rev 60737 : 8252204: AArch64: Implement SHA3 accelerator/intrinsic Reviewed-by: duke Contributed-by: dongbo4@huawei.com
1 /* 2 * Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #ifndef CPU_AARCH64_ASSEMBLER_AARCH64_HPP 27 #define CPU_AARCH64_ASSEMBLER_AARCH64_HPP 28 29 #include "asm/register.hpp" 30 31 // definitions of various symbolic names for machine registers 32 33 // First intercalls between C and Java which use 8 general registers 34 // and 8 floating registers 35 36 // we also have to copy between x86 and ARM registers but that's a 37 // secondary complication -- not all code employing C call convention 38 // executes as x86 code though -- we generate some of it 39 40 class Argument { 41 public: 42 enum { 43 n_int_register_parameters_c = 8, // r0, r1, ... r7 (c_rarg0, c_rarg1, ...) 44 n_float_register_parameters_c = 8, // v0, v1, ... v7 (c_farg0, c_farg1, ... ) 45 46 n_int_register_parameters_j = 8, // r1, ... r7, r0 (rj_rarg0, j_rarg1, ... 47 n_float_register_parameters_j = 8 // v0, v1, ... v7 (j_farg0, j_farg1, ... 48 }; 49 }; 50 51 REGISTER_DECLARATION(Register, c_rarg0, r0); 52 REGISTER_DECLARATION(Register, c_rarg1, r1); 53 REGISTER_DECLARATION(Register, c_rarg2, r2); 54 REGISTER_DECLARATION(Register, c_rarg3, r3); 55 REGISTER_DECLARATION(Register, c_rarg4, r4); 56 REGISTER_DECLARATION(Register, c_rarg5, r5); 57 REGISTER_DECLARATION(Register, c_rarg6, r6); 58 REGISTER_DECLARATION(Register, c_rarg7, r7); 59 60 REGISTER_DECLARATION(FloatRegister, c_farg0, v0); 61 REGISTER_DECLARATION(FloatRegister, c_farg1, v1); 62 REGISTER_DECLARATION(FloatRegister, c_farg2, v2); 63 REGISTER_DECLARATION(FloatRegister, c_farg3, v3); 64 REGISTER_DECLARATION(FloatRegister, c_farg4, v4); 65 REGISTER_DECLARATION(FloatRegister, c_farg5, v5); 66 REGISTER_DECLARATION(FloatRegister, c_farg6, v6); 67 REGISTER_DECLARATION(FloatRegister, c_farg7, v7); 68 69 // Symbolically name the register arguments used by the Java calling convention. 70 // We have control over the convention for java so we can do what we please. 71 // What pleases us is to offset the java calling convention so that when 72 // we call a suitable jni method the arguments are lined up and we don't 73 // have to do much shuffling. A suitable jni method is non-static and a 74 // small number of arguments 75 // 76 // |--------------------------------------------------------------------| 77 // | c_rarg0 c_rarg1 c_rarg2 c_rarg3 c_rarg4 c_rarg5 c_rarg6 c_rarg7 | 78 // |--------------------------------------------------------------------| 79 // | r0 r1 r2 r3 r4 r5 r6 r7 | 80 // |--------------------------------------------------------------------| 81 // | j_rarg7 j_rarg0 j_rarg1 j_rarg2 j_rarg3 j_rarg4 j_rarg5 j_rarg6 | 82 // |--------------------------------------------------------------------| 83 84 85 REGISTER_DECLARATION(Register, j_rarg0, c_rarg1); 86 REGISTER_DECLARATION(Register, j_rarg1, c_rarg2); 87 REGISTER_DECLARATION(Register, j_rarg2, c_rarg3); 88 REGISTER_DECLARATION(Register, j_rarg3, c_rarg4); 89 REGISTER_DECLARATION(Register, j_rarg4, c_rarg5); 90 REGISTER_DECLARATION(Register, j_rarg5, c_rarg6); 91 REGISTER_DECLARATION(Register, j_rarg6, c_rarg7); 92 REGISTER_DECLARATION(Register, j_rarg7, c_rarg0); 93 94 // Java floating args are passed as per C 95 96 REGISTER_DECLARATION(FloatRegister, j_farg0, v0); 97 REGISTER_DECLARATION(FloatRegister, j_farg1, v1); 98 REGISTER_DECLARATION(FloatRegister, j_farg2, v2); 99 REGISTER_DECLARATION(FloatRegister, j_farg3, v3); 100 REGISTER_DECLARATION(FloatRegister, j_farg4, v4); 101 REGISTER_DECLARATION(FloatRegister, j_farg5, v5); 102 REGISTER_DECLARATION(FloatRegister, j_farg6, v6); 103 REGISTER_DECLARATION(FloatRegister, j_farg7, v7); 104 105 // registers used to hold VM data either temporarily within a method 106 // or across method calls 107 108 // volatile (caller-save) registers 109 110 // r8 is used for indirect result location return 111 // we use it and r9 as scratch registers 112 REGISTER_DECLARATION(Register, rscratch1, r8); 113 REGISTER_DECLARATION(Register, rscratch2, r9); 114 115 // current method -- must be in a call-clobbered register 116 REGISTER_DECLARATION(Register, rmethod, r12); 117 118 // non-volatile (callee-save) registers are r16-29 119 // of which the following are dedicated global state 120 121 // link register 122 REGISTER_DECLARATION(Register, lr, r30); 123 // frame pointer 124 REGISTER_DECLARATION(Register, rfp, r29); 125 // current thread 126 REGISTER_DECLARATION(Register, rthread, r28); 127 // base of heap 128 REGISTER_DECLARATION(Register, rheapbase, r27); 129 // constant pool cache 130 REGISTER_DECLARATION(Register, rcpool, r26); 131 // monitors allocated on stack 132 REGISTER_DECLARATION(Register, rmonitors, r25); 133 // locals on stack 134 REGISTER_DECLARATION(Register, rlocals, r24); 135 // bytecode pointer 136 REGISTER_DECLARATION(Register, rbcp, r22); 137 // Dispatch table base 138 REGISTER_DECLARATION(Register, rdispatch, r21); 139 // Java stack pointer 140 REGISTER_DECLARATION(Register, esp, r20); 141 142 #define assert_cond(ARG1) assert(ARG1, #ARG1) 143 144 namespace asm_util { 145 uint32_t encode_logical_immediate(bool is32, uint64_t imm); 146 }; 147 148 using namespace asm_util; 149 150 151 class Assembler; 152 153 class Instruction_aarch64 { 154 unsigned insn; 155 #ifdef ASSERT 156 unsigned bits; 157 #endif 158 Assembler *assem; 159 160 public: 161 162 Instruction_aarch64(class Assembler *as) { 163 #ifdef ASSERT 164 bits = 0; 165 #endif 166 insn = 0; 167 assem = as; 168 } 169 170 inline ~Instruction_aarch64(); 171 172 unsigned &get_insn() { return insn; } 173 #ifdef ASSERT 174 unsigned &get_bits() { return bits; } 175 #endif 176 177 static inline int32_t extend(unsigned val, int hi = 31, int lo = 0) { 178 union { 179 unsigned u; 180 int n; 181 }; 182 183 u = val << (31 - hi); 184 n = n >> (31 - hi + lo); 185 return n; 186 } 187 188 static inline uint32_t extract(uint32_t val, int msb, int lsb) { 189 int nbits = msb - lsb + 1; 190 assert_cond(msb >= lsb); 191 uint32_t mask = (1U << nbits) - 1; 192 uint32_t result = val >> lsb; 193 result &= mask; 194 return result; 195 } 196 197 static inline int32_t sextract(uint32_t val, int msb, int lsb) { 198 uint32_t uval = extract(val, msb, lsb); 199 return extend(uval, msb - lsb); 200 } 201 202 static void patch(address a, int msb, int lsb, uint64_t val) { 203 int nbits = msb - lsb + 1; 204 guarantee(val < (1U << nbits), "Field too big for insn"); 205 assert_cond(msb >= lsb); 206 unsigned mask = (1U << nbits) - 1; 207 val <<= lsb; 208 mask <<= lsb; 209 unsigned target = *(unsigned *)a; 210 target &= ~mask; 211 target |= val; 212 *(unsigned *)a = target; 213 } 214 215 static void spatch(address a, int msb, int lsb, int64_t val) { 216 int nbits = msb - lsb + 1; 217 int64_t chk = val >> (nbits - 1); 218 guarantee (chk == -1 || chk == 0, "Field too big for insn"); 219 unsigned uval = val; 220 unsigned mask = (1U << nbits) - 1; 221 uval &= mask; 222 uval <<= lsb; 223 mask <<= lsb; 224 unsigned target = *(unsigned *)a; 225 target &= ~mask; 226 target |= uval; 227 *(unsigned *)a = target; 228 } 229 230 void f(unsigned val, int msb, int lsb) { 231 int nbits = msb - lsb + 1; 232 guarantee(val < (1U << nbits), "Field too big for insn"); 233 assert_cond(msb >= lsb); 234 unsigned mask = (1U << nbits) - 1; 235 val <<= lsb; 236 mask <<= lsb; 237 insn |= val; 238 assert_cond((bits & mask) == 0); 239 #ifdef ASSERT 240 bits |= mask; 241 #endif 242 } 243 244 void f(unsigned val, int bit) { 245 f(val, bit, bit); 246 } 247 248 void sf(int64_t val, int msb, int lsb) { 249 int nbits = msb - lsb + 1; 250 int64_t chk = val >> (nbits - 1); 251 guarantee (chk == -1 || chk == 0, "Field too big for insn"); 252 unsigned uval = val; 253 unsigned mask = (1U << nbits) - 1; 254 uval &= mask; 255 f(uval, lsb + nbits - 1, lsb); 256 } 257 258 void rf(Register r, int lsb) { 259 f(r->encoding_nocheck(), lsb + 4, lsb); 260 } 261 262 // reg|ZR 263 void zrf(Register r, int lsb) { 264 f(r->encoding_nocheck() - (r == zr), lsb + 4, lsb); 265 } 266 267 // reg|SP 268 void srf(Register r, int lsb) { 269 f(r == sp ? 31 : r->encoding_nocheck(), lsb + 4, lsb); 270 } 271 272 void rf(FloatRegister r, int lsb) { 273 f(r->encoding_nocheck(), lsb + 4, lsb); 274 } 275 276 unsigned get(int msb = 31, int lsb = 0) { 277 int nbits = msb - lsb + 1; 278 unsigned mask = ((1U << nbits) - 1) << lsb; 279 assert_cond((bits & mask) == mask); 280 return (insn & mask) >> lsb; 281 } 282 283 void fixed(unsigned value, unsigned mask) { 284 assert_cond ((mask & bits) == 0); 285 #ifdef ASSERT 286 bits |= mask; 287 #endif 288 insn |= value; 289 } 290 }; 291 292 #define starti Instruction_aarch64 do_not_use(this); set_current(&do_not_use) 293 294 class PrePost { 295 int _offset; 296 Register _r; 297 public: 298 PrePost(Register reg, int o) : _offset(o), _r(reg) { } 299 int offset() { return _offset; } 300 Register reg() { return _r; } 301 }; 302 303 class Pre : public PrePost { 304 public: 305 Pre(Register reg, int o) : PrePost(reg, o) { } 306 }; 307 class Post : public PrePost { 308 Register _idx; 309 bool _is_postreg; 310 public: 311 Post(Register reg, int o) : PrePost(reg, o) { _idx = NULL; _is_postreg = false; } 312 Post(Register reg, Register idx) : PrePost(reg, 0) { _idx = idx; _is_postreg = true; } 313 Register idx_reg() { return _idx; } 314 bool is_postreg() {return _is_postreg; } 315 }; 316 317 namespace ext 318 { 319 enum operation { uxtb, uxth, uxtw, uxtx, sxtb, sxth, sxtw, sxtx }; 320 }; 321 322 // Addressing modes 323 class Address { 324 public: 325 326 enum mode { no_mode, base_plus_offset, pre, post, post_reg, pcrel, 327 base_plus_offset_reg, literal }; 328 329 // Shift and extend for base reg + reg offset addressing 330 class extend { 331 int _option, _shift; 332 ext::operation _op; 333 public: 334 extend() { } 335 extend(int s, int o, ext::operation op) : _option(o), _shift(s), _op(op) { } 336 int option() const{ return _option; } 337 int shift() const { return _shift; } 338 ext::operation op() const { return _op; } 339 }; 340 class uxtw : public extend { 341 public: 342 uxtw(int shift = -1): extend(shift, 0b010, ext::uxtw) { } 343 }; 344 class lsl : public extend { 345 public: 346 lsl(int shift = -1): extend(shift, 0b011, ext::uxtx) { } 347 }; 348 class sxtw : public extend { 349 public: 350 sxtw(int shift = -1): extend(shift, 0b110, ext::sxtw) { } 351 }; 352 class sxtx : public extend { 353 public: 354 sxtx(int shift = -1): extend(shift, 0b111, ext::sxtx) { } 355 }; 356 357 private: 358 Register _base; 359 Register _index; 360 int64_t _offset; 361 enum mode _mode; 362 extend _ext; 363 364 RelocationHolder _rspec; 365 366 // Typically we use AddressLiterals we want to use their rval 367 // However in some situations we want the lval (effect address) of 368 // the item. We provide a special factory for making those lvals. 