1 /* 2 * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/javaClasses.inline.hpp" 27 #include "classfile/symbolTable.hpp" 28 #include "classfile/systemDictionary.hpp" 29 #include "classfile/vmSymbols.hpp" 30 #include "code/codeCache.hpp" 31 #include "compiler/compilationPolicy.hpp" 32 #include "compiler/compileBroker.hpp" 33 #include "compiler/disassembler.hpp" 34 #include "gc/shared/barrierSetNMethod.hpp" 35 #include "gc/shared/collectedHeap.hpp" 36 #include "interpreter/interpreter.hpp" 37 #include "interpreter/interpreterRuntime.hpp" 38 #include "interpreter/linkResolver.hpp" 39 #include "interpreter/templateTable.hpp" 40 #include "logging/log.hpp" 41 #include "memory/oopFactory.hpp" 42 #include "memory/resourceArea.hpp" 43 #include "memory/universe.hpp" 44 #include "oops/constantPool.hpp" 45 #include "oops/cpCache.inline.hpp" 46 #include "oops/instanceKlass.hpp" 47 #include "oops/methodData.hpp" 48 #include "oops/objArrayKlass.hpp" 49 #include "oops/objArrayOop.inline.hpp" 50 #include "oops/oop.inline.hpp" 51 #include "oops/symbol.hpp" 52 #include "oops/valueArrayKlass.hpp" 53 #include "oops/valueArrayOop.inline.hpp" 54 #include "oops/valueKlass.inline.hpp" 55 #include "prims/jvmtiExport.hpp" 56 #include "prims/nativeLookup.hpp" 57 #include "runtime/atomic.hpp" 58 #include "runtime/biasedLocking.hpp" 59 #include "runtime/deoptimization.hpp" 60 #include "runtime/fieldDescriptor.inline.hpp" 61 #include "runtime/frame.inline.hpp" 62 #include "runtime/handles.inline.hpp" 63 #include "runtime/icache.hpp" 64 #include "runtime/interfaceSupport.inline.hpp" 65 #include "runtime/java.hpp" 66 #include "runtime/javaCalls.hpp" 67 #include "runtime/jfieldIDWorkaround.hpp" 68 #include "runtime/osThread.hpp" 69 #include "runtime/sharedRuntime.hpp" 70 #include "runtime/stubRoutines.hpp" 71 #include "runtime/synchronizer.hpp" 72 #include "runtime/threadCritical.hpp" 73 #include "utilities/align.hpp" 74 #include "utilities/copy.hpp" 75 #include "utilities/events.hpp" 76 #include "utilities/globalDefinitions.hpp" 77 #ifdef COMPILER2 78 #include "opto/runtime.hpp" 79 #endif 80 81 class UnlockFlagSaver { 82 private: 83 JavaThread* _thread; 84 bool _do_not_unlock; 85 public: 86 UnlockFlagSaver(JavaThread* t) { 87 _thread = t; 88 _do_not_unlock = t->do_not_unlock_if_synchronized(); 89 t->set_do_not_unlock_if_synchronized(false); 90 } 91 ~UnlockFlagSaver() { 92 _thread->set_do_not_unlock_if_synchronized(_do_not_unlock); 93 } 94 }; 95 96 // Helper class to access current interpreter state 97 class LastFrameAccessor : public StackObj { 98 frame _last_frame; 99 public: 100 LastFrameAccessor(JavaThread* thread) { 101 assert(thread == Thread::current(), "sanity"); 102 _last_frame = thread->last_frame(); 103 } 104 bool is_interpreted_frame() const { return _last_frame.is_interpreted_frame(); } 105 Method* method() const { return _last_frame.interpreter_frame_method(); } 106 address bcp() const { return _last_frame.interpreter_frame_bcp(); } 107 int bci() const { return _last_frame.interpreter_frame_bci(); } 108 address mdp() const { return _last_frame.interpreter_frame_mdp(); } 109 110 void set_bcp(address bcp) { _last_frame.interpreter_frame_set_bcp(bcp); } 111 void set_mdp(address dp) { _last_frame.interpreter_frame_set_mdp(dp); } 112 113 // pass method to avoid calling unsafe bcp_to_method (partial fix 4926272) 114 Bytecodes::Code code() const { return Bytecodes::code_at(method(), bcp()); } 115 116 Bytecode bytecode() const { return Bytecode(method(), bcp()); } 117 int get_index_u1(Bytecodes::Code bc) const { return bytecode().get_index_u1(bc); } 118 int get_index_u2(Bytecodes::Code bc) const { return bytecode().get_index_u2(bc); } 119 int get_index_u2_cpcache(Bytecodes::Code bc) const 120 { return bytecode().get_index_u2_cpcache(bc); } 121 int get_index_u4(Bytecodes::Code bc) const { return bytecode().get_index_u4(bc); } 122 int number_of_dimensions() const { return bcp()[3]; } 123 ConstantPoolCacheEntry* cache_entry_at(int i) const 124 { return method()->constants()->cache()->entry_at(i); } 125 ConstantPoolCacheEntry* cache_entry() const { return cache_entry_at(Bytes::get_native_u2(bcp() + 1)); } 126 127 oop callee_receiver(Symbol* signature) { 128 return _last_frame.interpreter_callee_receiver(signature); 129 } 130 BasicObjectLock* monitor_begin() const { 131 return _last_frame.interpreter_frame_monitor_begin(); 132 } 133 BasicObjectLock* monitor_end() const { 134 return _last_frame.interpreter_frame_monitor_end(); 135 } 136 BasicObjectLock* next_monitor(BasicObjectLock* current) const { 137 return _last_frame.next_monitor_in_interpreter_frame(current); 138 } 139 140 frame& get_frame() { return _last_frame; } 141 }; 142 143 //------------------------------------------------------------------------------------------------------------------------ 144 // State accessors 145 146 void InterpreterRuntime::set_bcp_and_mdp(address bcp, JavaThread *thread) { 147 LastFrameAccessor last_frame(thread); 148 last_frame.set_bcp(bcp); 149 if (ProfileInterpreter) { 150 // ProfileTraps uses MDOs independently of ProfileInterpreter. 151 // That is why we must check both ProfileInterpreter and mdo != NULL. 152 MethodData* mdo = last_frame.method()->method_data(); 153 if (mdo != NULL) { 154 NEEDS_CLEANUP; 155 last_frame.set_mdp(mdo->bci_to_dp(last_frame.bci())); 156 } 157 } 158 } 159 160 //------------------------------------------------------------------------------------------------------------------------ 161 // Constants 162 163 164 JRT_ENTRY(void, InterpreterRuntime::ldc(JavaThread* thread, bool wide)) 165 // access constant pool 166 LastFrameAccessor last_frame(thread); 167 ConstantPool* pool = last_frame.method()->constants(); 168 int index = wide ? last_frame.get_index_u2(Bytecodes::_ldc_w) : last_frame.get_index_u1(Bytecodes::_ldc); 169 constantTag tag = pool->tag_at(index); 170 171 assert (tag.is_unresolved_klass() || tag.is_klass(), "wrong ldc call"); 172 Klass* klass = pool->klass_at(index, CHECK); 173 oop java_class = klass->java_mirror(); 174 thread->set_vm_result(java_class); 175 JRT_END 176 177 JRT_ENTRY(void, InterpreterRuntime::resolve_ldc(JavaThread* thread, Bytecodes::Code bytecode)) { 178 assert(bytecode == Bytecodes::_ldc || 179 bytecode == Bytecodes::_ldc_w || 180 bytecode == Bytecodes::_ldc2_w || 181 bytecode == Bytecodes::_fast_aldc || 182 bytecode == Bytecodes::_fast_aldc_w, "wrong bc"); 183 ResourceMark rm(thread); 184 const bool is_fast_aldc = (bytecode == Bytecodes::_fast_aldc || 185 bytecode == Bytecodes::_fast_aldc_w); 186 LastFrameAccessor last_frame(thread); 187 methodHandle m (thread, last_frame.method()); 188 Bytecode_loadconstant ldc(m, last_frame.bci()); 189 190 // Double-check the size. (Condy can have any type.) 191 BasicType type = ldc.result_type(); 192 switch (type2size[type]) { 193 case 2: guarantee(bytecode == Bytecodes::_ldc2_w, ""); break; 194 case 1: guarantee(bytecode != Bytecodes::_ldc2_w, ""); break; 195 default: ShouldNotReachHere(); 196 } 197 198 // Resolve the constant. This does not do unboxing. 199 // But it does replace Universe::the_null_sentinel by null. 200 oop result = ldc.resolve_constant(CHECK); 201 assert(result != NULL || is_fast_aldc, "null result only valid for fast_aldc"); 202 203 #ifdef ASSERT 204 { 205 // The bytecode wrappers aren't GC-safe so construct a new one 206 Bytecode_loadconstant ldc2(m, last_frame.bci()); 207 int rindex = ldc2.cache_index(); 208 if (rindex < 0) 209 rindex = m->constants()->cp_to_object_index(ldc2.pool_index()); 210 if (rindex >= 0) { 211 oop coop = m->constants()->resolved_references()->obj_at(rindex); 212 oop roop = (result == NULL ? Universe::the_null_sentinel() : result); 213 assert(roop == coop, "expected result for assembly code"); 214 } 215 } 216 #endif 217 thread->set_vm_result(result); 218 if (!is_fast_aldc) { 219 // Tell the interpreter how to unbox the primitive. 220 guarantee(java_lang_boxing_object::is_instance(result, type), ""); 221 int offset = java_lang_boxing_object::value_offset_in_bytes(type); 222 intptr_t flags = ((as_TosState(type) << ConstantPoolCacheEntry::tos_state_shift) 223 | (offset & ConstantPoolCacheEntry::field_index_mask)); 224 thread->set_vm_result_2((Metadata*)flags); 225 } 226 } 227 JRT_END 228 229 230 //------------------------------------------------------------------------------------------------------------------------ 231 // Allocation 232 233 JRT_ENTRY(void, InterpreterRuntime::_new(JavaThread* thread, ConstantPool* pool, int index)) 234 Klass* k = pool->klass_at(index, CHECK); 235 InstanceKlass* klass = InstanceKlass::cast(k); 236 237 // Make sure we are not instantiating an abstract klass 238 klass->check_valid_for_instantiation(true, CHECK); 239 240 // Make sure klass is initialized 241 klass->initialize(CHECK); 242 243 // At this point the class may not be fully initialized 244 // because of recursive initialization. If it is fully 245 // initialized & has_finalized is not set, we rewrite 246 // it into its fast version (Note: no locking is needed 247 // here since this is an atomic byte write and can be 248 // done more than once). 249 // 250 // Note: In case of classes with has_finalized we don't 251 // rewrite since that saves us an extra check in 252 // the fast version which then would call the 253 // slow version anyway (and do a call back into 254 // Java). 