1 /* 2 * Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "jvm.h" 27 #include "asm/macroAssembler.hpp" 28 #include "asm/macroAssembler.inline.hpp" 29 #include "logging/log.hpp" 30 #include "logging/logStream.hpp" 31 #include "memory/resourceArea.hpp" 32 #include "runtime/java.hpp" 33 #include "runtime/os.hpp" 34 #include "runtime/stubCodeGenerator.hpp" 35 #include "runtime/vm_version.hpp" 36 #include "utilities/powerOfTwo.hpp" 37 #include "utilities/virtualizationSupport.hpp" 38 39 #include OS_HEADER_INLINE(os) 40 41 int VM_Version::_cpu; 42 int VM_Version::_model; 43 int VM_Version::_stepping; 44 bool VM_Version::_has_intel_jcc_erratum; 45 VM_Version::CpuidInfo VM_Version::_cpuid_info = { 0, }; 46 47 // Address of instruction which causes SEGV 48 address VM_Version::_cpuinfo_segv_addr = 0; 49 // Address of instruction after the one which causes SEGV 50 address VM_Version::_cpuinfo_cont_addr = 0; 51 52 static BufferBlob* stub_blob; 53 static const int stub_size = 2000; 54 55 extern "C" { 56 typedef void (*get_cpu_info_stub_t)(void*); 57 typedef void (*detect_virt_stub_t)(uint32_t, uint32_t*); 58 } 59 static get_cpu_info_stub_t get_cpu_info_stub = NULL; 60 static detect_virt_stub_t detect_virt_stub = NULL; 61 62 63 class VM_Version_StubGenerator: public StubCodeGenerator { 64 public: 65 66 VM_Version_StubGenerator(CodeBuffer *c) : StubCodeGenerator(c) {} 67 68 address generate_get_cpu_info() { 69 // Flags to test CPU type. 70 const uint32_t HS_EFL_AC = 0x40000; 71 const uint32_t HS_EFL_ID = 0x200000; 72 // Values for when we don't have a CPUID instruction. 73 const int CPU_FAMILY_SHIFT = 8; 74 const uint32_t CPU_FAMILY_386 = (3 << CPU_FAMILY_SHIFT); 75 const uint32_t CPU_FAMILY_486 = (4 << CPU_FAMILY_SHIFT); 76 bool use_evex = FLAG_IS_DEFAULT(UseAVX) || (UseAVX > 2); 77 78 Label detect_486, cpu486, detect_586, std_cpuid1, std_cpuid4; 79 Label sef_cpuid, ext_cpuid, ext_cpuid1, ext_cpuid5, ext_cpuid7, ext_cpuid8, done, wrapup; 80 Label legacy_setup, save_restore_except, legacy_save_restore, start_simd_check; 81 82 StubCodeMark mark(this, "VM_Version", "get_cpu_info_stub"); 83 # define __ _masm-> 84 85 address start = __ pc(); 86 87 // 88 // void get_cpu_info(VM_Version::CpuidInfo* cpuid_info); 89 // 90 // LP64: rcx and rdx are first and second argument registers on windows 91 92 __ push(rbp); 93 #ifdef _LP64 94 __ mov(rbp, c_rarg0); // cpuid_info address 95 #else 96 __ movptr(rbp, Address(rsp, 8)); // cpuid_info address 97 #endif 98 __ push(rbx); 99 __ push(rsi); 100 __ pushf(); // preserve rbx, and flags 101 __ pop(rax); 102 __ push(rax); 103 __ mov(rcx, rax); 104 // 105 // if we are unable to change the AC flag, we have a 386 106 // 107 __ xorl(rax, HS_EFL_AC); 108 __ push(rax); 109 __ popf(); 110 __ pushf(); 111 __ pop(rax); 112 __ cmpptr(rax, rcx); 113 __ jccb(Assembler::notEqual, detect_486); 114 115 __ movl(rax, CPU_FAMILY_386); 116 __ movl(Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())), rax); 117 __ jmp(done); 118 119 // 120 // If we are unable to change the ID flag, we have a 486 which does 121 // not support the "cpuid" instruction. 122 // 123 __ bind(detect_486); 124 __ mov(rax, rcx); 125 __ xorl(rax, HS_EFL_ID); 126 __ push(rax); 127 __ popf(); 128 __ pushf(); 129 __ pop(rax); 130 __ cmpptr(rcx, rax); 131 __ jccb(Assembler::notEqual, detect_586); 132 133 __ bind(cpu486); 134 __ movl(rax, CPU_FAMILY_486); 135 __ movl(Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())), rax); 136 __ jmp(done); 137 138 // 139 // At this point, we have a chip which supports the "cpuid" instruction 140 // 141 __ bind(detect_586); 142 __ xorl(rax, rax); 143 __ cpuid(); 144 __ orl(rax, rax); 145 __ jcc(Assembler::equal, cpu486); // if cpuid doesn't support an input 146 // value of at least 1, we give up and 147 // assume a 486 148 __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset()))); 149 __ movl(Address(rsi, 0), rax); 150 __ movl(Address(rsi, 4), rbx); 151 __ movl(Address(rsi, 8), rcx); 152 __ movl(Address(rsi,12), rdx); 153 154 __ cmpl(rax, 0xa); // Is cpuid(0xB) supported? 155 __ jccb(Assembler::belowEqual, std_cpuid4); 156 157 // 158 // cpuid(0xB) Processor Topology 159 // 160 __ movl(rax, 0xb); 161 __ xorl(rcx, rcx); // Threads level 162 __ cpuid(); 163 164 __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB0_offset()))); 165 __ movl(Address(rsi, 0), rax); 166 __ movl(Address(rsi, 4), rbx); 167 __ movl(Address(rsi, 8), rcx); 168 __ movl(Address(rsi,12), rdx); 169 170 __ movl(rax, 0xb); 171 __ movl(rcx, 1); // Cores level 172 __ cpuid(); 173 __ push(rax); 174 __ andl(rax, 0x1f); // Determine if valid topology level 175 __ orl(rax, rbx); // eax[4:0] | ebx[0:15] == 0 indicates invalid level 176 __ andl(rax, 0xffff); 177 __ pop(rax); 178 __ jccb(Assembler::equal, std_cpuid4); 179 180 __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB1_offset()))); 181 __ movl(Address(rsi, 0), rax); 182 __ movl(Address(rsi, 4), rbx); 183 __ movl(Address(rsi, 8), rcx); 184 __ movl(Address(rsi,12), rdx); 185 186 __ movl(rax, 0xb); 187 __ movl(rcx, 2); // Packages level 188 __ cpuid(); 189 __ push(rax); 190 __ andl(rax, 0x1f); // Determine if valid topology level 191 __ orl(rax, rbx); // eax[4:0] | ebx[0:15] == 0 indicates invalid level 192 __ andl(rax, 0xffff); 193 __ pop(rax); 194 __ jccb(Assembler::equal, std_cpuid4); 195 196 __ lea(rsi, Address(rbp, in_bytes(VM_Version::tpl_cpuidB2_offset()))); 197 __ movl(Address(rsi, 0), rax); 198 __ movl(Address(rsi, 4), rbx); 199 __ movl(Address(rsi, 8), rcx); 200 __ movl(Address(rsi,12), rdx); 201 202 // 203 // cpuid(0x4) Deterministic cache params 204 // 205 __ bind(std_cpuid4); 206 __ movl(rax, 4); 207 __ cmpl(rax, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset()))); // Is cpuid(0x4) supported? 208 __ jccb(Assembler::greater, std_cpuid1); 209 210 __ xorl(rcx, rcx); // L1 cache 211 __ cpuid(); 212 __ push(rax); 213 __ andl(rax, 0x1f); // Determine if valid cache parameters used 214 __ orl(rax, rax); // eax[4:0] == 0 indicates invalid cache 215 __ pop(rax); 216 __ jccb(Assembler::equal, std_cpuid1); 217 218 __ lea(rsi, Address(rbp, in_bytes(VM_Version::dcp_cpuid4_offset()))); 219 __ movl(Address(rsi, 0), rax); 220 __ movl(Address(rsi, 4), rbx); 221 __ movl(Address(rsi, 8), rcx); 222 __ movl(Address(rsi,12), rdx); 223 224 // 225 // Standard cpuid(0x1) 226 // 227 __ bind(std_cpuid1); 228 __ movl(rax, 1); 229 __ cpuid(); 230 __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid1_offset()))); 231 __ movl(Address(rsi, 0), rax); 232 __ movl(Address(rsi, 4), rbx); 233 __ movl(Address(rsi, 8), rcx); 234 __ movl(Address(rsi,12), rdx); 235 236 // 237 // Check if OS has enabled XGETBV instruction to access XCR0 238 // (OSXSAVE feature flag) and CPU supports AVX 239 // 240 __ andl(rcx, 0x18000000); // cpuid1 bits osxsave | avx 241 __ cmpl(rcx, 0x18000000); 242 __ jccb(Assembler::notEqual, sef_cpuid); // jump if AVX is not supported 243 244 // 245 // XCR0, XFEATURE_ENABLED_MASK register 246 // 247 __ xorl(rcx, rcx); // zero for XCR0 register 248 __ xgetbv(); 249 __ lea(rsi, Address(rbp, in_bytes(VM_Version::xem_xcr0_offset()))); 250 __ movl(Address(rsi, 0), rax); 251 __ movl(Address(rsi, 4), rdx); 252 253 // 254 // cpuid(0x7) Structured Extended Features 255 // 256 __ bind(sef_cpuid); 257 __ movl(rax, 7); 258 __ cmpl(rax, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset()))); // Is cpuid(0x7) supported? 259 __ jccb(Assembler::greater, ext_cpuid); 260 261 __ xorl(rcx, rcx); 262 __ cpuid(); 263 __ lea(rsi, Address(rbp, in_bytes(VM_Version::sef_cpuid7_offset()))); 264 __ movl(Address(rsi, 0), rax); 265 __ movl(Address(rsi, 4), rbx); 266 __ movl(Address(rsi, 8), rcx); 267 __ movl(Address(rsi, 12), rdx); 268 269 // 270 // Extended cpuid(0x80000000) 271 // 272 __ bind(ext_cpuid); 273 __ movl(rax, 0x80000000); 274 __ cpuid(); 275 __ cmpl(rax, 0x80000000); // Is cpuid(0x80000001) supported? 276 __ jcc(Assembler::belowEqual, done); 277 __ cmpl(rax, 0x80000004); // Is cpuid(0x80000005) supported? 278 __ jcc(Assembler::belowEqual, ext_cpuid1); 279 __ cmpl(rax, 0x80000006); // Is cpuid(0x80000007) supported? 280 __ jccb(Assembler::belowEqual, ext_cpuid5); 281 __ cmpl(rax, 0x80000007); // Is cpuid(0x80000008) supported? 282 __ jccb(Assembler::belowEqual, ext_cpuid7); 283 __ cmpl(rax, 0x80000008); // Is cpuid(0x80000009 and above) supported? 284 __ jccb(Assembler::belowEqual, ext_cpuid8); 285 __ cmpl(rax, 0x8000001E); // Is cpuid(0x8000001E) supported? 