field); 1213 // This code may added new edges to phantom_object. 1214 // Need an other cycle to propagate references to phantom_object. 1215 } 1216 } 1217 time.stop(); 1218 if (time.seconds() >= EscapeAnalysisTimeout) { 1219 timeout = true; 1220 break; 1221 } 1222 } else { 1223 new_edges = 0; // Bailout 1224 } 1225 } while (new_edges > 0); 1226 1227 // Bailout if passed limits. 1228 if ((iterations >= CG_BUILD_ITER_LIMIT) || timeout) { 1229 Compile* C = _compile; 1230 if (C->log() != NULL) { 1231 C->log()->begin_elem("connectionGraph_bailout reason='reached "); 1232 C->log()->text("%s", timeout ? "time" : "iterations"); 1233 C->log()->end_elem(" limit'"); 1234 } 1235 assert(ExitEscapeAnalysisOnTimeout, "infinite EA connection graph build (%f sec, %d iterations) with %d nodes and worklist size %d", 1236 time.seconds(), iterations, nodes_size(), ptnodes_worklist.length()); 1237 // Possible infinite build_connection_graph loop, 1238 // bailout (no changes to ideal graph were made). 1239 return false; 1240 } 1241 #ifdef ASSERT 1242 if (Verbose && PrintEscapeAnalysis) { 1243 tty->print_cr("EA: %d iterations to build connection graph with %d nodes and worklist size %d", 1244 iterations, nodes_size(), ptnodes_worklist.length()); 1245 } 1246 #endif 1247 1248 #undef CG_BUILD_ITER_LIMIT 1249 1250 // Find fields initialized by NULL for non-escaping Allocations. 1251 int non_escaped_length = non_escaped_worklist.length(); 1252 for (int next = 0; next < non_escaped_length; next++) { 1253 JavaObjectNode* ptn = non_escaped_worklist.at(next); 1254 PointsToNode::EscapeState es = ptn->escape_state(); 1255 assert(es <= PointsToNode::ArgEscape, "sanity"); 1256 if (es == PointsToNode::NoEscape) { 1257 if (find_init_values(ptn, null_obj, _igvn) > 0) { 1258 // Adding references to NULL object does not change escape states 1259 // since it does not escape. Also no fields are added to NULL object. 1260 add_java_object_edges(null_obj, false); 1261 } 1262 } 1263 Node* n = ptn->ideal_node(); 1264 if (n->is_Allocate()) { 1265 // The object allocated by this Allocate node will never be 1266 // seen by an other thread. Mark it so that when it is 1267 // expanded no MemBarStoreStore is added. 1268 InitializeNode* ini = n->as_Allocate()->initialization(); 1269 if (ini != NULL) 1270 ini->set_does_not_escape(); 1271 } 1272 } 1273 return true; // Finished graph construction. 1274 } 1275 1276 // Propagate GlobalEscape and ArgEscape escape states to all nodes 1277 // and check that we still have non-escaping java objects. 1278 bool ConnectionGraph::find_non_escaped_objects(GrowableArray<PointsToNode*>& ptnodes_worklist, 1279 GrowableArray<JavaObjectNode*>& non_escaped_worklist) { 1280 GrowableArray<PointsToNode*> escape_worklist; 1281 // First, put all nodes with GlobalEscape and ArgEscape states on worklist. 1282 int ptnodes_length = ptnodes_worklist.length(); 1283 for (int next = 0; next < ptnodes_length; ++next) { 1284 PointsToNode* ptn = ptnodes_worklist.at(next); 1285 if (ptn->escape_state() >= PointsToNode::ArgEscape || 1286 ptn->fields_escape_state() >= PointsToNode::ArgEscape) { 1287 escape_worklist.push(ptn); 1288 } 1289 } 1290 // Set escape states to referenced nodes (edges list). 1291 while (escape_worklist.length() > 0) { 1292 PointsToNode* ptn = escape_worklist.pop(); 1293 PointsToNode::EscapeState es = ptn->escape_state(); 1294 PointsToNode::EscapeState field_es = ptn->fields_escape_state(); 1295 if (ptn->is_Field() && ptn->as_Field()->is_oop() && 1296 es >= PointsToNode::ArgEscape) { 1297 // GlobalEscape or ArgEscape state of field means it has unknown value. 1298 if (add_edge(ptn, phantom_obj)) { 1299 // New edge was added 1300 add_field_uses_to_worklist(ptn->as_Field()); 1301 } 1302 } 1303 for (EdgeIterator i(ptn); i.has_next(); i.next()) { 1304 PointsToNode* e = i.get(); 1305 if (e->is_Arraycopy()) { 1306 assert(ptn->arraycopy_dst(), "sanity"); 1307 // Propagate only fields escape state through arraycopy edge. 1308 if (e->fields_escape_state() < field_es) { 1309 set_fields_escape_state(e, field_es); 1310 escape_worklist.push(e); 1311 } 1312 } else if (es >= field_es) { 1313 // fields_escape_state is also set to 'es' if it is less than 'es'. 1314 if (e->escape_state() < es) { 1315 set_escape_state(e, es); 1316 escape_worklist.push(e); 1317 } 1318 } else { 1319 // Propagate field escape state. 1320 bool es_changed = false; 1321 if (e->fields_escape_state() < field_es) { 1322 set_fields_escape_state(e, field_es); 1323 es_changed = true; 1324 } 1325 if ((e->escape_state() < field_es) && 1326 e->is_Field() && ptn->is_JavaObject() && 1327 e->as_Field()->is_oop()) { 1328 // Change escape state of referenced fields. 1329 set_escape_state(e, field_es); 1330 es_changed = true; 1331 } else if (e->escape_state() < es) { 1332 set_escape_state(e, es); 1333 es_changed = true; 1334 } 1335 if (es_changed) { 1336 escape_worklist.push(e); 1337 } 1338 } 1339 } 1340 } 1341 // Remove escaped objects from non_escaped list. 1342 for (int next = non_escaped_worklist.length()-1; next >= 0 ; --next) { 1343 JavaObjectNode* ptn = non_escaped_worklist.at(next); 1344 if (ptn->escape_state() >= PointsToNode::GlobalEscape) { 1345 non_escaped_worklist.delete_at(next); 1346 } 1347 if (ptn->escape_state() == PointsToNode::NoEscape) { 1348 // Find fields in non-escaped allocations which have unknown value. 1349 find_init_values(ptn, phantom_obj, NULL); 1350 } 1351 } 1352 return (non_escaped_worklist.length() > 0); 1353 } 1354 1355 // Add all references to JavaObject node by walking over all uses. 1356 int ConnectionGraph::add_java_object_edges(JavaObjectNode* jobj, bool populate_worklist) { 1357 int new_edges = 0; 1358 if (populate_worklist) { 1359 // Populate _worklist by uses of jobj's uses. 1360 for (UseIterator i(jobj); i.has_next(); i.next()) { 1361 PointsToNode* use = i.get(); 1362 if (use->is_Arraycopy()) 1363 continue; 1364 add_uses_to_worklist(use); 1365 if (use->is_Field() && use->as_Field()->is_oop()) { 1366 // Put on worklist all field's uses (loads) and 1367 // related field nodes (same base and offset). 1368 add_field_uses_to_worklist(use->as_Field()); 1369 } 1370 } 1371 } 1372 for (int l = 0; l < _worklist.length(); l++) { 1373 PointsToNode* use = _worklist.at(l); 1374 if (PointsToNode::is_base_use(use)) { 1375 // Add reference from jobj to field and from field to jobj (field's base). 1376 use = PointsToNode::get_use_node(use)->as_Field(); 1377 if (add_base(use->as_Field(), jobj)) { 1378 new_edges++; 1379 } 1380 continue; 1381 } 1382 assert(!use->is_JavaObject(), "sanity"); 1383 if (use->is_Arraycopy()) { 1384 if (jobj == null_obj) // NULL object does not have field edges 1385 continue; 1386 // Added edge from Arraycopy node to arraycopy's source java object 1387 if (add_edge(use, jobj)) { 1388 jobj->set_arraycopy_src(); 1389 new_edges++; 1390 } 1391 // and stop here. 1392 continue; 1393 } 1394 if (!add_edge(use, jobj)) 1395 continue; // No new edge added, there was such edge already. 1396 new_edges++; 1397 if (use->is_LocalVar()) { 1398 add_uses_to_worklist(use); 1399 if (use->arraycopy_dst()) { 1400 for (EdgeIterator i(use); i.has_next(); i.next()) { 1401 PointsToNode* e = i.get(); 1402 if (e->is_Arraycopy()) { 1403 if (jobj == null_obj) // NULL object does not have field edges 1404 continue; 1405 // Add edge from arraycopy's destination java object to Arraycopy node. 1406 if (add_edge(jobj, e)) { 1407 new_edges++; 1408 jobj->set_arraycopy_dst(); 1409 } 1410 } 1411 } 1412 } 1413 } else { 1414 // Added new edge to stored in field values. 1415 // Put on worklist all field's uses (loads) and 1416 // related field nodes (same base and offset). 1417 add_field_uses_to_worklist(use->as_Field()); 1418 } 1419 } 1420 _worklist.clear(); 1421 _in_worklist.reset(); 1422 return new_edges; 1423 } 1424 1425 // Put on worklist all related field nodes. 1426 void ConnectionGraph::add_field_uses_to_worklist(FieldNode* field) { 1427 assert(field->is_oop(), "sanity"); 1428 int offset = field->offset(); 1429 add_uses_to_worklist(field); 1430 // Loop over all bases of this field and push on worklist Field nodes 1431 // with the same offset and base (since they may reference the same field). 1432 for (BaseIterator i(field); i.has_next(); i.next()) { 1433 PointsToNode* base = i.get(); 1434 add_fields_to_worklist(field, base); 1435 // Check if the base was source object of arraycopy and go over arraycopy's 1436 // destination objects since values stored to a field of source object are 1437 // accessable by uses (loads) of fields of destination objects. 1438 if (base->arraycopy_src()) { 1439 for (UseIterator j(base); j.has_next(); j.next()) { 1440 PointsToNode* arycp = j.get(); 1441 if (arycp->is_Arraycopy()) { 1442 for (UseIterator k(arycp); k.has_next(); k.next()) { 1443 PointsToNode* abase = k.get(); 1444 if (abase->arraycopy_dst() && abase != base) { 1445 // Look for the same arraycopy reference. 1446 add_fields_to_worklist(field, abase); 1447 } 1448 } 1449 } 1450 } 1451 } 1452 } 1453 } 1454 1455 // Put on worklist all related field nodes. 1456 void ConnectionGraph::add_fields_to_worklist(FieldNode* field, PointsToNode* base) { 1457 int offset = field->offset(); 1458 if (base->is_LocalVar()) { 1459 for (UseIterator j(base); j.has_next(); j.next()) { 1460 PointsToNode* f = j.get(); 1461 if (PointsToNode::is_base_use(f)) { // Field 1462 f = PointsToNode::get_use_node(f); 1463 if (f == field || !f->as_Field()->is_oop()) 1464 continue; 1465 int offs = f->as_Field()->offset(); 1466 if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) { 1467 add_to_worklist(f); 1468 } 1469 } 1470 } 1471 } else { 1472 assert(base->is_JavaObject(), "sanity"); 1473 if (// Skip phantom_object since it is only used to indicate that 1474 // this field's content globally escapes. 1475 (base != phantom_obj) && 1476 // NULL object node does not have fields. 1477 (base != null_obj)) { 1478 for (EdgeIterator i(base); i.has_next(); i.next()) { 1479 PointsToNode* f = i.get(); 1480 // Skip arraycopy edge since store to destination object field 1481 // does not update value in source object field. 1482 if (f->is_Arraycopy()) { 1483 assert(base->arraycopy_dst(), "sanity"); 1484 continue; 1485 } 1486 if (f == field || !f->as_Field()->is_oop()) 1487 continue; 1488 int offs = f->as_Field()->offset(); 1489 if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) { 1490 add_to_worklist(f); 1491 } 1492 } 1493 } 1494 } 1495 } 1496 1497 // Find fields which have unknown value. 1498 int ConnectionGraph::find_field_value(FieldNode* field) { 1499 // Escaped fields should have init value already. 1500 assert(field->escape_state() == PointsToNode::NoEscape, "sanity"); 1501 int new_edges = 0; 1502 for (BaseIterator i(field); i.has_next(); i.next()) { 1503 PointsToNode* base = i.get(); 1504 if (base->is_JavaObject()) { 1505 // Skip Allocate's fields which will be processed later. 1506 if (base->ideal_node()->is_Allocate()) 1507 return 0; 1508 assert(base == null_obj, "only NULL ptr base expected here"); 1509 } 1510 } 1511 if (add_edge(field, phantom_obj)) { 1512 // New edge was added 1513 new_edges++; 1514 add_field_uses_to_worklist(field); 1515 } 1516 return new_edges; 1517 } 1518 1519 // Find fields initializing values for allocations. 