255 // If we have a breakpoint, then we don't rewrite 256 // because the _breakpoint bytecode would be lost. 257 oop obj = klass->allocate_instance(CHECK); 258 thread->set_vm_result(obj); 259 JRT_END 260 261 void copy_primitive_argument(intptr_t* addr, Handle instance, int offset, BasicType type) { 262 switch (type) { 263 case T_BOOLEAN: 264 instance()->bool_field_put(offset, (jboolean)*((int*)addr)); 265 break; 266 case T_CHAR: 267 instance()->char_field_put(offset, (jchar) *((int*)addr)); 268 break; 269 case T_FLOAT: 270 instance()->float_field_put(offset, (jfloat)*((float*)addr)); 271 break; 272 case T_DOUBLE: 273 instance()->double_field_put(offset, (jdouble)*((double*)addr)); 274 break; 275 case T_BYTE: 276 instance()->byte_field_put(offset, (jbyte)*((int*)addr)); 277 break; 278 case T_SHORT: 279 instance()->short_field_put(offset, (jshort)*((int*)addr)); 280 break; 281 case T_INT: 282 instance()->int_field_put(offset, (jint)*((int*)addr)); 283 break; 284 case T_LONG: 285 instance()->long_field_put(offset, (jlong)*((long long*)addr)); 286 break; 287 case T_OBJECT: 288 case T_ARRAY: 289 case T_VALUETYPE: 290 fatal("Should not be handled with this method"); 291 break; 292 default: 293 fatal("Unsupported BasicType"); 294 } 295 } 296 297 JRT_ENTRY(void, InterpreterRuntime::defaultvalue(JavaThread* thread, ConstantPool* pool, int index)) 298 // Getting the ValueKlass 299 Klass* k = pool->klass_at(index, CHECK); 300 assert(k->is_value(), "defaultvalue argument must be the value type class"); 301 ValueKlass* vklass = ValueKlass::cast(k); 302 303 vklass->initialize(THREAD); 304 oop res = vklass->default_value(); 305 thread->set_vm_result(res); 306 JRT_END 307 308 JRT_ENTRY(int, InterpreterRuntime::withfield(JavaThread* thread, ConstantPoolCache* cp_cache)) 309 LastFrameAccessor last_frame(thread); 310 // Getting the ValueKlass 311 int index = ConstantPool::decode_cpcache_index(last_frame.get_index_u2_cpcache(Bytecodes::_withfield)); 312 ConstantPoolCacheEntry* cp_entry = cp_cache->entry_at(index); 313 assert(cp_entry->is_resolved(Bytecodes::_withfield), "Should have been resolved"); 314 Klass* klass = cp_entry->f1_as_klass(); 315 assert(klass->is_value(), "withfield only applies to value types"); 316 ValueKlass* vklass = ValueKlass::cast(klass); 317 318 // Getting Field information 319 int offset = cp_entry->f2_as_index(); 320 int field_index = cp_entry->field_index(); 321 int field_offset = cp_entry->f2_as_offset(); 322 Symbol* field_signature = vklass->field_signature(field_index); 323 ResourceMark rm(THREAD); 324 const char* signature = (const char *) field_signature->as_utf8(); 325 BasicType field_type = char2type(signature[0]); 326 int return_offset = (type2size[field_type] + type2size[T_OBJECT]) * AbstractInterpreter::stackElementSize; 327 328 // Getting old value 329 frame& f = last_frame.get_frame(); 330 jint tos_idx = f.interpreter_frame_expression_stack_size() - 1; 331 int vt_offset = type2size[field_type]; 332 oop old_value = *(oop*)f.interpreter_frame_expression_stack_at(tos_idx - vt_offset); 333 assert(old_value != NULL && oopDesc::is_oop(old_value) && old_value->is_value(),"Verifying receiver"); 334 Handle old_value_h(THREAD, old_value); 335 336 // Creating new value by copying the one passed in argument 337 instanceOop new_value = vklass->allocate_instance( 338 CHECK_((type2size[field_type]) * AbstractInterpreter::stackElementSize)); 339 Handle new_value_h = Handle(THREAD, new_value); 340 vklass->value_copy_oop_to_new_oop(old_value_h(), new_value_h()); 341 342 // Updating the field specified in arguments 343 if (field_type == T_ARRAY || field_type == T_OBJECT) { 344 oop aoop = *(oop*)f.interpreter_frame_expression_stack_at(tos_idx); 345 assert(aoop == NULL || oopDesc::is_oop(aoop),"argument must be a reference type"); 346 new_value_h()->obj_field_put(field_offset, aoop); 347 } else if (field_type == T_VALUETYPE) { 348 if (cp_entry->is_flattened()) { 349 oop vt_oop = *(oop*)f.interpreter_frame_expression_stack_at(tos_idx); 350 assert(vt_oop != NULL && oopDesc::is_oop(vt_oop) && vt_oop->is_value(),"argument must be a value type"); 351 ValueKlass* field_vk = ValueKlass::cast(vklass->get_value_field_klass(field_index)); 352 assert(vt_oop != NULL && field_vk == vt_oop->klass(), "Must match"); 353 field_vk->write_flattened_field(new_value_h(), offset, vt_oop, CHECK_(return_offset)); 354 } else { // not flattened 355 oop voop = *(oop*)f.interpreter_frame_expression_stack_at(tos_idx); 356 if (voop == NULL && cp_entry->is_flattenable()) { 357 THROW_(vmSymbols::java_lang_NullPointerException(), return_offset); 358 } 359 assert(voop == NULL || oopDesc::is_oop(voop),"checking argument"); 360 new_value_h()->obj_field_put(field_offset, voop); 361 } 362 } else { // not T_OBJECT nor T_ARRAY nor T_VALUETYPE 363 intptr_t* addr = f.interpreter_frame_expression_stack_at(tos_idx); 364 copy_primitive_argument(addr, new_value_h, field_offset, field_type); 365 } 366 367 // returning result 368 thread->set_vm_result(new_value_h()); 369 return return_offset; 370 JRT_END 371 372 JRT_ENTRY(void, InterpreterRuntime::uninitialized_static_value_field(JavaThread* thread, oopDesc* mirror, int index)) 373 // The interpreter tries to access a flattenable static field that has not been initialized. 374 // This situation can happen in different scenarios: 375 // 1 - if the load or initialization of the field failed during step 8 of 376 // the initialization of the holder of the field, in this case the access to the field 377 // must fail 378 // 2 - it can also happen when the initialization of the holder class triggered the initialization of 379 // another class which accesses this field in its static initializer, in this case the 380 // access must succeed to allow circularity 381 // The code below tries to load and initialize the field's class again before returning the default value. 382 // If the field was not initialized because of an error, a exception should be thrown. 383 // If the class is being initialized, the default value is returned. 384 instanceHandle mirror_h(THREAD, (instanceOop)mirror); 385 InstanceKlass* klass = InstanceKlass::cast(java_lang_Class::as_Klass(mirror)); 386 if (klass->is_being_initialized() && klass->is_reentrant_initialization(THREAD)) { 387 int offset = klass->field_offset(index); 388 Klass* field_k = klass->get_value_field_klass_or_null(index); 389 if (field_k == NULL) { 390 field_k = SystemDictionary::resolve_or_fail(klass->field_signature(index)->fundamental_name(THREAD), 391 Handle(THREAD, klass->class_loader()), 392 Handle(THREAD, klass->protection_domain()), 393 true, CHECK); 394 assert(field_k != NULL, "Should have been loaded or an exception thrown above"); 395 klass->set_value_field_klass(index, field_k); 396 } 397 field_k->initialize(CHECK); 398 oop defaultvalue = ValueKlass::cast(field_k)->default_value(); 399 // It is safe to initialized the static field because 1) the current thread is the initializing thread 400 // and is the only one that can access it, and 2) the field is actually not initialized (i.e. null) 401 // otherwise the JVM should not be executing this code. 402 mirror->obj_field_put(offset, defaultvalue); 403 thread->set_vm_result(defaultvalue); 404 } else { 405 assert(klass->is_in_error_state(), "If not initializing, initialization must have failed to get there"); 406 ResourceMark rm(THREAD); 407 const char* desc = "Could not initialize class "; 408 const char* className = klass->external_name(); 409 size_t msglen = strlen(desc) + strlen(className) + 1; 410 char* message = NEW_RESOURCE_ARRAY(char, msglen); 411 if (NULL == message) { 412 // Out of memory: can't create detailed error message 413 THROW_MSG(vmSymbols::java_lang_NoClassDefFoundError(), className); 414 } else { 415 jio_snprintf(message, msglen, "%s%s", desc, className); 416 THROW_MSG(vmSymbols::java_lang_NoClassDefFoundError(), message); 417 } 418 } 419 JRT_END 420 421 JRT_ENTRY(void, InterpreterRuntime::uninitialized_instance_value_field(JavaThread* thread, oopDesc* obj, int index)) 422 instanceHandle obj_h(THREAD, (instanceOop)obj); 423 InstanceKlass* klass = InstanceKlass::cast(obj_h()->klass()); 424 Klass* field_k = klass->get_value_field_klass_or_null(index); 425 assert(field_k != NULL, "Must have been initialized"); 426 ValueKlass* field_vklass = ValueKlass::cast(field_k); 427 assert(field_vklass->is_initialized(), "Must have been initialized at this point"); 428 instanceOop res = (instanceOop)field_vklass->default_value(); 429 thread->set_vm_result(res); 430 JRT_END 431 432 JRT_ENTRY(void, InterpreterRuntime::write_flattened_value(JavaThread* thread, oopDesc* value, int offset, oopDesc* rcv)) 433 assert(value != NULL, "Sanity check"); 434 assert(oopDesc::is_oop(value), "Sanity check"); 435 assert(oopDesc::is_oop(rcv), "Sanity check"); 436 assert(value->is_value(), "Sanity check"); 437 438 ValueKlass* vklass = ValueKlass::cast(value->klass()); 439 vklass->write_flattened_field(rcv, offset, value, CHECK); 440 JRT_END 441 442 JRT_ENTRY(void, InterpreterRuntime::read_flattened_field(JavaThread* thread, oopDesc* obj, int index, Klass* field_holder)) 443 Handle obj_h(THREAD, obj); 444 445 assert(oopDesc::is_oop(obj), "Sanity check"); 446 447 assert(field_holder->is_instance_klass(), "Sanity check"); 448 InstanceKlass* klass = InstanceKlass::cast(field_holder); 449 450 assert(klass->field_is_flattened(index), "Sanity check"); 451 452 ValueKlass* field_vklass = ValueKlass::cast(klass->get_value_field_klass(index)); 453 assert(field_vklass->is_initialized(), "Must be initialized at this point"); 454 455 oop res = field_vklass->read_flattened_field(obj_h(), klass->field_offset(index), CHECK); 456 thread->set_vm_result(res); 457 JRT_END 458 459 JRT_ENTRY(void, InterpreterRuntime::newarray(JavaThread* thread, BasicType type, jint size)) 460 oop obj = oopFactory::new_typeArray(type, size, CHECK); 461 thread->set_vm_result(obj); 462 JRT_END 463 464 465 JRT_ENTRY(void, InterpreterRuntime::anewarray(JavaThread* thread, ConstantPool* pool, int index, jint size)) 466 Klass* klass = pool->klass_at(index, CHECK); 467 bool is_qtype_desc = pool->tag_at(index).is_Qdescriptor_klass(); 468 arrayOop obj; 469 if ((!klass->is_array_klass()) && is_qtype_desc) { // Logically creates elements, ensure klass init 470 