286 __ jccb(Assembler::below, ext_cpuid8); 287 // 288 // Extended cpuid(0x8000001E) 289 // 290 __ movl(rax, 0x8000001E); 291 __ cpuid(); 292 __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid1E_offset()))); 293 __ movl(Address(rsi, 0), rax); 294 __ movl(Address(rsi, 4), rbx); 295 __ movl(Address(rsi, 8), rcx); 296 __ movl(Address(rsi,12), rdx); 297 298 // 299 // Extended cpuid(0x80000008) 300 // 301 __ bind(ext_cpuid8); 302 __ movl(rax, 0x80000008); 303 __ cpuid(); 304 __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid8_offset()))); 305 __ movl(Address(rsi, 0), rax); 306 __ movl(Address(rsi, 4), rbx); 307 __ movl(Address(rsi, 8), rcx); 308 __ movl(Address(rsi,12), rdx); 309 310 // 311 // Extended cpuid(0x80000007) 312 // 313 __ bind(ext_cpuid7); 314 __ movl(rax, 0x80000007); 315 __ cpuid(); 316 __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid7_offset()))); 317 __ movl(Address(rsi, 0), rax); 318 __ movl(Address(rsi, 4), rbx); 319 __ movl(Address(rsi, 8), rcx); 320 __ movl(Address(rsi,12), rdx); 321 322 // 323 // Extended cpuid(0x80000005) 324 // 325 __ bind(ext_cpuid5); 326 __ movl(rax, 0x80000005); 327 __ cpuid(); 328 __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid5_offset()))); 329 __ movl(Address(rsi, 0), rax); 330 __ movl(Address(rsi, 4), rbx); 331 __ movl(Address(rsi, 8), rcx); 332 __ movl(Address(rsi,12), rdx); 333 334 // 335 // Extended cpuid(0x80000001) 336 // 337 __ bind(ext_cpuid1); 338 __ movl(rax, 0x80000001); 339 __ cpuid(); 340 __ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid1_offset()))); 341 __ movl(Address(rsi, 0), rax); 342 __ movl(Address(rsi, 4), rbx); 343 __ movl(Address(rsi, 8), rcx); 344 __ movl(Address(rsi,12), rdx); 345 346 // 347 // Check if OS has enabled XGETBV instruction to access XCR0 348 // (OSXSAVE feature flag) and CPU supports AVX 349 // 350 __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid1_offset()))); 351 __ movl(rcx, 0x18000000); // cpuid1 bits osxsave | avx 352 __ andl(rcx, Address(rsi, 8)); // cpuid1 bits osxsave | avx 353 __ cmpl(rcx, 0x18000000); 354 __ jccb(Assembler::notEqual, done); // jump if AVX is not supported 355 356 __ movl(rax, 0x6); 357 __ andl(rax, Address(rbp, in_bytes(VM_Version::xem_xcr0_offset()))); // xcr0 bits sse | ymm 358 __ cmpl(rax, 0x6); 359 __ jccb(Assembler::equal, start_simd_check); // return if AVX is not supported 360 361 // we need to bridge farther than imm8, so we use this island as a thunk 362 __ bind(done); 363 __ jmp(wrapup); 364 365 __ bind(start_simd_check); 366 // 367 // Some OSs have a bug when upper 128/256bits of YMM/ZMM 368 // registers are not restored after a signal processing. 369 // Generate SEGV here (reference through NULL) 370 // and check upper YMM/ZMM bits after it. 371 // 372 intx saved_useavx = UseAVX; 373 intx saved_usesse = UseSSE; 374 375 // If UseAVX is unitialized or is set by the user to include EVEX 376 if (use_evex) { 377 // check _cpuid_info.sef_cpuid7_ebx.bits.avx512f 378 __ lea(rsi, Address(rbp, in_bytes(VM_Version::sef_cpuid7_offset()))); 379 __ movl(rax, 0x10000); 380 __ andl(rax, Address(rsi, 4)); // xcr0 bits sse | ymm 381 __ cmpl(rax, 0x10000); 382 __ jccb(Assembler::notEqual, legacy_setup); // jump if EVEX is not supported 383 // check _cpuid_info.xem_xcr0_eax.bits.opmask 384 // check _cpuid_info.xem_xcr0_eax.bits.zmm512 385 // check _cpuid_info.xem_xcr0_eax.bits.zmm32 386 __ movl(rax, 0xE0); 387 __ andl(rax, Address(rbp, in_bytes(VM_Version::xem_xcr0_offset()))); // xcr0 bits sse | ymm 388 __ cmpl(rax, 0xE0); 389 __ jccb(Assembler::notEqual, legacy_setup); // jump if EVEX is not supported 390 391 if (FLAG_IS_DEFAULT(UseAVX)) { 392 __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid1_offset()))); 393 __ movl(rax, Address(rsi, 0)); 394 __ cmpl(rax, 0x50654); // If it is Skylake 395 __ jcc(Assembler::equal, legacy_setup); 396 } 397 // EVEX setup: run in lowest evex mode 398 VM_Version::set_evex_cpuFeatures(); // Enable temporary to pass asserts 399 UseAVX = 3; 400 UseSSE = 2; 401 #ifdef _WINDOWS 402 // xmm5-xmm15 are not preserved by caller on windows 403 // https://msdn.microsoft.com/en-us/library/9z1stfyw.aspx 404 __ subptr(rsp, 64); 405 __ evmovdqul(Address(rsp, 0), xmm7, Assembler::AVX_512bit); 406 #ifdef _LP64 407 __ subptr(rsp, 64); 408 __ evmovdqul(Address(rsp, 0), xmm8, Assembler::AVX_512bit); 409 __ subptr(rsp, 64); 410 __ evmovdqul(Address(rsp, 0), xmm31, Assembler::AVX_512bit); 411 #endif // _LP64 412 #endif // _WINDOWS 413 414 // load value into all 64 bytes of zmm7 register 415 __ movl(rcx, VM_Version::ymm_test_value()); 416 __ movdl(xmm0, rcx); 417 __ vpbroadcastd(xmm0, xmm0, Assembler::AVX_512bit); 418 __ evmovdqul(xmm7, xmm0, Assembler::AVX_512bit); 419 #ifdef _LP64 420 __ evmovdqul(xmm8, xmm0, Assembler::AVX_512bit); 421 __ evmovdqul(xmm31, xmm0, Assembler::AVX_512bit); 422 #endif 423 VM_Version::clean_cpuFeatures(); 424 __ jmp(save_restore_except); 425 } 426 427 __ bind(legacy_setup); 428 // AVX setup 429 VM_Version::set_avx_cpuFeatures(); // Enable temporary to pass asserts 430 UseAVX = 1; 431 UseSSE = 2; 432 #ifdef _WINDOWS 433 __ subptr(rsp, 32); 434 __ vmovdqu(Address(rsp, 0), xmm7); 435 #ifdef _LP64 436 __ subptr(rsp, 32); 437 __ vmovdqu(Address(rsp, 0), xmm8); 438 __ subptr(rsp, 32); 439 __ vmovdqu(Address(rsp, 0), xmm15); 440 #endif // _LP64 441 #endif // _WINDOWS 442 443 // load value into all 32 bytes of ymm7 register 444 __ movl(rcx, VM_Version::ymm_test_value()); 445 446 __ movdl(xmm0, rcx); 447 __ pshufd(xmm0, xmm0, 0x00); 448 __ vinsertf128_high(xmm0, xmm0); 449 __ vmovdqu(xmm7, xmm0); 450 #ifdef _LP64 451 __ vmovdqu(xmm8, xmm0); 452 __ vmovdqu(xmm15, xmm0); 453 #endif 454 VM_Version::clean_cpuFeatures(); 455 456 __ bind(save_restore_except); 457 __ xorl(rsi, rsi); 458 VM_Version::set_cpuinfo_segv_addr(__ pc()); 459 // Generate SEGV 460 __ movl(rax, Address(rsi, 0)); 461 462 VM_Version::set_cpuinfo_cont_addr(__ pc()); 463 // Returns here after signal. Save xmm0 to check it later. 464 465 // If UseAVX is unitialized or is set by the user to include EVEX 466 if (use_evex) { 467 // check _cpuid_info.sef_cpuid7_ebx.bits.avx512f 468 __ lea(rsi, Address(rbp, in_bytes(VM_Version::sef_cpuid7_offset()))); 469 __ movl(rax, 0x10000); 470 __ andl(rax, Address(rsi, 4)); 471 __ cmpl(rax, 0x10000); 472 __ jcc(Assembler::notEqual, legacy_save_restore); 473 // check _cpuid_info.xem_xcr0_eax.bits.opmask 474 // check _cpuid_info.xem_xcr0_eax.bits.zmm512 475 // check _cpuid_info.xem_xcr0_eax.bits.zmm32 476 __ movl(rax, 0xE0); 477 __ andl(rax, Address(rbp, in_bytes(VM_Version::xem_xcr0_offset()))); // xcr0 bits sse | ymm 478 __ cmpl(rax, 0xE0); 479 __ jcc(Assembler::notEqual, legacy_save_restore); 480 481 if (FLAG_IS_DEFAULT(UseAVX)) { 482 __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid1_offset()))); 483 __ movl(rax, Address(rsi, 0)); 484 __ cmpl(rax, 0x50654); // If it is Skylake 485 __ jcc(Assembler::equal, legacy_save_restore); 486 } 487 // EVEX check: run in lowest evex mode 488 VM_Version::set_evex_cpuFeatures(); // Enable temporary to pass asserts 489 UseAVX = 3; 490 UseSSE = 2; 491 __ lea(rsi, Address(rbp, in_bytes(VM_Version::zmm_save_offset()))); 492 __ evmovdqul(Address(rsi, 0), xmm0, Assembler::AVX_512bit); 493 __ evmovdqul(Address(rsi, 64), xmm7, Assembler::AVX_512bit); 494 #ifdef _LP64 495 __ evmovdqul(Address(rsi, 128), xmm8, Assembler::AVX_512bit); 496 __ evmovdqul(Address(rsi, 192), xmm31, Assembler::AVX_512bit); 497 #endif 498 499 #ifdef _WINDOWS 500 #ifdef _LP64 501 __ evmovdqul(xmm31, Address(rsp, 0), Assembler::AVX_512bit); 502 __ addptr(rsp, 64); 503 __ evmovdqul(xmm8, Address(rsp, 0), Assembler::AVX_512bit); 504 __ addptr(rsp, 64); 505 #endif // _LP64 506 __ evmovdqul(xmm7, Address(rsp, 0), Assembler::AVX_512bit); 507 __ addptr(rsp, 64); 508 #endif // _WINDOWS 509 generate_vzeroupper(wrapup); 510 VM_Version::clean_cpuFeatures(); 511 UseAVX = saved_useavx; 512 UseSSE = saved_usesse; 513 __ jmp(wrapup); 514 } 515 516 __ bind(legacy_save_restore); 517 // AVX check 518 VM_Version::set_avx_cpuFeatures(); // Enable temporary to pass asserts 519 UseAVX = 1; 520 UseSSE = 2; 521 __ lea(rsi, Address(rbp, in_bytes(VM_Version::ymm_save_offset()))); 522 __ vmovdqu(Address(rsi, 0), xmm0); 523 __ vmovdqu(Address(rsi, 32), xmm7); 524 #ifdef _LP64 525 __ vmovdqu(Address(rsi, 64), xmm8); 526 __ vmovdqu(Address(rsi, 96), xmm15); 527 #endif 528 529 #ifdef _WINDOWS 530 #ifdef _LP64 531 __ vmovdqu(xmm15, Address(rsp, 0)); 532 __ addptr(rsp, 32); 533 __ vmovdqu(xmm8, Address(rsp, 0)); 534 __ addptr(rsp, 32); 535 #endif // _LP64 536 __ vmovdqu(xmm7, Address(rsp, 0)); 537 __ addptr(rsp, 32); 538 #endif // _WINDOWS 539 