1520 int ConnectionGraph::find_init_values(JavaObjectNode* pta, PointsToNode* init_val, PhaseTransform* phase) { 1521 assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only"); 1522 int new_edges = 0; 1523 Node* alloc = pta->ideal_node(); 1524 if (init_val == phantom_obj) { 1525 // Do nothing for Allocate nodes since its fields values are 1526 // "known" unless they are initialized by arraycopy/clone. 1527 if (alloc->is_Allocate() && !pta->arraycopy_dst()) 1528 return 0; 1529 assert(pta->arraycopy_dst() || alloc->as_CallStaticJava(), "sanity"); 1530 #ifdef ASSERT 1531 if (!pta->arraycopy_dst() && alloc->as_CallStaticJava()->method() == NULL) { 1532 const char* name = alloc->as_CallStaticJava()->_name; 1533 assert(strncmp(name, "_multianewarray", 15) == 0, "sanity"); 1534 } 1535 #endif 1536 // Non-escaped allocation returned from Java or runtime call have 1537 // unknown values in fields. 1538 for (EdgeIterator i(pta); i.has_next(); i.next()) { 1539 PointsToNode* field = i.get(); 1540 if (field->is_Field() && field->as_Field()->is_oop()) { 1541 if (add_edge(field, phantom_obj)) { 1542 // New edge was added 1543 new_edges++; 1544 add_field_uses_to_worklist(field->as_Field()); 1545 } 1546 } 1547 } 1548 return new_edges; 1549 } 1550 assert(init_val == null_obj, "sanity"); 1551 // Do nothing for Call nodes since its fields values are unknown. 1552 if (!alloc->is_Allocate()) 1553 return 0; 1554 1555 InitializeNode* ini = alloc->as_Allocate()->initialization(); 1556 bool visited_bottom_offset = false; 1557 GrowableArray<int> offsets_worklist; 1558 1559 // Check if an oop field's initializing value is recorded and add 1560 // a corresponding NULL if field's value if it is not recorded. 1561 // Connection Graph does not record a default initialization by NULL 1562 // captured by Initialize node. 1563 // 1564 for (EdgeIterator i(pta); i.has_next(); i.next()) { 1565 PointsToNode* field = i.get(); // Field (AddP) 1566 if (!field->is_Field() || !field->as_Field()->is_oop()) 1567 continue; // Not oop field 1568 int offset = field->as_Field()->offset(); 1569 if (offset == Type::OffsetBot) { 1570 if (!visited_bottom_offset) { 1571 // OffsetBot is used to reference array's element, 1572 // always add reference to NULL to all Field nodes since we don't 1573 // known which element is referenced. 1574 if (add_edge(field, null_obj)) { 1575 // New edge was added 1576 new_edges++; 1577 add_field_uses_to_worklist(field->as_Field()); 1578 visited_bottom_offset = true; 1579 } 1580 } 1581 } else { 1582 // Check only oop fields. 1583 const Type* adr_type = field->ideal_node()->as_AddP()->bottom_type(); 1584 if (adr_type->isa_rawptr()) { 1585 #ifdef ASSERT 1586 // Raw pointers are used for initializing stores so skip it 1587 // since it should be recorded already 1588 Node* base = get_addp_base(field->ideal_node()); 1589 assert(adr_type->isa_rawptr() && is_captured_store_address(field->ideal_node()), "unexpected pointer type"); 1590 #endif 1591 continue; 1592 } 1593 if (!offsets_worklist.contains(offset)) { 1594 offsets_worklist.append(offset); 1595 Node* value = NULL; 1596 if (ini != NULL) { 1597 // StoreP::memory_type() == T_ADDRESS 1598 BasicType ft = UseCompressedOops ? T_NARROWOOP : T_ADDRESS; 1599 Node* store = ini->find_captured_store(offset, type2aelembytes(ft, true), phase); 1600 // Make sure initializing store has the same type as this AddP. 1601 // This AddP may reference non existing field because it is on a 1602 // dead branch of bimorphic call which is not eliminated yet. 1603 if (store != NULL && store->is_Store() && 1604 store->as_Store()->memory_type() == ft) { 1605 value = store->in(MemNode::ValueIn); 1606 #ifdef ASSERT 1607 if (VerifyConnectionGraph) { 1608 // Verify that AddP already points to all objects the value points to. 1609 PointsToNode* val = ptnode_adr(value->_idx); 1610 assert((val != NULL), "should be processed already"); 1611 PointsToNode* missed_obj = NULL; 1612 if (val->is_JavaObject()) { 1613 if (!field->points_to(val->as_JavaObject())) { 1614 missed_obj = val; 1615 } 1616 } else { 1617 if (!val->is_LocalVar() || (val->edge_count() == 0)) { 1618 tty->print_cr("----------init store has invalid value -----"); 1619 store->dump(); 1620 val->dump(); 1621 assert(val->is_LocalVar() && (val->edge_count() > 0), "should be processed already"); 1622 } 1623 for (EdgeIterator j(val); j.has_next(); j.next()) { 1624 PointsToNode* obj = j.get(); 1625 if (obj->is_JavaObject()) { 1626 if (!field->points_to(obj->as_JavaObject())) { 1627 missed_obj = obj; 1628 break; 1629 } 1630 } 1631 } 1632 } 1633 if (missed_obj != NULL) { 1634 tty->print_cr("----------field---------------------------------"); 1635 field->dump(); 1636 tty->print_cr("----------missed referernce to object-----------"); 1637 missed_obj->dump(); 1638 tty->print_cr("----------object referernced by init store -----"); 1639 store->dump(); 1640 val->dump(); 1641 assert(!field->points_to(missed_obj->as_JavaObject()), "missed JavaObject reference"); 1642 } 1643 } 1644 #endif 1645 } else { 1646 // There could be initializing stores which follow allocation. 1647 // For example, a volatile field store is not collected 1648 // by Initialize node. 1649 // 1650 // Need to check for dependent loads to separate such stores from 1651 // stores which follow loads. For now, add initial value NULL so 1652 // that compare pointers optimization works correctly. 1653 } 1654 } 1655 if (value == NULL) { 1656 // A field's initializing value was not recorded. Add NULL. 1657 if (add_edge(field, null_obj)) { 1658 // New edge was added 1659 new_edges++; 1660 add_field_uses_to_worklist(field->as_Field()); 1661 } 1662 } 1663 } 1664 } 1665 } 1666 return new_edges; 1667 } 1668 1669 // Adjust scalar_replaceable state after Connection Graph is built. 1670 void ConnectionGraph::adjust_scalar_replaceable_state(JavaObjectNode* jobj) { 1671 // Search for non-escaping objects which are not scalar replaceable 1672 // and mark them to propagate the state to referenced objects. 1673 1674 // 1. An object is not scalar replaceable if the field into which it is 1675 // stored has unknown offset (stored into unknown element of an array). 1676 // 1677 for (UseIterator i(jobj); i.has_next(); i.next()) { 1678 PointsToNode* use = i.get(); 1679 if (use->is_Arraycopy()) { 1680 continue; 1681 } 1682 if (use->is_Field()) { 1683 FieldNode* field = use->as_Field(); 1684 assert(field->is_oop() && field->scalar_replaceable(), "sanity"); 1685 if (field->offset() == Type::OffsetBot) { 1686 jobj->set_scalar_replaceable(false); 1687 return; 1688 } 1689 // 2. An object is not scalar replaceable if the field into which it is 1690 // stored has multiple bases one of which is null. 1691 if (field->base_count() > 1) { 1692 for (BaseIterator i(field); i.has_next(); i.next()) { 1693 PointsToNode* base = i.get(); 1694 if (base == null_obj) { 1695 jobj->set_scalar_replaceable(false); 1696 return; 1697 } 1698 } 1699 } 1700 } 1701 assert(use->is_Field() || use->is_LocalVar(), "sanity"); 1702 // 3. An object is not scalar replaceable if it is merged with other objects. 1703 for (EdgeIterator j(use); j.has_next(); j.next()) { 1704 PointsToNode* ptn = j.get(); 1705 if (ptn->is_JavaObject() && ptn != jobj) { 1706 // Mark all objects. 1707 jobj->set_scalar_replaceable(false); 1708 ptn->set_scalar_replaceable(false); 1709 } 1710 } 1711 if (!jobj->scalar_replaceable()) { 1712 return; 1713 } 1714 } 1715 1716 for (EdgeIterator j(jobj); j.has_next(); j.next()) { 1717 if (j.get()->is_Arraycopy()) { 1718 continue; 1719 } 1720 1721 // Non-escaping object node should point only to field nodes. 1722 FieldNode* field = j.get()->as_Field(); 1723 int offset = field->as_Field()->offset(); 1724 1725 // 4. An object is not scalar replaceable if it has a field with unknown 1726 // offset (array's element is accessed in loop). 1727 if (offset == Type::OffsetBot) { 1728 jobj->set_scalar_replaceable(false); 1729 return; 1730 } 1731 // 5. Currently an object is not scalar replaceable if a LoadStore node 1732 // access its field since the field value is unknown after it. 1733 // 1734 Node* n = field->ideal_node(); 1735 1736 // Test for an unsafe access that was parsed as maybe off heap 1737 // (with a CheckCastPP to raw memory). 1738 assert(n->is_AddP(), "expect an address computation"); 1739 if (n->in(AddPNode::Base)->is_top() && 1740 n->in(AddPNode::Address)->Opcode() == Op_CheckCastPP) { 1741 assert(n->in(AddPNode::Address)->bottom_type()->isa_rawptr(), "raw address so raw cast expected"); 1742 assert(_igvn->type(n->in(AddPNode::Address)->in(1))->isa_oopptr(), "cast pattern at unsafe access expected"); 1743 jobj->set_scalar_replaceable(false); 1744 return; 1745 } 1746 1747 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 1748 Node* u = n->fast_out(i); 1749 if (u->is_LoadStore() || (u->is_Mem() && u->as_Mem()->is_mismatched_access())) { 1750 jobj->set_scalar_replaceable(false); 1751 return; 1752 } 1753 } 1754 1755 // 6. Or the address may point to more then one object. This may produce 1756 // the false positive result (set not scalar replaceable) 1757 // since the flow-insensitive escape analysis can't separate 1758 // the case when stores overwrite the field's value from the case 1759 // when stores happened on different control branches. 1760 // 1761 // Note: it will disable scalar replacement in some cases: 1762 // 1763 // Point p[] = new Point[1]; 1764 // p[0] = new Point(); // Will be not scalar replaced 1765 // 1766 // but it will save us from incorrect optimizations in next cases: 1767 // 1768 // Point p[] = new Point[1]; 1769 // if ( x ) p[0] = new Point(); // Will be not scalar replaced 1770 // 1771 if (field->base_count() > 1) { 1772 for (BaseIterator i(field); i.has_next(); i.next()) { 1773 PointsToNode* base = i.get(); 1774 // Don't take into account LocalVar nodes which 1775 // may point to only one object which should be also 1776 // this field's base by now. 1777 if (base->is_JavaObject() && base != jobj) { 1778 // Mark all bases. 1779 jobj->set_scalar_replaceable(false); 1780 base->set_scalar_replaceable(false); 1781 } 1782 } 1783 } 1784 } 1785 } 1786 1787 #ifdef ASSERT 1788 void ConnectionGraph::verify_connection_graph( 1789 GrowableArray<PointsToNode*>& ptnodes_worklist, 1790 GrowableArray<JavaObjectNode*>& non_escaped_worklist, 1791 GrowableArray<JavaObjectNode*>& java_objects_worklist, 1792 GrowableArray<Node*>& addp_worklist) { 1793 // Verify that graph is complete - no new edges could be added. 1794 int java_objects_length = java_objects_worklist.length(); 1795 int non_escaped_length = non_escaped_worklist.length(); 1796 int new_edges = 0; 1797 for (int next = 0; next < java_objects_length; ++next) { 1798 JavaObjectNode* ptn = java_objects_worklist.at(next); 1799 new_edges += add_java_object_edges(ptn, true); 1800 } 1801 assert(new_edges == 0, "graph was not complete"); 1802 // Verify that escape state is final. 1803 int length = non_escaped_worklist.length(); 1804 find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist); 1805 assert((non_escaped_length == non_escaped_worklist.length()) && 1806 (non_escaped_length == length) && 1807 (_worklist.length() == 0), "escape state was not final"); 1808 1809 // Verify fields information. 