klass->initialize(CHECK); 471 obj = oopFactory::new_valueArray(klass, size, CHECK); 472 } else { 473 obj = oopFactory::new_objArray(klass, size, CHECK); 474 } 475 thread->set_vm_result(obj); 476 JRT_END 477 478 JRT_ENTRY(void, InterpreterRuntime::value_array_load(JavaThread* thread, arrayOopDesc* array, int index)) 479 valueArrayHandle vah(thread, (valueArrayOop)array); 480 oop value_holder = valueArrayOopDesc::value_alloc_copy_from_index(vah, index, CHECK); 481 thread->set_vm_result(value_holder); 482 JRT_END 483 484 JRT_ENTRY(void, InterpreterRuntime::value_array_store(JavaThread* thread, void* val, arrayOopDesc* array, int index)) 485 assert(val != NULL, "can't store null into flat array"); 486 ((valueArrayOop)array)->value_copy_to_index((oop)val, index); 487 JRT_END 488 489 JRT_ENTRY(void, InterpreterRuntime::multianewarray(JavaThread* thread, jint* first_size_address)) 490 // We may want to pass in more arguments - could make this slightly faster 491 LastFrameAccessor last_frame(thread); 492 ConstantPool* constants = last_frame.method()->constants(); 493 int i = last_frame.get_index_u2(Bytecodes::_multianewarray); 494 Klass* klass = constants->klass_at(i, CHECK); 495 bool is_qtype = klass->name()->is_Q_array_signature(); 496 int nof_dims = last_frame.number_of_dimensions(); 497 assert(klass->is_klass(), "not a class"); 498 assert(nof_dims >= 1, "multianewarray rank must be nonzero"); 499 500 if (is_qtype) { // Logically creates elements, ensure klass init 501 klass->initialize(CHECK); 502 } 503 504 // We must create an array of jints to pass to multi_allocate. 505 ResourceMark rm(thread); 506 const int small_dims = 10; 507 jint dim_array[small_dims]; 508 jint *dims = &dim_array[0]; 509 if (nof_dims > small_dims) { 510 dims = (jint*) NEW_RESOURCE_ARRAY(jint, nof_dims); 511 } 512 for (int index = 0; index < nof_dims; index++) { 513 // offset from first_size_address is addressed as local[index] 514 int n = Interpreter::local_offset_in_bytes(index)/jintSize; 515 dims[index] = first_size_address[n]; 516 } 517 oop obj = ArrayKlass::cast(klass)->multi_allocate(nof_dims, dims, CHECK); 518 thread->set_vm_result(obj); 519 JRT_END 520 521 522 JRT_ENTRY(void, InterpreterRuntime::register_finalizer(JavaThread* thread, oopDesc* obj)) 523 assert(oopDesc::is_oop(obj), "must be a valid oop"); 524 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise"); 525 InstanceKlass::register_finalizer(instanceOop(obj), CHECK); 526 JRT_END 527 528 JRT_ENTRY(jboolean, InterpreterRuntime::is_substitutable(JavaThread* thread, oopDesc* aobj, oopDesc* bobj)) 529 assert(oopDesc::is_oop(aobj) && oopDesc::is_oop(bobj), "must be valid oops"); 530 531 Handle ha(THREAD, aobj); 532 Handle hb(THREAD, bobj); 533 JavaValue result(T_BOOLEAN); 534 JavaCallArguments args; 535 args.push_oop(ha); 536 args.push_oop(hb); 537 methodHandle method(thread, Universe::is_substitutable_method()); 538 JavaCalls::call(&result, method, &args, THREAD); 539 if (HAS_PENDING_EXCEPTION) { 540 // Something really bad happened because isSubstitutable() should not throw exceptions 541 // If it is an error, just let it propagate 542 // If it is an exception, wrap it into an InternalError 543 if (!PENDING_EXCEPTION->is_a(SystemDictionary::Error_klass())) { 544 Handle e(THREAD, PENDING_EXCEPTION); 545 CLEAR_PENDING_EXCEPTION; 546 THROW_MSG_CAUSE_(vmSymbols::java_lang_InternalError(), "Internal error in substitutability test", e, false); 547 } 548 } 549 return result.get_jboolean(); 550 JRT_END 551 552 // Quicken instance-of and check-cast bytecodes 553 JRT_ENTRY(void, InterpreterRuntime::quicken_io_cc(JavaThread* thread)) 554 // Force resolving; quicken the bytecode 555 LastFrameAccessor last_frame(thread); 556 int which = last_frame.get_index_u2(Bytecodes::_checkcast); 557 ConstantPool* cpool = last_frame.method()->constants(); 558 // We'd expect to assert that we're only here to quicken bytecodes, but in a multithreaded 559 // program we might have seen an unquick'd bytecode in the interpreter but have another 560 // thread quicken the bytecode before we get here. 561 // assert( cpool->tag_at(which).is_unresolved_klass(), "should only come here to quicken bytecodes" ); 562 Klass* klass = cpool->klass_at(which, CHECK); 563 thread->set_vm_result_2(klass); 564 JRT_END 565 566 567 //------------------------------------------------------------------------------------------------------------------------ 568 // Exceptions 569 570 void InterpreterRuntime::note_trap_inner(JavaThread* thread, int reason, 571 const methodHandle& trap_method, int trap_bci, TRAPS) { 572 if (trap_method.not_null()) { 573 MethodData* trap_mdo = trap_method->method_data(); 574 if (trap_mdo == NULL) { 575 Method::build_interpreter_method_data(trap_method, THREAD); 576 if (HAS_PENDING_EXCEPTION) { 577 assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), 578 "we expect only an OOM error here"); 579 CLEAR_PENDING_EXCEPTION; 580 } 581 trap_mdo = trap_method->method_data(); 582 // and fall through... 583 } 584 if (trap_mdo != NULL) { 585 // Update per-method count of trap events. The interpreter 586 // is updating the MDO to simulate the effect of compiler traps. 587 Deoptimization::update_method_data_from_interpreter(trap_mdo, trap_bci, reason); 588 } 589 } 590 } 591 592 // Assume the compiler is (or will be) interested in this event. 593 // If necessary, create an MDO to hold the information, and record it. 594 void InterpreterRuntime::note_trap(JavaThread* thread, int reason, TRAPS) { 595 assert(ProfileTraps, "call me only if profiling"); 596 LastFrameAccessor last_frame(thread); 597 methodHandle trap_method(thread, last_frame.method()); 598 int trap_bci = trap_method->bci_from(last_frame.bcp()); 599 note_trap_inner(thread, reason, trap_method, trap_bci, THREAD); 600 } 601 602 #ifdef CC_INTERP 603 // As legacy note_trap, but we have more arguments. 604 JRT_ENTRY(void, InterpreterRuntime::note_trap(JavaThread* thread, int reason, Method *method, int trap_bci)) 605 methodHandle trap_method(thread, method); 606 note_trap_inner(thread, reason, trap_method, trap_bci, THREAD); 607 JRT_END 608 609 // Class Deoptimization is not visible in BytecodeInterpreter, so we need a wrapper 610 // for each exception. 611 void InterpreterRuntime::note_nullCheck_trap(JavaThread* thread, Method *method, int trap_bci) 612 { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_null_check, method, trap_bci); } 613 void InterpreterRuntime::note_div0Check_trap(JavaThread* thread, Method *method, int trap_bci) 614 { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_div0_check, method, trap_bci); } 615 void InterpreterRuntime::note_rangeCheck_trap(JavaThread* thread, Method *method, int trap_bci) 616 { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_range_check, method, trap_bci); } 617 void InterpreterRuntime::note_classCheck_trap(JavaThread* thread, Method *method, int trap_bci) 618 { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_class_check, method, trap_bci); } 619 void InterpreterRuntime::note_arrayCheck_trap(JavaThread* thread, Method *method, int trap_bci) 620 { if (ProfileTraps) note_trap(thread, Deoptimization::Reason_array_check, method, trap_bci); } 621 #endif // CC_INTERP 622 623 624 static Handle get_preinitialized_exception(Klass* k, TRAPS) { 625 // get klass 626 InstanceKlass* klass = InstanceKlass::cast(k); 627 assert(klass->is_initialized(), 628 "this klass should have been initialized during VM initialization"); 629 // create instance - do not call constructor since we may have no 630 // (java) stack space left (should assert constructor is empty) 631 Handle exception; 632 oop exception_oop = klass->allocate_instance(CHECK_(exception)); 633 exception = Handle(THREAD, exception_oop); 634 if (StackTraceInThrowable) { 635 java_lang_Throwable::fill_in_stack_trace(exception); 636 } 637 return exception; 638 } 639 640 // Special handling for stack overflow: since we don't have any (java) stack 641 // space left we use the pre-allocated & pre-initialized StackOverflowError 642 // klass to create an stack overflow error instance. We do not call its 643 // constructor for the same reason (it is empty, anyway). 644 JRT_ENTRY(void, InterpreterRuntime::throw_StackOverflowError(JavaThread* thread)) 645 Handle exception = get_preinitialized_exception( 646 SystemDictionary::StackOverflowError_klass(), 647 CHECK); 648 // Increment counter for hs_err file reporting 649 Atomic::inc(&Exceptions::_stack_overflow_errors); 650 THROW_HANDLE(exception); 651 JRT_END 652 653 JRT_ENTRY(void, InterpreterRuntime::throw_delayed_StackOverflowError(JavaThread* thread)) 654 Handle exception = get_preinitialized_exception( 655 SystemDictionary::StackOverflowError_klass(), 656 CHECK); 657 java_lang_Throwable::set_message(exception(), 658 Universe::delayed_stack_overflow_error_message()); 659 // Increment counter for hs_err file reporting 660 Atomic::inc(&Exceptions::_stack_overflow_errors); 661 THROW_HANDLE(exception); 662 JRT_END 663 664 JRT_ENTRY(void, InterpreterRuntime::create_exception(JavaThread* thread, char* name, char* message)) 665 // lookup exception klass 666 TempNewSymbol s = SymbolTable::new_symbol(name); 667 if (ProfileTraps) { 668 if (s == vmSymbols::java_lang_ArithmeticException()) { 669 note_trap(thread, Deoptimization::Reason_div0_check, CHECK); 670 } else if (s == vmSymbols::java_lang_NullPointerException()) { 671 note_trap(thread, Deoptimization::Reason_null_check, CHECK); 672 } 673 } 674 // create exception 675 Handle exception = Exceptions::new_exception(thread, s, message); 676 thread->set_vm_result(exception()); 677 JRT_END 678 679 680 JRT_ENTRY(void, InterpreterRuntime::create_klass_exception(JavaThread* thread, char* name, oopDesc* obj)) 681 // Produce the error message first because note_trap can safepoint 682 ResourceMark