generate_vzeroupper(wrapup); 540 VM_Version::clean_cpuFeatures(); 541 UseAVX = saved_useavx; 542 UseSSE = saved_usesse; 543 544 __ bind(wrapup); 545 __ popf(); 546 __ pop(rsi); 547 __ pop(rbx); 548 __ pop(rbp); 549 __ ret(0); 550 551 # undef __ 552 553 return start; 554 }; 555 void generate_vzeroupper(Label& L_wrapup) { 556 # define __ _masm-> 557 __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset()))); 558 __ cmpl(Address(rsi, 4), 0x756e6547); // 'uneG' 559 __ jcc(Assembler::notEqual, L_wrapup); 560 __ movl(rcx, 0x0FFF0FF0); 561 __ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid1_offset()))); 562 __ andl(rcx, Address(rsi, 0)); 563 __ cmpl(rcx, 0x00050670); // If it is Xeon Phi 3200/5200/7200 564 __ jcc(Assembler::equal, L_wrapup); 565 __ cmpl(rcx, 0x00080650); // If it is Future Xeon Phi 566 __ jcc(Assembler::equal, L_wrapup); 567 // vzeroupper() will use a pre-computed instruction sequence that we 568 // can't compute until after we've determined CPU capabilities. Use 569 // uncached variant here directly to be able to bootstrap correctly 570 __ vzeroupper_uncached(); 571 # undef __ 572 } 573 address generate_detect_virt() { 574 StubCodeMark mark(this, "VM_Version", "detect_virt_stub"); 575 # define __ _masm-> 576 577 address start = __ pc(); 578 579 // Evacuate callee-saved registers 580 __ push(rbp); 581 __ push(rbx); 582 __ push(rsi); // for Windows 583 584 #ifdef _LP64 585 __ mov(rax, c_rarg0); // CPUID leaf 586 __ mov(rsi, c_rarg1); // register array address (eax, ebx, ecx, edx) 587 #else 588 __ movptr(rax, Address(rsp, 16)); // CPUID leaf 589 __ movptr(rsi, Address(rsp, 20)); // register array address 590 #endif 591 592 __ cpuid(); 593 594 // Store result to register array 595 __ movl(Address(rsi, 0), rax); 596 __ movl(Address(rsi, 4), rbx); 597 __ movl(Address(rsi, 8), rcx); 598 __ movl(Address(rsi, 12), rdx); 599 600 // Epilogue 601 __ pop(rsi); 602 __ pop(rbx); 603 __ pop(rbp); 604 __ ret(0); 605 606 # undef __ 607 608 return start; 609 }; 610 }; 611 612 void VM_Version::get_processor_features() { 613 614 _cpu = 4; // 486 by default 615 _model = 0; 616 _stepping = 0; 617 _features = 0; 618 _logical_processors_per_package = 1; 619 // i486 internal cache is both I&D and has a 16-byte line size 620 _L1_data_cache_line_size = 16; 621 622 // Get raw processor info 623 624 get_cpu_info_stub(&_cpuid_info); 625 626 assert_is_initialized(); 627 _cpu = extended_cpu_family(); 628 _model = extended_cpu_model(); 629 _stepping = cpu_stepping(); 630 631 if (cpu_family() > 4) { // it supports CPUID 632 _features = feature_flags(); 633 // Logical processors are only available on P4s and above, 634 // and only if hyperthreading is available. 635 _logical_processors_per_package = logical_processor_count(); 636 _L1_data_cache_line_size = L1_line_size(); 637 } 638 639 _supports_cx8 = supports_cmpxchg8(); 640 // xchg and xadd instructions 641 _supports_atomic_getset4 = true; 642 _supports_atomic_getadd4 = true; 643 LP64_ONLY(_supports_atomic_getset8 = true); 644 LP64_ONLY(_supports_atomic_getadd8 = true); 645 646 #ifdef _LP64 647 // OS should support SSE for x64 and hardware should support at least SSE2. 648 if (!VM_Version::supports_sse2()) { 649 vm_exit_during_initialization("Unknown x64 processor: SSE2 not supported"); 650 } 651 // in 64 bit the use of SSE2 is the minimum 652 if (UseSSE < 2) UseSSE = 2; 653 #endif 654 655 #ifdef AMD64 656 // flush_icache_stub have to be generated first. 657 // That is why Icache line size is hard coded in ICache class, 658 // see icache_x86.hpp. It is also the reason why we can't use 659 // clflush instruction in 32-bit VM since it could be running 660 // on CPU which does not support it. 661 // 662 // The only thing we can do is to verify that flushed 663 // ICache::line_size has correct value. 664 guarantee(_cpuid_info.std_cpuid1_edx.bits.clflush != 0, "clflush is not supported"); 665 // clflush_size is size in quadwords (8 bytes). 666 guarantee(_cpuid_info.std_cpuid1_ebx.bits.clflush_size == 8, "such clflush size is not supported"); 667 #endif 668 669 #ifdef _LP64 670 // assigning this field effectively enables Unsafe.writebackMemory() 671 // by initing UnsafeConstant.DATA_CACHE_LINE_FLUSH_SIZE to non-zero 672 // that is only implemented on x86_64 and only if the OS plays ball 673 if (os::supports_map_sync()) { 674 // publish data cache line flush size to generic field, otherwise 675 // let if default to zero thereby disabling writeback 676 _data_cache_line_flush_size = _cpuid_info.std_cpuid1_ebx.bits.clflush_size * 8; 677 } 678 #endif 679 // If the OS doesn't support SSE, we can't use this feature even if the HW does 680 if (!os::supports_sse()) 681 _features &= ~(CPU_SSE|CPU_SSE2|CPU_SSE3|CPU_SSSE3|CPU_SSE4A|CPU_SSE4_1|CPU_SSE4_2); 682 683 if (UseSSE < 4) { 684 _features &= ~CPU_SSE4_1; 685 _features &= ~CPU_SSE4_2; 686 } 687 688 if (UseSSE < 3) { 689 _features &= ~CPU_SSE3; 690 _features &= ~CPU_SSSE3; 691 _features &= ~CPU_SSE4A; 692 } 693 694 if (UseSSE < 2) 695 _features &= ~CPU_SSE2; 696 697 if (UseSSE < 1) 698 _features &= ~CPU_SSE; 699 700 //since AVX instructions is slower than SSE in some ZX cpus, force USEAVX=0. 701 if (is_zx() && ((cpu_family() == 6) || (cpu_family() == 7))) { 702 UseAVX = 0; 703 } 704 705 // first try initial setting and detect what we can support 706 int use_avx_limit = 0; 707 if (UseAVX > 0) { 708 if (UseAVX > 2 && supports_evex()) { 709 use_avx_limit = 3; 710 } else if (UseAVX > 1 && supports_avx2()) { 711 use_avx_limit = 2; 712 } else if (UseAVX > 0 && supports_avx()) { 713 use_avx_limit = 1; 714 } else { 715 use_avx_limit = 0; 716 } 717 } 718 if (FLAG_IS_DEFAULT(UseAVX)) { 719 // Don't use AVX-512 on older Skylakes unless explicitly requested. 720 if (use_avx_limit > 2 && is_intel_skylake() && _stepping < 5) { 721 FLAG_SET_DEFAULT(UseAVX, 2); 722 } else { 723 FLAG_SET_DEFAULT(UseAVX, use_avx_limit); 724 } 725 } 726 if (UseAVX > use_avx_limit) { 727 warning("UseAVX=%d is not supported on this CPU, setting it to UseAVX=%d", (int) UseAVX, use_avx_limit); 728 FLAG_SET_DEFAULT(UseAVX, use_avx_limit); 729 } else if (UseAVX < 0) { 730 warning("UseAVX=%d is not valid, setting it to UseAVX=0", (int) UseAVX); 731 FLAG_SET_DEFAULT(UseAVX, 0); 732 } 733 734 if (UseAVX < 3) { 735 _features &= ~CPU_AVX512F; 736 _features &= ~CPU_AVX512DQ; 737 _features &= ~CPU_AVX512CD; 738 _features &= ~CPU_AVX512BW; 739 _features &= ~CPU_AVX512VL; 740 _features &= ~CPU_AVX512_VPOPCNTDQ; 741 _features &= ~CPU_AVX512_VPCLMULQDQ; 742 _features &= ~CPU_AVX512_VAES; 743 _features &= ~CPU_AVX512_VNNI; 744 _features &= ~CPU_AVX512_VBMI; 745 _features &= ~CPU_AVX512_VBMI2; 746 } 747 748 if (UseAVX < 2) 749 _features &= ~CPU_AVX2; 750 751 if (UseAVX < 1) { 752 _features &= ~CPU_AVX; 753 _features &= ~CPU_VZEROUPPER; 754 } 755 756 if (logical_processors_per_package() == 1) { 757 // HT processor could be installed on a system which doesn't support HT. 758 _features &= ~CPU_HT; 759 } 760 761 if (is_intel()) { // Intel cpus specific settings 762 if (is_knights_family()) { 763 _features &= ~CPU_VZEROUPPER; 764 } 765 } 766 767 if (FLAG_IS_DEFAULT(IntelJccErratumMitigation)) { 768 _has_intel_jcc_erratum = compute_has_intel_jcc_erratum(); 769 } else { 770 _has_intel_jcc_erratum = IntelJccErratumMitigation; 771 } 772 773 char buf[512]; 774 int res = jio_snprintf(buf, sizeof(buf), 775 "(%u cores per cpu, %u threads per core) family %d model %d stepping %d microcode 0x%x" 776 "%s%s%s%s%s%s%s%s%s%s" "%s%s%s%s%s%s%s%s%s%s" "%s%s%s%s%s%s%s%s%s%s" "%s%s%s%s%s%s%s%s%s%s" "%s%s%s%s%s%s", 777 778 cores_per_cpu(), threads_per_core(), 779 cpu_family(), _model, _stepping, os::cpu_microcode_revision(), 780 781 (supports_cmov() ? ", cmov" : ""), 782 (supports_cmpxchg8() ? ", cx8" : ""), 783 (supports_fxsr() ? ", fxsr" : ""), 784 (supports_mmx() ? ", mmx" : ""), 785 (supports_sse() ? ", sse" : ""), 786 (supports_sse2() ? ", sse2" : ""), 787 (supports_sse3() ? ", sse3" : ""), 788 (supports_ssse3()? ", ssse3": ""), 789 (supports_sse4_1() ? ", sse4.1" : ""), 790 (supports_sse4_2() ? ", sse4.2" : ""), 791 792 (supports_popcnt() ? ", popcnt" : ""), 793 (supports_vzeroupper() ? ", vzeroupper" : ""), 794 (supports_avx() ? ", avx" : ""), 795 (supports_avx2() ? ", avx2" : ""), 796 (supports_aes() ? ", aes" : ""), 797 (supports_clmul() ? ", clmul" : ""), 798 (supports_erms() ? ", erms" : ""), 799 (supports_rtm() ? ", rtm" : ""), 800 (supports_3dnow_prefetch() ? ", 3dnowpref" : ""), 801 (supports_lzcnt() ? ", lzcnt": ""), 802 803 (supports_sse4a() ? ", sse4a": ""), 804 (supports_ht() ? ", ht": ""), 805 (supports_tsc() ? ", tsc": ""), 806 (supports_tscinv_bit() ? ", tscinvbit": ""), 807 (supports_tscinv() ? ", tscinv": ""), 808 (supports_bmi1() ? ", bmi1" : ""), 809 (supports_bmi2() ? ", bmi2" : ""), 810 (supports_adx() ? ", adx" : ""), 811 (supports_evex() ? ", avx512f" : ""), 812 (supports_avx512dq() ? ", avx512dq" : ""), 813 814 (supports_avx512pf() ? ", avx512pf" : ""), 815 (supports_avx512er() ? ", avx512er" : ""), 816 (supports_avx512cd() ? ", avx512cd" : ""), 817 (supports_avx512bw() ? ", avx512bw" : ""), 818 (supports_avx512vl() ? ", avx512vl" : ""), 819 (supports_avx512_vpopcntdq() ? ", avx512_vpopcntdq" : ""), 820 (supports_avx512_vpclmulqdq() ? ", avx512_vpclmulqdq" : ""), 821 (supports_avx512_vbmi() ? ", avx512_vbmi" : ""), 822 (supports_avx512_vbmi2() ? ", avx512_vbmi2" : ""), 823 (supports_avx512_vaes() ? ", avx512_vaes" : ""), 824 825 (supports_avx512_vnni() ? ", avx512_vnni" : ""), 826 (supports_sha() ? ", sha" : ""), 827 (supports_fma() ? ", fma" : ""), 828 (supports_clflush() ? ", clflush" : ""), 829 (supports_clflushopt() ? ", clflushopt" : ""), 830 (supports_clwb() ? ", clwb" : "")); 831 832 assert(res > 0, "not enough temporary space allocated"); // increase 'buf' size 833 834 _features_string = os::strdup(buf); 835 836 // UseSSE is set to the smaller of what hardware supports and what 837 // the command line requires. I.e., you cannot set UseSSE to 2 on 838 // older Pentiums which do not support it. 839 int use_sse_limit = 0; 840 if (UseSSE > 0) { 841 if (UseSSE > 3 && supports_sse4_1()) { 842 use_sse_limit = 4; 843 } else if (UseSSE > 2 && supports_sse3()) { 844 use_sse_limit = 3; 845 } else if (UseSSE > 1 && supports_sse2()) { 846 use_sse_limit = 2; 847 } else if (UseSSE > 0 && supports_sse()) { 848 use_sse_limit = 1; 849 } else { 850 use_sse_limit = 0; 851 } 852 } 853 if (FLAG_IS_DEFAULT(UseSSE)) { 854 FLAG_SET_DEFAULT(UseSSE, use_sse_limit); 855 } else if (UseSSE > use_sse_limit) { 856 warning("UseSSE=%d is not supported on this CPU, setting it to UseSSE=%d", (int) UseSSE, use_sse_limit); 857 FLAG_SET_DEFAULT(UseSSE, use_sse_limit); 858 } else if (UseSSE < 0) { 859 warning("UseSSE=%d is not valid, setting it to UseSSE=0", (int) UseSSE); 860 FLAG_SET_DEFAULT(UseSSE, 0); 861 } 862 863 // Use AES instructions if available. 864 if (supports_aes()) { 865 if (FLAG_IS_DEFAULT(UseAES)) { 866 FLAG_SET_DEFAULT(UseAES, true); 867 } 868 if (!UseAES) { 869 if (UseAESIntrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) { 870 warning("AES intrinsics require UseAES flag to be enabled. Intrinsics will be disabled."); 871 } 872 FLAG_SET_DEFAULT(UseAESIntrinsics, false); 873 } else { 874 if (UseSSE > 2) { 875 if (FLAG_IS_DEFAULT(UseAESIntrinsics)) { 876 FLAG_SET_DEFAULT(UseAESIntrinsics, true); 877 } 878 } else { 879 // The AES intrinsic stubs require AES instruction support (of course) 880 // but also require sse3 mode or higher for instructions it use. 881 if (UseAESIntrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) { 882 warning("X86 AES intrinsics require SSE3 instructions or higher. Intrinsics will be disabled."); 883 } 884 FLAG_SET_DEFAULT(UseAESIntrinsics, false); 885 } 886 887 // --AES-CTR begins-- 888 if (!UseAESIntrinsics) { 889 if (UseAESCTRIntrinsics && !FLAG_IS_DEFAULT(UseAESCTRIntrinsics)) { 890 warning("AES-CTR intrinsics require UseAESIntrinsics flag to be enabled. Intrinsics will be disabled."); 891 FLAG_SET_DEFAULT(UseAESCTRIntrinsics, false); 892 } 893 } else { 894 if (supports_sse4_1()) { 895 if (FLAG_IS_DEFAULT(UseAESCTRIntrinsics)) { 896 FLAG_SET_DEFAULT(UseAESCTRIntrinsics, true); 897 } 898 } else { 899 // The AES-CTR intrinsic stubs require AES instruction support (of course) 900 // but also require sse4.1 mode or higher for instructions it use. 901 if (UseAESCTRIntrinsics && !FLAG_IS_DEFAULT(UseAESCTRIntrinsics)) { 902 warning("X86 AES-CTR intrinsics require SSE4.1 instructions or higher. Intrinsics will be disabled."); 903 } 904 FLAG_SET_DEFAULT(UseAESCTRIntrinsics, false); 905 } 906 } 907 // --AES-CTR ends-- 908 } 909 } else if (UseAES || UseAESIntrinsics || UseAESCTRIntrinsics) { 910 if (UseAES && !FLAG_IS_DEFAULT(UseAES)) { 911 warning("AES instructions are not available on this CPU"); 912 FLAG_SET_DEFAULT(UseAES, false); 913 } 914 if (UseAESIntrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) { 915 warning("AES intrinsics are not available on this CPU"); 916 FLAG_SET_DEFAULT(UseAESIntrinsics, false); 917 } 918 if (UseAESCTRIntrinsics && !FLAG_IS_DEFAULT(UseAESCTRIntrinsics)) { 919 warning("AES-CTR intrinsics are not available on this CPU"); 920 FLAG_SET_DEFAULT(UseAESCTRIntrinsics, false); 921 } 922 } 923 924 // Use CLMUL instructions if available. 925 if (supports_clmul()) { 926 if (FLAG_IS_DEFAULT(UseCLMUL)) { 927 UseCLMUL = true; 928 } 929 } else if (UseCLMUL) { 930 if (!FLAG_IS_DEFAULT(UseCLMUL)) 931 warning("CLMUL instructions not available on this CPU (AVX may also be required)"); 932 FLAG_SET_DEFAULT(UseCLMUL, false); 933 } 934 935 if (UseCLMUL && (UseSSE > 2)) { 936 if (FLAG_IS_DEFAULT(UseCRC32Intrinsics)) { 937 UseCRC32Intrinsics = true; 938 } 939 } else if (UseCRC32Intrinsics) { 940 if (!FLAG_IS_DEFAULT(UseCRC32Intrinsics)) 941 warning("CRC32 Intrinsics requires CLMUL instructions (not available on this CPU)"); 942 FLAG_SET_DEFAULT(UseCRC32Intrinsics, false); 943 } 944 945 if (supports_sse4_2() && supports_clmul()) { 946 if (FLAG_IS_DEFAULT(UseCRC32CIntrinsics)) { 947 UseCRC32CIntrinsics = true; 948 } 949 } else if (UseCRC32CIntrinsics) { 950 if (!FLAG_IS_DEFAULT(UseCRC32CIntrinsics)) { 951 warning("CRC32C intrinsics are not available on this CPU"); 952 } 953 FLAG_SET_DEFAULT(UseCRC32CIntrinsics, false); 954 } 955 956 // GHASH/GCM intrinsics 957 if (UseCLMUL && (UseSSE > 2)) { 958 if (FLAG_IS_DEFAULT(UseGHASHIntrinsics)) { 959 UseGHASHIntrinsics = true; 960 } 961 } else if (UseGHASHIntrinsics) { 962 if (!FLAG_IS_DEFAULT(UseGHASHIntrinsics)) 963 warning("GHASH intrinsic requires CLMUL and SSE2 instructions on this CPU"); 964 FLAG_SET_DEFAULT(UseGHASHIntrinsics, false); 965 } 966 967 // Base64 Intrinsics (Check the condition for which the intrinsic will be active) 968 if ((UseAVX > 2) && supports_avx512vl() && supports_avx512bw()) { 969 if (FLAG_IS_DEFAULT(UseBASE64Intrinsics)) { 970 UseBASE64Intrinsics = true; 971 } 972 } else if (UseBASE64Intrinsics) { 973 if (!FLAG_IS_DEFAULT(UseBASE64Intrinsics)) 974 warning("Base64 intrinsic requires EVEX instructions on this CPU"); 975 FLAG_SET_DEFAULT(UseBASE64Intrinsics, false); 976 } 977 978 if (supports_fma() && UseSSE >= 2) { // Check UseSSE since FMA code uses SSE instructions 979 if (FLAG_IS_DEFAULT(UseFMA)) { 980 UseFMA = true; 981 } 982 } else if (UseFMA) { 983 warning("FMA instructions are not available on this CPU"); 984 FLAG_SET_DEFAULT(UseFMA, false); 985 } 986 987 if (FLAG_IS_DEFAULT(UseMD5Intrinsics)) { 988 UseMD5Intrinsics = true; 989 } 990 991 if (supports_sha() LP64_ONLY(|| supports_avx2() && supports_bmi2())) { 992 if (FLAG_IS_DEFAULT(UseSHA)) { 993 UseSHA = true; 994 } 995 } else if (UseSHA) { 996 warning("SHA instructions are not available on this CPU"); 997 FLAG_SET_DEFAULT(UseSHA, false); 998 } 999 1000 if (supports_sha() && supports_sse4_1() && UseSHA) { 1001 if (FLAG_IS_DEFAULT(UseSHA1Intrinsics)) { 1002 FLAG_SET_DEFAULT(UseSHA1Intrinsics, true); 1003 } 1004 } else if (UseSHA1Intrinsics) { 1005 warning("Intrinsics for SHA-1 crypto hash functions not available on this CPU."); 1006 FLAG_SET_DEFAULT(UseSHA1Intrinsics, false); 1007 } 1008 1009 if (supports_sse4_1() && UseSHA) { 1010 if (FLAG_IS_DEFAULT(UseSHA256Intrinsics)) { 1011 FLAG_SET_DEFAULT(UseSHA256Intrinsics, true); 1012 } 1013 } else if (UseSHA256Intrinsics) { 1014 warning("Intrinsics for SHA-224 and SHA-256 crypto hash functions not available on this CPU."); 1015 FLAG_SET_DEFAULT(UseSHA256Intrinsics, false); 1016 } 1017 1018 #ifdef _LP64 1019 // These are only supported on 64-bit 1020 if (UseSHA && supports_avx2() && supports_bmi2()) { 1021 if (FLAG_IS_DEFAULT(UseSHA512Intrinsics)) { 1022 FLAG_SET_DEFAULT(UseSHA512Intrinsics, true); 1023 } 1024 } else 1025 #endif 1026 if (UseSHA512Intrinsics) { 1027 warning("Intrinsics for SHA-384 and SHA-512 crypto hash functions not available on this CPU."); 1028 FLAG_SET_DEFAULT(UseSHA512Intrinsics, false); 1029 } 1030 1031 if (!(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics)) { 1032 FLAG_SET_DEFAULT(UseSHA, false); 1033 } 1034 1035 if (UseAdler32Intrinsics) { 1036 warning("Adler32Intrinsics not available on this CPU."); 1037 FLAG_SET_DEFAULT(UseAdler32Intrinsics, false); 1038 } 1039 1040 if (!supports_rtm() && UseRTMLocking) { 1041 // Can't continue because UseRTMLocking affects UseBiasedLocking flag 1042 // setting during arguments processing. See use_biased_locking(). 