1810 int addp_length = addp_worklist.length(); 1811 for (int next = 0; next < addp_length; ++next ) { 1812 Node* n = addp_worklist.at(next); 1813 FieldNode* field = ptnode_adr(n->_idx)->as_Field(); 1814 if (field->is_oop()) { 1815 // Verify that field has all bases 1816 Node* base = get_addp_base(n); 1817 PointsToNode* ptn = ptnode_adr(base->_idx); 1818 if (ptn->is_JavaObject()) { 1819 assert(field->has_base(ptn->as_JavaObject()), "sanity"); 1820 } else { 1821 assert(ptn->is_LocalVar(), "sanity"); 1822 for (EdgeIterator i(ptn); i.has_next(); i.next()) { 1823 PointsToNode* e = i.get(); 1824 if (e->is_JavaObject()) { 1825 assert(field->has_base(e->as_JavaObject()), "sanity"); 1826 } 1827 } 1828 } 1829 // Verify that all fields have initializing values. 1830 if (field->edge_count() == 0) { 1831 tty->print_cr("----------field does not have references----------"); 1832 field->dump(); 1833 for (BaseIterator i(field); i.has_next(); i.next()) { 1834 PointsToNode* base = i.get(); 1835 tty->print_cr("----------field has next base---------------------"); 1836 base->dump(); 1837 if (base->is_JavaObject() && (base != phantom_obj) && (base != null_obj)) { 1838 tty->print_cr("----------base has fields-------------------------"); 1839 for (EdgeIterator j(base); j.has_next(); j.next()) { 1840 j.get()->dump(); 1841 } 1842 tty->print_cr("----------base has references---------------------"); 1843 for (UseIterator j(base); j.has_next(); j.next()) { 1844 j.get()->dump(); 1845 } 1846 } 1847 } 1848 for (UseIterator i(field); i.has_next(); i.next()) { 1849 i.get()->dump(); 1850 } 1851 assert(field->edge_count() > 0, "sanity"); 1852 } 1853 } 1854 } 1855 } 1856 #endif 1857 1858 // Optimize ideal graph. 1859 void ConnectionGraph::optimize_ideal_graph(GrowableArray<Node*>& ptr_cmp_worklist, 1860 GrowableArray<Node*>& storestore_worklist) { 1861 Compile* C = _compile; 1862 PhaseIterGVN* igvn = _igvn; 1863 if (EliminateLocks) { 1864 // Mark locks before changing ideal graph. 1865 int cnt = C->macro_count(); 1866 for( int i=0; i < cnt; i++ ) { 1867 Node *n = C->macro_node(i); 1868 if (n->is_AbstractLock()) { // Lock and Unlock nodes 1869 AbstractLockNode* alock = n->as_AbstractLock(); 1870 if (!alock->is_non_esc_obj()) { 1871 if (not_global_escape(alock->obj_node())) { 1872 assert(!alock->is_eliminated() || alock->is_coarsened(), "sanity"); 1873 // The lock could be marked eliminated by lock coarsening 1874 // code during first IGVN before EA. Replace coarsened flag 1875 // to eliminate all associated locks/unlocks. 1876 #ifdef ASSERT 1877 alock->log_lock_optimization(C, "eliminate_lock_set_non_esc3"); 1878 #endif 1879 alock->set_non_esc_obj(); 1880 } 1881 } 1882 } 1883 } 1884 } 1885 1886 if (OptimizePtrCompare) { 1887 // Add ConI(#CC_GT) and ConI(#CC_EQ). 1888 _pcmp_neq = igvn->makecon(TypeInt::CC_GT); 1889 _pcmp_eq = igvn->makecon(TypeInt::CC_EQ); 1890 // Optimize objects compare. 1891 while (ptr_cmp_worklist.length() != 0) { 1892 Node *n = ptr_cmp_worklist.pop(); 1893 Node *res = optimize_ptr_compare(n); 1894 if (res != NULL) { 1895 #ifndef PRODUCT 1896 if (PrintOptimizePtrCompare) { 1897 tty->print_cr("++++ Replaced: %d %s(%d,%d) --> %s", n->_idx, (n->Opcode() == Op_CmpP ? "CmpP" : "CmpN"), n->in(1)->_idx, n->in(2)->_idx, (res == _pcmp_eq ? "EQ" : "NotEQ")); 1898 if (Verbose) { 1899 n->dump(1); 1900 } 1901 } 1902 #endif 1903 igvn->replace_node(n, res); 1904 } 1905 } 1906 // cleanup 1907 if (_pcmp_neq->outcnt() == 0) 1908 igvn->hash_delete(_pcmp_neq); 1909 if (_pcmp_eq->outcnt() == 0) 1910 igvn->hash_delete(_pcmp_eq); 1911 } 1912 1913 // For MemBarStoreStore nodes added in library_call.cpp, check 1914 // escape status of associated AllocateNode and optimize out 1915 // MemBarStoreStore node if the allocated object never escapes. 1916 while (storestore_worklist.length() != 0) { 1917 Node *n = storestore_worklist.pop(); 1918 MemBarStoreStoreNode *storestore = n ->as_MemBarStoreStore(); 1919 Node *alloc = storestore->in(MemBarNode::Precedent)->in(0); 1920 if (alloc->is_Allocate() && not_global_escape(alloc)) { 1921 MemBarNode* mb = MemBarNode::make(C, Op_MemBarCPUOrder, Compile::AliasIdxBot); 1922 mb->init_req(TypeFunc::Memory, storestore->in(TypeFunc::Memory)); 1923 mb->init_req(TypeFunc::Control, storestore->in(TypeFunc::Control)); 1924 igvn->register_new_node_with_optimizer(mb); 1925 igvn->replace_node(storestore, mb); 1926 } 1927 } 1928 } 1929 1930 // Optimize objects compare. 1931 Node* ConnectionGraph::optimize_ptr_compare(Node* n) { 1932 assert(OptimizePtrCompare, "sanity"); 1933 PointsToNode* ptn1 = ptnode_adr(n->in(1)->_idx); 1934 PointsToNode* ptn2 = ptnode_adr(n->in(2)->_idx); 1935 JavaObjectNode* jobj1 = unique_java_object(n->in(1)); 1936 JavaObjectNode* jobj2 = unique_java_object(n->in(2)); 1937 assert(ptn1->is_JavaObject() || ptn1->is_LocalVar(), "sanity"); 1938 assert(ptn2->is_JavaObject() || ptn2->is_LocalVar(), "sanity"); 1939 1940 // Check simple cases first. 1941 if (jobj1 != NULL) { 1942 if (jobj1->escape_state() == PointsToNode::NoEscape) { 1943 if (jobj1 == jobj2) { 1944 // Comparing the same not escaping object. 1945 return _pcmp_eq; 1946 } 1947 Node* obj = jobj1->ideal_node(); 1948 // Comparing not escaping allocation. 1949 if ((obj->is_Allocate() || obj->is_CallStaticJava()) && 1950 !ptn2->points_to(jobj1)) { 1951 return _pcmp_neq; // This includes nullness check. 1952 } 1953 } 1954 } 1955 if (jobj2 != NULL) { 1956 if (jobj2->escape_state() == PointsToNode::NoEscape) { 1957 Node* obj = jobj2->ideal_node(); 1958 // Comparing not escaping allocation. 1959 if ((obj->is_Allocate() || obj->is_CallStaticJava()) && 1960 !ptn1->points_to(jobj2)) { 1961 return _pcmp_neq; // This includes nullness check. 1962 } 1963 } 1964 } 1965 if (jobj1 != NULL && jobj1 != phantom_obj && 1966 jobj2 != NULL && jobj2 != phantom_obj && 1967 jobj1->ideal_node()->is_Con() && 1968 jobj2->ideal_node()->is_Con()) { 1969 // Klass or String constants compare. Need to be careful with 1970 // compressed pointers - compare types of ConN and ConP instead of nodes. 1971 const Type* t1 = jobj1->ideal_node()->get_ptr_type(); 1972 const Type* t2 = jobj2->ideal_node()->get_ptr_type(); 1973 if (t1->make_ptr() == t2->make_ptr()) { 1974 return _pcmp_eq; 1975 } else { 1976 return _pcmp_neq; 1977 } 1978 } 1979 if (ptn1->meet(ptn2)) { 1980 return NULL; // Sets are not disjoint 1981 } 1982 1983 // Sets are disjoint. 1984 bool set1_has_unknown_ptr = ptn1->points_to(phantom_obj); 1985 bool set2_has_unknown_ptr = ptn2->points_to(phantom_obj); 1986 bool set1_has_null_ptr = ptn1->points_to(null_obj); 1987 bool set2_has_null_ptr = ptn2->points_to(null_obj); 1988 if ((set1_has_unknown_ptr && set2_has_null_ptr) || 1989 (set2_has_unknown_ptr && set1_has_null_ptr)) { 1990 // Check nullness of unknown object. 1991 return NULL; 1992 } 1993 1994 // Disjointness by itself is not sufficient since 1995 // alias analysis is not complete for escaped objects. 1996 // Disjoint sets are definitely unrelated only when 1997 // at least one set has only not escaping allocations. 1998 if (!set1_has_unknown_ptr && !set1_has_null_ptr) { 1999 if (ptn1->non_escaping_allocation()) { 2000 return _pcmp_neq; 2001 } 2002 } 2003 if (!set2_has_unknown_ptr && !set2_has_null_ptr) { 2004 if (ptn2->non_escaping_allocation()) { 2005 return _pcmp_neq; 2006 } 2007 } 2008 return NULL; 2009 } 2010 2011 // Connection Graph constuction functions. 2012 2013 void ConnectionGraph::add_local_var(Node *n, PointsToNode::EscapeState es) { 2014 PointsToNode* ptadr = _nodes.at(n->_idx); 2015 if (ptadr != NULL) { 2016 assert(ptadr->is_LocalVar() && ptadr->ideal_node() == n, "sanity"); 2017 return; 2018 } 2019 Compile* C = _compile; 2020 ptadr = new (C->comp_arena()) LocalVarNode(this, n, es); 2021 _nodes.at_put(n->_idx, ptadr); 2022 } 2023 2024 void ConnectionGraph::add_java_object(Node *n, PointsToNode::EscapeState es) { 2025 PointsToNode* ptadr = _nodes.at(n->_idx); 2026 if (ptadr != NULL) { 2027 assert(ptadr->is_JavaObject() && ptadr->ideal_node() == n, "sanity"); 2028 return; 2029 } 2030 Compile* C = _compile; 2031 ptadr = new (C->comp_arena()) JavaObjectNode(this, n, es); 2032 _nodes.at_put(n->_idx, ptadr); 2033 } 2034 2035 void ConnectionGraph::add_field(Node *n, PointsToNode::EscapeState es, int offset) { 2036 PointsToNode* ptadr = _nodes.at(n->_idx); 2037 if (ptadr != NULL) { 2038 assert(ptadr->is_Field() && ptadr->ideal_node() == n, "sanity"); 2039 return; 2040 } 2041 bool unsafe = false; 2042 bool is_oop = is_oop_field(n, offset, &unsafe); 2043 if (unsafe) { 2044 es = PointsToNode::GlobalEscape; 2045 } 2046 Compile* C = _compile; 2047 FieldNode* field = new (C->comp_arena()) FieldNode(this, n, es, offset, is_oop); 2048 _nodes.at_put(n->_idx, field); 2049 } 2050 2051 void ConnectionGraph::add_arraycopy(Node *n, PointsToNode::EscapeState es, 2052 PointsToNode* src, PointsToNode* dst) { 2053 assert(!src->is_Field() && !dst->is_Field(), "only for JavaObject and LocalVar"); 2054 assert((src != null_obj) && (dst != null_obj), "not for ConP NULL"); 2055 PointsToNode* ptadr = _nodes.at(n->_idx); 2056 if (ptadr != NULL) { 2057 assert(ptadr->is_Arraycopy() && ptadr->ideal_node() == n, "sanity"); 2058 return; 2059 } 2060 Compile* C = _compile; 2061 ptadr = new (C->comp_arena()) ArraycopyNode(this, n, es); 2062 _nodes.at_put(n->_idx, ptadr); 2063 // Add edge from arraycopy node to source object. 2064 (void)add_edge(ptadr, src); 2065 src->set_arraycopy_src(); 2066 // Add edge from destination object to arraycopy node. 2067 (void)add_edge(dst, ptadr); 2068 dst->set_arraycopy_dst(); 2069 } 2070 2071 bool ConnectionGraph::is_oop_field(Node* n, int offset, bool* unsafe) { 2072 const Type* adr_type = n->as_AddP()->bottom_type(); 2073 BasicType bt = T_INT; 2074 if (offset == Type::OffsetBot) { 2075 // Check only oop fields. 2076 if (!adr_type->isa_aryptr() || 2077 (adr_type->isa_aryptr()->klass() == NULL) || 2078 adr_type->isa_aryptr()->klass()->is_obj_array_klass()) { 2079 // OffsetBot is used to reference array's element. Ignore first AddP. 2080 if (find_second_addp(n, n->in(AddPNode::Base)) == NULL) { 2081 bt = T_OBJECT; 2082 } 2083 } 2084 } else if (offset != oopDesc::klass_offset_in_bytes()) { 2085 if (adr_type->isa_instptr()) { 2086 ciField* field = _compile->alias_type(adr_type->isa_instptr())->field(); 2087 if (field != NULL) { 2088 bt = field->layout_type(); 2089 } else { 2090 // Check for unsafe oop field access 2091 if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN) || 2092 n->has_out_with(Op_GetAndSetP, Op_GetAndSetN, Op_CompareAndExchangeP, Op_CompareAndExchangeN) || 2093 n->has_out_with(Op_CompareAndSwapP, Op_CompareAndSwapN, Op_WeakCompareAndSwapP, Op_WeakCompareAndSwapN) || 2094 BarrierSet::barrier_set()->barrier_set_c2()->escape_has_out_with_unsafe_object(n)) { 2095 bt = T_OBJECT; 2096 (*unsafe) = true; 2097 } 2098 } 2099 } else if (adr_type->isa_aryptr()) { 2100 if (offset == arrayOopDesc::length_offset_in_bytes()) { 2101 // Ignore array length load. 2102 } else if (find_second_addp(n, n->in(AddPNode::Base)) != NULL) { 2103 // Ignore first AddP. 2104 } else { 2105 const Type* elemtype = adr_type->isa_aryptr()->elem(); 2106 bt = elemtype->array_element_basic_type(); 2107 } 2108 } else if (adr_type->isa_rawptr() || adr_type->isa_klassptr()) { 2109 // Allocation initialization, ThreadLocal field access, unsafe access 2110 if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN) || 2111 n->has_out_with(Op_GetAndSetP, Op_GetAndSetN, Op_CompareAndExchangeP, Op_CompareAndExchangeN) || 2112 n->has_out_with(Op_CompareAndSwapP, Op_CompareAndSwapN, Op_WeakCompareAndSwapP, Op_WeakCompareAndSwapN) || 2113 BarrierSet::barrier_set()->barrier_set_c2()->escape_has_out_with_unsafe_object(n)) { 2114 bt = T_OBJECT; 2115 } 2116 } 2117 } 2118 // Note: T_NARROWOOP is not classed as a real reference type 2119 return (is_reference_type(bt) || bt == T_NARROWOOP); 2120 } 2121 2122 // Returns unique pointed java object or NULL. 2123 JavaObjectNode* ConnectionGraph::unique_java_object(Node *n) { 2124 assert(!