1 /*
   2  * Copyright (c) 2005, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/bcEscapeAnalyzer.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "gc/shared/barrierSet.hpp"
  29 #include "gc/shared/c2/barrierSetC2.hpp"
  30 #include "libadt/vectset.hpp"
  31 #include "memory/allocation.hpp"
  32 #include "memory/resourceArea.hpp"
  33 #include "opto/c2compiler.hpp"
  34 #include "opto/arraycopynode.hpp"
  35 #include "opto/callnode.hpp"
  36 #include "opto/cfgnode.hpp"
  37 #include "opto/compile.hpp"
  38 #include "opto/escape.hpp"
  39 #include "opto/phaseX.hpp"
  40 #include "opto/movenode.hpp"
  41 #include "opto/rootnode.hpp"
  42 #include "utilities/macros.hpp"
  43 
  44 ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn) :
  45   _nodes(C->comp_arena(), C->unique(), C->unique(), NULL),
  46   _in_worklist(C->comp_arena()),
  47   _next_pidx(0),
  48   _collecting(true),
  49   _verify(false),
  50   _compile(C),
  51   _igvn(igvn),
  52   _node_map(C->comp_arena()) {
  53   // Add unknown java object.
  54   add_java_object(C->top(), PointsToNode::GlobalEscape);
  55   phantom_obj = ptnode_adr(C->top()->_idx)->as_JavaObject();
  56   // Add ConP(#NULL) and ConN(#NULL) nodes.
  57   Node* oop_null = igvn->zerocon(T_OBJECT);
  58   assert(oop_null->_idx < nodes_size(), "should be created already");
  59   add_java_object(oop_null, PointsToNode::NoEscape);
  60   null_obj = ptnode_adr(oop_null->_idx)->as_JavaObject();
  61   if (UseCompressedOops) {
  62     Node* noop_null = igvn->zerocon(T_NARROWOOP);
  63     assert(noop_null->_idx < nodes_size(), "should be created already");
  64     map_ideal_node(noop_null, null_obj);
  65   }
  66   _pcmp_neq = NULL; // Should be initialized
  67   _pcmp_eq  = NULL;
  68 }
  69 
  70 bool ConnectionGraph::has_candidates(Compile *C) {
  71   // EA brings benefits only when the code has allocations and/or locks which
  72   // are represented by ideal Macro nodes.
  73   int cnt = C->macro_count();
  74   for (int i = 0; i < cnt; i++) {
  75     Node *n = C->macro_node(i);
  76     if (n->is_Allocate())
  77       return true;
  78     if (n->is_Lock()) {
  79       Node* obj = n->as_Lock()->obj_node()->uncast();
  80       if (!(obj->is_Parm() || obj->is_Con()))
  81         return true;
  82     }
  83     if (n->is_CallStaticJava() &&
  84         n->as_CallStaticJava()->is_boxing_method()) {
  85       return true;
  86     }
  87   }
  88   return false;
  89 }
  90 
  91 void ConnectionGraph::do_analysis(Compile *C, PhaseIterGVN *igvn) {
  92   Compile::TracePhase tp("escapeAnalysis", &Phase::timers[Phase::_t_escapeAnalysis]);
  93   ResourceMark rm;
  94 
  95   // Add ConP#NULL and ConN#NULL nodes before ConnectionGraph construction
  96   // to create space for them in ConnectionGraph::_nodes[].
  97   Node* oop_null = igvn->zerocon(T_OBJECT);
  98   Node* noop_null = igvn->zerocon(T_NARROWOOP);
  99   ConnectionGraph* congraph = new(C->comp_arena()) ConnectionGraph(C, igvn);
 100   // Perform escape analysis
 101   if (congraph->compute_escape()) {
 102     // There are non escaping objects.
 103     C->set_congraph(congraph);
 104   }
 105   // Cleanup.
 106   if (oop_null->outcnt() == 0)
 107     igvn->hash_delete(oop_null);
 108   if (noop_null->outcnt() == 0)
 109     igvn->hash_delete(noop_null);
 110 }
 111 
 112 bool ConnectionGraph::compute_escape() {
 113   Compile* C = _compile;
 114   PhaseGVN* igvn = _igvn;
 115 
 116   // Worklists used by EA.
 117   Unique_Node_List delayed_worklist;
 118   GrowableArray<Node*> alloc_worklist;
 119   GrowableArray<Node*> ptr_cmp_worklist;
 120   GrowableArray<Node*> storestore_worklist;
 121   GrowableArray<ArrayCopyNode*> arraycopy_worklist;
 122   GrowableArray<PointsToNode*>   ptnodes_worklist;
 123   GrowableArray<JavaObjectNode*> java_objects_worklist;
 124   GrowableArray<JavaObjectNode*> non_escaped_worklist;
 125   GrowableArray<FieldNode*>      oop_fields_worklist;
 126   DEBUG_ONLY( GrowableArray<Node*> addp_worklist; )
 127 
 128   { Compile::TracePhase tp("connectionGraph", &Phase::timers[Phase::_t_connectionGraph]);
 129 
 130   // 1. Populate Connection Graph (CG) with PointsTo nodes.
 131   ideal_nodes.map(C->live_nodes(), NULL);  // preallocate space
 132   // Initialize worklist
 133   if (C->root() != NULL) {
 134     ideal_nodes.push(C->root());
 135   }
 136   // Processed ideal nodes are unique on ideal_nodes list
 137   // but several ideal nodes are mapped to the phantom_obj.
 138   // To avoid duplicated entries on the following worklists
 139   // add the phantom_obj only once to them.
 140   ptnodes_worklist.append(phantom_obj);
 141   java_objects_worklist.append(phantom_obj);
 142   for( uint next = 0; next < ideal_nodes.size(); ++next ) {
 143     Node* n = ideal_nodes.at(next);
 144     // Create PointsTo nodes and add them to Connection Graph. Called
 145     // only once per ideal node since ideal_nodes is Unique_Node list.
 146     add_node_to_connection_graph(n, &delayed_worklist);
 147     PointsToNode* ptn = ptnode_adr(n->_idx);
 148     if (ptn != NULL && ptn != phantom_obj) {
 149       ptnodes_worklist.append(ptn);
 150       if (ptn->is_JavaObject()) {
 151         java_objects_worklist.append(ptn->as_JavaObject());
 152         if ((n->is_Allocate() || n->is_CallStaticJava()) &&
 153             (ptn->escape_state() < PointsToNode::GlobalEscape)) {
 154           // Only allocations and java static calls results are interesting.
 155           non_escaped_worklist.append(ptn->as_JavaObject());
 156         }
 157       } else if (ptn->is_Field() && ptn->as_Field()->is_oop()) {
 158         oop_fields_worklist.append(ptn->as_Field());
 159       }
 160     }
 161     if (n->is_MergeMem()) {
 162       // Collect all MergeMem nodes to add memory slices for
 163       // scalar replaceable objects in split_unique_types().
 164       _mergemem_worklist.append(n->as_MergeMem());
 165     } else if (OptimizePtrCompare && n->is_Cmp() &&
 166                (n->Opcode() == Op_CmpP || n->Opcode() == Op_CmpN)) {
 167       // Collect compare pointers nodes.
 168       ptr_cmp_worklist.append(n);
 169     } else if (n->is_MemBarStoreStore()) {
 170       // Collect all MemBarStoreStore nodes so that depending on the
 171       // escape status of the associated Allocate node some of them
 172       // may be eliminated.
 173       storestore_worklist.append(n);
 174     } else if (n->is_MemBar() && (n->Opcode() == Op_MemBarRelease) &&
 175                (n->req() > MemBarNode::Precedent)) {
 176       record_for_optimizer(n);
 177 #ifdef ASSERT
 178     } else if (n->is_AddP()) {
 179       // Collect address nodes for graph verification.
 180       addp_worklist.append(n);
 181 #endif
 182     } else if (n->is_ArrayCopy()) {
 183       // Keep a list of ArrayCopy nodes so if one of its input is non
 184       // escaping, we can record a unique type
 185       arraycopy_worklist.append(n->as_ArrayCopy());
 186     }
 187     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
 188       Node* m = n->fast_out(i);   // Get user
 189       ideal_nodes.push(m);
 190     }
 191   }
 192   if (non_escaped_worklist.length() == 0) {
 193     _collecting = false;
 194     return false; // Nothing to do.
 195   }
 196   // Add final simple edges to graph.
 197   while(delayed_worklist.size() > 0) {
 198     Node* n = delayed_worklist.pop();
 199     add_final_edges(n);
 200   }
 201   int ptnodes_length = ptnodes_worklist.length();
 202 
 203 #ifdef ASSERT
 204   if (VerifyConnectionGraph) {
 205     // Verify that no new simple edges could be created and all
 206     // local vars has edges.
 207     _verify = true;
 208     for (int next = 0; next < ptnodes_length; ++next) {
 209       PointsToNode* ptn = ptnodes_worklist.at(next);
 210       add_final_edges(ptn->ideal_node());
 211       if (ptn->is_LocalVar() && ptn->edge_count() == 0) {
 212         ptn->dump();
 213         assert(ptn->as_LocalVar()->edge_count() > 0, "sanity");
 214       }
 215     }
 216     _verify = false;
 217   }
 218 #endif
 219   // Bytecode analyzer BCEscapeAnalyzer, used for Call nodes
 220   // processing, calls to CI to resolve symbols (types, fields, methods)
 221   // referenced in bytecode. During symbol resolution VM may throw
 222   // an exception which CI cleans and converts to compilation failure.
 223   if (C->failing())  return false;
 224 
 225   // 2. Finish Graph construction by propagating references to all
 226   //    java objects through graph.
 227   if (!complete_connection_graph(ptnodes_worklist, non_escaped_worklist,
 228                                  java_objects_worklist, oop_fields_worklist)) {
 229     // All objects escaped or hit time or iterations limits.
 230     _collecting = false;
 231     return false;
 232   }
 233 
 234   // 3. Adjust scalar_replaceable state of nonescaping objects and push
 235   //    scalar replaceable allocations on alloc_worklist for processing
 236   //    in split_unique_types().
 237   int non_escaped_length = non_escaped_worklist.length();
 238   for (int next = 0; next < non_escaped_length; next++) {
 239     JavaObjectNode* ptn = non_escaped_worklist.at(next);
 240     bool noescape = (ptn->escape_state() == PointsToNode::NoEscape);
 241     Node* n = ptn->ideal_node();
 242     if (n->is_Allocate()) {
 243       n->as_Allocate()->_is_non_escaping = noescape;
 244     }
 245     if (n->is_CallStaticJava()) {
 246       n->as_CallStaticJava()->_is_non_escaping = noescape;
 247     }
 248     if (noescape && ptn->scalar_replaceable()) {
 249       adjust_scalar_replaceable_state(ptn);
 250       if (ptn->scalar_replaceable()) {
 251         alloc_worklist.append(ptn->ideal_node());
 252       }
 253     }
 254   }
 255 
 256 #ifdef ASSERT
 257   if (VerifyConnectionGraph) {
 258     // Verify that graph is complete - no new edges could be added or needed.
 259     verify_connection_graph(ptnodes_worklist, non_escaped_worklist,
 260                             java_objects_worklist, addp_worklist);
 261   }
 262   assert(C->unique() == nodes_size(), "no new ideal nodes should be added during ConnectionGraph build");
 263   assert(null_obj->escape_state() == PointsToNode::NoEscape &&
 264          null_obj->edge_count() == 0 &&
 265          !null_obj->arraycopy_src() &&
 266          !null_obj->arraycopy_dst(), "sanity");
 267 #endif
 268 
 269   _collecting = false;
 270 
 271   } // TracePhase t3("connectionGraph")
 272 
 273   // 4. Optimize ideal graph based on EA information.
 274   bool has_non_escaping_obj = (non_escaped_worklist.length() > 0);
 275   if (has_non_escaping_obj) {
 276     optimize_ideal_graph(ptr_cmp_worklist, storestore_worklist);
 277   }
 278 
 279 #ifndef PRODUCT
 280   if (PrintEscapeAnalysis) {
 281     dump(ptnodes_worklist); // Dump ConnectionGraph
 282   }
 283 #endif
 284 
 285   bool has_scalar_replaceable_candidates = (alloc_worklist.length() > 0);
 286 #ifdef ASSERT
 287   if (VerifyConnectionGraph) {
 288     int alloc_length = alloc_worklist.length();
 289     for (int next = 0; next < alloc_length; ++next) {
 290       Node* n = alloc_worklist.at(next);
 291       PointsToNode* ptn = ptnode_adr(n->_idx);
 292       assert(ptn->escape_state() == PointsToNode::NoEscape && ptn->scalar_replaceable(), "sanity");
 293     }
 294   }
 295 #endif
 296 
 297   // 5. Separate memory graph for scalar replaceable allcations.
 298   if (has_scalar_replaceable_candidates &&
 299       C->AliasLevel() >= 3 && EliminateAllocations) {
 300     // Now use the escape information to create unique types for
 301     // scalar replaceable objects.
 302     split_unique_types(alloc_worklist, arraycopy_worklist);
 303     if (C->failing())  return false;
 304     C->print_method(PHASE_AFTER_EA, 2);
 305 
 306 #ifdef ASSERT
 307   } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
 308     tty->print("=== No allocations eliminated for ");
 309     C->method()->print_short_name();
 310     if(!EliminateAllocations) {
 311       tty->print(" since EliminateAllocations is off ===");
 312     } else if(!has_scalar_replaceable_candidates) {
 313       tty->print(" since there are no scalar replaceable candidates ===");
 314     } else if(C->AliasLevel() < 3) {
 315       tty->print(" since AliasLevel < 3 ===");
 316     }
 317     tty->cr();
 318 #endif
 319   }
 320   return has_non_escaping_obj;
 321 }
 322 
 323 // Utility function for nodes that load an object
 324 void ConnectionGraph::add_objload_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
 325   // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 326   // ThreadLocal has RawPtr type.
 327   const Type* t = _igvn->type(n);
 328   if (t->make_ptr() != NULL) {
 329     Node* adr = n->in(MemNode::Address);
 330 #ifdef ASSERT
 331     if (!adr->is_AddP()) {
 332       assert(_igvn->type(adr)->isa_rawptr(), "sanity");
 333     } else {
 334       assert((ptnode_adr(adr->_idx) == NULL ||
 335               ptnode_adr(adr->_idx)->as_Field()->is_oop()), "sanity");
 336     }
 337 #endif
 338     add_local_var_and_edge(n, PointsToNode::NoEscape,
 339                            adr, delayed_worklist);
 340   }
 341 }
 342 
 343 // Populate Connection Graph with PointsTo nodes and create simple
 344 // connection graph edges.
 345 void ConnectionGraph::add_node_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
 346   assert(!_verify, "this method should not be called for verification");
 347   PhaseGVN* igvn = _igvn;
 348   uint n_idx = n->_idx;
 349   PointsToNode* n_ptn = ptnode_adr(n_idx);
 350   if (n_ptn != NULL)
 351     return; // No need to redefine PointsTo node during first iteration.
 352 
 353   int opcode = n->Opcode();
 354   bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->escape_add_to_con_graph(this, igvn, delayed_worklist, n, opcode);
 355   if (gc_handled) {
 356     return; // Ignore node if already handled by GC.
 357   }
 358 
 359   if (n->is_Call()) {
 360     // Arguments to allocation and locking don't escape.
 361     if (n->is_AbstractLock()) {
 362       // Put Lock and Unlock nodes on IGVN worklist to process them during
 363       // first IGVN optimization when escape information is still available.
 364       record_for_optimizer(n);
 365     } else if (n->is_Allocate()) {
 366       add_call_node(n->as_Call());
 367       record_for_optimizer(n);
 368     } else {
 369       if (n->is_CallStaticJava()) {
 370         const char* name = n->as_CallStaticJava()->_name;
 371         if (name != NULL && strcmp(name, "uncommon_trap") == 0)
 372           return; // Skip uncommon traps
 373       }
 374       // Don't mark as processed since call's arguments have to be processed.
 375       delayed_worklist->push(n);
 376       // Check if a call returns an object.
 377       if ((n->as_Call()->returns_pointer() &&
 378            n->as_Call()->proj_out_or_null(TypeFunc::Parms) != NULL) ||
 379           (n->is_CallStaticJava() &&
 380            n->as_CallStaticJava()->is_boxing_method())) {
 381         add_call_node(n->as_Call());
 382       }
 383     }
 384     return;
 385   }
 386   // Put this check here to process call arguments since some call nodes
 387   // point to phantom_obj.
 388   if (n_ptn == phantom_obj || n_ptn == null_obj)
 389     return; // Skip predefined nodes.
 390 
 391   switch (opcode) {
 392     case Op_AddP: {
 393       Node* base = get_addp_base(n);
 394       PointsToNode* ptn_base = ptnode_adr(base->_idx);
 395       // Field nodes are created for all field types. They are used in
 396       // adjust_scalar_replaceable_state() and split_unique_types().
 397       // Note, non-oop fields will have only base edges in Connection
 398       // Graph because such fields are not used for oop loads and stores.
 399       int offset = address_offset(n, igvn);
 400       add_field(n, PointsToNode::NoEscape, offset);
 401       if (ptn_base == NULL) {
 402         delayed_worklist->push(n); // Process it later.
 403       } else {
 404         n_ptn = ptnode_adr(n_idx);
 405         add_base(n_ptn->as_Field(), ptn_base);
 406       }
 407       break;
 408     }
 409     case Op_CastX2P: {
 410       map_ideal_node(n, phantom_obj);
 411       break;
 412     }
 413     case Op_CastPP:
 414     case Op_CheckCastPP:
 415     case Op_EncodeP:
 416     case Op_DecodeN:
 417     case Op_EncodePKlass:
 418     case Op_DecodeNKlass: {
 419       add_local_var_and_edge(n, PointsToNode::NoEscape,
 420                              n->in(1), delayed_worklist);
 421       break;
 422     }
 423     case Op_CMoveP: {
 424       add_local_var(n, PointsToNode::NoEscape);
 425       // Do not add edges during first iteration because some could be
 426       // not defined yet.
 427       delayed_worklist->push(n);
 428       break;
 429     }
 430     case Op_ConP:
 431     case Op_ConN:
 432     case Op_ConNKlass: {
 433       // assume all oop constants globally escape except for null
 434       PointsToNode::EscapeState es;
 435       const Type* t = igvn->type(n);
 436       if (t == TypePtr::NULL_PTR || t == TypeNarrowOop::NULL_PTR) {
 437         es = PointsToNode::NoEscape;
 438       } else {
 439         es = PointsToNode::GlobalEscape;
 440       }
 441       add_java_object(n, es);
 442       break;
 443     }
 444     case Op_CreateEx: {
 445       // assume that all exception objects globally escape
 446       map_ideal_node(n, phantom_obj);
 447       break;
 448     }
 449     case Op_LoadKlass:
 450     case Op_LoadNKlass: {
 451       // Unknown class is loaded
 452       map_ideal_node(n, phantom_obj);
 453       break;
 454     }
 455     case Op_LoadP:
 456     case Op_LoadN:
 457     case Op_LoadPLocked: {
 458       add_objload_to_connection_graph(n, delayed_worklist);
 459       break;
 460     }
 461     case Op_Parm: {
 462       map_ideal_node(n, phantom_obj);
 463       break;
 464     }
 465     case Op_PartialSubtypeCheck: {
 466       // Produces Null or notNull and is used in only in CmpP so
 467       // phantom_obj could be used.