369 bool _is_lval; 370 371 // If the target is far we'll need to load the ea of this to a 372 // register to reach it. Otherwise if near we can do PC-relative 373 // addressing. 374 address _target; 375 376 public: 377 Address() 378 : _mode(no_mode) { } 379 Address(Register r) 380 : _base(r), _index(noreg), _offset(0), _mode(base_plus_offset), _target(0) { } 381 Address(Register r, int o) 382 : _base(r), _index(noreg), _offset(o), _mode(base_plus_offset), _target(0) { } 383 Address(Register r, long o) 384 : _base(r), _index(noreg), _offset(o), _mode(base_plus_offset), _target(0) { } 385 Address(Register r, long long o) 386 : _base(r), _index(noreg), _offset(o), _mode(base_plus_offset), _target(0) { } 387 Address(Register r, unsigned int o) 388 : _base(r), _index(noreg), _offset(o), _mode(base_plus_offset), _target(0) { } 389 Address(Register r, unsigned long o) 390 : _base(r), _index(noreg), _offset(o), _mode(base_plus_offset), _target(0) { } 391 Address(Register r, unsigned long long o) 392 : _base(r), _index(noreg), _offset(o), _mode(base_plus_offset), _target(0) { } 393 #ifdef ASSERT 394 Address(Register r, ByteSize disp) 395 : _base(r), _index(noreg), _offset(in_bytes(disp)), _mode(base_plus_offset), _target(0) { } 396 #endif 397 Address(Register r, Register r1, extend ext = lsl()) 398 : _base(r), _index(r1), _offset(0), _mode(base_plus_offset_reg), 399 _ext(ext), _target(0) { } 400 Address(Pre p) 401 : _base(p.reg()), _offset(p.offset()), _mode(pre) { } 402 Address(Post p) 403 : _base(p.reg()), _index(p.idx_reg()), _offset(p.offset()), 404 _mode(p.is_postreg() ? post_reg : post), _target(0) { } 405 Address(address target, RelocationHolder const& rspec) 406 : _mode(literal), 407 _rspec(rspec), 408 _is_lval(false), 409 _target(target) { } 410 Address(address target, relocInfo::relocType rtype = relocInfo::external_word_type); 411 Address(Register base, RegisterOrConstant index, extend ext = lsl()) 412 : _base (base), 413 _offset(0), _ext(ext), _target(0) { 414 if (index.is_register()) { 415 _mode = base_plus_offset_reg; 416 _index = index.as_register(); 417 } else { 418 guarantee(ext.option() == ext::uxtx, "should be"); 419 assert(index.is_constant(), "should be"); 420 _mode = base_plus_offset; 421 _offset = index.as_constant() << ext.shift(); 422 } 423 } 424 425 Register base() const { 426 guarantee((_mode == base_plus_offset | _mode == base_plus_offset_reg 427 | _mode == post | _mode == post_reg), 428 "wrong mode"); 429 return _base; 430 } 431 int64_t offset() const { 432 return _offset; 433 } 434 Register index() const { 435 return _index; 436 } 437 mode getMode() const { 438 return _mode; 439 } 440 bool uses(Register reg) const { return _base == reg || _index == reg; } 441 address target() const { return _target; } 442 const RelocationHolder& rspec() const { return _rspec; } 443 444 void encode(Instruction_aarch64 *i) const { 445 i->f(0b111, 29, 27); 446 i->srf(_base, 5); 447 448 switch(_mode) { 449 case base_plus_offset: 450 { 451 unsigned size = i->get(31, 30); 452 if (i->get(26, 26) && i->get(23, 23)) { 453 // SIMD Q Type - Size = 128 bits 454 assert(size == 0, "bad size"); 455 size = 0b100; 456 } 457 unsigned mask = (1 << size) - 1; 458 if (_offset < 0 || _offset & mask) 459 { 460 i->f(0b00, 25, 24); 461 i->f(0, 21), i->f(0b00, 11, 10); 462 i->sf(_offset, 20, 12); 463 } else { 464 i->f(0b01, 25, 24); 465 i->f(_offset >> size, 21, 10); 466 } 467 } 468 break; 469 470 case base_plus_offset_reg: 471 { 472 i->f(0b00, 25, 24); 473 i->f(1, 21); 474 i->rf(_index, 16); 475 i->f(_ext.option(), 15, 13); 476 unsigned size = i->get(31, 30); 477 if (i->get(26, 26) && i->get(23, 23)) { 478 // SIMD Q Type - Size = 128 bits 479 assert(size == 0, "bad size"); 480 size = 0b100; 481 } 482 if (size == 0) // It's a byte 483 i->f(_ext.shift() >= 0, 12); 484 else { 485 if (_ext.shift() > 0) 486 assert(_ext.shift() == (int)size, "bad shift"); 487 i->f(_ext.shift() > 0, 12); 488 } 489 i->f(0b10, 11, 10); 490 } 491 break; 492 493 case pre: 494 i->f(0b00, 25, 24); 495 i->f(0, 21), i->f(0b11, 11, 10); 496 i->sf(_offset, 20, 12); 497 break; 498 499 case post: 500 i->f(0b00, 25, 24); 501 i->f(0, 21), i->f(0b01, 11, 10); 502 i->sf(_offset, 20, 12); 503 break; 504 505 default: 506 ShouldNotReachHere(); 507 } 508 } 509 510 void encode_pair(Instruction_aarch64 *i) const { 511 switch(_mode) { 512 case base_plus_offset: 513 i->f(0b010, 25, 23); 514 break; 515 case pre: 516 i->f(0b011, 25, 23); 517 break; 518 case post: 519 i->f(0b001, 25, 23); 520 break; 521 default: 522 ShouldNotReachHere(); 523 } 524 525 unsigned size; // Operand shift in 32-bit words 526 527 if (i->get(26, 26)) { // float 528 switch(i->get(31, 30)) { 529 case 0b10: 530 size = 2; break; 531 case 0b01: 532 size = 1; break; 533 case 0b00: 534 size = 0; break; 535 default: 536 ShouldNotReachHere(); 537 size = 0; // unreachable 538 } 539 } else { 540 size = i->get(31, 31); 541 } 542 543 size = 4 << size; 544 guarantee(_offset % size == 0, "bad offset"); 545 i->sf(_offset / size, 21, 15); 546 i->srf(_base, 5); 547 } 548 549 void encode_nontemporal_pair(Instruction_aarch64 *i) const { 550 // Only base + offset is allowed 551 i->f(0b000, 25, 23); 552 unsigned size = i->get(31, 31); 553 size = 4 << size; 554 guarantee(_offset % size == 0, "bad offset"); 555 i->sf(_offset / size, 21, 15); 556 i->srf(_base, 5); 557 guarantee(_mode == Address::base_plus_offset, 558 "Bad addressing mode for non-temporal op"); 559 } 560 561 void lea(MacroAssembler *, Register) const; 562 563 static bool offset_ok_for_immed(int64_t offset, uint shift); 564 }; 565 566 // Convience classes 567 class RuntimeAddress: public Address { 568 569 public: 570 571 RuntimeAddress(address target) : Address(target, relocInfo::runtime_call_type) {} 572 573 }; 574 575 class OopAddress: public Address { 576 577 public: 578 579 OopAddress(address target) : Address(target, relocInfo::oop_type){} 580 581 }; 582 583 class ExternalAddress: public Address { 584 private: 585 static relocInfo::relocType reloc_for_target(address target) { 586 // Sometimes ExternalAddress is used for values which aren't 587 // exactly addresses, like the card table base. 588 // external_word_type can't be used for values in the first page 589 // so just skip the reloc in that case. 590 return external_word_Relocation::can_be_relocated(target) ? relocInfo::external_word_type : relocInfo::none; 591 } 592 593 public: 594 595 ExternalAddress(address target) : Address(target, reloc_for_target(target)) {} 596 597 }; 598 599 class InternalAddress: public Address { 600 601 public: 602 603 InternalAddress(address target) : Address(target, relocInfo::internal_word_type) {} 604 }; 605 606 const int FPUStateSizeInWords = FloatRegisterImpl::number_of_registers * 607 FloatRegisterImpl::save_slots_per_register; 608 609 typedef enum { 610 PLDL1KEEP = 0b00000, PLDL1STRM, PLDL2KEEP, PLDL2STRM, PLDL3KEEP, PLDL3STRM, 611 PSTL1KEEP = 0b10000, PSTL1STRM, PSTL2KEEP, PSTL2STRM, PSTL3KEEP, PSTL3STRM, 612 PLIL1KEEP = 0b01000, PLIL1STRM, PLIL2KEEP, PLIL2STRM, PLIL3KEEP, PLIL3STRM 613 } prfop; 614 615 class Assembler : public AbstractAssembler { 616 617 #ifndef PRODUCT 618 static const uintptr_t asm_bp; 619 620 void emit_long(jint x) { 621 if ((uintptr_t)pc() == asm_bp) 622 asm volatile ("nop"); 623 AbstractAssembler::emit_int32(x); 624 } 625 #else 626 void emit_long(jint x) { 627 AbstractAssembler::emit_int32(x); 628 } 629 #endif 630 631 public: 632 633 enum { instruction_size = 4 }; 634 635 //---< calculate length of instruction >--- 636 // We just use the values set above. 637 // instruction must start at passed address 638 static unsigned int instr_len(unsigned char *instr) { return instruction_size; } 639 640 //---< longest instructions >--- 641 static unsigned int instr_maxlen() { return instruction_size; } 642 643 Address adjust(Register base, int offset, bool preIncrement) { 644 if (preIncrement) 645 return Address(Pre(base, offset)); 646 else 647 return Address(Post(base, offset)); 648 } 649 650 Address pre(Register base, int offset) { 651 return adjust(base, offset, true); 652 } 653 654 Address post(Register base, int offset) { 655 return adjust(base, offset, false); 656 } 657 658 Address post(Register base, Register idx) { 659 return Address(Post(base, idx)); 660 } 661 662 Instruction_aarch64* current; 663 664 void set_current(Instruction_aarch64* i) { current = i; } 665 666 void f(unsigned val, int msb, int lsb) { 667 current->f(val, msb, lsb); 668 } 669 void f(unsigned val, int msb) { 670 current->f(val, msb, msb); 671 } 672 void sf(int64_t val, int msb, int lsb) { 673 current->sf(val, msb, lsb); 674 } 675 void rf(Register reg, int lsb) { 676 current->rf(reg, lsb); 677 } 678 void srf(Register reg, int lsb) { 679 current->srf(reg, lsb); 680 } 681 void zrf(Register reg, int lsb) { 682 current->zrf(reg, lsb); 683 } 684 void rf(FloatRegister reg, int lsb) { 685 current->rf(reg, lsb); 686 } 687 void fixed(unsigned value, unsigned mask) { 688 current->fixed(value, mask); 689 } 690 691 void emit() { 692 emit_long(current->get_insn()); 693 assert_cond(current->get_bits() == 0xffffffff); 694 current = NULL; 695 } 696 697 typedef void (Assembler::* uncond_branch_insn)(address dest); 698 typedef void (Assembler::* compare_and_branch_insn)(Register Rt, address dest); 699 typedef void (Assembler::* test_and_branch_insn)(Register Rt, int bitpos, address dest); 700 typedef void (Assembler::* prefetch_insn)(address target, prfop); 701 702 void wrap_label(Label &L, uncond_branch_insn insn); 703 void wrap_label(Register r, Label &L, compare_and_branch_insn insn); 704 void wrap_label(Register r, int bitpos, Label &L, test_and_branch_insn insn); 705 void wrap_label(Label &L, prfop, prefetch_insn insn); 706 707 // PC-rel. addressing 708 709 void adr(Register Rd, address dest); 710 void _adrp(Register Rd, address dest); 711 712 void adr(Register Rd, const Address &dest); 713 void _adrp(Register Rd, const Address &dest); 714 715 void adr(Register Rd, Label &L) { 716 wrap_label(Rd, L, &Assembler::Assembler::adr); 717 } 718 void _adrp(Register Rd, Label &L) { 719 wrap_label(Rd, L, &Assembler::_adrp); 720 } 721 722 void adrp(Register Rd, const Address &dest, uint64_t &offset); 723 724 #undef INSN 725 726 void add_sub_immediate(Register Rd, Register Rn, unsigned