1043 // VM_Version_init() is executed after UseBiasedLocking is used 1044 // in Thread::allocate(). 1045 vm_exit_during_initialization("RTM instructions are not available on this CPU"); 1046 } 1047 1048 #if INCLUDE_RTM_OPT 1049 if (UseRTMLocking) { 1050 if (is_client_compilation_mode_vm()) { 1051 // Only C2 does RTM locking optimization. 1052 // Can't continue because UseRTMLocking affects UseBiasedLocking flag 1053 // setting during arguments processing. See use_biased_locking(). 1054 vm_exit_during_initialization("RTM locking optimization is not supported in this VM"); 1055 } 1056 if (is_intel_family_core()) { 1057 if ((_model == CPU_MODEL_HASWELL_E3) || 1058 (_model == CPU_MODEL_HASWELL_E7 && _stepping < 3) || 1059 (_model == CPU_MODEL_BROADWELL && _stepping < 4)) { 1060 // currently a collision between SKL and HSW_E3 1061 if (!UnlockExperimentalVMOptions && UseAVX < 3) { 1062 vm_exit_during_initialization("UseRTMLocking is only available as experimental option on this " 1063 "platform. It must be enabled via -XX:+UnlockExperimentalVMOptions flag."); 1064 } else { 1065 warning("UseRTMLocking is only available as experimental option on this platform."); 1066 } 1067 } 1068 } 1069 if (!FLAG_IS_CMDLINE(UseRTMLocking)) { 1070 // RTM locking should be used only for applications with 1071 // high lock contention. For now we do not use it by default. 1072 vm_exit_during_initialization("UseRTMLocking flag should be only set on command line"); 1073 } 1074 } else { // !UseRTMLocking 1075 if (UseRTMForStackLocks) { 1076 if (!FLAG_IS_DEFAULT(UseRTMForStackLocks)) { 1077 warning("UseRTMForStackLocks flag should be off when UseRTMLocking flag is off"); 1078 } 1079 FLAG_SET_DEFAULT(UseRTMForStackLocks, false); 1080 } 1081 if (UseRTMDeopt) { 1082 FLAG_SET_DEFAULT(UseRTMDeopt, false); 1083 } 1084 if (PrintPreciseRTMLockingStatistics) { 1085 FLAG_SET_DEFAULT(PrintPreciseRTMLockingStatistics, false); 1086 } 1087 } 1088 #else 1089 if (UseRTMLocking) { 1090 // Only C2 does RTM locking optimization. 1091 // Can't continue because UseRTMLocking affects UseBiasedLocking flag 1092 // setting during arguments processing. See use_biased_locking(). 1093 vm_exit_during_initialization("RTM locking optimization is not supported in this VM"); 1094 } 1095 #endif 1096 1097 #ifdef COMPILER2 1098 if (UseFPUForSpilling) { 1099 if (UseSSE < 2) { 1100 // Only supported with SSE2+ 1101 FLAG_SET_DEFAULT(UseFPUForSpilling, false); 1102 } 1103 } 1104 #endif 1105 1106 #if COMPILER2_OR_JVMCI 1107 int max_vector_size = 0; 1108 if (UseSSE < 2) { 1109 // Vectors (in XMM) are only supported with SSE2+ 1110 // SSE is always 2 on x64. 1111 max_vector_size = 0; 1112 } else if (UseAVX == 0 || !os_supports_avx_vectors()) { 1113 // 16 byte vectors (in XMM) are supported with SSE2+ 1114 max_vector_size = 16; 1115 } else if (UseAVX == 1 || UseAVX == 2) { 1116 // 32 bytes vectors (in YMM) are only supported with AVX+ 1117 max_vector_size = 32; 1118 } else if (UseAVX > 2) { 1119 // 64 bytes vectors (in ZMM) are only supported with AVX 3 1120 max_vector_size = 64; 1121 } 1122 1123 #ifdef _LP64 1124 int min_vector_size = 4; // We require MaxVectorSize to be at least 4 on 64bit 1125 #else 1126 int min_vector_size = 0; 1127 #endif 1128 1129 if (!FLAG_IS_DEFAULT(MaxVectorSize)) { 1130 if (MaxVectorSize < min_vector_size) { 1131 warning("MaxVectorSize must be at least %i on this platform", min_vector_size); 1132 FLAG_SET_DEFAULT(MaxVectorSize, min_vector_size); 1133 } 1134 if (MaxVectorSize > max_vector_size) { 1135 warning("MaxVectorSize must be at most %i on this platform", max_vector_size); 1136 FLAG_SET_DEFAULT(MaxVectorSize, max_vector_size); 1137 } 1138 if (!is_power_of_2(MaxVectorSize)) { 1139 warning("MaxVectorSize must be a power of 2, setting to default: %i", max_vector_size); 1140 FLAG_SET_DEFAULT(MaxVectorSize, max_vector_size); 1141 } 1142 } else { 1143 // If default, use highest supported configuration 1144 FLAG_SET_DEFAULT(MaxVectorSize, max_vector_size); 1145 } 1146 1147 #if defined(COMPILER2) && defined(ASSERT) 1148 if (MaxVectorSize > 0) { 1149 if (supports_avx() && PrintMiscellaneous && Verbose && TraceNewVectors) { 1150 tty->print_cr("State of YMM registers after signal handle:"); 1151 int nreg = 2 LP64_ONLY(+2); 1152 const char* ymm_name[4] = {"0", "7", "8", "15"}; 1153 for (int i = 0; i < nreg; i++) { 1154 tty->print("YMM%s:", ymm_name[i]); 1155 for (int j = 7; j >=0; j--) { 1156 tty->print(" %x", _cpuid_info.ymm_save[i*8 + j]); 1157 } 1158 tty->cr(); 1159 } 1160 } 1161 } 1162 #endif // COMPILER2 && ASSERT 1163 1164 if (!FLAG_IS_DEFAULT(AVX3Threshold)) { 1165 if (!is_power_of_2(AVX3Threshold)) { 1166 warning("AVX3Threshold must be a power of 2"); 1167 FLAG_SET_DEFAULT(AVX3Threshold, 4096); 1168 } 1169 } 1170 1171 #ifdef _LP64 1172 if (FLAG_IS_DEFAULT(UseMultiplyToLenIntrinsic)) { 1173 UseMultiplyToLenIntrinsic = true; 1174 } 1175 if (FLAG_IS_DEFAULT(UseSquareToLenIntrinsic)) { 1176 UseSquareToLenIntrinsic = true; 1177 } 1178 if (FLAG_IS_DEFAULT(UseMulAddIntrinsic)) { 1179 UseMulAddIntrinsic = true; 1180 } 1181 if (FLAG_IS_DEFAULT(UseMontgomeryMultiplyIntrinsic)) { 1182 UseMontgomeryMultiplyIntrinsic = true; 1183 } 1184 if (FLAG_IS_DEFAULT(UseMontgomerySquareIntrinsic)) { 1185 UseMontgomerySquareIntrinsic = true; 1186 } 1187 #else 1188 if (UseMultiplyToLenIntrinsic) { 1189 if (!FLAG_IS_DEFAULT(UseMultiplyToLenIntrinsic)) { 1190 warning("multiplyToLen intrinsic is not available in 32-bit VM"); 1191 } 1192 FLAG_SET_DEFAULT(UseMultiplyToLenIntrinsic, false); 1193 } 1194 if (UseMontgomeryMultiplyIntrinsic) { 1195 if (!FLAG_IS_DEFAULT(UseMontgomeryMultiplyIntrinsic)) { 1196 warning("montgomeryMultiply intrinsic is not available in 32-bit VM"); 1197 } 1198 FLAG_SET_DEFAULT(UseMontgomeryMultiplyIntrinsic, false); 1199 } 1200 if (UseMontgomerySquareIntrinsic) { 1201 if (!FLAG_IS_DEFAULT(UseMontgomerySquareIntrinsic)) { 1202 warning("montgomerySquare intrinsic is not available in 32-bit VM"); 1203 } 1204 FLAG_SET_DEFAULT(UseMontgomerySquareIntrinsic, false); 1205 } 1206 if (UseSquareToLenIntrinsic) { 1207 if (!FLAG_IS_DEFAULT(UseSquareToLenIntrinsic)) { 1208 warning("squareToLen intrinsic is not available in 32-bit VM"); 1209 } 1210 FLAG_SET_DEFAULT(UseSquareToLenIntrinsic, false); 1211 } 1212 if (UseMulAddIntrinsic) { 1213 if (!FLAG_IS_DEFAULT(UseMulAddIntrinsic)) { 1214 warning("mulAdd intrinsic is not available in 32-bit VM"); 1215 } 1216 FLAG_SET_DEFAULT(UseMulAddIntrinsic, false); 1217 } 1218 #endif // _LP64 1219 #endif // COMPILER2_OR_JVMCI 1220 1221 // On new cpus instructions which update whole XMM register should be used 1222 // to prevent partial register stall due to dependencies on high half. 1223 // 1224 // UseXmmLoadAndClearUpper == true --> movsd(xmm, mem) 1225 // UseXmmLoadAndClearUpper == false --> movlpd(xmm, mem) 1226 // UseXmmRegToRegMoveAll == true --> movaps(xmm, xmm), movapd(xmm, xmm). 1227 // UseXmmRegToRegMoveAll == false --> movss(xmm, xmm), movsd(xmm, xmm). 1228 1229 1230 if (is_zx()) { // ZX cpus specific settings 1231 if (FLAG_IS_DEFAULT(UseStoreImmI16)) { 1232 UseStoreImmI16 = false; // don't use it on ZX cpus 1233 } 1234 if ((cpu_family() == 6) || (cpu_family() == 7)) { 1235 if (FLAG_IS_DEFAULT(UseAddressNop)) { 1236 // Use it on all ZX cpus 1237 UseAddressNop = true; 1238 } 1239 } 1240 if (FLAG_IS_DEFAULT(UseXmmLoadAndClearUpper)) { 1241 UseXmmLoadAndClearUpper = true; // use movsd on all ZX cpus 1242 } 1243 if (FLAG_IS_DEFAULT(UseXmmRegToRegMoveAll)) { 1244 if (supports_sse3()) { 1245 UseXmmRegToRegMoveAll = true; // use movaps, movapd on new ZX cpus 1246 } else { 1247 UseXmmRegToRegMoveAll = false; 1248 } 1249 } 1250 if (((cpu_family() == 6) || (cpu_family() == 7)) && supports_sse3()) { // new ZX cpus 1251 #ifdef COMPILER2 1252 if (FLAG_IS_DEFAULT(MaxLoopPad)) { 1253 // For new ZX cpus do the next optimization: 1254 // don't align the beginning of a loop if there are enough instructions 1255 // left (NumberOfLoopInstrToAlign defined in c2_globals.hpp) 1256 // in current fetch line (OptoLoopAlignment) or the padding 1257 // is big (> MaxLoopPad). 1258 // Set MaxLoopPad to 11 for new ZX cpus to reduce number of 1259 // generated NOP instructions. 11 is the largest size of one 1260 // address NOP instruction '0F 1F' (see Assembler::nop(i)). 