 468       map_ideal_node(n, phantom_obj); // Result is unknown
 469       break;
 470     }
 471     case Op_Phi: {
 472       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 473       // ThreadLocal has RawPtr type.
 474       const Type* t = n->as_Phi()->type();
 475       if (t->make_ptr() != NULL) {
 476         add_local_var(n, PointsToNode::NoEscape);
 477         // Do not add edges during first iteration because some could be
 478         // not defined yet.
 479         delayed_worklist->push(n);
 480       }
 481       break;
 482     }
 483     case Op_Proj: {
 484       // we are only interested in the oop result projection from a call
 485       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
 486           n->in(0)->as_Call()->returns_pointer()) {
 487         add_local_var_and_edge(n, PointsToNode::NoEscape,
 488                                n->in(0), delayed_worklist);
 489       }
 490       break;
 491     }
 492     case Op_Rethrow: // Exception object escapes
 493     case Op_Return: {
 494       if (n->req() > TypeFunc::Parms &&
 495           igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
 496         // Treat Return value as LocalVar with GlobalEscape escape state.
 497         add_local_var_and_edge(n, PointsToNode::GlobalEscape,
 498                                n->in(TypeFunc::Parms), delayed_worklist);
 499       }
 500       break;
 501     }
 502     case Op_CompareAndExchangeP:
 503     case Op_CompareAndExchangeN:
 504     case Op_GetAndSetP:
 505     case Op_GetAndSetN: {
 506       add_objload_to_connection_graph(n, delayed_worklist);
 507       // fallthrough
 508     }
 509     case Op_StoreP:
 510     case Op_StoreN:
 511     case Op_StoreNKlass:
 512     case Op_StorePConditional:
 513     case Op_WeakCompareAndSwapP:
 514     case Op_WeakCompareAndSwapN:
 515     case Op_CompareAndSwapP:
 516     case Op_CompareAndSwapN: {
 517       add_to_congraph_unsafe_access(n, opcode, delayed_worklist);
 518       break;
 519     }
 520     case Op_AryEq:
 521     case Op_HasNegatives:
 522     case Op_StrComp:
 523     case Op_StrEquals:
 524     case Op_StrIndexOf:
 525     case Op_StrIndexOfChar:
 526     case Op_StrInflatedCopy:
 527     case Op_StrCompressedCopy:
 528     case Op_EncodeISOArray: {
 529       add_local_var(n, PointsToNode::ArgEscape);
 530       delayed_worklist->push(n); // Process it later.
 531       break;
 532     }
 533     case Op_ThreadLocal: {
 534       add_java_object(n, PointsToNode::ArgEscape);
 535       break;
 536     }
 537     default:
 538       ; // Do nothing for nodes not related to EA.
 539   }
 540   return;
 541 }
 542 
 543 #ifdef ASSERT
 544 #define ELSE_FAIL(name)                               \
 545       /* Should not be called for not pointer type. */  \
 546       n->dump(1);                                       \
 547       assert(false, name);                              \
 548       break;
 549 #else
 550 #define ELSE_FAIL(name) \
 551       break;
 552 #endif
 553 
 554 // Add final simple edges to graph.
 555 void ConnectionGraph::add_final_edges(Node *n) {
 556   PointsToNode* n_ptn = ptnode_adr(n->_idx);
 557 #ifdef ASSERT
 558   if (_verify && n_ptn->is_JavaObject())
 559     return; // This method does not change graph for JavaObject.
 560 #endif
 561 
 562   if (n->is_Call()) {
 563     process_call_arguments(n->as_Call());
 564     return;
 565   }
 566   assert(n->is_Store() || n->is_LoadStore() ||
 567          (n_ptn != NULL) && (n_ptn->ideal_node() != NULL),
 568          "node should be registered already");
 569   int opcode = n->Opcode();
 570   bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->escape_add_final_edges(this, _igvn, n, opcode);
 571   if (gc_handled) {
 572     return; // Ignore node if already handled by GC.
 573   }
 574   switch (opcode) {
 575     case Op_AddP: {
 576       Node* base = get_addp_base(n);
 577       PointsToNode* ptn_base = ptnode_adr(base->_idx);
 578       assert(ptn_base != NULL, "field's base should be registered");
 579       add_base(n_ptn->as_Field(), ptn_base);
 580       break;
 581     }
 582     case Op_CastPP:
 583     case Op_CheckCastPP:
 584     case Op_EncodeP:
 585     case Op_DecodeN:
 586     case Op_EncodePKlass:
 587     case Op_DecodeNKlass: {
 588       add_local_var_and_edge(n, PointsToNode::NoEscape,
 589                              n->in(1), NULL);
 590       break;
 591     }
 592     case Op_CMoveP: {
 593       for (uint i = CMoveNode::IfFalse; i < n->req(); i++) {
 594         Node* in = n->in(i);
 595         if (in == NULL)
 596           continue;  // ignore NULL
 597         Node* uncast_in = in->uncast();
 598         if (uncast_in->is_top() || uncast_in == n)
 599           continue;  // ignore top or inputs which go back this node
 600         PointsToNode* ptn = ptnode_adr(in->_idx);
 601         assert(ptn != NULL, "node should be registered");
 602         add_edge(n_ptn, ptn);
 603       }
 604       break;
 605     }
 606     case Op_LoadP:
 607     case Op_LoadN:
 608     case Op_LoadPLocked: {
 609       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 610       // ThreadLocal has RawPtr type.
 611       const Type* t = _igvn->type(n);
 612       if (t->make_ptr() != NULL) {
 613         Node* adr = n->in(MemNode::Address);
 614         add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
 615         break;
 616       }
 617       ELSE_FAIL("Op_LoadP");
 618     }
 619     case Op_Phi: {
 620       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 621       // ThreadLocal has RawPtr type.
 622       const Type* t = n->as_Phi()->type();
 623       if (t->make_ptr() != NULL) {
 624         for (uint i = 1; i < n->req(); i++) {
 625           Node* in = n->in(i);
 626           if (in == NULL)
 627             continue;  // ignore NULL
 628           Node* uncast_in = in->uncast();
 629           if (uncast_in->is_top() || uncast_in == n)
 630             continue;  // ignore top or inputs which go back this node
 631           PointsToNode* ptn = ptnode_adr(in->_idx);
 632           assert(ptn != NULL, "node should be registered");
 633           add_edge(n_ptn, ptn);
 634         }
 635         break;
 636       }
 637       ELSE_FAIL("Op_Phi");
 638     }
 639     case Op_Proj: {
 640       // we are only interested in the oop result projection from a call
 641       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
 642           n->in(0)->as_Call()->returns_pointer()) {
 643         add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), NULL);
 644         break;
 645       }
 646       ELSE_FAIL("Op_Proj");
 647     }
 648     case Op_Rethrow: // Exception object escapes
 649     case Op_Return: {
 650       if (n->req() > TypeFunc::Parms &&
 651           _igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
 652         // Treat Return value as LocalVar with GlobalEscape escape state.
 653         add_local_var_and_edge(n, PointsToNode::GlobalEscape,
 654                                n->in(TypeFunc::Parms), NULL);
 655         break;
 656       }
 657       ELSE_FAIL("Op_Return");
 658     }
 659     case Op_StoreP:
 660     case Op_StoreN:
 661     case Op_StoreNKlass:
 662     case Op_StorePConditional:
 663     case Op_CompareAndExchangeP:
 664     case Op_CompareAndExchangeN:
 665     case Op_CompareAndSwapP:
 666     case Op_CompareAndSwapN:
 667     case Op_WeakCompareAndSwapP:
 668     case Op_WeakCompareAndSwapN:
 669     case Op_GetAndSetP:
 670     case Op_GetAndSetN: {
 671       if (add_final_edges_unsafe_access(n, opcode)) {
 672         break;
 673       }
 674       ELSE_FAIL("Op_StoreP");
 675     }
 676     case Op_AryEq:
 677     case Op_HasNegatives:
 678     case Op_StrComp:
 679     case Op_StrEquals:
 680     case Op_StrIndexOf:
 681     case Op_StrIndexOfChar:
 682     case Op_StrInflatedCopy:
 683     case Op_StrCompressedCopy:
 684     case Op_EncodeISOArray: {
 685       // char[]/byte[] arrays passed to string intrinsic do not escape but
 686       // they are not scalar replaceable. Adjust escape state for them.
 687       // Start from in(2) edge since in(1) is memory edge.
 688       for (uint i = 2; i < n->req(); i++) {
 689         Node* adr = n->in(i);
 690         const Type* at = _igvn->type(adr);
 691         if (!adr->is_top() && at->isa_ptr()) {
 692           assert(at == Type::TOP || at == TypePtr::NULL_PTR ||
 693                  at->isa_ptr() != NULL, "expecting a pointer");
 694           if (adr->is_AddP()) {
 695             adr = get_addp_base(adr);
 696           }
 697           PointsToNode* ptn = ptnode_adr(adr->_idx);
 698           assert(ptn != NULL, "node should be registered");
 699           add_edge(n_ptn, ptn);
 700         }
 701       }
 702       break;
 703     }
 704     default: {
 705       // This method should be called only for EA specific nodes which may
 706       // miss some edges when they were created.
 707 #ifdef ASSERT
 708       n->dump(1);
 709 #endif
 710       guarantee(false, "unknown node");
 711     }
 712   }
 713   return;
 714 }
 715 
 716 void ConnectionGraph::add_to_congraph_unsafe_access(Node* n, uint opcode, Unique_Node_List* delayed_worklist) {
 717   Node* adr = n->in(MemNode::Address);
 718   const Type* adr_type = _igvn->type(adr);
 719   adr_type = adr_type->make_ptr();
 720   if (adr_type == NULL) {
 721     return; // skip dead nodes
 722   }
 723   if (adr_type->isa_oopptr()
 724       || ((opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass)
 725           && adr_type == TypeRawPtr::NOTNULL
 726           && is_captured_store_address(adr))) {
 727     delayed_worklist->push(n); // Process it later.
 728 #ifdef ASSERT
 729     assert (adr->is_AddP(), "expecting an AddP");
 730     if (adr_type == TypeRawPtr::NOTNULL) {
 731       // Verify a raw address for a store captured by Initialize node.
 732       int offs = (int) _igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
 733       assert(offs != Type::OffsetBot, "offset must be a constant");
 734     }
 735 #endif
 736   } else {
 737     // Ignore copy the displaced header to the BoxNode (OSR compilation).
 738     if (adr->is_BoxLock()) {
 739       return;
 740     }
 741     // Stored value escapes in unsafe access.
 742     if ((opcode == Op_StoreP) && adr_type->isa_rawptr()) {
 743       delayed_worklist->push(n); // Process unsafe access later.
 744       return;
 745     }
 746 #ifdef ASSERT
 747     n->dump(1);
 748     assert(false, "not unsafe");
 749 #endif
 750   }
 751 }
 752 
 753 bool ConnectionGraph::add_final_edges_unsafe_access(Node* n, uint opcode) {
 754   Node* adr = n->in(MemNode::Address);
 755   const Type *adr_type = _igvn->type(adr);
 756   adr_type = adr_type->make_ptr();
 757 #ifdef ASSERT
 758   if (adr_type == NULL) {
 759     n->dump(1);
 760     assert(adr_type != NULL, "dead node should not be on list");
 761     return true;
 762   }
 763 #endif
 764 
 765   if (opcode == Op_GetAndSetP || opcode == Op_GetAndSetN ||
 766       opcode == Op_CompareAndExchangeN || opcode == Op_CompareAndExchangeP) {
 767     add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
 768   }
 769 
 770   if (adr_type->isa_oopptr()
 771       || ((opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass)
 772            && adr_type == TypeRawPtr::NOTNULL
 773            && is_captured_store_address(adr))) {
 774     // Point Address to Value
 775     PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
 776     assert(adr_ptn != NULL &&
 777            adr_ptn->as_Field()->is_oop(), "node should be registered");
 778     Node* val = n->in(MemNode::ValueIn);
 779     PointsToNode* ptn = ptnode_adr(val->_idx);
 780     assert(ptn != NULL, "node should be registered");
 781     add_edge(adr_ptn, ptn);
 782     return true;
 783   } else if ((opcode == Op_StoreP) && adr_type->isa_rawptr()) {
 784     // Stored value escapes in unsafe access.
 785     Node* val = n->in(MemNode::ValueIn);
 786     PointsToNode* ptn = ptnode_adr(val->_idx);
 787     assert(ptn != NULL, "node should be registered");
 788     set_escape_state(ptn, PointsToNode::GlobalEscape);
 789     // Add edge to object for unsafe access with offset.
 790     PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
 791     assert(adr_ptn != NULL, "node should be registered");
 792     if (adr_ptn->is_Field()) {
 793       assert(adr_ptn->as_Field()->is_oop(), "should be oop field");
 794       add_edge(adr_ptn, ptn);
 795     }
 796     return true;
 797   }
 798   return false;
 799 }
 800 
 801 void ConnectionGraph::add_call_node(CallNode* call) {
 802   assert(call->returns_pointer(), "only for call which returns pointer");
 803   uint call_idx = call->_idx;
 804   if (call->is_Allocate()) {
 805     Node* k = call->in(AllocateNode::KlassNode);
 806     const TypeKlassPtr* kt = k->bottom_type()->isa_klassptr();
 807     assert(kt != NULL, "TypeKlassPtr  required.");
 808     ciKlass* cik = kt->klass();
 809     PointsToNode::EscapeState es = PointsToNode::NoEscape;
 810     bool scalar_replaceable = true;
 811     if (call->is_AllocateArray()) {
 812       if (!cik->is_array_klass()) { // StressReflectiveCode
 813         es = PointsToNode::GlobalEscape;
 814       } else {
 815         int length = call->in(AllocateNode::ALength)->find_int_con(-1);
 816         if (length < 0 || length > EliminateAllocationArraySizeLimit) {
 817           // Not scalar replaceable if the length is not constant or too big.
 818           scalar_replaceable = false;
 819         }
 820       }
 821     } else {  // Allocate instance
 822       if (cik->is_subclass_of(_compile->env()->Thread_klass()) ||
 823           cik->is_subclass_of(_compile->env()->Reference_klass()) ||
 824          !cik->is_instance_klass() || // StressReflectiveCode
 825          !cik->as_instance_klass()->can_be_instantiated() ||
 826           cik->as_instance_klass()->has_finalizer()) {
 827         es = PointsToNode::GlobalEscape;
 828       }
 829     }
 830     add_java_object(call, es);
 831     PointsToNode* ptn = ptnode_adr(call_idx);
 832     if (!scalar_replaceable && ptn->scalar_replaceable()) {
 833       ptn->set_scalar_replaceable(false);
 834     }
 835   } else if (call->is_CallStaticJava()) {
 836     // Call nodes could be different types:
 837     //
 838     // 1. CallDynamicJavaNode (what happened during call is unknown):
 839     //
 840     //    - mapped to GlobalEscape JavaObject node if oop is returned;
 841     //
 842     //    - all oop arguments are escaping globally;
 843     //
 844     // 2. CallStaticJavaNode (execute bytecode analysis if possible):
 845     //
 846     //    - the same as CallDynamicJavaNode if can't do bytecode analysis;
 847     //
 848     //    - mapped to GlobalEscape JavaObject node if unknown oop is returned;
 849     //    - mapped to NoEscape JavaObject node if non-escaping object allocated
 850     //      during call is returned;
 851     //    - mapped to ArgEscape LocalVar node pointed to object arguments
 852     //      which are returned and does not escape during call;
 853     //
 854     //    - oop arguments escaping status is defined by bytecode analysis;
 855     //
 856     // For a static call, we know exactly what method is being called.
 857     // Use bytecode estimator to record whether the call's return value escapes.
 858     ciMethod* meth = call->as_CallJava()->method();
 859     if (meth == NULL) {
 860       const char* name = call->as_CallStaticJava()->_name;
 861       assert(strncmp(name, "_multianewarray", 15) == 0, "TODO: add failed case check");
 862       // Returns a newly allocated unescaped object.
 863       add_java_object(call, PointsToNode::NoEscape);
 864       ptnode_adr(call_idx)->set_scalar_replaceable(false);
 865     } else if (meth->is_boxing_method()) {
 866       // Returns boxing object
 867       PointsToNode::EscapeState es;
 868       vmIntrinsics::ID intr = meth->intrinsic_id();
 869       if (intr == vmIntrinsics::_floatValue || intr == vmIntrinsics::_doubleValue) {
 870         // It does not escape if object is always allocated.
 871         es = PointsToNode::NoEscape;
 872       } else {
 873         // It escapes globally if object could be loaded from cache.
 874         es = PointsToNode::GlobalEscape;
 875       }
 876       add_java_object(call, es);
 877     } else {
 878       BCEscapeAnalyzer* call_analyzer = meth->get_bcea();
 879       call_analyzer->copy_dependencies(_compile->dependencies());
 880       if (call_analyzer->is_return_allocated()) {
 881         // Returns a newly allocated unescaped object, simply
 882         // update dependency information.
 883         // Mark it as NoEscape so that objects referenced by
 884         // it's fields will be marked as NoEscape at least.
 885         add_java_object(call, PointsToNode::NoEscape);
 886         ptnode_adr(call_idx)->set_scalar_replaceable(false);
 887       } else {
 888         // Determine whether any arguments are returned.
 889         const TypeTuple* d = call->tf()->domain();
 890         bool ret_arg = false;
 891         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 892           if (d->field_at(i)->isa_ptr() != NULL &&
 893               call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
 894             ret_arg = true;
 895             break;
 896           }
 897         }
 898         if (ret_arg) {
 899           add_local_var(call, PointsToNode::ArgEscape);
 900         } else {
 901           // Returns unknown object.
 902           map_ideal_node(call, phantom_obj);
 903         }
 904       }
 905     }
 906   } else {
 907     // An other type of call, assume the worst case:
 908     // returned value is unknown and globally escapes.
 909     assert(call->Opcode() == Op_CallDynamicJava, "add failed case check");
 910     map_ideal_node(call, phantom_obj);
 911   }
 912 }
 913 
 914 void ConnectionGraph::process_call_arguments(CallNode *call) {
 915     bool is_arraycopy = false;
 916     switch (call->Opcode()) {
 917 #ifdef ASSERT
 918     case Op_Allocate:
 919     case Op_AllocateArray:
 920     case Op_Lock:
 921     case Op_Unlock:
 922       assert(false, "should be done already");
 923       break;
 924 #endif
 925     case Op_ArrayCopy:
 926     case Op_CallLeafNoFP:
 927       // Most array copies are ArrayCopy nodes at this point but there
 928       // are still a few direct calls to the copy subroutines (See
 929       // PhaseStringOpts::copy_string())
 930       is_arraycopy = (call->Opcode() == Op_ArrayCopy) ||
 931         call->as_CallLeaf()->is_call_to_arraycopystub();
 932       // fall through
 933     case Op_CallLeaf: {
 934       // Stub calls, objects do not escape but they are not scale replaceable.