_collecting, "should not call when contructed graph"); 2125 // If the node was created after the escape computation we can't answer. 2126 uint idx = n->_idx; 2127 if (idx >= nodes_size()) { 2128 return NULL; 2129 } 2130 PointsToNode* ptn = ptnode_adr(idx); 2131 if (ptn == NULL) { 2132 return NULL; 2133 } 2134 if (ptn->is_JavaObject()) { 2135 return ptn->as_JavaObject(); 2136 } 2137 assert(ptn->is_LocalVar(), "sanity"); 2138 // Check all java objects it points to. 2139 JavaObjectNode* jobj = NULL; 2140 for (EdgeIterator i(ptn); i.has_next(); i.next()) { 2141 PointsToNode* e = i.get(); 2142 if (e->is_JavaObject()) { 2143 if (jobj == NULL) { 2144 jobj = e->as_JavaObject(); 2145 } else if (jobj != e) { 2146 return NULL; 2147 } 2148 } 2149 } 2150 return jobj; 2151 } 2152 2153 // Return true if this node points only to non-escaping allocations. 2154 bool PointsToNode::non_escaping_allocation() { 2155 if (is_JavaObject()) { 2156 Node* n = ideal_node(); 2157 if (n->is_Allocate() || n->is_CallStaticJava()) { 2158 return (escape_state() == PointsToNode::NoEscape); 2159 } else { 2160 return false; 2161 } 2162 } 2163 assert(is_LocalVar(), "sanity"); 2164 // Check all java objects it points to. 2165 for (EdgeIterator i(this); i.has_next(); i.next()) { 2166 PointsToNode* e = i.get(); 2167 if (e->is_JavaObject()) { 2168 Node* n = e->ideal_node(); 2169 if ((e->escape_state() != PointsToNode::NoEscape) || 2170 !(n->is_Allocate() || n->is_CallStaticJava())) { 2171 return false; 2172 } 2173 } 2174 } 2175 return true; 2176 } 2177 2178 // Return true if we know the node does not escape globally. 2179 bool ConnectionGraph::not_global_escape(Node *n) { 2180 assert(!_collecting, "should not call during graph construction"); 2181 // If the node was created after the escape computation we can't answer. 2182 uint idx = n->_idx; 2183 if (idx >= nodes_size()) { 2184 return false; 2185 } 2186 PointsToNode* ptn = ptnode_adr(idx); 2187 if (ptn == NULL) { 2188 return false; // not in congraph (e.g. ConI) 2189 } 2190 PointsToNode::EscapeState es = ptn->escape_state(); 2191 // If we have already computed a value, return it. 2192 if (es >= PointsToNode::GlobalEscape) 2193 return false; 2194 if (ptn->is_JavaObject()) { 2195 return true; // (es < PointsToNode::GlobalEscape); 2196 } 2197 assert(ptn->is_LocalVar(), "sanity"); 2198 // Check all java objects it points to. 2199 for (EdgeIterator i(ptn); i.has_next(); i.next()) { 2200 if (i.get()->escape_state() >= PointsToNode::GlobalEscape) 2201 return false; 2202 } 2203 return true; 2204 } 2205 2206 2207 // Helper functions 2208 2209 // Return true if this node points to specified node or nodes it points to. 2210 bool PointsToNode::points_to(JavaObjectNode* ptn) const { 2211 if (is_JavaObject()) { 2212 return (this == ptn); 2213 } 2214 assert(is_LocalVar() || is_Field(), "sanity"); 2215 for (EdgeIterator i(this); i.has_next(); i.next()) { 2216 if (i.get() == ptn) 2217 return true; 2218 } 2219 return false; 2220 } 2221 2222 // Return true if one node points to an other. 2223 bool PointsToNode::meet(PointsToNode* ptn) { 2224 if (this == ptn) { 2225 return true; 2226 } else if (ptn->is_JavaObject()) { 2227 return this->points_to(ptn->as_JavaObject()); 2228 } else if (this->is_JavaObject()) { 2229 return ptn->points_to(this->as_JavaObject()); 2230 } 2231 assert(this->is_LocalVar() && ptn->is_LocalVar(), "sanity"); 2232 int ptn_count = ptn->edge_count(); 2233 for (EdgeIterator i(this); i.has_next(); i.next()) { 2234 PointsToNode* this_e = i.get(); 2235 for (int j = 0; j < ptn_count; j++) { 2236 if (this_e == ptn->edge(j)) 2237 return true; 2238 } 2239 } 2240 return false; 2241 } 2242 2243 #ifdef ASSERT 2244 // Return true if bases point to this java object. 2245 bool FieldNode::has_base(JavaObjectNode* jobj) const { 2246 for (BaseIterator i(this); i.has_next(); i.next()) { 2247 if (i.get() == jobj) 2248 return true; 2249 } 2250 return false; 2251 } 2252 #endif 2253 2254 bool ConnectionGraph::is_captured_store_address(Node* addp) { 2255 // Handle simple case first. 2256 assert(_igvn->type(addp)->isa_oopptr() == NULL, "should be raw access"); 2257 if (addp->in(AddPNode::Address)->is_Proj() && addp->in(AddPNode::Address)->in(0)->is_Allocate()) { 2258 return true; 2259 } else if (addp->in(AddPNode::Address)->is_Phi()) { 2260 for (DUIterator_Fast imax, i = addp->fast_outs(imax); i < imax; i++) { 2261 Node* addp_use = addp->fast_out(i); 2262 if (addp_use->is_Store()) { 2263 for (DUIterator_Fast jmax, j = addp_use->fast_outs(jmax); j < jmax; j++) { 2264 if (addp_use->fast_out(j)->is_Initialize()) { 2265 return true; 2266 } 2267 } 2268 } 2269 } 2270 } 2271 return false; 2272 } 2273 2274 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) { 2275 const Type *adr_type = phase->type(adr); 2276 if (adr->is_AddP() && adr_type->isa_oopptr() == NULL && is_captured_store_address(adr)) { 2277 // We are computing a raw address for a store captured by an Initialize 2278 // compute an appropriate address type. AddP cases #3 and #5 (see below). 2279 int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot); 2280 assert(offs != Type::OffsetBot || 2281 adr->in(AddPNode::Address)->in(0)->is_AllocateArray(), 2282 "offset must be a constant or it is initialization of array"); 2283 return offs; 2284 } 2285 const TypePtr *t_ptr = adr_type->isa_ptr(); 2286 assert(t_ptr != NULL, "must be a pointer type"); 2287 return t_ptr->offset(); 2288 } 2289 2290 Node* ConnectionGraph::get_addp_base(Node *addp) { 2291 assert(addp->is_AddP(), "must be AddP"); 2292 // 2293 // AddP cases for Base and Address inputs: 2294 // case #1. Direct object's field reference: 2295 // Allocate 2296 // | 2297 // Proj #5 ( oop result ) 2298 // | 2299 // CheckCastPP (cast to instance type) 2300 // | | 2301 // AddP ( base == address ) 2302 // 2303 // case #2. Indirect object's field reference: 2304 // Phi 2305 // | 2306 // CastPP (cast to instance type) 2307 // | | 2308 // AddP ( base == address ) 2309 // 2310 // case #3. Raw object's field reference for Initialize node: 2311 // Allocate 2312 // | 2313 // Proj #5 ( oop result ) 2314 // top | 2315 // \ | 2316 // AddP ( base == top ) 2317 // 2318 // case #4. Array's element reference: 2319 // {CheckCastPP | CastPP} 2320 // | | | 2321 // | AddP ( array's element offset ) 2322 // | | 2323 // AddP ( array's offset ) 2324 // 2325 // case #5. Raw object's field reference for arraycopy stub call: 2326 // The inline_native_clone() case when the arraycopy stub is called 2327 // after the allocation before Initialize and CheckCastPP nodes. 2328 // Allocate 2329 // | 2330 // Proj #5 ( oop result ) 2331 // | | 2332 // AddP ( base == address ) 2333 // 2334 // case #6. Constant Pool, ThreadLocal, CastX2P or 2335 // Raw object's field reference: 2336 // {ConP, ThreadLocal, CastX2P, raw Load} 2337 // top | 2338 // \ | 2339 // AddP ( base == top ) 2340 // 2341 // case #7. Klass's field reference. 2342 // LoadKlass 2343 // | | 2344 // AddP ( base == address ) 2345 // 2346 // case #8. narrow Klass's field reference. 2347 // LoadNKlass 2348 // | 2349 // DecodeN 2350 // | | 2351 // AddP ( base == address ) 2352 // 2353 // case #9. Mixed unsafe access 2354 // {instance} 2355 // | 2356 // CheckCastPP (raw) 2357 // top | 2358 // \ | 2359 // AddP ( base == top ) 2360 // 2361 Node *base = addp->in(AddPNode::Base); 2362 if (base->uncast()->is_top()) { // The AddP case #3 and #6 and #9. 2363 base = addp->in(AddPNode::Address); 2364 while (base->is_AddP()) { 2365 // Case #6 (unsafe access) may have several chained AddP nodes. 2366 assert(base->in(AddPNode::Base)->uncast()->is_top(), "expected unsafe access address only"); 2367 base = base->in(AddPNode::Address); 2368 } 2369 if (base->Opcode() == Op_CheckCastPP && 2370 base->bottom_type()->isa_rawptr() && 2371 _igvn->type(base->in(1))->isa_oopptr()) { 2372 base = base->in(1); // Case #9 2373 } else { 2374 Node* uncast_base = base->uncast(); 2375 int opcode = uncast_base->Opcode(); 2376 assert(opcode == Op_ConP || opcode == Op_ThreadLocal || 2377 opcode == Op_CastX2P || uncast_base->is_DecodeNarrowPtr() || 2378 (uncast_base->is_Mem() && (uncast_base->bottom_type()->isa_rawptr() != NULL)) || 2379 is_captured_store_address(addp), "sanity"); 2380 } 2381 } 2382 return base; 2383 } 2384 2385 Node* ConnectionGraph::find_second_addp(Node* addp, Node* n) { 2386 assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes"); 2387 Node* addp2 = addp->raw_out(0); 2388 if (addp->outcnt() == 1 && addp2->is_AddP() && 2389 addp2->in(AddPNode::Base) == n && 2390 addp2->in(AddPNode::Address) == addp) { 2391 assert(addp->in(AddPNode::Base) == n, "expecting the same base"); 2392 // 2393 // Find array's offset to push it on worklist first and 2394 // as result process an array's element offset first (pushed second) 2395 // to avoid CastPP for the array's offset. 2396 // Otherwise the inserted CastPP (LocalVar) will point to what 2397 // the AddP (Field) points to. Which would be wrong since 2398 // the algorithm expects the CastPP has the same point as 2399 // as AddP's base CheckCastPP (LocalVar). 2400 // 2401 // ArrayAllocation 2402 // | 2403 // CheckCastPP 2404 // | 2405 // memProj (from ArrayAllocation CheckCastPP) 2406 // | || 2407 // | || Int (element index) 2408 // | || | ConI (log(element size)) 2409 // | || | / 2410 // | || LShift 2411 // | || / 2412 // | AddP (array's element offset) 2413 // | | 2414 // | | ConI (array's offset: #12(32-bits) or #24(64-bits)) 2415 // | / / 2416 // AddP (array's offset) 2417 // | 2418 // Load/Store (memory operation on array's element) 2419 // 2420 return addp2; 2421 } 2422 return NULL; 2423 } 2424 2425 // 2426 // Adjust the type and inputs of an AddP which computes the 2427 // address of a field of an instance 2428 // 2429 bool ConnectionGraph::split_AddP(Node *addp, Node *base) { 2430 PhaseGVN* igvn = _igvn; 2431 const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr(); 2432 assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr"); 2433 const TypeOopPtr *t = igvn->type(addp)->isa_oopptr(); 2434 if (t == NULL) { 2435 // We are computing a raw address for a store captured by an Initialize 2436 // compute an appropriate address type (cases #3 and #5). 