1261 MaxLoopPad = 11; 1262 } 1263 #endif // COMPILER2 1264 if (FLAG_IS_DEFAULT(UseXMMForArrayCopy)) { 1265 UseXMMForArrayCopy = true; // use SSE2 movq on new ZX cpus 1266 } 1267 if (supports_sse4_2()) { // new ZX cpus 1268 if (FLAG_IS_DEFAULT(UseUnalignedLoadStores)) { 1269 UseUnalignedLoadStores = true; // use movdqu on newest ZX cpus 1270 } 1271 } 1272 if (supports_sse4_2()) { 1273 if (FLAG_IS_DEFAULT(UseSSE42Intrinsics)) { 1274 FLAG_SET_DEFAULT(UseSSE42Intrinsics, true); 1275 } 1276 } else { 1277 if (UseSSE42Intrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) { 1278 warning("SSE4.2 intrinsics require SSE4.2 instructions or higher. Intrinsics will be disabled."); 1279 } 1280 FLAG_SET_DEFAULT(UseSSE42Intrinsics, false); 1281 } 1282 } 1283 1284 if (FLAG_IS_DEFAULT(AllocatePrefetchInstr) && supports_3dnow_prefetch()) { 1285 FLAG_SET_DEFAULT(AllocatePrefetchInstr, 3); 1286 } 1287 } 1288 1289 if (is_amd_family()) { // AMD cpus specific settings 1290 if (supports_sse2() && FLAG_IS_DEFAULT(UseAddressNop)) { 1291 // Use it on new AMD cpus starting from Opteron. 1292 UseAddressNop = true; 1293 } 1294 if (supports_sse2() && FLAG_IS_DEFAULT(UseNewLongLShift)) { 1295 // Use it on new AMD cpus starting from Opteron. 1296 UseNewLongLShift = true; 1297 } 1298 if (FLAG_IS_DEFAULT(UseXmmLoadAndClearUpper)) { 1299 if (supports_sse4a()) { 1300 UseXmmLoadAndClearUpper = true; // use movsd only on '10h' Opteron 1301 } else { 1302 UseXmmLoadAndClearUpper = false; 1303 } 1304 } 1305 if (FLAG_IS_DEFAULT(UseXmmRegToRegMoveAll)) { 1306 if (supports_sse4a()) { 1307 UseXmmRegToRegMoveAll = true; // use movaps, movapd only on '10h' 1308 } else { 1309 UseXmmRegToRegMoveAll = false; 1310 } 1311 } 1312 if (FLAG_IS_DEFAULT(UseXmmI2F)) { 1313 if (supports_sse4a()) { 1314 UseXmmI2F = true; 1315 } else { 1316 UseXmmI2F = false; 1317 } 1318 } 1319 if (FLAG_IS_DEFAULT(UseXmmI2D)) { 1320 if (supports_sse4a()) { 1321 UseXmmI2D = true; 1322 } else { 1323 UseXmmI2D = false; 1324 } 1325 } 1326 if (supports_sse4_2()) { 1327 if (FLAG_IS_DEFAULT(UseSSE42Intrinsics)) { 1328 FLAG_SET_DEFAULT(UseSSE42Intrinsics, true); 1329 } 1330 } else { 1331 if (UseSSE42Intrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) { 1332 warning("SSE4.2 intrinsics require SSE4.2 instructions or higher. Intrinsics will be disabled."); 1333 } 1334 FLAG_SET_DEFAULT(UseSSE42Intrinsics, false); 1335 } 1336 1337 // some defaults for AMD family 15h 1338 if (cpu_family() == 0x15) { 1339 // On family 15h processors default is no sw prefetch 1340 if (FLAG_IS_DEFAULT(AllocatePrefetchStyle)) { 1341 FLAG_SET_DEFAULT(AllocatePrefetchStyle, 0); 1342 } 1343 // Also, if some other prefetch style is specified, default instruction type is PREFETCHW 1344 if (FLAG_IS_DEFAULT(AllocatePrefetchInstr)) { 1345 FLAG_SET_DEFAULT(AllocatePrefetchInstr, 3); 1346 } 1347 // On family 15h processors use XMM and UnalignedLoadStores for Array Copy 1348 if (supports_sse2() && FLAG_IS_DEFAULT(UseXMMForArrayCopy)) { 1349 FLAG_SET_DEFAULT(UseXMMForArrayCopy, true); 1350 } 1351 if (supports_sse2() && FLAG_IS_DEFAULT(UseUnalignedLoadStores)) { 1352 FLAG_SET_DEFAULT(UseUnalignedLoadStores, true); 1353 } 1354 } 1355 1356 #ifdef COMPILER2 1357 if (cpu_family() < 0x17 && MaxVectorSize > 16) { 1358 // Limit vectors size to 16 bytes on AMD cpus < 17h. 1359 FLAG_SET_DEFAULT(MaxVectorSize, 16); 1360 } 1361 #endif // COMPILER2 1362 1363 // Some defaults for AMD family 17h || Hygon family 18h 1364 if (cpu_family() == 0x17 || cpu_family() == 0x18) { 1365 // On family 17h processors use XMM and UnalignedLoadStores for Array Copy 1366 if (supports_sse2() && FLAG_IS_DEFAULT(UseXMMForArrayCopy)) { 1367 FLAG_SET_DEFAULT(UseXMMForArrayCopy, true); 1368 } 1369 if (supports_sse2() && FLAG_IS_DEFAULT(UseUnalignedLoadStores)) { 1370 FLAG_SET_DEFAULT(UseUnalignedLoadStores, true); 1371 } 1372 #ifdef COMPILER2 1373 if (supports_sse4_2() && FLAG_IS_DEFAULT(UseFPUForSpilling)) { 1374 FLAG_SET_DEFAULT(UseFPUForSpilling, true); 1375 } 1376 #endif 1377 } 1378 } 1379 1380 if (is_intel()) { // Intel cpus specific settings 1381 if (FLAG_IS_DEFAULT(UseStoreImmI16)) { 1382 UseStoreImmI16 = false; // don't use it on Intel cpus 1383 } 1384 if (cpu_family() == 6 || cpu_family() == 15) { 1385 if (FLAG_IS_DEFAULT(UseAddressNop)) { 1386 // Use it on all Intel cpus starting from PentiumPro 1387 UseAddressNop = true; 1388 } 1389 } 1390 if (FLAG_IS_DEFAULT(UseXmmLoadAndClearUpper)) { 1391 UseXmmLoadAndClearUpper = true; // use movsd on all Intel cpus 1392 } 1393 if (FLAG_IS_DEFAULT(UseXmmRegToRegMoveAll)) { 1394 if (supports_sse3()) { 1395 UseXmmRegToRegMoveAll = true; // use movaps, movapd on new Intel cpus 1396 } else { 1397 UseXmmRegToRegMoveAll = false; 1398 } 1399 } 1400 if (cpu_family() == 6 && supports_sse3()) { // New Intel cpus 1401 #ifdef COMPILER2 1402 if (FLAG_IS_DEFAULT(MaxLoopPad)) { 1403 // For new Intel cpus do the next optimization: 1404 // don't align the beginning of a loop if there are enough instructions 1405 // left (NumberOfLoopInstrToAlign defined in c2_globals.hpp) 1406 // in current fetch line (OptoLoopAlignment) or the padding 1407 // is big (> MaxLoopPad). 1408 // Set MaxLoopPad to 11 for new Intel cpus to reduce number of 1409 // generated NOP instructions. 11 is the largest size of one 1410 // address NOP instruction '0F 1F' (see Assembler::nop(i)). 1411 MaxLoopPad = 11; 1412 } 1413 #endif // COMPILER2 1414 if (FLAG_IS_DEFAULT(UseXMMForArrayCopy)) { 1415 UseXMMForArrayCopy = true; // use SSE2 movq on new Intel cpus 1416 } 1417 if ((supports_sse4_2() && supports_ht()) || supports_avx()) { // Newest Intel cpus 1418 if (FLAG_IS_DEFAULT(UseUnalignedLoadStores)) { 1419 UseUnalignedLoadStores = true; // use movdqu on newest Intel cpus 1420 } 1421 } 1422 if (supports_sse4_2()) { 1423 if (FLAG_IS_DEFAULT(UseSSE42Intrinsics)) { 1424 FLAG_SET_DEFAULT(UseSSE42Intrinsics, true); 1425 } 1426 } else { 1427 if (UseSSE42Intrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) { 1428 warning("SSE4.2 intrinsics require SSE4.2 instructions or higher. Intrinsics will be disabled."); 1429 } 1430 FLAG_SET_DEFAULT(UseSSE42Intrinsics, false); 1431 } 1432 } 1433 if (is_atom_family() || is_knights_family()) { 1434 #ifdef COMPILER2 1435 if (FLAG_IS_DEFAULT(OptoScheduling)) { 1436 OptoScheduling = true; 1437 } 1438 #endif 1439 if (supports_sse4_2()) { // Silvermont 1440 if (FLAG_IS_DEFAULT(UseUnalignedLoadStores)) { 1441 UseUnalignedLoadStores = true; // use movdqu on newest Intel cpus 1442 } 1443 } 1444 if (FLAG_IS_DEFAULT(UseIncDec)) { 1445 FLAG_SET_DEFAULT(UseIncDec, false); 1446 } 1447 } 1448 if (FLAG_IS_DEFAULT(AllocatePrefetchInstr) && supports_3dnow_prefetch()) { 1449 FLAG_SET_DEFAULT(AllocatePrefetchInstr, 3); 1450 } 1451 } 1452 1453 #ifdef _LP64 1454 if (UseSSE42Intrinsics) { 1455 if (FLAG_IS_DEFAULT(UseVectorizedMismatchIntrinsic)) { 1456 UseVectorizedMismatchIntrinsic = true; 1457 } 1458 } else if (UseVectorizedMismatchIntrinsic) { 1459 if (!FLAG_IS_DEFAULT(UseVectorizedMismatchIntrinsic)) 1460 warning("vectorizedMismatch intrinsics are not available on this CPU"); 1461 FLAG_SET_DEFAULT(UseVectorizedMismatchIntrinsic, false); 1462 } 1463 #else 1464 if (UseVectorizedMismatchIntrinsic) { 1465 if (!FLAG_IS_DEFAULT(UseVectorizedMismatchIntrinsic)) { 1466 warning("vectorizedMismatch intrinsic is not available in 32-bit VM"); 1467 } 1468 FLAG_SET_DEFAULT(UseVectorizedMismatchIntrinsic, false); 1469 } 1470 #endif // _LP64 1471 1472 // Use count leading zeros count instruction if available. 1473 if (supports_lzcnt()) { 1474 if (FLAG_IS_DEFAULT(UseCountLeadingZerosInstruction)) { 1475 UseCountLeadingZerosInstruction = true; 1476 } 1477 } else if (UseCountLeadingZerosInstruction) { 1478 warning("lzcnt instruction is not available on this CPU"); 1479 FLAG_SET_DEFAULT(UseCountLeadingZerosInstruction, false); 1480 } 1481 1482 // Use count trailing zeros instruction if available 1483 if (supports_bmi1()) { 1484 // tzcnt does not require VEX prefix 1485 if (FLAG_IS_DEFAULT(UseCountTrailingZerosInstruction)) { 1486 if (!UseBMI1Instructions && !FLAG_IS_DEFAULT(UseBMI1Instructions)) { 1487 // Don't use tzcnt if BMI1 is switched off on command line. 1488 UseCountTrailingZerosInstruction = false; 1489 } else { 1490 UseCountTrailingZerosInstruction = true; 1491 } 1492 } 1493 } else if (UseCountTrailingZerosInstruction) { 1494 warning("tzcnt instruction is not available on this CPU"); 1495 FLAG_SET_DEFAULT(UseCountTrailingZerosInstruction, false); 1496 } 1497 1498 // BMI instructions (except tzcnt) use an encoding with VEX prefix. 1499 // VEX prefix is generated only when AVX > 0. 