 935       // Adjust escape state for outgoing arguments.
 936       const TypeTuple * d = call->tf()->domain();
 937       bool src_has_oops = false;
 938       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 939         const Type* at = d->field_at(i);
 940         Node *arg = call->in(i);
 941         if (arg == NULL) {
 942           continue;
 943         }
 944         const Type *aat = _igvn->type(arg);
 945         if (arg->is_top() || !at->isa_ptr() || !aat->isa_ptr())
 946           continue;
 947         if (arg->is_AddP()) {
 948           //
 949           // The inline_native_clone() case when the arraycopy stub is called
 950           // after the allocation before Initialize and CheckCastPP nodes.
 951           // Or normal arraycopy for object arrays case.
 952           //
 953           // Set AddP's base (Allocate) as not scalar replaceable since
 954           // pointer to the base (with offset) is passed as argument.
 955           //
 956           arg = get_addp_base(arg);
 957         }
 958         PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
 959         assert(arg_ptn != NULL, "should be registered");
 960         PointsToNode::EscapeState arg_esc = arg_ptn->escape_state();
 961         if (is_arraycopy || arg_esc < PointsToNode::ArgEscape) {
 962           assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
 963                  aat->isa_ptr() != NULL, "expecting an Ptr");
 964           bool arg_has_oops = aat->isa_oopptr() &&
 965                               (aat->isa_oopptr()->klass() == NULL || aat->isa_instptr() ||
 966                                (aat->isa_aryptr() && aat->isa_aryptr()->klass()->is_obj_array_klass()));
 967           if (i == TypeFunc::Parms) {
 968             src_has_oops = arg_has_oops;
 969           }
 970           //
 971           // src or dst could be j.l.Object when other is basic type array:
 972           //
 973           //   arraycopy(char[],0,Object*,0,size);
 974           //   arraycopy(Object*,0,char[],0,size);
 975           //
 976           // Don't add edges in such cases.
 977           //
 978           bool arg_is_arraycopy_dest = src_has_oops && is_arraycopy &&
 979                                        arg_has_oops && (i > TypeFunc::Parms);
 980 #ifdef ASSERT
 981           if (!(is_arraycopy ||
 982                 BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(call) ||
 983                 (call->as_CallLeaf()->_name != NULL &&
 984                  (strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32") == 0 ||
 985                   strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32C") == 0 ||
 986                   strcmp(call->as_CallLeaf()->_name, "updateBytesAdler32") == 0 ||
 987                   strcmp(call->as_CallLeaf()->_name, "aescrypt_encryptBlock") == 0 ||
 988                   strcmp(call->as_CallLeaf()->_name, "aescrypt_decryptBlock") == 0 ||
 989                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_encryptAESCrypt") == 0 ||
 990                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_decryptAESCrypt") == 0 ||
 991                   strcmp(call->as_CallLeaf()->_name, "electronicCodeBook_encryptAESCrypt") == 0 ||
 992                   strcmp(call->as_CallLeaf()->_name, "electronicCodeBook_decryptAESCrypt") == 0 ||
 993                   strcmp(call->as_CallLeaf()->_name, "counterMode_AESCrypt") == 0 ||
 994                   strcmp(call->as_CallLeaf()->_name, "ghash_processBlocks") == 0 ||
 995                   strcmp(call->as_CallLeaf()->_name, "encodeBlock") == 0 ||
 996                   strcmp(call->as_CallLeaf()->_name, "md5_implCompress") == 0 ||
 997                   strcmp(call->as_CallLeaf()->_name, "md5_implCompressMB") == 0 ||
 998                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompress") == 0 ||
 999                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompressMB") == 0 ||
1000                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompress") == 0 ||
1001                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompressMB") == 0 ||
1002                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompress") == 0 ||
1003                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompressMB") == 0 ||
1004                   strcmp(call->as_CallLeaf()->_name, "multiplyToLen") == 0 ||
1005                   strcmp(call->as_CallLeaf()->_name, "squareToLen") == 0 ||
1006                   strcmp(call->as_CallLeaf()->_name, "mulAdd") == 0 ||
1007                   strcmp(call->as_CallLeaf()->_name, "montgomery_multiply") == 0 ||
1008                   strcmp(call->as_CallLeaf()->_name, "montgomery_square") == 0 ||
1009                   strcmp(call->as_CallLeaf()->_name, "bigIntegerRightShiftWorker") == 0 ||
1010                   strcmp(call->as_CallLeaf()->_name, "bigIntegerLeftShiftWorker") == 0 ||
1011                   strcmp(call->as_CallLeaf()->_name, "vectorizedMismatch") == 0)
1012                  ))) {
1013             call->dump();
1014             fatal("EA unexpected CallLeaf %s", call->as_CallLeaf()->_name);
1015           }
1016 #endif
1017           // Always process arraycopy's destination object since
1018           // we need to add all possible edges to references in
1019           // source object.
1020           if (arg_esc >= PointsToNode::ArgEscape &&
1021               !arg_is_arraycopy_dest) {
1022             continue;
1023           }
1024           PointsToNode::EscapeState es = PointsToNode::ArgEscape;
1025           if (call->is_ArrayCopy()) {
1026             ArrayCopyNode* ac = call->as_ArrayCopy();
1027             if (ac->is_clonebasic() ||
1028                 ac->is_arraycopy_validated() ||
1029                 ac->is_copyof_validated() ||
1030                 ac->is_copyofrange_validated()) {
1031               es = PointsToNode::NoEscape;
1032             }
1033           }
1034           set_escape_state(arg_ptn, es);
1035           if (arg_is_arraycopy_dest) {
1036             Node* src = call->in(TypeFunc::Parms);
1037             if (src->is_AddP()) {
1038               src = get_addp_base(src);
1039             }
1040             PointsToNode* src_ptn = ptnode_adr(src->_idx);
1041             assert(src_ptn != NULL, "should be registered");
1042             if (arg_ptn != src_ptn) {
1043               // Special arraycopy edge:
1044               // A destination object's field can't have the source object
1045               // as base since objects escape states are not related.
1046               // Only escape state of destination object's fields affects
1047               // escape state of fields in source object.
1048               add_arraycopy(call, es, src_ptn, arg_ptn);
1049             }
1050           }
1051         }
1052       }
1053       break;
1054     }
1055     case Op_CallStaticJava: {
1056       // For a static call, we know exactly what method is being called.
1057       // Use bytecode estimator to record the call's escape affects
1058 #ifdef ASSERT
1059       const char* name = call->as_CallStaticJava()->_name;
1060       assert((name == NULL || strcmp(name, "uncommon_trap") != 0), "normal calls only");
1061 #endif
1062       ciMethod* meth = call->as_CallJava()->method();
1063       if ((meth != NULL) && meth->is_boxing_method()) {
1064         break; // Boxing methods do not modify any oops.
1065       }
1066       BCEscapeAnalyzer* call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
1067       // fall-through if not a Java method or no analyzer information
1068       if (call_analyzer != NULL) {
1069         PointsToNode* call_ptn = ptnode_adr(call->_idx);
1070         const TypeTuple* d = call->tf()->domain();
1071         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1072           const Type* at = d->field_at(i);
1073           int k = i - TypeFunc::Parms;
1074           Node* arg = call->in(i);
1075           PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
1076           if (at->isa_ptr() != NULL &&
1077               call_analyzer->is_arg_returned(k)) {
1078             // The call returns arguments.
1079             if (call_ptn != NULL) { // Is call's result used?
1080               assert(call_ptn->is_LocalVar(), "node should be registered");
1081               assert(arg_ptn != NULL, "node should be registered");
1082               add_edge(call_ptn, arg_ptn);
1083             }
1084           }
1085           if (at->isa_oopptr() != NULL &&
1086               arg_ptn->escape_state() < PointsToNode::GlobalEscape) {
1087             if (!call_analyzer->is_arg_stack(k)) {
1088               // The argument global escapes
1089               set_escape_state(arg_ptn, PointsToNode::GlobalEscape);
1090             } else {
1091               set_escape_state(arg_ptn, PointsToNode::ArgEscape);
1092               if (!call_analyzer->is_arg_local(k)) {
1093                 // The argument itself doesn't escape, but any fields might
1094                 set_fields_escape_state(arg_ptn, PointsToNode::GlobalEscape);
1095               }
1096             }
1097           }
1098         }
1099         if (call_ptn != NULL && call_ptn->is_LocalVar()) {
1100           // The call returns arguments.
1101           assert(call_ptn->edge_count() > 0, "sanity");
1102           if (!call_analyzer->is_return_local()) {
1103             // Returns also unknown object.
1104             add_edge(call_ptn, phantom_obj);
1105           }
1106         }
1107         break;
1108       }
1109     }
1110     default: {
1111       // Fall-through here if not a Java method or no analyzer information
1112       // or some other type of call, assume the worst case: all arguments
1113       // globally escape.
1114       const TypeTuple* d = call->tf()->domain();
1115       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1116         const Type* at = d->field_at(i);
1117         if (at->isa_oopptr() != NULL) {
1118           Node* arg = call->in(i);
1119           if (arg->is_AddP()) {
1120             arg = get_addp_base(arg);
1121           }
1122           assert(ptnode_adr(arg->_idx) != NULL, "should be defined already");
1123           set_escape_state(ptnode_adr(arg->_idx), PointsToNode::GlobalEscape);
1124         }
1125       }
1126     }
1127   }
1128 }
1129 
1130 
1131 // Finish Graph construction.
1132 bool ConnectionGraph::complete_connection_graph(
1133                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
1134                          GrowableArray<JavaObjectNode*>& non_escaped_worklist,
1135                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
1136                          GrowableArray<FieldNode*>&      oop_fields_worklist) {
1137   // Normally only 1-3 passes needed to build Connection Graph depending
1138   // on graph complexity. Observed 8 passes in jvm2008 compiler.compiler.
1139   // Set limit to 20 to catch situation when something did go wrong and
1140   // bailout Escape Analysis.
1141   // Also limit build time to 20 sec (60 in debug VM), EscapeAnalysisTimeout flag.
1142 #define CG_BUILD_ITER_LIMIT 20
1143 
1144   // Propagate GlobalEscape and ArgEscape escape states and check that
1145   // we still have non-escaping objects. The method pushs on _worklist
1146   // Field nodes which reference phantom_object.
1147   if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
1148     return false; // Nothing to do.
1149   }
1150   // Now propagate references to all JavaObject nodes.
1151   int java_objects_length = java_objects_worklist.length();
1152   elapsedTimer time;
1153   bool timeout = false;
1154   int new_edges = 1;
1155   int iterations = 0;
1156   do {
1157     while ((new_edges > 0) &&
1158            (iterations++ < CG_BUILD_ITER_LIMIT)) {
1159       double start_time = time.seconds();
1160       time.start();
1161       new_edges = 0;
1162       // Propagate references to phantom_object for nodes pushed on _worklist
1163       // by find_non_escaped_objects() and find_field_value().
1164       new_edges += add_java_object_edges(phantom_obj, false);
1165       for (int next = 0; next < java_objects_length; ++next) {
1166         JavaObjectNode* ptn = java_objects_worklist.at(next);
1167         new_edges += add_java_object_edges(ptn, true);
1168 
1169 #define SAMPLE_SIZE 4
1170         if ((next % SAMPLE_SIZE) == 0) {
1171           // Each 4 iterations calculate how much time it will take
1172           // to complete graph construction.
1173           time.stop();
1174           // Poll for requests from shutdown mechanism to quiesce compiler
1175           // because Connection graph construction may take long time.
1176           CompileBroker::maybe_block();
1177           double stop_time = time.seconds();
1178           double time_per_iter = (stop_time - start_time) / (double)SAMPLE_SIZE;
1179           double time_until_end = time_per_iter * (double)(java_objects_length - next);
1180           if ((start_time + time_until_end) >= EscapeAnalysisTimeout) {
1181             timeout = true;
1182             break; // Timeout
1183           }
1184           start_time = stop_time;
1185           time.start();
1186         }
1187 #undef SAMPLE_SIZE
1188 
1189       }
1190       if (timeout) break;
1191       if (new_edges > 0) {
1192         // Update escape states on each iteration if graph was updated.
1193         if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
1194           return false; // Nothing to do.
1195         }
1196       }
1197       time.stop();
1198       if (time.seconds() >= EscapeAnalysisTimeout) {
1199         timeout = true;
1200         break;
1201       }
1202     }
1203     if ((iterations < CG_BUILD_ITER_LIMIT) && !timeout) {
1204       time.start();
1205       // Find fields which have unknown value.
1206       int fields_length = oop_fields_worklist.length();
1207       for (int next = 0; next < fields_length; next++) {
1208         FieldNode* field = oop_fields_worklist.at(next);
1209         if (field->edge_count() == 0) {
1210           new_edges += find_field_value(field);
1211           // This code may added new edges to phantom_object.
1212           // Need an other cycle to propagate references to phantom_object.
1213         }
1214       }
1215       time.stop();
1216       if (time.seconds() >= EscapeAnalysisTimeout) {
1217         timeout = true;
1218         break;
1219       }
1220     } else {
1221       new_edges = 0; // Bailout
1222     }
1223   } while (new_edges > 0);
1224 
1225   // Bailout if passed limits.
1226   if ((iterations >= CG_BUILD_ITER_LIMIT) || timeout) {
1227     Compile* C = _compile;
1228     if (C->log() != NULL) {
1229       C->log()->begin_elem("connectionGraph_bailout reason='reached ");
1230       C->log()->text("%s", timeout ? "time" : "iterations");
1231       C->log()->end_elem(" limit'");
1232     }
1233     assert(ExitEscapeAnalysisOnTimeout, "infinite EA connection graph build (%f sec, %d iterations) with %d nodes and worklist size %d",
1234            time.seconds(), iterations, nodes_size(), ptnodes_worklist.length());
1235     // Possible infinite build_connection_graph loop,
1236     // bailout (no changes to ideal graph were made).
1237     return false;
1238   }
1239 #ifdef ASSERT
1240   if (Verbose && PrintEscapeAnalysis) {
1241     tty->print_cr("EA: %d iterations to build connection graph with %d nodes and worklist size %d",
1242                   iterations, nodes_size(), ptnodes_worklist.length());
1243   }
1244 #endif
1245 
1246 #undef CG_BUILD_ITER_LIMIT
1247 
1248   // Find fields initialized by NULL for non-escaping Allocations.
1249   int non_escaped_length = non_escaped_worklist.length();
1250   for (int next = 0; next < non_escaped_length; next++) {
1251     JavaObjectNode* ptn = non_escaped_worklist.at(next);
1252     PointsToNode::EscapeState es = ptn->escape_state();
1253     assert(es <= PointsToNode::ArgEscape, "sanity");
1254     if (es == PointsToNode::NoEscape) {
1255       if (find_init_values(ptn, null_obj, _igvn) > 0) {
1256         // Adding references to NULL object does not change escape states
1257         // since it does not escape. Also no fields are added to NULL object.
1258         add_java_object_edges(null_obj, false);
1259       }
1260     }
1261     Node* n = ptn->ideal_node();
1262     if (n->is_Allocate()) {
1263       // The object allocated by this Allocate node will never be
1264       // seen by an other thread. Mark it so that when it is
1265       // expanded no MemBarStoreStore is added.
1266       InitializeNode* ini = n->as_Allocate()->initialization();
1267       if (ini != NULL)
1268         ini->set_does_not_escape();
1269     }
1270   }
1271   return true; // Finished graph construction.
1272 }
1273 
1274 // Propagate GlobalEscape and ArgEscape escape states to all nodes
1275 // and check that we still have non-escaping java objects.
1276 bool ConnectionGraph::find_non_escaped_objects(GrowableArray<PointsToNode*>& ptnodes_worklist,
1277                                                GrowableArray<JavaObjectNode*>& non_escaped_worklist) {
1278   GrowableArray<PointsToNode*> escape_worklist;
1279   // First, put all nodes with GlobalEscape and ArgEscape states on worklist.
1280   int ptnodes_length = ptnodes_worklist.length();
1281   for (int next = 0; next < ptnodes_length; ++next) {
1282     PointsToNode* ptn = ptnodes_worklist.at(next);
1283     if (ptn->escape_state() >= PointsToNode::ArgEscape ||
1284         ptn->fields_escape_state() >= PointsToNode::ArgEscape) {
1285       escape_worklist.push(ptn);
1286     }
1287   }
1288   // Set escape states to referenced nodes (edges list).
1289   while (escape_worklist.length() > 0) {
1290     PointsToNode* ptn = escape_worklist.pop();
1291     PointsToNode::EscapeState es  = ptn->escape_state();
1292     PointsToNode::EscapeState field_es = ptn->fields_escape_state();
1293     if (ptn->is_Field() && ptn->as_Field()->is_oop() &&
1294         es >= PointsToNode::ArgEscape) {
1295       // GlobalEscape or ArgEscape state of field means it has unknown value.
1296       if (add_edge(ptn, phantom_obj)) {
1297         // New edge was added
1298         add_field_uses_to_worklist(ptn->as_Field());
1299       }
1300     }
1301     for (EdgeIterator i(ptn); i.has_next(); i.next()) {
1302       PointsToNode* e = i.get();
1303       if (e->is_Arraycopy()) {
1304         assert(ptn->arraycopy_dst(), "sanity");
1305         // Propagate only fields escape state through arraycopy edge.
1306         if (e->fields_escape_state() < field_es) {
1307           set_fields_escape_state(e, field_es);
1308           escape_worklist.push(e);
1309         }
1310       } else if (es >= field_es) {
1311         // fields_escape_state is also set to 'es' if it is less than 'es'.
1312         if (e->escape_state() < es) {
1313           set_escape_state(e, es);
1314           escape_worklist.push(e);
1315         }
1316       } else {
1317         // Propagate field escape state.
1318         bool es_changed = false;
1319         if (e->fields_escape_state() < field_es) {
1320           set_fields_escape_state(e, field_es);
1321           es_changed = true;
1322         }
1323         if ((e->escape_state() < field_es) &&
1324             e->is_Field() && ptn->is_JavaObject() &&
1325             e->as_Field()->is_oop()) {
1326           // Change escape state of referenced fields.
1327           set_escape_state(e, field_es);
1328           es_changed = true;
1329         } else if (e->escape_state() < es) {
1330           set_escape_state(e, es);
1331           es_changed = true;
1332         }
1333         if (es_changed) {
1334           escape_worklist.push(e);
1335         }
1336       }
1337     }
1338   }
1339   // Remove escaped objects from non_escaped list.