uimm, int op, 727 int negated_op); 728 729 // Add/subtract (immediate) 730 #define INSN(NAME, decode, negated) \ 731 void NAME(Register Rd, Register Rn, unsigned imm, unsigned shift) { \ 732 starti; \ 733 f(decode, 31, 29), f(0b10001, 28, 24), f(shift, 23, 22), f(imm, 21, 10); \ 734 zrf(Rd, 0), srf(Rn, 5); \ 735 } \ 736 \ 737 void NAME(Register Rd, Register Rn, unsigned imm) { \ 738 starti; \ 739 add_sub_immediate(Rd, Rn, imm, decode, negated); \ 740 } 741 742 INSN(addsw, 0b001, 0b011); 743 INSN(subsw, 0b011, 0b001); 744 INSN(adds, 0b101, 0b111); 745 INSN(subs, 0b111, 0b101); 746 747 #undef INSN 748 749 #define INSN(NAME, decode, negated) \ 750 void NAME(Register Rd, Register Rn, unsigned imm) { \ 751 starti; \ 752 add_sub_immediate(Rd, Rn, imm, decode, negated); \ 753 } 754 755 INSN(addw, 0b000, 0b010); 756 INSN(subw, 0b010, 0b000); 757 INSN(add, 0b100, 0b110); 758 INSN(sub, 0b110, 0b100); 759 760 #undef INSN 761 762 // Logical (immediate) 763 #define INSN(NAME, decode, is32) \ 764 void NAME(Register Rd, Register Rn, uint64_t imm) { \ 765 starti; \ 766 uint32_t val = encode_logical_immediate(is32, imm); \ 767 f(decode, 31, 29), f(0b100100, 28, 23), f(val, 22, 10); \ 768 srf(Rd, 0), zrf(Rn, 5); \ 769 } 770 771 INSN(andw, 0b000, true); 772 INSN(orrw, 0b001, true); 773 INSN(eorw, 0b010, true); 774 INSN(andr, 0b100, false); 775 INSN(orr, 0b101, false); 776 INSN(eor, 0b110, false); 777 778 #undef INSN 779 780 #define INSN(NAME, decode, is32) \ 781 void NAME(Register Rd, Register Rn, uint64_t imm) { \ 782 starti; \ 783 uint32_t val = encode_logical_immediate(is32, imm); \ 784 f(decode, 31, 29), f(0b100100, 28, 23), f(val, 22, 10); \ 785 zrf(Rd, 0), zrf(Rn, 5); \ 786 } 787 788 INSN(ands, 0b111, false); 789 INSN(andsw, 0b011, true); 790 791 #undef INSN 792 793 // Move wide (immediate) 794 #define INSN(NAME, opcode) \ 795 void NAME(Register Rd, unsigned imm, unsigned shift = 0) { \ 796 assert_cond((shift/16)*16 == shift); \ 797 starti; \ 798 f(opcode, 31, 29), f(0b100101, 28, 23), f(shift/16, 22, 21), \ 799 f(imm, 20, 5); \ 800 rf(Rd, 0); \ 801 } 802 803 INSN(movnw, 0b000); 804 INSN(movzw, 0b010); 805 INSN(movkw, 0b011); 806 INSN(movn, 0b100); 807 INSN(movz, 0b110); 808 INSN(movk, 0b111); 809 810 #undef INSN 811 812 // Bitfield 813 #define INSN(NAME, opcode, size) \ 814 void NAME(Register Rd, Register Rn, unsigned immr, unsigned imms) { \ 815 starti; \ 816 guarantee(size == 1 || (immr < 32 && imms < 32), "incorrect immr/imms");\ 817 f(opcode, 31, 22), f(immr, 21, 16), f(imms, 15, 10); \ 818 zrf(Rn, 5), rf(Rd, 0); \ 819 } 820 821 INSN(sbfmw, 0b0001001100, 0); 822 INSN(bfmw, 0b0011001100, 0); 823 INSN(ubfmw, 0b0101001100, 0); 824 INSN(sbfm, 0b1001001101, 1); 825 INSN(bfm, 0b1011001101, 1); 826 INSN(ubfm, 0b1101001101, 1); 827 828 #undef INSN 829 830 // Extract 831 #define INSN(NAME, opcode, size) \ 832 void NAME(Register Rd, Register Rn, Register Rm, unsigned imms) { \ 833 starti; \ 834 guarantee(size == 1 || imms < 32, "incorrect imms"); \ 835 f(opcode, 31, 21), f(imms, 15, 10); \ 836 zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0); \ 837 } 838 839 INSN(extrw, 0b00010011100, 0); 840 INSN(extr, 0b10010011110, 1); 841 842 #undef INSN 843 844 // The maximum range of a branch is fixed for the AArch64 845 // architecture. In debug mode we shrink it in order to test 846 // trampolines, but not so small that branches in the interpreter 847 // are out of range. 848 static const uint64_t branch_range = NOT_DEBUG(128 * M) DEBUG_ONLY(2 * M); 849 850 static bool reachable_from_branch_at(address branch, address target) { 851 return uabs(target - branch) < branch_range; 852 } 853 854 // Unconditional branch (immediate) 855 #define INSN(NAME, opcode) \ 856 void NAME(address dest) { \ 857 starti; \ 858 int64_t offset = (dest - pc()) >> 2; \ 859 DEBUG_ONLY(assert(reachable_from_branch_at(pc(), dest), "debug only")); \ 860 f(opcode, 31), f(0b00101, 30, 26), sf(offset, 25, 0); \ 861 } \ 862 void NAME(Label &L) { \ 863 wrap_label(L, &Assembler::NAME); \ 864 } \ 865 void NAME(const Address &dest); 866 867 INSN(b, 0); 868 INSN(bl, 1); 869 870 #undef INSN 871 872 // Compare & branch (immediate) 873 #define INSN(NAME, opcode) \ 874 void NAME(Register Rt, address dest) { \ 875 int64_t offset = (dest - pc()) >> 2; \ 876 starti; \ 877 f(opcode, 31, 24), sf(offset, 23, 5), rf(Rt, 0); \ 878 } \ 879 void NAME(Register Rt, Label &L) { \ 880 wrap_label(Rt, L, &Assembler::NAME); \ 881 } 882 883 INSN(cbzw, 0b00110100); 884 INSN(cbnzw, 0b00110101); 885 INSN(cbz, 0b10110100); 886 INSN(cbnz, 0b10110101); 887 888 #undef INSN 889 890 // Test & branch (immediate) 891 #define INSN(NAME, opcode) \ 892 void NAME(Register Rt, int bitpos, address dest) { \ 893 int64_t offset = (dest - pc()) >> 2; \ 894 int b5 = bitpos >> 5; \ 895 bitpos &= 0x1f; \ 896 starti; \ 897 f(b5, 31), f(opcode, 30, 24), f(bitpos, 23, 19), sf(offset, 18, 5); \ 898 rf(Rt, 0); \ 899 } \ 900 void NAME(Register Rt, int bitpos, Label &L) { \ 901 wrap_label(Rt, bitpos, L, &Assembler::NAME); \ 902 } 903 904 INSN(tbz, 0b0110110); 905 INSN(tbnz, 0b0110111); 906 907 #undef INSN 908 909 // Conditional branch (immediate) 910 enum Condition 911 {EQ, NE, HS, CS=HS, LO, CC=LO, MI, PL, VS, VC, HI, LS, GE, LT, GT, LE, AL, NV}; 912 913 void br(Condition cond, address dest) { 914 int64_t offset = (dest - pc()) >> 2; 915 starti; 916 f(0b0101010, 31, 25), f(0, 24), sf(offset, 23, 5), f(0, 4), f(cond, 3, 0); 917 } 918 919 #define INSN(NAME, cond) \ 920 void NAME(address dest) { \ 921 br(cond, dest); \ 922 } 923 924 INSN(beq, EQ); 925 INSN(bne, NE); 926 INSN(bhs, HS); 927 INSN(bcs, CS); 928 INSN(blo, LO); 929 INSN(bcc, CC); 930 INSN(bmi, MI); 931 INSN(bpl, PL); 932 INSN(bvs, VS); 933 INSN(bvc, VC); 934 INSN(bhi, HI); 935 INSN(bls, LS); 936 INSN(bge, GE); 937 INSN(blt, LT); 938 INSN(bgt, GT); 939 INSN(ble, LE); 940 INSN(bal, AL); 941 INSN(bnv, NV); 942 943 void br(Condition cc, Label &L); 944 945 #undef INSN 946 947 // Exception generation 948 void generate_exception(int opc, int op2, int LL, unsigned imm) { 949 starti; 950 f(0b11010100, 31, 24); 951 f(opc, 23, 21), f(imm, 20, 5), f(op2, 4, 2), f(LL, 1, 0); 952 } 953 954 #define INSN(NAME, opc, op2, LL) \ 955 void NAME(unsigned imm) { \ 956 generate_exception(opc, op2, LL, imm); \ 957 } 958 959 INSN(svc, 0b000, 0, 0b01); 960 INSN(hvc, 0b000, 0, 0b10); 961 INSN(smc, 0b000, 0, 0b11); 962 INSN(brk, 0b001, 0, 0b00); 963 INSN(hlt, 0b010, 0, 0b00); 964 INSN(dcps1, 0b101, 0, 0b01); 965 INSN(dcps2, 0b101, 0, 0b10); 966 INSN(dcps3, 0b101, 0, 0b11); 967 968 #undef INSN 969 970 // System 971 void system(int op0, int op1, int CRn, int CRm, int op2, 972 Register rt = dummy_reg) 973 { 974 starti; 975 f(0b11010101000, 31, 21); 976 f(op0, 20, 19); 977 f(op1, 18, 16); 978 f(CRn, 15, 12); 979 f(CRm, 11, 8); 980 f(op2, 7, 5); 981 rf(rt, 0); 982 } 983 984 void hint(int imm) { 985 system(0b00, 0b011, 0b0010, 0b0000, imm); 986 } 987 988 void nop() { 989 hint(0); 990 } 991 992 void yield() { 993 hint(1); 994 } 995 996 void wfe() { 997 hint(2); 998 } 999 1000 void wfi() { 1001 hint(3); 1002 } 1003 1004 void sev() { 1005 hint(4); 1006 } 1007 1008 void sevl() { 1009 hint(5); 1010 } 1011 1012 // we only provide mrs and msr for the special purpose system 1013 // registers where op1 (instr[20:19]) == 11 and, (currently) only 1014 // use it for FPSR n.b msr has L (instr[21]) == 0 mrs has L == 1 1015 1016 void msr(int op1, int CRn, int CRm, int op2, Register rt) { 1017 starti; 1018 f(0b1101010100011, 31, 19); 1019 f(op1, 18, 16); 1020 f(CRn, 15, 12); 1021 f(CRm, 11, 8); 1022 f(op2, 7, 5); 1023 // writing zr is ok 1024 zrf(rt, 0); 1025 } 1026 1027 void mrs(int op1, int CRn, int CRm, int op2, Register rt) { 1028 starti; 1029 f(0b1101010100111, 31, 19); 1030 f(op1, 18, 16); 1031 f(CRn, 15, 12); 1032 f(CRm, 11, 8); 1033 f(op2, 7, 5); 1034 // reading to zr is a mistake 1035 rf(rt, 0); 1036 } 1037 1038 enum barrier {OSHLD = 0b0001, OSHST, OSH, NSHLD=0b0101, NSHST, NSH, 1039 ISHLD = 0b1001, ISHST, ISH, LD=0b1101, ST, SY}; 1040 1041 void dsb(barrier imm) { 1042 system(0b00, 0b011, 0b00011, imm, 0b100); 1043 } 1044 1045 void dmb(barrier imm) { 1046 system(0b00, 0b011, 0b00011, imm, 0b101); 1047 } 1048 1049 void isb() { 1050 system(0b00, 0b011, 0b00011, SY, 0b110); 1051 } 1052 1053 void sys(int op1, int CRn, int CRm, int op2, 1054 Register rt = (Register)0b11111) { 1055 system(0b01, op1, CRn, CRm, op2, rt); 1056 } 1057 1058 // Only implement operations accessible from EL0 or higher, i.e., 1059 // op1 CRn CRm op2 1060 // IC IVAU 3 7 5 1 1061 // DC CVAC 3 7 10 1 1062 // DC CVAP 3 7 12 1 1063 // DC CVAU 3 7 11 1 1064 // DC CIVAC 3 7 14 1 1065 // DC ZVA 3 7 4 1 1066 // So only deal with the CRm field. 1067 enum icache_maintenance {IVAU = 0b0101}; 1068 enum dcache_maintenance {CVAC = 0b1010, CVAP = 0b1100, CVAU = 0b1011, CIVAC = 0b1110, ZVA = 0b100}; 1069 1070 void dc(dcache_maintenance cm, Register Rt) { 1071 sys(0b011, 0b0111, cm, 0b001, Rt); 1072 } 1073 1074 void ic(icache_maintenance cm, Register Rt) { 1075 sys(0b011, 0b0111, cm, 0b001, Rt); 1076 } 1077 1078 // A more convenient access to dmb for our purposes 1079 enum Membar_mask_bits { 1080 // We can use ISH for a barrier because the ARM ARM says "This 1081 // architecture assumes that all Processing Elements that use the 1082 // same operating system or hypervisor are in the same Inner 1083 // Shareable shareability domain." 