1500 if (supports_bmi1() && supports_avx()) { 1501 if (FLAG_IS_DEFAULT(UseBMI1Instructions)) { 1502 UseBMI1Instructions = true; 1503 } 1504 } else if (UseBMI1Instructions) { 1505 warning("BMI1 instructions are not available on this CPU (AVX is also required)"); 1506 FLAG_SET_DEFAULT(UseBMI1Instructions, false); 1507 } 1508 1509 if (supports_bmi2() && supports_avx()) { 1510 if (FLAG_IS_DEFAULT(UseBMI2Instructions)) { 1511 UseBMI2Instructions = true; 1512 } 1513 } else if (UseBMI2Instructions) { 1514 warning("BMI2 instructions are not available on this CPU (AVX is also required)"); 1515 FLAG_SET_DEFAULT(UseBMI2Instructions, false); 1516 } 1517 1518 // Use population count instruction if available. 1519 if (supports_popcnt()) { 1520 if (FLAG_IS_DEFAULT(UsePopCountInstruction)) { 1521 UsePopCountInstruction = true; 1522 } 1523 } else if (UsePopCountInstruction) { 1524 warning("POPCNT instruction is not available on this CPU"); 1525 FLAG_SET_DEFAULT(UsePopCountInstruction, false); 1526 } 1527 1528 // Use fast-string operations if available. 1529 if (supports_erms()) { 1530 if (FLAG_IS_DEFAULT(UseFastStosb)) { 1531 UseFastStosb = true; 1532 } 1533 } else if (UseFastStosb) { 1534 warning("fast-string operations are not available on this CPU"); 1535 FLAG_SET_DEFAULT(UseFastStosb, false); 1536 } 1537 1538 // Use XMM/YMM MOVDQU instruction for Object Initialization 1539 if (!UseFastStosb && UseSSE >= 2 && UseUnalignedLoadStores) { 1540 if (FLAG_IS_DEFAULT(UseXMMForObjInit)) { 1541 UseXMMForObjInit = true; 1542 } 1543 } else if (UseXMMForObjInit) { 1544 warning("UseXMMForObjInit requires SSE2 and unaligned load/stores. Feature is switched off."); 1545 FLAG_SET_DEFAULT(UseXMMForObjInit, false); 1546 } 1547 1548 #ifdef COMPILER2 1549 if (FLAG_IS_DEFAULT(AlignVector)) { 1550 // Modern processors allow misaligned memory operations for vectors. 1551 AlignVector = !UseUnalignedLoadStores; 1552 } 1553 if (FLAG_IS_DEFAULT(OptimizeFill)) { 1554 // 8247307: On x86, the auto-vectorized loop array fill code shows 1555 // better performance than the array fill stubs. We should reenable 1556 // this after the x86 stubs get improved. 1557 OptimizeFill = false; 1558 } 1559 #endif // COMPILER2 1560 1561 if (FLAG_IS_DEFAULT(AllocatePrefetchInstr)) { 1562 if (AllocatePrefetchInstr == 3 && !supports_3dnow_prefetch()) { 1563 FLAG_SET_DEFAULT(AllocatePrefetchInstr, 0); 1564 } else if (!supports_sse() && supports_3dnow_prefetch()) { 1565 FLAG_SET_DEFAULT(AllocatePrefetchInstr, 3); 1566 } 1567 } 1568 1569 // Allocation prefetch settings 1570 intx cache_line_size = prefetch_data_size(); 1571 if (FLAG_IS_DEFAULT(AllocatePrefetchStepSize) && 1572 (cache_line_size > AllocatePrefetchStepSize)) { 1573 FLAG_SET_DEFAULT(AllocatePrefetchStepSize, cache_line_size); 1574 } 1575 1576 if ((AllocatePrefetchDistance == 0) && (AllocatePrefetchStyle != 0)) { 1577 assert(!FLAG_IS_DEFAULT(AllocatePrefetchDistance), "default value should not be 0"); 1578 if (!FLAG_IS_DEFAULT(AllocatePrefetchStyle)) { 1579 warning("AllocatePrefetchDistance is set to 0 which disable prefetching. Ignoring AllocatePrefetchStyle flag."); 1580 } 1581 FLAG_SET_DEFAULT(AllocatePrefetchStyle, 0); 1582 } 1583 1584 if (FLAG_IS_DEFAULT(AllocatePrefetchDistance)) { 1585 bool use_watermark_prefetch = (AllocatePrefetchStyle == 2); 1586 FLAG_SET_DEFAULT(AllocatePrefetchDistance, allocate_prefetch_distance(use_watermark_prefetch)); 1587 } 1588 1589 if (is_intel() && cpu_family() == 6 && supports_sse3()) { 1590 if (FLAG_IS_DEFAULT(AllocatePrefetchLines) && 1591 supports_sse4_2() && supports_ht()) { // Nehalem based cpus 1592 FLAG_SET_DEFAULT(AllocatePrefetchLines, 4); 1593 } 1594 #ifdef COMPILER2 1595 if (FLAG_IS_DEFAULT(UseFPUForSpilling) && supports_sse4_2()) { 1596 FLAG_SET_DEFAULT(UseFPUForSpilling, true); 1597 } 1598 #endif 1599 } 1600 1601 if (is_zx() && ((cpu_family() == 6) || (cpu_family() == 7)) && supports_sse4_2()) { 1602 #ifdef COMPILER2 1603 if (FLAG_IS_DEFAULT(UseFPUForSpilling)) { 1604 FLAG_SET_DEFAULT(UseFPUForSpilling, true); 1605 } 1606 #endif 1607 } 1608 1609 #ifdef _LP64 1610 // Prefetch settings 1611 1612 // Prefetch interval for gc copy/scan == 9 dcache lines. Derived from 1613 // 50-warehouse specjbb runs on a 2-way 1.8ghz opteron using a 4gb heap. 1614 // Tested intervals from 128 to 2048 in increments of 64 == one cache line. 1615 // 256 bytes (4 dcache lines) was the nearest runner-up to 576. 1616 1617 // gc copy/scan is disabled if prefetchw isn't supported, because 1618 // Prefetch::write emits an inlined prefetchw on Linux. 1619 // Do not use the 3dnow prefetchw instruction. It isn't supported on em64t. 1620 // The used prefetcht0 instruction works for both amd64 and em64t. 1621 1622 if (FLAG_IS_DEFAULT(PrefetchCopyIntervalInBytes)) { 1623 FLAG_SET_DEFAULT(PrefetchCopyIntervalInBytes, 576); 1624 } 1625 if (FLAG_IS_DEFAULT(PrefetchScanIntervalInBytes)) { 1626 FLAG_SET_DEFAULT(PrefetchScanIntervalInBytes, 576); 1627 } 1628 if (FLAG_IS_DEFAULT(PrefetchFieldsAhead)) { 1629 FLAG_SET_DEFAULT(PrefetchFieldsAhead, 1); 1630 } 1631 #endif 1632 1633 if (FLAG_IS_DEFAULT(ContendedPaddingWidth) && 1634 (cache_line_size > ContendedPaddingWidth)) 1635 ContendedPaddingWidth = cache_line_size; 1636 1637 // This machine allows unaligned memory accesses 1638 if (FLAG_IS_DEFAULT(UseUnalignedAccesses)) { 1639 FLAG_SET_DEFAULT(UseUnalignedAccesses, true); 1640 } 1641 1642 #ifndef PRODUCT 1643 if (log_is_enabled(Info, os, cpu)) { 1644 LogStream ls(Log(os, cpu)::info()); 1645 outputStream* log = &ls; 1646 log->print_cr("Logical CPUs per core: %u", 1647 logical_processors_per_package()); 1648 log->print_cr("L1 data cache line size: %u", L1_data_cache_line_size()); 1649 log->print("UseSSE=%d", (int) UseSSE); 1650 if (UseAVX > 0) { 1651 log->print(" UseAVX=%d", (int) UseAVX); 1652 } 1653 if (UseAES) { 1654 log->print(" UseAES=1"); 1655 } 1656 #ifdef COMPILER2 1657 if (MaxVectorSize > 0) { 1658 log->print(" MaxVectorSize=%d", (int) MaxVectorSize); 1659 } 1660 #endif 1661 log->cr(); 1662 log->print("Allocation"); 1663 if (AllocatePrefetchStyle <= 0 || (UseSSE == 0 && !supports_3dnow_prefetch())) { 1664 log->print_cr(": no prefetching"); 1665 } else { 1666 log->print(" prefetching: "); 1667 if (UseSSE == 0 && supports_3dnow_prefetch()) { 1668 log->print("PREFETCHW"); 1669 } else if (UseSSE >= 1) { 1670 if (AllocatePrefetchInstr == 0) { 1671 log->print("PREFETCHNTA"); 1672 } else if (AllocatePrefetchInstr == 1) { 1673 log->print("PREFETCHT0"); 1674 } else if (AllocatePrefetchInstr == 2) { 1675 log->print("PREFETCHT2"); 1676 } else if (AllocatePrefetchInstr == 3) { 1677 log->print("PREFETCHW"); 1678 } 1679 } 1680 if (AllocatePrefetchLines > 1) { 1681 log->print_cr(" at distance %d, %d lines of %d bytes", (int) AllocatePrefetchDistance, (int) AllocatePrefetchLines, (int) AllocatePrefetchStepSize); 1682 } else { 1683 log->print_cr(" at distance %d, one line of %d bytes", (int) AllocatePrefetchDistance, (int) AllocatePrefetchStepSize); 1684 } 1685 } 1686 1687 if (PrefetchCopyIntervalInBytes > 0) { 1688 log->print_cr("PrefetchCopyIntervalInBytes %d", (int) PrefetchCopyIntervalInBytes); 1689 } 1690 if (PrefetchScanIntervalInBytes > 0) { 1691 log->print_cr("PrefetchScanIntervalInBytes %d", (int) PrefetchScanIntervalInBytes); 1692 } 1693 if (PrefetchFieldsAhead > 0) { 1694 log->print_cr("PrefetchFieldsAhead %d", (int) PrefetchFieldsAhead); 1695 } 1696 if (ContendedPaddingWidth > 0) { 1697 log->print_cr("ContendedPaddingWidth %d", (int) ContendedPaddingWidth); 1698 } 1699 } 1700 #endif // !PRODUCT 1701 } 1702 1703 void VM_Version::print_platform_virtualization_info(outputStream* st) { 1704 VirtualizationType vrt = VM_Version::get_detected_virtualization(); 1705 if (vrt == XenHVM) { 1706 st->print_cr("Xen hardware-assisted virtualization detected"); 1707 } else if (vrt == KVM) { 1708 st->print_cr("KVM virtualization detected"); 1709 } else if (vrt == VMWare) { 1710 st->print_cr("VMWare virtualization detected"); 1711 VirtualizationSupport::print_virtualization_info(st); 1712 } else if (vrt == HyperV) { 1713 st->print_cr("Hyper-V virtualization detected"); 1714 } else if (vrt == HyperVRole) { 1715 st->print_cr("Hyper-V role detected"); 1716 } 1717 } 1718 1719 bool VM_Version::use_biased_locking() { 1720 #if INCLUDE_RTM_OPT 1721 // RTM locking is most useful when there is high lock contention and 1722 // low data contention. With high lock contention the lock is usually 1723 // inflated and biased locking is not suitable for that case. 1724 // RTM locking code requires that biased locking is off. 1725 // Note: we can't switch off UseBiasedLocking in get_processor_features() 1726 // because it is used by Thread::allocate() which is called before 1727 // VM_Version::initialize(). 