1340   for (int next = non_escaped_worklist.length()-1; next >= 0 ; --next) {
1341     JavaObjectNode* ptn = non_escaped_worklist.at(next);
1342     if (ptn->escape_state() >= PointsToNode::GlobalEscape) {
1343       non_escaped_worklist.delete_at(next);
1344     }
1345     if (ptn->escape_state() == PointsToNode::NoEscape) {
1346       // Find fields in non-escaped allocations which have unknown value.
1347       find_init_values(ptn, phantom_obj, NULL);
1348     }
1349   }
1350   return (non_escaped_worklist.length() > 0);
1351 }
1352 
1353 // Add all references to JavaObject node by walking over all uses.
1354 int ConnectionGraph::add_java_object_edges(JavaObjectNode* jobj, bool populate_worklist) {
1355   int new_edges = 0;
1356   if (populate_worklist) {
1357     // Populate _worklist by uses of jobj's uses.
1358     for (UseIterator i(jobj); i.has_next(); i.next()) {
1359       PointsToNode* use = i.get();
1360       if (use->is_Arraycopy())
1361         continue;
1362       add_uses_to_worklist(use);
1363       if (use->is_Field() && use->as_Field()->is_oop()) {
1364         // Put on worklist all field's uses (loads) and
1365         // related field nodes (same base and offset).
1366         add_field_uses_to_worklist(use->as_Field());
1367       }
1368     }
1369   }
1370   for (int l = 0; l < _worklist.length(); l++) {
1371     PointsToNode* use = _worklist.at(l);
1372     if (PointsToNode::is_base_use(use)) {
1373       // Add reference from jobj to field and from field to jobj (field's base).
1374       use = PointsToNode::get_use_node(use)->as_Field();
1375       if (add_base(use->as_Field(), jobj)) {
1376         new_edges++;
1377       }
1378       continue;
1379     }
1380     assert(!use->is_JavaObject(), "sanity");
1381     if (use->is_Arraycopy()) {
1382       if (jobj == null_obj) // NULL object does not have field edges
1383         continue;
1384       // Added edge from Arraycopy node to arraycopy's source java object
1385       if (add_edge(use, jobj)) {
1386         jobj->set_arraycopy_src();
1387         new_edges++;
1388       }
1389       // and stop here.
1390       continue;
1391     }
1392     if (!add_edge(use, jobj))
1393       continue; // No new edge added, there was such edge already.
1394     new_edges++;
1395     if (use->is_LocalVar()) {
1396       add_uses_to_worklist(use);
1397       if (use->arraycopy_dst()) {
1398         for (EdgeIterator i(use); i.has_next(); i.next()) {
1399           PointsToNode* e = i.get();
1400           if (e->is_Arraycopy()) {
1401             if (jobj == null_obj) // NULL object does not have field edges
1402               continue;
1403             // Add edge from arraycopy's destination java object to Arraycopy node.
1404             if (add_edge(jobj, e)) {
1405               new_edges++;
1406               jobj->set_arraycopy_dst();
1407             }
1408           }
1409         }
1410       }
1411     } else {
1412       // Added new edge to stored in field values.
1413       // Put on worklist all field's uses (loads) and
1414       // related field nodes (same base and offset).
1415       add_field_uses_to_worklist(use->as_Field());
1416     }
1417   }
1418   _worklist.clear();
1419   _in_worklist.reset();
1420   return new_edges;
1421 }
1422 
1423 // Put on worklist all related field nodes.
1424 void ConnectionGraph::add_field_uses_to_worklist(FieldNode* field) {
1425   assert(field->is_oop(), "sanity");
1426   int offset = field->offset();
1427   add_uses_to_worklist(field);
1428   // Loop over all bases of this field and push on worklist Field nodes
1429   // with the same offset and base (since they may reference the same field).
1430   for (BaseIterator i(field); i.has_next(); i.next()) {
1431     PointsToNode* base = i.get();
1432     add_fields_to_worklist(field, base);
1433     // Check if the base was source object of arraycopy and go over arraycopy's
1434     // destination objects since values stored to a field of source object are
1435     // accessable by uses (loads) of fields of destination objects.
1436     if (base->arraycopy_src()) {
1437       for (UseIterator j(base); j.has_next(); j.next()) {
1438         PointsToNode* arycp = j.get();
1439         if (arycp->is_Arraycopy()) {
1440           for (UseIterator k(arycp); k.has_next(); k.next()) {
1441             PointsToNode* abase = k.get();
1442             if (abase->arraycopy_dst() && abase != base) {
1443               // Look for the same arraycopy reference.
1444               add_fields_to_worklist(field, abase);
1445             }
1446           }
1447         }
1448       }
1449     }
1450   }
1451 }
1452 
1453 // Put on worklist all related field nodes.
1454 void ConnectionGraph::add_fields_to_worklist(FieldNode* field, PointsToNode* base) {
1455   int offset = field->offset();
1456   if (base->is_LocalVar()) {
1457     for (UseIterator j(base); j.has_next(); j.next()) {
1458       PointsToNode* f = j.get();
1459       if (PointsToNode::is_base_use(f)) { // Field
1460         f = PointsToNode::get_use_node(f);
1461         if (f == field || !f->as_Field()->is_oop())
1462           continue;
1463         int offs = f->as_Field()->offset();
1464         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
1465           add_to_worklist(f);
1466         }
1467       }
1468     }
1469   } else {
1470     assert(base->is_JavaObject(), "sanity");
1471     if (// Skip phantom_object since it is only used to indicate that
1472         // this field's content globally escapes.
1473         (base != phantom_obj) &&
1474         // NULL object node does not have fields.
1475         (base != null_obj)) {
1476       for (EdgeIterator i(base); i.has_next(); i.next()) {
1477         PointsToNode* f = i.get();
1478         // Skip arraycopy edge since store to destination object field
1479         // does not update value in source object field.
1480         if (f->is_Arraycopy()) {
1481           assert(base->arraycopy_dst(), "sanity");
1482           continue;
1483         }
1484         if (f == field || !f->as_Field()->is_oop())
1485           continue;
1486         int offs = f->as_Field()->offset();
1487         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
1488           add_to_worklist(f);
1489         }
1490       }
1491     }
1492   }
1493 }
1494 
1495 // Find fields which have unknown value.
1496 int ConnectionGraph::find_field_value(FieldNode* field) {
1497   // Escaped fields should have init value already.
1498   assert(field->escape_state() == PointsToNode::NoEscape, "sanity");
1499   int new_edges = 0;
1500   for (BaseIterator i(field); i.has_next(); i.next()) {
1501     PointsToNode* base = i.get();
1502     if (base->is_JavaObject()) {
1503       // Skip Allocate's fields which will be processed later.
1504       if (base->ideal_node()->is_Allocate())
1505         return 0;
1506       assert(base == null_obj, "only NULL ptr base expected here");
1507     }
1508   }
1509   if (add_edge(field, phantom_obj)) {
1510     // New edge was added
1511     new_edges++;
1512     add_field_uses_to_worklist(field);
1513   }
1514   return new_edges;
1515 }
1516 
1517 // Find fields initializing values for allocations.
1518 int ConnectionGraph::find_init_values(JavaObjectNode* pta, PointsToNode* init_val, PhaseTransform* phase) {
1519   assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");
1520   int new_edges = 0;
1521   Node* alloc = pta->ideal_node();
1522   if (init_val == phantom_obj) {
1523     // Do nothing for Allocate nodes since its fields values are
1524     // "known" unless they are initialized by arraycopy/clone.
1525     if (alloc->is_Allocate() && !pta->arraycopy_dst())
1526       return 0;
1527     assert(pta->arraycopy_dst() || alloc->as_CallStaticJava(), "sanity");
1528 #ifdef ASSERT
1529     if (!pta->arraycopy_dst() && alloc->as_CallStaticJava()->method() == NULL) {
1530       const char* name = alloc->as_CallStaticJava()->_name;
1531       assert(strncmp(name, "_multianewarray", 15) == 0, "sanity");
1532     }
1533 #endif
1534     // Non-escaped allocation returned from Java or runtime call have
1535     // unknown values in fields.
1536     for (EdgeIterator i(pta); i.has_next(); i.next()) {
1537       PointsToNode* field = i.get();
1538       if (field->is_Field() && field->as_Field()->is_oop()) {
1539         if (add_edge(field, phantom_obj)) {
1540           // New edge was added
1541           new_edges++;
1542           add_field_uses_to_worklist(field->as_Field());
1543         }
1544       }
1545     }
1546     return new_edges;
1547   }
1548   assert(init_val == null_obj, "sanity");
1549   // Do nothing for Call nodes since its fields values are unknown.
1550   if (!alloc->is_Allocate())
1551     return 0;
1552 
1553   InitializeNode* ini = alloc->as_Allocate()->initialization();
1554   bool visited_bottom_offset = false;
1555   GrowableArray<int> offsets_worklist;
1556 
1557   // Check if an oop field's initializing value is recorded and add
1558   // a corresponding NULL if field's value if it is not recorded.
1559   // Connection Graph does not record a default initialization by NULL
1560   // captured by Initialize node.
1561   //
1562   for (EdgeIterator i(pta); i.has_next(); i.next()) {
1563     PointsToNode* field = i.get(); // Field (AddP)
1564     if (!field->is_Field() || !field->as_Field()->is_oop())
1565       continue; // Not oop field
1566     int offset = field->as_Field()->offset();
1567     if (offset == Type::OffsetBot) {
1568       if (!visited_bottom_offset) {
1569         // OffsetBot is used to reference array's element,
1570         // always add reference to NULL to all Field nodes since we don't
1571         // known which element is referenced.
1572         if (add_edge(field, null_obj)) {
1573           // New edge was added
1574           new_edges++;
1575           add_field_uses_to_worklist(field->as_Field());
1576           visited_bottom_offset = true;
1577         }
1578       }
1579     } else {
1580       // Check only oop fields.
1581       const Type* adr_type = field->ideal_node()->as_AddP()->bottom_type();
1582       if (adr_type->isa_rawptr()) {
1583 #ifdef ASSERT
1584         // Raw pointers are used for initializing stores so skip it
1585         // since it should be recorded already
1586         Node* base = get_addp_base(field->ideal_node());
1587         assert(adr_type->isa_rawptr() && is_captured_store_address(field->ideal_node()), "unexpected pointer type");
1588 #endif
1589         continue;
1590       }
1591       if (!offsets_worklist.contains(offset)) {
1592         offsets_worklist.append(offset);
1593         Node* value = NULL;
1594         if (ini != NULL) {
1595           // StoreP::memory_type() == T_ADDRESS
1596           BasicType ft = UseCompressedOops ? T_NARROWOOP : T_ADDRESS;
1597           Node* store = ini->find_captured_store(offset, type2aelembytes(ft, true), phase);
1598           // Make sure initializing store has the same type as this AddP.
1599           // This AddP may reference non existing field because it is on a
1600           // dead branch of bimorphic call which is not eliminated yet.
1601           if (store != NULL && store->is_Store() &&
1602               store->as_Store()->memory_type() == ft) {
1603             value = store->in(MemNode::ValueIn);
1604 #ifdef ASSERT
1605             if (VerifyConnectionGraph) {
1606               // Verify that AddP already points to all objects the value points to.
1607               PointsToNode* val = ptnode_adr(value->_idx);
1608               assert((val != NULL), "should be processed already");
1609               PointsToNode* missed_obj = NULL;
1610               if (val->is_JavaObject()) {
1611                 if (!field->points_to(val->as_JavaObject())) {
1612                   missed_obj = val;
1613                 }
1614               } else {
1615                 if (!val->is_LocalVar() || (val->edge_count() == 0)) {
1616                   tty->print_cr("----------init store has invalid value -----");
1617                   store->dump();
1618                   val->dump();
1619                   assert(val->is_LocalVar() && (val->edge_count() > 0), "should be processed already");
1620                 }
1621                 for (EdgeIterator j(val); j.has_next(); j.next()) {
1622                   PointsToNode* obj = j.get();
1623                   if (obj->is_JavaObject()) {
1624                     if (!field->points_to(obj->as_JavaObject())) {
1625                       missed_obj = obj;
1626                       break;
1627                     }
1628                   }
1629                 }
1630               }
1631               if (missed_obj != NULL) {
1632                 tty->print_cr("----------field---------------------------------");
1633                 field->dump();
1634                 tty->print_cr("----------missed referernce to object-----------");
1635                 missed_obj->dump();
1636                 tty->print_cr("----------object referernced by init store -----");
1637                 store->dump();
1638                 val->dump();
1639                 assert(!field->points_to(missed_obj->as_JavaObject()), "missed JavaObject reference");
1640               }
1641             }
1642 #endif
1643           } else {
1644             // There could be initializing stores which follow allocation.
1645             // For example, a volatile field store is not collected
1646             // by Initialize node.
1647             //
1648             // Need to check for dependent loads to separate such stores from
1649             // stores which follow loads. For now, add initial value NULL so
1650             // that compare pointers optimization works correctly.
1651           }
1652         }
1653         if (value == NULL) {
1654           // A field's initializing value was not recorded. Add NULL.
1655           if (add_edge(field, null_obj)) {
1656             // New edge was added
1657             new_edges++;
1658             add_field_uses_to_worklist(field->as_Field());
1659           }
1660         }
1661       }
1662     }
1663   }
1664   return new_edges;
1665 }
1666 
1667 // Adjust scalar_replaceable state after Connection Graph is built.
1668 void ConnectionGraph::adjust_scalar_replaceable_state(JavaObjectNode* jobj) {
1669   // Search for non-escaping objects which are not scalar replaceable
1670   // and mark them to propagate the state to referenced objects.
1671 
1672   // 1. An object is not scalar replaceable if the field into which it is
1673   // stored has unknown offset (stored into unknown element of an array).
1674   //
1675   for (UseIterator i(jobj); i.has_next(); i.next()) {
1676     PointsToNode* use = i.get();
1677     if (use->is_Arraycopy()) {
1678       continue;
1679     }
1680     if (use->is_Field()) {
1681       FieldNode* field = use->as_Field();
1682       assert(field->is_oop() && field->scalar_replaceable(), "sanity");
1683       if (field->offset() == Type::OffsetBot) {
1684         jobj->set_scalar_replaceable(false);
1685         return;
1686       }
1687       // 2. An object is not scalar replaceable if the field into which it is
1688       // stored has multiple bases one of which is null.
1689       if (field->base_count() > 1) {
1690         for (BaseIterator i(field); i.has_next(); i.next()) {
1691           PointsToNode* base = i.get();
1692           if (base == null_obj) {
1693             jobj->set_scalar_replaceable(false);
1694             return;
1695           }
1696         }
1697       }
1698     }
1699     assert(use->is_Field() || use->is_LocalVar(), "sanity");
1700     // 3. An object is not scalar replaceable if it is merged with other objects.
1701     for (EdgeIterator j(use); j.has_next(); j.next()) {
1702       PointsToNode* ptn = j.get();
1703       if (ptn->is_JavaObject() && ptn != jobj) {
1704         // Mark all objects.
1705         jobj->set_scalar_replaceable(false);
1706          ptn->set_scalar_replaceable(false);
1707       }
1708     }
1709     if (!jobj->scalar_replaceable()) {
1710       return;
1711     }
1712   }
1713 
1714   for (EdgeIterator j(jobj); j.has_next(); j.next()) {
1715     if (j.get()->is_Arraycopy()) {
1716       continue;
1717     }
1718 
1719     // Non-escaping object node should point only to field nodes.
1720     FieldNode* field = j.get()->as_Field();
1721     int offset = field->as_Field()->offset();
1722 
1723     // 4. An object is not scalar replaceable if it has a field with unknown
1724     // offset (array's element is accessed in loop).
1725     if (offset == Type::OffsetBot) {
1726       jobj->set_scalar_replaceable(false);
1727       return;
1728     }
1729     // 5. Currently an object is not scalar replaceable if a LoadStore node
1730     // access its field since the field value is unknown after it.
1731     //
1732     Node* n = field->ideal_node();
1733 
1734     // Test for an unsafe access that was parsed as maybe off heap
1735     // (with a CheckCastPP to raw memory).
1736     assert(n->is_AddP(), "expect an address computation");
1737     if (n->in(AddPNode::Base)->is_top() &&
1738         n->in(AddPNode::Address)->Opcode() == Op_CheckCastPP) {
1739       assert(n->in(AddPNode::Address)->bottom_type()->isa_rawptr(), "raw address so raw cast expected");
1740       assert(_igvn->type(n->in(AddPNode::Address)->in(1))->isa_oopptr(), "cast pattern at unsafe access expected");
1741       jobj->set_scalar_replaceable(false);
1742       return;
1743     }
1744 
1745     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1746       Node* u = n->fast_out(i);
1747       if (u->is_LoadStore() || (u->is_Mem() && u->as_Mem()->is_mismatched_access())) {
1748         jobj->set_scalar_replaceable(false);
1749         return;
1750       }
1751     }
1752 
1753     // 6. Or the address may point to more then one object. This may produce
1754     // the false positive result (set not scalar replaceable)
1755     // since the flow-insensitive escape analysis can't separate
1756     // the case when stores overwrite the field's value from the case
1757     // when stores happened on different control branches.
1758     //
1759     // Note: it will disable scalar replacement in some cases:
1760     //
1761     //    Point p[] = new Point[1];
1762     //    p[0] = new Point(); // Will be not scalar replaced
1763     //
1764     // but it will save us from incorrect optimizations in next cases:
1765     //
1766     //    Point p[] = new Point[1];
1767     //    if ( x ) p[0] = new Point(); // Will be not scalar replaced
1768     //
1769     if (field->base_count() > 1) {
1770       for (BaseIterator i(field); i.has_next(); i.next()) {
1771         PointsToNode* base = i.get();
1772         // Don't take into account LocalVar nodes which
1773         // may point to only one object which should be also
1774         // this field's base by now.
1775         if (base->is_JavaObject() && base != jobj) {
1776           // Mark all bases.
1777           jobj->set_scalar_replaceable(false);
1778           base->set_scalar_replaceable(false);
1779         }
1780       }
1781     }
1782   }
1783 }
1784 
1785 #ifdef ASSERT
1786 void ConnectionGraph::verify_connection_graph(
1787                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
1788                          GrowableArray<JavaObjectNode*>& non_escaped_worklist,
1789                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
1790                          GrowableArray<Node*>& addp_worklist) {
1791   // Verify that graph is complete - no new edges could be added.
1792   int java_objects_length = java_objects_worklist.length();
1793   int non_escaped_length  = non_escaped_worklist.length();
1794   int new_edges = 0;
1795   for (int next = 0; next < java_objects_length; ++next) {
1796     JavaObjectNode* ptn = java_objects_worklist.at(next);
1797     new_edges += add_java_object_edges(ptn, true);
1798   }
1799   assert(new_edges == 0, "graph was not complete");
1800   // Verify that escape state is final.