1084 StoreStore = ISHST, 1085 LoadStore = ISHLD, 1086 LoadLoad = ISHLD, 1087 StoreLoad = ISH, 1088 AnyAny = ISH 1089 }; 1090 1091 void membar(Membar_mask_bits order_constraint) { 1092 dmb(Assembler::barrier(order_constraint)); 1093 } 1094 1095 // Unconditional branch (register) 1096 void branch_reg(Register R, int opc) { 1097 starti; 1098 f(0b1101011, 31, 25); 1099 f(opc, 24, 21); 1100 f(0b11111000000, 20, 10); 1101 rf(R, 5); 1102 f(0b00000, 4, 0); 1103 } 1104 1105 #define INSN(NAME, opc) \ 1106 void NAME(Register R) { \ 1107 branch_reg(R, opc); \ 1108 } 1109 1110 INSN(br, 0b0000); 1111 INSN(blr, 0b0001); 1112 INSN(ret, 0b0010); 1113 1114 void ret(void *p); // This forces a compile-time error for ret(0) 1115 1116 #undef INSN 1117 1118 #define INSN(NAME, opc) \ 1119 void NAME() { \ 1120 branch_reg(dummy_reg, opc); \ 1121 } 1122 1123 INSN(eret, 0b0100); 1124 INSN(drps, 0b0101); 1125 1126 #undef INSN 1127 1128 // Load/store exclusive 1129 enum operand_size { byte, halfword, word, xword }; 1130 1131 void load_store_exclusive(Register Rs, Register Rt1, Register Rt2, 1132 Register Rn, enum operand_size sz, int op, bool ordered) { 1133 starti; 1134 f(sz, 31, 30), f(0b001000, 29, 24), f(op, 23, 21); 1135 rf(Rs, 16), f(ordered, 15), zrf(Rt2, 10), srf(Rn, 5), zrf(Rt1, 0); 1136 } 1137 1138 void load_exclusive(Register dst, Register addr, 1139 enum operand_size sz, bool ordered) { 1140 load_store_exclusive(dummy_reg, dst, dummy_reg, addr, 1141 sz, 0b010, ordered); 1142 } 1143 1144 void store_exclusive(Register status, Register new_val, Register addr, 1145 enum operand_size sz, bool ordered) { 1146 load_store_exclusive(status, new_val, dummy_reg, addr, 1147 sz, 0b000, ordered); 1148 } 1149 1150 #define INSN4(NAME, sz, op, o0) /* Four registers */ \ 1151 void NAME(Register Rs, Register Rt1, Register Rt2, Register Rn) { \ 1152 guarantee(Rs != Rn && Rs != Rt1 && Rs != Rt2, "unpredictable instruction"); \ 1153 load_store_exclusive(Rs, Rt1, Rt2, Rn, sz, op, o0); \ 1154 } 1155 1156 #define INSN3(NAME, sz, op, o0) /* Three registers */ \ 1157 void NAME(Register Rs, Register Rt, Register Rn) { \ 1158 guarantee(Rs != Rn && Rs != Rt, "unpredictable instruction"); \ 1159 load_store_exclusive(Rs, Rt, dummy_reg, Rn, sz, op, o0); \ 1160 } 1161 1162 #define INSN2(NAME, sz, op, o0) /* Two registers */ \ 1163 void NAME(Register Rt, Register Rn) { \ 1164 load_store_exclusive(dummy_reg, Rt, dummy_reg, \ 1165 Rn, sz, op, o0); \ 1166 } 1167 1168 #define INSN_FOO(NAME, sz, op, o0) /* Three registers, encoded differently */ \ 1169 void NAME(Register Rt1, Register Rt2, Register Rn) { \ 1170 guarantee(Rt1 != Rt2, "unpredictable instruction"); \ 1171 load_store_exclusive(dummy_reg, Rt1, Rt2, Rn, sz, op, o0); \ 1172 } 1173 1174 // bytes 1175 INSN3(stxrb, byte, 0b000, 0); 1176 INSN3(stlxrb, byte, 0b000, 1); 1177 INSN2(ldxrb, byte, 0b010, 0); 1178 INSN2(ldaxrb, byte, 0b010, 1); 1179 INSN2(stlrb, byte, 0b100, 1); 1180 INSN2(ldarb, byte, 0b110, 1); 1181 1182 // halfwords 1183 INSN3(stxrh, halfword, 0b000, 0); 1184 INSN3(stlxrh, halfword, 0b000, 1); 1185 INSN2(ldxrh, halfword, 0b010, 0); 1186 INSN2(ldaxrh, halfword, 0b010, 1); 1187 INSN2(stlrh, halfword, 0b100, 1); 1188 INSN2(ldarh, halfword, 0b110, 1); 1189 1190 // words 1191 INSN3(stxrw, word, 0b000, 0); 1192 INSN3(stlxrw, word, 0b000, 1); 1193 INSN4(stxpw, word, 0b001, 0); 1194 INSN4(stlxpw, word, 0b001, 1); 1195 INSN2(ldxrw, word, 0b010, 0); 1196 INSN2(ldaxrw, word, 0b010, 1); 1197 INSN_FOO(ldxpw, word, 0b011, 0); 1198 INSN_FOO(ldaxpw, word, 0b011, 1); 1199 INSN2(stlrw, word, 0b100, 1); 1200 INSN2(ldarw, word, 0b110, 1); 1201 1202 // xwords 1203 INSN3(stxr, xword, 0b000, 0); 1204 INSN3(stlxr, xword, 0b000, 1); 1205 INSN4(stxp, xword, 0b001, 0); 1206 INSN4(stlxp, xword, 0b001, 1); 1207 INSN2(ldxr, xword, 0b010, 0); 1208 INSN2(ldaxr, xword, 0b010, 1); 1209 INSN_FOO(ldxp, xword, 0b011, 0); 1210 INSN_FOO(ldaxp, xword, 0b011, 1); 1211 INSN2(stlr, xword, 0b100, 1); 1212 INSN2(ldar, xword, 0b110, 1); 1213 1214 #undef INSN2 1215 #undef INSN3 1216 #undef INSN4 1217 #undef INSN_FOO 1218 1219 // 8.1 Compare and swap extensions 1220 void lse_cas(Register Rs, Register Rt, Register Rn, 1221 enum operand_size sz, bool a, bool r, bool not_pair) { 1222 starti; 1223 if (! not_pair) { // Pair 1224 assert(sz == word || sz == xword, "invalid size"); 1225 /* The size bit is in bit 30, not 31 */ 1226 sz = (operand_size)(sz == word ? 0b00:0b01); 1227 } 1228 f(sz, 31, 30), f(0b001000, 29, 24), f(not_pair ? 1 : 0, 23), f(a, 22), f(1, 21); 1229 zrf(Rs, 16), f(r, 15), f(0b11111, 14, 10), srf(Rn, 5), zrf(Rt, 0); 1230 } 1231 1232 // CAS 1233 #define INSN(NAME, a, r) \ 1234 void NAME(operand_size sz, Register Rs, Register Rt, Register Rn) { \ 1235 assert(Rs != Rn && Rs != Rt, "unpredictable instruction"); \ 1236 lse_cas(Rs, Rt, Rn, sz, a, r, true); \ 1237 } 1238 INSN(cas, false, false) 1239 INSN(casa, true, false) 1240 INSN(casl, false, true) 1241 INSN(casal, true, true) 1242 #undef INSN 1243 1244 // CASP 1245 #define INSN(NAME, a, r) \ 1246 void NAME(operand_size sz, Register Rs, Register Rs1, \ 1247 Register Rt, Register Rt1, Register Rn) { \ 1248 assert((Rs->encoding() & 1) == 0 && (Rt->encoding() & 1) == 0 && \ 1249 Rs->successor() == Rs1 && Rt->successor() == Rt1 && \ 1250 Rs != Rn && Rs1 != Rn && Rs != Rt, "invalid registers"); \ 1251 lse_cas(Rs, Rt, Rn, sz, a, r, false); \ 1252 } 1253 INSN(casp, false, false) 1254 INSN(caspa, true, false) 1255 INSN(caspl, false, true) 1256 INSN(caspal, true, true) 1257 #undef INSN 1258 1259 // 8.1 Atomic operations 1260 void lse_atomic(Register Rs, Register Rt, Register Rn, 1261 enum operand_size sz, int op1, int op2, bool a, bool r) { 1262 starti; 1263 f(sz, 31, 30), f(0b111000, 29, 24), f(a, 23), f(r, 22), f(1, 21); 1264 zrf(Rs, 16), f(op1, 15), f(op2, 14, 12), f(0, 11, 10), srf(Rn, 5), zrf(Rt, 0); 1265 } 1266 1267 #define INSN(NAME, NAME_A, NAME_L, NAME_AL, op1, op2) \ 1268 void NAME(operand_size sz, Register Rs, Register Rt, Register Rn) { \ 1269 lse_atomic(Rs, Rt, Rn, sz, op1, op2, false, false); \ 1270 } \ 1271 void NAME_A(operand_size sz, Register Rs, Register Rt, Register Rn) { \ 1272 lse_atomic(Rs, Rt, Rn, sz, op1, op2, true, false); \ 1273 } \ 1274 void NAME_L(operand_size sz, Register Rs, Register Rt, Register Rn) { \ 1275 lse_atomic(Rs, Rt, Rn, sz, op1, op2, false, true); \ 1276 } \ 1277 void NAME_AL(operand_size sz, Register Rs, Register Rt, Register Rn) {\ 1278 lse_atomic(Rs, Rt, Rn, sz, op1, op2, true, true); \ 1279 } 1280 INSN(ldadd, ldadda, ldaddl, ldaddal, 0, 0b000); 1281 INSN(ldbic, ldbica, ldbicl, ldbical, 0, 0b001); 1282 INSN(ldeor, ldeora, ldeorl, ldeoral, 0, 0b010); 1283 INSN(ldorr, ldorra, ldorrl, ldorral, 0, 0b011); 1284 INSN(ldsmax, ldsmaxa, ldsmaxl, ldsmaxal, 0, 0b100); 1285 INSN(ldsmin, ldsmina, ldsminl, ldsminal, 0, 0b101); 1286 INSN(ldumax, ldumaxa, ldumaxl, ldumaxal, 0, 0b110); 1287 INSN(ldumin, ldumina, lduminl, lduminal, 0, 0b111); 1288 INSN(swp, swpa, swpl, swpal, 1, 0b000); 1289 #undef INSN 1290 1291 // Load register (literal) 1292 #define INSN(NAME, opc, V) \ 1293 void NAME(Register Rt, address dest) { \ 1294 int64_t offset = (dest - pc()) >> 2; \ 1295 starti; \ 1296 f(opc, 31, 30), f(0b011, 29, 27), f(V, 26), f(0b00, 25, 24), \ 1297 sf(offset, 23, 5); \ 1298 rf(Rt, 0); \ 1299 } \ 1300 void NAME(Register Rt, address dest, relocInfo::relocType rtype) { \ 1301 InstructionMark im(this); \ 1302 guarantee(rtype == relocInfo::internal_word_type, \ 1303 "only internal_word_type relocs make sense here"); \ 1304 code_section()->relocate(inst_mark(), InternalAddress(dest).rspec()); \ 1305 NAME(Rt, dest); \ 1306 } \ 1307 void NAME(Register Rt, Label &L) { \ 1308 wrap_label(Rt, L, &Assembler::NAME); \ 1309 } 1310 1311 INSN(ldrw, 0b00, 0); 1312 INSN(ldr, 0b01, 0); 1313 INSN(ldrsw, 0b10, 0); 1314 1315 #undef INSN 1316 1317 #define INSN(NAME, opc, V) \ 1318 void NAME(FloatRegister Rt, address dest) { \ 1319 int64_t offset = (dest - pc()) >> 2; \ 1320 starti; \ 1321 f(opc, 31, 30), f(0b011, 29, 27), f(V, 26), f(0b00, 25, 24), \ 1322 sf(offset, 23, 5); \ 1323 rf((Register)Rt, 0); \ 1324 } 1325 1326 INSN(ldrs, 0b00, 1); 1327 INSN(ldrd, 0b01, 1); 1328 INSN(ldrq, 0b10, 1); 1329 1330 #undef INSN 1331 1332 #define INSN(NAME, opc, V) \ 1333 void NAME(address dest, prfop op = PLDL1KEEP) { \ 1334 int64_t offset = (dest - pc()) >> 2; \ 1335 starti; \ 1336 f(opc, 31, 30), f(0b011, 29, 27), f(V, 26), f(0b00, 25, 24), \ 1337 sf(offset, 23, 5); \ 1338 f(op, 4, 0); \ 1339 } \ 1340 void NAME(Label &L, prfop op = PLDL1KEEP) { \ 1341 wrap_label(L, op, &Assembler::NAME); \ 1342 } 1343 1344 INSN(prfm, 0b11, 0); 1345 1346 #undef INSN 1347 1348 // Load/store 1349 void ld_st1(int opc, int p1, int V, int L, 1350 Register Rt1, Register Rt2, Address adr, bool no_allocate) { 1351 starti; 1352 f(opc, 31, 30), f(p1, 29, 27), f(V, 26), f(L, 22); 1353 zrf(Rt2, 10), zrf(Rt1, 0); 1354 if (no_allocate) { 1355 adr.encode_nontemporal_pair(current); 1356 } else { 1357 adr.encode_pair(current); 1358 } 1359 } 1360 1361 // Load/store register pair (offset) 1362 #define INSN(NAME, size, p1, V, L, no_allocate) \ 1363 void NAME(Register Rt1, Register Rt2, Address adr) { \ 1364 ld_st1(size, p1, V, L, Rt1, Rt2, adr, no_allocate); \ 1365 } 1366 1367 INSN(stpw, 0b00, 0b101, 0, 0, false); 1368 INSN(ldpw, 0b00, 0b101, 0, 1, false); 1369 INSN(ldpsw, 0b01, 0b101, 0, 1, false); 1370 INSN(stp, 0b10, 0b101, 0, 0, false); 1371 INSN(ldp, 0b10, 0b101, 0, 1, false); 1372 1373 // Load/store no-allocate pair (offset) 1374 INSN(stnpw, 0b00, 0b101, 0, 0, true); 1375 INSN(ldnpw, 0b00, 0b101, 0, 1, true); 1376 INSN(stnp, 0b10, 0b101, 0, 0, true); 1377 INSN(ldnp, 0b10, 0b101, 0, 1, true); 1378 1379 #undef INSN 1380 1381 #define INSN(NAME, size, p1, V, L, no_allocate) \ 1382 void NAME(FloatRegister Rt1, FloatRegister Rt2, Address adr) { \ 1383 ld_st1(size, p1, V, L, (Register)Rt1, (Register)Rt2, adr, no_allocate); \ 1384 } 1385 1386 INSN(stps, 0b00, 0b101, 1, 0, false); 1387 INSN(ldps, 0b00, 0b101, 1, 1, false); 1388 INSN(stpd, 0b01, 0b101, 1, 0, false); 1389 INSN(ldpd, 0b01, 0b101, 1, 1, false); 1390 INSN(stpq, 0b10, 0b101, 1, 0, false); 1391 INSN(ldpq, 0b10, 0b101, 1, 1, false); 1392 1393 #undef INSN 1394 1395 // Load/store register (all modes) 1396 void ld_st2(Register Rt, const Address &adr, int size, int op, int V = 0) { 1397 starti; 1398 1399 f(V, 26); // general reg? 1400 zrf(Rt, 0); 1401 1402 // Encoding for literal loads is done here (rather than pushed 1403 // down into Address::encode) because the encoding of this 1404 // instruction is too different from all of the other forms to 1405 // make it worth sharing. 