rm(thread); 683 const char* klass_name = obj->klass()->external_name(); 684 // lookup exception klass 685 TempNewSymbol s = SymbolTable::new_symbol(name); 686 if (ProfileTraps) { 687 note_trap(thread, Deoptimization::Reason_class_check, CHECK); 688 } 689 // create exception, with klass name as detail message 690 Handle exception = Exceptions::new_exception(thread, s, klass_name); 691 thread->set_vm_result(exception()); 692 JRT_END 693 694 JRT_ENTRY(void, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException(JavaThread* thread, arrayOopDesc* a, jint index)) 695 // Produce the error message first because note_trap can safepoint 696 ResourceMark rm(thread); 697 stringStream ss; 698 ss.print("Index %d out of bounds for length %d", index, a->length()); 699 700 if (ProfileTraps) { 701 note_trap(thread, Deoptimization::Reason_range_check, CHECK); 702 } 703 704 THROW_MSG(vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), ss.as_string()); 705 JRT_END 706 707 JRT_ENTRY(void, InterpreterRuntime::throw_ClassCastException( 708 JavaThread* thread, oopDesc* obj)) 709 710 // Produce the error message first because note_trap can safepoint 711 ResourceMark rm(thread); 712 char* message = SharedRuntime::generate_class_cast_message( 713 thread, obj->klass()); 714 715 if (ProfileTraps) { 716 note_trap(thread, Deoptimization::Reason_class_check, CHECK); 717 } 718 719 // create exception 720 THROW_MSG(vmSymbols::java_lang_ClassCastException(), message); 721 JRT_END 722 723 // exception_handler_for_exception(...) returns the continuation address, 724 // the exception oop (via TLS) and sets the bci/bcp for the continuation. 725 // The exception oop is returned to make sure it is preserved over GC (it 726 // is only on the stack if the exception was thrown explicitly via athrow). 727 // During this operation, the expression stack contains the values for the 728 // bci where the exception happened. If the exception was propagated back 729 // from a call, the expression stack contains the values for the bci at the 730 // invoke w/o arguments (i.e., as if one were inside the call). 731 JRT_ENTRY(address, InterpreterRuntime::exception_handler_for_exception(JavaThread* thread, oopDesc* exception)) 732 733 LastFrameAccessor last_frame(thread); 734 Handle h_exception(thread, exception); 735 methodHandle h_method (thread, last_frame.method()); 736 constantPoolHandle h_constants(thread, h_method->constants()); 737 bool should_repeat; 738 int handler_bci; 739 int current_bci = last_frame.bci(); 740 741 if (thread->frames_to_pop_failed_realloc() > 0) { 742 // Allocation of scalar replaced object used in this frame 743 // failed. Unconditionally pop the frame. 744 thread->dec_frames_to_pop_failed_realloc(); 745 thread->set_vm_result(h_exception()); 746 // If the method is synchronized we already unlocked the monitor 747 // during deoptimization so the interpreter needs to skip it when 748 // the frame is popped. 749 thread->set_do_not_unlock_if_synchronized(true); 750 #ifdef CC_INTERP 751 return (address) -1; 752 #else 753 return Interpreter::remove_activation_entry(); 754 #endif 755 } 756 757 // Need to do this check first since when _do_not_unlock_if_synchronized 758 // is set, we don't want to trigger any classloading which may make calls 759 // into java, or surprisingly find a matching exception handler for bci 0 760 // since at this moment the method hasn't been "officially" entered yet. 761 if (thread->do_not_unlock_if_synchronized()) { 762 ResourceMark rm; 763 assert(current_bci == 0, "bci isn't zero for do_not_unlock_if_synchronized"); 764 thread->set_vm_result(exception); 765 #ifdef CC_INTERP 766 return (address) -1; 767 #else 768 return Interpreter::remove_activation_entry(); 769 #endif 770 } 771 772 do { 773 should_repeat = false; 774 775 // assertions 776 #ifdef ASSERT 777 assert(h_exception.not_null(), "NULL exceptions should be handled by athrow"); 778 // Check that exception is a subclass of Throwable, otherwise we have a VerifyError 779 if (!(h_exception->is_a(SystemDictionary::Throwable_klass()))) { 780 if (ExitVMOnVerifyError) vm_exit(-1); 781 ShouldNotReachHere(); 782 } 783 #endif 784 785 // tracing 786 if (log_is_enabled(Info, exceptions)) { 787 ResourceMark rm(thread); 788 stringStream tempst; 789 tempst.print("interpreter method <%s>\n" 790 " at bci %d for thread " INTPTR_FORMAT " (%s)", 791 h_method->print_value_string(), current_bci, p2i(thread), thread->name()); 792 Exceptions::log_exception(h_exception, tempst.as_string()); 793 } 794 // Don't go paging in something which won't be used. 795 // else if (extable->length() == 0) { 796 // // disabled for now - interpreter is not using shortcut yet 797 // // (shortcut is not to call runtime if we have no exception handlers) 798 // // warning("performance bug: should not call runtime if method has no exception handlers"); 799 // } 800 // for AbortVMOnException flag 801 Exceptions::debug_check_abort(h_exception); 802 803 // exception handler lookup 804 Klass* klass = h_exception->klass(); 805 handler_bci = Method::fast_exception_handler_bci_for(h_method, klass, current_bci, THREAD); 806 if (HAS_PENDING_EXCEPTION) { 807 // We threw an exception while trying to find the exception handler. 808 // Transfer the new exception to the exception handle which will 809 // be set into thread local storage, and do another lookup for an 810 // exception handler for this exception, this time starting at the 811 // BCI of the exception handler which caused the exception to be 812 // thrown (bug 4307310). 813 h_exception = Handle(THREAD, PENDING_EXCEPTION); 814 CLEAR_PENDING_EXCEPTION; 815 if (handler_bci >= 0) { 816 current_bci = handler_bci; 817 should_repeat = true; 818 } 819 } 820 } while (should_repeat == true); 821 822 #if INCLUDE_JVMCI 823 if (EnableJVMCI && h_method->method_data() != NULL) { 824 ResourceMark rm(thread); 825 ProfileData* pdata = h_method->method_data()->allocate_bci_to_data(current_bci, NULL); 826 if (pdata != NULL && pdata->is_BitData()) { 827 BitData* bit_data = (BitData*) pdata; 828 bit_data->set_exception_seen(); 829 } 830 } 831 #endif 832 833 // notify JVMTI of an exception throw; JVMTI will detect if this is a first 834 // time throw or a stack unwinding throw and accordingly notify the debugger 835 if (JvmtiExport::can_post_on_exceptions()) { 836 JvmtiExport::post_exception_throw(thread, h_method(), last_frame.bcp(), h_exception()); 837 } 838 839 #ifdef CC_INTERP 840 address continuation = (address)(intptr_t) handler_bci; 841 #else 842 address continuation = NULL; 843 #endif 844 address handler_pc = NULL; 845 if (handler_bci < 0 || !thread->reguard_stack((address) &continuation)) { 846 // Forward exception to callee (leaving bci/bcp untouched) because (a) no 847 // handler in this method, or (b) after a stack overflow there is not yet 848 // enough stack space available to reprotect the stack. 849 #ifndef CC_INTERP 850 continuation = Interpreter::remove_activation_entry(); 851 #endif 852 #if COMPILER2_OR_JVMCI 853 // Count this for compilation purposes 854 h_method->interpreter_throwout_increment(THREAD); 855 #endif 856 } else { 857 // handler in this method => change bci/bcp to handler bci/bcp and continue there 858 handler_pc = h_method->code_base() + handler_bci; 859 #ifndef CC_INTERP 860 set_bcp_and_mdp(handler_pc, thread); 861 continuation = Interpreter::dispatch_table(vtos)[*handler_pc]; 862 #endif 863 } 864 // notify debugger of an exception catch 865 // (this is good for exceptions caught in native methods as well) 866 if (JvmtiExport::can_post_on_exceptions()) { 867 JvmtiExport::notice_unwind_due_to_exception(thread, h_method(), handler_pc, h_exception(), (handler_pc != NULL)); 868 } 869 870 thread->set_vm_result(h_exception()); 871 return continuation; 872 JRT_END 873 874 875 JRT_ENTRY(void, InterpreterRuntime::throw_pending_exception(JavaThread* thread)) 876 assert(thread->has_pending_exception(), "must only ne called if there's an exception pending"); 877 // nothing to do - eventually we should remove this code entirely (see comments @ call sites) 878 JRT_END 879 880 881 JRT_ENTRY(void, InterpreterRuntime::throw_AbstractMethodError(JavaThread* thread)) 882 THROW(vmSymbols::java_lang_AbstractMethodError()); 883 JRT_END 884 885 // This method is called from the "abstract_entry" of the interpreter. 886 // At that point, the arguments have already been removed from the stack 887 // and therefore we don't have the receiver object at our fingertips. (Though, 888 // on some platforms the receiver still resides in a register...). Thus, 889 // we have no choice but print an error message not containing the receiver 890 // type. 891 JRT_ENTRY(void, InterpreterRuntime::throw_AbstractMethodErrorWithMethod(JavaThread* thread, 892 Method* missingMethod)) 893 ResourceMark rm(thread); 894 assert(missingMethod != NULL, "sanity"); 895 methodHandle m(thread, missingMethod); 896 LinkResolver::throw_abstract_method_error(m, THREAD); 897 JRT_END 898 899 JRT_ENTRY(void, InterpreterRuntime::throw_AbstractMethodErrorVerbose(JavaThread* thread, 900 Klass* recvKlass, 901 Method* missingMethod)) 902 ResourceMark rm(thread); 903 methodHandle mh = methodHandle(thread, missingMethod); 904 LinkResolver::throw_abstract_method_error(mh, recvKlass, THREAD); 905 JRT_END 906 907 908 JRT_ENTRY(void, InterpreterRuntime::throw_IncompatibleClassChangeError(JavaThread* thread)) 909 THROW(vmSymbols::java_lang_IncompatibleClassChangeError()); 910 JRT_END 911 912 JRT_ENTRY(void, InterpreterRuntime::throw_IncompatibleClassChangeErrorVerbose(JavaThread* thread, 913 Klass* recvKlass, 914 Klass* interfaceKlass)) 915 ResourceMark rm(thread); 916 char buf[1000]; 917 buf[0] = '\0'; 918 jio_snprintf(buf, sizeof(buf), 919 "Class %s does not implement the requested interface %s", 920 recvKlass ? recvKlass->external_name() : "NULL", 921 interfaceKlass ? interfaceKlass->external_name() : "NULL"); 922 THROW_MSG(vmSymbols::java_lang_IncompatibleClassChangeError(), buf); 923 JRT_END 924 925 //------------------------------------------------------------------------------------------------------------------------ 926 // Fields 927 // 928 929 void InterpreterRuntime::resolve_get_put(JavaThread* thread, Bytecodes::Code bytecode) { 930 Thread* THREAD = thread; 931 // resolve field 932 fieldDescriptor info; 933 LastFrameAccessor last_frame(thread); 934 constantPoolHandle pool(thread, last_frame.method()->constants()); 935 methodHandle m(thread, last_frame.method()); 936 bool is_put = (bytecode == Bytecodes::_putfield || bytecode == Bytecodes::_nofast_putfield || 937 bytecode == Bytecodes::_putstatic || bytecode == Bytecodes::_withfield); 938 bool is_static = (bytecode == Bytecodes::_getstatic || bytecode == Bytecodes::_putstatic); 939 bool is_value = bytecode == Bytecodes::_withfield; 940 941 { 942 JvmtiHideSingleStepping jhss(thread); 943 LinkResolver::resolve_field_access(info, pool, last_frame.get_index_u2_cpcache(bytecode), 944 m, bytecode, CHECK); 945 } // end JvmtiHideSingleStepping 946 947 // check if link resolution caused cpCache to be updated 948 ConstantPoolCacheEntry* cp_cache_entry = last_frame.cache_entry(); 949 if (cp_cache_entry->is_resolved(bytecode)) return; 950 951 // compute auxiliary field attributes 952 TosState state = as_TosState(info.field_type()); 953 954 // Resolution of put instructions on final fields is delayed. That is required so that 955 // exceptions are thrown at the correct place (when the instruction is actually invoked). 956 // If we do not resolve an instruction in the current pass, leaving the put_code 957 // set to zero will cause the next put instruction to the same field to reresolve. 958 959 // Resolution of put instructions to final instance fields with invalid updates (i.e., 960 // to final instance fields with updates originating from a method different than <init>) 961 // is inhibited. A putfield instruction targeting an instance final field must throw 962 // an IllegalAccessError if the instruction is not in an instance 963 // initializer method <init>. If resolution were not inhibited, a putfield 964 // in an initializer method could be resolved in the initializer. Subsequent 965 // putfield instructions to the same field would then use cached information. 966 // As a result, those instructions would not pass through the VM. That is, 967 // checks in resolve_field_access() would not be executed for those instructions 968 // and the required IllegalAccessError would not be thrown. 969 // 970 // Also, we need to delay resolving getstatic and putstatic instructions until the 971 // class is initialized. This is required so that access to the static 972 // field will call the initialization function every time until the class 973 // is completely initialized ala. in 2.17.5 in JVM Specification. 974 InstanceKlass* klass = info.field_holder(); 975 bool uninitialized_static = is_static && !klass->is_initialized(); 976 bool has_initialized_final_update = info.field_holder()->major_version() >= 53 && 977 info.has_initialized_final_update(); 978 assert(!(has_initialized_final_update && !info.access_flags().is_final()), "Fields with initialized final updates must be final"); 979 980 Bytecodes::Code get_code = (Bytecodes::Code)0; 981 Bytecodes::Code put_code = (Bytecodes::Code)0; 982 if (!uninitialized_static) { 983 if (is_static) { 984 get_code = Bytecodes::_getstatic; 985 } else { 986 get_code = Bytecodes::_getfield; 987 } 988 if (is_put && is_value) { 989 put_code = ((is_static) ? Bytecodes::_putstatic : Bytecodes::_withfield); 990 } else if ((is_put && !has_initialized_final_update) || !info.access_flags().is_final()) { 991 put_code = ((is_static) ? Bytecodes::_putstatic : Bytecodes::_putfield); 992 } 993 } 994 995 cp_cache_entry->set_field( 996 get_code, 997 put_code, 998 info.field_holder(), 999 info.index(), 1000 info.offset(), 1001 state, 1002 info.access_flags().is_final(), 1003 info.access_flags().is_volatile(), 1004 info.is_flattened(), 1005 info.is_flattenable(), 1006 pool->pool_holder() 1007 ); 1008 } 1009 1010 1011 //------------------------------------------------------------------------------------------------------------------------ 1012 // Synchronization 1013 // 1014 // The interpreter's synchronization code is factored out so that it can 1015 // be shared by method invocation and synchronized blocks. 1016 //%note synchronization_3 1017 1018 //%note monitor_1 1019 JRT_ENTRY_NO_ASYNC(void, InterpreterRuntime::monitorenter(JavaThread* thread, BasicObjectLock* elem)) 1020 #ifdef ASSERT 1021 thread->last_frame().interpreter_frame_verify_monitor(elem); 1022 #endif 1023 if (PrintBiasedLockingStatistics) { 1024 Atomic::inc(BiasedLocking::slow_path_entry_count_addr()); 1025 } 1026 Handle h_obj(thread, elem->obj()); 1027 assert(Universe::heap()->is_in_or_null(h_obj()), 1028 "must be NULL or an object"); 1029 ObjectSynchronizer::enter(h_obj, elem->lock(), CHECK); 1030 assert(Universe::heap()->is_in_or_null(elem->obj()), 1031 "must be NULL or an object"); 1032 #ifdef ASSERT 1033 thread->last_frame().interpreter_frame_verify_monitor(elem); 1034 #endif 1035 JRT_END 1036 1037 1038 //%note monitor_1 1039 JRT_ENTRY_NO_ASYNC(void, InterpreterRuntime::monitorexit(JavaThread* thread, BasicObjectLock* elem)) 1040 #ifdef ASSERT 1041 thread->last_frame().interpreter_frame_verify_monitor(elem); 1042 #endif 1043 Handle h_obj(thread, elem->obj()); 1044 assert(Universe::heap()->is_in_or_null(h_obj()), 1045 "must be NULL or an object"); 1046 if (elem == NULL || h_obj()->is_unlocked()) { 1047 THROW(vmSymbols::java_lang_IllegalMonitorStateException()); 1048 } 1049 ObjectSynchronizer::exit(h_obj(), elem->lock(), thread); 1050 // Free entry. This must be done here, since a pending exception might be installed on 1051 // exit. If it is not cleared, the exception handling code will try to unlock the monitor again. 1052 elem->set_obj(NULL); 1053 #ifdef ASSERT 1054 thread->last_frame().interpreter_frame_verify_monitor(elem); 1055 #endif 1056 JRT_END 1057 1058 1059 JRT_ENTRY(void, InterpreterRuntime::throw_illegal_monitor_state_exception(JavaThread* thread)) 1060 THROW(vmSymbols::java_lang_IllegalMonitorStateException()); 1061 JRT_END 1062 1063 1064 JRT_ENTRY(void, InterpreterRuntime::new_illegal_monitor_state_exception(JavaThread* thread)) 1065 // Returns an illegal exception to install into the current thread. The 1066 // pending_exception flag is cleared so normal exception handling does not 1067 // trigger. Any current installed exception will be overwritten. This 1068 // method will be called during an exception unwind. 1069 1070 assert(!HAS_PENDING_EXCEPTION, "no pending exception"); 1071 Handle exception(thread, thread->vm_result()); 1072 assert(exception() != NULL, "vm result should be set"); 1073 thread->set_vm_result(NULL); // clear vm result before continuing (may cause memory leaks and assert failures) 1074 if (!exception->is_a(SystemDictionary::ThreadDeath_klass())) { 1075 exception = get_preinitialized_exception( 1076 SystemDictionary::IllegalMonitorStateException_klass(), 1077 CATCH); 1078 } 1079 thread->set_vm_result(exception()); 1080 JRT_END 1081 1082 1083 //------------------------------------------------------------------------------------------------------------------------ 1084 // Invokes 1085 1086 JRT_ENTRY(Bytecodes::Code, InterpreterRuntime::get_original_bytecode_at(JavaThread* thread, Method* method, address bcp)) 1087 return method->orig_bytecode_at(method->bci_from(bcp)); 1088 JRT_END 1089 1090 JRT_ENTRY(void, InterpreterRuntime::set_original_bytecode_at(JavaThread* thread, Method* method, address bcp, Bytecodes::Code new_code)) 1091 method->set_orig_bytecode_at(method->bci_from(bcp), new_code); 1092 JRT_END 1093 1094 JRT_ENTRY(void, InterpreterRuntime::_breakpoint(JavaThread* thread, Method* method, address bcp)) 1095 JvmtiExport::post_raw_breakpoint(thread, method, bcp); 1096 JRT_END 1097 1098 void InterpreterRuntime::resolve_invoke(JavaThread* thread, Bytecodes::Code bytecode) { 1099 Thread* THREAD = thread; 1100 LastFrameAccessor last_frame(thread); 1101 // extract receiver from the outgoing argument list if necessary 1102 Handle receiver(thread, NULL); 1103 if (bytecode == Bytecodes::_invokevirtual || bytecode == Bytecodes::_invokeinterface || 1104 bytecode == Bytecodes::_invokespecial) { 1105 ResourceMark rm(thread); 1106 methodHandle m (thread, last_frame.method()); 1107 Bytecode_invoke call(m, last_frame.bci()); 1108 Symbol* signature = call.signature(); 1109 receiver = Handle(thread, last_frame.callee_receiver(signature)); 1110 1111 assert(Universe::heap()->is_in_or_null(receiver()), 1112 "sanity check"); 1113 assert(receiver.is_null() || 1114 !Universe::heap()->is_in(receiver->klass()), 1115 "sanity check"); 1116 } 1117 1118 // resolve method 1119 CallInfo info; 1120 constantPoolHandle pool(thread, last_frame.method()->constants()); 1121 1122 { 1123 JvmtiHideSingleStepping jhss(thread); 1124 LinkResolver::resolve_invoke(info, receiver, pool, 1125 last_frame.get_index_u2_cpcache(bytecode), bytecode, 1126 CHECK); 1127 if (JvmtiExport::can_hotswap_or_post_breakpoint()) { 1128 int retry_count = 0; 1129 while (info.resolved_method()->is_old()) { 1130 // It is very unlikely that method is redefined more than 100 times 1131 // in the middle of resolve. If it is looping here more than 100 times 1132 // means then there could be a bug here. 1133 guarantee((retry_count++ < 100), 1134 "Could not resolve to latest version of redefined method"); 1135 // method is redefined in the middle of resolve so re-try. 1136 LinkResolver::resolve_invoke(info, receiver, pool, 1137 last_frame.get_index_u2_cpcache(bytecode), bytecode, 1138 CHECK); 1139 } 1140 } 1141 } // end JvmtiHideSingleStepping 1142 1143 // check if link resolution caused cpCache to be updated 1144 ConstantPoolCacheEntry* cp_cache_entry = last_frame.cache_entry(); 1145 if (cp_cache_entry->is_resolved(bytecode)) return; 1146 1147 #ifdef ASSERT 1148 if (bytecode == Bytecodes::_invokeinterface) { 1149 if (info.resolved_method()->method_holder() == 1150 SystemDictionary::Object_klass()) { 1151 // NOTE: THIS IS A FIX FOR A CORNER CASE in the JVM spec 1152 // (see also CallInfo::set_interface for details) 1153 assert(info.call_kind() == CallInfo::vtable_call || 1154 info.call_kind() == CallInfo::direct_call, ""); 1155 Method* rm = info.resolved_method(); 1156 assert(rm->is_final() || info.has_vtable_index(), 1157 "should have been set already"); 1158 } else if (!info.resolved_method()->has_itable_index()) { 1159 // Resolved something like CharSequence.toString. Use vtable not itable. 