1801   int length = non_escaped_worklist.length();
1802   find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist);
1803   assert((non_escaped_length == non_escaped_worklist.length()) &&
1804          (non_escaped_length == length) &&
1805          (_worklist.length() == 0), "escape state was not final");
1806 
1807   // Verify fields information.
1808   int addp_length = addp_worklist.length();
1809   for (int next = 0; next < addp_length; ++next ) {
1810     Node* n = addp_worklist.at(next);
1811     FieldNode* field = ptnode_adr(n->_idx)->as_Field();
1812     if (field->is_oop()) {
1813       // Verify that field has all bases
1814       Node* base = get_addp_base(n);
1815       PointsToNode* ptn = ptnode_adr(base->_idx);
1816       if (ptn->is_JavaObject()) {
1817         assert(field->has_base(ptn->as_JavaObject()), "sanity");
1818       } else {
1819         assert(ptn->is_LocalVar(), "sanity");
1820         for (EdgeIterator i(ptn); i.has_next(); i.next()) {
1821           PointsToNode* e = i.get();
1822           if (e->is_JavaObject()) {
1823             assert(field->has_base(e->as_JavaObject()), "sanity");
1824           }
1825         }
1826       }
1827       // Verify that all fields have initializing values.
1828       if (field->edge_count() == 0) {
1829         tty->print_cr("----------field does not have references----------");
1830         field->dump();
1831         for (BaseIterator i(field); i.has_next(); i.next()) {
1832           PointsToNode* base = i.get();
1833           tty->print_cr("----------field has next base---------------------");
1834           base->dump();
1835           if (base->is_JavaObject() && (base != phantom_obj) && (base != null_obj)) {
1836             tty->print_cr("----------base has fields-------------------------");
1837             for (EdgeIterator j(base); j.has_next(); j.next()) {
1838               j.get()->dump();
1839             }
1840             tty->print_cr("----------base has references---------------------");
1841             for (UseIterator j(base); j.has_next(); j.next()) {
1842               j.get()->dump();
1843             }
1844           }
1845         }
1846         for (UseIterator i(field); i.has_next(); i.next()) {
1847           i.get()->dump();
1848         }
1849         assert(field->edge_count() > 0, "sanity");
1850       }
1851     }
1852   }
1853 }
1854 #endif
1855 
1856 // Optimize ideal graph.
1857 void ConnectionGraph::optimize_ideal_graph(GrowableArray<Node*>& ptr_cmp_worklist,
1858                                            GrowableArray<Node*>& storestore_worklist) {
1859   Compile* C = _compile;
1860   PhaseIterGVN* igvn = _igvn;
1861   if (EliminateLocks) {
1862     // Mark locks before changing ideal graph.
1863     int cnt = C->macro_count();
1864     for( int i=0; i < cnt; i++ ) {
1865       Node *n = C->macro_node(i);
1866       if (n->is_AbstractLock()) { // Lock and Unlock nodes
1867         AbstractLockNode* alock = n->as_AbstractLock();
1868         if (!alock->is_non_esc_obj()) {
1869           if (not_global_escape(alock->obj_node())) {
1870             assert(!alock->is_eliminated() || alock->is_coarsened(), "sanity");
1871             // The lock could be marked eliminated by lock coarsening
1872             // code during first IGVN before EA. Replace coarsened flag
1873             // to eliminate all associated locks/unlocks.
1874 #ifdef ASSERT
1875             alock->log_lock_optimization(C, "eliminate_lock_set_non_esc3");
1876 #endif
1877             alock->set_non_esc_obj();
1878           }
1879         }
1880       }
1881     }
1882   }
1883 
1884   if (OptimizePtrCompare) {
1885     // Add ConI(#CC_GT) and ConI(#CC_EQ).
1886     _pcmp_neq = igvn->makecon(TypeInt::CC_GT);
1887     _pcmp_eq = igvn->makecon(TypeInt::CC_EQ);
1888     // Optimize objects compare.
1889     while (ptr_cmp_worklist.length() != 0) {
1890       Node *n = ptr_cmp_worklist.pop();
1891       Node *res = optimize_ptr_compare(n);
1892       if (res != NULL) {
1893 #ifndef PRODUCT
1894         if (PrintOptimizePtrCompare) {
1895           tty->print_cr("++++ Replaced: %d %s(%d,%d) --> %s", n->_idx, (n->Opcode() == Op_CmpP ? "CmpP" : "CmpN"), n->in(1)->_idx, n->in(2)->_idx, (res == _pcmp_eq ? "EQ" : "NotEQ"));
1896           if (Verbose) {
1897             n->dump(1);
1898           }
1899         }
1900 #endif
1901         igvn->replace_node(n, res);
1902       }
1903     }
1904     // cleanup
1905     if (_pcmp_neq->outcnt() == 0)
1906       igvn->hash_delete(_pcmp_neq);
1907     if (_pcmp_eq->outcnt()  == 0)
1908       igvn->hash_delete(_pcmp_eq);
1909   }
1910 
1911   // For MemBarStoreStore nodes added in library_call.cpp, check
1912   // escape status of associated AllocateNode and optimize out
1913   // MemBarStoreStore node if the allocated object never escapes.
1914   while (storestore_worklist.length() != 0) {
1915     Node *n = storestore_worklist.pop();
1916     MemBarStoreStoreNode *storestore = n ->as_MemBarStoreStore();
1917     Node *alloc = storestore->in(MemBarNode::Precedent)->in(0);
1918     if (alloc->is_Allocate() && not_global_escape(alloc)) {
1919       MemBarNode* mb = MemBarNode::make(C, Op_MemBarCPUOrder, Compile::AliasIdxBot);
1920       mb->init_req(TypeFunc::Memory, storestore->in(TypeFunc::Memory));
1921       mb->init_req(TypeFunc::Control, storestore->in(TypeFunc::Control));
1922       igvn->register_new_node_with_optimizer(mb);
1923       igvn->replace_node(storestore, mb);
1924     }
1925   }
1926 }
1927 
1928 // Optimize objects compare.
1929 Node* ConnectionGraph::optimize_ptr_compare(Node* n) {
1930   assert(OptimizePtrCompare, "sanity");
1931   PointsToNode* ptn1 = ptnode_adr(n->in(1)->_idx);
1932   PointsToNode* ptn2 = ptnode_adr(n->in(2)->_idx);
1933   JavaObjectNode* jobj1 = unique_java_object(n->in(1));
1934   JavaObjectNode* jobj2 = unique_java_object(n->in(2));
1935   assert(ptn1->is_JavaObject() || ptn1->is_LocalVar(), "sanity");
1936   assert(ptn2->is_JavaObject() || ptn2->is_LocalVar(), "sanity");
1937 
1938   // Check simple cases first.
1939   if (jobj1 != NULL) {
1940     if (jobj1->escape_state() == PointsToNode::NoEscape) {
1941       if (jobj1 == jobj2) {
1942         // Comparing the same not escaping object.
1943         return _pcmp_eq;
1944       }
1945       Node* obj = jobj1->ideal_node();
1946       // Comparing not escaping allocation.
1947       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
1948           !ptn2->points_to(jobj1)) {
1949         return _pcmp_neq; // This includes nullness check.
1950       }
1951     }
1952   }
1953   if (jobj2 != NULL) {
1954     if (jobj2->escape_state() == PointsToNode::NoEscape) {
1955       Node* obj = jobj2->ideal_node();
1956       // Comparing not escaping allocation.
1957       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
1958           !ptn1->points_to(jobj2)) {
1959         return _pcmp_neq; // This includes nullness check.
1960       }
1961     }
1962   }
1963   if (jobj1 != NULL && jobj1 != phantom_obj &&
1964       jobj2 != NULL && jobj2 != phantom_obj &&
1965       jobj1->ideal_node()->is_Con() &&
1966       jobj2->ideal_node()->is_Con()) {
1967     // Klass or String constants compare. Need to be careful with
1968     // compressed pointers - compare types of ConN and ConP instead of nodes.
1969     const Type* t1 = jobj1->ideal_node()->get_ptr_type();
1970     const Type* t2 = jobj2->ideal_node()->get_ptr_type();
1971     if (t1->make_ptr() == t2->make_ptr()) {
1972       return _pcmp_eq;
1973     } else {
1974       return _pcmp_neq;
1975     }
1976   }
1977   if (ptn1->meet(ptn2)) {
1978     return NULL; // Sets are not disjoint
1979   }
1980 
1981   // Sets are disjoint.
1982   bool set1_has_unknown_ptr = ptn1->points_to(phantom_obj);
1983   bool set2_has_unknown_ptr = ptn2->points_to(phantom_obj);
1984   bool set1_has_null_ptr    = ptn1->points_to(null_obj);
1985   bool set2_has_null_ptr    = ptn2->points_to(null_obj);
1986   if ((set1_has_unknown_ptr && set2_has_null_ptr) ||
1987       (set2_has_unknown_ptr && set1_has_null_ptr)) {
1988     // Check nullness of unknown object.
1989     return NULL;
1990   }
1991 
1992   // Disjointness by itself is not sufficient since
1993   // alias analysis is not complete for escaped objects.
1994   // Disjoint sets are definitely unrelated only when
1995   // at least one set has only not escaping allocations.
1996   if (!set1_has_unknown_ptr && !set1_has_null_ptr) {
1997     if (ptn1->non_escaping_allocation()) {
1998       return _pcmp_neq;
1999     }
2000   }
2001   if (!set2_has_unknown_ptr && !set2_has_null_ptr) {
2002     if (ptn2->non_escaping_allocation()) {
2003       return _pcmp_neq;
2004     }
2005   }
2006   return NULL;
2007 }
2008 
2009 // Connection Graph constuction functions.
2010 
2011 void ConnectionGraph::add_local_var(Node *n, PointsToNode::EscapeState es) {
2012   PointsToNode* ptadr = _nodes.at(n->_idx);
2013   if (ptadr != NULL) {
2014     assert(ptadr->is_LocalVar() && ptadr->ideal_node() == n, "sanity");
2015     return;
2016   }
2017   Compile* C = _compile;
2018   ptadr = new (C->comp_arena()) LocalVarNode(this, n, es);
2019   _nodes.at_put(n->_idx, ptadr);
2020 }
2021 
2022 void ConnectionGraph::add_java_object(Node *n, PointsToNode::EscapeState es) {
2023   PointsToNode* ptadr = _nodes.at(n->_idx);
2024   if (ptadr != NULL) {
2025     assert(ptadr->is_JavaObject() && ptadr->ideal_node() == n, "sanity");
2026     return;
2027   }
2028   Compile* C = _compile;
2029   ptadr = new (C->comp_arena()) JavaObjectNode(this, n, es);
2030   _nodes.at_put(n->_idx, ptadr);
2031 }
2032 
2033 void ConnectionGraph::add_field(Node *n, PointsToNode::EscapeState es, int offset) {
2034   PointsToNode* ptadr = _nodes.at(n->_idx);
2035   if (ptadr != NULL) {
2036     assert(ptadr->is_Field() && ptadr->ideal_node() == n, "sanity");
2037     return;
2038   }
2039   bool unsafe = false;
2040   bool is_oop = is_oop_field(n, offset, &unsafe);
2041   if (unsafe) {
2042     es = PointsToNode::GlobalEscape;
2043   }
2044   Compile* C = _compile;
2045   FieldNode* field = new (C->comp_arena()) FieldNode(this, n, es, offset, is_oop);
2046   _nodes.at_put(n->_idx, field);
2047 }
2048 
2049 void ConnectionGraph::add_arraycopy(Node *n, PointsToNode::EscapeState es,
2050                                     PointsToNode* src, PointsToNode* dst) {
2051   assert(!src->is_Field() && !dst->is_Field(), "only for JavaObject and LocalVar");
2052   assert((src != null_obj) && (dst != null_obj), "not for ConP NULL");
2053   PointsToNode* ptadr = _nodes.at(n->_idx);
2054   if (ptadr != NULL) {
2055     assert(ptadr->is_Arraycopy() && ptadr->ideal_node() == n, "sanity");
2056     return;
2057   }
2058   Compile* C = _compile;
2059   ptadr = new (C->comp_arena()) ArraycopyNode(this, n, es);
2060   _nodes.at_put(n->_idx, ptadr);
2061   // Add edge from arraycopy node to source object.
2062   (void)add_edge(ptadr, src);
2063   src->set_arraycopy_src();
2064   // Add edge from destination object to arraycopy node.
2065   (void)add_edge(dst, ptadr);
2066   dst->set_arraycopy_dst();
2067 }
2068 
2069 bool ConnectionGraph::is_oop_field(Node* n, int offset, bool* unsafe) {
2070   const Type* adr_type = n->as_AddP()->bottom_type();
2071   BasicType bt = T_INT;
2072   if (offset == Type::OffsetBot) {
2073     // Check only oop fields.
2074     if (!adr_type->isa_aryptr() ||
2075         (adr_type->isa_aryptr()->klass() == NULL) ||
2076          adr_type->isa_aryptr()->klass()->is_obj_array_klass()) {
2077       // OffsetBot is used to reference array's element. Ignore first AddP.
2078       if (find_second_addp(n, n->in(AddPNode::Base)) == NULL) {
2079         bt = T_OBJECT;
2080       }
2081     }
2082   } else if (offset != oopDesc::klass_offset_in_bytes()) {
2083     if (adr_type->isa_instptr()) {
2084       ciField* field = _compile->alias_type(adr_type->isa_instptr())->field();
2085       if (field != NULL) {
2086         bt = field->layout_type();
2087       } else {
2088         // Check for unsafe oop field access
2089         if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN) ||
2090             n->has_out_with(Op_GetAndSetP, Op_GetAndSetN, Op_CompareAndExchangeP, Op_CompareAndExchangeN) ||
2091             n->has_out_with(Op_CompareAndSwapP, Op_CompareAndSwapN, Op_WeakCompareAndSwapP, Op_WeakCompareAndSwapN) ||
2092             BarrierSet::barrier_set()->barrier_set_c2()->escape_has_out_with_unsafe_object(n)) {
2093           bt = T_OBJECT;
2094           (*unsafe) = true;
2095         }
2096       }
2097     } else if (adr_type->isa_aryptr()) {
2098       if (offset == arrayOopDesc::length_offset_in_bytes()) {
2099         // Ignore array length load.
2100       } else if (find_second_addp(n, n->in(AddPNode::Base)) != NULL) {
2101         // Ignore first AddP.
2102       } else {
2103         const Type* elemtype = adr_type->isa_aryptr()->elem();
2104         bt = elemtype->array_element_basic_type();
2105       }
2106     } else if (adr_type->isa_rawptr() || adr_type->isa_klassptr()) {
2107       // Allocation initialization, ThreadLocal field access, unsafe access
2108       if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN) ||
2109           n->has_out_with(Op_GetAndSetP, Op_GetAndSetN, Op_CompareAndExchangeP, Op_CompareAndExchangeN) ||
2110           n->has_out_with(Op_CompareAndSwapP, Op_CompareAndSwapN, Op_WeakCompareAndSwapP, Op_WeakCompareAndSwapN) ||
2111           BarrierSet::barrier_set()->barrier_set_c2()->escape_has_out_with_unsafe_object(n)) {
2112         bt = T_OBJECT;
2113       }
2114     }
2115   }
2116   // Note: T_NARROWOOP is not classed as a real reference type
2117   return (is_reference_type(bt) || bt == T_NARROWOOP);
2118 }
2119 
2120 // Returns unique pointed java object or NULL.
2121 JavaObjectNode* ConnectionGraph::unique_java_object(Node *n) {
2122   assert(!_collecting, "should not call when contructed graph");
2123   // If the node was created after the escape computation we can't answer.
2124   uint idx = n->_idx;
2125   if (idx >= nodes_size()) {
2126     return NULL;
2127   }
2128   PointsToNode* ptn = ptnode_adr(idx);
2129   if (ptn == NULL) {
2130     return NULL;
2131   }
2132   if (ptn->is_JavaObject()) {
2133     return ptn->as_JavaObject();
2134   }
2135   assert(ptn->is_LocalVar(), "sanity");
2136   // Check all java objects it points to.
2137   JavaObjectNode* jobj = NULL;
2138   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
2139     PointsToNode* e = i.get();
2140     if (e->is_JavaObject()) {
2141       if (jobj == NULL) {
2142         jobj = e->as_JavaObject();
2143       } else if (jobj != e) {
2144         return NULL;
2145       }
2146     }
2147   }
2148   return jobj;
2149 }
2150 
2151 // Return true if this node points only to non-escaping allocations.
2152 bool PointsToNode::non_escaping_allocation() {
2153   if (is_JavaObject()) {
2154     Node* n = ideal_node();
2155     if (n->is_Allocate() || n->is_CallStaticJava()) {
2156       return (escape_state() == PointsToNode::NoEscape);
2157     } else {
2158       return false;
2159     }
2160   }
2161   assert(is_LocalVar(), "sanity");
2162   // Check all java objects it points to.
2163   for (EdgeIterator i(this); i.has_next(); i.next()) {
2164     PointsToNode* e = i.get();
2165     if (e->is_JavaObject()) {
2166       Node* n = e->ideal_node();
2167       if ((e->escape_state() != PointsToNode::NoEscape) ||
2168           !(n->is_Allocate() || n->is_CallStaticJava())) {
2169         return false;
2170       }
2171     }
2172   }
2173   return true;
2174 }
2175 
2176 // Return true if we know the node does not escape globally.
2177 bool ConnectionGraph::not_global_escape(Node *n) {
2178   assert(!_collecting, "should not call during graph construction");
2179   // If the node was created after the escape computation we can't answer.
2180   uint idx = n->_idx;
2181   if (idx >= nodes_size()) {
2182     return false;
2183   }
2184   PointsToNode* ptn = ptnode_adr(idx);
2185   if (ptn == NULL) {
2186     return false; // not in congraph (e.g. ConI)
2187   }
2188   PointsToNode::EscapeState es = ptn->escape_state();
2189   // If we have already computed a value, return it.
2190   if (es >= PointsToNode::GlobalEscape)
2191     return false;
2192   if (ptn->is_JavaObject()) {
2193     return true; // (es < PointsToNode::GlobalEscape);
2194   }
2195   assert(ptn->is_LocalVar(), "sanity");
2196   // Check all java objects it points to.
2197   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
2198     if (i.get()->escape_state() >= PointsToNode::GlobalEscape)
2199       return false;
2200   }
2201   return true;
2202 }
2203 
2204 
2205 // Helper functions
2206 
2207 // Return true if this node points to specified node or nodes it points to.
2208 bool PointsToNode::points_to(JavaObjectNode* ptn) const {
2209   if (is_JavaObject()) {
2210     return (this == ptn);
2211   }
2212   assert(is_LocalVar() || is_Field(), "sanity");
2213   for (EdgeIterator i(this); i.has_next(); i.next()) {
2214     if (i.get() == ptn)
2215       return true;
2216   }
2217   return false;
2218 }
2219 
2220 // Return true if one node points to an other.