1406 if (adr.getMode() == Address::literal) { 1407 assert(size == 0b10 || size == 0b11, "bad operand size in ldr"); 1408 assert(op == 0b01, "literal form can only be used with loads"); 1409 f(size & 0b01, 31, 30), f(0b011, 29, 27), f(0b00, 25, 24); 1410 int64_t offset = (adr.target() - pc()) >> 2; 1411 sf(offset, 23, 5); 1412 code_section()->relocate(pc(), adr.rspec()); 1413 return; 1414 } 1415 1416 f(size, 31, 30); 1417 f(op, 23, 22); // str 1418 adr.encode(current); 1419 } 1420 1421 #define INSN(NAME, size, op) \ 1422 void NAME(Register Rt, const Address &adr) { \ 1423 ld_st2(Rt, adr, size, op); \ 1424 } \ 1425 1426 INSN(str, 0b11, 0b00); 1427 INSN(strw, 0b10, 0b00); 1428 INSN(strb, 0b00, 0b00); 1429 INSN(strh, 0b01, 0b00); 1430 1431 INSN(ldr, 0b11, 0b01); 1432 INSN(ldrw, 0b10, 0b01); 1433 INSN(ldrb, 0b00, 0b01); 1434 INSN(ldrh, 0b01, 0b01); 1435 1436 INSN(ldrsb, 0b00, 0b10); 1437 INSN(ldrsbw, 0b00, 0b11); 1438 INSN(ldrsh, 0b01, 0b10); 1439 INSN(ldrshw, 0b01, 0b11); 1440 INSN(ldrsw, 0b10, 0b10); 1441 1442 #undef INSN 1443 1444 #define INSN(NAME, size, op) \ 1445 void NAME(const Address &adr, prfop pfop = PLDL1KEEP) { \ 1446 ld_st2((Register)pfop, adr, size, op); \ 1447 } 1448 1449 INSN(prfm, 0b11, 0b10); // FIXME: PRFM should not be used with 1450 // writeback modes, but the assembler 1451 // doesn't enfore that. 1452 1453 #undef INSN 1454 1455 #define INSN(NAME, size, op) \ 1456 void NAME(FloatRegister Rt, const Address &adr) { \ 1457 ld_st2((Register)Rt, adr, size, op, 1); \ 1458 } 1459 1460 INSN(strd, 0b11, 0b00); 1461 INSN(strs, 0b10, 0b00); 1462 INSN(ldrd, 0b11, 0b01); 1463 INSN(ldrs, 0b10, 0b01); 1464 INSN(strq, 0b00, 0b10); 1465 INSN(ldrq, 0x00, 0b11); 1466 1467 #undef INSN 1468 1469 enum shift_kind { LSL, LSR, ASR, ROR }; 1470 1471 void op_shifted_reg(unsigned decode, 1472 enum shift_kind kind, unsigned shift, 1473 unsigned size, unsigned op) { 1474 f(size, 31); 1475 f(op, 30, 29); 1476 f(decode, 28, 24); 1477 f(shift, 15, 10); 1478 f(kind, 23, 22); 1479 } 1480 1481 // Logical (shifted register) 1482 #define INSN(NAME, size, op, N) \ 1483 void NAME(Register Rd, Register Rn, Register Rm, \ 1484 enum shift_kind kind = LSL, unsigned shift = 0) { \ 1485 starti; \ 1486 guarantee(size == 1 || shift < 32, "incorrect shift"); \ 1487 f(N, 21); \ 1488 zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0); \ 1489 op_shifted_reg(0b01010, kind, shift, size, op); \ 1490 } 1491 1492 INSN(andr, 1, 0b00, 0); 1493 INSN(orr, 1, 0b01, 0); 1494 INSN(eor, 1, 0b10, 0); 1495 INSN(ands, 1, 0b11, 0); 1496 INSN(andw, 0, 0b00, 0); 1497 INSN(orrw, 0, 0b01, 0); 1498 INSN(eorw, 0, 0b10, 0); 1499 INSN(andsw, 0, 0b11, 0); 1500 1501 #undef INSN 1502 1503 #define INSN(NAME, size, op, N) \ 1504 void NAME(Register Rd, Register Rn, Register Rm, \ 1505 enum shift_kind kind = LSL, unsigned shift = 0) { \ 1506 starti; \ 1507 f(N, 21); \ 1508 zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0); \ 1509 op_shifted_reg(0b01010, kind, shift, size, op); \ 1510 } \ 1511 \ 1512 /* These instructions have no immediate form. Provide an overload so \ 1513 that if anyone does try to use an immediate operand -- this has \ 1514 happened! -- we'll get a compile-time error. */ \ 1515 void NAME(Register Rd, Register Rn, unsigned imm, \ 1516 enum shift_kind kind = LSL, unsigned shift = 0) { \ 1517 assert(false, " can't be used with immediate operand"); \ 1518 } 1519 1520 INSN(bic, 1, 0b00, 1); 1521 INSN(orn, 1, 0b01, 1); 1522 INSN(eon, 1, 0b10, 1); 1523 INSN(bics, 1, 0b11, 1); 1524 INSN(bicw, 0, 0b00, 1); 1525 INSN(ornw, 0, 0b01, 1); 1526 INSN(eonw, 0, 0b10, 1); 1527 INSN(bicsw, 0, 0b11, 1); 1528 1529 #undef INSN 1530 1531 // Aliases for short forms of orn 1532 void mvn(Register Rd, Register Rm, 1533 enum shift_kind kind = LSL, unsigned shift = 0) { 1534 orn(Rd, zr, Rm, kind, shift); 1535 } 1536 1537 void mvnw(Register Rd, Register Rm, 1538 enum shift_kind kind = LSL, unsigned shift = 0) { 1539 ornw(Rd, zr, Rm, kind, shift); 1540 } 1541 1542 // Add/subtract (shifted register) 1543 #define INSN(NAME, size, op) \ 1544 void NAME(Register Rd, Register Rn, Register Rm, \ 1545 enum shift_kind kind, unsigned shift = 0) { \ 1546 starti; \ 1547 f(0, 21); \ 1548 assert_cond(kind != ROR); \ 1549 guarantee(size == 1 || shift < 32, "incorrect shift");\ 1550 zrf(Rd, 0), zrf(Rn, 5), zrf(Rm, 16); \ 1551 op_shifted_reg(0b01011, kind, shift, size, op); \ 1552 } 1553 1554 INSN(add, 1, 0b000); 1555 INSN(sub, 1, 0b10); 1556 INSN(addw, 0, 0b000); 1557 INSN(subw, 0, 0b10); 1558 1559 INSN(adds, 1, 0b001); 1560 INSN(subs, 1, 0b11); 1561 INSN(addsw, 0, 0b001); 1562 INSN(subsw, 0, 0b11); 1563 1564 #undef INSN 1565 1566 // Add/subtract (extended register) 1567 #define INSN(NAME, op) \ 1568 void NAME(Register Rd, Register Rn, Register Rm, \ 1569 ext::operation option, int amount = 0) { \ 1570 starti; \ 1571 zrf(Rm, 16), srf(Rn, 5), srf(Rd, 0); \ 1572 add_sub_extended_reg(op, 0b01011, Rd, Rn, Rm, 0b00, option, amount); \ 1573 } 1574 1575 void add_sub_extended_reg(unsigned op, unsigned decode, 1576 Register Rd, Register Rn, Register Rm, 1577 unsigned opt, ext::operation option, unsigned imm) { 1578 guarantee(imm <= 4, "shift amount must be <= 4"); 1579 f(op, 31, 29), f(decode, 28, 24), f(opt, 23, 22), f(1, 21); 1580 f(option, 15, 13), f(imm, 12, 10); 1581 } 1582 1583 INSN(addw, 0b000); 1584 INSN(subw, 0b010); 1585 INSN(add, 0b100); 1586 INSN(sub, 0b110); 1587 1588 #undef INSN 1589 1590 #define INSN(NAME, op) \ 1591 void NAME(Register Rd, Register Rn, Register Rm, \ 1592 ext::operation option, int amount = 0) { \ 1593 starti; \ 1594 zrf(Rm, 16), srf(Rn, 5), zrf(Rd, 0); \ 1595 add_sub_extended_reg(op, 0b01011, Rd, Rn, Rm, 0b00, option, amount); \ 1596 } 1597 1598 INSN(addsw, 0b001); 1599 INSN(subsw, 0b011); 1600 INSN(adds, 0b101); 1601 INSN(subs, 0b111); 1602 1603 #undef INSN 1604 1605 // Aliases for short forms of add and sub 1606 #define INSN(NAME) \ 1607 void NAME(Register Rd, Register Rn, Register Rm) { \ 1608 if (Rd == sp || Rn == sp) \ 1609 NAME(Rd, Rn, Rm, ext::uxtx); \ 1610 else \ 1611 NAME(Rd, Rn, Rm, LSL); \ 1612 } 1613 1614 INSN(addw); 1615 INSN(subw); 1616 INSN(add); 1617 INSN(sub); 1618 1619 INSN(addsw); 1620 INSN(subsw); 1621 INSN(adds); 1622 INSN(subs); 1623 1624 #undef INSN 1625 1626 // Add/subtract (with carry) 1627 void add_sub_carry(unsigned op, Register Rd, Register Rn, Register Rm) { 1628 starti; 1629 f(op, 31, 29); 1630 f(0b11010000, 28, 21); 1631 f(0b000000, 15, 10); 1632 zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0); 1633 } 1634 1635 #define INSN(NAME, op) \ 1636 void NAME(Register Rd, Register Rn, Register Rm) { \ 1637 add_sub_carry(op, Rd, Rn, Rm); \ 1638 } 1639 1640 INSN(adcw, 0b000); 1641 INSN(adcsw, 0b001); 1642 INSN(sbcw, 0b010); 1643 INSN(sbcsw, 0b011); 1644 INSN(adc, 0b100); 1645 INSN(adcs, 0b101); 1646 INSN(sbc,0b110); 1647 INSN(sbcs, 0b111); 1648 1649 #undef INSN 1650 1651 // Conditional compare (both kinds) 1652 void conditional_compare(unsigned op, int o1, int o2, int o3, 1653 Register Rn, unsigned imm5, unsigned nzcv, 1654 unsigned cond) { 1655 starti; 1656 f(op, 31, 29); 1657 f(0b11010010, 28, 21); 1658 f(cond, 15, 12); 1659 f(o1, 11); 1660 f(o2, 10); 1661 f(o3, 4); 1662 f(nzcv, 3, 0); 1663 f(imm5, 20, 16), zrf(Rn, 5); 1664 } 1665 1666 #define INSN(NAME, op) \ 1667 void NAME(Register Rn, Register Rm, int imm, Condition cond) { \ 1668 int regNumber = (Rm == zr ? 31 : (uintptr_t)Rm); \ 1669 conditional_compare(op, 0, 0, 0, Rn, regNumber, imm, cond); \ 1670 } \ 1671 \ 1672 void NAME(Register Rn, int imm5, int imm, Condition cond) { \ 1673 conditional_compare(op, 1, 0, 0, Rn, imm5, imm, cond); \ 1674 } 1675 1676 INSN(ccmnw, 0b001); 1677 INSN(ccmpw, 0b011); 1678 INSN(ccmn, 0b101); 1679 INSN(ccmp, 0b111); 1680 1681 #undef INSN 1682 1683 // Conditional select 1684 void conditional_select(unsigned op, unsigned op2, 1685 Register Rd, Register Rn, Register Rm, 1686 unsigned cond) { 1687 starti; 1688 f(op, 31, 29); 1689 f(0b11010100, 28, 21); 1690 f(cond, 15, 12); 1691 f(op2, 11, 10); 1692 zrf(Rm, 16), zrf(Rn, 5), rf(Rd, 0); 1693 } 1694 1695 #define INSN(NAME, op, op2) \ 1696 void NAME(Register Rd, Register Rn, Register Rm, Condition cond) { \ 1697 conditional_select(op, op2, Rd, Rn, Rm, cond); \ 1698 } 1699 1700 INSN(cselw, 0b000, 0b00); 1701 INSN(csincw, 0b000, 0b01); 1702 INSN(csinvw, 0b010, 0b00); 1703 INSN(csnegw, 0b010, 0b01); 1704 INSN(csel, 0b100, 0b00); 1705 INSN(csinc, 0b100, 0b01); 1706 INSN(csinv, 0b110, 0b00); 1707 INSN(csneg, 0b110, 0b01); 1708 1709 #undef INSN 1710 1711 // Data processing 1712 void data_processing(unsigned op29, unsigned opcode, 1713 Register Rd, Register Rn) { 1714 f(op29, 31, 29), f(0b11010110, 28, 21); 1715 f(opcode, 15, 10); 1716 rf(Rn, 5), rf(Rd, 0); 1717 } 1718 1719 // (1 source) 1720 #define INSN(NAME, op29, opcode2, opcode) \ 1721 void NAME(Register Rd, Register Rn) { \ 1722 starti; \ 1723 f(opcode2, 20, 16); \ 1724 data_processing(op29, opcode, Rd, Rn); \ 1725 } 1726 1727 INSN(rbitw, 0b010, 0b00000, 0b00000); 1728 INSN(rev16w, 0b010, 0b00000, 0b00001); 1729 INSN(revw, 0b010, 0b00000, 0b00010); 1730 INSN(clzw, 0b010, 0b00000, 0b00100); 1731 INSN(clsw, 0b010, 0b00000, 0b00101); 1732 1733 INSN(rbit, 0b110, 0b00000, 0b00000); 1734 INSN(rev16, 0b110, 0b00000, 0b00001); 1735 INSN(rev32, 0b110, 0b00000, 0b00010); 1736 INSN(rev, 0b110, 0b00000, 0b00011); 1737 INSN(clz, 0b110, 0b00000, 0b00100); 1738 INSN(cls, 0b110, 0b00000, 0b00101); 1739 1740 #undef INSN 1741 1742 // (2 sources) 1743 #define INSN(NAME, op29, opcode) \ 1744 void NAME(Register Rd, Register Rn, Register Rm) { \ 1745 starti; \ 1746 rf(Rm, 16); \ 1747 data_processing(op29, opcode, Rd, Rn); \ 1748 } 1749 1750 INSN(udivw, 0b000, 0b000010); 1751 INSN(sdivw, 0b000, 0b000011); 1752 INSN(lslvw, 0b000, 0b001000); 1753 INSN(lsrvw, 0b000, 0b001001); 1754 INSN(asrvw, 0b000, 0b001010); 1755 INSN(rorvw, 0b000, 0b001011); 1756 1757 INSN(udiv, 0b100, 0b000010); 1758 INSN(sdiv, 0b100, 0b000011); 1759 INSN(lslv, 0b100, 0b001000); 1760 INSN(lsrv, 0b100, 0b001001); 1761 INSN(asrv, 0b100, 0b001010); 1762 INSN(rorv, 0b100, 0b001011); 1763 1764 #undef INSN 1765 1766 // (3 sources) 1767 void data_processing(unsigned op54, unsigned op31, unsigned o0, 1768 Register Rd, Register Rn, Register Rm, 1769 Register Ra) { 1770 starti; 1771 f(op54, 31, 29), f(0b11011, 28, 24); 1772 f(op31, 23, 21), f(o0, 15); 1773 zrf(Rm, 16), zrf(Ra, 10), zrf(Rn, 5), zrf(Rd, 0); 1774 } 1775 1776 #define INSN(NAME, op54, op31, o0) \ 1777 void NAME(Register Rd, Register Rn, Register Rm, Register Ra) { \ 1778 data_processing(op54, op31, o0, Rd, Rn, Rm, Ra); \ 1779 } 1780 1781 INSN(maddw, 0b000, 0b000, 0); 1782 INSN(msubw, 0b000, 0b000, 1); 1783 INSN(madd, 0b100, 0b000, 0); 1784 INSN(msub, 0b100, 0b000, 1); 1785 INSN(smaddl, 0b100, 0b001, 0); 1786 INSN(smsubl, 0b100, 0b001, 1); 1787 INSN(umaddl, 0b100, 0b101, 0); 1788 INSN(umsubl, 0b100, 0b101, 1); 1789 1790 #undef INSN 1791 1792 #define INSN(NAME, op54, op31, o0) \ 1793 void NAME(Register Rd, Register Rn, Register Rm) { \ 1794 data_processing(op54, op31, o0, Rd, Rn, Rm, (Register)31); \ 1795 } 1796 1797 INSN(smulh, 0b100, 0b010, 0); 1798 INSN(umulh, 0b100, 0b110, 0); 1799 1800 #undef INSN 1801 1802 // Floating-point data-processing (1 source) 1803 void data_processing(unsigned op31, unsigned type, unsigned opcode, 1804 FloatRegister Vd, FloatRegister Vn) { 1805 starti; 1806 f(op31, 31, 29); 1807 f(0b11110, 28, 24); 1808 f(type, 23, 22), f(1, 21), f(opcode, 20, 15), f(0b10000, 14, 10); 1809 rf(Vn, 5), rf(Vd, 0); 1810 } 1811 1812 #define INSN(NAME, op31, type, opcode) \ 1813 void NAME(FloatRegister Vd, FloatRegister Vn) { \ 1814 data_processing(op31, type, opcode, Vd, Vn); \ 1815 } 1816 1817 private: 1818 INSN(i_fmovs, 0b000, 0b00, 0b000000); 1819 public: 