1160 assert(info.call_kind() != CallInfo::itable_call, ""); 1161 } else { 1162 // Setup itable entry 1163 assert(info.call_kind() == CallInfo::itable_call, ""); 1164 int index = info.resolved_method()->itable_index(); 1165 assert(info.itable_index() == index, ""); 1166 } 1167 } else if (bytecode == Bytecodes::_invokespecial) { 1168 assert(info.call_kind() == CallInfo::direct_call, "must be direct call"); 1169 } else { 1170 assert(info.call_kind() == CallInfo::direct_call || 1171 info.call_kind() == CallInfo::vtable_call, ""); 1172 } 1173 #endif 1174 // Get sender or sender's unsafe_anonymous_host, and only set cpCache entry to resolved if 1175 // it is not an interface. The receiver for invokespecial calls within interface 1176 // methods must be checked for every call. 1177 InstanceKlass* sender = pool->pool_holder(); 1178 sender = sender->is_unsafe_anonymous() ? sender->unsafe_anonymous_host() : sender; 1179 methodHandle resolved_method(THREAD, info.resolved_method()); 1180 1181 switch (info.call_kind()) { 1182 case CallInfo::direct_call: 1183 cp_cache_entry->set_direct_call( 1184 bytecode, 1185 resolved_method, 1186 sender->is_interface()); 1187 break; 1188 case CallInfo::vtable_call: 1189 cp_cache_entry->set_vtable_call( 1190 bytecode, 1191 resolved_method, 1192 info.vtable_index()); 1193 break; 1194 case CallInfo::itable_call: 1195 cp_cache_entry->set_itable_call( 1196 bytecode, 1197 info.resolved_klass(), 1198 resolved_method, 1199 info.itable_index()); 1200 break; 1201 default: ShouldNotReachHere(); 1202 } 1203 } 1204 1205 1206 // First time execution: Resolve symbols, create a permanent MethodType object. 1207 void InterpreterRuntime::resolve_invokehandle(JavaThread* thread) { 1208 Thread* THREAD = thread; 1209 const Bytecodes::Code bytecode = Bytecodes::_invokehandle; 1210 LastFrameAccessor last_frame(thread); 1211 1212 // resolve method 1213 CallInfo info; 1214 constantPoolHandle pool(thread, last_frame.method()->constants()); 1215 { 1216 JvmtiHideSingleStepping jhss(thread); 1217 LinkResolver::resolve_invoke(info, Handle(), pool, 1218 last_frame.get_index_u2_cpcache(bytecode), bytecode, 1219 CHECK); 1220 } // end JvmtiHideSingleStepping 1221 1222 ConstantPoolCacheEntry* cp_cache_entry = last_frame.cache_entry(); 1223 cp_cache_entry->set_method_handle(pool, info); 1224 } 1225 1226 // First time execution: Resolve symbols, create a permanent CallSite object. 1227 void InterpreterRuntime::resolve_invokedynamic(JavaThread* thread) { 1228 Thread* THREAD = thread; 1229 LastFrameAccessor last_frame(thread); 1230 const Bytecodes::Code bytecode = Bytecodes::_invokedynamic; 1231 1232 // resolve method 1233 CallInfo info; 1234 constantPoolHandle pool(thread, last_frame.method()->constants()); 1235 int index = last_frame.get_index_u4(bytecode); 1236 { 1237 JvmtiHideSingleStepping jhss(thread); 1238 LinkResolver::resolve_invoke(info, Handle(), pool, 1239 index, bytecode, CHECK); 1240 } // end JvmtiHideSingleStepping 1241 1242 ConstantPoolCacheEntry* cp_cache_entry = pool->invokedynamic_cp_cache_entry_at(index); 1243 cp_cache_entry->set_dynamic_call(pool, info); 1244 } 1245 1246 // This function is the interface to the assembly code. It returns the resolved 1247 // cpCache entry. This doesn't safepoint, but the helper routines safepoint. 1248 // This function will check for redefinition! 1249 JRT_ENTRY(void, InterpreterRuntime::resolve_from_cache(JavaThread* thread, Bytecodes::Code bytecode)) { 1250 switch (bytecode) { 1251 case Bytecodes::_getstatic: 1252 case Bytecodes::_putstatic: 1253 case Bytecodes::_getfield: 1254 case Bytecodes::_putfield: 1255 case Bytecodes::_withfield: 1256 resolve_get_put(thread, bytecode); 1257 break; 1258 case Bytecodes::_invokevirtual: 1259 case Bytecodes::_invokespecial: 1260 case Bytecodes::_invokestatic: 1261 case Bytecodes::_invokeinterface: 1262 resolve_invoke(thread, bytecode); 1263 break; 1264 case Bytecodes::_invokehandle: 1265 resolve_invokehandle(thread); 1266 break; 1267 case Bytecodes::_invokedynamic: 1268 resolve_invokedynamic(thread); 1269 break; 1270 default: 1271 fatal("unexpected bytecode: %s", Bytecodes::name(bytecode)); 1272 break; 1273 } 1274 } 1275 JRT_END 1276 1277 //------------------------------------------------------------------------------------------------------------------------ 1278 // Miscellaneous 1279 1280 1281 nmethod* InterpreterRuntime::frequency_counter_overflow(JavaThread* thread, address branch_bcp) { 1282 nmethod* nm = frequency_counter_overflow_inner(thread, branch_bcp); 1283 assert(branch_bcp != NULL || nm == NULL, "always returns null for non OSR requests"); 1284 if (branch_bcp != NULL && nm != NULL) { 1285 // This was a successful request for an OSR nmethod. Because 1286 // frequency_counter_overflow_inner ends with a safepoint check, 1287 // nm could have been unloaded so look it up again. It's unsafe 1288 // to examine nm directly since it might have been freed and used 1289 // for something else. 1290 LastFrameAccessor last_frame(thread); 1291 Method* method = last_frame.method(); 1292 int bci = method->bci_from(last_frame.bcp()); 1293 nm = method->lookup_osr_nmethod_for(bci, CompLevel_none, false); 1294 BarrierSetNMethod* bs_nm = BarrierSet::barrier_set()->barrier_set_nmethod(); 1295 if (nm != NULL && bs_nm != NULL) { 1296 // in case the transition passed a safepoint we need to barrier this again 1297 if (!bs_nm->nmethod_osr_entry_barrier(nm)) { 1298 nm = NULL; 1299 } 1300 } 1301 } 1302 if (nm != NULL && thread->is_interp_only_mode()) { 1303 // Normally we never get an nm if is_interp_only_mode() is true, because 1304 // policy()->event has a check for this and won't compile the method when 1305 // true. However, it's possible for is_interp_only_mode() to become true 1306 // during the compilation. We don't want to return the nm in that case 1307 // because we want to continue to execute interpreted. 1308 nm = NULL; 1309 } 1310 #ifndef PRODUCT 1311 if (TraceOnStackReplacement) { 1312 if (nm != NULL) { 1313 tty->print("OSR entry @ pc: " INTPTR_FORMAT ": ", p2i(nm->osr_entry())); 1314 nm->print(); 1315 } 1316 } 1317 #endif 1318 return nm; 1319 } 1320 1321 JRT_ENTRY(nmethod*, 1322 InterpreterRuntime::frequency_counter_overflow_inner(JavaThread* thread, address branch_bcp)) 1323 // use UnlockFlagSaver to clear and restore the _do_not_unlock_if_synchronized 1324 // flag, in case this method triggers classloading which will call into Java. 1325 UnlockFlagSaver fs(thread); 1326 1327 LastFrameAccessor last_frame(thread); 1328 assert(last_frame.is_interpreted_frame(), "must come from interpreter"); 1329 methodHandle method(thread, last_frame.method()); 1330 const int branch_bci = branch_bcp != NULL ? method->bci_from(branch_bcp) : InvocationEntryBci; 1331 const int bci = branch_bcp != NULL ? method->bci_from(last_frame.bcp()) : InvocationEntryBci; 1332 1333 assert(!HAS_PENDING_EXCEPTION, "Should not have any exceptions pending"); 1334 nmethod* osr_nm = CompilationPolicy::policy()->event(method, method, branch_bci, bci, CompLevel_none, NULL, thread); 1335 assert(!HAS_PENDING_EXCEPTION, "Event handler should not throw any exceptions"); 1336 1337 BarrierSetNMethod* bs_nm = BarrierSet::barrier_set()->barrier_set_nmethod(); 1338 if (osr_nm != NULL && bs_nm != NULL) { 1339 if (!bs_nm->nmethod_osr_entry_barrier(osr_nm)) { 1340 osr_nm = NULL; 1341 } 1342 } 1343 1344 if (osr_nm != NULL) { 1345 // We may need to do on-stack replacement which requires that no 1346 // monitors in the activation are biased because their 1347 // BasicObjectLocks will need to migrate during OSR. Force 1348 // unbiasing of all monitors in the activation now (even though 1349 // the OSR nmethod might be invalidated) because we don't have a 1350 // safepoint opportunity later once the migration begins. 1351 if (UseBiasedLocking) { 1352 ResourceMark rm; 1353 GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>(); 1354 for( BasicObjectLock *kptr = last_frame.monitor_end(); 1355 kptr < last_frame.monitor_begin(); 1356 kptr = last_frame.next_monitor(kptr) ) { 1357 if( kptr->obj() != NULL ) { 1358 objects_to_revoke->append(Handle(THREAD, kptr->obj())); 1359 } 1360 } 1361 BiasedLocking::revoke(objects_to_revoke, thread); 1362 } 1363 } 1364 return osr_nm; 1365 JRT_END 1366 1367 JRT_LEAF(jint, InterpreterRuntime::bcp_to_di(Method* method, address cur_bcp)) 1368 assert(ProfileInterpreter, "must be profiling interpreter"); 1369 int bci = method->bci_from(cur_bcp); 1370 MethodData* mdo = method->method_data(); 1371 if (mdo == NULL) return 0; 1372 return mdo->bci_to_di(bci); 1373 JRT_END 1374 1375 JRT_ENTRY(void, InterpreterRuntime::profile_method(JavaThread* thread)) 1376 // use UnlockFlagSaver to clear and restore the _do_not_unlock_if_synchronized 1377 // flag, in case this method triggers classloading which will call into Java. 1378 UnlockFlagSaver fs(thread); 1379 1380 assert(ProfileInterpreter, "must be profiling interpreter"); 1381 LastFrameAccessor last_frame(thread); 1382 assert(last_frame.is_interpreted_frame(), "must come from interpreter"); 1383 methodHandle method(thread, last_frame.method()); 1384 Method::build_interpreter_method_data(method, THREAD); 1385 if (HAS_PENDING_EXCEPTION) { 1386 assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here"); 1387 CLEAR_PENDING_EXCEPTION; 1388 // and fall through... 