1728 if (UseRTMLocking && UseBiasedLocking) { 1729 if (FLAG_IS_DEFAULT(UseBiasedLocking)) { 1730 FLAG_SET_DEFAULT(UseBiasedLocking, false); 1731 } else { 1732 warning("Biased locking is not supported with RTM locking; ignoring UseBiasedLocking flag." ); 1733 UseBiasedLocking = false; 1734 } 1735 } 1736 #endif 1737 return UseBiasedLocking; 1738 } 1739 1740 bool VM_Version::compute_has_intel_jcc_erratum() { 1741 if (!is_intel_family_core()) { 1742 // Only Intel CPUs are affected. 1743 return false; 1744 } 1745 // The following table of affected CPUs is based on the following document released by Intel: 1746 // https://www.intel.com/content/dam/support/us/en/documents/processors/mitigations-jump-conditional-code-erratum.pdf 1747 switch (_model) { 1748 case 0x8E: 1749 // 06_8EH | 9 | 8th Generation Intel® Core™ Processor Family based on microarchitecture code name Amber Lake Y 1750 // 06_8EH | 9 | 7th Generation Intel® Core™ Processor Family based on microarchitecture code name Kaby Lake U 1751 // 06_8EH | 9 | 7th Generation Intel® Core™ Processor Family based on microarchitecture code name Kaby Lake U 23e 1752 // 06_8EH | 9 | 7th Generation Intel® Core™ Processor Family based on microarchitecture code name Kaby Lake Y 1753 // 06_8EH | A | 8th Generation Intel® Core™ Processor Family based on microarchitecture code name Coffee Lake U43e 1754 // 06_8EH | B | 8th Generation Intel® Core™ Processors based on microarchitecture code name Whiskey Lake U 1755 // 06_8EH | C | 8th Generation Intel® Core™ Processor Family based on microarchitecture code name Amber Lake Y 1756 // 06_8EH | C | 10th Generation Intel® Core™ Processor Family based on microarchitecture code name Comet Lake U42 1757 // 06_8EH | C | 8th Generation Intel® Core™ Processors based on microarchitecture code name Whiskey Lake U 1758 return _stepping == 0x9 || _stepping == 0xA || _stepping == 0xB || _stepping == 0xC; 1759 case 0x4E: 1760 // 06_4E | 3 | 6th Generation Intel® Core™ Processors based on microarchitecture code name Skylake U 1761 // 06_4E | 3 | 6th Generation Intel® Core™ Processor Family based on microarchitecture code name Skylake U23e 1762 // 06_4E | 3 | 6th Generation Intel® Core™ Processors based on microarchitecture code name Skylake Y 1763 return _stepping == 0x3; 1764 case 0x55: 1765 // 06_55H | 4 | Intel® Xeon® Processor D Family based on microarchitecture code name Skylake D, Bakerville 1766 // 06_55H | 4 | Intel® Xeon® Scalable Processors based on microarchitecture code name Skylake Server 1767 // 06_55H | 4 | Intel® Xeon® Processor W Family based on microarchitecture code name Skylake W 1768 // 06_55H | 4 | Intel® Core™ X-series Processors based on microarchitecture code name Skylake X 1769 // 06_55H | 4 | Intel® Xeon® Processor E3 v5 Family based on microarchitecture code name Skylake Xeon E3 1770 // 06_55 | 7 | 2nd Generation Intel® Xeon® Scalable Processors based on microarchitecture code name Cascade Lake (server) 1771 return _stepping == 0x4 || _stepping == 0x7; 1772 case 0x5E: 1773 // 06_5E | 3 | 6th Generation Intel® Core™ Processor Family based on microarchitecture code name Skylake H 1774 // 06_5E | 3 | 6th Generation Intel® Core™ Processor Family based on microarchitecture code name Skylake S 1775 return _stepping == 0x3; 1776 case 0x9E: 1777 // 06_9EH | 9 | 8th Generation Intel® Core™ Processor Family based on microarchitecture code name Kaby Lake G 1778 // 06_9EH | 9 | 7th Generation Intel® Core™ Processor Family based on microarchitecture code name Kaby Lake H 1779 // 06_9EH | 9 | 7th Generation Intel® Core™ Processor Family based on microarchitecture code name Kaby Lake S 1780 // 06_9EH | 9 | Intel® Core™ X-series Processors based on microarchitecture code name Kaby Lake X 1781 // 06_9EH | 9 | Intel® Xeon® Processor E3 v6 Family Kaby Lake Xeon E3 1782 // 06_9EH | A | 8th Generation Intel® Core™ Processor Family based on microarchitecture code name Coffee Lake H 1783 // 06_9EH | A | 8th Generation Intel® Core™ Processor Family based on microarchitecture code name Coffee Lake S 1784 // 06_9EH | A | 8th Generation Intel® Core™ Processor Family based on microarchitecture code name Coffee Lake S (6+2) x/KBP 1785 // 06_9EH | A | Intel® Xeon® Processor E Family based on microarchitecture code name Coffee Lake S (6+2) 1786 // 06_9EH | A | Intel® Xeon® Processor E Family based on microarchitecture code name Coffee Lake S (4+2) 1787 // 06_9EH | B | 8th Generation Intel® Core™ Processor Family based on microarchitecture code name Coffee Lake S (4+2) 1788 // 06_9EH | B | Intel® Celeron® Processor G Series based on microarchitecture code name Coffee Lake S (4+2) 1789 // 06_9EH | D | 9th Generation Intel® Core™ Processor Family based on microarchitecturecode name Coffee Lake H (8+2) 1790 // 06_9EH | D | 9th Generation Intel® Core™ Processor Family based on microarchitecture code name Coffee Lake S (8+2) 1791 return _stepping == 0x9 || _stepping == 0xA || _stepping == 0xB || _stepping == 0xD; 1792 case 0xA6: 1793 // 06_A6H | 0 | 10th Generation Intel® Core™ Processor Family based on microarchitecture code name Comet Lake U62 1794 return _stepping == 0x0; 1795 case 0xAE: 1796 // 06_AEH | A | 8th Generation Intel® Core™ Processor Family based on microarchitecture code name Kaby Lake Refresh U (4+2) 1797 return _stepping == 0xA; 1798 default: 1799 // If we are running on another intel machine not recognized in the table, we are okay. 1800 return false; 1801 } 1802 } 1803 1804 // On Xen, the cpuid instruction returns 1805 // eax / registers[0]: Version of Xen 1806 // ebx / registers[1]: chars 'XenV' 1807 // ecx / registers[2]: chars 'MMXe' 1808 // edx / registers[3]: chars 'nVMM' 1809 // 1810 // On KVM / VMWare / MS Hyper-V, the cpuid instruction returns 1811 // ebx / registers[1]: chars 'KVMK' / 'VMwa' / 'Micr' 1812 // ecx / registers[2]: chars 'VMKV' / 'reVM' / 'osof' 1813 // edx / registers[3]: chars 'M' / 'ware' / 't Hv' 1814 // 1815 // more information : 1816 // https://kb.vmware.com/s/article/1009458 1817 // 1818 void VM_Version::check_virtualizations() { 1819 uint32_t registers[4] = {0}; 1820 char signature[13] = {0}; 1821 1822 // Xen cpuid leaves can be found 0x100 aligned boundary starting 1823 // from 0x40000000 until 0x40010000. 1824 // https://lists.linuxfoundation.org/pipermail/virtualization/2012-May/019974.html 1825 for (int leaf = 0x40000000; leaf < 0x40010000; leaf += 0x100) { 1826 detect_virt_stub(leaf, registers); 1827 memcpy(signature, ®isters[1], 12); 1828 1829 if (strncmp("VMwareVMware", signature, 12) == 0) { 1830 Abstract_VM_Version::_detected_virtualization = VMWare; 1831 // check for extended metrics from guestlib 1832 VirtualizationSupport::initialize(); 1833 } else if (strncmp("Microsoft Hv", signature, 12) == 0) { 1834 Abstract_VM_Version::_detected_virtualization = HyperV; 1835 #ifdef _WINDOWS 1836 // CPUID leaf 0x40000007 is available to the root partition only. 1837 // See Hypervisor Top Level Functional Specification section 2.4.8 for more details. 1838 // https://github.com/MicrosoftDocs/Virtualization-Documentation/raw/master/tlfs/Hypervisor%20Top%20Level%20Functional%20Specification%20v6.0b.pdf 1839 detect_virt_stub(0x40000007, registers); 1840 if ((registers[0] != 0x0) || 1841 (registers[1] != 0x0) || 1842 (registers[2] != 0x0) || 1843 (registers[3] != 0x0)) { 1844 Abstract_VM_Version::_detected_virtualization = HyperVRole; 1845 } 1846 #endif 1847 } else if (strncmp("KVMKVMKVM", signature, 9) == 0) { 1848 Abstract_VM_Version::_detected_virtualization = KVM; 1849 } else if (strncmp("XenVMMXenVMM", signature, 12) == 0) { 1850 Abstract_VM_Version::_detected_virtualization = XenHVM; 1851 } 1852 } 1853 } 1854 1855 void VM_Version::initialize() { 1856 ResourceMark rm; 1857 // Making this stub must be FIRST use of assembler 1858 stub_blob = BufferBlob::create("VM_Version stub", stub_size); 1859 if (stub_blob == NULL) { 1860 vm_exit_during_initialization("Unable to allocate stub for VM_Version"); 1861 } 1862 CodeBuffer c(stub_blob); 1863 VM_Version_StubGenerator g(&c); 1864 1865 get_cpu_info_stub = CAST_TO_FN_PTR(get_cpu_info_stub_t, 1866 g.generate_get_cpu_info()); 1867 detect_virt_stub = CAST_TO_FN_PTR(detect_virt_stub_t, 1868 g.generate_detect_virt()); 1869 1870 get_processor_features(); 1871 1872 LP64_ONLY(Assembler::precompute_instructions();) 1873 1874 if (VM_Version::supports_hv()) { // Supports hypervisor 1875 check_virtualizations(); 1876 } 1877 }