2437 assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer"); 2438 assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation"); 2439 intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot); 2440 assert(offs != Type::OffsetBot, "offset must be a constant"); 2441 t = base_t->add_offset(offs)->is_oopptr(); 2442 } 2443 int inst_id = base_t->instance_id(); 2444 assert(!t->is_known_instance() || t->instance_id() == inst_id, 2445 "old type must be non-instance or match new type"); 2446 2447 // The type 't' could be subclass of 'base_t'. 2448 // As result t->offset() could be large then base_t's size and it will 2449 // cause the failure in add_offset() with narrow oops since TypeOopPtr() 2450 // constructor verifies correctness of the offset. 2451 // 2452 // It could happened on subclass's branch (from the type profiling 2453 // inlining) which was not eliminated during parsing since the exactness 2454 // of the allocation type was not propagated to the subclass type check. 2455 // 2456 // Or the type 't' could be not related to 'base_t' at all. 2457 // It could happened when CHA type is different from MDO type on a dead path 2458 // (for example, from instanceof check) which is not collapsed during parsing. 2459 // 2460 // Do nothing for such AddP node and don't process its users since 2461 // this code branch will go away. 2462 // 2463 if (!t->is_known_instance() && 2464 !base_t->klass()->is_subtype_of(t->klass())) { 2465 return false; // bail out 2466 } 2467 const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr(); 2468 // Do NOT remove the next line: ensure a new alias index is allocated 2469 // for the instance type. Note: C++ will not remove it since the call 2470 // has side effect. 2471 int alias_idx = _compile->get_alias_index(tinst); 2472 igvn->set_type(addp, tinst); 2473 // record the allocation in the node map 2474 set_map(addp, get_map(base->_idx)); 2475 // Set addp's Base and Address to 'base'. 2476 Node *abase = addp->in(AddPNode::Base); 2477 Node *adr = addp->in(AddPNode::Address); 2478 if (adr->is_Proj() && adr->in(0)->is_Allocate() && 2479 adr->in(0)->_idx == (uint)inst_id) { 2480 // Skip AddP cases #3 and #5. 2481 } else { 2482 assert(!abase->is_top(), "sanity"); // AddP case #3 2483 if (abase != base) { 2484 igvn->hash_delete(addp); 2485 addp->set_req(AddPNode::Base, base); 2486 if (abase == adr) { 2487 addp->set_req(AddPNode::Address, base); 2488 } else { 2489 // AddP case #4 (adr is array's element offset AddP node) 2490 #ifdef ASSERT 2491 const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr(); 2492 assert(adr->is_AddP() && atype != NULL && 2493 atype->instance_id() == inst_id, "array's element offset should be processed first"); 2494 #endif 2495 } 2496 igvn->hash_insert(addp); 2497 } 2498 } 2499 // Put on IGVN worklist since at least addp's type was changed above. 2500 record_for_optimizer(addp); 2501 return true; 2502 } 2503 2504 // 2505 // Create a new version of orig_phi if necessary. Returns either the newly 2506 // created phi or an existing phi. Sets create_new to indicate whether a new 2507 // phi was created. Cache the last newly created phi in the node map. 2508 // 2509 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *> &orig_phi_worklist, bool &new_created) { 2510 Compile *C = _compile; 2511 PhaseGVN* igvn = _igvn; 2512 new_created = false; 2513 int phi_alias_idx = C->get_alias_index(orig_phi->adr_type()); 2514 // nothing to do if orig_phi is bottom memory or matches alias_idx 2515 if (phi_alias_idx == alias_idx) { 2516 return orig_phi; 2517 } 2518 // Have we recently created a Phi for this alias index? 2519 PhiNode *result = get_map_phi(orig_phi->_idx); 2520 if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) { 2521 return result; 2522 } 2523 // Previous check may fail when the same wide memory Phi was split into Phis 2524 // for different memory slices. Search all Phis for this region. 2525 if (result != NULL) { 2526 Node* region = orig_phi->in(0); 2527 for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) { 2528 Node* phi = region->fast_out(i); 2529 if (phi->is_Phi() && 2530 C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) { 2531 assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice"); 2532 return phi->as_Phi(); 2533 } 2534 } 2535 } 2536 if (C->live_nodes() + 2*NodeLimitFudgeFactor > C->max_node_limit()) { 2537 if (C->do_escape_analysis() == true && !C->failing()) { 2538 // Retry compilation without escape analysis. 2539 // If this is the first failure, the sentinel string will "stick" 2540 // to the Compile object, and the C2Compiler will see it and retry. 2541 C->record_failure(C2Compiler::retry_no_escape_analysis()); 2542 } 2543 return NULL; 2544 } 2545 orig_phi_worklist.append_if_missing(orig_phi); 2546 const TypePtr *atype = C->get_adr_type(alias_idx); 2547 result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype); 2548 C->copy_node_notes_to(result, orig_phi); 2549 igvn->set_type(result, result->bottom_type()); 2550 record_for_optimizer(result); 2551 set_map(orig_phi, result); 2552 new_created = true; 2553 return result; 2554 } 2555 2556 // 2557 // Return a new version of Memory Phi "orig_phi" with the inputs having the 2558 // specified alias index. 2559 // 2560 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *> &orig_phi_worklist) { 2561 assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory"); 2562 Compile *C = _compile; 2563 PhaseGVN* igvn = _igvn; 2564 bool new_phi_created; 2565 PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, new_phi_created); 2566 if (!new_phi_created) { 2567 return result; 2568 } 2569 GrowableArray<PhiNode *> phi_list; 2570 GrowableArray<uint> cur_input; 2571 PhiNode *phi = orig_phi; 2572 uint idx = 1; 2573 bool finished = false; 2574 while(!finished) { 2575 while (idx < phi->req()) { 2576 Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist); 2577 if (mem != NULL && mem->is_Phi()) { 2578 PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, new_phi_created); 2579 if (new_phi_created) { 2580 // found an phi for which we created a new split, push current one on worklist and begin 2581 // processing new one 2582 phi_list.push(phi); 2583 cur_input.push(idx); 2584 phi = mem->as_Phi(); 2585 result = newphi; 2586 idx = 1; 2587 continue; 2588 } else { 2589 mem = newphi; 2590 } 2591 } 2592 if (C->failing()) { 2593 return NULL; 2594 } 2595 result->set_req(idx++, mem); 2596 } 2597 #ifdef ASSERT 2598 // verify that the new Phi has an input for each input of the original 2599 assert( phi->req() == result->req(), "must have same number of inputs."); 2600 assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match"); 2601 #endif 2602 // Check if all new phi's inputs have specified alias index. 2603 // Otherwise use old phi. 2604 for (uint i = 1; i < phi->req(); i++) { 2605 Node* in = result->in(i); 2606 assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond."); 2607 } 2608 // we have finished processing a Phi, see if there are any more to do 2609 finished = (phi_list.length() == 0 ); 2610 if (!finished) { 2611 phi = phi_list.pop(); 2612 idx = cur_input.pop(); 2613 PhiNode *prev_result = get_map_phi(phi->_idx); 2614 prev_result->set_req(idx++, result); 2615 result = prev_result; 2616 } 2617 } 2618 return result; 2619 } 2620 2621 // 2622 // The next methods are derived from methods in MemNode. 2623 // 2624 Node* ConnectionGraph::step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *toop) { 2625 Node *mem = mmem; 2626 // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally 2627 // means an array I have not precisely typed yet. Do not do any 2628 // alias stuff with it any time soon. 2629 if (toop->base() != Type::AnyPtr && 2630 !(toop->klass() != NULL && 2631 toop->klass()->is_java_lang_Object() && 2632 toop->offset() == Type::OffsetBot)) { 2633 mem = mmem->memory_at(alias_idx); 2634 // Update input if it is progress over what we have now 2635 } 2636 return mem; 2637 } 2638 2639 // 2640 // Move memory users to their memory slices. 2641 // 2642 void ConnectionGraph::move_inst_mem(Node* n, GrowableArray<PhiNode *> &orig_phis) { 2643 Compile* C = _compile; 2644 PhaseGVN* igvn = _igvn; 2645 const TypePtr* tp = igvn->type(n->in(MemNode::Address))->isa_ptr(); 2646 assert(tp != NULL, "ptr type"); 2647 int alias_idx = C->get_alias_index(tp); 2648 int general_idx = C->get_general_index(alias_idx); 2649 2650 // Move users first 2651 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 2652 Node* use = n->fast_out(i); 2653 if (use->is_MergeMem()) { 2654 MergeMemNode* mmem = use->as_MergeMem(); 2655 assert(n == mmem->memory_at(alias_idx), "should be on instance memory slice"); 2656 if (n != mmem->memory_at(general_idx) || alias_idx == general_idx) { 2657 continue; // Nothing to do 2658 } 2659 // Replace previous general reference to mem node. 2660 uint orig_uniq = C->unique(); 2661 Node* m = find_inst_mem(n, general_idx, orig_phis); 2662 assert(orig_uniq == C->unique(), "no new nodes"); 2663 mmem->set_memory_at(general_idx, m); 2664 --imax; 2665 --i; 2666 } else if (use->is_MemBar()) { 2667 assert(!use->is_Initialize(), "initializing stores should not be moved"); 2668 if (use->req() > MemBarNode::Precedent && 2669 use->in(MemBarNode::Precedent) == n) { 2670 // Don't move related membars. 2671 record_for_optimizer(use); 2672 continue; 2673 } 2674 tp = use->as_MemBar()->adr_type()->isa_ptr(); 2675 if ((tp != NULL && C->get_alias_index(tp) == alias_idx) || 2676 alias_idx == general_idx) { 2677 continue; // Nothing to do 2678 } 2679 // Move to general memory slice. 2680 uint orig_uniq = C->unique(); 2681 Node* m = find_inst_mem(n, general_idx, orig_phis); 2682 assert(orig_uniq == C->unique(), "no new nodes"); 2683 igvn->hash_delete(use); 2684 imax -= use->replace_edge(n, m); 2685 igvn->hash_insert(use); 2686 record_for_optimizer(use); 2687 --i; 2688 #ifdef ASSERT 2689 } else if (use->is_Mem()) { 2690 if (use->Opcode() == Op_StoreCM && use->in(MemNode::OopStore) == n) { 2691 // Don't move related cardmark. 2692 continue; 2693 } 2694 // Memory nodes should have new memory input. 2695 tp = igvn->type(use->in(MemNode::Address))->isa_ptr(); 2696 assert(tp != NULL, "ptr type"); 2697 int idx = C->get_alias_index(tp); 2698 assert(get_map(use->_idx) != NULL || idx == alias_idx, 2699 "Following memory nodes should have new memory input or be on the same memory slice"); 2700 } else if (use->is_Phi()) { 2701 // Phi nodes should be split and moved already. 2702 tp = use->as_Phi()->adr_type()->isa_ptr(); 2703 assert(tp != NULL, "ptr type"); 2704 int idx = C->get_alias_index(tp); 2705 assert(idx == alias_idx, "Following Phi nodes should be on the same memory slice"); 2706 } else { 2707 use->dump(); 2708 assert(false, "should not be here"); 2709 #endif 2710 } 2711 } 2712 } 2713 2714 // 2715 // Search memory chain of "mem" to find a MemNode whose address 2716 // is the specified alias index. 2717 // 2718 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *> &orig_phis) { 2719 if (orig_mem == NULL) 2720 return orig_mem; 2721 Compile* C = _compile; 2722 PhaseGVN* igvn = _igvn; 2723 const TypeOopPtr *toop = C->get_adr_type(alias_idx)->isa_oopptr(); 2724 bool is_instance = (toop != NULL) && toop->is_known_instance(); 2725 Node *start_mem = C->start()->proj_out_or_null(TypeFunc::Memory); 2726 Node *prev = NULL; 2727 Node *result = orig_mem; 2728 while (prev != result) { 2729 prev = result; 2730 if (result == start_mem) 2731 break; // hit one of our sentinels 2732 if (result->is_Mem()) { 2733 const Type *at = igvn->type(result->in(MemNode::Address)); 2734 if (at == Type::TOP) 2735 break; // Dead 2736 assert (at->isa_ptr() != NULL, "pointer type required."); 2737 int idx = C->get_alias_index(at->is_ptr()); 2738 if (idx == alias_idx) 2739 break; // Found 2740 if (!is_instance && (at->isa_oopptr() == NULL || 2741 !at->is_oopptr()->is_known_instance())) { 2742 break; // Do not skip store to general memory slice. 