1389 } 1390 JRT_END 1391 1392 1393 #ifdef ASSERT 1394 JRT_LEAF(void, InterpreterRuntime::verify_mdp(Method* method, address bcp, address mdp)) 1395 assert(ProfileInterpreter, "must be profiling interpreter"); 1396 1397 MethodData* mdo = method->method_data(); 1398 assert(mdo != NULL, "must not be null"); 1399 1400 int bci = method->bci_from(bcp); 1401 1402 address mdp2 = mdo->bci_to_dp(bci); 1403 if (mdp != mdp2) { 1404 ResourceMark rm; 1405 ResetNoHandleMark rnm; // In a LEAF entry. 1406 HandleMark hm; 1407 tty->print_cr("FAILED verify : actual mdp %p expected mdp %p @ bci %d", mdp, mdp2, bci); 1408 int current_di = mdo->dp_to_di(mdp); 1409 int expected_di = mdo->dp_to_di(mdp2); 1410 tty->print_cr(" actual di %d expected di %d", current_di, expected_di); 1411 int expected_approx_bci = mdo->data_at(expected_di)->bci(); 1412 int approx_bci = -1; 1413 if (current_di >= 0) { 1414 approx_bci = mdo->data_at(current_di)->bci(); 1415 } 1416 tty->print_cr(" actual bci is %d expected bci %d", approx_bci, expected_approx_bci); 1417 mdo->print_on(tty); 1418 method->print_codes(); 1419 } 1420 assert(mdp == mdp2, "wrong mdp"); 1421 JRT_END 1422 #endif // ASSERT 1423 1424 JRT_ENTRY(void, InterpreterRuntime::update_mdp_for_ret(JavaThread* thread, int return_bci)) 1425 assert(ProfileInterpreter, "must be profiling interpreter"); 1426 ResourceMark rm(thread); 1427 HandleMark hm(thread); 1428 LastFrameAccessor last_frame(thread); 1429 assert(last_frame.is_interpreted_frame(), "must come from interpreter"); 1430 MethodData* h_mdo = last_frame.method()->method_data(); 1431 1432 // Grab a lock to ensure atomic access to setting the return bci and 1433 // the displacement. This can block and GC, invalidating all naked oops. 1434 MutexLocker ml(RetData_lock); 1435 1436 // ProfileData is essentially a wrapper around a derived oop, so we 1437 // need to take the lock before making any ProfileData structures. 1438 ProfileData* data = h_mdo->data_at(h_mdo->dp_to_di(last_frame.mdp())); 1439 guarantee(data != NULL, "profile data must be valid"); 1440 RetData* rdata = data->as_RetData(); 1441 address new_mdp = rdata->fixup_ret(return_bci, h_mdo); 1442 last_frame.set_mdp(new_mdp); 1443 JRT_END 1444 1445 JRT_ENTRY(MethodCounters*, InterpreterRuntime::build_method_counters(JavaThread* thread, Method* m)) 1446 MethodCounters* mcs = Method::build_method_counters(m, thread); 1447 if (HAS_PENDING_EXCEPTION) { 1448 assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here"); 1449 CLEAR_PENDING_EXCEPTION; 1450 } 1451 return mcs; 1452 JRT_END 1453 1454 1455 JRT_ENTRY(void, InterpreterRuntime::at_safepoint(JavaThread* thread)) 1456 // We used to need an explict preserve_arguments here for invoke bytecodes. However, 1457 // stack traversal automatically takes care of preserving arguments for invoke, so 1458 // this is no longer needed. 1459 1460 // JRT_END does an implicit safepoint check, hence we are guaranteed to block 1461 // if this is called during a safepoint 1462 1463 if (JvmtiExport::should_post_single_step()) { 1464 // We are called during regular safepoints and when the VM is 1465 // single stepping. If any thread is marked for single stepping, 1466 // then we may have JVMTI work to do. 1467 LastFrameAccessor last_frame(thread); 1468 JvmtiExport::at_single_stepping_point(thread, last_frame.method(), last_frame.bcp()); 1469 } 1470 JRT_END 1471 1472 JRT_ENTRY(void, InterpreterRuntime::post_field_access(JavaThread *thread, oopDesc* obj, 1473 ConstantPoolCacheEntry *cp_entry)) 1474 1475 // check the access_flags for the field in the klass 1476 1477 InstanceKlass* ik = InstanceKlass::cast(cp_entry->f1_as_klass()); 1478 int index = cp_entry->field_index(); 1479 if ((ik->field_access_flags(index) & JVM_ACC_FIELD_ACCESS_WATCHED) == 0) return; 1480 1481 bool is_static = (obj == NULL); 1482 bool is_flattened = cp_entry->is_flattened(); 1483 HandleMark hm(thread); 1484 1485 Handle h_obj; 1486 if (!is_static) { 1487 // non-static field accessors have an object, but we need a handle 1488 h_obj = Handle(thread, obj); 1489 } 1490 InstanceKlass* cp_entry_f1 = InstanceKlass::cast(cp_entry->f1_as_klass()); 1491 jfieldID fid = jfieldIDWorkaround::to_jfieldID(cp_entry_f1, cp_entry->f2_as_index(), is_static, is_flattened); 1492 LastFrameAccessor last_frame(thread); 1493 JvmtiExport::post_field_access(thread, last_frame.method(), last_frame.bcp(), cp_entry_f1, h_obj, fid); 1494 JRT_END 1495 1496 JRT_ENTRY(void, InterpreterRuntime::post_field_modification(JavaThread *thread, 1497 oopDesc* obj, ConstantPoolCacheEntry *cp_entry, jvalue *value)) 1498 1499 Klass* k = cp_entry->f1_as_klass(); 1500 1501 // check the access_flags for the field in the klass 1502 InstanceKlass* ik = InstanceKlass::cast(k); 1503 int index = cp_entry->field_index(); 1504 // bail out if field modifications are not watched 1505 if ((ik->field_access_flags(index) & JVM_ACC_FIELD_MODIFICATION_WATCHED) == 0) return; 1506 1507 char sig_type = '\0'; 1508 1509 switch(cp_entry->flag_state()) { 1510 case btos: sig_type = JVM_SIGNATURE_BYTE; break; 1511 case ztos: sig_type = JVM_SIGNATURE_BOOLEAN; break; 1512 case ctos: sig_type = JVM_SIGNATURE_CHAR; break; 1513 case stos: sig_type = JVM_SIGNATURE_SHORT; break; 1514 case itos: sig_type = JVM_SIGNATURE_INT; break; 1515 case ftos: sig_type = JVM_SIGNATURE_FLOAT; break; 1516 case atos: sig_type = JVM_SIGNATURE_CLASS; break; 1517 case ltos: sig_type = JVM_SIGNATURE_LONG; break; 1518 case dtos: sig_type = JVM_SIGNATURE_DOUBLE; break; 1519 default: ShouldNotReachHere(); return; 1520 } 1521 1522 // Both Q-signatures and L-signatures are mapped to atos 1523 if (cp_entry->flag_state() == atos && ik->field_signature(index)->is_Q_signature()) { 1524 sig_type = JVM_SIGNATURE_VALUETYPE; 1525 } 1526 1527 bool is_static = (obj == NULL); 1528 bool is_flattened = cp_entry->is_flattened(); 1529 1530 HandleMark hm(thread); 1531 jfieldID fid = jfieldIDWorkaround::to_jfieldID(ik, cp_entry->f2_as_index(), is_static, is_flattened); 1532 jvalue fvalue; 1533 #ifdef _LP64 1534 fvalue = *value; 1535 #else 1536 // Long/double values are stored unaligned and also noncontiguously with 1537 // tagged stacks. We can't just do a simple assignment even in the non- 1538 // J/D cases because a C++ compiler is allowed to assume that a jvalue is 1539 // 8-byte aligned, and interpreter stack slots are only 4-byte aligned. 1540 // We assume that the two halves of longs/doubles are stored in interpreter 1541 // stack slots in platform-endian order. 1542 jlong_accessor u; 1543 jint* newval = (jint*)value; 1544 u.words[0] = newval[0]; 1545 u.words[1] = newval[Interpreter::stackElementWords]; // skip if tag 1546 fvalue.j = u.long_value; 1547 #endif // _LP64 1548 1549 Handle h_obj; 1550 if (!is_static) { 1551 // non-static field accessors have an object, but we need a handle 1552 h_obj = Handle(thread, obj); 1553 } 1554 1555 LastFrameAccessor last_frame(thread); 1556 JvmtiExport::post_raw_field_modification(thread, last_frame.method(), last_frame.bcp(), ik, h_obj, 1557 fid, sig_type, &fvalue); 1558 JRT_END 1559 1560 JRT_ENTRY(void, InterpreterRuntime::post_method_entry(JavaThread *thread)) 1561 LastFrameAccessor last_frame(thread); 1562 JvmtiExport::post_method_entry(thread, last_frame.method(), last_frame.get_frame()); 1563 JRT_END 1564 1565 1566 JRT_ENTRY(void, InterpreterRuntime::post_method_exit(JavaThread *thread)) 1567 LastFrameAccessor last_frame(thread); 1568 JvmtiExport::post_method_exit(thread, last_frame.method(), last_frame.get_frame()); 1569 JRT_END 1570 1571 JRT_LEAF(int, InterpreterRuntime::interpreter_contains(address pc)) 1572 { 1573 return (Interpreter::contains(pc) ? 1 : 0); 1574 } 1575 JRT_END 1576 1577 1578 // Implementation of SignatureHandlerLibrary 1579 1580 #ifndef SHARING_FAST_NATIVE_FINGERPRINTS 1581 // Dummy definition (else normalization method is defined in CPU 1582 // dependant code) 1583 uint64_t InterpreterRuntime::normalize_fast_native_fingerprint(uint64_t fingerprint) { 1584 return fingerprint; 1585 } 1586 #endif 1587 1588 address SignatureHandlerLibrary::set_handler_blob() { 1589 BufferBlob* handler_blob = BufferBlob::create("native signature handlers", blob_size); 1590 if (handler_blob == NULL) { 1591 return NULL; 1592 } 1593 address handler = handler_blob->code_begin(); 1594 _handler_blob = handler_blob; 1595 _handler = handler; 1596 return handler; 1597 } 1598 1599 void SignatureHandlerLibrary::initialize() { 1600 if (_fingerprints != NULL) { 1601 return; 1602 } 1603 if (set_handler_blob() == NULL) { 1604 vm_exit_out_of_memory(blob_size, OOM_MALLOC_ERROR, "native signature handlers"); 1605 } 1606 1607 BufferBlob* bb = BufferBlob::create("Signature Handler Temp Buffer", 1608 SignatureHandlerLibrary::buffer_size); 1609 _buffer = bb->code_begin(); 1610 1611 _fingerprints = new(ResourceObj::C_HEAP, mtCode)GrowableArray<uint64_t>(32, true); 1612 _handlers = new(ResourceObj::C_HEAP, mtCode)GrowableArray<address>(32, true); 1613 } 1614 1615 address SignatureHandlerLibrary::set_handler(CodeBuffer* buffer) { 1616 address handler = _handler; 1617 int insts_size = buffer->pure_insts_size(); 1618 if (handler + insts_size > _handler_blob->code_end()) { 1619 // get a new handler blob 1620 handler = set_handler_blob(); 1621 } 1622 if (handler != NULL) { 1623 memcpy(handler, buffer->insts_begin(), insts_size); 1624 