2221 bool PointsToNode::meet(PointsToNode* ptn) {
2222   if (this == ptn) {
2223     return true;
2224   } else if (ptn->is_JavaObject()) {
2225     return this->points_to(ptn->as_JavaObject());
2226   } else if (this->is_JavaObject()) {
2227     return ptn->points_to(this->as_JavaObject());
2228   }
2229   assert(this->is_LocalVar() && ptn->is_LocalVar(), "sanity");
2230   int ptn_count =  ptn->edge_count();
2231   for (EdgeIterator i(this); i.has_next(); i.next()) {
2232     PointsToNode* this_e = i.get();
2233     for (int j = 0; j < ptn_count; j++) {
2234       if (this_e == ptn->edge(j))
2235         return true;
2236     }
2237   }
2238   return false;
2239 }
2240 
2241 #ifdef ASSERT
2242 // Return true if bases point to this java object.
2243 bool FieldNode::has_base(JavaObjectNode* jobj) const {
2244   for (BaseIterator i(this); i.has_next(); i.next()) {
2245     if (i.get() == jobj)
2246       return true;
2247   }
2248   return false;
2249 }
2250 #endif
2251 
2252 bool ConnectionGraph::is_captured_store_address(Node* addp) {
2253   // Handle simple case first.
2254   assert(_igvn->type(addp)->isa_oopptr() == NULL, "should be raw access");
2255   if (addp->in(AddPNode::Address)->is_Proj() && addp->in(AddPNode::Address)->in(0)->is_Allocate()) {
2256     return true;
2257   } else if (addp->in(AddPNode::Address)->is_Phi()) {
2258     for (DUIterator_Fast imax, i = addp->fast_outs(imax); i < imax; i++) {
2259       Node* addp_use = addp->fast_out(i);
2260       if (addp_use->is_Store()) {
2261         for (DUIterator_Fast jmax, j = addp_use->fast_outs(jmax); j < jmax; j++) {
2262           if (addp_use->fast_out(j)->is_Initialize()) {
2263             return true;
2264           }
2265         }
2266       }
2267     }
2268   }
2269   return false;
2270 }
2271 
2272 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
2273   const Type *adr_type = phase->type(adr);
2274   if (adr->is_AddP() && adr_type->isa_oopptr() == NULL && is_captured_store_address(adr)) {
2275     // We are computing a raw address for a store captured by an Initialize
2276     // compute an appropriate address type. AddP cases #3 and #5 (see below).
2277     int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
2278     assert(offs != Type::OffsetBot ||
2279            adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
2280            "offset must be a constant or it is initialization of array");
2281     return offs;
2282   }
2283   const TypePtr *t_ptr = adr_type->isa_ptr();
2284   assert(t_ptr != NULL, "must be a pointer type");
2285   return t_ptr->offset();
2286 }
2287 
2288 Node* ConnectionGraph::get_addp_base(Node *addp) {
2289   assert(addp->is_AddP(), "must be AddP");
2290   //
2291   // AddP cases for Base and Address inputs:
2292   // case #1. Direct object's field reference:
2293   //     Allocate
2294   //       |
2295   //     Proj #5 ( oop result )
2296   //       |
2297   //     CheckCastPP (cast to instance type)
2298   //      | |
2299   //     AddP  ( base == address )
2300   //
2301   // case #2. Indirect object's field reference:
2302   //      Phi
2303   //       |
2304   //     CastPP (cast to instance type)
2305   //      | |
2306   //     AddP  ( base == address )
2307   //
2308   // case #3. Raw object's field reference for Initialize node:
2309   //      Allocate
2310   //        |
2311   //      Proj #5 ( oop result )
2312   //  top   |
2313   //     \  |
2314   //     AddP  ( base == top )
2315   //
2316   // case #4. Array's element reference:
2317   //   {CheckCastPP | CastPP}
2318   //     |  | |
2319   //     |  AddP ( array's element offset )
2320   //     |  |
2321   //     AddP ( array's offset )
2322   //
2323   // case #5. Raw object's field reference for arraycopy stub call:
2324   //          The inline_native_clone() case when the arraycopy stub is called
2325   //          after the allocation before Initialize and CheckCastPP nodes.
2326   //      Allocate
2327   //        |
2328   //      Proj #5 ( oop result )
2329   //       | |
2330   //       AddP  ( base == address )
2331   //
2332   // case #6. Constant Pool, ThreadLocal, CastX2P or
2333   //          Raw object's field reference:
2334   //      {ConP, ThreadLocal, CastX2P, raw Load}
2335   //  top   |
2336   //     \  |
2337   //     AddP  ( base == top )
2338   //
2339   // case #7. Klass's field reference.
2340   //      LoadKlass
2341   //       | |
2342   //       AddP  ( base == address )
2343   //
2344   // case #8. narrow Klass's field reference.
2345   //      LoadNKlass
2346   //       |
2347   //      DecodeN
2348   //       | |
2349   //       AddP  ( base == address )
2350   //
2351   // case #9. Mixed unsafe access
2352   //    {instance}
2353   //        |
2354   //      CheckCastPP (raw)
2355   //  top   |
2356   //     \  |
2357   //     AddP  ( base == top )
2358   //
2359   Node *base = addp->in(AddPNode::Base);
2360   if (base->uncast()->is_top()) { // The AddP case #3 and #6 and #9.
2361     base = addp->in(AddPNode::Address);
2362     while (base->is_AddP()) {
2363       // Case #6 (unsafe access) may have several chained AddP nodes.
2364       assert(base->in(AddPNode::Base)->uncast()->is_top(), "expected unsafe access address only");
2365       base = base->in(AddPNode::Address);
2366     }
2367     if (base->Opcode() == Op_CheckCastPP &&
2368         base->bottom_type()->isa_rawptr() &&
2369         _igvn->type(base->in(1))->isa_oopptr()) {
2370       base = base->in(1); // Case #9
2371     } else {
2372       Node* uncast_base = base->uncast();
2373       int opcode = uncast_base->Opcode();
2374       assert(opcode == Op_ConP || opcode == Op_ThreadLocal ||
2375              opcode == Op_CastX2P || uncast_base->is_DecodeNarrowPtr() ||
2376              (uncast_base->is_Mem() && (uncast_base->bottom_type()->isa_rawptr() != NULL)) ||
2377              is_captured_store_address(addp), "sanity");
2378     }
2379   }
2380   return base;
2381 }
2382 
2383 Node* ConnectionGraph::find_second_addp(Node* addp, Node* n) {
2384   assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
2385   Node* addp2 = addp->raw_out(0);
2386   if (addp->outcnt() == 1 && addp2->is_AddP() &&
2387       addp2->in(AddPNode::Base) == n &&
2388       addp2->in(AddPNode::Address) == addp) {
2389     assert(addp->in(AddPNode::Base) == n, "expecting the same base");
2390     //
2391     // Find array's offset to push it on worklist first and
2392     // as result process an array's element offset first (pushed second)
2393     // to avoid CastPP for the array's offset.
2394     // Otherwise the inserted CastPP (LocalVar) will point to what
2395     // the AddP (Field) points to. Which would be wrong since
2396     // the algorithm expects the CastPP has the same point as
2397     // as AddP's base CheckCastPP (LocalVar).
2398     //
2399     //    ArrayAllocation
2400     //     |
2401     //    CheckCastPP
2402     //     |
2403     //    memProj (from ArrayAllocation CheckCastPP)
2404     //     |  ||
2405     //     |  ||   Int (element index)
2406     //     |  ||    |   ConI (log(element size))
2407     //     |  ||    |   /
2408     //     |  ||   LShift
2409     //     |  ||  /
2410     //     |  AddP (array's element offset)
2411     //     |  |
2412     //     |  | ConI (array's offset: #12(32-bits) or #24(64-bits))
2413     //     | / /
2414     //     AddP (array's offset)
2415     //      |
2416     //     Load/Store (memory operation on array's element)
2417     //
2418     return addp2;
2419   }
2420   return NULL;
2421 }
2422 
2423 //
2424 // Adjust the type and inputs of an AddP which computes the
2425 // address of a field of an instance
2426 //
2427 bool ConnectionGraph::split_AddP(Node *addp, Node *base) {
2428   PhaseGVN* igvn = _igvn;
2429   const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
2430   assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr");
2431   const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
2432   if (t == NULL) {
2433     // We are computing a raw address for a store captured by an Initialize
2434     // compute an appropriate address type (cases #3 and #5).
2435     assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
2436     assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
2437     intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
2438     assert(offs != Type::OffsetBot, "offset must be a constant");
2439     t = base_t->add_offset(offs)->is_oopptr();
2440   }
2441   int inst_id =  base_t->instance_id();
2442   assert(!t->is_known_instance() || t->instance_id() == inst_id,
2443                              "old type must be non-instance or match new type");
2444 
2445   // The type 't' could be subclass of 'base_t'.
2446   // As result t->offset() could be large then base_t's size and it will
2447   // cause the failure in add_offset() with narrow oops since TypeOopPtr()
2448   // constructor verifies correctness of the offset.
2449   //
2450   // It could happened on subclass's branch (from the type profiling
2451   // inlining) which was not eliminated during parsing since the exactness
2452   // of the allocation type was not propagated to the subclass type check.
2453   //
2454   // Or the type 't' could be not related to 'base_t' at all.
2455   // It could happened when CHA type is different from MDO type on a dead path
2456   // (for example, from instanceof check) which is not collapsed during parsing.
2457   //
2458   // Do nothing for such AddP node and don't process its users since
2459   // this code branch will go away.
2460   //
2461   if (!t->is_known_instance() &&
2462       !base_t->klass()->is_subtype_of(t->klass())) {
2463      return false; // bail out
2464   }
2465   const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
2466   // Do NOT remove the next line: ensure a new alias index is allocated
2467   // for the instance type. Note: C++ will not remove it since the call
2468   // has side effect.
2469   int alias_idx = _compile->get_alias_index(tinst);
2470   igvn->set_type(addp, tinst);
2471   // record the allocation in the node map
2472   set_map(addp, get_map(base->_idx));
2473   // Set addp's Base and Address to 'base'.
2474   Node *abase = addp->in(AddPNode::Base);
2475   Node *adr   = addp->in(AddPNode::Address);
2476   if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
2477       adr->in(0)->_idx == (uint)inst_id) {
2478     // Skip AddP cases #3 and #5.
2479   } else {
2480     assert(!abase->is_top(), "sanity"); // AddP case #3
2481     if (abase != base) {
2482       igvn->hash_delete(addp);
2483       addp->set_req(AddPNode::Base, base);
2484       if (abase == adr) {
2485         addp->set_req(AddPNode::Address, base);
2486       } else {
2487         // AddP case #4 (adr is array's element offset AddP node)
2488 #ifdef ASSERT
2489         const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
2490         assert(adr->is_AddP() && atype != NULL &&
2491                atype->instance_id() == inst_id, "array's element offset should be processed first");
2492 #endif
2493       }
2494       igvn->hash_insert(addp);
2495     }
2496   }
2497   // Put on IGVN worklist since at least addp's type was changed above.
2498   record_for_optimizer(addp);
2499   return true;
2500 }
2501 
2502 //
2503 // Create a new version of orig_phi if necessary. Returns either the newly
2504 // created phi or an existing phi.  Sets create_new to indicate whether a new
2505 // phi was created.  Cache the last newly created phi in the node map.
2506 //
2507 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, bool &new_created) {
2508   Compile *C = _compile;
2509   PhaseGVN* igvn = _igvn;
2510   new_created = false;
2511   int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
2512   // nothing to do if orig_phi is bottom memory or matches alias_idx
2513   if (phi_alias_idx == alias_idx) {
2514     return orig_phi;
2515   }
2516   // Have we recently created a Phi for this alias index?
2517   PhiNode *result = get_map_phi(orig_phi->_idx);
2518   if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
2519     return result;
2520   }
2521   // Previous check may fail when the same wide memory Phi was split into Phis
2522   // for different memory slices. Search all Phis for this region.
2523   if (result != NULL) {
2524     Node* region = orig_phi->in(0);
2525     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
2526       Node* phi = region->fast_out(i);
2527       if (phi->is_Phi() &&
2528           C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) {
2529         assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice");
2530         return phi->as_Phi();
2531       }
2532     }
2533   }
2534   if (C->live_nodes() + 2*NodeLimitFudgeFactor > C->max_node_limit()) {
2535     if (C->do_escape_analysis() == true && !C->failing()) {
2536       // Retry compilation without escape analysis.
2537       // If this is the first failure, the sentinel string will "stick"
2538       // to the Compile object, and the C2Compiler will see it and retry.
2539       C->record_failure(C2Compiler::retry_no_escape_analysis());
2540     }
2541     return NULL;
2542   }
2543   orig_phi_worklist.append_if_missing(orig_phi);
2544   const TypePtr *atype = C->get_adr_type(alias_idx);
2545   result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
2546   C->copy_node_notes_to(result, orig_phi);
2547   igvn->set_type(result, result->bottom_type());
2548   record_for_optimizer(result);
2549   set_map(orig_phi, result);
2550   new_created = true;
2551   return result;
2552 }
2553 
2554 //
2555 // Return a new version of Memory Phi "orig_phi" with the inputs having the
2556 // specified alias index.
2557 //
2558 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist) {
2559   assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
2560   Compile *C = _compile;
2561   PhaseGVN* igvn = _igvn;
2562   bool new_phi_created;
2563   PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, new_phi_created);
2564   if (!new_phi_created) {
2565     return result;
2566   }
2567   GrowableArray<PhiNode *>  phi_list;
2568   GrowableArray<uint>  cur_input;
2569   PhiNode *phi = orig_phi;
2570   uint idx = 1;
2571   bool finished = false;
2572   while(!finished) {
2573     while (idx < phi->req()) {
2574       Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist);
2575       if (mem != NULL && mem->is_Phi()) {
2576         PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, new_phi_created);
2577         if (new_phi_created) {
2578           // found an phi for which we created a new split, push current one on worklist and begin
2579           // processing new one
2580           phi_list.push(phi);
2581           cur_input.push(idx);
2582           phi = mem->as_Phi();
2583           result = newphi;
2584           idx = 1;
2585           continue;
2586         } else {
2587           mem = newphi;
2588         }
2589       }
2590       if (C->failing()) {
2591         return NULL;
2592       }
2593       result->set_req(idx++, mem);
2594     }
2595 #ifdef ASSERT
2596     // verify that the new Phi has an input for each input of the original
2597     assert( phi->req() == result->req(), "must have same number of inputs.");
2598     assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
2599 #endif
2600     // Check if all new phi's inputs have specified alias index.
2601     // Otherwise use old phi.
2602     for (uint i = 1; i < phi->req(); i++) {
2603       Node* in = result->in(i);
2604       assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
2605     }
2606     // we have finished processing a Phi, see if there are any more to do
2607     finished = (phi_list.length() == 0 );
2608     if (!finished) {
2609       phi = phi_list.pop();
2610       idx = cur_input.pop();
2611       PhiNode *prev_result = get_map_phi(phi->_idx);
2612       prev_result->set_req(idx++, result);
2613       result = prev_result;
2614     }
2615   }
2616   return result;
2617 }
2618 
2619 //
2620 // The next methods are derived from methods in MemNode.
2621 //
2622 Node* ConnectionGraph::step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *toop) {
2623   Node *mem = mmem;
2624   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
2625   // means an array I have not precisely typed yet.  Do not do any
2626   // alias stuff with it any time soon.
2627   if (toop->base() != Type::AnyPtr &&
2628       !(toop->klass() != NULL &&
2629         toop->klass()->is_java_lang_Object() &&
2630         toop->offset() == Type::OffsetBot)) {
2631     mem = mmem->memory_at(alias_idx);
2632     // Update input if it is progress over what we have now
2633   }
2634   return mem;
2635 }
2636 
2637 //
2638 // Move memory users to their memory slices.
2639 //
2640 void ConnectionGraph::move_inst_mem(Node* n, GrowableArray<PhiNode *>  &orig_phis) {
2641   Compile* C = _compile;
2642   PhaseGVN* igvn = _igvn;
2643   const TypePtr* tp = igvn->type(n->in(MemNode::Address))->isa_ptr();
2644   assert(tp != NULL, "ptr type");
2645   int alias_idx = C->get_alias_index(tp);
2646   int general_idx = C->get_general_index(alias_idx);
2647 
2648   // Move users first
2649   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2650     Node* use = n->fast_out(i);
2651     if (use->is_MergeMem()) {
2652       MergeMemNode* mmem = use->as_MergeMem();
2653       assert(n == mmem->memory_at(alias_idx), "should be on instance memory slice");
2654       if (n != mmem->memory_at(general_idx) || alias_idx == general_idx) {
2655         continue; // Nothing to do
2656       }
2657       // Replace previous general reference to mem node.
2658       uint orig_uniq = C->unique();
2659       Node* m = find_inst_mem(n, general_idx, orig_phis);
2660       assert(orig_uniq == C->unique(), "no new nodes");
2661       mmem->set_memory_at(general_idx, m);
2662       --imax;
2663       --i;
2664     } else if (use->is_MemBar()) {
2665       assert(!use->is_Initialize(), "initializing stores should not be moved");
2666       if (use->req() > MemBarNode::Precedent &&
2667           use->in(MemBarNode::Precedent) == n) {
2668         // Don't move related membars.
2669         record_for_optimizer(use);
2670         continue;
2671       }
2672       tp = use->as_MemBar()->adr_type()->isa_ptr();
2673       if ((tp != NULL && C->get_alias_index(tp) == alias_idx) ||
2674           alias_idx == general_idx) {
2675         continue; // Nothing to do
2676       }
2677       // Move to general memory slice.
2678       uint orig_uniq = C->unique();
2679       Node* m = find_inst_mem(n, general_idx, orig_phis);
2680       assert(orig_uniq == C->unique(), "no new nodes");
2681       igvn->hash_delete(use);
2682       imax -= use->replace_edge(n, m);
2683       igvn->hash_insert(use);
2684       record_for_optimizer(use);
2685       --i;
2686 #ifdef ASSERT
2687     } else if (use->is_Mem()) {
2688       if (use->Opcode() == Op_StoreCM && use->in(MemNode::OopStore) == n) {
2689         // Don't move related cardmark.
2690         continue;
2691       }
2692       // Memory nodes should have new memory input.
2693       tp = igvn->type(use->in(MemNode::Address))->isa_ptr();
2694       assert(tp != NULL, "ptr type");
2695       int idx = C->get_alias_index(tp);
2696       assert(get_map(use->_idx) != NULL || idx == alias_idx,
2697              "Following memory nodes should have new memory input or be on the same memory slice");
2698     } else if (use->is_Phi()) {
2699       // Phi nodes should be split and moved already.