2743 } 2744 result = result->in(MemNode::Memory); 2745 } 2746 if (!is_instance) 2747 continue; // don't search further for non-instance types 2748 // skip over a call which does not affect this memory slice 2749 if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) { 2750 Node *proj_in = result->in(0); 2751 if (proj_in->is_Allocate() && proj_in->_idx == (uint)toop->instance_id()) { 2752 break; // hit one of our sentinels 2753 } else if (proj_in->is_Call()) { 2754 // ArrayCopy node processed here as well 2755 CallNode *call = proj_in->as_Call(); 2756 if (!call->may_modify(toop, igvn)) { 2757 result = call->in(TypeFunc::Memory); 2758 } 2759 } else if (proj_in->is_Initialize()) { 2760 AllocateNode* alloc = proj_in->as_Initialize()->allocation(); 2761 // Stop if this is the initialization for the object instance which 2762 // which contains this memory slice, otherwise skip over it. 2763 if (alloc == NULL || alloc->_idx != (uint)toop->instance_id()) { 2764 result = proj_in->in(TypeFunc::Memory); 2765 } 2766 } else if (proj_in->is_MemBar()) { 2767 // Check if there is an array copy for a clone 2768 // Step over GC barrier when ReduceInitialCardMarks is disabled 2769 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 2770 Node* control_proj_ac = bs->step_over_gc_barrier(proj_in->in(0)); 2771 2772 if (control_proj_ac->is_Proj() && control_proj_ac->in(0)->is_ArrayCopy()) { 2773 // Stop if it is a clone 2774 ArrayCopyNode* ac = control_proj_ac->in(0)->as_ArrayCopy(); 2775 if (ac->may_modify(toop, igvn)) { 2776 break; 2777 } 2778 } 2779 result = proj_in->in(TypeFunc::Memory); 2780 } 2781 } else if (result->is_MergeMem()) { 2782 MergeMemNode *mmem = result->as_MergeMem(); 2783 result = step_through_mergemem(mmem, alias_idx, toop); 2784 if (result == mmem->base_memory()) { 2785 // Didn't find instance memory, search through general slice recursively. 2786 result = mmem->memory_at(C->get_general_index(alias_idx)); 2787 result = find_inst_mem(result, alias_idx, orig_phis); 2788 if (C->failing()) { 2789 return NULL; 2790 } 2791 mmem->set_memory_at(alias_idx, result); 2792 } 2793 } else if (result->is_Phi() && 2794 C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) { 2795 Node *un = result->as_Phi()->unique_input(igvn); 2796 if (un != NULL) { 2797 orig_phis.append_if_missing(result->as_Phi()); 2798 result = un; 2799 } else { 2800 break; 2801 } 2802 } else if (result->is_ClearArray()) { 2803 if (!ClearArrayNode::step_through(&result, (uint)toop->instance_id(), igvn)) { 2804 // Can not bypass initialization of the instance 2805 // we are looking for. 2806 break; 2807 } 2808 // Otherwise skip it (the call updated 'result' value). 2809 } else if (result->Opcode() == Op_SCMemProj) { 2810 Node* mem = result->in(0); 2811 Node* adr = NULL; 2812 if (mem->is_LoadStore()) { 2813 adr = mem->in(MemNode::Address); 2814 } else { 2815 assert(mem->Opcode() == Op_EncodeISOArray || 2816 mem->Opcode() == Op_StrCompressedCopy, "sanity"); 2817 adr = mem->in(3); // Memory edge corresponds to destination array 2818 } 2819 const Type *at = igvn->type(adr); 2820 if (at != Type::TOP) { 2821 assert(at->isa_ptr() != NULL, "pointer type required."); 2822 int idx = C->get_alias_index(at->is_ptr()); 2823 if (idx == alias_idx) { 2824 // Assert in debug mode 2825 assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field"); 2826 break; // In product mode return SCMemProj node 2827 } 2828 } 2829 result = mem->in(MemNode::Memory); 2830 } else if (result->Opcode() == Op_StrInflatedCopy) { 2831 Node* adr = result->in(3); // Memory edge corresponds to destination array 2832 const Type *at = igvn->type(adr); 2833 if (at != Type::TOP) { 2834 assert(at->isa_ptr() != NULL, "pointer type required."); 2835 int idx = C->get_alias_index(at->is_ptr()); 2836 if (idx == alias_idx) { 2837 // Assert in debug mode 2838 assert(false, "Object is not scalar replaceable if a StrInflatedCopy node accesses its field"); 2839 break; // In product mode return SCMemProj node 2840 } 2841 } 2842 result = result->in(MemNode::Memory); 2843 } 2844 } 2845 if (result->is_Phi()) { 2846 PhiNode *mphi = result->as_Phi(); 2847 assert(mphi->bottom_type() == Type::MEMORY, "memory phi required"); 2848 const TypePtr *t = mphi->adr_type(); 2849 if (!is_instance) { 2850 // Push all non-instance Phis on the orig_phis worklist to update inputs 2851 // during Phase 4 if needed. 2852 orig_phis.append_if_missing(mphi); 2853 } else if (C->get_alias_index(t) != alias_idx) { 2854 // Create a new Phi with the specified alias index type. 2855 result = split_memory_phi(mphi, alias_idx, orig_phis); 2856 } 2857 } 2858 // the result is either MemNode, PhiNode, InitializeNode. 2859 return result; 2860 } 2861 2862 // 2863 // Convert the types of unescaped object to instance types where possible, 2864 // propagate the new type information through the graph, and update memory 2865 // edges and MergeMem inputs to reflect the new type. 2866 // 2867 // We start with allocations (and calls which may be allocations) on alloc_worklist. 2868 // The processing is done in 4 phases: 2869 // 2870 // Phase 1: Process possible allocations from alloc_worklist. Create instance 2871 // types for the CheckCastPP for allocations where possible. 2872 // Propagate the new types through users as follows: 2873 // casts and Phi: push users on alloc_worklist 2874 // AddP: cast Base and Address inputs to the instance type 2875 // push any AddP users on alloc_worklist and push any memnode 2876 // users onto memnode_worklist. 2877 // Phase 2: Process MemNode's from memnode_worklist. compute new address type and 2878 // search the Memory chain for a store with the appropriate type 2879 // address type. If a Phi is found, create a new version with 2880 // the appropriate memory slices from each of the Phi inputs. 2881 // For stores, process the users as follows: 2882 // MemNode: push on memnode_worklist 2883 // MergeMem: push on mergemem_worklist 2884 // Phase 3: Process MergeMem nodes from mergemem_worklist. Walk each memory slice 2885 // moving the first node encountered of each instance type to the 2886 // the input corresponding to its alias index. 2887 // appropriate memory slice. 2888 // Phase 4: Update the inputs of non-instance memory Phis and the Memory input of memnodes. 2889 // 2890 // In the following example, the CheckCastPP nodes are the cast of allocation 2891 // results and the allocation of node 29 is unescaped and eligible to be an 2892 // instance type. 2893 // 2894 // We start with: 2895 // 2896 // 7 Parm #memory 2897 // 10 ConI "12" 2898 // 19 CheckCastPP "Foo" 2899 // 20 AddP _ 19 19 10 Foo+12 alias_index=4 2900 // 29 CheckCastPP "Foo" 2901 // 30 AddP _ 29 29 10 Foo+12 alias_index=4 2902 // 2903 // 40 StoreP 25 7 20 ... alias_index=4 2904 // 50 StoreP 35 40 30 ... alias_index=4 2905 // 60 StoreP 45 50 20 ... alias_index=4 2906 // 70 LoadP _ 60 30 ... alias_index=4 2907 // 80 Phi 75 50 60 Memory alias_index=4 2908 // 90 LoadP _ 80 30 ... alias_index=4 2909 // 100 LoadP _ 80 20 ... alias_index=4 2910 // 2911 // 2912 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24 2913 // and creating a new alias index for node 30. This gives: 2914 // 2915 // 7 Parm #memory 2916 // 10 ConI "12" 2917 // 19 CheckCastPP "Foo" 2918 // 20 AddP _ 19 19 10 Foo+12 alias_index=4 2919 // 29 CheckCastPP "Foo" iid=24 2920 // 30 AddP _ 29 29 10 Foo+12 alias_index=6 iid=24 2921 // 2922 // 40 StoreP 25 7 20 ... alias_index=4 2923 // 50 StoreP 35 40 30 ... alias_index=6 2924 // 60 StoreP 45 50 20 ... alias_index=4 2925 // 70 LoadP _ 60 30 ... alias_index=6 2926 // 80 Phi 75 50 60 Memory alias_index=4 2927 // 90 LoadP _ 80 30 ... alias_index=6 2928 // 100 LoadP _ 80 20 ... alias_index=4 2929 // 2930 // In phase 2, new memory inputs are computed for the loads and stores, 2931 // And a new version of the phi is created. In phase 4, the inputs to 2932 // node 80 are updated and then the memory nodes are updated with the 2933 // values computed in phase 2. This results in: 2934 // 2935 // 7 Parm #memory 2936 // 10 ConI "12" 2937 // 19 CheckCastPP "Foo" 2938 // 20 AddP _ 19 19 10 Foo+12 alias_index=4 2939 // 29 CheckCastPP "Foo" iid=24 2940 // 30 AddP _ 29 29 10 Foo+12 alias_index=6 iid=24 2941 // 2942 // 40 StoreP 25 7 20 ... alias_index=4 2943 // 50 StoreP 35 7 30 ... alias_index=6 2944 // 60 StoreP 45 40 20 ... alias_index=4 2945 // 70 LoadP _ 50 30 ... alias_index=6 2946 // 80 Phi 75 40 60 Memory alias_index=4 2947 // 120 Phi 75 50 50 Memory alias_index=6 2948 // 90 LoadP _ 120 30 ... alias_index=6 2949 // 100 LoadP _ 80 20 ... alias_index=4 2950 // 2951 void ConnectionGraph::split_unique_types(GrowableArray<Node *> &alloc_worklist, GrowableArray<ArrayCopyNode*> &arraycopy_worklist) { 2952 GrowableArray<Node *> memnode_worklist; 2953 GrowableArray<PhiNode *> orig_phis; 2954 PhaseIterGVN *igvn = _igvn; 2955 uint new_index_start = (uint) _compile->num_alias_types(); 2956 VectorSet visited; 2957 ideal_nodes.clear(); // Reset for use with set_map/get_map. 2958 uint unique_old = _compile->unique(); 2959 2960 // Phase 1: Process possible allocations from alloc_worklist. 2961 // Create instance types for the CheckCastPP for allocations where possible. 2962 // 2963 // (Note: don't forget to change the order of the second AddP node on 2964 // the alloc_worklist if the order of the worklist processing is changed, 2965 // see the comment in find_second_addp().) 2966 // 2967 while (alloc_worklist.length() != 0) { 2968 Node *n = alloc_worklist.pop(); 2969 uint ni = n->_idx; 2970 if (n->is_Call()) { 2971 CallNode *alloc = n->as_Call(); 2972 // copy escape information to call node 2973 PointsToNode* ptn = ptnode_adr(alloc->_idx); 2974 PointsToNode::EscapeState es = ptn->escape_state(); 2975 // We have an allocation or call which returns a Java object, 2976 // see if it is unescaped. 2977 if (es != PointsToNode::NoEscape || !ptn->scalar_replaceable()) 2978 continue; 2979 // Find CheckCastPP for the allocate or for the return value of a call 2980 n = alloc->result_cast(); 2981 if (n == NULL) { // No uses except Initialize node 2982 if (alloc->is_Allocate()) { 2983 // Set the scalar_replaceable flag for allocation 2984 // so it could be eliminated if it has no uses. 2985 alloc->as_Allocate()->_is_scalar_replaceable = true; 2986 } 2987 if (alloc->is_CallStaticJava()) { 2988 // Set the scalar_replaceable flag for boxing method 2989 // so it could be eliminated if it has no uses. 2990 alloc->as_CallStaticJava()->_is_scalar_replaceable = true; 2991 } 2992 continue; 2993 } 2994 if (!n->is_CheckCastPP()) { // not unique CheckCastPP. 2995 // we could reach here for allocate case if one init is associated with many allocs. 