pd_set_handler(handler); 1625 ICache::invalidate_range(handler, insts_size); 1626 _handler = handler + insts_size; 1627 } 1628 return handler; 1629 } 1630 1631 void SignatureHandlerLibrary::add(const methodHandle& method) { 1632 if (method->signature_handler() == NULL) { 1633 // use slow signature handler if we can't do better 1634 int handler_index = -1; 1635 // check if we can use customized (fast) signature handler 1636 if (UseFastSignatureHandlers && method->size_of_parameters() <= Fingerprinter::max_size_of_parameters) { 1637 // use customized signature handler 1638 MutexLocker mu(SignatureHandlerLibrary_lock); 1639 // make sure data structure is initialized 1640 initialize(); 1641 // lookup method signature's fingerprint 1642 uint64_t fingerprint = Fingerprinter(method).fingerprint(); 1643 // allow CPU dependant code to optimize the fingerprints for the fast handler 1644 fingerprint = InterpreterRuntime::normalize_fast_native_fingerprint(fingerprint); 1645 handler_index = _fingerprints->find(fingerprint); 1646 // create handler if necessary 1647 if (handler_index < 0) { 1648 ResourceMark rm; 1649 ptrdiff_t align_offset = align_up(_buffer, CodeEntryAlignment) - (address)_buffer; 1650 CodeBuffer buffer((address)(_buffer + align_offset), 1651 SignatureHandlerLibrary::buffer_size - align_offset); 1652 InterpreterRuntime::SignatureHandlerGenerator(method, &buffer).generate(fingerprint); 1653 // copy into code heap 1654 address handler = set_handler(&buffer); 1655 if (handler == NULL) { 1656 // use slow signature handler (without memorizing it in the fingerprints) 1657 } else { 1658 // debugging suppport 1659 if (PrintSignatureHandlers && (handler != Interpreter::slow_signature_handler())) { 1660 ttyLocker ttyl; 1661 tty->cr(); 1662 tty->print_cr("argument handler #%d for: %s %s (fingerprint = " UINT64_FORMAT ", %d bytes generated)", 1663 _handlers->length(), 1664 (method->is_static() ? "static" : "receiver"), 1665 method->name_and_sig_as_C_string(), 1666 fingerprint, 1667 buffer.insts_size()); 1668 if (buffer.insts_size() > 0) { 1669 Disassembler::decode(handler, handler + buffer.insts_size()); 1670 } 1671 #ifndef PRODUCT 1672 address rh_begin = Interpreter::result_handler(method()->result_type()); 1673 if (CodeCache::contains(rh_begin)) { 1674 // else it might be special platform dependent values 1675 tty->print_cr(" --- associated result handler ---"); 1676 address rh_end = rh_begin; 1677 while (*(int*)rh_end != 0) { 1678 rh_end += sizeof(int); 1679 } 1680 Disassembler::decode(rh_begin, rh_end); 1681 } else { 1682 tty->print_cr(" associated result handler: " PTR_FORMAT, p2i(rh_begin)); 1683 } 1684 #endif 1685 } 1686 // add handler to library 1687 _fingerprints->append(fingerprint); 1688 _handlers->append(handler); 1689 // set handler index 1690 assert(_fingerprints->length() == _handlers->length(), "sanity check"); 1691 handler_index = _fingerprints->length() - 1; 1692 } 1693 } 1694 // Set handler under SignatureHandlerLibrary_lock 1695 if (handler_index < 0) { 1696 // use generic signature handler 1697 method->set_signature_handler(Interpreter::slow_signature_handler()); 1698 } else { 1699 // set handler 1700 method->set_signature_handler(_handlers->at(handler_index)); 1701 } 1702 } else { 1703 DEBUG_ONLY(Thread::current()->check_possible_safepoint()); 1704 // use generic signature handler 1705 method->set_signature_handler(Interpreter::slow_signature_handler()); 1706 } 1707 } 1708 #ifdef ASSERT 1709 int handler_index = -1; 1710 int fingerprint_index = -2; 1711 { 1712 // '_handlers' and '_fingerprints' are 'GrowableArray's and are NOT synchronized 1713 // in any way if accessed from multiple threads. To avoid races with another 1714 // thread which may change the arrays in the above, mutex protected block, we 1715 // have to protect this read access here with the same mutex as well! 1716 MutexLocker mu(SignatureHandlerLibrary_lock); 1717 if (_handlers != NULL) { 1718 handler_index = _handlers->find(method->signature_handler()); 1719 uint64_t fingerprint = Fingerprinter(method).fingerprint(); 1720 fingerprint = InterpreterRuntime::normalize_fast_native_fingerprint(fingerprint); 1721 fingerprint_index = _fingerprints->find(fingerprint); 1722 } 1723 } 1724 assert(method->signature_handler() == Interpreter::slow_signature_handler() || 1725 handler_index == fingerprint_index, "sanity check"); 1726 #endif // ASSERT 1727 } 1728 1729 void SignatureHandlerLibrary::add(uint64_t fingerprint, address handler) { 1730 int handler_index = -1; 1731 // use customized signature handler 1732 MutexLocker mu(SignatureHandlerLibrary_lock); 1733 // make sure data structure is initialized 1734 initialize(); 1735 fingerprint = InterpreterRuntime::normalize_fast_native_fingerprint(fingerprint); 1736 handler_index = _fingerprints->find(fingerprint); 1737 // create handler if necessary 1738 if (handler_index < 0) { 1739 if (PrintSignatureHandlers && (handler != Interpreter::slow_signature_handler())) { 1740 tty->cr(); 1741 tty->print_cr("argument handler #%d at " PTR_FORMAT " for fingerprint " UINT64_FORMAT, 1742 _handlers->length(), 1743 p2i(handler), 1744 fingerprint); 1745 } 1746 _fingerprints->append(fingerprint); 1747 _handlers->append(handler); 1748 } else { 1749 if (PrintSignatureHandlers) { 1750 tty->cr(); 1751 tty->print_cr("duplicate argument handler #%d for fingerprint " UINT64_FORMAT "(old: " PTR_FORMAT ", new : " PTR_FORMAT ")", 1752 _handlers->length(), 1753 fingerprint, 1754 p2i(_handlers->at(handler_index)), 1755 p2i(handler)); 1756 } 1757 } 1758 } 1759 1760 1761 BufferBlob* SignatureHandlerLibrary::_handler_blob = NULL; 1762 address SignatureHandlerLibrary::_handler = NULL; 1763 GrowableArray<uint64_t>* SignatureHandlerLibrary::_fingerprints = NULL; 1764 GrowableArray<address>* SignatureHandlerLibrary::_handlers = NULL; 1765 address SignatureHandlerLibrary::_buffer = NULL; 1766 1767 1768 JRT_ENTRY(void, InterpreterRuntime::prepare_native_call(JavaThread* thread, Method* method)) 1769 methodHandle m(thread, method); 1770 assert(m->is_native(), "sanity check"); 1771 // lookup native function entry point if it doesn't exist 1772 bool in_base_library; 1773 if (!m->has_native_function()) { 1774 NativeLookup::lookup(m, in_base_library, CHECK); 1775 } 1776 // make sure signature handler is installed 1777 SignatureHandlerLibrary::add(m); 1778 // The interpreter entry point checks the signature handler first, 1779 // before trying to fetch the native entry point and klass mirror. 1780 // We must set the signature handler last, so that multiple processors 1781 // preparing the same method will be sure to see non-null entry & mirror. 1782 JRT_END 1783 1784 #if defined(IA32) || defined(AMD64) || defined(ARM) 1785 JRT_LEAF(void, InterpreterRuntime::popframe_move_outgoing_args(JavaThread* thread, void* src_address, void* dest_address)) 1786 if (src_address == dest_address) { 1787 return; 1788 } 1789 ResetNoHandleMark rnm; // In a LEAF entry. 1790 HandleMark hm; 1791 ResourceMark rm; 1792 LastFrameAccessor last_frame(thread); 1793 assert(last_frame.is_interpreted_frame(), ""); 1794 jint bci = last_frame.bci(); 1795 methodHandle mh(thread, last_frame.method()); 1796 Bytecode_invoke invoke(mh, bci); 1797 ArgumentSizeComputer asc(invoke.signature()); 1798 int size_of_arguments = (asc.size() + (invoke.has_receiver() ? 1 : 0)); // receiver 1799 Copy::conjoint_jbytes(src_address, dest_address, 1800 size_of_arguments * Interpreter::stackElementSize); 1801 JRT_END 1802 #endif 1803 1804 #if INCLUDE_JVMTI 1805 // This is a support of the JVMTI PopFrame interface. 1806 // Make sure it is an invokestatic of a polymorphic intrinsic that has a member_name argument 1807 // and return it as a vm_result so that it can be reloaded in the list of invokestatic parameters. 1808 // The member_name argument is a saved reference (in local#0) to the member_name. 1809 // For backward compatibility with some JDK versions (7, 8) it can also be a direct method handle. 1810 // FIXME: remove DMH case after j.l.i.InvokerBytecodeGenerator code shape is updated. 1811 JRT_ENTRY(void, InterpreterRuntime::member_name_arg_or_null(JavaThread* thread, address member_name, 1812 Method* method, address bcp)) 1813 Bytecodes::Code code = Bytecodes::code_at(method, bcp); 1814 if (code != Bytecodes::_invokestatic) { 1815 return; 1816 } 1817 ConstantPool* cpool = method->constants(); 1818 int cp_index = Bytes::get_native_u2(bcp + 1) + ConstantPool::CPCACHE_INDEX_TAG; 1819 Symbol* cname = cpool->klass_name_at(cpool->klass_ref_index_at(cp_index)); 1820 Symbol* mname = cpool->name_ref_at(cp_index); 1821 1822 if (MethodHandles::has_member_arg(cname, mname)) { 1823 oop member_name_oop = (oop) member_name; 1824 if (java_lang_invoke_DirectMethodHandle::is_instance(member_name_oop)) { 1825 // FIXME: remove after j.l.i.InvokerBytecodeGenerator code shape is updated. 1826 member_name_oop = java_lang_invoke_DirectMethodHandle::member(member_name_oop); 1827 } 1828 thread->set_vm_result(member_name_oop); 1829 } else { 1830 thread->set_vm_result(NULL); 1831 } 1832 JRT_END 1833 #endif // INCLUDE_JVMTI 1834 1835 #ifndef PRODUCT 1836 // This must be a JRT_LEAF function because the interpreter must save registers on x86 to 1837 // call this, which changes rsp and makes the interpreter's expression stack not walkable. 1838 // The generated code still uses call_VM because that will set up the frame pointer for 1839 // bcp and method. 1840 JRT_LEAF(intptr_t, InterpreterRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2)) 1841 LastFrameAccessor last_frame(thread); 1842 assert(last_frame.is_interpreted_frame(), "must be an interpreted frame"); 1843 methodHandle mh(thread, last_frame.method()); 1844 BytecodeTracer::trace(mh, last_frame.bcp(), tos, tos2); 1845 return preserve_this_value; 1846 JRT_END 1847 #endif // !PRODUCT