2700       tp = use->as_Phi()->adr_type()->isa_ptr();
2701       assert(tp != NULL, "ptr type");
2702       int idx = C->get_alias_index(tp);
2703       assert(idx == alias_idx, "Following Phi nodes should be on the same memory slice");
2704     } else {
2705       use->dump();
2706       assert(false, "should not be here");
2707 #endif
2708     }
2709   }
2710 }
2711 
2712 //
2713 // Search memory chain of "mem" to find a MemNode whose address
2714 // is the specified alias index.
2715 //
2716 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *>  &orig_phis) {
2717   if (orig_mem == NULL)
2718     return orig_mem;
2719   Compile* C = _compile;
2720   PhaseGVN* igvn = _igvn;
2721   const TypeOopPtr *toop = C->get_adr_type(alias_idx)->isa_oopptr();
2722   bool is_instance = (toop != NULL) && toop->is_known_instance();
2723   Node *start_mem = C->start()->proj_out_or_null(TypeFunc::Memory);
2724   Node *prev = NULL;
2725   Node *result = orig_mem;
2726   while (prev != result) {
2727     prev = result;
2728     if (result == start_mem)
2729       break;  // hit one of our sentinels
2730     if (result->is_Mem()) {
2731       const Type *at = igvn->type(result->in(MemNode::Address));
2732       if (at == Type::TOP)
2733         break; // Dead
2734       assert (at->isa_ptr() != NULL, "pointer type required.");
2735       int idx = C->get_alias_index(at->is_ptr());
2736       if (idx == alias_idx)
2737         break; // Found
2738       if (!is_instance && (at->isa_oopptr() == NULL ||
2739                            !at->is_oopptr()->is_known_instance())) {
2740         break; // Do not skip store to general memory slice.
2741       }
2742       result = result->in(MemNode::Memory);
2743     }
2744     if (!is_instance)
2745       continue;  // don't search further for non-instance types
2746     // skip over a call which does not affect this memory slice
2747     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
2748       Node *proj_in = result->in(0);
2749       if (proj_in->is_Allocate() && proj_in->_idx == (uint)toop->instance_id()) {
2750         break;  // hit one of our sentinels
2751       } else if (proj_in->is_Call()) {
2752         // ArrayCopy node processed here as well
2753         CallNode *call = proj_in->as_Call();
2754         if (!call->may_modify(toop, igvn)) {
2755           result = call->in(TypeFunc::Memory);
2756         }
2757       } else if (proj_in->is_Initialize()) {
2758         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
2759         // Stop if this is the initialization for the object instance which
2760         // which contains this memory slice, otherwise skip over it.
2761         if (alloc == NULL || alloc->_idx != (uint)toop->instance_id()) {
2762           result = proj_in->in(TypeFunc::Memory);
2763         }
2764       } else if (proj_in->is_MemBar()) {
2765         // Check if there is an array copy for a clone
2766         // Step over GC barrier when ReduceInitialCardMarks is disabled
2767         BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2768         Node* control_proj_ac = bs->step_over_gc_barrier(proj_in->in(0));
2769 
2770         if (control_proj_ac->is_Proj() && control_proj_ac->in(0)->is_ArrayCopy()) {
2771           // Stop if it is a clone
2772           ArrayCopyNode* ac = control_proj_ac->in(0)->as_ArrayCopy();
2773           if (ac->may_modify(toop, igvn)) {
2774             break;
2775           }
2776         }
2777         result = proj_in->in(TypeFunc::Memory);
2778       }
2779     } else if (result->is_MergeMem()) {
2780       MergeMemNode *mmem = result->as_MergeMem();
2781       result = step_through_mergemem(mmem, alias_idx, toop);
2782       if (result == mmem->base_memory()) {
2783         // Didn't find instance memory, search through general slice recursively.
2784         result = mmem->memory_at(C->get_general_index(alias_idx));
2785         result = find_inst_mem(result, alias_idx, orig_phis);
2786         if (C->failing()) {
2787           return NULL;
2788         }
2789         mmem->set_memory_at(alias_idx, result);
2790       }
2791     } else if (result->is_Phi() &&
2792                C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
2793       Node *un = result->as_Phi()->unique_input(igvn);
2794       if (un != NULL) {
2795         orig_phis.append_if_missing(result->as_Phi());
2796         result = un;
2797       } else {
2798         break;
2799       }
2800     } else if (result->is_ClearArray()) {
2801       if (!ClearArrayNode::step_through(&result, (uint)toop->instance_id(), igvn)) {
2802         // Can not bypass initialization of the instance
2803         // we are looking for.
2804         break;
2805       }
2806       // Otherwise skip it (the call updated 'result' value).
2807     } else if (result->Opcode() == Op_SCMemProj) {
2808       Node* mem = result->in(0);
2809       Node* adr = NULL;
2810       if (mem->is_LoadStore()) {
2811         adr = mem->in(MemNode::Address);
2812       } else {
2813         assert(mem->Opcode() == Op_EncodeISOArray ||
2814                mem->Opcode() == Op_StrCompressedCopy, "sanity");
2815         adr = mem->in(3); // Memory edge corresponds to destination array
2816       }
2817       const Type *at = igvn->type(adr);
2818       if (at != Type::TOP) {
2819         assert(at->isa_ptr() != NULL, "pointer type required.");
2820         int idx = C->get_alias_index(at->is_ptr());
2821         if (idx == alias_idx) {
2822           // Assert in debug mode
2823           assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field");
2824           break; // In product mode return SCMemProj node
2825         }
2826       }
2827       result = mem->in(MemNode::Memory);
2828     } else if (result->Opcode() == Op_StrInflatedCopy) {
2829       Node* adr = result->in(3); // Memory edge corresponds to destination array
2830       const Type *at = igvn->type(adr);
2831       if (at != Type::TOP) {
2832         assert(at->isa_ptr() != NULL, "pointer type required.");
2833         int idx = C->get_alias_index(at->is_ptr());
2834         if (idx == alias_idx) {
2835           // Assert in debug mode
2836           assert(false, "Object is not scalar replaceable if a StrInflatedCopy node accesses its field");
2837           break; // In product mode return SCMemProj node
2838         }
2839       }
2840       result = result->in(MemNode::Memory);
2841     }
2842   }
2843   if (result->is_Phi()) {
2844     PhiNode *mphi = result->as_Phi();
2845     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
2846     const TypePtr *t = mphi->adr_type();
2847     if (!is_instance) {
2848       // Push all non-instance Phis on the orig_phis worklist to update inputs
2849       // during Phase 4 if needed.
2850       orig_phis.append_if_missing(mphi);
2851     } else if (C->get_alias_index(t) != alias_idx) {
2852       // Create a new Phi with the specified alias index type.
2853       result = split_memory_phi(mphi, alias_idx, orig_phis);
2854     }
2855   }
2856   // the result is either MemNode, PhiNode, InitializeNode.
2857   return result;
2858 }
2859 
2860 //
2861 //  Convert the types of unescaped object to instance types where possible,
2862 //  propagate the new type information through the graph, and update memory
2863 //  edges and MergeMem inputs to reflect the new type.
2864 //
2865 //  We start with allocations (and calls which may be allocations)  on alloc_worklist.
2866 //  The processing is done in 4 phases:
2867 //
2868 //  Phase 1:  Process possible allocations from alloc_worklist.  Create instance
2869 //            types for the CheckCastPP for allocations where possible.
2870 //            Propagate the new types through users as follows:
2871 //               casts and Phi:  push users on alloc_worklist
2872 //               AddP:  cast Base and Address inputs to the instance type
2873 //                      push any AddP users on alloc_worklist and push any memnode
2874 //                      users onto memnode_worklist.
2875 //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
2876 //            search the Memory chain for a store with the appropriate type
2877 //            address type.  If a Phi is found, create a new version with
2878 //            the appropriate memory slices from each of the Phi inputs.
2879 //            For stores, process the users as follows:
2880 //               MemNode:  push on memnode_worklist
2881 //               MergeMem: push on mergemem_worklist
2882 //  Phase 3:  Process MergeMem nodes from mergemem_worklist.  Walk each memory slice
2883 //            moving the first node encountered of each  instance type to the
2884 //            the input corresponding to its alias index.
2885 //            appropriate memory slice.
2886 //  Phase 4:  Update the inputs of non-instance memory Phis and the Memory input of memnodes.
2887 //
2888 // In the following example, the CheckCastPP nodes are the cast of allocation
2889 // results and the allocation of node 29 is unescaped and eligible to be an
2890 // instance type.
2891 //
2892 // We start with:
2893 //
2894 //     7 Parm #memory
2895 //    10  ConI  "12"
2896 //    19  CheckCastPP   "Foo"
2897 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2898 //    29  CheckCastPP   "Foo"
2899 //    30  AddP  _ 29 29 10  Foo+12  alias_index=4
2900 //
2901 //    40  StoreP  25   7  20   ... alias_index=4
2902 //    50  StoreP  35  40  30   ... alias_index=4
2903 //    60  StoreP  45  50  20   ... alias_index=4
2904 //    70  LoadP    _  60  30   ... alias_index=4
2905 //    80  Phi     75  50  60   Memory alias_index=4
2906 //    90  LoadP    _  80  30   ... alias_index=4
2907 //   100  LoadP    _  80  20   ... alias_index=4
2908 //
2909 //
2910 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
2911 // and creating a new alias index for node 30.  This gives:
2912 //
2913 //     7 Parm #memory
2914 //    10  ConI  "12"
2915 //    19  CheckCastPP   "Foo"
2916 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2917 //    29  CheckCastPP   "Foo"  iid=24
2918 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
2919 //
2920 //    40  StoreP  25   7  20   ... alias_index=4
2921 //    50  StoreP  35  40  30   ... alias_index=6
2922 //    60  StoreP  45  50  20   ... alias_index=4
2923 //    70  LoadP    _  60  30   ... alias_index=6
2924 //    80  Phi     75  50  60   Memory alias_index=4
2925 //    90  LoadP    _  80  30   ... alias_index=6
2926 //   100  LoadP    _  80  20   ... alias_index=4
2927 //
2928 // In phase 2, new memory inputs are computed for the loads and stores,
2929 // And a new version of the phi is created.  In phase 4, the inputs to
2930 // node 80 are updated and then the memory nodes are updated with the
2931 // values computed in phase 2.  This results in:
2932 //
2933 //     7 Parm #memory
2934 //    10  ConI  "12"
2935 //    19  CheckCastPP   "Foo"
2936 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2937 //    29  CheckCastPP   "Foo"  iid=24
2938 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
2939 //
2940 //    40  StoreP  25  7   20   ... alias_index=4
2941 //    50  StoreP  35  7   30   ... alias_index=6
2942 //    60  StoreP  45  40  20   ... alias_index=4
2943 //    70  LoadP    _  50  30   ... alias_index=6
2944 //    80  Phi     75  40  60   Memory alias_index=4
2945 //   120  Phi     75  50  50   Memory alias_index=6
2946 //    90  LoadP    _ 120  30   ... alias_index=6
2947 //   100  LoadP    _  80  20   ... alias_index=4
2948 //
2949 void ConnectionGraph::split_unique_types(GrowableArray<Node *>  &alloc_worklist, GrowableArray<ArrayCopyNode*> &arraycopy_worklist) {
2950   GrowableArray<Node *>  memnode_worklist;
2951   GrowableArray<PhiNode *>  orig_phis;
2952   PhaseIterGVN  *igvn = _igvn;
2953   uint new_index_start = (uint) _compile->num_alias_types();
2954   VectorSet visited;
2955   ideal_nodes.clear(); // Reset for use with set_map/get_map.
2956   uint unique_old = _compile->unique();
2957 
2958   //  Phase 1:  Process possible allocations from alloc_worklist.
2959   //  Create instance types for the CheckCastPP for allocations where possible.
2960   //
2961   // (Note: don't forget to change the order of the second AddP node on
2962   //  the alloc_worklist if the order of the worklist processing is changed,
2963   //  see the comment in find_second_addp().)
2964   //
2965   while (alloc_worklist.length() != 0) {
2966     Node *n = alloc_worklist.pop();
2967     uint ni = n->_idx;
2968     if (n->is_Call()) {
2969       CallNode *alloc = n->as_Call();
2970       // copy escape information to call node
2971       PointsToNode* ptn = ptnode_adr(alloc->_idx);
2972       PointsToNode::EscapeState es = ptn->escape_state();
2973       // We have an allocation or call which returns a Java object,
2974       // see if it is unescaped.
2975       if (es != PointsToNode::NoEscape || !ptn->scalar_replaceable())
2976         continue;
2977       // Find CheckCastPP for the allocate or for the return value of a call
2978       n = alloc->result_cast();
2979       if (n == NULL) {            // No uses except Initialize node
2980         if (alloc->is_Allocate()) {
2981           // Set the scalar_replaceable flag for allocation
2982           // so it could be eliminated if it has no uses.
2983           alloc->as_Allocate()->_is_scalar_replaceable = true;
2984         }
2985         if (alloc->is_CallStaticJava()) {
2986           // Set the scalar_replaceable flag for boxing method
2987           // so it could be eliminated if it has no uses.
2988           alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
2989         }
2990         continue;
2991       }
2992       if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
2993         // we could reach here for allocate case if one init is associated with many allocs.
2994         if (alloc->is_Allocate()) {
2995           alloc->as_Allocate()->_is_scalar_replaceable = false;
2996         }
2997         continue;
2998       }
2999 
3000       // The inline code for Object.clone() casts the allocation result to
3001       // java.lang.Object and then to the actual type of the allocated
3002       // object. Detect this case and use the second cast.
3003       // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
3004       // the allocation result is cast to java.lang.Object and then
3005       // to the actual Array type.
3006       if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
3007           && (alloc->is_AllocateArray() ||
3008               igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) {
3009         Node *cast2 = NULL;
3010         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3011           Node *use = n->fast_out(i);
3012           if (use->is_CheckCastPP()) {
3013             cast2 = use;
3014             break;
3015           }
3016         }
3017         if (cast2 != NULL) {
3018           n = cast2;
3019         } else {
3020           // Non-scalar replaceable if the allocation type is unknown statically
3021           // (reflection allocation), the object can't be restored during
3022           // deoptimization without precise type.
3023           continue;
3024         }
3025       }
3026 
3027       const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
3028       if (t == NULL)
3029         continue;  // not a TypeOopPtr
3030       if (!t->klass_is_exact())
3031         continue; // not an unique type
3032 
3033       if (alloc->is_Allocate()) {
3034         // Set the scalar_replaceable flag for allocation
3035         // so it could be eliminated.
3036         alloc->as_Allocate()->_is_scalar_replaceable = true;
3037       }
3038       if (alloc->is_CallStaticJava()) {
3039         // Set the scalar_replaceable flag for boxing method
3040         // so it could be eliminated.
3041         alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
3042       }
3043       set_escape_state(ptnode_adr(n->_idx), es); // CheckCastPP escape state
3044       // in order for an object to be scalar-replaceable, it must be:
3045       //   - a direct allocation (not a call returning an object)
3046       //   - non-escaping
3047       //   - eligible to be a unique type
3048       //   - not determined to be ineligible by escape analysis
3049       set_map(alloc, n);
3050       set_map(n, alloc);
3051       const TypeOopPtr* tinst = t->cast_to_instance_id(ni);
3052       igvn->hash_delete(n);
3053       igvn->set_type(n,  tinst);
3054       n->raise_bottom_type(tinst);
3055       igvn->hash_insert(n);
3056       record_for_optimizer(n);
3057       // Allocate an alias index for the header fields. Accesses to
3058       // the header emitted during macro expansion wouldn't have
3059       // correct memory state otherwise.
3060       _compile->get_alias_index(tinst->add_offset(oopDesc::mark_offset_in_bytes()));
3061       _compile->get_alias_index(tinst->add_offset(oopDesc::klass_offset_in_bytes()));
3062       if (alloc->is_Allocate() && (t->isa_instptr() || t->isa_aryptr())) {
3063 
3064         // First, put on the worklist all Field edges from Connection Graph
3065         // which is more accurate than putting immediate users from Ideal Graph.
3066         for (EdgeIterator e(ptn); e.has_next(); e.next()) {
3067           PointsToNode* tgt = e.get();
3068           if (tgt->is_Arraycopy()) {
3069             continue;
3070           }
3071           Node* use = tgt->ideal_node();
3072           assert(tgt->is_Field() && use->is_AddP(),
3073                  "only AddP nodes are Field edges in CG");
3074           if (use->outcnt() > 0) { // Don't process dead nodes
3075             Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
3076             if (addp2 != NULL) {
3077               assert(alloc->is_AllocateArray(),"array allocation was expected");
3078               alloc_worklist.append_if_missing(addp2);
3079             }
3080             alloc_worklist.append_if_missing(use);
3081           }
3082         }
3083 
3084         // An allocation may have an Initialize which has raw stores. Scan
3085         // the users of the raw allocation result and push AddP users
3086         // on alloc_worklist.