2996 if (alloc->is_Allocate()) { 2997 alloc->as_Allocate()->_is_scalar_replaceable = false; 2998 } 2999 continue; 3000 } 3001 3002 // The inline code for Object.clone() casts the allocation result to 3003 // java.lang.Object and then to the actual type of the allocated 3004 // object. Detect this case and use the second cast. 3005 // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when 3006 // the allocation result is cast to java.lang.Object and then 3007 // to the actual Array type. 3008 if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL 3009 && (alloc->is_AllocateArray() || 3010 igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) { 3011 Node *cast2 = NULL; 3012 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 3013 Node *use = n->fast_out(i); 3014 if (use->is_CheckCastPP()) { 3015 cast2 = use; 3016 break; 3017 } 3018 } 3019 if (cast2 != NULL) { 3020 n = cast2; 3021 } else { 3022 // Non-scalar replaceable if the allocation type is unknown statically 3023 // (reflection allocation), the object can't be restored during 3024 // deoptimization without precise type. 3025 continue; 3026 } 3027 } 3028 3029 const TypeOopPtr *t = igvn->type(n)->isa_oopptr(); 3030 if (t == NULL) 3031 continue; // not a TypeOopPtr 3032 if (!t->klass_is_exact()) 3033 continue; // not an unique type 3034 3035 if (alloc->is_Allocate()) { 3036 // Set the scalar_replaceable flag for allocation 3037 // so it could be eliminated. 3038 alloc->as_Allocate()->_is_scalar_replaceable = true; 3039 } 3040 if (alloc->is_CallStaticJava()) { 3041 // Set the scalar_replaceable flag for boxing method 3042 // so it could be eliminated. 3043 alloc->as_CallStaticJava()->_is_scalar_replaceable = true; 3044 } 3045 set_escape_state(ptnode_adr(n->_idx), es); // CheckCastPP escape state 3046 // in order for an object to be scalar-replaceable, it must be: 3047 // - a direct allocation (not a call returning an object) 3048 // - non-escaping 3049 // - eligible to be a unique type 3050 // - not determined to be ineligible by escape analysis 3051 set_map(alloc, n); 3052 set_map(n, alloc); 3053 const TypeOopPtr* tinst = t->cast_to_instance_id(ni); 3054 igvn->hash_delete(n); 3055 igvn->set_type(n, tinst); 3056 n->raise_bottom_type(tinst); 3057 igvn->hash_insert(n); 3058 record_for_optimizer(n); 3059 // Allocate an alias index for the header fields. Accesses to 3060 // the header emitted during macro expansion wouldn't have 3061 // correct memory state otherwise. 3062 _compile->get_alias_index(tinst->add_offset(oopDesc::mark_offset_in_bytes())); 3063 _compile->get_alias_index(tinst->add_offset(oopDesc::klass_offset_in_bytes())); 3064 if (alloc->is_Allocate() && (t->isa_instptr() || t->isa_aryptr())) { 3065 3066 // First, put on the worklist all Field edges from Connection Graph 3067 // which is more accurate than putting immediate users from Ideal Graph. 3068 for (EdgeIterator e(ptn); e.has_next(); e.next()) { 3069 PointsToNode* tgt = e.get(); 3070 if (tgt->is_Arraycopy()) { 3071 continue; 3072 } 3073 Node* use = tgt->ideal_node(); 3074 assert(tgt->is_Field() && use->is_AddP(), 3075 "only AddP nodes are Field edges in CG"); 3076 if (use->outcnt() > 0) { // Don't process dead nodes 3077 Node* addp2 = find_second_addp(use, use->in(AddPNode::Base)); 3078 if (addp2 != NULL) { 3079 assert(alloc->is_AllocateArray(),"array allocation was expected"); 3080 alloc_worklist.append_if_missing(addp2); 3081 } 3082 alloc_worklist.append_if_missing(use); 3083 } 3084 } 3085 3086 // An allocation may have an Initialize which has raw stores. Scan 3087 // the users of the raw allocation result and push AddP users 3088 // on alloc_worklist. 3089 Node *raw_result = alloc->proj_out_or_null(TypeFunc::Parms); 3090 assert (raw_result != NULL, "must have an allocation result"); 3091 for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) { 3092 Node *use = raw_result->fast_out(i); 3093 if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes 3094 Node* addp2 = find_second_addp(use, raw_result); 3095 if (addp2 != NULL) { 3096 assert(alloc->is_AllocateArray(),"array allocation was expected"); 3097 alloc_worklist.append_if_missing(addp2); 3098 } 3099 alloc_worklist.append_if_missing(use); 3100 } else if (use->is_MemBar()) { 3101 memnode_worklist.append_if_missing(use); 3102 } 3103 } 3104 } 3105 } else if (n->is_AddP()) { 3106 JavaObjectNode* jobj = unique_java_object(get_addp_base(n)); 3107 if (jobj == NULL || jobj == phantom_obj) { 3108 #ifdef ASSERT 3109 ptnode_adr(get_addp_base(n)->_idx)->dump(); 3110 ptnode_adr(n->_idx)->dump(); 3111 assert(jobj != NULL && jobj != phantom_obj, "escaped allocation"); 3112 #endif 3113 _compile->record_failure(C2Compiler::retry_no_escape_analysis()); 3114 return; 3115 } 3116 Node *base = get_map(jobj->idx()); // CheckCastPP node 3117 if (!split_AddP(n, base)) continue; // wrong type from dead path 3118 } else if (n->is_Phi() || 3119 n->is_CheckCastPP() || 3120 n->is_EncodeP() || 3121 n->is_DecodeN() || 3122 (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) { 3123 if (visited.test_set(n->_idx)) { 3124 assert(n->is_Phi(), "loops only through Phi's"); 3125 continue; // already processed 3126 } 3127 JavaObjectNode* jobj = unique_java_object(n); 3128 if (jobj == NULL || jobj == phantom_obj) { 3129 #ifdef ASSERT 3130 ptnode_adr(n->_idx)->dump(); 3131 assert(jobj != NULL && jobj != phantom_obj, "escaped allocation"); 3132 #endif 3133 _compile->record_failure(C2Compiler::retry_no_escape_analysis()); 3134 return; 3135 } else { 3136 Node *val = get_map(jobj->idx()); // CheckCastPP node 3137 TypeNode *tn = n->as_Type(); 3138 const TypeOopPtr* tinst = igvn->type(val)->isa_oopptr(); 3139 assert(tinst != NULL && tinst->is_known_instance() && 3140 tinst->instance_id() == jobj->idx() , "instance type expected."); 3141 3142 const Type *tn_type = igvn->type(tn); 3143 const TypeOopPtr *tn_t; 3144 if (tn_type->isa_narrowoop()) { 3145 tn_t = tn_type->make_ptr()->isa_oopptr(); 3146 } else { 3147 tn_t = tn_type->isa_oopptr(); 3148 } 3149 if (tn_t != NULL && tinst->klass()->is_subtype_of(tn_t->klass())) { 3150 if (tn_type->isa_narrowoop()) { 3151 tn_type = tinst->make_narrowoop(); 3152 } else { 3153 tn_type = tinst; 3154 } 3155 igvn->hash_delete(tn); 3156 igvn->set_type(tn, tn_type); 3157 tn->set_type(tn_type); 3158 igvn->hash_insert(tn); 3159 record_for_optimizer(n); 3160 } else { 3161 assert(tn_type == TypePtr::NULL_PTR || 3162 tn_t != NULL && !tinst->klass()->is_subtype_of(tn_t->klass()), 3163 "unexpected type"); 3164 continue; // Skip dead path with different type 3165 } 3166 } 3167 } else { 3168 debug_only(n->dump();) 3169 assert(false, "EA: unexpected node"); 3170 continue; 3171 } 3172 // push allocation's users on appropriate worklist 3173 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 3174 Node *use = n->fast_out(i); 3175 if(use->is_Mem() && use->in(MemNode::Address) == n) { 3176 // Load/store to instance's field 3177 memnode_worklist.append_if_missing(use); 3178 } else if (use->is_MemBar()) { 3179 if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge 3180 memnode_worklist.append_if_missing(use); 3181 } 3182 } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes 3183 Node* addp2 = find_second_addp(use, n); 3184 if (addp2 != NULL) { 3185 alloc_worklist.append_if_missing(addp2); 3186 } 3187 alloc_worklist.append_if_missing(use); 3188 } else if (use->is_Phi() || 3189 use->is_CheckCastPP() || 3190 use->is_EncodeNarrowPtr() || 3191 use->is_DecodeNarrowPtr() || 3192 (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) { 3193 alloc_worklist.append_if_missing(use); 3194 #ifdef ASSERT 3195 } else if (use->is_Mem()) { 3196 assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path"); 3197 } else if (use->is_MergeMem()) { 3198 assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist"); 3199 } else if (use->is_SafePoint()) { 3200 // Look for MergeMem nodes for calls which reference unique allocation 3201 // (through CheckCastPP nodes) even for debug info. 3202 Node* m = use->in(TypeFunc::Memory); 3203 if (m->is_MergeMem()) { 3204 assert(_mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist"); 3205 } 3206 } else if (use->Opcode() == Op_EncodeISOArray) { 3207 if (use->in(MemNode::Memory) == n || use->in(3) == n) { 3208 // EncodeISOArray overwrites destination array 3209 memnode_worklist.append_if_missing(use); 3210 } 3211 } else { 3212 uint op = use->Opcode(); 3213 if ((op == Op_StrCompressedCopy || op == Op_StrInflatedCopy) && 3214 (use->in(MemNode::Memory) == n)) { 3215 // They overwrite memory edge corresponding to destination array, 3216 memnode_worklist.append_if_missing(use); 3217 } else if (!(op == Op_CmpP || op == Op_Conv2B || 3218 op == Op_CastP2X || op == Op_StoreCM || 3219 op == Op_FastLock || op == Op_AryEq || op == Op_StrComp || op == Op_HasNegatives || 3220 op == Op_StrCompressedCopy || op == Op_StrInflatedCopy || 3221 op == Op_StrEquals || op == Op_StrIndexOf || op == Op_StrIndexOfChar || 3222 op == Op_SubTypeCheck || 3223 BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(use))) { 3224 n->dump(); 3225 use->dump(); 3226 assert(false, "EA: missing allocation reference path"); 3227 } 3228 #endif 3229 } 3230 } 3231 3232 } 3233 3234 // Go over all ArrayCopy nodes and if one of the inputs has a unique 3235 // type, record it in the ArrayCopy node so we know what memory this 3236 // node uses/modified. 3237 for (int next = 0; next < arraycopy_worklist.length(); next++) { 3238 ArrayCopyNode* ac = arraycopy_worklist.at(next); 3239 Node* dest = ac->in(ArrayCopyNode::Dest); 3240 if (dest->is_AddP()) { 3241 dest = get_addp_base(dest); 3242 } 3243 JavaObjectNode* jobj = unique_java_object(dest); 3244 if (jobj != NULL) { 3245 Node *base = get_map(jobj->idx()); 3246 if (base != NULL) { 3247 const TypeOopPtr *base_t = _igvn->type(base)->isa_oopptr(); 3248 ac->_dest_type = base_t; 3249 } 3250 } 3251 Node* src = ac->in(ArrayCopyNode::Src); 3252 if (src->is_AddP()) { 3253 src = get_addp_base(src); 3254 } 3255 jobj = unique_java_object(src); 3256 if (jobj != NULL) { 3257 Node* base = get_map(jobj->idx()); 3258 if (base != NULL) { 3259 const TypeOopPtr *base_t = _igvn->type(base)->isa_oopptr(); 3260 ac->_src_type = base_t; 3261 } 3262 } 3263 } 3264 3265 // New alias types were created in split_AddP(). 3266 uint new_index_end = (uint) _compile->num_alias_types(); 3267 assert(unique_old == _compile->unique(), "there should be no new ideal nodes after Phase 1"); 3268 3269 // Phase 2: Process MemNode's from memnode_worklist. compute new address type and 3270 // compute new values for Memory inputs (the Memory inputs are not 3271 // actually updated until phase 4.) 