1820 INSN(fabss, 0b000, 0b00, 0b000001); 1821 INSN(fnegs, 0b000, 0b00, 0b000010); 1822 INSN(fsqrts, 0b000, 0b00, 0b000011); 1823 INSN(fcvts, 0b000, 0b00, 0b000101); // Single-precision to double-precision 1824 1825 private: 1826 INSN(i_fmovd, 0b000, 0b01, 0b000000); 1827 public: 1828 INSN(fabsd, 0b000, 0b01, 0b000001); 1829 INSN(fnegd, 0b000, 0b01, 0b000010); 1830 INSN(fsqrtd, 0b000, 0b01, 0b000011); 1831 INSN(fcvtd, 0b000, 0b01, 0b000100); // Double-precision to single-precision 1832 1833 void fmovd(FloatRegister Vd, FloatRegister Vn) { 1834 assert(Vd != Vn, "should be"); 1835 i_fmovd(Vd, Vn); 1836 } 1837 1838 void fmovs(FloatRegister Vd, FloatRegister Vn) { 1839 assert(Vd != Vn, "should be"); 1840 i_fmovs(Vd, Vn); 1841 } 1842 1843 #undef INSN 1844 1845 // Floating-point data-processing (2 source) 1846 void data_processing(unsigned op31, unsigned type, unsigned opcode, 1847 FloatRegister Vd, FloatRegister Vn, FloatRegister Vm) { 1848 starti; 1849 f(op31, 31, 29); 1850 f(0b11110, 28, 24); 1851 f(type, 23, 22), f(1, 21), f(opcode, 15, 12), f(0b10, 11, 10); 1852 rf(Vm, 16), rf(Vn, 5), rf(Vd, 0); 1853 } 1854 1855 #define INSN(NAME, op31, type, opcode) \ 1856 void NAME(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm) { \ 1857 data_processing(op31, type, opcode, Vd, Vn, Vm); \ 1858 } 1859 1860 INSN(fmuls, 0b000, 0b00, 0b0000); 1861 INSN(fdivs, 0b000, 0b00, 0b0001); 1862 INSN(fadds, 0b000, 0b00, 0b0010); 1863 INSN(fsubs, 0b000, 0b00, 0b0011); 1864 INSN(fmaxs, 0b000, 0b00, 0b0100); 1865 INSN(fmins, 0b000, 0b00, 0b0101); 1866 INSN(fnmuls, 0b000, 0b00, 0b1000); 1867 1868 INSN(fmuld, 0b000, 0b01, 0b0000); 1869 INSN(fdivd, 0b000, 0b01, 0b0001); 1870 INSN(faddd, 0b000, 0b01, 0b0010); 1871 INSN(fsubd, 0b000, 0b01, 0b0011); 1872 INSN(fmaxd, 0b000, 0b01, 0b0100); 1873 INSN(fmind, 0b000, 0b01, 0b0101); 1874 INSN(fnmuld, 0b000, 0b01, 0b1000); 1875 1876 #undef INSN 1877 1878 // Floating-point data-processing (3 source) 1879 void data_processing(unsigned op31, unsigned type, unsigned o1, unsigned o0, 1880 FloatRegister Vd, FloatRegister Vn, FloatRegister Vm, 1881 FloatRegister Va) { 1882 starti; 1883 f(op31, 31, 29); 1884 f(0b11111, 28, 24); 1885 f(type, 23, 22), f(o1, 21), f(o0, 15); 1886 rf(Vm, 16), rf(Va, 10), rf(Vn, 5), rf(Vd, 0); 1887 } 1888 1889 #define INSN(NAME, op31, type, o1, o0) \ 1890 void NAME(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm, \ 1891 FloatRegister Va) { \ 1892 data_processing(op31, type, o1, o0, Vd, Vn, Vm, Va); \ 1893 } 1894 1895 INSN(fmadds, 0b000, 0b00, 0, 0); 1896 INSN(fmsubs, 0b000, 0b00, 0, 1); 1897 INSN(fnmadds, 0b000, 0b00, 1, 0); 1898 INSN(fnmsubs, 0b000, 0b00, 1, 1); 1899 1900 INSN(fmaddd, 0b000, 0b01, 0, 0); 1901 INSN(fmsubd, 0b000, 0b01, 0, 1); 1902 INSN(fnmaddd, 0b000, 0b01, 1, 0); 1903 INSN(fnmsub, 0b000, 0b01, 1, 1); 1904 1905 #undef INSN 1906 1907 // Floating-point conditional select 1908 void fp_conditional_select(unsigned op31, unsigned type, 1909 unsigned op1, unsigned op2, 1910 Condition cond, FloatRegister Vd, 1911 FloatRegister Vn, FloatRegister Vm) { 1912 starti; 1913 f(op31, 31, 29); 1914 f(0b11110, 28, 24); 1915 f(type, 23, 22); 1916 f(op1, 21, 21); 1917 f(op2, 11, 10); 1918 f(cond, 15, 12); 1919 rf(Vm, 16), rf(Vn, 5), rf(Vd, 0); 1920 } 1921 1922 #define INSN(NAME, op31, type, op1, op2) \ 1923 void NAME(FloatRegister Vd, FloatRegister Vn, \ 1924 FloatRegister Vm, Condition cond) { \ 1925 fp_conditional_select(op31, type, op1, op2, cond, Vd, Vn, Vm); \ 1926 } 1927 1928 INSN(fcsels, 0b000, 0b00, 0b1, 0b11); 1929 INSN(fcseld, 0b000, 0b01, 0b1, 0b11); 1930 1931 #undef INSN 1932 1933 // Floating-point<->integer conversions 1934 void float_int_convert(unsigned op31, unsigned type, 1935 unsigned rmode, unsigned opcode, 1936 Register Rd, Register Rn) { 1937 starti; 1938 f(op31, 31, 29); 1939 f(0b11110, 28, 24); 1940 f(type, 23, 22), f(1, 21), f(rmode, 20, 19); 1941 f(opcode, 18, 16), f(0b000000, 15, 10); 1942 zrf(Rn, 5), zrf(Rd, 0); 1943 } 1944 1945 #define INSN(NAME, op31, type, rmode, opcode) \ 1946 void NAME(Register Rd, FloatRegister Vn) { \ 1947 float_int_convert(op31, type, rmode, opcode, Rd, (Register)Vn); \ 1948 } 1949 1950 INSN(fcvtzsw, 0b000, 0b00, 0b11, 0b000); 1951 INSN(fcvtzs, 0b100, 0b00, 0b11, 0b000); 1952 INSN(fcvtzdw, 0b000, 0b01, 0b11, 0b000); 1953 INSN(fcvtzd, 0b100, 0b01, 0b11, 0b000); 1954 1955 INSN(fmovs, 0b000, 0b00, 0b00, 0b110); 1956 INSN(fmovd, 0b100, 0b01, 0b00, 0b110); 1957 1958 // INSN(fmovhid, 0b100, 0b10, 0b01, 0b110); 1959 1960 #undef INSN 1961 1962 #define INSN(NAME, op31, type, rmode, opcode) \ 1963 void NAME(FloatRegister Vd, Register Rn) { \ 1964 float_int_convert(op31, type, rmode, opcode, (Register)Vd, Rn); \ 1965 } 1966 1967 INSN(fmovs, 0b000, 0b00, 0b00, 0b111); 1968 INSN(fmovd, 0b100, 0b01, 0b00, 0b111); 1969 1970 INSN(scvtfws, 0b000, 0b00, 0b00, 0b010); 1971 INSN(scvtfs, 0b100, 0b00, 0b00, 0b010); 1972 INSN(scvtfwd, 0b000, 0b01, 0b00, 0b010); 1973 INSN(scvtfd, 0b100, 0b01, 0b00, 0b010); 1974 1975 // INSN(fmovhid, 0b100, 0b10, 0b01, 0b111); 1976 1977 #undef INSN 1978 1979 // Floating-point compare 1980 void float_compare(unsigned op31, unsigned type, 1981 unsigned op, unsigned op2, 1982 FloatRegister Vn, FloatRegister Vm = (FloatRegister)0) { 1983 starti; 1984 f(op31, 31, 29); 1985 f(0b11110, 28, 24); 1986 f(type, 23, 22), f(1, 21); 1987 f(op, 15, 14), f(0b1000, 13, 10), f(op2, 4, 0); 1988 rf(Vn, 5), rf(Vm, 16); 1989 } 1990 1991 1992 #define INSN(NAME, op31, type, op, op2) \ 1993 void NAME(FloatRegister Vn, FloatRegister Vm) { \ 1994 float_compare(op31, type, op, op2, Vn, Vm); \ 1995 } 1996 1997 #define INSN1(NAME, op31, type, op, op2) \ 1998 void NAME(FloatRegister Vn, double d) { \ 1999 assert_cond(d == 0.0); \ 2000 float_compare(op31, type, op, op2, Vn); \ 2001 } 2002 2003 INSN(fcmps, 0b000, 0b00, 0b00, 0b00000); 2004 INSN1(fcmps, 0b000, 0b00, 0b00, 0b01000); 2005 // INSN(fcmpes, 0b000, 0b00, 0b00, 0b10000); 2006 // INSN1(fcmpes, 0b000, 0b00, 0b00, 0b11000); 2007 2008 INSN(fcmpd, 0b000, 0b01, 0b00, 0b00000); 2009 INSN1(fcmpd, 0b000, 0b01, 0b00, 0b01000); 2010 // INSN(fcmped, 0b000, 0b01, 0b00, 0b10000); 2011 // INSN1(fcmped, 0b000, 0b01, 0b00, 0b11000); 2012 2013 #undef INSN 2014 #undef INSN1 2015 2016 // Floating-point Move (immediate) 2017 private: 2018 unsigned pack(double value); 2019 2020 void fmov_imm(FloatRegister Vn, double value, unsigned size) { 2021 starti; 2022 f(0b00011110, 31, 24), f(size, 23, 22), f(1, 21); 2023 f(pack(value), 20, 13), f(0b10000000, 12, 5); 2024 rf(Vn, 0); 2025 } 2026 2027 public: 2028 2029 void fmovs(FloatRegister Vn, double value) { 2030 if (value) 2031 fmov_imm(Vn, value, 0b00); 2032 else 2033 fmovs(Vn, zr); 2034 } 2035 void fmovd(FloatRegister Vn, double value) { 2036 if (value) 2037 fmov_imm(Vn, value, 0b01); 2038 else 2039 fmovd(Vn, zr); 2040 } 2041 2042 // Floating-point rounding 2043 // type: half-precision = 11 2044 // single = 00 2045 // double = 01 2046 // rmode: A = Away = 100 2047 // I = current = 111 2048 // M = MinusInf = 010 2049 // N = eveN = 000 2050 // P = PlusInf = 001 2051 // X = eXact = 110 2052 // Z = Zero = 011 2053 void float_round(unsigned type, unsigned rmode, FloatRegister Rd, FloatRegister Rn) { 2054 starti; 2055 f(0b00011110, 31, 24); 2056 f(type, 23, 22); 2057 f(0b1001, 21, 18); 2058 f(rmode, 17, 15); 2059 f(0b10000, 14, 10); 2060 rf(Rn, 5), rf(Rd, 0); 2061 } 2062 #define INSN(NAME, type, rmode) \ 2063 void NAME(FloatRegister Vd, FloatRegister Vn) { \ 2064 float_round(type, rmode, Vd, Vn); \ 2065 } 2066 2067 public: 2068 INSN(frintah, 0b11, 0b100); 2069 INSN(frintih, 0b11, 0b111); 2070 INSN(frintmh, 0b11, 0b010); 2071 INSN(frintnh, 0b11, 0b000); 2072 INSN(frintph, 0b11, 0b001); 2073 INSN(frintxh, 0b11, 0b110); 2074 INSN(frintzh, 0b11, 0b011); 2075 2076 INSN(frintas, 0b00, 0b100); 2077 INSN(frintis, 0b00, 0b111); 2078 INSN(frintms, 0b00, 0b010); 2079 INSN(frintns, 0b00, 0b000); 2080 INSN(frintps, 0b00, 0b001); 2081 INSN(frintxs, 0b00, 0b110); 2082 INSN(frintzs, 0b00, 0b011); 2083 2084 INSN(frintad, 0b01, 0b100); 2085 INSN(frintid, 0b01, 0b111); 2086 INSN(frintmd, 0b01, 0b010); 2087 INSN(frintnd, 0b01, 0b000); 2088 INSN(frintpd, 0b01, 0b001); 2089 INSN(frintxd, 0b01, 0b110); 2090 INSN(frintzd, 0b01, 0b011); 2091 #undef INSN 2092 2093 /* SIMD extensions 2094 * 2095 * We just use FloatRegister in the following. They are exactly the same 2096 * as SIMD registers. 2097 */ 2098 public: 2099 2100 enum SIMD_Arrangement { 2101 T8B, T16B, T4H, T8H, T2S, T4S, T1D, T2D, T1Q 2102 }; 2103 2104 enum SIMD_RegVariant { 2105 B, H, S, D, Q 2106 }; 2107 2108 private: 2109 static short SIMD_Size_in_bytes[]; 2110 2111 public: 2112 #define INSN(NAME, op) \ 2113 void NAME(FloatRegister Rt, SIMD_RegVariant T, const Address &adr) { \ 2114 ld_st2((Register)Rt, adr, (int)T & 3, op + ((T==Q) ? 0b10:0b00), 1); \ 2115 } \ 2116 2117 INSN(ldr, 1); 2118 INSN(str, 0); 2119 2120 #undef INSN 2121 2122 private: 2123 2124 void ld_st(FloatRegister Vt, SIMD_Arrangement T, Register Xn, int op1, int op2) { 2125 starti; 2126 f(0,31), f((int)T & 1, 30); 2127 f(op1, 29, 21), f(0, 20, 16), f(op2, 15, 12); 2128 f((int)T >> 1, 11, 10), srf(Xn, 5), rf(Vt, 0); 2129 } 2130 void ld_st(FloatRegister Vt, SIMD_Arrangement T, Register Xn, 2131 int imm, int op1, int op2, int regs) { 2132 2133 bool replicate = op2 >> 2 == 3; 2134 // post-index value (imm) is formed differently for replicate/non-replicate ld* instructions 2135 int expectedImmediate = replicate ? regs * (1 << (T >> 1)) : SIMD_Size_in_bytes[T] * regs; 2136 guarantee(T < T1Q , "incorrect arrangement"); 2137 guarantee(imm == expectedImmediate, "bad offset"); 2138 starti; 2139 f(0,31), f((int)T & 1, 30); 2140 f(op1 | 0b100, 29, 21), f(0b11111, 20, 16), f(op2, 15, 12); 2141 f((int)T >> 1, 11, 10), srf(Xn, 5), rf(Vt, 0); 2142 } 2143 void ld_st(FloatRegister Vt, SIMD_Arrangement T, Register Xn, 2144 Register Xm, int op1, int op2) { 2145 starti; 2146 f(0,31), f((int)T & 1, 30); 2147 f(op1 | 0b100, 29, 21), rf(Xm, 16), f(op2, 15, 12); 2148 f((int)T >> 1, 11, 10), srf(Xn, 5), rf(Vt, 0); 2149 } 2150 2151 void ld_st(FloatRegister Vt, SIMD_Arrangement T, Address a, int op1, int op2, int regs) { 2152 switch (a.getMode()) { 2153 case Address::base_plus_offset: 2154 guarantee(a.offset() == 0, "no offset allowed here"); 2155 ld_st(Vt, T, a.base(), op1, op2); 2156 break; 2157 case Address::post: 2158 ld_st(Vt, T, a.base(), a.offset(), op1, op2, regs); 2159 break; 2160 case Address::post_reg: 2161 ld_st(Vt, T, a.base(), a.index(), op1, op2); 2162 break; 2163 default: 2164 ShouldNotReachHere(); 2165 } 2166 } 2167 2168 public: 2169 2170 #define INSN1(NAME, op1, op2) \ 2171 void NAME(FloatRegister Vt, SIMD_Arrangement T, const Address &a) { \ 2172 ld_st(Vt, T, a, op1, op2, 1); \ 2173 } 2174 2175 #define INSN2(NAME, op1, op2) \ 2176 void NAME(FloatRegister Vt, FloatRegister Vt2, SIMD_Arrangement T, const Address &a) { \ 2177 assert(Vt->successor() == Vt2, "Registers must be ordered"); \ 2178 ld_st(Vt, T, a, op1, op2, 2); \ 2179 } 2180 2181 #define INSN3(NAME, op1, op2) \ 2182 void NAME(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3, \ 2183 SIMD_Arrangement T, const Address &a) { \ 2184 assert(Vt->successor() == Vt2 && Vt2->successor() == Vt3, \ 2185 "Registers must be ordered"); \ 2186 ld_st(Vt, T, a, op1, op2, 3); \ 2187 } 2188 2189 #define INSN4(NAME, op1, op2) \ 2190 void NAME(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3, \ 2191 FloatRegister Vt4, SIMD_Arrangement T, const Address &a) { \ 2192 assert(Vt->successor() == Vt2 && Vt2->successor() == Vt3 && \ 2193 Vt3->successor() == Vt4, "Registers must be ordered"); \ 2194 ld_st(Vt, T, a, op1, op2, 4); \ 2195 } 2196 2197 INSN1(ld1, 0b001100010, 0b0111); 2198 INSN2(ld1, 0b001100010, 0b1010); 2199 INSN3(ld1, 0b001100010, 0b0110); 2200 INSN4(ld1, 0b001100010, 0b0010); 2201 2202 INSN2(ld2, 0b001100010, 0b1000); 2203 INSN3(ld3, 0b001100010, 0b0100); 2204 INSN4(ld4, 0b001100010, 0b0000); 2205 2206 INSN1(st1, 0b001100000, 0b0111); 2207 INSN2(st1, 0b001100000, 0b1010); 2208 INSN3(st1, 0b001100000, 0b0110); 2209 INSN4(st1, 0b001100000, 0b0010); 2210 2211 INSN2(st2, 0b001100000, 0b1000); 2212 INSN3(st3, 0b001100000, 0b0100); 2213 INSN4(st4, 0b001100000, 0b0000); 2214 2215 INSN1(ld1r, 0b001101010, 0b1100); 2216 INSN2(ld2r, 0b001101011, 0b1100); 2217 INSN3(ld3r, 0b001101010, 0b1110); 2218 INSN4(ld4r, 0b001101011, 0b1110); 2219 2220 #undef INSN1 2221 #undef INSN2 2222 #undef INSN3 2223 #undef INSN4 2224 2225 #define INSN(NAME, opc) \ 2226 void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \ 2227 starti; \ 2228 assert(T == T8B || T == T16B, "must be T8B or T16B"); \ 2229 f(0, 31), f((int)T & 1, 30), f(opc, 29, 21); \ 2230 rf(Vm, 16), f(0b000111, 15, 10), rf(Vn, 5), rf(Vd, 0); \ 2231 } 2232 2233 INSN(eor, 0b101110001); 2234 INSN(orr, 0b001110101); 2235 INSN(andr, 0b001110001); 2236 INSN(bic, 0b001110011); 2237 INSN(bif, 0b101110111); 2238 INSN(bit, 0b101110101); 2239 INSN(bsl, 0b101110011); 2240 INSN(orn, 0b001110111); 2241 2242 #undef INSN 2243 2244 #define INSN(NAME, opc, opc2, acceptT2D) \ 2245 void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \ 2246 guarantee(T != T1Q && T != T1D, "incorrect arrangement"); \ 2247 if (!acceptT2D) guarantee(T != T2D, "incorrect arrangement"); \ 2248 starti; \ 2249 f(0, 31), f((int)T & 1, 30), f(opc, 29), f(0b01110, 28, 24); \ 2250 f((int)T >> 1, 23, 22), f(1, 21), rf(Vm, 16), f(opc2, 15, 10); \ 2251 rf(Vn, 5), rf(Vd, 0); \ 2252 } 2253 2254 INSN(addv, 0, 0b100001, true); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D 2255 INSN(subv, 1, 0b100001, true); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D 2256 INSN(mulv, 0, 0b100111, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S 2257 INSN(mlav, 0, 0b100101, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S 2258 INSN(mlsv, 1, 0b100101, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S 2259 INSN(sshl, 0, 0b010001, true); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D 2260 INSN(ushl, 1, 0b010001, true); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D 2261 INSN(addpv, 0, 0b101111, true); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D 2262 INSN(smullv, 0, 0b110000, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S 2263 INSN(umullv, 1, 0b110000, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S 2264 INSN(umlalv, 1, 0b100000, false); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S 2265 2266 #undef INSN 2267 2268 #define INSN(NAME, opc, opc2, accepted) \ 2269 void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) { \ 2270 guarantee(T != T1Q && T != T1D, "incorrect arrangement"); \ 2271 if (accepted < 3) guarantee(T != T2D, "incorrect arrangement"); \ 2272 if (accepted < 2) guarantee(T != T2S, "incorrect arrangement"); \ 2273 if (accepted < 1) guarantee(T == T8B || T == T16B, "incorrect arrangement"); \ 2274 starti; \ 2275 f(0, 31), f((int)T & 1, 30), f(opc, 29), f(0b01110, 28, 24); \ 2276 f((int)T >> 1, 23, 22), f(opc2, 21, 10); \ 2277 rf(Vn, 5), rf(Vd, 0); \ 2278 } 2279 2280 INSN(absr, 0, 0b100000101110, 3); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D 2281 INSN(negr, 1, 0b100000101110, 3); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S, T2D 2282 INSN(notr, 1, 0b100000010110, 0); // accepted arrangements: T8B, T16B 2283 INSN(addv, 0, 0b110001101110, 1); // accepted arrangements: T8B, T16B, T4H, T8H, T4S 2284 INSN(cls, 0, 0b100000010010, 2); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S 2285 INSN(clz, 1, 0b100000010010, 2); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S 2286 INSN(cnt, 0, 0b100000010110, 0); // accepted arrangements: T8B, T16B 2287 INSN(uaddlp, 1, 0b100000001010, 2); // accepted arrangements: T8B, T16B, T4H, T8H, T2S, T4S 2288 INSN(uaddlv, 1, 0b110000001110, 1); // accepted arrangements: T8B, T16B, T4H, T8H, T4S 2289 2290 #undef INSN 2291 2292 #define INSN(NAME, opc) \ 2293 void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) { \ 2294 starti; \ 2295 assert(T == T4S, "arrangement must be T4S"); \ 2296 f(0, 31), f((int)T & 1, 30), f(0b101110, 29, 24), f(opc, 23), \ 2297 f(T == T4S ? 0 : 1, 22), f(0b110000111110, 21, 10); rf(Vn, 5), rf(Vd, 0); \ 2298 } 2299 2300 INSN(fmaxv, 0); 2301 INSN(fminv, 1); 2302 2303 #undef INSN 2304 2305 #define INSN(NAME, op0, cmode0) \ 2306 void NAME(FloatRegister Vd, SIMD_Arrangement T, unsigned imm8, unsigned lsl = 0) { \ 2307 unsigned cmode = cmode0; \ 2308 unsigned op = op0; \ 2309 starti; \ 2310 assert(lsl == 0 || \ 2311 ((T == T4H || T == T8H) && lsl == 8) || \ 2312 ((T == T2S || T == T4S) && ((lsl >> 3) < 4) && ((lsl & 7) == 0)), "invalid shift");\ 2313 cmode |= lsl >> 2; \ 2314 if (T == T4H || T == T8H) cmode |= 0b1000; \ 2315 if (!(T == T4H || T == T8H || T == T2S || T == T4S)) { \ 2316 assert(op == 0 && cmode0 == 0, "must be MOVI"); \ 2317 cmode = 0b1110; \ 2318 if (T == T1D || T == T2D) op = 1; \ 2319 } \ 2320 f(0, 31), f((int)T & 1, 30), f(op, 29), f(0b0111100000, 28, 19); \ 2321 f(imm8 >> 5, 18, 16), f(cmode, 15, 12), f(0x01, 11, 10), f(imm8 & 0b11111, 9, 5); \ 2322 rf(Vd, 0); \ 2323 } 2324 2325 INSN(movi, 0, 0); 2326 INSN(orri, 0, 1); 2327 INSN(mvni, 1, 0); 2328 INSN(bici, 1, 1); 2329 2330 #undef INSN 2331 2332 #define INSN(NAME, op1, op2, op3) \ 2333 void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \ 2334 starti; \ 2335 assert(T == T2S || T == T4S || T == T2D, "invalid arrangement"); \ 2336 f(0, 31), f((int)T & 1, 30), f(op1, 29), f(0b01110, 28, 24), f(op2, 23); \ 2337 f(T==T2D ? 1:0, 22); f(1, 21), rf(Vm, 16), f(op3, 15, 10), rf(Vn, 5), rf(Vd, 0); \ 2338 } 2339 2340 INSN(fadd, 0, 0, 0b110101); 2341 INSN(fdiv, 1, 0, 0b111111); 2342 INSN(fmul, 1, 0, 0b110111); 2343 INSN(fsub, 0, 1, 0b110101); 2344 INSN(fmla, 0, 0, 0b110011); 2345 INSN(fmls, 0, 1, 0b110011); 2346 INSN(fmax, 0, 0, 0b111101); 2347 INSN(fmin, 0, 1, 0b111101); 2348 2349 #undef INSN 2350 2351 #define INSN(NAME, opc) \ 2352 void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \ 2353 starti; \ 2354 assert(T == T4S, "arrangement must be T4S"); \ 2355 f(0b01011110000, 31, 21), rf(Vm, 16), f(opc, 15, 10), rf(Vn, 5), rf(Vd, 0); \ 2356 } 2357 2358 INSN(sha1c, 0b000000); 2359 INSN(sha1m, 0b001000); 2360 INSN(sha1p, 0b000100); 2361 INSN(sha1su0, 0b001100); 2362 INSN(sha256h2, 0b010100); 2363 INSN(sha256h, 0b010000); 2364 INSN(sha256su1, 0b011000); 2365 2366 #undef INSN 2367 2368 #define INSN(NAME, opc) \ 2369 void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) { \ 2370 starti; \ 2371 assert(T == T4S, "arrangement must be T4S"); \ 2372 f(0b0101111000101000, 31, 16), f(opc, 15, 10), rf(Vn, 5), rf(Vd, 0); \ 2373 } 2374 2375 INSN(sha1h, 0b000010); 2376 INSN(sha1su1, 0b000110); 2377 INSN(sha256su0, 0b001010); 2378 2379 #undef INSN 2380 2381 #define INSN(NAME, opc) \ 2382 void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \ 2383 starti; \ 2384 assert(T == T2D, "arrangement must be T2D"); \ 2385 f(0b11001110011, 31, 21), rf(Vm, 16), f(opc, 15, 10), rf(Vn, 5), rf(Vd, 0); \ 2386 } 2387 2388 INSN(sha512h, 0b100000); 2389 INSN(sha512h2, 0b100001); 2390 INSN(sha512su1, 0b100010); 2391 2392 #undef INSN 2393 2394 #define INSN(NAME, opc) \ 2395 void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) { \ 2396 starti; \ 2397 assert(T == T2D, "arrangement must be T2D"); \ 2398 f(opc, 31, 10), rf(Vn, 5), rf(Vd, 0); \ 2399 } 2400 2401 INSN(sha512su0, 0b1100111011000000100000); 2402 2403 #undef INSN 2404 2405 #define INSN(NAME, opc) \ 2406 void NAME(FloatRegister Vd, FloatRegister Vn) { \ 2407 starti; \ 2408 f(opc, 31, 10), rf(Vn, 5), rf(Vd, 0); \ 2409 } 2410 2411 INSN(aese, 0b0100111000101000010010); 2412 INSN(aesd, 0b0100111000101000010110); 2413 INSN(aesmc, 0b0100111000101000011010); 2414 INSN(aesimc, 0b0100111000101000011110); 2415 2416 #undef INSN 2417 2418 #define INSN(NAME, op1, op2) \ 2419 void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm, int index = 0) { \ 2420 starti; \ 2421 assert(T == T2S || T == T4S || T == T2D, "invalid arrangement"); \ 2422 assert(index >= 0 && ((T == T2D && index <= 1) || (T != T2D && index <= 3)), "invalid index"); \ 2423 f(0, 31), f((int)T & 1, 30), f(op1, 29); f(0b011111, 28, 23); \ 2424 f(T == T2D ? 1 : 0, 22), f(T == T2D ? 0 : index & 1, 21), rf(Vm, 16); \ 2425 f(op2, 15, 12), f(T == T2D ? index : (index >> 1), 11), f(0, 10); \ 2426 rf(Vn, 5), rf(Vd, 0); \ 2427 } 2428 2429 // FMLA/FMLS - Vector - Scalar 2430 INSN(fmlavs, 0, 0b0001); 2431 INSN(fmlsvs, 0, 0b0101); 2432 // FMULX - Vector - Scalar 2433 INSN(fmulxvs, 1, 0b1001); 2434 2435 #undef INSN 2436 2437 // Floating-point Reciprocal Estimate 2438 void frecpe(FloatRegister Vd, FloatRegister Vn, SIMD_RegVariant type) { 2439 assert(type == D || type == S, "Wrong type for frecpe"); 2440 starti; 2441 f(0b010111101, 31, 23); 2442 f(type == D ? 1 : 0, 22); 2443 f(0b100001110110, 21, 10); 2444 rf(Vn, 5), rf(Vd, 0); 2445 } 2446 2447 // (double) {a, b} -> (a + b) 2448 void faddpd(FloatRegister Vd, FloatRegister Vn) { 2449 starti; 2450 f(0b0111111001110000110110, 31, 10); 2451 rf(Vn, 5), rf(Vd, 0); 2452 } 2453 2454 void ins(FloatRegister Vd, SIMD_RegVariant T, FloatRegister Vn, int didx, int sidx) { 2455 starti; 2456 assert(T != Q, "invalid register variant"); 2457 f(0b01101110000, 31, 21), f(((didx<<1)|1)<<(int)T, 20, 16), f(0, 15); 2458 f(sidx<<(int)T, 14, 11), f(1, 10), rf(Vn, 5), rf(Vd, 0); 2459 } 2460 2461 void umov(Register Rd, FloatRegister Vn, SIMD_RegVariant T, int idx) { 2462 starti; 2463 f(0, 31), f(T==D ? 