3087         Node *raw_result = alloc->proj_out_or_null(TypeFunc::Parms);
3088         assert (raw_result != NULL, "must have an allocation result");
3089         for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
3090           Node *use = raw_result->fast_out(i);
3091           if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
3092             Node* addp2 = find_second_addp(use, raw_result);
3093             if (addp2 != NULL) {
3094               assert(alloc->is_AllocateArray(),"array allocation was expected");
3095               alloc_worklist.append_if_missing(addp2);
3096             }
3097             alloc_worklist.append_if_missing(use);
3098           } else if (use->is_MemBar()) {
3099             memnode_worklist.append_if_missing(use);
3100           }
3101         }
3102       }
3103     } else if (n->is_AddP()) {
3104       JavaObjectNode* jobj = unique_java_object(get_addp_base(n));
3105       if (jobj == NULL || jobj == phantom_obj) {
3106 #ifdef ASSERT
3107         ptnode_adr(get_addp_base(n)->_idx)->dump();
3108         ptnode_adr(n->_idx)->dump();
3109         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
3110 #endif
3111         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
3112         return;
3113       }
3114       Node *base = get_map(jobj->idx());  // CheckCastPP node
3115       if (!split_AddP(n, base)) continue; // wrong type from dead path
3116     } else if (n->is_Phi() ||
3117                n->is_CheckCastPP() ||
3118                n->is_EncodeP() ||
3119                n->is_DecodeN() ||
3120                (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
3121       if (visited.test_set(n->_idx)) {
3122         assert(n->is_Phi(), "loops only through Phi's");
3123         continue;  // already processed
3124       }
3125       JavaObjectNode* jobj = unique_java_object(n);
3126       if (jobj == NULL || jobj == phantom_obj) {
3127 #ifdef ASSERT
3128         ptnode_adr(n->_idx)->dump();
3129         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
3130 #endif
3131         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
3132         return;
3133       } else {
3134         Node *val = get_map(jobj->idx());   // CheckCastPP node
3135         TypeNode *tn = n->as_Type();
3136         const TypeOopPtr* tinst = igvn->type(val)->isa_oopptr();
3137         assert(tinst != NULL && tinst->is_known_instance() &&
3138                tinst->instance_id() == jobj->idx() , "instance type expected.");
3139 
3140         const Type *tn_type = igvn->type(tn);
3141         const TypeOopPtr *tn_t;
3142         if (tn_type->isa_narrowoop()) {
3143           tn_t = tn_type->make_ptr()->isa_oopptr();
3144         } else {
3145           tn_t = tn_type->isa_oopptr();
3146         }
3147         if (tn_t != NULL && tinst->klass()->is_subtype_of(tn_t->klass())) {
3148           if (tn_type->isa_narrowoop()) {
3149             tn_type = tinst->make_narrowoop();
3150           } else {
3151             tn_type = tinst;
3152           }
3153           igvn->hash_delete(tn);
3154           igvn->set_type(tn, tn_type);
3155           tn->set_type(tn_type);
3156           igvn->hash_insert(tn);
3157           record_for_optimizer(n);
3158         } else {
3159           assert(tn_type == TypePtr::NULL_PTR ||
3160                  tn_t != NULL && !tinst->klass()->is_subtype_of(tn_t->klass()),
3161                  "unexpected type");
3162           continue; // Skip dead path with different type
3163         }
3164       }
3165     } else {
3166       debug_only(n->dump();)
3167       assert(false, "EA: unexpected node");
3168       continue;
3169     }
3170     // push allocation's users on appropriate worklist
3171     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3172       Node *use = n->fast_out(i);
3173       if(use->is_Mem() && use->in(MemNode::Address) == n) {
3174         // Load/store to instance's field
3175         memnode_worklist.append_if_missing(use);
3176       } else if (use->is_MemBar()) {
3177         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
3178           memnode_worklist.append_if_missing(use);
3179         }
3180       } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
3181         Node* addp2 = find_second_addp(use, n);
3182         if (addp2 != NULL) {
3183           alloc_worklist.append_if_missing(addp2);
3184         }
3185         alloc_worklist.append_if_missing(use);
3186       } else if (use->is_Phi() ||
3187                  use->is_CheckCastPP() ||
3188                  use->is_EncodeNarrowPtr() ||
3189                  use->is_DecodeNarrowPtr() ||
3190                  (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
3191         alloc_worklist.append_if_missing(use);
3192 #ifdef ASSERT
3193       } else if (use->is_Mem()) {
3194         assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path");
3195       } else if (use->is_MergeMem()) {
3196         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3197       } else if (use->is_SafePoint()) {
3198         // Look for MergeMem nodes for calls which reference unique allocation
3199         // (through CheckCastPP nodes) even for debug info.
3200         Node* m = use->in(TypeFunc::Memory);
3201         if (m->is_MergeMem()) {
3202           assert(_mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3203         }
3204       } else if (use->Opcode() == Op_EncodeISOArray) {
3205         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
3206           // EncodeISOArray overwrites destination array
3207           memnode_worklist.append_if_missing(use);
3208         }
3209       } else {
3210         uint op = use->Opcode();
3211         if ((op == Op_StrCompressedCopy || op == Op_StrInflatedCopy) &&
3212             (use->in(MemNode::Memory) == n)) {
3213           // They overwrite memory edge corresponding to destination array,
3214           memnode_worklist.append_if_missing(use);
3215         } else if (!(op == Op_CmpP || op == Op_Conv2B ||
3216               op == Op_CastP2X || op == Op_StoreCM ||
3217               op == Op_FastLock || op == Op_AryEq || op == Op_StrComp || op == Op_HasNegatives ||
3218               op == Op_StrCompressedCopy || op == Op_StrInflatedCopy ||
3219               op == Op_StrEquals || op == Op_StrIndexOf || op == Op_StrIndexOfChar ||
3220               op == Op_SubTypeCheck ||
3221               BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(use))) {
3222           n->dump();
3223           use->dump();
3224           assert(false, "EA: missing allocation reference path");
3225         }
3226 #endif
3227       }
3228     }
3229 
3230   }
3231 
3232   // Go over all ArrayCopy nodes and if one of the inputs has a unique
3233   // type, record it in the ArrayCopy node so we know what memory this
3234   // node uses/modified.
3235   for (int next = 0; next < arraycopy_worklist.length(); next++) {
3236     ArrayCopyNode* ac = arraycopy_worklist.at(next);
3237     Node* dest = ac->in(ArrayCopyNode::Dest);
3238     if (dest->is_AddP()) {
3239       dest = get_addp_base(dest);
3240     }
3241     JavaObjectNode* jobj = unique_java_object(dest);
3242     if (jobj != NULL) {
3243       Node *base = get_map(jobj->idx());
3244       if (base != NULL) {
3245         const TypeOopPtr *base_t = _igvn->type(base)->isa_oopptr();
3246         ac->_dest_type = base_t;
3247       }
3248     }
3249     Node* src = ac->in(ArrayCopyNode::Src);
3250     if (src->is_AddP()) {
3251       src = get_addp_base(src);
3252     }
3253     jobj = unique_java_object(src);
3254     if (jobj != NULL) {
3255       Node* base = get_map(jobj->idx());
3256       if (base != NULL) {
3257         const TypeOopPtr *base_t = _igvn->type(base)->isa_oopptr();
3258         ac->_src_type = base_t;
3259       }
3260     }
3261   }
3262 
3263   // New alias types were created in split_AddP().
3264   uint new_index_end = (uint) _compile->num_alias_types();
3265   assert(unique_old == _compile->unique(), "there should be no new ideal nodes after Phase 1");
3266 
3267   //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
3268   //            compute new values for Memory inputs  (the Memory inputs are not
3269   //            actually updated until phase 4.)
3270   if (memnode_worklist.length() == 0)
3271     return;  // nothing to do
3272   while (memnode_worklist.length() != 0) {
3273     Node *n = memnode_worklist.pop();
3274     if (visited.test_set(n->_idx))
3275       continue;
3276     if (n->is_Phi() || n->is_ClearArray()) {
3277       // we don't need to do anything, but the users must be pushed
3278     } else if (n->is_MemBar()) { // Initialize, MemBar nodes
3279       // we don't need to do anything, but the users must be pushed
3280       n = n->as_MemBar()->proj_out_or_null(TypeFunc::Memory);
3281       if (n == NULL)
3282         continue;
3283     } else if (n->Opcode() == Op_StrCompressedCopy ||
3284                n->Opcode() == Op_EncodeISOArray) {
3285       // get the memory projection
3286       n = n->find_out_with(Op_SCMemProj);
3287       assert(n != NULL && n->Opcode() == Op_SCMemProj, "memory projection required");
3288     } else {
3289       assert(n->is_Mem(), "memory node required.");
3290       Node *addr = n->in(MemNode::Address);
3291       const Type *addr_t = igvn->type(addr);
3292       if (addr_t == Type::TOP)
3293         continue;
3294       assert (addr_t->isa_ptr() != NULL, "pointer type required.");
3295       int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
3296       assert ((uint)alias_idx < new_index_end, "wrong alias index");
3297       Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis);
3298       if (_compile->failing()) {
3299         return;
3300       }
3301       if (mem != n->in(MemNode::Memory)) {
3302         // We delay the memory edge update since we need old one in
3303         // MergeMem code below when instances memory slices are separated.
3304         set_map(n, mem);
3305       }
3306       if (n->is_Load()) {
3307         continue;  // don't push users
3308       } else if (n->is_LoadStore()) {
3309         // get the memory projection
3310         n = n->find_out_with(Op_SCMemProj);
3311         assert(n != NULL && n->Opcode() == Op_SCMemProj, "memory projection required");
3312       }
3313     }
3314     // push user on appropriate worklist
3315     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3316       Node *use = n->fast_out(i);
3317       if (use->is_Phi() || use->is_ClearArray()) {
3318         memnode_worklist.append_if_missing(use);
3319       } else if (use->is_Mem() && use->in(MemNode::Memory) == n) {
3320         if (use->Opcode() == Op_StoreCM) // Ignore cardmark stores
3321           continue;
3322         memnode_worklist.append_if_missing(use);
3323       } else if (use->is_MemBar()) {
3324         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
3325           memnode_worklist.append_if_missing(use);
3326         }
3327 #ifdef ASSERT
3328       } else if(use->is_Mem()) {
3329         assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
3330       } else if (use->is_MergeMem()) {
3331         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3332       } else if (use->Opcode() == Op_EncodeISOArray) {
3333         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
3334           // EncodeISOArray overwrites destination array
3335           memnode_worklist.append_if_missing(use);
3336         }
3337       } else {
3338         uint op = use->Opcode();
3339         if ((use->in(MemNode::Memory) == n) &&
3340             (op == Op_StrCompressedCopy || op == Op_StrInflatedCopy)) {
3341           // They overwrite memory edge corresponding to destination array,
3342           memnode_worklist.append_if_missing(use);
3343         } else if (!(BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(use) ||
3344               op == Op_AryEq || op == Op_StrComp || op == Op_HasNegatives ||
3345               op == Op_StrCompressedCopy || op == Op_StrInflatedCopy ||
3346               op == Op_StrEquals || op == Op_StrIndexOf || op == Op_StrIndexOfChar)) {
3347           n->dump();
3348           use->dump();
3349           assert(false, "EA: missing memory path");
3350         }
3351 #endif
3352       }
3353     }
3354   }
3355 
3356   //  Phase 3:  Process MergeMem nodes from mergemem_worklist.
3357   //            Walk each memory slice moving the first node encountered of each
3358   //            instance type to the the input corresponding to its alias index.
3359   uint length = _mergemem_worklist.length();
3360   for( uint next = 0; next < length; ++next ) {
3361     MergeMemNode* nmm = _mergemem_worklist.at(next);
3362     assert(!visited.test_set(nmm->_idx), "should not be visited before");
3363     // Note: we don't want to use MergeMemStream here because we only want to
3364     // scan inputs which exist at the start, not ones we add during processing.
3365     // Note 2: MergeMem may already contains instance memory slices added
3366     // during find_inst_mem() call when memory nodes were processed above.
3367     igvn->hash_delete(nmm);
3368     uint nslices = MIN2(nmm->req(), new_index_start);
3369     for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
3370       Node* mem = nmm->in(i);
3371       Node* cur = NULL;
3372       if (mem == NULL || mem->is_top())
3373         continue;
3374       // First, update mergemem by moving memory nodes to corresponding slices
3375       // if their type became more precise since this mergemem was created.
3376       while (mem->is_Mem()) {
3377         const Type *at = igvn->type(mem->in(MemNode::Address));
3378         if (at != Type::TOP) {
3379           assert (at->isa_ptr() != NULL, "pointer type required.");
3380           uint idx = (uint)_compile->get_alias_index(at->is_ptr());
3381           if (idx == i) {
3382             if (cur == NULL)
3383               cur = mem;
3384           } else {
3385             if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
3386               nmm->set_memory_at(idx, mem);
3387             }
3388           }
3389         }
3390         mem = mem->in(MemNode::Memory);
3391       }
3392       nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
3393       // Find any instance of the current type if we haven't encountered
3394       // already a memory slice of the instance along the memory chain.
3395       for (uint ni = new_index_start; ni < new_index_end; ni++) {
3396         if((uint)_compile->get_general_index(ni) == i) {
3397           Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
3398           if (nmm->is_empty_memory(m)) {
3399             Node* result = find_inst_mem(mem, ni, orig_phis);
3400             if (_compile->failing()) {
3401               return;
3402             }
3403             nmm->set_memory_at(ni, result);
3404           }
3405         }
3406       }
3407     }
3408     // Find the rest of instances values
3409     for (uint ni = new_index_start; ni < new_index_end; ni++) {
3410       const TypeOopPtr *tinst = _compile->get_adr_type(ni)->isa_oopptr();
3411       Node* result = step_through_mergemem(nmm, ni, tinst);
3412       if (result == nmm->base_memory()) {
3413         // Didn't find instance memory, search through general slice recursively.
3414         result = nmm->memory_at(_compile->get_general_index(ni));
3415         result = find_inst_mem(result, ni, orig_phis);
3416         if (_compile->failing()) {
3417           return;
3418         }
3419         nmm->set_memory_at(ni, result);
3420       }
3421     }
3422     igvn->hash_insert(nmm);
3423     record_for_optimizer(nmm);
3424   }
3425 
3426   //  Phase 4:  Update the inputs of non-instance memory Phis and
3427   //            the Memory input of memnodes
3428   // First update the inputs of any non-instance Phi's from
3429   // which we split out an instance Phi.  Note we don't have
3430   // to recursively process Phi's encounted on the input memory
3431   // chains as is done in split_memory_phi() since they  will
3432   // also be processed here.
3433   for (int j = 0; j < orig_phis.length(); j++) {
3434     PhiNode *phi = orig_phis.at(j);
3435     int alias_idx = _compile->get_alias_index(phi->adr_type());
3436     igvn->hash_delete(phi);
3437     for (uint i = 1; i < phi->req(); i++) {
3438       Node *mem = phi->in(i);
3439       Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis);
3440       if (_compile->failing()) {
3441         return;
3442       }
3443       if (mem != new_mem) {
3444         phi->set_req(i, new_mem);
3445       }
3446     }
3447     igvn->hash_insert(phi);
3448     record_for_optimizer(phi);
3449   }
3450 
3451   // Update the memory inputs of MemNodes with the value we computed
3452   // in Phase 2 and move stores memory users to corresponding memory slices.
3453   // Disable memory split verification code until the fix for 6984348.
3454   // Currently it produces false negative results since it does not cover all cases.
3455 #if 0 // ifdef ASSERT
3456   visited.Reset();
3457   Node_Stack old_mems(arena, _compile->unique() >> 2);
3458 #endif
3459   for (uint i = 0; i < ideal_nodes.size(); i++) {
3460     Node*    n = ideal_nodes.at(i);
3461     Node* nmem = get_map(n->_idx);
3462     assert(nmem != NULL, "sanity");
3463     if (n->is_Mem()) {
3464 #if 0 // ifdef ASSERT
3465       Node* old_mem = n->in(MemNode::Memory);
3466       if (!visited.test_set(old_mem->_idx)) {
3467         old_mems.push(old_mem, old_mem->outcnt());
3468       }
3469 #endif
3470       assert(n->in(MemNode::Memory) != nmem, "sanity");
3471       if (!n->is_Load()) {
3472         // Move memory users of a store first.
3473         move_inst_mem(n, orig_phis);
3474       }
3475       // Now update memory input
3476       igvn->hash_delete(n);
3477       n->set_req(MemNode::Memory, nmem);
3478       igvn->hash_insert(n);
3479       record_for_optimizer(n);
3480     } else {
3481       assert(n->is_Allocate() || n->is_CheckCastPP() ||
3482              n->is_AddP() || n->is_Phi(), "unknown node used for set_map()");
3483     }
3484   }
3485 #if 0 // ifdef ASSERT
3486   // Verify that memory was split correctly
3487   while (old_mems.is_nonempty()) {
3488     Node* old_mem = old_mems.node();
3489     uint  old_cnt = old_mems.index();
3490     old_mems.pop();
3491     assert(old_cnt == old_mem->outcnt(), "old mem could be lost");
3492   }
3493 #endif
3494 }
3495 
3496 #ifndef PRODUCT
3497 static const char *node_type_names[] = {
3498   "UnknownType",
3499   "JavaObject",
3500   "LocalVar",
3501   "Field",
3502   "Arraycopy"
3503 };
3504 
3505 static const char *esc_names[] = {
3506   "UnknownEscape",
3507   "NoEscape",
3508   "ArgEscape",
3509   "GlobalEscape"
3510 };
3511 
3512 void PointsToNode::dump(bool print_state) const {
3513   NodeType nt = node_type();
3514   tty->print("%s ", node_type_names[(int) nt]);
3515   if (print_state) {
3516     EscapeState es = escape_state();
3517     EscapeState fields_es = fields_escape_state();
3518     tty->print("%s(%s) ", esc_names[(int)es], esc_names[(int)fields_es]);
3519     if (nt == PointsToNode::JavaObject && !this->scalar_replaceable())
3520       tty->print("NSR ");
3521   }
3522   if (is_Field()) {
3523     FieldNode* f = (FieldNode*)this;
3524     if (f->is_oop())
3525       tty->print("oop ");
3526     if (f->offset() > 0)
3527       tty->print("+%d ", f->offset());
3528     tty->print("(");
3529     for (BaseIterator i(f); i.has_next(); i.next()) {
3530       PointsToNode* b = i.get();
3531       tty->print(" %d%s", b->idx(),(b->is_JavaObject() ? "P" : ""));
3532     }
3533     tty->print(" )");
3534   }
3535   tty->print("[");
3536   for (EdgeIterator i(this); i.has_next(); i.next()) {
3537     PointsToNode* e = i.get();
3538     tty->print(" %d%s%s", e->idx(),(e->is_JavaObject() ? "P" : (e->is_Field() ? "F" : "")), e->is_Arraycopy() ? "cp" : "");
3539   }
3540   tty->print(" [");
3541   for (UseIterator i(this); i.has_next(); i.next()) {
3542     PointsToNode* u = i.get();
3543     bool is_base = false;
3544     if (PointsToNode::is_base_use(u)) {
3545       is_base = true;
3546       u = PointsToNode::get_use_node(u)->as_Field();
3547     }
3548     tty->print(" %d%s%s", u->idx(), is_base ? "b" : "", u->is_Arraycopy() ? "cp" : "");
3549   }
3550   tty->print(" ]]  ");
3551   if (_node == NULL)
3552     tty->print_cr("<null>");
3553   else
3554     _node->dump();
3555 }
3556 
3557 void ConnectionGraph::dump(GrowableArray<PointsToNode*>& ptnodes_worklist) {
3558   bool first = true;
3559   int ptnodes_length = ptnodes_worklist.length();
3560   for (int i = 0; i < ptnodes_length; i++) {
3561     PointsToNode *ptn = ptnodes_worklist.at(i);
3562     if (ptn == NULL || !ptn->is_JavaObject())
3563       continue;
3564     PointsToNode::EscapeState es = ptn->escape_state();
3565     if ((es != PointsToNode::NoEscape) && !Verbose) {
3566       continue;
3567     }
3568     Node* n = ptn->ideal_node();
3569     if (n->is_Allocate() || (n->is_CallStaticJava() &&
3570                              n->as_CallStaticJava()->is_boxing_method())) {
3571       if (first) {
3572         tty->cr();
3573         tty->print("======== Connection graph for ");
3574         _compile->method()->print_short_name();
3575         tty->cr();
3576         first = false;
3577       }
3578       ptn->dump();
3579       // Print all locals and fields which reference this allocation
3580       for (UseIterator j(ptn); j.has_next(); j.next()) {
3581         PointsToNode* use = j.get();
3582         if (use->is_LocalVar()) {
3583           use->dump(Verbose);
3584         } else if (Verbose) {
3585           use->dump();
3586         }
3587       }
3588       tty->cr();
3589     }
3590   }
3591 }
3592 #endif
3593 
3594 void ConnectionGraph::record_for_optimizer(Node *n) {
3595   _igvn->_worklist.push(n);
3596   _igvn->add_users_to_worklist(n);
3597 }