3272 if (memnode_worklist.length() == 0) 3273 return; // nothing to do 3274 while (memnode_worklist.length() != 0) { 3275 Node *n = memnode_worklist.pop(); 3276 if (visited.test_set(n->_idx)) 3277 continue; 3278 if (n->is_Phi() || n->is_ClearArray()) { 3279 // we don't need to do anything, but the users must be pushed 3280 } else if (n->is_MemBar()) { // Initialize, MemBar nodes 3281 // we don't need to do anything, but the users must be pushed 3282 n = n->as_MemBar()->proj_out_or_null(TypeFunc::Memory); 3283 if (n == NULL) 3284 continue; 3285 } else if (n->Opcode() == Op_StrCompressedCopy || 3286 n->Opcode() == Op_EncodeISOArray) { 3287 // get the memory projection 3288 n = n->find_out_with(Op_SCMemProj); 3289 assert(n != NULL && n->Opcode() == Op_SCMemProj, "memory projection required"); 3290 } else { 3291 assert(n->is_Mem(), "memory node required."); 3292 Node *addr = n->in(MemNode::Address); 3293 const Type *addr_t = igvn->type(addr); 3294 if (addr_t == Type::TOP) 3295 continue; 3296 assert (addr_t->isa_ptr() != NULL, "pointer type required."); 3297 int alias_idx = _compile->get_alias_index(addr_t->is_ptr()); 3298 assert ((uint)alias_idx < new_index_end, "wrong alias index"); 3299 Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis); 3300 if (_compile->failing()) { 3301 return; 3302 } 3303 if (mem != n->in(MemNode::Memory)) { 3304 // We delay the memory edge update since we need old one in 3305 // MergeMem code below when instances memory slices are separated. 3306 set_map(n, mem); 3307 } 3308 if (n->is_Load()) { 3309 continue; // don't push users 3310 } else if (n->is_LoadStore()) { 3311 // get the memory projection 3312 n = n->find_out_with(Op_SCMemProj); 3313 assert(n != NULL && n->Opcode() == Op_SCMemProj, "memory projection required"); 3314 } 3315 } 3316 // push user on appropriate worklist 3317 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 3318 Node *use = n->fast_out(i); 3319 if (use->is_Phi() || use->is_ClearArray()) { 3320 memnode_worklist.append_if_missing(use); 3321 } else if (use->is_Mem() && use->in(MemNode::Memory) == n) { 3322 if (use->Opcode() == Op_StoreCM) // Ignore cardmark stores 3323 continue; 3324 memnode_worklist.append_if_missing(use); 3325 } else if (use->is_MemBar()) { 3326 if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge 3327 memnode_worklist.append_if_missing(use); 3328 } 3329 #ifdef ASSERT 3330 } else if(use->is_Mem()) { 3331 assert(use->in(MemNode::Memory) != n, "EA: missing memory path"); 3332 } else if (use->is_MergeMem()) { 3333 assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist"); 3334 } else if (use->Opcode() == Op_EncodeISOArray) { 3335 if (use->in(MemNode::Memory) == n || use->in(3) == n) { 3336 // EncodeISOArray overwrites destination array 3337 memnode_worklist.append_if_missing(use); 3338 } 3339 } else { 3340 uint op = use->Opcode(); 3341 if ((use->in(MemNode::Memory) == n) && 3342 (op == Op_StrCompressedCopy || op == Op_StrInflatedCopy)) { 3343 // They overwrite memory edge corresponding to destination array, 3344 memnode_worklist.append_if_missing(use); 3345 } else if (!(BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(use) || 3346 op == Op_AryEq || op == Op_StrComp || op == Op_HasNegatives || 3347 op == Op_StrCompressedCopy || op == Op_StrInflatedCopy || 3348 op == Op_StrEquals || op == Op_StrIndexOf || op == Op_StrIndexOfChar)) { 3349 n->dump(); 3350 use->dump(); 3351 assert(false, "EA: missing memory path"); 3352 } 3353 #endif 3354 } 3355 } 3356 } 3357 3358 // Phase 3: Process MergeMem nodes from mergemem_worklist. 3359 // Walk each memory slice moving the first node encountered of each 3360 // instance type to the the input corresponding to its alias index. 3361 uint length = _mergemem_worklist.length(); 3362 for( uint next = 0; next < length; ++next ) { 3363 MergeMemNode* nmm = _mergemem_worklist.at(next); 3364 assert(!visited.test_set(nmm->_idx), "should not be visited before"); 3365 // Note: we don't want to use MergeMemStream here because we only want to 3366 // scan inputs which exist at the start, not ones we add during processing. 3367 // Note 2: MergeMem may already contains instance memory slices added 3368 // during find_inst_mem() call when memory nodes were processed above. 3369 igvn->hash_delete(nmm); 3370 uint nslices = MIN2(nmm->req(), new_index_start); 3371 for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) { 3372 Node* mem = nmm->in(i); 3373 Node* cur = NULL; 3374 if (mem == NULL || mem->is_top()) 3375 continue; 3376 // First, update mergemem by moving memory nodes to corresponding slices 3377 // if their type became more precise since this mergemem was created. 3378 while (mem->is_Mem()) { 3379 const Type *at = igvn->type(mem->in(MemNode::Address)); 3380 if (at != Type::TOP) { 3381 assert (at->isa_ptr() != NULL, "pointer type required."); 3382 uint idx = (uint)_compile->get_alias_index(at->is_ptr()); 3383 if (idx == i) { 3384 if (cur == NULL) 3385 cur = mem; 3386 } else { 3387 if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) { 3388 nmm->set_memory_at(idx, mem); 3389 } 3390 } 3391 } 3392 mem = mem->in(MemNode::Memory); 3393 } 3394 nmm->set_memory_at(i, (cur != NULL) ? cur : mem); 3395 // Find any instance of the current type if we haven't encountered 3396 // already a memory slice of the instance along the memory chain. 3397 for (uint ni = new_index_start; ni < new_index_end; ni++) { 3398 if((uint)_compile->get_general_index(ni) == i) { 3399 Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni); 3400 if (nmm->is_empty_memory(m)) { 3401 Node* result = find_inst_mem(mem, ni, orig_phis); 3402 if (_compile->failing()) { 3403 return; 3404 } 3405 nmm->set_memory_at(ni, result); 3406 } 3407 } 3408 } 3409 } 3410 // Find the rest of instances values 3411 for (uint ni = new_index_start; ni < new_index_end; ni++) { 3412 const TypeOopPtr *tinst = _compile->get_adr_type(ni)->isa_oopptr(); 3413 Node* result = step_through_mergemem(nmm, ni, tinst); 3414 if (result == nmm->base_memory()) { 3415 // Didn't find instance memory, search through general slice recursively. 3416 result = nmm->memory_at(_compile->get_general_index(ni)); 3417 result = find_inst_mem(result, ni, orig_phis); 3418 if (_compile->failing()) { 3419 return; 3420 } 3421 nmm->set_memory_at(ni, result); 3422 } 3423 } 3424 igvn->hash_insert(nmm); 3425 record_for_optimizer(nmm); 3426 } 3427 3428 // Phase 4: Update the inputs of non-instance memory Phis and 3429 // the Memory input of memnodes 3430 // First update the inputs of any non-instance Phi's from 3431 // which we split out an instance Phi. Note we don't have 3432 // to recursively process Phi's encounted on the input memory 3433 // chains as is done in split_memory_phi() since they will 3434 // also be processed here. 3435 for (int j = 0; j < orig_phis.length(); j++) { 3436 PhiNode *phi = orig_phis.at(j); 3437 int alias_idx = _compile->get_alias_index(phi->adr_type()); 3438 igvn->hash_delete(phi); 3439 for (uint i = 1; i < phi->req(); i++) { 3440 Node *mem = phi->in(i); 3441 Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis); 3442 if (_compile->failing()) { 3443 return; 3444 } 3445 if (mem != new_mem) { 3446 phi->set_req(i, new_mem); 3447 } 3448 } 3449 igvn->hash_insert(phi); 3450 record_for_optimizer(phi); 3451 } 3452 3453 // Update the memory inputs of MemNodes with the value we computed 3454 // in Phase 2 and move stores memory users to corresponding memory slices. 3455 // Disable memory split verification code until the fix for 6984348. 3456 // Currently it produces false negative results since it does not cover all cases. 3457 #if 0 // ifdef ASSERT 3458 visited.Reset(); 3459 Node_Stack old_mems(arena, _compile->unique() >> 2); 3460 #endif 3461 for (uint i = 0; i < ideal_nodes.size(); i++) { 3462 Node* n = ideal_nodes.at(i); 3463 Node* nmem = get_map(n->_idx); 3464 assert(nmem != NULL, "sanity"); 3465 if (n->is_Mem()) { 3466 #if 0 // ifdef ASSERT 3467 Node* old_mem = n->in(MemNode::Memory); 3468 if (!visited.test_set(old_mem->_idx)) { 3469 old_mems.push(old_mem, old_mem->outcnt()); 3470 } 3471 #endif 3472 assert(n->in(MemNode::Memory) != nmem, "sanity"); 3473 if (!n->is_Load()) { 3474 // Move memory users of a store first. 3475 move_inst_mem(n, orig_phis); 3476 } 3477 // Now update memory input 3478 igvn->hash_delete(n); 3479 n->set_req(MemNode::Memory, nmem); 3480 igvn->hash_insert(n); 3481 record_for_optimizer(n); 3482 } else { 3483 assert(n->is_Allocate() || n->is_CheckCastPP() || 3484 n->is_AddP() || n->is_Phi(), "unknown node used for set_map()"); 3485 } 3486 } 3487 #if 0 // ifdef ASSERT 3488 // Verify that memory was split correctly 3489 while (old_mems.is_nonempty()) { 3490 Node* old_mem = old_mems.node(); 3491 uint old_cnt = old_mems.index(); 3492 old_mems.pop(); 3493 assert(old_cnt == old_mem->outcnt(), "old mem could be lost"); 3494 } 3495 #endif 3496 } 3497 3498 #ifndef PRODUCT 3499 static const char *node_type_names[] = { 3500 "UnknownType", 3501 "JavaObject", 3502 "LocalVar", 3503 "Field", 3504 "Arraycopy" 3505 }; 3506 3507 static const char *esc_names[] = { 3508 "UnknownEscape", 3509 "NoEscape", 3510 "ArgEscape", 3511 "GlobalEscape" 3512 }; 3513 3514 void PointsToNode::dump(bool print_state) const { 3515 NodeType nt = node_type(); 3516 tty->print("%s ", node_type_names[(int) nt]); 3517 if (print_state) { 3518 EscapeState es = escape_state(); 3519 EscapeState fields_es = fields_escape_state(); 3520 tty->print("%s(%s) ", esc_names[(int)es], esc_names[(int)fields_es]); 3521 if (nt == PointsToNode::JavaObject && !this->scalar_replaceable()) 3522 tty->print("NSR "); 3523 } 3524 if (is_Field()) { 3525 FieldNode* f = (FieldNode*)this; 3526 if (f->is_oop()) 3527 tty->print("oop "); 3528 if (f->offset() > 0) 3529 tty->print("+%d ", f->offset()); 3530 tty->print("("); 3531 for (BaseIterator i(f); i.has_next(); i.next()) { 3532 PointsToNode* b = i.get(); 3533 tty->print(" %d%s", b->idx(),(b->is_JavaObject() ? "P" : "")); 3534 } 3535 tty->print(" )"); 3536 } 3537 tty->print("["); 3538 for (EdgeIterator i(this); i.has_next(); i.next()) { 3539 PointsToNode* e = i.get(); 3540 tty->print(" %d%s%s", e->idx(),(e->is_JavaObject() ? "P" : (e->is_Field() ? "F" : "")), e->is_Arraycopy() ? "cp" : ""); 3541 } 3542 tty->print(" ["); 3543 for (UseIterator i(this); i.has_next(); i.next()) { 3544 PointsToNode* u = i.get(); 3545 bool is_base = false; 3546 if (PointsToNode::is_base_use(u)) { 3547 is_base = true; 3548 u = PointsToNode::get_use_node(u)->as_Field(); 3549 } 3550 tty->print(" %d%s%s", u->idx(), is_base ? "b" : "", u->is_Arraycopy() ? "cp" : ""); 3551 } 3552 tty->print(" ]] "); 3553 if (_node == NULL) 3554 tty->print_cr("<null>"); 3555 else 3556 _node->dump(); 3557 } 3558 3559 void ConnectionGraph::dump(GrowableArray<PointsToNode*>& ptnodes_worklist) { 3560 bool first = true; 3561 int ptnodes_length = ptnodes_worklist.length(); 3562 for (int i = 0; i < ptnodes_length; i++) { 3563 PointsToNode *ptn = ptnodes_worklist.at(i); 3564 if (ptn == NULL || !ptn->is_JavaObject()) 3565 continue; 3566 PointsToNode::EscapeState es = ptn->escape_state(); 3567 if ((es != PointsToNode::NoEscape) && !Verbose) { 3568 continue; 3569 } 3570 Node* n = ptn->ideal_node(); 3571 if (n->is_Allocate() || (n->is_CallStaticJava() && 3572 n->as_CallStaticJava()->is_boxing_method())) { 3573 if (first) { 3574 tty->cr(); 3575 tty->print("======== Connection graph for "); 3576 _compile->method()->print_short_name(); 3577 tty->cr(); 3578 first = false; 3579 } 3580 ptn->dump(); 3581 // Print all locals and fields which reference this allocation 3582 for (UseIterator j(ptn); j.has_next(); j.next()) { 3583 PointsToNode* use = j.get(); 3584 if (use->is_LocalVar()) { 3585 use->dump(Verbose); 3586 } else if (Verbose) { 3587 use->dump(); 3588 } 3589 } 3590 tty->cr(); 3591 } 3592 } 3593 } 3594 #endif 3595 3596 void ConnectionGraph::record_for_optimizer(Node *n) { 3597 _igvn->_worklist.push(n); 3598 _igvn->add_users_to_worklist(n); 3599 }