1:0, 30), f(0b001110000, 29, 21); 2464 f(((idx<<1)|1)<<(int)T, 20, 16), f(0b001111, 15, 10); 2465 rf(Vn, 5), rf(Rd, 0); 2466 } 2467 2468 #define INSN(NAME, opc, opc2, isSHR) \ 2469 void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, int shift){ \ 2470 starti; \ 2471 /* The encodings for the immh:immb fields (bits 22:16) in *SHR are \ 2472 * 0001 xxx 8B/16B, shift = 16 - UInt(immh:immb) \ 2473 * 001x xxx 4H/8H, shift = 32 - UInt(immh:immb) \ 2474 * 01xx xxx 2S/4S, shift = 64 - UInt(immh:immb) \ 2475 * 1xxx xxx 1D/2D, shift = 128 - UInt(immh:immb) \ 2476 * (1D is RESERVED) \ 2477 * for SHL shift is calculated as: \ 2478 * 0001 xxx 8B/16B, shift = UInt(immh:immb) - 8 \ 2479 * 001x xxx 4H/8H, shift = UInt(immh:immb) - 16 \ 2480 * 01xx xxx 2S/4S, shift = UInt(immh:immb) - 32 \ 2481 * 1xxx xxx 1D/2D, shift = UInt(immh:immb) - 64 \ 2482 * (1D is RESERVED) \ 2483 */ \ 2484 assert((1 << ((T>>1)+3)) > shift, "Invalid Shift value"); \ 2485 int cVal = (1 << (((T >> 1) + 3) + (isSHR ? 1 : 0))); \ 2486 int encodedShift = isSHR ? cVal - shift : cVal + shift; \ 2487 f(0, 31), f(T & 1, 30), f(opc, 29), f(0b011110, 28, 23), \ 2488 f(encodedShift, 22, 16); f(opc2, 15, 10), rf(Vn, 5), rf(Vd, 0); \ 2489 } 2490 2491 INSN(shl, 0, 0b010101, /* isSHR = */ false); 2492 INSN(sshr, 0, 0b000001, /* isSHR = */ true); 2493 INSN(ushr, 1, 0b000001, /* isSHR = */ true); 2494 2495 #undef INSN 2496 2497 private: 2498 void _ushll(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, SIMD_Arrangement Tb, int shift) { 2499 starti; 2500 /* The encodings for the immh:immb fields (bits 22:16) are 2501 * 0001 xxx 8H, 8B/16b shift = xxx 2502 * 001x xxx 4S, 4H/8H shift = xxxx 2503 * 01xx xxx 2D, 2S/4S shift = xxxxx 2504 * 1xxx xxx RESERVED 2505 */ 2506 assert((Tb >> 1) + 1 == (Ta >> 1), "Incompatible arrangement"); 2507 assert((1 << ((Tb>>1)+3)) > shift, "Invalid shift value"); 2508 f(0, 31), f(Tb & 1, 30), f(0b1011110, 29, 23), f((1 << ((Tb>>1)+3))|shift, 22, 16); 2509 f(0b101001, 15, 10), rf(Vn, 5), rf(Vd, 0); 2510 } 2511 2512 public: 2513 void ushll(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, SIMD_Arrangement Tb, int shift) { 2514 assert(Tb == T8B || Tb == T4H || Tb == T2S, "invalid arrangement"); 2515 _ushll(Vd, Ta, Vn, Tb, shift); 2516 } 2517 2518 void ushll2(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, SIMD_Arrangement Tb, int shift) { 2519 assert(Tb == T16B || Tb == T8H || Tb == T4S, "invalid arrangement"); 2520 _ushll(Vd, Ta, Vn, Tb, shift); 2521 } 2522 2523 // Move from general purpose register 2524 // mov Vd.T[index], Rn 2525 void mov(FloatRegister Vd, SIMD_Arrangement T, int index, Register Xn) { 2526 starti; 2527 f(0b01001110000, 31, 21), f(((1 << (T >> 1)) | (index << ((T >> 1) + 1))), 20, 16); 2528 f(0b000111, 15, 10), zrf(Xn, 5), rf(Vd, 0); 2529 } 2530 2531 // Move to general purpose register 2532 // mov Rd, Vn.T[index] 2533 void mov(Register Xd, FloatRegister Vn, SIMD_Arrangement T, int index) { 2534 guarantee(T >= T2S && T < T1Q, "only D and S arrangements are supported"); 2535 starti; 2536 f(0, 31), f((T >= T1D) ? 1:0, 30), f(0b001110000, 29, 21); 2537 f(((1 << (T >> 1)) | (index << ((T >> 1) + 1))), 20, 16); 2538 f(0b001111, 15, 10), rf(Vn, 5), rf(Xd, 0); 2539 } 2540 2541 private: 2542 void _pmull(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, FloatRegister Vm, SIMD_Arrangement Tb) { 2543 starti; 2544 assert((Ta == T1Q && (Tb == T1D || Tb == T2D)) || 2545 (Ta == T8H && (Tb == T8B || Tb == T16B)), "Invalid Size specifier"); 2546 int size = (Ta == T1Q) ? 0b11 : 0b00; 2547 f(0, 31), f(Tb & 1, 30), f(0b001110, 29, 24), f(size, 23, 22); 2548 f(1, 21), rf(Vm, 16), f(0b111000, 15, 10), rf(Vn, 5), rf(Vd, 0); 2549 } 2550 2551 public: 2552 void pmull(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, FloatRegister Vm, SIMD_Arrangement Tb) { 2553 assert(Tb == T1D || Tb == T8B, "pmull assumes T1D or T8B as the second size specifier"); 2554 _pmull(Vd, Ta, Vn, Vm, Tb); 2555 } 2556 2557 void pmull2(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, FloatRegister Vm, SIMD_Arrangement Tb) { 2558 assert(Tb == T2D || Tb == T16B, "pmull2 assumes T2D or T16B as the second size specifier"); 2559 _pmull(Vd, Ta, Vn, Vm, Tb); 2560 } 2561 2562 void uqxtn(FloatRegister Vd, SIMD_Arrangement Tb, FloatRegister Vn, SIMD_Arrangement Ta) { 2563 starti; 2564 int size_b = (int)Tb >> 1; 2565 int size_a = (int)Ta >> 1; 2566 assert(size_b < 3 && size_b == size_a - 1, "Invalid size specifier"); 2567 f(0, 31), f(Tb & 1, 30), f(0b101110, 29, 24), f(size_b, 23, 22); 2568 f(0b100001010010, 21, 10), rf(Vn, 5), rf(Vd, 0); 2569 } 2570 2571 void dup(FloatRegister Vd, SIMD_Arrangement T, Register Xs) 2572 { 2573 starti; 2574 assert(T != T1D, "reserved encoding"); 2575 f(0,31), f((int)T & 1, 30), f(0b001110000, 29, 21); 2576 f((1 << (T >> 1)), 20, 16), f(0b000011, 15, 10), zrf(Xs, 5), rf(Vd, 0); 2577 } 2578 2579 void dup(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, int index = 0) 2580 { 2581 starti; 2582 assert(T != T1D, "reserved encoding"); 2583 f(0, 31), f((int)T & 1, 30), f(0b001110000, 29, 21); 2584 f(((1 << (T >> 1)) | (index << ((T >> 1) + 1))), 20, 16); 2585 f(0b000001, 15, 10), rf(Vn, 5), rf(Vd, 0); 2586 } 2587 2588 // AdvSIMD ZIP/UZP/TRN 2589 #define INSN(NAME, opcode) \ 2590 void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \ 2591 guarantee(T != T1D && T != T1Q, "invalid arrangement"); \ 2592 starti; \ 2593 f(0, 31), f(0b001110, 29, 24), f(0, 21), f(0, 15); \ 2594 f(opcode, 14, 12), f(0b10, 11, 10); \ 2595 rf(Vm, 16), rf(Vn, 5), rf(Vd, 0); \ 2596 f(T & 1, 30), f(T >> 1, 23, 22); \ 2597 } 2598 2599 INSN(uzp1, 0b001); 2600 INSN(trn1, 0b010); 2601 INSN(zip1, 0b011); 2602 INSN(uzp2, 0b101); 2603 INSN(trn2, 0b110); 2604 INSN(zip2, 0b111); 2605 2606 #undef INSN 2607 2608 // CRC32 instructions 2609 #define INSN(NAME, c, sf, sz) \ 2610 void NAME(Register Rd, Register Rn, Register Rm) { \ 2611 starti; \ 2612 f(sf, 31), f(0b0011010110, 30, 21), f(0b010, 15, 13), f(c, 12); \ 2613 f(sz, 11, 10), rf(Rm, 16), rf(Rn, 5), rf(Rd, 0); \ 2614 } 2615 2616 INSN(crc32b, 0, 0, 0b00); 2617 INSN(crc32h, 0, 0, 0b01); 2618 INSN(crc32w, 0, 0, 0b10); 2619 INSN(crc32x, 0, 1, 0b11); 2620 INSN(crc32cb, 1, 0, 0b00); 2621 INSN(crc32ch, 1, 0, 0b01); 2622 INSN(crc32cw, 1, 0, 0b10); 2623 INSN(crc32cx, 1, 1, 0b11); 2624 2625 #undef INSN 2626 2627 // Table vector lookup 2628 #define INSN(NAME, op) \ 2629 void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, unsigned registers, FloatRegister Vm) { \ 2630 starti; \ 2631 assert(T == T8B || T == T16B, "invalid arrangement"); \ 2632 assert(0 < registers && registers <= 4, "invalid number of registers"); \ 2633 f(0, 31), f((int)T & 1, 30), f(0b001110000, 29, 21), rf(Vm, 16), f(0, 15); \ 2634 f(registers - 1, 14, 13), f(op, 12),f(0b00, 11, 10), rf(Vn, 5), rf(Vd, 0); \ 2635 } 2636 2637 INSN(tbl, 0); 2638 INSN(tbx, 1); 2639 2640 #undef INSN 2641 2642 // AdvSIMD two-reg misc 2643 // In this instruction group, the 2 bits in the size field ([23:22]) may be 2644 // fixed or determined by the "SIMD_Arrangement T", or both. The additional 2645 // parameter "tmask" is a 2-bit mask used to indicate which bits in the size 2646 // field are determined by the SIMD_Arrangement. The bit of "tmask" should be 2647 // set to 1 if corresponding bit marked as "x" in the ArmARM. 2648 #define INSN(NAME, U, size, tmask, opcode) \ 2649 void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) { \ 2650 starti; \ 2651 assert((ASSERTION), MSG); \ 2652 f(0, 31), f((int)T & 1, 30), f(U, 29), f(0b01110, 28, 24); \ 2653 f(size | ((int)(T >> 1) & tmask), 23, 22), f(0b10000, 21, 17); \ 2654 f(opcode, 16, 12), f(0b10, 11, 10), rf(Vn, 5), rf(Vd, 0); \ 2655 } 2656 2657 #define MSG "invalid arrangement" 2658 2659 #define ASSERTION (T == T2S || T == T4S || T == T2D) 2660 INSN(fsqrt, 1, 0b10, 0b01, 0b11111); 2661 INSN(fabs, 0, 0b10, 0b01, 0b01111); 2662 INSN(fneg, 1, 0b10, 0b01, 0b01111); 2663 INSN(frintn, 0, 0b00, 0b01, 0b11000); 2664 INSN(frintm, 0, 0b00, 0b01, 0b11001); 2665 INSN(frintp, 0, 0b10, 0b01, 0b11000); 2666 #undef ASSERTION 2667 2668 #define ASSERTION (T == T8B || T == T16B || T == T4H || T == T8H || T == T2S || T == T4S) 2669 INSN(rev64, 0, 0b00, 0b11, 0b00000); 2670 #undef ASSERTION 2671 2672 #define ASSERTION (T == T8B || T == T16B || T == T4H || T == T8H) 2673 INSN(rev32, 1, 0b00, 0b11, 0b00000); 2674 #undef ASSERTION 2675 2676 #define ASSERTION (T == T8B || T == T16B) 2677 INSN(rev16, 0, 0b00, 0b11, 0b00001); 2678 INSN(rbit, 1, 0b01, 0b00, 0b00101); 2679 #undef ASSERTION 2680 2681 #undef MSG 2682 2683 #undef INSN 2684 2685 void ext(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm, int index) 2686 { 2687 starti; 2688 assert(T == T8B || T == T16B, "invalid arrangement"); 2689 assert((T == T8B && index <= 0b0111) || (T == T16B && index <= 0b1111), "Invalid index value"); 2690 f(0, 31), f((int)T & 1, 30), f(0b101110000, 29, 21); 2691 rf(Vm, 16), f(0, 15), f(index, 14, 11); 2692 f(0, 10), rf(Vn, 5), rf(Vd, 0); 2693 } 2694 2695 Assembler(CodeBuffer* code) : AbstractAssembler(code) { 2696 } 2697 2698 virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr, 2699 Register tmp, 2700 int offset) { 2701 ShouldNotCallThis(); 2702 return RegisterOrConstant(); 2703 } 2704 2705 // Stack overflow checking 2706 virtual void bang_stack_with_offset(int offset); 2707 2708 static bool operand_valid_for_logical_immediate(bool is32, uint64_t imm); 2709 static bool operand_valid_for_add_sub_immediate(int64_t imm); 2710 static bool operand_valid_for_float_immediate(double imm); 2711 2712 void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0); 2713 void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0); 2714 }; 2715 2716 inline Assembler::Membar_mask_bits operator|(Assembler::Membar_mask_bits a, 2717 Assembler::Membar_mask_bits b) { 2718 return Assembler::Membar_mask_bits(unsigned(a)|unsigned(b)); 2719 } 2720 2721 Instruction_aarch64::~Instruction_aarch64() { 2722 assem->emit(); 2723 } 2724 2725 #undef starti 2726 2727 // Invert a condition 2728 inline const Assembler::Condition operator~(const Assembler::Condition cond) { 2729 return Assembler::Condition(int(cond) ^ 1); 2730 } 2731 2732 class BiasedLockingCounters; 2733 2734 extern "C" void das(uint64_t start, int len); 2735 2736 #endif // CPU_AARCH64_ASSEMBLER_AARCH64_HPP --- EOF ---